1
|
Wienen D, Gries T, Cooper SL, Heath DE. An overview of polyurethane biomaterials and their use in drug delivery. J Control Release 2023; 363:376-388. [PMID: 37734672 DOI: 10.1016/j.jconrel.2023.09.036] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 08/28/2023] [Accepted: 09/18/2023] [Indexed: 09/23/2023]
Abstract
Polyurethanes are a versatile and highly tunable class of materials that possess unique properties including high tensile strength, abrasion and fatigue resistance, and flexibility at low temperatures. The tunability of polyurethane properties has allowed this class of polymers to become ubiquitous in our daily lives in fields as diverse as apparel, appliances, construction, and the automotive industry. Additionally, polyurethanes with excellent biocompatibility and hemocompatibility can be synthesized, enabling their use as biomaterials in the medical field. The tunable nature of polyurethane biomaterials also makes them excellent candidates as drug delivery vehicles, which is the focus of this review. The fundamental idea we aim to highlight in this article is the structure-property-function relationships found in polyurethane systems. Specifically, the chemical structure of the polymer determines its macroscopic properties and dictates the functions for which it will perform well. By exploring the structure-property-function relationships for polyurethanes, we aim to elucidate the fundamental properties that can be tailored to achieve controlled drug release and empower researchers to design new polyurethane systems for future drug delivery applications.
Collapse
Affiliation(s)
- David Wienen
- Institute of Textile Technology, RWTH Aachen, Germany
| | - Thomas Gries
- Institute of Textile Technology, RWTH Aachen, Germany
| | - Stuart L Cooper
- Department of Chemical and Biomolecular Engineering, The Ohio State University, USA
| | - Daniel E Heath
- Department of Biomedical Engineering, Graeme Clark Institute, University of Melbourne, Australia.
| |
Collapse
|
2
|
Wang J, Dai D, Xie H, Li D, Xiong G, Zhang C. Biological Effects, Applications and Design Strategies of Medical Polyurethanes Modified by Nanomaterials. Int J Nanomedicine 2022; 17:6791-6819. [PMID: 36600880 PMCID: PMC9807071 DOI: 10.2147/ijn.s393207] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 12/20/2022] [Indexed: 12/30/2022] Open
Abstract
Polyurethane (PU) has wide application and popularity as medical apparatus due to its unique structural properties relationship. However, there are still some problems with medical PUs, such as a lack of functionality, insufficient long-term implantation safety, undesired stability, etc. With the rapid development of nanotechnology, the nanomodification of medical PU provides new solutions to these clinical problems. The introduction of nanomaterials could optimize the biocompatibility, antibacterial effect, mechanical strength, and degradation of PUs via blending or surface modification, therefore expanding the application range of medical PUs. This review summarizes the current applications of nano-modified medical PUs in diverse fields. Furthermore, the underlying mechanisms in efficiency optimization are analyzed in terms of the enhanced biological and mechanical properties critical for medical use. We also conclude the preparation schemes and related parameters of nano-modified medical PUs, with discussions about the limitations and prospects. This review indicates the current status of nano-modified medical PUs and contributes to inspiring novel and appropriate designing of PUs for desired clinical requirements.
Collapse
Affiliation(s)
- Jianrong Wang
- Stomatological Hospital, Southern Medical University, Guangzhou, 510280, People’s Republic of China
| | - Danni Dai
- Stomatological Hospital, Southern Medical University, Guangzhou, 510280, People’s Republic of China
| | - Hanshu Xie
- Stomatological Hospital, Southern Medical University, Guangzhou, 510280, People’s Republic of China
| | - Dan Li
- Stomatological Hospital, Southern Medical University, Guangzhou, 510280, People’s Republic of China
| | - Gege Xiong
- Stomatological Hospital, Southern Medical University, Guangzhou, 510280, People’s Republic of China
| | - Chao Zhang
- Stomatological Hospital, Southern Medical University, Guangzhou, 510280, People’s Republic of China
| |
Collapse
|
3
|
|
4
|
Jiang S, Wang M, He J. A review of biomimetic scaffolds for bone regeneration: Toward a cell-free strategy. Bioeng Transl Med 2021; 6:e10206. [PMID: 34027093 PMCID: PMC8126827 DOI: 10.1002/btm2.10206] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 11/05/2020] [Accepted: 11/12/2020] [Indexed: 12/20/2022] Open
Abstract
In clinical terms, bone grafting currently involves the application of autogenous, allogeneic, or xenogeneic bone grafts, as well as natural or artificially synthesized materials, such as polymers, bioceramics, and other composites. Many of these are associated with limitations. The ideal scaffold for bone tissue engineering should provide mechanical support while promoting osteogenesis, osteoconduction, and even osteoinduction. There are various structural complications and engineering difficulties to be considered. Here, we describe the biomimetic possibilities of the modification of natural or synthetic materials through physical and chemical design to facilitate bone tissue repair. This review summarizes recent progresses in the strategies for constructing biomimetic scaffolds, including ion-functionalized scaffolds, decellularized extracellular matrix scaffolds, and micro- and nano-scale biomimetic scaffold structures, as well as reactive scaffolds induced by physical factors, and other acellular scaffolds. The fabrication techniques for these scaffolds, along with current strategies in clinical bone repair, are described. The developments in each category are discussed in terms of the connection between the scaffold materials and tissue repair, as well as the interactions with endogenous cells. As the advances in bone tissue engineering move toward application in the clinical setting, the demonstration of the therapeutic efficacy of these novel scaffold designs is critical.
Collapse
Affiliation(s)
- Sijing Jiang
- Department of Plastic SurgeryFirst Affiliated Hospital of Anhui Medical University, Anhui Medical UniversityHefeiChina
| | - Mohan Wang
- Stomatologic Hospital & College, Anhui Medical University, Key Laboratory of Oral Diseases Research of Anhui ProvinceHefeiChina
| | - Jiacai He
- Stomatologic Hospital & College, Anhui Medical University, Key Laboratory of Oral Diseases Research of Anhui ProvinceHefeiChina
| |
Collapse
|
5
|
Shiels SM, Sgromolo NM, Wenke JC. Negative pressure wound therapy does not diminish efficacy of topical antibiotic powder in a preclinical contaminated wound model. Bone Joint Res 2021; 10:149-155. [PMID: 33595334 PMCID: PMC7937412 DOI: 10.1302/2046-3758.102.bjr-2020-0171.r1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
AIMS High-energy injuries can result in multiple complications, the most prevalent being infection. Vancomycin powder has been used with increasing frequency in orthopaedic trauma given its success in reducing infection following spine surgery. Additionally, large, traumatic injuries require wound coverage and management by dressings such as negative pressure wound therapy (NPWT). NPWT has been shown to decrease the ability of antibiotic cement beads to reduce infection, but its effect on antibiotic powder is not known. The goal of this study was to determine if NPWT reduces the efficacy of topically applied antibiotic powder. METHODS Complex musculoskeletal wounds were created in goats and inoculated with a strain of Staphylococcus aureus modified to emit light. Six hours after contaminating the wounds, imaging, irrigation, and debridement and treatment application were performed. Animals received either vancomycin powder with a wound pouch dressing or vancomycin powder with NPWT. RESULTS There were no differences in eradication of bacteria when vancomycin powder was used in combination with NPWT (4.5% of baseline) compared to vancomycin powder with a wound pouch dressing (1.7% of baseline) (p = 0.986), even though approximately 50% of the vancomycin was recovered in the NPWT exudate canister. CONCLUSION The antimicrobial efficacy of the vancomycin powder was not diminished by the application of NPWT. These topical and locally applied therapies are potentially effective tools that can provide quick, simple treatments to prevent infection while providing coverage. By reducing the occurrence of infection, the recovery is shortened, leading to an overall improvement in quality of life. Cite this article: Bone Joint Res 2021;10(2):149-155.
Collapse
Affiliation(s)
- Stefanie M Shiels
- Orthopaedic Trauma Research Department, U.S. Army Institute of Surgical Research, San Antonio, Texas, USA
| | - Nicole M Sgromolo
- Orthopaedic Trauma Research Department, U.S. Army Institute of Surgical Research, San Antonio, Texas, USA.,Department of Orthopaedic Surgery, Brooke Army Medical Center, San Antonio, Texas, USA
| | - Joseph C Wenke
- Orthopaedic Trauma Research Department, U.S. Army Institute of Surgical Research, San Antonio, Texas, USA
| |
Collapse
|
6
|
Hasan R, Wohlers A, Shreffler J, Mulinti P, Ostlie H, Schaper C, Brooks B, Brooks A. An Antibiotic-Releasing Bone Void Filling (ABVF) Putty for the Treatment of Osteomyelitis. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E5080. [PMID: 33187199 PMCID: PMC7698155 DOI: 10.3390/ma13225080] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 10/27/2020] [Accepted: 10/28/2020] [Indexed: 12/18/2022]
Abstract
The number of total joint replacements (TJR) is on the rise with a corresponding increase in the number of infected TJR, which necessitates revision surgeries. Current treatments with either non-biodegradable, antibiotic-releasing polymethylmethacrylate (PMMA) based bone cement, or systemic antibiotic after surgical debridement do not provide effective treatment due to fluctuating antibiotic levels at the site of infection. Here, we report a biodegradable, easy-to-use "press-fitting" antibiotic-releasing bone void filling (ABVF) putty that not only provides efficient antibiotic release kinetics at the site of infection but also allows efficient osseointegration. The ABVF formulation was prepared using poly (D,L-lactide-co-glycolide) (PLGA), polyethylene glycol (PEG), and polycaprolactone (PCL) as the polymer matrix, antibiotic vancomycin, and osseointegrating synthetic bone PRO OSTEON for bone-growth support. ABVF was homogenous, had a porous structure, was moldable, and showed putty-like mechanical properties. The ABVF putty released vancomycin for 6 weeks at therapeutic level. Furthermore, the released vancomycin showed in vitro antibacterial activity against Staphylococcus aureus for 6 weeks. Vancomycin was not toxic to osteoblasts. Finally, ABVF was biodegradable in vivo and showed an effective infection control with the treatment group showing significantly higher bone growth (p < 0.001) compared to the control group. The potential of infection treatment and osseointegration makes the ABVF putty a promising treatment option for osteomyelitis after TJR.
Collapse
Affiliation(s)
- Raquib Hasan
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, ND 58102, USA; (R.H.); (J.S.); (P.M.)
| | - Abbey Wohlers
- Department of Pharmacy, North Dakota State University, Fargo, ND 58102, USA;
| | - Jacob Shreffler
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, ND 58102, USA; (R.H.); (J.S.); (P.M.)
| | - Pranothi Mulinti
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, ND 58102, USA; (R.H.); (J.S.); (P.M.)
| | - Hunter Ostlie
- School of Medicine, St. George’s University, University Centre Grenada, West Indies, Grenada;
| | - Codi Schaper
- College of Veterinary Medicine, Kansas State University, Manhattan, KS 66502, USA;
| | - Benjamin Brooks
- Department of Biomedical Sciences, Rocky Vista University, Ivins, UT 84734, USA;
| | - Amanda Brooks
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, ND 58102, USA; (R.H.); (J.S.); (P.M.)
- Department of Research and Scholarly Activity, Rocky Vista University, Ivins, UT 84734, USA
| |
Collapse
|
7
|
Spoonmore TJ, Ford CA, Curry JM, Guelcher SA, Cassat JE. Concurrent Local Delivery of Diflunisal Limits Bone Destruction but Fails To Improve Systemic Vancomycin Efficacy during Staphylococcus aureus Osteomyelitis. Antimicrob Agents Chemother 2020; 64:e00182-20. [PMID: 32340992 PMCID: PMC7318050 DOI: 10.1128/aac.00182-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 04/22/2020] [Indexed: 12/30/2022] Open
Abstract
Staphylococcus aureus osteomyelitis is a debilitating infection of bone. Treatment of osteomyelitis is impaired by the propensity of invading bacteria to induce pathological bone remodeling that may limit antibiotic penetration to the infectious focus. The nonsteroidal anti-inflammatory drug diflunisal was previously identified as an osteoprotective adjunctive therapy for osteomyelitis, based on the ability of this compound to inhibit S. aureus quorum sensing and subsequent quorum-dependent toxin production. When delivered locally during experimental osteomyelitis, diflunisal significantly limits bone destruction without affecting bacterial burdens. However, because diflunisal's "quorum-quenching" activity could theoretically increase antibiotic recalcitrance, it is critically important to evaluate this adjunctive therapy in the context of standard-of-care antibiotics. The objective of this study is to evaluate the efficacy of vancomycin to treat osteomyelitis during local diflunisal treatment. We first determined that systemic vancomycin effectively reduces bacterial burdens in a murine model of osteomyelitis and identified a dosing regimen that decreases bacterial burdens without eradicating infection. Using this dosing scheme, we found that vancomycin activity is unaffected by the presence of diflunisal in vitro and in vivo Similarly, locally delivered diflunisal still potently inhibits osteoblast cytotoxicity in vitro and bone destruction in vivo in the presence of subtherapeutic vancomycin. However, we also found that the resorbable polyester urethane (PUR) foams used to deliver diflunisal serve as a nidus for infection. Taken together, these data demonstrate that diflunisal does not significantly impact standard-of-care antibiotic therapy for S. aureus osteomyelitis, but they also highlight potential pitfalls encountered with local drug delivery.
Collapse
Affiliation(s)
- Thomas J Spoonmore
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee, USA
- Vanderbilt Center for Bone Biology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Caleb A Ford
- Vanderbilt Center for Bone Biology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation (VI4), Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Jacob M Curry
- Vanderbilt Center for Bone Biology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Pediatrics, Division of Pediatric Infectious Diseases, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Scott A Guelcher
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee, USA
- Vanderbilt Center for Bone Biology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA
| | - James E Cassat
- Vanderbilt Center for Bone Biology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation (VI4), Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Pediatrics, Division of Pediatric Infectious Diseases, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
8
|
Developments in Antibiotic-Eluting Scaffolds for the Treatment of Osteomyelitis. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10072244] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Osteomyelitis is a devastating disease caused by the infection of bone tissue and is associated with significant morbidity and mortality. It is treated with antibiotic therapy and surgical debridement. A high dose of systemic antibiotics is often required due to poor bone penetration and this is often associated with unacceptable side-effects. To overcome this, local, implantable antibiotic carriers such as polymethyl methacrylate have been developed. However, this is a non-biodegradable material that requires a second surgery to be removed. Attention has therefore shifted to new antibiotic-eluting scaffolds which can be created with a range of unique properties. The purpose of this review is to assess the level of evidence that exists for these novel local treatments. Although this field is still developing, these strategies seem promising and provide hope for the future treatment of chronic osteomyelitis.
Collapse
|
9
|
Bizet B, Grau É, Cramail H, Asua JM. Water-based non-isocyanate polyurethane-ureas (NIPUUs). Polym Chem 2020. [DOI: 10.1039/d0py00427h] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This review aims at discussing the achievements and the remaining challenges in the development of water-soluble NIPUUs, NIPUUs-based hydrogels and water-borne NIPUU dispersions.
Collapse
Affiliation(s)
- Boris Bizet
- LCPO – UMR 5629
- Université de Bordeaux – CNRS – Bordeaux INP
- 33607 Pessac
- France
- POLYMAT
| | - Étienne Grau
- LCPO – UMR 5629
- Université de Bordeaux – CNRS – Bordeaux INP
- 33607 Pessac
- France
| | - Henri Cramail
- LCPO – UMR 5629
- Université de Bordeaux – CNRS – Bordeaux INP
- 33607 Pessac
- France
| | - José M. Asua
- POLYMAT
- University of the Basque Country UPV/EHU
- Joxe Mari Korta Center
- 20018 Donostia-San Sebastián
- Spain
| |
Collapse
|
10
|
Pace LR, Harrison ZL, Brown MN, Haggard WO, Jennings JA. Characterization and Antibiofilm Activity of Mannitol-Chitosan-Blended Paste for Local Antibiotic Delivery System. Mar Drugs 2019; 17:md17090517. [PMID: 31480687 PMCID: PMC6780707 DOI: 10.3390/md17090517] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 08/23/2019] [Accepted: 08/28/2019] [Indexed: 12/16/2022] Open
Abstract
Mannitol, a polyalcohol bacterial metabolite, has been shown to activate dormant persister cells within bacterial biofilm. This study sought to evaluate an injectable blend of mannitol, chitosan, and polyethylene glycol for delivery of antibiotics and mannitol for eradication of Staphylococcal biofilm. Mannitol blends were injectable and had decreased dissociation and degradation in the enzyme lysozyme compared to blends without mannitol. Vancomycin and amikacin eluted in a burst response, with active concentrations extended to seven days compared to five days for blends without mannitol. Mannitol eluted from the paste in a burst the first day and continued through Day 4. Eluates from the mannitol pastes with and without antibiotics decreased viability of established S. aureus biofilm by up to 95.5% compared to blends without mannitol, which only decreased biofilm when loaded with antibiotics. Cytocompatibility tests indicated no adverse effects on viability of fibroblasts. In vivo evaluation of inflammatory response revealed mannitol blends scored within the 2–4 range at Week 1 (2.6 ± 1.1) and at Week 4 (3.0 ± 0.8), indicative of moderate inflammation and comparable to non-mannitol pastes (p = 0.065). Clinically, this paste could be loaded with clinician-selected antibiotics and used as an adjunctive therapy for musculoskeletal infection prevention and treatment.
Collapse
Affiliation(s)
- Leslie R Pace
- Department of Biomedical Engineering, Herff College of Engineering, University of Memphis, Memphis, TN 38152, USA
| | - Zoe L Harrison
- Department of Biomedical Engineering, Herff College of Engineering, University of Memphis, Memphis, TN 38152, USA
| | - Madison N Brown
- Department of Biomedical Engineering, Herff College of Engineering, University of Memphis, Memphis, TN 38152, USA
| | - Warren O Haggard
- Department of Biomedical Engineering, Herff College of Engineering, University of Memphis, Memphis, TN 38152, USA
| | - J Amber Jennings
- Department of Biomedical Engineering, Herff College of Engineering, University of Memphis, Memphis, TN 38152, USA.
| |
Collapse
|
11
|
Formulation of Antimicrobial Tobramycin Loaded PLGA Nanoparticles via Complexation with AOT. J Funct Biomater 2019; 10:jfb10020026. [PMID: 31200522 PMCID: PMC6617385 DOI: 10.3390/jfb10020026] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 05/22/2019] [Accepted: 06/10/2019] [Indexed: 01/01/2023] Open
Abstract
Tobramycin is a potent antimicrobial aminoglycoside and its effective delivery by encapsulation within nanoparticle carriers could increase its activity against infections through a combination of sustained release and enhanced uptake. Effective antimicrobial therapy against a clinically relevant model bacteria (Pseudomonas aeruginosa) requires sufficient levels of therapeutic drug to maintain a drug concentration above the microbial inhibitory concentration (MIC) of the bacteria. Previous studies have shown that loading of aminoglycoside drugs in poly(lactic-co-glycolic) acid (PLGA)-based delivery systems is generally poor due to weak interactions between the drug and the polymer. The formation of complexes of tobramycin with dioctylsulfosuccinate (AOT) allows the effective loading of the drug in PLGA-nanoparticles and such nanoparticles can effectively deliver the antimicrobial aminoglycoside with retention of tobramycin antibacterial function.
Collapse
|
12
|
Carmona-Ribeiro AM. Self-Assembled Antimicrobial Nanomaterials. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:E1408. [PMID: 29973521 PMCID: PMC6069395 DOI: 10.3390/ijerph15071408] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 06/28/2018] [Accepted: 06/29/2018] [Indexed: 12/17/2022]
Abstract
Nanotechnology came to stay improving the quality of human life by reducing environmental contamination of earth and water with pathogens. This review discusses how self-assembled antimicrobial nanomaterials can contribute to maintain humans, their water and their environment inside safe boundaries to human life even though some of these nanomaterials display an overt toxicity. At the core of their strategic use, the self-assembled antimicrobial nanomaterials exhibit optimal and biomimetic organization leading to activity at low doses of their toxic components. Antimicrobial bilayer fragments, bilayer-covered or multilayered nanoparticles, functionalized inorganic or organic polymeric materials, coatings and hydrogels disclose their potential for environmental and public health applications in this review.
Collapse
Affiliation(s)
- Ana Maria Carmona-Ribeiro
- Biocolloids Laboratory, Instituto de Química, Universidade de São Paulo; Av. Prof. Lineu Prestes 748, São Paulo 05508-000, Brazil.
| |
Collapse
|
13
|
Lowinger MB, Barrett SE, Zhang F, Williams RO. Sustained Release Drug Delivery Applications of Polyurethanes. Pharmaceutics 2018; 10:E55. [PMID: 29747409 PMCID: PMC6027189 DOI: 10.3390/pharmaceutics10020055] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 05/02/2018] [Accepted: 05/04/2018] [Indexed: 12/18/2022] Open
Abstract
Since their introduction over 50 years ago, polyurethanes have been applied to nearly every industry. This review describes applications of polyurethanes to the development of modified release drug delivery. Although drug delivery research leveraging polyurethanes has been ongoing for decades, there has been renewed and substantial interest in the field in recent years. The chemistry of polyurethanes and the mechanisms of drug release from sustained release dosage forms are briefly reviewed. Studies to assess the impact of intrinsic drug properties on release from polyurethane-based formulations are considered. The impact of hydrophilic water swelling polyurethanes on drug diffusivity and release rate is discussed. The role of pore formers in modulating drug release rate is examined. Finally, the value of assessing mechanical properties of the dosage form and approaches taken in the literature are described.
Collapse
Affiliation(s)
- Michael B Lowinger
- College of Pharmacy, The University of Texas at Austin, 2409 University Avenue, Austin, TX 78712, USA.
- MRL, Merck & Co., Inc., 126 E. Lincoln Ave, Rahway, NJ 07065, USA.
| | | | - Feng Zhang
- College of Pharmacy, The University of Texas at Austin, 2409 University Avenue, Austin, TX 78712, USA.
| | - Robert O Williams
- College of Pharmacy, The University of Texas at Austin, 2409 University Avenue, Austin, TX 78712, USA.
| |
Collapse
|
14
|
Zhu Q, Li X, Fan Z, Xu Y, Niu H, Li C, Dang Y, Huang Z, Wang Y, Guan J. Biomimetic polyurethane/TiO 2 nanocomposite scaffolds capable of promoting biomineralization and mesenchymal stem cell proliferation. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 85:79-87. [PMID: 29407160 PMCID: PMC5805475 DOI: 10.1016/j.msec.2017.12.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 08/24/2017] [Accepted: 12/07/2017] [Indexed: 12/24/2022]
Abstract
Scaffolds with extracellular matrix-like fibrous morphology, suitable mechanical properties, biomineralization capability, and excellent cytocompatibility are desired for bone regeneration. In this work, fibrous and degradable poly(ester urethane)urea (PEUU) scaffolds reinforced with titanium dioxide nanoparticles (nTiO2) were fabricated to possess these properties. To increase the interfacial interaction between PEUU and nTiO2, poly(ester urethane) (PEU) was grafted onto the nTiO2. The scaffolds were fabricated by electrospinning and exhibited fiber diameter of <1μm. SEM and EDX mapping results demonstrated that the PEU modified nTiO2 was homogeneously distributed in the fibers. In contrast, severe agglomeration was found in the scaffolds with unmodified nTiO2. PEU modified nTiO2 significantly increased Young's modulus and tensile stress of the PEUU scaffolds while unmodified nTiO2 significantly decreased Young's modulus and tensile stress. The greatest reinforcement effect was observed for the scaffold with 1:1 ratio of PEUU and PEU modified nTiO2. When incubating in the simulated body fluid over an 8-week period, biomineralization was occurred on the fibers. The scaffolds with PEU modified nTiO2 showed the highest Ca and P deposition than pure PEUU scaffold and PEUU scaffold with unmodified nTiO2. To examine scaffold cytocompatibility, bone marrow-derived mesenchymal stem cells were cultured on the scaffold. The PEUU scaffold with PEU modified nTiO2 demonstrated significantly higher cell proliferation compared to pure PEUU scaffold and PEUU scaffold with unmodified nTiO2. The above results demonstrate that the developed fibrous nanocomposite scaffolds have potential for bone tissue regeneration.
Collapse
Affiliation(s)
- Qingxia Zhu
- Department of Materials Science and Engineering, The Ohio State University, 2041 College Road, Columbus, OH 43210, USA; Department of Materials Science and Engineering, Jingdezhen Ceramic Institute, Jiangxi 333001, China
| | - Xiaofei Li
- Department of Materials Science and Engineering, The Ohio State University, 2041 College Road, Columbus, OH 43210, USA
| | - Zhaobo Fan
- Department of Materials Science and Engineering, The Ohio State University, 2041 College Road, Columbus, OH 43210, USA
| | - Yanyi Xu
- Department of Materials Science and Engineering, The Ohio State University, 2041 College Road, Columbus, OH 43210, USA
| | - Hong Niu
- Department of Materials Science and Engineering, The Ohio State University, 2041 College Road, Columbus, OH 43210, USA
| | - Chao Li
- Department of Materials Science and Engineering, The Ohio State University, 2041 College Road, Columbus, OH 43210, USA
| | - Yu Dang
- Department of Materials Science and Engineering, The Ohio State University, 2041 College Road, Columbus, OH 43210, USA
| | - Zheng Huang
- Department of Materials Science and Engineering, The Ohio State University, 2041 College Road, Columbus, OH 43210, USA
| | - Yun Wang
- Division of Periodontology, The Ohio State University, 305 W. 12th Avenue, Columbus, OH 43210, USA
| | - Jianjun Guan
- Department of Materials Science and Engineering, The Ohio State University, 2041 College Road, Columbus, OH 43210, USA.
| |
Collapse
|
15
|
Ford CA, Cassat JE. Advances in the local and targeted delivery of anti-infective agents for management of osteomyelitis. Expert Rev Anti Infect Ther 2017; 15:851-860. [PMID: 28837368 DOI: 10.1080/14787210.2017.1372192] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Osteomyelitis, a common and debilitating invasive infection of bone, is a frequent complication following orthopedic surgery and causes pathologic destruction of skeletal tissues. Bone destruction during osteomyelitis results in necrotic tissue, which is poorly penetrated by antibiotics and can serve as a nidus for relapsing infection. Osteomyelitis therefore frequently necessitates surgical debridement procedures, which provide a unique opportunity for targeted delivery of antimicrobial and adjunctive therapies. Areas covered: Following surgical debridement, tissue voids require implanted materials to facilitate the healing process. Antibiotic-loaded, non-biodegradable implants have been the standard of care. However, a new generation of biodegradable, osteoconductive materials are being developed. Additionally, in the face of widespread antimicrobial resistance, alternative therapies to traditional antibiotic regimens are being investigated, including bone targeting compounds, antimicrobial surface modifications of orthopedic implants, and anti-virulence strategies. Expert commentary: Recent advances in biodegradable drug delivery scaffolds make this technology an attractive alternative to traditional techniques for orthopedic infection that require secondary operations for removal. Advances in novel treatment methods are expanding the arsenal of viable antimicrobial treatment strategies in the face of widespread drug resistance. Despite a need for large scale clinical investigations, these strategies offer hope for future treatment of this difficult invasive disease.
Collapse
Affiliation(s)
- Caleb A Ford
- a Department of Biomedical Engineering , Vanderbilt University School of Engineering, Vanderbilt University School of Medicine , Nashville , TN , USA
| | - James E Cassat
- b Departments of Pediatrics, Pathology, Microbiology, and Immunology, and Biomedical Engineering , Vanderbilt University Medical Center , Nashville , TN , USA
| |
Collapse
|
16
|
Marzec M, Kucińska-Lipka J, Kalaszczyńska I, Janik H. Development of polyurethanes for bone repair. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 80:736-747. [PMID: 28866223 DOI: 10.1016/j.msec.2017.07.047] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 01/23/2017] [Accepted: 07/29/2017] [Indexed: 12/12/2022]
Abstract
The purpose of this paper is to review recent developments on polyurethanes aimed at the design, synthesis, modifications, and biological properties in the field of bone tissue engineering. Different polyurethane systems are presented and discussed in terms of biodegradation, biocompatibility and bioactivity. A comprehensive discussion is provided of the influence of hard to soft segments ratio, catalysts, stiffness and hydrophilicity of polyurethanes. Interaction with various cells, behavior in vivo and current strategies in enhancing bioactivity of polyurethanes are described. The discussion on the incorporation of biomolecules and growth factors, surface modifications, and obtaining polyurethane-ceramics composites strategies is held. The main emphasis is placed on the progress of polyurethane applications in bone regeneration, including bone void fillers, shape memory scaffolds, and drug carrier.
Collapse
Affiliation(s)
- M Marzec
- Department of Polymer Technology, Faculty of Chemistry, Gdansk University of Technology, Narutowicza 11/12, 80-233 Gdansk, Poland
| | - J Kucińska-Lipka
- Department of Polymer Technology, Faculty of Chemistry, Gdansk University of Technology, Narutowicza 11/12, 80-233 Gdansk, Poland.
| | - I Kalaszczyńska
- Department of Histology and Embryology, Center for Biostructure Research, Medical University of Warsaw, Chalubinskiego 5, 02-004 Warsaw, Poland; Centre for Preclinical Research and Technology, Banacha 1b, 02-097 Warsaw, Poland
| | - H Janik
- Department of Polymer Technology, Faculty of Chemistry, Gdansk University of Technology, Narutowicza 11/12, 80-233 Gdansk, Poland
| |
Collapse
|
17
|
Martin JR, Nelson CE, Gupta MK, Yu F, Sarett SM, Hocking KM, Pollins AC, Nanney LB, Davidson JM, Guelcher SA, Duvall CL. Local Delivery of PHD2 siRNA from ROS-Degradable Scaffolds to Promote Diabetic Wound Healing. Adv Healthc Mater 2016; 5:2751-2757. [PMID: 27717176 PMCID: PMC5152672 DOI: 10.1002/adhm.201600820] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Indexed: 12/19/2022]
Abstract
Small interfering RNA (siRNA) delivered from reactive oxygen species-degradable tissue engineering scaffolds promotes diabetic wound healing in rats. Porous poly(thioketal-urethane) scaffolds implanted in diabetic wounds locally deliver siRNA that inhibits the expression of prolyl hydroxylase domain protein 2, thereby increasing the expression of progrowth genes and increasing vasculature, proliferating cells, and tissue development in diabetic wounds.
Collapse
Affiliation(s)
- John R. Martin
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Christopher E. Nelson
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Mukesh K. Gupta
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Fang Yu
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Samantha M. Sarett
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Kyle M. Hocking
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Alonda C. Pollins
- Department of Plastic Surgery, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Lillian B. Nanney
- Department of Plastic Surgery, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Jeffrey M. Davidson
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA. Medical Research Service, Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN 37212, USA
| | - Scott A. Guelcher
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Craig L. Duvall
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| |
Collapse
|
18
|
Time-Dependent Effectiveness of Locally Applied Vancomycin Powder in a Contaminated Traumatic Orthopaedic Wound Model. J Orthop Trauma 2016; 30:531-7. [PMID: 27124826 DOI: 10.1097/bot.0000000000000617] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
OBJECTIVES To evaluate the effectiveness of locally applied vancomycin powder at different times postinfection in a contaminated traumatic animal model. METHODS This study used an established segmental defect rat femur model contaminated with Staphylococcus aureus UAMS-1 followed by treatment at 6 or 24 hours postinfection. Three treatments were evaluated: debridement and irrigation alone (control group) or in combination with either vancomycin powder or vancomycin-impregnated poly(methyl methacrylate) beads. Serum vancomycin levels were determined at scheduled time points over 14 days; bone, surrounding muscle, and implants were harvested for bacterial and inflammatory analyses. RESULTS Locally applied vancomycin powder and impregnated beads significantly reduced bacteria both within the bone and implant when treatment was performed at 6 hours. Delaying treatment to 24 hours significantly reduced the therapeutic efficacy of locally applied vancomycin of both groups. Serum vancomycin levels were detectable in all animals treated with vancomycin powder at 24 hours, but absorption was negligible from beads. At 14 days, vancomycin was detectable in the surrounding musculature of all animals and in serum of 20% of animals treated with vancomycin powder. CONCLUSIONS This study suggests that vancomycin powder is a promising adjunctive therapy for preventing infection in traumatic wounds when treatment is performed early. This time-dependent effectiveness of vancomycin powder is similar to that observed with systemic and other local delivery adjuncts, which is likely attributable to biofilm formation after contamination, conferring intrinsic recalcitrance to antimicrobials.
Collapse
|
19
|
Polo Fonseca L, Bergamo Trinca R, Isabel Felisberti M. Thermo-responsive polyurethane hydrogels based on poly(ethylene glycol) and poly(caprolactone): Physico-chemical and mechanical properties. J Appl Polym Sci 2016. [DOI: 10.1002/app.43573] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Lucas Polo Fonseca
- Institute of Chemistry, University of Campinas (UNICAMP); P.O. Box 6154, 13083-970 Campinas SP Brazil
| | - Rafael Bergamo Trinca
- Institute of Chemistry, University of Campinas (UNICAMP); P.O. Box 6154, 13083-970 Campinas SP Brazil
| | - Maria Isabel Felisberti
- Institute of Chemistry, University of Campinas (UNICAMP); P.O. Box 6154, 13083-970 Campinas SP Brazil
| |
Collapse
|
20
|
Jones Z, Brooks AE, Ferrell Z, Grainger DW, Sinclair KD. A resorbable antibiotic eluting bone void filler for periprosthetic joint infection prevention. J Biomed Mater Res B Appl Biomater 2015; 104:1632-1642. [PMID: 26332762 DOI: 10.1002/jbm.b.33513] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 07/31/2015] [Accepted: 08/14/2015] [Indexed: 12/29/2022]
Abstract
Periprosthetic joint infection (PJI) following total knee arthroplasty is a globally increasing procedural complication. These infections are difficult to treat and typically require revision surgery. Antibiotic-loaded bone cement is frequently utilized to deliver antibiotics to the site of infection; however, bone cement is a nondegrading foreign body and known to leach its antibiotic load, after an initial burst release, at subtherapeutic concentrations for months. This work characterized a resorbable, antibiotic-eluting bone void filler designed to restore bone volume and prevent PJI. Three device formulations were fabricated, consisting of different combinations of synthetic inorganic bone graft material, degradable polymer matrices, salt porogens, and antibiotic tobramycin. These formulations were examined to determine the antibiotic's elution kinetics and bactericidal potential, the device's degradation in vitro, as well as osteoconductivity and device resorption in vivo using a pilot rabbit bone implant model. Kirby-Bauer antibiotic susceptibility tests assessed bactericidal activity. Liquid chromatography with tandem mass spectrometry measured antibiotic elution kinetics, and scanning electron microscopy was used to qualitatively assess degradation. Results indicated sustained antibiotic release from all three formulations above the Staphylococcus aureus minimum inhibitory concentration for a period of 5 to 8 weeks. Extensive degradation was observed with the Group 3 formulation after 90 days in phosphate-buffered saline, with a lesser degree of degradation observed in the other two formulations. Results from the pilot rabbit study showed the Group 3 device to be biocompatible, with minimal inflammatory response and no fibrous encapsulation in bone. The device was also highly osteoconductive-exhibiting an accelerated mineral apposition rate. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 104B: 1632-1642, 2016.
Collapse
Affiliation(s)
- Zachary Jones
- Department of Bioengineering, University of Utah, Salt Lake City, Utah, 84112
| | - Amanda E Brooks
- Department of Bioengineering, University of Utah, Salt Lake City, Utah, 84112.,Elute Inc, Salt Lake City, Utah, 84108
| | - Zachary Ferrell
- Department of Bioengineering, University of Utah, Salt Lake City, Utah, 84112
| | - David W Grainger
- Department of Bioengineering, University of Utah, Salt Lake City, Utah, 84112.,Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, Utah, 84112
| | | |
Collapse
|
21
|
Abstract
OBJECTIVE This proof-of-concept study tested the hypothesis that combining bismuth thiols (BTs) with systemic antibiotics will more effectively reduce infection in an animal model of contaminated open fracture than systemic antibiotics alone. METHODS An implant-stabilized segmental defect rat model was contaminated with Staphylococcus aureus and then treated with surgical debridement 6 hours after injury and 3 days of systemic cefazolin. A single dose of BTs suspended in a hydrogel was administered to the wound immediately after debridement. After 14 days, the bone and implant were harvested for microbiological analysis. RESULTS A single local dose of 0.05 mg of BT (MB-8-2), when combined with systemically administered cefazolin, decreased infection, without any noticeable local or systemic toxicity, from 60% to 10% (P = 0.002), with only 0.02% of the recovered bacteria quantity of the cefazolin-only group (P < 0.001). Higher doses were less effective and caused side-effects. CONCLUSIONS BTs administered locally to infected open fracture wounds at an appropriate dose potentiate the effect of systemically administered antibiotics and reduce infection rate and bacteria quantity associated with bone and orthopaedic implants. Local delivery of BTs is a promising strategy for increasing the efficacy of systemically administered antibiotics in preventing and treating infections of open fractures.
Collapse
|
22
|
Brown KV, Penn-Barwell JG, Rand BC, Wenke JC. Translational research to improve the treatment of severe extremity injuries. J ROY ARMY MED CORPS 2014; 160:167-70. [PMID: 24464465 DOI: 10.1136/jramc-2013-000235] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
OBJECTIVES Severe extremity injuries are the most significant injury sustained in combat wounds. Despite optimal clinical management, non-union and infection remain common complications. In a concerted effort to dovetail research efforts, there has been a collaboration between the UK and USA, with British military surgeons conducting translational studies under the auspices of the US Institute of Surgical Research. This paper describes 3 years of work. METHODS A variety of studies were conducted using, and developing, a previously validated rat femur critical-sized defect model. Timing of surgical debridement and irrigation, different types of irrigants and different means of delivery of antibiotic and growth factors for infection control and to promote bone healing were investigated. RESULTS Early debridement and irrigation were independently shown to reduce infection. Normal saline was the most optimal irrigant, superior to disinfectant solutions. A biodegradable gel demonstrated superior antibiotic delivery capabilities than standard polymethylmethacrylate beads. A polyurethane scaffold was shown to have the ability to deliver both antibiotics and growth factors. DISCUSSION The importance of early transit times to Role 3 capabilities for definitive surgical care has been underlined. Novel and superior methods of antibiotic and growth factor delivery, compared with current clinical standards of care, have been shown. There is the potential for translation to clinical studies to promote infection control and bone healing in these devastating injuries.
Collapse
Affiliation(s)
- Kate V Brown
- US Army Institute of Surgical Research, San Antonio, Texas, USA Academic Department of Military Surgery and Trauma, Royal Centre for Defence Medicine, Birmingham, UK
| | - J G Penn-Barwell
- US Army Institute of Surgical Research, San Antonio, Texas, USA Academic Department of Military Surgery and Trauma, Royal Centre for Defence Medicine, Birmingham, UK
| | - B C Rand
- US Army Institute of Surgical Research, San Antonio, Texas, USA Academic Department of Military Surgery and Trauma, Royal Centre for Defence Medicine, Birmingham, UK
| | - J C Wenke
- US Army Institute of Surgical Research, San Antonio, Texas, USA
| |
Collapse
|
23
|
Moglia RS, Robinson JL, Muschenborn AD, Touchet TJ, Maitland DJ, Cosgriff-Hernandez E. Injectable PolyMIPE Scaffolds for Soft Tissue Regeneration. POLYMER 2014; 56:426-434. [PMID: 24563552 PMCID: PMC3927917 DOI: 10.1016/j.polymer.2013.09.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Injury caused by trauma, burns, surgery, or disease often results in soft tissue loss leading to impaired function and permanent disfiguration. Tissue engineering aims to overcome the lack of viable donor tissue by fabricating synthetic scaffolds with the requisite properties and bioactive cues to regenerate these tissues. Biomaterial scaffolds designed to match soft tissue modulus and strength should also retain the elastomeric and fatigue-resistant properties of the tissue. Of particular design importance is the interconnected porous structure of the scaffold needed to support tissue growth by facilitating mass transport. Adequate mass transport is especially true for newly implanted scaffolds that lack vasculature to provide nutrient flux. Common scaffold fabrication strategies often utilize toxic solvents and high temperatures or pressures to achieve the desired porosity. In this study, a polymerized medium internal phase emulsion (polyMIPE) is used to generate an injectable graft that cures to a porous foam at body temperature without toxic solvents. These poly(ester urethane urea) scaffolds possess elastomeric properties with tunable compressive moduli (20-200 kPa) and strengths (4-60 kPa) as well as high recovery after the first conditioning cycle (97-99%). The resultant pore architecture was highly interconnected with large voids (0.5-2 mm) from carbon dioxide generation surrounded by water-templated pores (50-300 μm). The ability to modulate both scaffold pore architecture and mechanical properties by altering emulsion chemistry was demonstrated. Permeability and form factor were experimentally measured to determine the effects of polyMIPE composition on pore interconnectivity. Finally, initial human mesenchymal stem cell (hMSC) cytocompatibility testing supported the use of these candidate scaffolds in regenerative applications. Overall, these injectable polyMIPE foams show strong promise as a biomaterial scaffold for soft tissue repair.
Collapse
Affiliation(s)
- Robert S. Moglia
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas, 77843-3120, U.S.A
| | - Jennifer L. Robinson
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas, 77843-3120, U.S.A
| | - Andrea D. Muschenborn
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas, 77843-3120, U.S.A
| | - Tyler J. Touchet
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas, 77843-3120, U.S.A
| | - Duncan J. Maitland
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas, 77843-3120, U.S.A
| | | |
Collapse
|
24
|
Sanchez CJ, Prieto EM, Krueger CA, Zienkiewicz KJ, Romano DR, Ward CL, Akers KS, Guelcher SA, Wenke JC. Effects of local delivery of D-amino acids from biofilm-dispersive scaffolds on infection in contaminated rat segmental defects. Biomaterials 2013; 34:7533-43. [PMID: 23831189 DOI: 10.1016/j.biomaterials.2013.06.026] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Accepted: 06/14/2013] [Indexed: 01/10/2023]
Abstract
Infectious complications of open fractures continue to be a significant factor contributing to non-osseous union and extremity amputation. The persistence of bacteria within biofilms despite meticulous debridement and antibiotic therapy is believed to be a major cause of chronic infection. Considering the difficulties in treating biofilm-associated infections, the use of biofilm dispersal agents as a therapeutic strategy for the prevention of biofilm-associated infections has gained considerable interest. In this study, we investigated whether local delivery of D-Amino Acids (D-AAs), a biofilm dispersal agent, protects scaffolds from contamination and reduces microbial burden within contaminated rat segmental defects in vivo. In vitro testing on biofilms of clinical isolates of Staphylococcus aureus demonstrated that D-Met, D-Phe, D-Pro, and D-Trp were highly effective at dispersing and preventing biofilm formation individually, and the effect was enhanced for an equimolar mixture of D-AAs. Incorporation of D-AAs into polyurethane scaffolds as a mixture (1:1:1 D-Met:D-Pro:D-Trp) significantly reduced bacterial contamination on the scaffold surface in vitro and within bone when implanted into contaminated femoral segmental defects. Our results underscore the potential of local delivery of d-AAs for reducing bacterial contamination by targeting bacteria within biofilms, which may represent a treatment strategy for improving healing outcomes associated with open fractures.
Collapse
Affiliation(s)
- Carlos J Sanchez
- United States Army Institute of Surgical Research, Extremity Trauma and Regenerative Medicine Task Area, Fort Sam Houston, San Antonio, TX, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Mouriño V, Cattalini JP, Roether JA, Dubey P, Roy I, Boccaccini AR. Composite polymer-bioceramic scaffolds with drug delivery capability for bone tissue engineering. Expert Opin Drug Deliv 2013; 10:1353-65. [PMID: 23777443 DOI: 10.1517/17425247.2013.808183] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
INTRODUCTION Next-generation scaffolds for bone tissue engineering (BTE) should exhibit the appropriate combination of mechanical support and morphological guidance for cell proliferation and attachment while at the same time serving as matrices for sustained delivery of therapeutic drugs and/or biomolecular signals, such as growth factors. Drug delivery from BTE scaffolds to induce the formation of functional tissues, which may need to vary temporally and spatially, represents a versatile approach to manipulating the local environment for directing cell function and/or to treat common bone diseases or local infection. In addition, drug delivery from BTE is proposed to either increase the expression of tissue inductive factors or to block the expression of others factors that could inhibit bone tissue formation. Composite scaffolds which combine biopolymers and bioactive ceramics in mechanically competent 3D structures, including also organic-inorganic hybrids, are being widely developed for BTE, where the affinity and interaction between biomaterials and therapeutic drugs or biomolecular signals play a decisive role in controlling the release rate. AREAS COVERED This review covers current developments and applications of 3D composite scaffolds for BTE which exhibit the added capability of controlled delivery of therapeutic drugs or growth factors. A summary of drugs and biomolecules incorporated in composite scaffolds and approaches developed to combine biopolymers and bioceramics in composites for drug delivery systems for BTE is presented. Special attention is given to identify the main challenges and unmet needs of current designs and technologies for developing such multifunctional 3D composite scaffolds for BTE. EXPERT OPINION One of the major challenges for developing composite scaffolds for BTE is the incorporation of a drug delivery function of sufficient complexity to be able to induce the release patterns that may be necessary for effective osseointegration, vascularization and bone regeneration. Loading 3D scaffolds with different biomolecular agents should produce a codelivery system with different, predetermined release profiles. It is also envisaged that the number of relevant bioactive agents that can be loaded onto scaffolds will be increased, whilst the composite scaffold design should exploit synergistically the different degradation profiles of the organic and inorganic components.
Collapse
Affiliation(s)
- Viviana Mouriño
- University of Buenos Aires, Faculty of Pharmacy, Department of Pharmaceutical Technology , Buenos Aires 956 Junín St, 6th Floor, Buenos Aires CP1113 , Argentina
| | | | | | | | | | | |
Collapse
|
26
|
Cherng JY, Hou TY, Shih MF, Talsma H, Hennink WE. Polyurethane-based drug delivery systems. Int J Pharm 2013; 450:145-62. [DOI: 10.1016/j.ijpharm.2013.04.063] [Citation(s) in RCA: 196] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Revised: 04/19/2013] [Accepted: 04/20/2013] [Indexed: 01/21/2023]
|
27
|
Page JM, Harmata AJ, Guelcher SA. Design and development of reactive injectable and settable polymeric biomaterials. J Biomed Mater Res A 2013; 101:3630-45. [DOI: 10.1002/jbm.a.34665] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Revised: 02/05/2013] [Accepted: 02/14/2013] [Indexed: 12/21/2022]
Affiliation(s)
- Jonathan M. Page
- Department of Chemical and Biomolecular Engineering; Vanderbilt University; Nashville Tennessee
- Center for Bone Biology; Department of Medicine; Vanderbilt University Medical Center; Nashville Tennessee
| | - Andrew J. Harmata
- Department of Chemical and Biomolecular Engineering; Vanderbilt University; Nashville Tennessee
- Center for Bone Biology; Department of Medicine; Vanderbilt University Medical Center; Nashville Tennessee
| | - Scott A. Guelcher
- Department of Chemical and Biomolecular Engineering; Vanderbilt University; Nashville Tennessee
- Center for Bone Biology; Department of Medicine; Vanderbilt University Medical Center; Nashville Tennessee
- Department of Biomedical Engineering; Vanderbilt University; Nashville Tennessee
| |
Collapse
|
28
|
|
29
|
Synthesis, characterization and applications of amphiphilic elastomeric polyurethane networks in drug delivery. Polym J 2012. [DOI: 10.1038/pj.2012.131] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
30
|
Schreader KJ, Bayer IS, Milner DJ, Loth E, Jasiuk I. A polyurethane-based nanocomposite biocompatible bone adhesive. J Appl Polym Sci 2012. [DOI: 10.1002/app.38100] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
31
|
Yan N, Zhang X, Cai Q, Yang X, Zhou X, Wang B, Deng X. The Effects of Lactidyl/Glycolidyl Ratio and Molecular Weight of Poly(D,L -Lactide-co-Glycolide) on the Tetracycline Entrapment and Release Kinetics of Drug-Loaded Nanofibers. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2012; 23:1005-19. [PMID: 21477461 DOI: 10.1163/092050611x568223] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Na Yan
- a Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing 100081, P. R. China
| | - Xuehui Zhang
- b Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing 100081, P. R. China
| | - Qing Cai
- c The Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Xiaoping Yang
- d The Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Xuegang Zhou
- e The Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Bo Wang
- f Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing 100081, P. R. China
| | - Xuliang Deng
- g Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing 100081, P. R. China.
| |
Collapse
|
32
|
Khosroushahi AY, Naderi-Manesh H, Yeganeh H, Barar J, Omidi Y. Novel water-soluble polyurethane nanomicelles for cancer chemotherapy: physicochemical characterization and cellular activities. J Nanobiotechnology 2012; 10:2. [PMID: 22221539 PMCID: PMC3286383 DOI: 10.1186/1477-3155-10-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Accepted: 01/05/2012] [Indexed: 02/05/2023] Open
Abstract
Background Efficient delivery of anticancer chemotherapies such as paclitaxel (PTX) can improve treatment strategy in a variety of tumors such as breast and ovarian cancers. Accordingly, researches on polymeric nanomicelles continue to find suitable delivery systems. However, due to biocompatibility concerns, a few micellar nanoformulations have exquisitely been translated into clinical uses. Here, we report the synthesis of novel water-soluble nanomicelles using bioactive polyurethane (PU) polymer and efficient delivery of PTX in the human breast cancer MCF-7 cells. Results The amphiphilic polyurethane was prepared through formation of urethane bounds between hydroxyl groups in poly (tetramethylene ether) glycol (PTMEG) and dimethylol propionic acid with isocyanate groups in toluene diisocyanate (TDI). The free isocyanate groups were blocked with phenol, while the free carboxyl groups of dimethylol propionic acid were reacted with triethylamine to attain ionic centers in the polymer backbone. These hydrophobic PTMEG blocks displayed self-assembly forming polymeric nanomicelles in water. The PTX loaded PU nanomicelles showed suitable physical stability, negative zeta potential charge (-43) and high loading efficiency (80%) with low level of critical micelle concentration (CMC). In vitro drug release profile showed a faster rate of drug liberation at pH 5.4 as compared to that of pH 7.4, implying involvement of a pH-sensitive mechanism for drug release from the nanomicelles. The kinetic of release exquisitely obeyed the Higuchi model, confirming involvement of diffusion and somewhat erosion at pH 5.4. These nanomicelles significantly inhibited the growth and proliferation of the human breast cancer MCF-7 cells, leading them to apoptosis. The real time RT-PCR analysis confirmed the activation of apoptosis as result of liberation of cytochrome c in the cells treated with the PTX loaded PU nanomicelles. The comet assay analysis showed somewhat DNA fragmentation in the treated cells. Conclusions Based upon these findings, we propose that the bioactive waterborne polyurethane nanomicelles can be used as an effective nanocarrier for delivery of anticancer chemotherapies such as paclitaxel.
Collapse
|
33
|
Adolph EJ, Hafeman AE, Davidson JM, Nanney LB, Guelcher SA. Injectable polyurethane composite scaffolds delay wound contraction and support cellular infiltration and remodeling in rat excisional wounds. J Biomed Mater Res A 2011; 100:450-61. [PMID: 22105887 DOI: 10.1002/jbm.a.33266] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2010] [Accepted: 09/07/2011] [Indexed: 11/06/2022]
Abstract
Injectable scaffolds present compelling opportunities for wound repair and regeneration because of their ability to fill irregularly shaped defects and deliver biologics such as growth factors. In this study, we investigated the properties of injectable polyurethane (PUR) biocomposite scaffolds and their application in cutaneous wound repair using a rat excisional model. The scaffolds have a minimal reaction exotherm and clinically relevant working and setting times. Moreover, the biocomposites have mechanical and thermal properties consistent with rubbery elastomers. In the rat excisional wound model, injection of settable biocomposite scaffolds stented the wounds at early time points, resulting in a regenerative rather than a scarring phenotype at later time points. Measurements of wound length and thickness revealed that the treated wounds were less contracted at day 7 compared to blank wounds. Analysis of cell proliferation and apoptosis showed that the scaffolds were biocompatible and supported tissue ingrowth. Myofibroblast formation and collagen fiber organization provided evidence that the scaffolds have a positive effect on extracellular matrix remodeling by disrupting the formation of an aligned matrix under elevated tension. In summary, we have developed an injectable biodegradable PUR biocomposite scaffold that enhances cutaneous wound healing in a rat model.
Collapse
Affiliation(s)
- Elizabeth J Adolph
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee
| | | | | | | | | |
Collapse
|
34
|
Gao P, Nie X, Zou M, Shi Y, Cheng G. Recent advances in materials for extended-release antibiotic delivery system. J Antibiot (Tokyo) 2011; 64:625-34. [DOI: 10.1038/ja.2011.58] [Citation(s) in RCA: 193] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
35
|
Brown KV, Li B, Guda T, Perrien DS, Guelcher SA, Wenke JC. Improving Bone Formation in a Rat Femur Segmental Defect by Controlling Bone Morphogenetic Protein-2 Release. Tissue Eng Part A 2011; 17:1735-46. [DOI: 10.1089/ten.tea.2010.0446] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Kate V. Brown
- Extremity Trauma and Regenerative Medicine Task Area, United States Army Institute of Surgical Research, San Antonio, Texas
| | - Bing Li
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee
| | - Teja Guda
- Extremity Trauma and Regenerative Medicine Task Area, United States Army Institute of Surgical Research, San Antonio, Texas
- Wake Forest Institute of Regenerative Medicine, Winston-Salem, North Carolina
| | - Daniel S. Perrien
- Department of Orthopaedics and Rehabilitation and Center for Bone Biology, Vanderbilt University, Nashville, Tennessee
| | - Scott A. Guelcher
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee
| | - Joseph C. Wenke
- Extremity Trauma and Regenerative Medicine Task Area, United States Army Institute of Surgical Research, San Antonio, Texas
| |
Collapse
|
36
|
Rathbone CR, Cross JD, Brown KV, Murray CK, Wenke JC. Effect of various concentrations of antibiotics on osteogenic cell viability and activity. J Orthop Res 2011; 29:1070-4. [PMID: 21567453 DOI: 10.1002/jor.21343] [Citation(s) in RCA: 244] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2010] [Accepted: 12/06/2010] [Indexed: 02/04/2023]
Abstract
Infection is a common complication of open fractures. Systemic antibiotics often cause adverse events before eradication of infected bone occurs. The local delivery of antibiotics and the use of implants that deliver both growth factors and antimicrobials are ways to circumvent systemic toxicity while decreasing infection and to reach extremely high levels required to treat bacterial biofilms. When choosing an antibiotic for a local delivery system, one should consider the effect that the antibiotic has on cell viability and osteogenic activity. To address this concern, osteoblasts were treated with 21 different antibiotics over 8 concentrations from 0 to 5000 µg/ml. Osteoblast deoxyribonucleic acid content and alkaline phosphatase activity (ALP) were measured to determine cell number and osteogenic activity, respectively. Antibiotics that caused the greatest decrement include rifampin, minocycline, doxycycline, nafcillin, penicillin, ciprofloxacin, colistin methanesulfonate, and gentamicin; their cell number and ALP were significantly less than control at drug concentrations ≤ 200 µg/ml. Conversely, amikacin, tobramycin, and vancomycin were the least cytotoxic and did not appreciably affect cell number and ALP until very high concentrations were used. This comprehensive evaluation of numerous antibiotics' effects on osteoblast viability and activity will enable clinicians and researchers to choose the optimal antibiotic for treatment of infection and maintenance of healthy host bone.
Collapse
Affiliation(s)
- Christopher R Rathbone
- United States Army Institute of Surgical Research, 3400 Rawley E Chambers, Fort Sam Houston, Texas 78234, USA.
| | | | | | | | | |
Collapse
|
37
|
Nelson DM, Baraniak PR, Ma Z, Guan J, Mason NS, Wagner WR. Controlled release of IGF-1 and HGF from a biodegradable polyurethane scaffold. Pharm Res 2011; 28:1282-93. [PMID: 21347565 DOI: 10.1007/s11095-011-0391-z] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Accepted: 02/03/2011] [Indexed: 12/13/2022]
Abstract
PURPOSE Biodegradable elastomers, which can possess favorable mechanical properties and degradation rates for soft tissue engineering applications, are more recently being explored as depots for biomolecule delivery. The objective of this study was to synthesize and process biodegradable, elastomeric poly(ester urethane)urea (PEUU) scaffolds and to characterize their ability to incorporate and release bioactive insulin-like growth factor-1 (IGF-1) and hepatocyte growth factor (HGF). METHODS Porous PEUU scaffolds made from either 5 or 8 wt% PEUU were prepared with direct growth-factor incorporation. Long-term in vitro IGF-1 release kinetics were investigated in saline or saline with 100 units/ml lipase to simulate in vivo degradation. Cellular assays were used to confirm released IGF-1 and HGF bioactivity. RESULTS IGF-1 release into saline occurred in a complex multi-phasic manner for up to 440 days. Scaffolds generated from 5 wt% PEUU delivered protein faster than 8 wt% scaffolds. Lipase-accelerated scaffold degradation led to delivery of >90% protein over 9 weeks for both polymer concentrations. IGF-1 and HGF bioactivity in the first 3 weeks was confirmed. CONCLUSIONS The capacity of a biodegradable elastomeric scaffold to provide long-term growth-factor delivery was demonstrated. Such a system might provide functional benefit in cardiovascular and other soft tissue engineering applications.
Collapse
Affiliation(s)
- Devin M Nelson
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | | | | | | | | | |
Collapse
|
38
|
A review on composite liposomal technologies for specialized drug delivery. JOURNAL OF DRUG DELIVERY 2011; 2011:939851. [PMID: 21490759 PMCID: PMC3065812 DOI: 10.1155/2011/939851] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2010] [Revised: 11/23/2010] [Accepted: 12/07/2010] [Indexed: 12/21/2022]
Abstract
The combination of liposomes with polymeric scaffolds could revolutionize the current state of drug delivery technology. Although liposomes have been extensively studied as a promising drug delivery model for bioactive compounds, there still remain major drawbacks for widespread pharmaceutical application. Two approaches for overcoming the factors related to the suboptimal efficacy of liposomes in drug delivery have been suggested. The first entails modifying the liposome surface with functional moieties, while the second involves integration of pre-encapsulated drug-loaded liposomes within depot polymeric scaffolds. This attempts to provide ingenious solutions to the limitations of conventional liposomes such as short plasma half-lives, toxicity, stability, and poor control of drug release over prolonged periods. This review delineates the key advances in composite technologies that merge the concepts of depot polymeric scaffolds with liposome technology to overcome the limitations of conventional liposomes for pharmaceutical applications.
Collapse
|
39
|
Campoccia D, Montanaro L, Speziale P, Arciola CR. Antibiotic-loaded biomaterials and the risks for the spread of antibiotic resistance following their prophylactic and therapeutic clinical use. Biomaterials 2010; 31:6363-77. [DOI: 10.1016/j.biomaterials.2010.05.005] [Citation(s) in RCA: 300] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2010] [Accepted: 05/07/2010] [Indexed: 12/28/2022]
|
40
|
A Sustained Release of Lovastatin from Biodegradable, Elastomeric Polyurethane Scaffolds for Enhanced Bone Regeneration. Tissue Eng Part A 2010; 16:2369-79. [DOI: 10.1089/ten.tea.2009.0585] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
41
|
Li B, Brown KV, Wenke JC, Guelcher SA. Sustained release of vancomycin from polyurethane scaffolds inhibits infection of bone wounds in a rat femoral segmental defect model. J Control Release 2010; 145:221-30. [PMID: 20382191 DOI: 10.1016/j.jconrel.2010.04.002] [Citation(s) in RCA: 149] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2010] [Revised: 03/25/2010] [Accepted: 04/02/2010] [Indexed: 02/02/2023]
Abstract
Infection is a common complication in open fractures that compromises the healing of bone and can result in loss of limb or life. Currently, the clinical standard of care for treating contaminated open fractures comprises a staged approach, wherein the wound is first treated with non-biodegradable antibiotic-laden poly(methyl methacrylate) (PMMA) beads to control the infection followed by bone grafting. Considering that tissue regeneration is associated with new blood vessel formation, which takes up to 6 weeks in segmental defects, a biodegradable bone graft with sustained release of an antibiotic is desired to prevent the implant from becoming infected, thus allowing the processes of both vascularization and new bone formation to occur unimpeded. In the present study, we utilized biodegradable porous polyurethane (PUR) scaffolds as the delivery vehicle for vancomycin. Hydrophobic vancomycin free base (V-FB) was obtained by precipitating the hydrophilic vancomycin hydrochloride (V-HCl) at pH 8. The decreased solubility of V-FB resulted in an extended vancomycin release profile in vitro, as evidenced by the fact that active vancomycin was released for up to 8 weeks at concentrations well above both the minimum inhibitory concentration (MIC) and the minimum bactericidal concentration (MBC). Using PUR prepared from lysine triisocyanate (LTI) (PUR(LTI)), the extended in vitro release profile observed for V-FB translated to improved infection control in vivo compared to V-HCl in a contaminated critical-sized fat femoral segmental defect. The performance of PUR(LTI)/V-FB was comparable to PMMA/V-HCl beads in vivo. However, compared with PMMA, PUR is a biodegradable system which does not require the extra surgical removal step in clinical use. These results suggest that PUR scaffolds incorporating V-FB could be a potential clinical therapy for treatment of infected bone defects.
Collapse
Affiliation(s)
- Bing Li
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, United States
| | | | | | | |
Collapse
|