1
|
Mascia L, Fanelli V, Mistretta A, Filippini M, Zanin M, Berardino M, Mazzeo AT, Caricato A, Antonelli M, Della Corte F, Grossi F, Munari M, Caravello M, Alessandri F, Cavalli I, Mezzapesa M, Silvestri L, Casartelli Liviero M, Zanatta P, Pelosi P, Citerio G, Filippini C, Rucci P, Rasulo FA, Tonetti T. Lung-Protective Mechanical Ventilation in Patients with Severe Acute Brain Injury: A Multicenter Randomized Clinical Trial (PROLABI). Am J Respir Crit Care Med 2024; 210:1123-1131. [PMID: 39288368 DOI: 10.1164/rccm.202402-0375oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 09/17/2024] [Indexed: 09/19/2024] Open
Abstract
Rationale: Lung-protective strategies using low Vt and moderate positive end-expiratory pressure (PEEP) are considered best practice in critical care, but interventional trials have never been conducted in patients with acute brain injuries because of concerns about carbon dioxide control and the effect of PEEP on cerebral hemodynamics. Objectives: To test the hypothesis that ventilation with lower VT and higher PEEP compared to conventional ventilation would improve clinical outcomes in patients with acute brain injury. Methods: In this multicenter, open-label, controlled clinical trial, 190 adult patients with acute brain injury were assigned to receive either a lung-protective or a conventional ventilatory strategy. The primary outcome was a composite endpoint of death, ventilator dependency, and acute respiratory distress syndrome (ARDS) at Day 28. Neurological outcome was assessed at ICU discharge by the Oxford Handicap Scale and at 6 months by the Glasgow Outcome Scale. Measurements and Main Results: The two study arms had similar characteristics at baseline. In the lung-protective and conventional strategy groups, using an intention-to-treat approach, the composite outcome at 28 days was 61.5% and 45.3% (relative risk [RR], 1.35; 95% confidence interval [CI], 1.03-1.79; P = 0.025). Mortality was 28.9% and 15.1% (RR, 1.91; 95% CI, 1.06-3.42; P = 0.02), ventilator dependency was 42.3% and 27.9% (RR, 1.52; 95% CI, 1.01-2.28; P = 0.039), and incidence of ARDS was 30.8% and 22.1% (RR, 1.39; 95% CI, 0.85-2.27; P = 0.179), respectively. The trial was stopped after enrolling 190 subjects because of termination of funding. Conclusions: In patients with acute brain injury without ARDS, a lung-protective ventilatory strategy, as compared with a conventional strategy, did not reduce mortality, percentage of patients weaned from mechanical ventilation, or incidence of ARDS and was not beneficial in terms of neurological outcomes. Because of the early termination, these preliminary results require confirmation in larger trials. Clinical trial registered with www.clinicaltrials.gov (NCT01690819).
Collapse
Affiliation(s)
- Luciana Mascia
- Department of Experimental Medicine (DIMES), Campus Ecotekne, University of Salento, Lecce, Italy
| | - Vito Fanelli
- Department of Surgical Sciences, University of Turin, Turin, Italy
- Department of Anaesthesia, Critical Care, and Emergency, Città della Salute e della Scienza di Torino University Hospital - Molinette Hospital, Turin, Italy
| | - Alice Mistretta
- Department of Anesthesia and Intensive Care Unit, Città della Salute e della Scienza di Torino University Hospital - Orthopedic and Trauma Center, Turin, Italy
| | - Matteo Filippini
- Department of Anesthesiology, Intensive Care, and Emergency, Spedali Civili University Hospital, Brescia, Italy
| | - Mattia Zanin
- Department of Surgical Sciences, University of Turin, Turin, Italy
| | - Maurizio Berardino
- Department of Anesthesia and Intensive Care Unit, Città della Salute e della Scienza di Torino University Hospital - Orthopedic and Trauma Center, Turin, Italy
| | - Anna Teresa Mazzeo
- Department of Adult and Pediatric Pathology, University of Messina, Messina, Italy
| | | | - Massimo Antonelli
- Department of Anesthesiology and Intensive Care Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Institute of Anesthesiology and Critical Care, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Francesco Della Corte
- Department of Translational Medicine, Università del Piemonte Orientale, Novara, Italy
- Anesthesiology and Intensive Care Medicine, Maggiore della Carità University Hospital, Novara, Italy
| | - Francesca Grossi
- Anesthesiology and Intensive Care Medicine, Maggiore della Carità University Hospital, Novara, Italy
| | - Marina Munari
- Institute of Anesthesia and Intensive Care, University Hospital of Padua, Padua, Italy
| | | | - Francesco Alessandri
- Department of General Surgery and Organ Transplantation Unit, Sapienza University of Rome, Policlinico Umberto I, Rome, Italy
| | - Irene Cavalli
- Department of Medical and Surgical Sciences (DIMEC) and
| | - Mario Mezzapesa
- Department of General Surgery and Organ Transplantation Unit, Sapienza University of Rome, Policlinico Umberto I, Rome, Italy
| | - Lucia Silvestri
- Department of General Surgery and Organ Transplantation Unit, Sapienza University of Rome, Policlinico Umberto I, Rome, Italy
| | | | - Paolo Zanatta
- Department of Anesthesia and Intensive Care, Integrated University Hospital of Verona, Verona, Italy
| | - Paolo Pelosi
- Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, Genoa, Italy
- Anesthesiology and Critical Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neurosciences, Genoa, Italy
| | - Giuseppe Citerio
- School of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
- Department Neuroscience, Neurointensive Care, ASST-Monza, Monza, Italy; and
| | | | - Paola Rucci
- Department of Biomedical and Neuromotor Sciences (DIBINEM), Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Frank A Rasulo
- Department of Anesthesiology, Intensive Care, and Emergency, Spedali Civili University Hospital, Brescia, Italy
| | - Tommaso Tonetti
- Department of Medical and Surgical Sciences (DIMEC) and
- Anesthesiology and General Intensive Care Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| |
Collapse
|
2
|
Fogagnolo A, Grasso S, Morelli E, Murgolo F, Di Mussi R, Vetrugno L, La Rosa R, Volta CA, Spadaro S. Impact of positive end-expiratory pressure on renal resistive index in mechanical ventilated patients. J Clin Monit Comput 2024; 38:1145-1153. [PMID: 38771490 PMCID: PMC11427533 DOI: 10.1007/s10877-024-01172-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 04/26/2024] [Indexed: 05/22/2024]
Abstract
PURPOSE Growing evidence shows the complex interaction between lung and kidney in critically ill patients. The renal resistive index (RRI) is a bedside measurement of the resistance of the renal blood flow and it is correlated with kidney injury. The positive end-expiratory pressure (PEEP) level could affect the resistance of renal blood flow, so we assumed that RRI could help to monitoring the changes in renal hemodynamics at different PEEP levels. Our hypothesis was that the RRI at ICU admission could predict the risk of acute kidney injury in mechanical ventilated critically ill patients. METHODS We performed a prospective study including 92 patients requiring mechanical ventilation for ≥ 48 h. A RRI ≥ 0.70, was deemed as pathological. RRI was measured within 24 h from ICU admission while applying 5,10 and 15 cmH2O of PEEP in random order (PEEP trial). RESULTS Overall, RRI increased from 0.62 ± 0.09 at PEEP 5 to 0.66 ± 0.09 at PEEP 15 (p < 0.001). The mean RRI value during the PEEP trial was able to predict the occurrence of AKI with AUROC = 0.834 [95%CI 0.742-0.927]. Patients exhibiting a RRI ≥ 0.70 were 17/92(18%) at PEEP 5, 28/92(30%) at PEEP 10, 38/92(41%) at PEEP 15, respectively. Thirty-eight patients (41%) exhibited RRI ≥ 0.70 at least once during the PEEP trial. In these patients, AKI occurred in 55% of the cases, versus 13% remaining patients, p < 0.001. CONCLUSIONS RRI seems able to predict the risk of AKI in mechanical ventilated patients; further, RRI values are influenced by the PEEP level applied. TRIAL REGISTRATION Clinical gov NCT03969914 Registered 31 May 2019.
Collapse
Affiliation(s)
- Alberto Fogagnolo
- Department of Translational medicine, Azienda Ospedaliera-Universitaria Sant' Anna, University of Ferrara, 8, Aldo Moro 44121, Ferrara, Italy.
| | - Salvatore Grasso
- Dipartimento dell'Emergenza e Trapianti d'Organo (DETO), Sezione di Anestesiologia e Rianimazione, Università degli Studi di Bari "Aldo Moro", Bari, Italy
| | - Elena Morelli
- Intensive Care Unit, Department of Surgery, Dentistry, Maternity and Infant, University and Hospital Trust of Verona, Verona, Italy
| | - Francesco Murgolo
- Dipartimento dell'Emergenza e Trapianti d'Organo (DETO), Sezione di Anestesiologia e Rianimazione, Università degli Studi di Bari "Aldo Moro", Bari, Italy
| | - Rosa Di Mussi
- Dipartimento dell'Emergenza e Trapianti d'Organo (DETO), Sezione di Anestesiologia e Rianimazione, Università degli Studi di Bari "Aldo Moro", Bari, Italy
| | - Luigi Vetrugno
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, Chieti, Italy
| | - Riccardo La Rosa
- Department of Translational medicine, Azienda Ospedaliera-Universitaria Sant' Anna, University of Ferrara, 8, Aldo Moro 44121, Ferrara, Italy
| | - Carlo Alberto Volta
- Department of Translational medicine, Azienda Ospedaliera-Universitaria Sant' Anna, University of Ferrara, 8, Aldo Moro 44121, Ferrara, Italy
| | - Savino Spadaro
- Department of Translational medicine, Azienda Ospedaliera-Universitaria Sant' Anna, University of Ferrara, 8, Aldo Moro 44121, Ferrara, Italy
| |
Collapse
|
3
|
Donati PA, Tarragona L, Araos J, Zaccagnini AC, Díaz A, Nigro N, Sández I, Plotnikow G, Staffieri F, Otero PE. Tidal volume selection in volume-controlled ventilation guided by driving pressure versus actual body weight in healthy anesthetized and mechanically ventilated dogs: A randomized crossover trial. Vet Anaesth Analg 2024; 51:408-416. [PMID: 38910061 DOI: 10.1016/j.vaa.2024.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 05/13/2024] [Accepted: 05/18/2024] [Indexed: 06/25/2024]
Abstract
OBJECTIVE To compare static compliance of the respiratory system (CstRS) and the ratio of partial pressure of end-tidal to arterial carbon dioxide (Pe'CO2/PaCO2), in healthy dogs using two approaches for tidal volume (VT) selection during volume-controlled ventilation: body mass based and driving pressure (ΔPaw) guided. STUDY DESIGN Randomized, nonblinded, crossover, clinical trial. ANIMALS A total of 19 client-owned dogs anesthetized for castration and ovariohysterectomy. METHODS After a stable 10 minute baseline, each dog was mechanically ventilated with a VT selection strategy, randomized to a constant VT of 15 mL kg-1 of actual body mass (VTBW) or ΔPaw-guided VT (VTΔP) of 7-8 cmH2O. Both strategies used an inspiratory time of 1 second, 20% end-inspiratory pause, 4 cmH2O positive end-expiratory pressure and fraction of inspired oxygen of 0.4. Respiratory frequency was adjusted to maintain Pe'CO2 between 35 and 40 mmHg. Respiratory mechanics, arterial blood gases and Pe'CO2/PaCO2 were assessed. Continuous variables are presented as mean ± SD or median (interquartile range; quartiles 1-3), depending on distribution, and compared with Wilcoxon signed-rank tests. RESULTS The VT was significantly higher in dogs ventilated with VTΔP than with VTBW strategy (17.20 ± 4.04 versus 15.03 ± 0.60 mL kg-1, p = 0.036). CstRS was significantly higher with VTΔP than with VTBW strategy [2.47 (1.86-2.86) versus 2.25 (1.79-2.58) mL cmH2O-1 kg-1, p = 0.011]. There were no differences in Pe'CO2/PaCO2 between VTΔP and VTBW strategies (0.94 ± 0.06 versus 0.92 ± 0.06, p = 0.094). No discernible difference in ΔPaw was noted between the strategies. CONCLUSIONS AND CLINICAL RELEVANCE While no apparent difference was observed in the Pe'CO2/PaCO2 between the VT selection strategies employed, CstRS significantly increased during the VTΔP approach. A future trial should explore if VTΔP improves perioperative gas exchange and prevents lung damage.
Collapse
Affiliation(s)
- Pablo A Donati
- Department of Anesthesiology and Pain Management, Facultad de Ciencias Veterinarias, Universidad de Buenos Aires, Buenos Aires, Argentina.
| | - Lisa Tarragona
- Department of Anesthesiology and Pain Management, Facultad de Ciencias Veterinarias, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Joaquín Araos
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Andrea C Zaccagnini
- Department of Anesthesiology and Pain Management, Facultad de Ciencias Veterinarias, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Alfredo Díaz
- Department of Anesthesiology and Pain Management, Facultad de Ciencias Veterinarias, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Nestor Nigro
- Department of Anesthesiology and Pain Management, Facultad de Ciencias Veterinarias, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Ignacio Sández
- Hospital Veterinario AniCura-Vetsia, Anaesthesia service. Leganés, Madrid, Spain
| | - Gustavo Plotnikow
- British Hospital of Buenos Aires. Servicio de Rehabilitación, Área de Kinesiología Crítica, Buenos Aires, Argentina
| | - Francesco Staffieri
- Section of Veterinary Clinics and Animal Production, Department of Emergency and Organ Transplantation D.E.O.T., 'Aldo Moro' University of Bari, Bari, Italy
| | - Pablo E Otero
- Department of Anesthesiology and Pain Management, Facultad de Ciencias Veterinarias, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
4
|
Mojoli F, Pozzi M, Arisi E. Setting positive end-expiratory pressure: using the pressure-volume curve. Curr Opin Crit Care 2024; 30:35-42. [PMID: 38085871 DOI: 10.1097/mcc.0000000000001127] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
PURPOSE OF REVIEW To discuss the role of pressure-volume curve (PV curve) in exploring elastic properties of the respiratory system and setting mechanical ventilator to reduce ventilator-induced lung injury. RECENT FINDINGS Nowadays, quasi-static PV curves and loops can be easily obtained and analyzed at the bedside without disconnection of the patient from the ventilator. It is shown that this tool can provide useful information to optimize ventilator setting. For example, PV curves can assess for patient's individual potential for lung recruitability and also evaluate the risk for lung injury of the ongoing mechanical ventilation setting. SUMMARY In conclusion, PV curve is an easily available bedside tool: its correct interpretation can be extremely valuable to enlighten potential for lung recruitability and select a high or low positive end-expiratory pressure (PEEP) strategy. Furthermore, recent studies have shown that PV curve can play a significant role in PEEP and driving pressure fine tuning: clinical studies are needed to prove whether this technique will improve outcome.
Collapse
Affiliation(s)
- Francesco Mojoli
- Department of Clinical-Surgical, Diagnostic and Pediatric Sciences, Unit of Anesthesia and Intensive Care, University of Pavia, Pavia, Italy
- Anesthesia and Intensive Care, Fondazione IRCCS Policlinico S. Matteo, Pavia, Italy
| | - Marco Pozzi
- Anesthesia and Intensive Care, Fondazione IRCCS Policlinico S. Matteo, Pavia, Italy
| | - Eric Arisi
- Anesthesia and Intensive Care, Fondazione IRCCS Policlinico S. Matteo, Pavia, Italy
| |
Collapse
|
5
|
Brochard LJ. Mechanical Ventilation: Negative to Positive and Back Again. Crit Care Clin 2023; 39:437-449. [PMID: 37230549 DOI: 10.1016/j.ccc.2022.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Critical care and mechanical ventilation have a relatively brief history in medicine. Premises existed through the seventeenth to nineteenth centuries but modern mechanical ventilation started in the twentieth century. Noninvasive ventilation techniques had started both in the intensive care unit and for home ventilation at the end of the 1980s and the 1990s. The need for mechanical ventilation is increasingly influenced worldwide by the spread of respiratory viruses, and the last coronavirus disease 2019 pandemic has seen a massive successful use of noninvasive ventilation.
Collapse
Affiliation(s)
- Laurent J Brochard
- Keenan Research Centre, St Michael's Hospital, Unity Health Toronto, 209 Victoria Street, Room 4-08, Toronto, Ontario M5B 1T8, Canada; Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Canada.
| |
Collapse
|
6
|
Extracorporeal CO 2 Removal During Renal Replacement Therapy to Allow Lung-Protective Ventilation in Patients With COVID-19-Associated Acute Respiratory Distress Syndrome. ASAIO J 2023; 69:36-42. [PMID: 35998214 PMCID: PMC9797119 DOI: 10.1097/mat.0000000000001803] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The aim of this retrospective multicenter observational study is to test the feasibility and safety of a combined extracorporeal CO 2 removal (ECCO 2 R) plus renal replacement therapy (RRT) system to use an ultraprotective ventilator setting while maintaining (1) an effective support of renal function and (2) values of pH within the physiologic limits in a cohort of coronavirus infectious disease 2019 (COVID-19) patients. Among COVID-19 patients admitted to the intensive care unit of 9 participating hospitals, 27 patients with acute respiratory distress syndrome (ARDS) and acute kidney injury (AKI) requiring invasive mechanical ventilation undergoing ECCO 2 R-plus-RRT treatment were included in the analysis. The treatment allowed to reduce V T from 6.0 ± 0.6 mL/kg at baseline to 4.8 ± 0.8, 4.6 ± 1.0, and 4.3 ± 0.3 mL/kg, driving pressure (ΔP) from 19.8 ± 2.5 cm H 2 O to 14.8 ± 3.6, 14.38 ± 4.1 and 10.2 ± 1.6 cm H 2 O after 24 hours, 48 hours, and at discontinuation of ECCO 2 R-plus-RRT (T3), respectively ( p < 0.001). PaCO 2 and pH remained stable. Plasma creatinine decreased over the study period from 3.30 ± 1.27 to 1.90 ± 1.30 and 1.27 ± 0.90 mg/dL after 24 and 48 hours of treatment, respectively ( p < 0.01). No patient-related events associated with the extracorporeal system were reported. These data show that in patients with COVID-19-induced ARDS and AKI, ECCO 2 R-plus-RRT is effective in allowing ultraprotective ventilator settings while maintaining an effective support of renal function and values of pH within physiologic limits.
Collapse
|
7
|
Imaging the acute respiratory distress syndrome: past, present and future. Intensive Care Med 2022; 48:995-1008. [PMID: 35833958 PMCID: PMC9281340 DOI: 10.1007/s00134-022-06809-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 06/27/2022] [Indexed: 12/13/2022]
Abstract
In patients with the acute respiratory distress syndrome (ARDS), lung imaging is a fundamental tool in the study of the morphological and mechanistic features of the lungs. Chest computed tomography studies led to major advances in the understanding of ARDS physiology. They allowed the in vivo study of the syndrome's lung features in relation with its impact on respiratory physiology and physiology, but also explored the lungs' response to mechanical ventilation, be it alveolar recruitment or ventilator-induced lung injuries. Coupled with positron emission tomography, morphological findings were put in relation with ventilation, perfusion or acute lung inflammation. Lung imaging has always been central in the care of patients with ARDS, with modern point-of-care tools such as electrical impedance tomography or lung ultrasounds guiding clinical reasoning beyond macro-respiratory mechanics. Finally, artificial intelligence and machine learning now assist imaging post-processing software, which allows real-time analysis of quantitative parameters that describe the syndrome's complexity. This narrative review aims to draw a didactic and comprehensive picture of how modern imaging techniques improved our understanding of the syndrome, and have the potential to help the clinician guide ventilatory treatment and refine patient prognostication.
Collapse
|
8
|
|
9
|
Hemodynamic variations in arterial wave reflection associated with the application of increasing levels of PEEP in healthy subjects. Sci Rep 2022; 12:3335. [PMID: 35228629 PMCID: PMC8885708 DOI: 10.1038/s41598-022-07410-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 02/16/2022] [Indexed: 11/16/2022] Open
Abstract
Positive end-expiratory pressure (PEEP) may affect arterial wave propagation and reflection, thus influencing ventricular loading conditions. The aim of the study was to investigate the hemodynamic variations in arterial wave reflection (i.e., wave reflection time, augmentation index, left ventricular ejection time, diastolic time, SEVR) associated with the application of increasing levels of PEEP in healthy subjects. We conducted a prospective observational study. Study population was selected from students and staff. Pulse contour wave analysis was performed from the right carotid artery during stepwise increase in PEEP levels (from 0 cmH2O, 5 cmH20, 10 cmH2O) with applanation tonometry. Sixty-two healthy volunteers were recruited. There were no significant changes in heart rate, augmentation index (AIx), left ventricular ejection time, Diastolic time (DT) among all of the different steps. A significant increase of time to the inflection point (Ti) was observed during all steps of the study. Diastolic area under the curve (AUC) divided by systolic-AUC (SEVR) increased from baseline to PEEP = 5 cmH2O, and from baseline to PEEP = 10 cmH2O. AIx and Ti were significantly correlated (directly) at the baseline and during PEEP = 10 cmH2O. Ti and DT were significantly correlated at the baseline and during PEEP = 5 cmH2O. In our preliminary results, low levels of PEEP played a role in the interaction between the heart and the vascular system, apparently mediated by a prolongation of the diastolic phase and a reduction in the systolic work of the heart. Clinical trials registration number: NCT03294928, 19/09/2017.
Collapse
|
10
|
Ranieri VM, Guérin C. The physiological foundations of critical care medicine: the contribution of Joseph Milic-Emili, a physiologist "by hook or by crook". CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2022. [PMID: 35135611 PMCID: PMC8822682 DOI: 10.1186/s13054-022-03919-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- V Marco Ranieri
- Department of Emergency and Intensive Care Medicine, Alma Mater Studiorum University of Bologna, IRCCS Policlinico di Sant'Orsola, Bologna, Italy
| | - Claude Guérin
- Service de Médecine Intensive-Réanimation, Hôpital Edouard Herriot, 5 Place d'Arsonval, 69003, Lyon, France. .,Université de Lyon, Lyon, France. .,Institut Mondor de Recherche Biomédicales INSERM 955, Créteil, France.
| |
Collapse
|
11
|
Taran S, McCredie VA, Goligher EC. Noninvasive and invasive mechanical ventilation for neurologic disorders. HANDBOOK OF CLINICAL NEUROLOGY 2022; 189:361-386. [PMID: 36031314 DOI: 10.1016/b978-0-323-91532-8.00015-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Patients with acute neurologic injuries frequently require mechanical ventilation due to diminished airway protective reflexes, cardiopulmonary failure secondary to neurologic insults, or to facilitate gas exchange to precise targets. Mechanical ventilation enables tight control of oxygenation and carbon dioxide levels, enabling clinicians to modulate cerebral hemodynamics and intracranial pressure with the goal of minimizing secondary brain injury. In patients with acute spinal cord injuries, neuromuscular conditions, or diseases of the peripheral nerve, mechanical ventilation enables respiratory support under conditions of impending or established respiratory failure. Noninvasive ventilatory approaches may be carefully considered for certain disease conditions, including myasthenia gravis and amyotrophic lateral sclerosis, but may be inappropriate in patients with Guillain-Barré syndrome or when relevant contra-indications exist. With regard to discontinuing mechanical ventilation, considerable uncertainty persists about the best approach to wean patients, how to identify patients ready for extubation, and when to consider primary tracheostomy. Recent consensus guidelines highlight these and other knowledge gaps that are the focus of active research efforts. This chapter outlines important general principles to consider when initiating, titrating, and discontinuing mechanical ventilation in patients with acute neurologic injuries. Important disease-specific considerations are also reviewed where appropriate.
Collapse
Affiliation(s)
- Shaurya Taran
- Interdepartmental Division of Critical Care, University of Toronto, Toronto, ON, Canada; Department of Medicine, University Health Network, Toronto, ON, Canada
| | - Victoria A McCredie
- Interdepartmental Division of Critical Care, University of Toronto, Toronto, ON, Canada; Department of Medicine, University Health Network, Toronto, ON, Canada
| | - Ewan C Goligher
- Interdepartmental Division of Critical Care, University of Toronto, Toronto, ON, Canada; Department of Medicine, University Health Network, Toronto, ON, Canada.
| |
Collapse
|
12
|
Gattinoni L, Marini JJ. In search of the Holy Grail: identifying the best PEEP in ventilated patients. Intensive Care Med 2022; 48:728-731. [PMID: 35513707 PMCID: PMC9205826 DOI: 10.1007/s00134-022-06698-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 04/06/2022] [Indexed: 01/04/2023]
Affiliation(s)
- Luciano Gattinoni
- Department of Anesthesiology, Medical University of Göttingen, University Medical Center Göttingen, Göttingen, Germany
| | - John J. Marini
- Pulmonary and Critical Care Medicine, Regions Hospital and University of Minnesota, St. Paul, MN USA
| |
Collapse
|
13
|
Rollas K, Hanci P, Topeli A. Effects of end-expiratory lung volume versus PaO 2 guided PEEP determination on respiratory mechanics and oxygenation in moderate to severe ARDS. Exp Lung Res 2021; 48:12-22. [PMID: 34957895 DOI: 10.1080/01902148.2021.2021326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
There is no ideal method for determination of positive end-expiratory pressure (PEEP) in acute respiratory distress syndrome (ARDS) patients. We compared the effects of end-expiratory lung volume (EELV)-guided versus PaO2-guided PEEP determination on respiratory mechanics and oxygenation during the first 48 hours in moderate to severe ARDS. Twenty-two patients with moderate to severe ARDS admitted to an academic medical ICU were assigned to PaO2-guided (n = 11) or to EELV-guided PEEP determination (n = 11) group. First, an incremental PEEP trial was performed by increasing PEEP by 3 cmH2O steps from 8 to 20 cmH2O and in each step EELV and lung mechanics were measured in both groups. Then, oxygenation and respiratory mechanics were measured under the determined PEEP at 4, 12, 24, and 48th hours. After the incremental PEEP trial, over the 48 hours of the study period, in the EELV-guided group PaO2 and PaO2/FiO2 increased (p = 0.04 and p = 0.02; respectively), whereas they did not change in PaO2-guided group (p = 0.09 and p = 0.27; respectively). In all patients, the median value of EELV change (ΔEELV) during incremental PEEP trial was 25%. In patients with ΔEELV > 25% (n = 11) PaO2, PaO2/FiO2 and Cs increased over time in 48 hours (p = 0.03, p < 0.01, and p = 0.04; respectively), whereas they did not change in those with ΔEELV ≤ 25% (n = 11) (p = 0.73, p = 0.51, and p = 0.73; respectively). Compared to PaO2-guided PEEP determination, EELV-guided PEEP determination resulted in greater improvement in oxygenation over time. Patients who had > 25% improvement in EELV during a PEEP trial had greater improvement in oxygenation and compliance over 48 hours. Supplemental data for this article is available online at.
Collapse
Affiliation(s)
- Kazim Rollas
- Division of Intensive Care Medicine, Department of Anaesthesiology, Tepecik Training and Research Hospital, Izmir, Turkey
| | - Pervin Hanci
- Division of Intensive Care Medicine, Department of Pulmonology, Trakya University Faculty of Medicine, Edirne, Turkey
| | - Arzu Topeli
- Division of Intensive Care Medicine, Department of Internal Medicine, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| |
Collapse
|
14
|
Ziaka M, Exadaktylos A. Brain-lung interactions and mechanical ventilation in patients with isolated brain injury. Crit Care 2021; 25:358. [PMID: 34645485 PMCID: PMC8512596 DOI: 10.1186/s13054-021-03778-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 09/30/2021] [Indexed: 11/29/2022] Open
Abstract
During the last decade, experimental and clinical studies have demonstrated that isolated acute brain injury (ABI) may cause severe dysfunction of peripheral extracranial organs and systems. Of all potential target organs and systems, the lung appears to be the most vulnerable to damage after brain injury (BI). The pathophysiology of these brain–lung interactions are complex and involve neurogenic pulmonary oedema, inflammation, neurodegeneration, neurotransmitters, immune suppression and dysfunction of the autonomic system. The systemic effects of inflammatory mediators in patients with BI create a systemic inflammatory environment that makes extracranial organs vulnerable to secondary procedures that enhance inflammation, such as mechanical ventilation (MV), surgery and infections. Indeed, previous studies have shown that in the presence of a systemic inflammatory environment, specific neurointensive care interventions—such as MV—may significantly contribute to the development of lung injury, regardless of the underlying mechanisms. Although current knowledge supports protective ventilation in patients with BI, it must be born in mind that ABI-related lung injury has distinct mechanisms that involve complex interactions between the brain and lungs. In this context, the role of extracerebral pathophysiology, especially in the lungs, has often been overlooked, as most physicians focus on intracranial injury and cerebral dysfunction. The present review aims to fill this gap by describing the pathophysiology of complications due to lung injuries in patients with a single ABI, and discusses the possible impact of MV in neurocritical care patients with normal lungs.
Collapse
Affiliation(s)
- Mairi Ziaka
- Department of Internal Medicine, Thun General Hospital, Thun, Switzerland.
| | - Aristomenis Exadaktylos
- Department of Emergency Medicine, Inselspital, University Hospital, University of Bern, Bern, Switzerland
| |
Collapse
|
15
|
Synergistic Effect of Static Compliance and D-dimers to Predict Outcome of Patients with COVID-19-ARDS: A Prospective Multicenter Study. Biomedicines 2021; 9:biomedicines9091228. [PMID: 34572414 PMCID: PMC8467668 DOI: 10.3390/biomedicines9091228] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 09/09/2021] [Indexed: 12/24/2022] Open
Abstract
The synergic combination of D-dimer (as proxy of thrombotic/vascular injury) and static compliance (as proxy of parenchymal injury) in predicting mortality in COVID-19-ARDS has not been systematically evaluated. The objective is to determine whether the combination of elevated D-dimer and low static compliance can predict mortality in patients with COVID-19-ARDS. A “training sample” (March–June 2020) and a “testing sample” (September 2020–January 2021) of adult patients invasively ventilated for COVID-19-ARDS were collected in nine hospitals. D-dimer and compliance in the first 24 h were recorded. Study outcome was all-cause mortality at 28-days. Cut-offs for D-dimer and compliance were identified by receiver operating characteristic curve analysis. Mutually exclusive groups were selected using classification tree analysis with chi-square automatic interaction detection. Time to death in the resulting groups was estimated with Cox regression adjusted for SOFA, sex, age, PaO2/FiO2 ratio, and sample (training/testing). “Training” and “testing” samples amounted to 347 and 296 patients, respectively. Three groups were identified: D-dimer ≤ 1880 ng/mL (LD); D-dimer > 1880 ng/mL and compliance > 41 mL/cmH2O (LD-HC); D-dimer > 1880 ng/mL and compliance ≤ 41 mL/cmH2O (HD-LC). 28-days mortality progressively increased in the three groups (from 24% to 35% and 57% (training) and from 27% to 39% and 60% (testing), respectively; p < 0.01). Adjusted mortality was significantly higher in HD-LC group compared with LD (HR = 0.479, p < 0.001) and HD-HC (HR = 0.542, p < 0.01); no difference was found between LD and HD-HC. In conclusion, combination of high D-dimer and low static compliance identifies a clinical phenotype with high mortality in COVID-19-ARDS.
Collapse
|
16
|
Sun XM, Chen GQ, Wang YM, Zhou YM, Chen JR, Cheng KM, Yang YL, Zhang LL, Li HL, Zhou JX. Derecruitment volume assessment derived from pressure-impedance curves with electrical impedance tomography in experimental acute lung injury. J Int Med Res 2021; 48:300060520949037. [PMID: 32816562 PMCID: PMC7444134 DOI: 10.1177/0300060520949037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Objective To investigate the accuracy of derecruitment volume (VDER) assessed by pressure–impedance (P-I) curves derived from electrical impedance tomography (EIT). Methods Six pigs with acute lung injury received decremental positive end-expiratory pressure (PEEP) from 15 to 0 in steps of 5 cmH2O. At the end of each PEEP level, the pressure–volume (P-V) curves were plotted using the low constant flow method and release maneuvers to calculate the VDER between the PEEP of setting levels and 0 cmH2O (VDER-PV). The VDER derived from P-I curves that were recorded simultaneously using EIT was the difference in impedance at the same pressure multiplied by the ratio of tidal volume and corresponding tidal impedance (VDER-PI). The regional P-I curves obtained by EIT were used to estimate VDER in the dependent and nondependent lung. Results The global lung VDER-PV and VDER-PI showed close correlations (r = 0.948, P<0.001); the mean difference was 48 mL with limits of agreement of −133 to 229 mL. Lung derecruitment extended into the whole process of decremental PEEP levels but was unevenly distributed in different lung regions. Conclusions P-I curves derived from EIT can assess VDER and provide a promising method to estimate regional lung derecruitment at the bedside.
Collapse
Affiliation(s)
- Xiu-Mei Sun
- Department of Critical Care Medicine, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Guang-Qiang Chen
- Department of Critical Care Medicine, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yu-Mei Wang
- Department of Critical Care Medicine, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yi-Min Zhou
- Department of Critical Care Medicine, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jing-Ran Chen
- Department of Critical Care Medicine, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Kun-Ming Cheng
- Department of Critical Care Medicine, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yan-Lin Yang
- Department of Critical Care Medicine, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Lin-Lin Zhang
- Department of Critical Care Medicine, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Hong-Liang Li
- Department of Critical Care Medicine, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jian-Xin Zhou
- Department of Critical Care Medicine, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
17
|
Karamolegkos N, Albanese A, Chbat NW. Heart-Lung Interactions During Mechanical Ventilation: Analysis via a Cardiopulmonary Simulation Model. IEEE OPEN JOURNAL OF ENGINEERING IN MEDICINE AND BIOLOGY 2021; 2:324-341. [PMID: 35402980 PMCID: PMC8975239 DOI: 10.1109/ojemb.2021.3128629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 09/30/2021] [Accepted: 11/02/2021] [Indexed: 11/18/2022] Open
Abstract
Heart-lung interaction mechanisms are generally not well understood. Mechanical ventilation, for example, accentuates such interactions and could compromise cardiac activity. Thereby, assessment of ventilation-induced changes in cardiac function is considered an unmet clinical need. We believe that mathematical models of the human cardiopulmonary system can provide invaluable insights into such cardiorespiratory interactions. In this article, we aim to use a mathematical model to explain heart-lung interaction phenomena and provide physiologic hypotheses to certain contradictory experimental observations during mechanical ventilation. To accomplish this task, we highlight three model components that play a crucial role in heart-lung interactions: 1) pericardial membrane, 2) interventricular septum, and 3) pulmonary circulation that enables pulmonary capillary compression due to lung inflation. Evaluation of the model’s response under simulated ventilation scenarios shows good agreement with experimental data from the literature. A sensitivity analysis is also presented to evaluate the relative impact of the model’s highlighted components on the cyclic ventilation-induced changes in cardiac function.
Collapse
Affiliation(s)
| | | | - Nicolas W Chbat
- Columbia University New York NY 10027 USA
- Quadrus Medical Technologies White Plains NY 10607 USA
| |
Collapse
|
18
|
Turbil E, Terzi N, Cour M, Argaud L, Einav S, Guérin C. Positive end-expiratory pressure-induced recruited lung volume measured by volume-pressure curves in acute respiratory distress syndrome: a physiologic systematic review and meta-analysis. Intensive Care Med 2020; 46:2212-2225. [PMID: 32915255 PMCID: PMC7484614 DOI: 10.1007/s00134-020-06226-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 08/20/2020] [Indexed: 12/26/2022]
Abstract
PURPOSE Recruitment of lung volume is often cited as the reason for using positive end-expiratory pressure (PEEP) in acute respiratory distress syndrome (ARDS) patients. We performed a systematic review on PEEP-induced recruited lung volume measured from inspiratory volume-pressure (VP) curves in ARDS patients to assess the prevalence of patients with PEEP-induced recruited lung volume and the mortality in recruiters and non-recruiters. METHODS We conducted a systematic search of PubMed to identify studies including ARDS patients in which the intervention of an increase in PEEP was accompanied by measurement of the recruited volume (Vrec increase versus no increase) using the VP curve in order to assess the relation between Vrec and mortality at ICU discharge. We first analysed the pooled data from the papers identified and then analysed individual patient level data received from the authors via personal contact. The risk of bias of the included papers was assessed using the quality in prognosis studies tool and the certainty of the evidence regarding the relationship of mortality to Vrec by the GRADE approach. Recruiters were defined as patients with a Vrec > 150 ml. A random effects model was used for the pooled data. Multivariable logistic regression analysis was used for individual patient data. RESULTS We identified 16 papers with a total of 308 patients for the pooled data meta-analysis and 14 papers with a total of 384 patients for the individual data analysis. The quality of the articles was moderate. In the pooled data, the prevalence of recruiters was 74% and the mortality was not significantly different between recruiters and non-recruiters (relative risk 1.20 [95% confidence intervals 0.88-1.63]). The certainty of the evidence regarding this association was very low and publication bias evident. In the individual data, the prevalence of recruiters was 70%. In the multivariable logistic regression, Vrec was not associated with mortality but Simplified Acute Physiology Score II and driving pressure at PEEP of 5 cmH2O were. CONCLUSION After a PEEP increment, most patients are recruiters. Vrec was not associated with ICU mortality. The presence of similar findings in the individual patient level analysis and the driving pressure at PEEP of 5 cmH2O was associated with mortality as previously reported validate our findings. Publication bias and the lack of prospective studies suggest more research is required.
Collapse
Affiliation(s)
- Emanuele Turbil
- Department of Anesthesia and Critical Care, University of Sassari, Sassari, Italy
| | - Nicolas Terzi
- Médecine Intensive-Réanimation, CHU Grenoble-Alpes, Grenoble, France.,University of Grenoble-Alpes, Grenoble, France
| | - Martin Cour
- Médecine Intensive-Réanimation, Groupement Hospitalier Centre, Hôpital Edouard Herriot, 5 Place d'Arsonval, 69003, Lyon, France.,Université de Lyon, Faculté de Médecine Lyon-Est, Lyon, France
| | - Laurent Argaud
- Médecine Intensive-Réanimation, Groupement Hospitalier Centre, Hôpital Edouard Herriot, 5 Place d'Arsonval, 69003, Lyon, France.,Université de Lyon, Faculté de Médecine Lyon-Est, Lyon, France
| | | | - Claude Guérin
- Médecine Intensive-Réanimation, Groupement Hospitalier Centre, Hôpital Edouard Herriot, 5 Place d'Arsonval, 69003, Lyon, France. .,Université de Lyon, Faculté de Médecine Lyon-Est, Lyon, France. .,Institut Mondor de Recherches Biomédicales, INSERM 955, CNRS ERL 7000, Créteil, France.
| |
Collapse
|
19
|
Grasselli G, Tonetti T, Protti A, Langer T, Girardis M, Bellani G, Laffey J, Carrafiello G, Carsana L, Rizzuto C, Zanella A, Scaravilli V, Pizzilli G, Grieco DL, Di Meglio L, de Pascale G, Lanza E, Monteduro F, Zompatori M, Filippini C, Locatelli F, Cecconi M, Fumagalli R, Nava S, Vincent JL, Antonelli M, Slutsky AS, Pesenti A, Ranieri VM. Pathophysiology of COVID-19-associated acute respiratory distress syndrome: a multicentre prospective observational study. THE LANCET RESPIRATORY MEDICINE 2020; 8:1201-1208. [PMID: 32861276 PMCID: PMC7834127 DOI: 10.1016/s2213-2600(20)30370-2] [Citation(s) in RCA: 476] [Impact Index Per Article: 95.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/23/2020] [Accepted: 08/07/2020] [Indexed: 02/07/2023]
Abstract
Background Patients with COVID-19 can develop acute respiratory distress syndrome (ARDS), which is associated with high mortality. The aim of this study was to examine the functional and morphological features of COVID-19-associated ARDS and to compare these with the characteristics of ARDS unrelated to COVID-19. Methods This prospective observational study was done at seven hospitals in Italy. We enrolled consecutive, mechanically ventilated patients with laboratory-confirmed COVID-19 and who met Berlin criteria for ARDS, who were admitted to the intensive care unit (ICU) between March 9 and March 22, 2020. All patients were sedated, paralysed, and ventilated in volume-control mode with standard ICU ventilators. Static respiratory system compliance, the ratio of partial pressure of arterial oxygen to fractional concentration of oxygen in inspired air, ventilatory ratio (a surrogate of dead space), and D-dimer concentrations were measured within 24 h of ICU admission. Lung CT scans and CT angiograms were done when clinically indicated. A dataset for ARDS unrelated to COVID-19 was created from previous ARDS studies. Survival to day 28 was assessed. Findings Between March 9 and March 22, 2020, 301 patients with COVID-19 met the Berlin criteria for ARDS at participating hospitals. Median static compliance was 41 mL/cm H2O (33–52), which was 28% higher than in the cohort of patients with ARDS unrelated to COVID-19 (32 mL/cm H2O [25–43]; p<0·0001). 17 (6%) of 297 patients with COVID-19-associated ARDS had compliances greater than the 95th percentile of the classical ARDS cohort. Total lung weight did not differ between the two cohorts. CT pulmonary angiograms (obtained in 23 [8%] patients with COVID-19-related ARDS) showed that 15 (94%) of 16 patients with D-dimer concentrations greater than the median had bilateral areas of hypoperfusion, consistent with thromboembolic disease. Patients with D-dimer concentrations equal to or less than the median had ventilatory ratios lower than those of patients with D-dimer concentrations greater than the median (1·66 [1·32–1·95] vs 1·90 [1·50–2·33]; p=0·0001). Patients with static compliance equal to or less than the median and D-dimer concentrations greater than the median had markedly increased 28-day mortality compared with other patient subgroups (40 [56%] of 71 with high D-dimers and low compliance vs 18 [27%] of 67 with low D-dimers and high compliance, 13 [22%] of 60 with low D-dimers and low compliance, and 22 [35%] of 63 with high D-dimers and high compliance, all p=0·0001). Interpretation Patients with COVID-19-associated ARDS have a form of injury that, in many aspects, is similar to that of those with ARDS unrelated to COVID-19. Notably, patients with COVID-19-related ARDS who have a reduction in respiratory system compliance together with increased D-dimer concentrations have high mortality rates. Funding None.
Collapse
Affiliation(s)
- Giacomo Grasselli
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy; Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Tommaso Tonetti
- Dipartimento di Scienze Mediche e Chirurgiche, Anesthesia and Intensive Care Medicine, Policlinico di Sant'Orsola, Alma Mater Studiorum-Università di Bologna, Bologna, Italy
| | - Alessandro Protti
- Humanitas Clinical and Research Center-IRCCS, Milan, Italy; Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Thomas Langer
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy; Dipartimento di Anestesia e Rianimazione, Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Massimo Girardis
- Department of Anesthesia and Intensive Care, University Hospital of Modena, Modena, Italy
| | - Giacomo Bellani
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy; Department of Anesthesia and Intensive Care Medicine, ASST Monza-Ospedale San Gerardo, Monza, Italy
| | - John Laffey
- Regenerative Medicine Institute at CÚRAM Centre for Research in Medical Devices, National University of Ireland Galway, Galway, Ireland; Anaesthesia and Intensive Care Medicine, School of Medicine, National University of Ireland Galway, Galway, Ireland
| | - Gianpaolo Carrafiello
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy; Dipartimento di Scienze della Salute, University of Milan, Milan, Italy
| | - Luca Carsana
- Department of Anatomy and Histopathology, ASST Fatebenefratelli Sacco, Luigi Sacco Hospital, Milan, Italy
| | - Chiara Rizzuto
- Department of Anesthesia and Intensive Care Unit, ASST Fatebenefratelli Sacco, Luigi Sacco Hospital, Polo Universitario, University of Milan, Milan, Italy
| | - Alberto Zanella
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy; Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Vittorio Scaravilli
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Giacinto Pizzilli
- Dipartimento di Scienze Mediche e Chirurgiche, Anesthesia and Intensive Care Medicine, Policlinico di Sant'Orsola, Alma Mater Studiorum-Università di Bologna, Bologna, Italy
| | - Domenico Luca Grieco
- Department of Anesthesiology and Intensive Care Medicine, Fondazione Policlinico Universitario A Gemelli IRCCS, Rome, Italy
| | - Letizia Di Meglio
- Dipartimento di Scienze della Salute, University of Milan, Milan, Italy
| | - Gennaro de Pascale
- Department of Anesthesiology and Intensive Care Medicine, Fondazione Policlinico Universitario A Gemelli IRCCS, Rome, Italy
| | - Ezio Lanza
- Humanitas Clinical and Research Center-IRCCS, Milan, Italy
| | - Francesco Monteduro
- Dipartimento di Radiologia, Policlinico di Sant'Orsola, Alma Mater Studiorum-Università di Bologna, Bologna, Italy
| | - Maurizio Zompatori
- Dipartimento di Radiologia, Policlinico di Sant'Orsola, Alma Mater Studiorum-Università di Bologna, Bologna, Italy
| | - Claudia Filippini
- Dipartimento di Scienze Chirurgiche, Università di Torino, Torino, Italy
| | - Franco Locatelli
- Department of Pediatric Hemato-Oncology and Cell and Gene Therapy, IRCCS Bambino Gesù Children Hospital, Rome, Italy
| | - Maurizio Cecconi
- Humanitas Clinical and Research Center-IRCCS, Milan, Italy; Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Roberto Fumagalli
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy; Dipartimento di Anestesia e Rianimazione, Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Stefano Nava
- Department of Clinical, Integrated and Experimental Medicine, Respiratory and Critical Care Unit, S Orsola-Malpighi Hospital, Alma Mater University, Bologna, Italy
| | - Jean-Louis Vincent
- Department of Intensive Care, Erasme Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Massimo Antonelli
- Department of Anesthesiology and Intensive Care Medicine, Fondazione Policlinico Universitario A Gemelli IRCCS, Rome, Italy; Università Cattolica del Sacro Cuore, Rome, Italy
| | - Arthur S Slutsky
- Keenan Research Centre for Biomedical Science, St Michael's Hospital, Toronto, ON, Canada
| | - Antonio Pesenti
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy; Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - V Marco Ranieri
- Dipartimento di Scienze Mediche e Chirurgiche, Anesthesia and Intensive Care Medicine, Policlinico di Sant'Orsola, Alma Mater Studiorum-Università di Bologna, Bologna, Italy.
| | | |
Collapse
|
20
|
Wang YM, Sun XM, Zhou YM, Chen JR, Cheng KM, Li HL, Yang YL, Zhou JX. Effect of positive end-expiratory pressure on functional residual capacity in two experimental models of acute respiratory distress syndrome. J Int Med Res 2020; 48:300060520920426. [PMID: 32529868 PMCID: PMC7294389 DOI: 10.1177/0300060520920426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 03/30/2020] [Indexed: 11/23/2022] Open
Abstract
OBJECTIVE Measurement of positive end-expiratory pressure (PEEP)-induced recruitment lung volume using passive spirometry is based on the assumption that the functional residual capacity (FRC) is not modified by the PEEP changes. We aimed to investigate the influence of PEEP on FRC in different models of acute respiratory distress syndrome (ARDS). METHODS A randomized crossover study was performed in 12 pigs. Pulmonary (n = 6) and extra-pulmonary (n = 6) ARDS models were established using an alveolar instillation of hydrochloric acid and a right atrium injection of oleic acid, respectively. Low (5 cmH2O) and high (15 cmH2O) PEEP were randomly applied in each animal. FRC and recruitment volume were determined using the nitrogen wash-in/wash-out technique and release maneuver. RESULTS FRC was not significantly different between the two PEEP levels in either pulmonary ARDS (299 ± 92 mL and 309 ± 130 mL at 5 and 15 cmH2O, respectively) or extra-pulmonary ARDS (305 ± 143 mL and 328 ± 197 mL at 5 and 15 cmH2O, respectively). The recruitment volume was not significantly different between the two models (pulmonary, 341 ± 100 mL; extra-pulmonary, 351 ± 170 mL). CONCLUSIONS PEEP did not influence FRC in either the pulmonary or extra-pulmonary ARDS pig model.
Collapse
Affiliation(s)
- Yu-Mei Wang
- Department of Critical Care Medicine, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xiu-Mei Sun
- Department of Critical Care Medicine, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yi-Min Zhou
- Department of Critical Care Medicine, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jing-Ran Chen
- Department of Critical Care Medicine, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Kun-Ming Cheng
- Department of Critical Care Medicine, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Hong-Liang Li
- Department of Critical Care Medicine, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yan-Lin Yang
- Department of Critical Care Medicine, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jian-Xin Zhou
- Department of Critical Care Medicine, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
21
|
Guérin C, Terzi N, Galerneau LM, Mezidi M, Yonis H, Baboi L, Kreitmann L, Turbil E, Cour M, Argaud L, Louis B. Lung and chest wall mechanics in patients with acute respiratory distress syndrome, expiratory flow limitation, and airway closure. J Appl Physiol (1985) 2020; 128:1594-1603. [PMID: 32352339 DOI: 10.1152/japplphysiol.00059.2020] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Tidal expiratory flow limitation (EFL), which may herald airway closure (AC), is a mechanism of loss of aeration in ARDS. In this prospective, short-term, two-center study, we measured static and dynamic chest wall (Est,cw and Edyn,cw) and lung (Est,L and Edyn,L) elastance with esophageal pressure, EFL, and AC at 5 cmH2O positive end-expiratory pressure (PEEP) in intubated, sedated, and paralyzed ARDS patients. For EFL determination, we used the atmospheric method and a new device allowing comparison of tidal flow during expiration to PEEP and to atmosphere. AC was validated when airway opening pressure (AOP) assessed from volume-pressure curve was found greater than PEEP by at least 1 cmH2O. EFL was defined whenever flow did not increase between exhalation to PEEP and to atmosphere over all or part of expiration. Elastance values were expressed as percentage of normal predicted values (%N). Among the 25 patients included, eight had EFL (32%) and 13 AOP (52%). Between patients with and without EFL Edyn,cw [median (1st to 3rd quartiles)] was 70 (16-127) and 102 (70-142) %N (P = 0.32) and Edyn,L338 (332-763) and 224 (160-275) %N (P < 0.001). The corresponding values for Est,cw and Est,L were 70 (56-88) and 85 (64-103) %N (P = 0.35) and 248 (206-348) and 170 (144-195) (P = 0.02), respectively. Dynamic EL had an area receiver operating characteristic curve of 0.88 [95% confidence intervals 0.83-0.92] for EFL and 0.74[0.68-0.79] for AOP. Higher Edyn,L was accurate to predict EFL in ARDS patients; AC can occur independently of EFL, and both should be assessed concurrently in ARDS patients.NEW & NOTEWORTHY Expiratory flow limitation (EFL) and airway closure (AC) were observed in 32% and 52%, respectively, of 25 patients with ARDS investigated during mechanical ventilation in supine position with a positive end-expiratory pressure of 5 cmH2O. The performance of dynamic lung elastance to detect expiratory flow limitation was good and better than that to detect airway closure. The vast majority of patients with EFL also had AC; however, AC can occur in the absence of EFL.
Collapse
Affiliation(s)
- Claude Guérin
- Medecine Intensive-Réanimation, Groupement Hospitalier Centre, Hôpital Edouard Herriot, Hospices Civils de Lyon, Lyon, France.,Université de Lyon, Lyon, France.,Institut Mondor de Recherches Biomédicales INSERM 955 CNRS ERL 7000, Créteil, France
| | - Nicolas Terzi
- Medecine Intensive-Réanimation, CHU Grenoble-Alpes, Grenoble, France.,Université de Grenoble-Alpes, Grenoble, France
| | - Louis-Marie Galerneau
- Medecine Intensive-Réanimation, CHU Grenoble-Alpes, Grenoble, France.,Université de Grenoble-Alpes, Grenoble, France
| | - Mehdi Mezidi
- Université de Lyon, Lyon, France.,Médecine Intensive-Réanimation, Groupement Hospitalier Nord, Hospices Civils de Lyon, Lyon, France
| | - Hodane Yonis
- Médecine Intensive-Réanimation, Groupement Hospitalier Nord, Hospices Civils de Lyon, Lyon, France
| | - Loredana Baboi
- Médecine Intensive-Réanimation, Groupement Hospitalier Nord, Hospices Civils de Lyon, Lyon, France
| | - Louis Kreitmann
- Medecine Intensive-Réanimation, Groupement Hospitalier Centre, Hôpital Edouard Herriot, Hospices Civils de Lyon, Lyon, France.,Université de Lyon, Lyon, France
| | - Emanuele Turbil
- Department of Anesthesia and Critical Care, University of Sassari, Sassari, Italy
| | - Martin Cour
- Medecine Intensive-Réanimation, Groupement Hospitalier Centre, Hôpital Edouard Herriot, Hospices Civils de Lyon, Lyon, France.,Université de Lyon, Lyon, France
| | - Laurent Argaud
- Medecine Intensive-Réanimation, Groupement Hospitalier Centre, Hôpital Edouard Herriot, Hospices Civils de Lyon, Lyon, France.,Université de Lyon, Lyon, France
| | - Bruno Louis
- Institut Mondor de Recherches Biomédicales INSERM 955 CNRS ERL 7000, Créteil, France
| |
Collapse
|
22
|
Gattinoni L, Marini JJ, Quintel M. Recruiting the Acutely Injured Lung: How and Why? Am J Respir Crit Care Med 2020; 201:130-132. [PMID: 31661307 PMCID: PMC6961753 DOI: 10.1164/rccm.201910-2005ed] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
- Luciano Gattinoni
- Department of Anesthesiology, Emergency and Intensive Care MedicineUniversity of GöttingenGöttingen, Germanyand
| | - John J Marini
- Regions Hospital and University of MinnesotaSt. Paul, Minnesota
| | - Michael Quintel
- Department of Anesthesiology, Emergency and Intensive Care MedicineUniversity of GöttingenGöttingen, Germanyand
| |
Collapse
|
23
|
Chen L, Del Sorbo L, Grieco DL, Junhasavasdikul D, Rittayamai N, Soliman I, Sklar MC, Rauseo M, Ferguson ND, Fan E, Richard JCM, Brochard L. Potential for Lung Recruitment Estimated by the Recruitment-to-Inflation Ratio in Acute Respiratory Distress Syndrome. A Clinical Trial. Am J Respir Crit Care Med 2020; 201:178-187. [DOI: 10.1164/rccm.201902-0334oc] [Citation(s) in RCA: 121] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
- Lu Chen
- Keenan Research Centre and Li Ka Shing Institute, Department of Critical Care, St. Michael’s Hospital, Toronto, Ontario, Canada
- Interdepartmental Division of Critical Care Medicine, and
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Lorenzo Del Sorbo
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
- Division of Respirology and Critical Care Medicine, Toronto General Hospital, Toronto, Ontario, Canada
| | - Domenico L. Grieco
- Istituto di Anestesia e Rianimazione, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | | | - Nuttapol Rittayamai
- Division of Respiratory Diseases and Tuberculosis, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Ibrahim Soliman
- Critical Care Department, King Saud Medical City, Riyadh, Saudi Arabia
| | - Michael C. Sklar
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Michela Rauseo
- Anestesia e Rianimazione, Ospedali Riuniti di Foggia, Foggia, Italy; and
| | - Niall D. Ferguson
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
- Division of Respirology and Critical Care Medicine, Toronto General Hospital, Toronto, Ontario, Canada
| | - Eddy Fan
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
- Division of Respirology and Critical Care Medicine, Toronto General Hospital, Toronto, Ontario, Canada
| | | | - Laurent Brochard
- Keenan Research Centre and Li Ka Shing Institute, Department of Critical Care, St. Michael’s Hospital, Toronto, Ontario, Canada
- Interdepartmental Division of Critical Care Medicine, and
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
24
|
Coppola S, Caccioppola A, Froio S, Ferrari E, Gotti M, Formenti P, Chiumello D. Dynamic hyperinflation and intrinsic positive end-expiratory pressure in ARDS patients. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2019; 23:375. [PMID: 31775830 PMCID: PMC6880369 DOI: 10.1186/s13054-019-2611-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 09/13/2019] [Indexed: 02/02/2023]
Abstract
Background In ARDS patients, changes in respiratory mechanical properties and ventilatory settings can cause incomplete lung deflation at end-expiration. Both can promote dynamic hyperinflation and intrinsic positive end-expiratory pressure (PEEP). The aim of this study was to investigate, in a large population of ARDS patients, the presence of intrinsic PEEP, possible associated factors (patients’ characteristics and ventilator settings), and the effects of two different external PEEP levels on the intrinsic PEEP. Methods We made a secondary analysis of published data. Patients were ventilated with a tidal volume of 6–8 mL/kg of predicted body weight, sedated, and paralyzed. After a recruitment maneuver, a PEEP trial was run at 5 and 15 cmH2O, and partitioned mechanics measurements were collected after 20 min of stabilization. Lung computed tomography scans were taken at 5 and 45 cmH2O. Patients were classified into two groups according to whether or not they had intrinsic PEEP at the end of an expiratory pause. Results We enrolled 217 sedated, paralyzed patients: 87 (40%) had intrinsic PEEP with a median of 1.1 [1.0–2.3] cmH2O at 5 cmH2O of PEEP. The intrinsic PEEP significantly decreased with higher PEEP (1.1 [1.0–2.3] vs 0.6 [0.0–1.0] cmH2O; p < 0.001). The applied tidal volume was significantly lower (480 [430–540] vs 520 [445–600] mL at 5 cmH2O of PEEP; 480 [430–540] vs 510 [430–590] mL at 15 cmH2O) in patients with intrinsic PEEP, while the respiratory rate was significantly higher (18 [15–20] vs 15 [13–19] bpm at 5 cmH2O of PEEP; 18 [15–20] vs 15 [13–19] bpm at 15 cmH2O). At both PEEP levels, the total airway resistance and compliance of the respiratory system were not different in patients with and without intrinsic PEEP. The total lung gas volume and lung recruitability were also not different between patients with and without intrinsic PEEP (respectively 961 [701–1535] vs 973 [659–1433] mL and 15 [0–32] % vs 22 [0–36] %). Conclusions In sedated, paralyzed ARDS patients without a known obstructive disease, the amount of intrinsic PEEP during lung-protective ventilation is negligible and does not influence respiratory mechanical properties.
Collapse
Affiliation(s)
- Silvia Coppola
- Department of Anesthesia and Intensive Care, ASST Santi Paolo e Carlo, San Paolo University Hospital, Milan, Italy
| | | | - Sara Froio
- Department of Anesthesia and Intensive Care, ASST Santi Paolo e Carlo, San Paolo University Hospital, Milan, Italy
| | - Erica Ferrari
- Department of Health Sciences, University of Milan, Milan, Italy
| | - Miriam Gotti
- Department of Anesthesia and Intensive Care, ASST Santi Paolo e Carlo, San Paolo University Hospital, Milan, Italy
| | - Paolo Formenti
- Department of Anesthesia and Intensive Care, ASST Santi Paolo e Carlo, San Paolo University Hospital, Milan, Italy
| | - Davide Chiumello
- Department of Anesthesia and Intensive Care, ASST Santi Paolo e Carlo, San Paolo University Hospital, Milan, Italy. .,Department of Health Sciences, University of Milan, Milan, Italy. .,Coordinated Research Center on Respiratory Failure, University of Milan, Milan, Italy. .,SC Anestesia e Rianimazione, ASST Santi Paolo e Carlo, Via Di Rudinì, Milan, Italy.
| |
Collapse
|
25
|
Alveolar recruitment in acute respiratory distress syndrome: should we open the lung (no matter what) or may accept (part of) the lung closed? Intensive Care Med 2019; 45:1436-1439. [PMID: 31420682 DOI: 10.1007/s00134-019-05734-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 08/06/2019] [Indexed: 12/16/2022]
|
26
|
Araos JD, Lacitignola L, Stripoli T, Grasso S, Crovace A, Staffieri F. Effects of positive end-expiratory pressure alone or an open-lung approach on recruited lung volumes and respiratory mechanics of mechanically ventilated horses. Vet Anaesth Analg 2019; 46:780-788. [PMID: 31477474 DOI: 10.1016/j.vaa.2019.04.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Revised: 03/29/2019] [Accepted: 04/24/2019] [Indexed: 10/26/2022]
Abstract
OBJECTIVE To evaluate the effects of positive end-expiratory pressure (PEEP) alone and PEEP preceded by lung recruitment manoeuvre (LRM) on lung volumes and respiratory system mechanics in healthy horses undergoing general anaesthesia. STUDY DESIGN Controlled, prospective clinical study. ANIMALS A group of 15 horses undergoing arthroscopy. METHODS Following anaesthetic induction, initial ventilatory settings were: tidal volume 15 mL kg-1, inspiratory:expiratory ratio 1:2, respiratory rate to maintain end-tidal CO2 between 5.3-6.6 kPa (40-50 mmHg). The following settings were implemented sequentially: zero PEEP (ZEEP); PEEP 10 cmH2O (PEEP); LRM (50 cmH2O for 20 seconds) followed by 10 cmH2O of PEEP (LRM + PEEP). Static compliance (Cst), driving pressure, delta end-expiratory (ΔEELV) and recruited lung volumes (RLV) were obtained 30 minutes after initiating each ventilatory strategy. Data were analyzed with paired t test or analysis of variance followed by Tukey's post hoc test. Data are shown as mean ± standard deviation; p < 0.05 was considered significant. RESULTS PEEP induced ΔEELV of 6.68 ± 3.36 mL kg-1; ΔEELV during LRM + PEEP was 14.28 ± 5.59 mL kg-1 (p < 0.0001). The RLV was greater during the LRM + PEEP phase (12.30 ± 5.85 mL kg-1) than during PEEP (4.47 ± 3.97 mL kg-1; p < 0.0001). The Cst was unchanged from ZEEP to PEEP (0.75 ± 0.21 and 0.85 ± 0.22 mL cmH2O-1 kg-1, respectively, p = 0.36) but increased using LRM + PEEP (1.11 ± 0.25 mL cmH2O-1 kg-1, p = 0.0004). Driving pressure was lower during LRM + PEEP than during PEEP and ZEEP (16 ± 2, 19 ± 2 and 21 ± 4 cmH2O, respectively, p < 0.0001). CONCLUSIONS AND CLINICAL RELEVANCE Unlike PEEP alone, PEEP preceded by LRM increased RLV and Cst and reduced driving pressure in horses under anaesthesia.
Collapse
Affiliation(s)
- Joaquin D Araos
- Centre Hospitalier Universitaire Veterinaire, Faculte de Medecine Veterinaire, Universite de Montreal, Québec, Canada
| | - Luca Lacitignola
- Surgery Unit, Section of Veterinary Clinics and Animal Production, Department of Emergency and Organ Transplantation D.E.O.T., "Aldo Moro" University of Bari, Bari, Italy
| | - Tania Stripoli
- Section of Anesthesia and Intensive Care, Department of Emergency and Organ Transplantation (D.E.O.T.), "Aldo Moro" University of Bari, Bari, Italy
| | - Salvatore Grasso
- Section of Anesthesia and Intensive Care, Department of Emergency and Organ Transplantation (D.E.O.T.), "Aldo Moro" University of Bari, Bari, Italy
| | - Antonio Crovace
- Surgery Unit, Section of Veterinary Clinics and Animal Production, Department of Emergency and Organ Transplantation D.E.O.T., "Aldo Moro" University of Bari, Bari, Italy
| | - Francesco Staffieri
- Surgery Unit, Section of Veterinary Clinics and Animal Production, Department of Emergency and Organ Transplantation D.E.O.T., "Aldo Moro" University of Bari, Bari, Italy.
| |
Collapse
|
27
|
Predictive Virtual Patient Modelling of Mechanical Ventilation: Impact of Recruitment Function. Ann Biomed Eng 2019; 47:1626-1641. [PMID: 30927170 DOI: 10.1007/s10439-019-02253-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 03/22/2019] [Indexed: 10/27/2022]
Abstract
Mechanical ventilation is a life-support therapy for intensive care patients suffering from respiratory failure. To reduce the current rate of ventilator-induced lung injury requires ventilator settings that are patient-, time-, and disease-specific. A common lung protective strategy is to optimise the level of positive end-expiratory pressure (PEEP) through a recruitment manoeuvre to prevent alveolar collapse at the end of expiration and to improve gas exchange through recruitment of additional alveoli. However, this process can subject parts of the lung to excessively high pressures or volumes. This research significantly extends and more robustly validates a previously developed pulmonary mechanics model to predict lung mechanics throughout recruitment manoeuvres. In particular, the process of recruitment is more thoroughly investigated and the impact of the inclusion of expiratory data when estimating peak inspiratory pressure is assessed. Data from the McREM trial and CURE pilot trial were used to test model predictive capability and assumptions. For PEEP changes of up to and including 14 cmH2O, the parabolic model was shown to improve peak inspiratory pressure prediction resulting in less than 10% absolute error in the CURE cohort and 16% in the McREM cohort. The parabolic model also better captured expiratory mechanics than the exponential model for both cohorts.
Collapse
|
28
|
Stenqvist O, Persson P, Stahl CA, Lundin S. Monitoring transpulmonary pressure during anaesthesia using the PEEP-step method. Br J Anaesth 2018; 121:1373-1375. [PMID: 30442269 DOI: 10.1016/j.bja.2018.08.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 08/28/2018] [Accepted: 08/29/2018] [Indexed: 10/28/2022] Open
|
29
|
Jahn N, Voelker MT, Bercker S, Kaisers U, Laudi S. [Interhospital transport of patients with ARDS]. Anaesthesist 2018; 66:604-613. [PMID: 28353068 DOI: 10.1007/s00101-017-0296-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
In patients with severely compromised gas exchange, interhospital transportation is frequently necessary due to the need to provide access to specialized care. Risks are inherent during transport, so the anticipated benefits of transportation must be weighed against the possible negative outcome during the transport. The use of specialized teams during transportation can help to reduce adverse events. Diligent planning of the transportation, monitoring and medical staff during transport can decrease adverse events and reduce risks. This article defines the group of patients that may benefit from referral. This article discusses the risks associated with the transportation of patients with severely impaired gas exchange and the risks related to different means of transportation. The decisions required before transportation are described as well as the practical approach starting at the transferring hospital until arrival at the admitting hospital.
Collapse
Affiliation(s)
- N Jahn
- Klinik und Poliklinik für Anästhesie und Intensivtherapie, Universitätsklinikum Leipzig, Liebigstraße 20, 04103, Leipzig, Deutschland
| | - M T Voelker
- Klinik und Poliklinik für Anästhesie und Intensivtherapie, Universitätsklinikum Leipzig, Liebigstraße 20, 04103, Leipzig, Deutschland
| | - S Bercker
- Klinik und Poliklinik für Anästhesie und Intensivtherapie, Universitätsklinikum Leipzig, Liebigstraße 20, 04103, Leipzig, Deutschland
| | - U Kaisers
- Klinik und Poliklinik für Anästhesie und Intensivtherapie, Universitätsklinikum Leipzig, Liebigstraße 20, 04103, Leipzig, Deutschland
| | - S Laudi
- Klinik und Poliklinik für Anästhesie und Intensivtherapie, Universitätsklinikum Leipzig, Liebigstraße 20, 04103, Leipzig, Deutschland.
| |
Collapse
|
30
|
Bates JHT, Smith BJ. Ventilator-induced lung injury and lung mechanics. ANNALS OF TRANSLATIONAL MEDICINE 2018; 6:378. [PMID: 30460252 PMCID: PMC6212358 DOI: 10.21037/atm.2018.06.29] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 06/11/2018] [Indexed: 02/03/2023]
Abstract
Mechanical ventilation applies physical stresses to the tissues of the lung and thus may give rise to ventilator-induced lung injury (VILI), particular in patients with acute respiratory distress syndrome (ARDS). The most dire consequences of VILI result from injury to the blood-gas barrier. This allows plasma-derived fluid and proteins to leak into the airspaces where they flood some alveolar regions, while interfering with the functioning of pulmonary surfactant in those regions that remain open. These effects are reflected in commensurately increased values of dynamic lung elastance (EL ), a quantity that in principle is readily measured at the bedside. Recent mathematical/computational modeling studies have shown that the way in which EL varies as a function of both time and positive end-expiratory pressure (PEEP) reflects the nature and degree of lung injury, and can even be used to infer the separate contributions of volutrauma and atelectrauma to VILI. Interrogating such models for minimally injurious regimens of mechanical ventilation that apply to a particular lung may thus lead to personalized approaches to the ventilatory management of ARDS.
Collapse
Affiliation(s)
- Jason H. T. Bates
- Department of Medicine, University of Vermont Larner College of Medicine, Burlington, VT, USA
| | - Bradford J. Smith
- Department of Bioengineering, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
31
|
Lung-thorax compliance measured during a spontaneous breathing trial is a good index of extubation failure in the surgical intensive care unit: a retrospective cohort study. J Intensive Care 2018; 6:44. [PMID: 30083347 PMCID: PMC6069862 DOI: 10.1186/s40560-018-0313-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 07/18/2018] [Indexed: 01/27/2023] Open
Abstract
Background Extubation failure is associated with mortality and morbidity in the intensive care unit. Ventilator weaning protocols have been introduced, and extubation is conducted based on the results of a spontaneous breathing trial. Room for improvement still exists in extubation management, and additional objective indices may improve the safety of the weaning and extubation process. Static lung-thorax compliance reflects lung expansion difficulty that is caused by several conditions, such as atelectasis, fibrosis, and pleural effusion. Nevertheless, it is not used commonly in the weaning and extubation process. In this study, we investigated whether lung-thorax compliance is a good index of extubation failure in adults even when patients pass a spontaneous breathing trial. Methods In a single-center, retrospective cohort study, patients over 18 years of age were mechanically ventilated, weaned with proportional assist ventilation, and underwent a spontaneous breathing trial process in surgical intensive care units of Kagawa University Hospital from July 2014 to June 2016. Extubation failure was the outcome measure of the study. We defined extubation failures as when patients were reintubated or underwent non-invasive positive-pressure ventilation within 24 h after extubation. Receiver operating characteristic (ROC) curve analysis was performed to evaluate the clinical involvement of several parameters. The area under the curve (AUC) was calculated to assess the discriminative power of the parameters. Results We analyzed 173 patients and compared the success and failure groups. Most patients (162, 93.6%) were extubated successfully, and extubation failed in 11 patients (6.4%). The averages of lung-thorax compliance values in the success and failure groups were 71.9 ± 23.0 and 43.3 ± 14.6 mL/cmH2O, respectively, and were significantly different (p < 0.0001). In the ROC curve analysis, the AUC was highest for lung-thorax compliance (0.862), followed by the respiratory rate (0.821), rapid shallow breathing index (0.781), Acute Physiology and Chronic Health Evaluation II score (0.72), heart rate (0.715), and tidal volume (0.695). Conclusions Lung-thorax compliance measured during a spontaneous breathing trial is a potential indicator of extubation failure in postoperative patients.
Collapse
|
32
|
Yonis H, Mortaza S, Baboi L, Mercat A, Guérin C. Expiratory Flow Limitation Assessment in Patients with Acute Respiratory Distress Syndrome. A Reappraisal. Am J Respir Crit Care Med 2018; 198:131-134. [DOI: 10.1164/rccm.201711-2326le] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
| | | | | | - Alain Mercat
- CHU LarreyAngers, France
- Université d’AngersAngers, France
| | - Claude Guérin
- Hospices Civils de LyonLyon, France
- Université de LyonLyon, Franceand
- INSERM 955Créteil, France
| |
Collapse
|
33
|
Mechanical Ventilation in Adults with Acute Respiratory Distress Syndrome. Summary of the Experimental Evidence for the Clinical Practice Guideline. Ann Am Thorac Soc 2018; 14:S261-S270. [PMID: 28985479 DOI: 10.1513/annalsats.201704-345ot] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
RATIONALE The American Thoracic Society/European Society for Intensive Care Medicine/Society of Critical Care Medicine guidelines on mechanical ventilation in adult patients with acute respiratory distress syndrome (ARDS) provide treatment recommendations derived from a thorough analysis of the clinical evidence on six clinical interventions. However, each of the recommendations contains areas of uncertainty and controversy, which may affect their appropriate clinical application. OBJECTIVES To provide a critical review of the experimental evidence surrounding the pathophysiology of ventilator-induced lung injury and to help clinicians apply the clinical recommendations to individual patients. METHODS We conducted a literature search and narrative review. RESULTS A large number of experimental studies have been performed with the aim of improving understanding of the pathophysiological effects of mechanical ventilation. These studies have formed the basis for the design of many clinical trials. Translational research has fundamentally advanced understanding of the mechanisms of ventilator-induced lung injury, thus informing the design of interventions that improve survival in patients with ARDS. CONCLUSIONS Because daily management of patients with ARDS presents the challenge of competing considerations, clinicians should consider the mechanism of ventilator-induced lung injury, as well as the rationale for interventions designed to mitigate it, when applying evidence-based recommendations at the bedside.
Collapse
|
34
|
Spadaro S, Mauri T, Böhm SH, Scaramuzzo G, Turrini C, Waldmann AD, Ragazzi R, Pesenti A, Volta CA. Variation of poorly ventilated lung units (silent spaces) measured by electrical impedance tomography to dynamically assess recruitment. Crit Care 2018; 22:26. [PMID: 29386048 PMCID: PMC5793388 DOI: 10.1186/s13054-017-1931-7] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 12/26/2017] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Assessing alveolar recruitment at different positive end-expiratory pressure (PEEP) levels is a major clinical and research interest because protective ventilation implies opening the lung without inducing overdistention. The pressure-volume (P-V) curve is a validated method of assessing recruitment but reflects global characteristics, and changes at the regional level may remain undetected. The aim of the present study was to compare, in intubated patients with acute hypoxemic respiratory failure (AHRF) and acute respiratory distress syndrome (ARDS), lung recruitment measured by P-V curve analysis, with dynamic changes in poorly ventilated units of the dorsal lung (dependent silent spaces [DSSs]) assessed by electrical impedance tomography (EIT). We hypothesized that DSSs might represent a dynamic bedside measure of recruitment. METHODS We carried out a prospective interventional study of 14 patients with AHRF and ARDS admitted to the intensive care unit undergoing mechanical ventilation. Each patient underwent an incremental/decremental PEEP trial that included five consecutive phases: PEEP 5 and 10 cmH2O, recruitment maneuver + PEEP 15 cmH2O, then PEEP 10 and 5 cmH2O again. We measured, at the end of each phase, recruitment from previous PEEP using the P-V curve method, and changes in DSS were continuously monitored by EIT. RESULTS PEEP changes induced alveolar recruitment as assessed by the P-V curve method and changes in the amount of DSS (p < 0.001). Recruited volume measured by the P-V curves significantly correlated with the change in DSS (rs = 0.734, p < 0.001). Regional compliance of the dependent lung increased significantly with rising PEEP (median PEEP 5 cmH2O = 11.9 [IQR 10.4-16.7] ml/cmH2O, PEEP 15 cmH2O = 19.1 [14.2-21.3] ml/cmH2O; p < 0.001), whereas regional compliance of the nondependent lung decreased from PEEP 5 cmH2O to PEEP 15 cmH2O (PEEP 5 cmH2O = 25.3 [21.3-30.4] ml/cmH2O, PEEP 15 cmH2O = 20.0 [16.6-22.8] ml/cmH2O; p <0.001). By increasing the PEEP level, the center of ventilation moved toward the dependent lung, returning to the nondependent lung during the decremental PEEP steps. CONCLUSIONS The variation of DSSs dynamically measured by EIT correlates well with lung recruitment measured using the P-V curve technique. EIT might provide useful information to titrate personalized PEEP. TRIAL REGISTRATION ClinicalTrials.gov, NCT02907840 . Registered on 20 September 2016.
Collapse
Affiliation(s)
- Savino Spadaro
- Department of Morphology Surgery and Experimental Medicine, Section of Anesthesia and Intensive Care, University of Ferrara, 8, Aldo Moro, 44124 Ferrara, Italy
| | - Tommaso Mauri
- Department of Anesthesia, Critical Care and Emergency, Fondazione IRCCS (Istituto di Ricovero e Cura a Carattere Scientifico) Ca’ Granda, University of Milan, Milan, Italy
| | | | - Gaetano Scaramuzzo
- Department of Morphology Surgery and Experimental Medicine, Section of Anesthesia and Intensive Care, University of Ferrara, 8, Aldo Moro, 44124 Ferrara, Italy
| | - Cecilia Turrini
- Department of Morphology Surgery and Experimental Medicine, Section of Anesthesia and Intensive Care, University of Ferrara, 8, Aldo Moro, 44124 Ferrara, Italy
| | | | - Riccardo Ragazzi
- Department of Morphology Surgery and Experimental Medicine, Section of Anesthesia and Intensive Care, University of Ferrara, 8, Aldo Moro, 44124 Ferrara, Italy
| | - Antonio Pesenti
- Department of Anesthesia, Critical Care and Emergency, Fondazione IRCCS (Istituto di Ricovero e Cura a Carattere Scientifico) Ca’ Granda, University of Milan, Milan, Italy
| | - Carlo Alberto Volta
- Department of Morphology Surgery and Experimental Medicine, Section of Anesthesia and Intensive Care, University of Ferrara, 8, Aldo Moro, 44124 Ferrara, Italy
| |
Collapse
|
35
|
Chen L, Del Sorbo L, Grieco DL, Shklar O, Junhasavasdikul D, Telias I, Fan E, Brochard L. Airway Closure in Acute Respiratory Distress Syndrome: An Underestimated and Misinterpreted Phenomenon. Am J Respir Crit Care Med 2018; 197:132-136. [DOI: 10.1164/rccm.201702-0388le] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- Lu Chen
- University of TorontoToronto, Canada
- St. Michael’s HospitalToronto, Canada
| | - Lorenzo Del Sorbo
- University of TorontoToronto, Canada
- Toronto General HospitalToronto, Canada
| | - Domenico Luca Grieco
- University of TorontoToronto, Canada
- Catholic University of the Sacred HeartRome, Italyand
| | | | | | | | - Eddy Fan
- University of TorontoToronto, Canada
- Toronto General HospitalToronto, Canada
| | - Laurent Brochard
- University of TorontoToronto, Canada
- St. Michael’s HospitalToronto, Canada
| |
Collapse
|
36
|
Mauri T, Lazzeri M, Bellani G, Zanella A, Grasselli G. Respiratory mechanics to understand ARDS and guide mechanical ventilation. Physiol Meas 2017; 38:R280-H303. [PMID: 28967868 DOI: 10.1088/1361-6579/aa9052] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
OBJECTIVE As precision medicine is becoming a standard of care in selecting tailored rather than average treatments, physiological measurements might represent the first step in applying personalized therapy in the intensive care unit (ICU). A systematic assessment of respiratory mechanics in patients with the acute respiratory distress syndrome (ARDS) could represent a step in this direction, for two main reasons. Approach and Main results: On the one hand, respiratory mechanics are a powerful physiological method to understand the severity of this syndrome in each single patient. Decreased respiratory system compliance, for example, is associated with low end expiratory lung volume and more severe lung injury. On the other hand, respiratory mechanics might guide protective mechanical ventilation settings. Improved gravitationally dependent regional lung compliance could support the selection of positive end-expiratory pressure and maximize alveolar recruitment. Moreover, the association between driving airway pressure and mortality in ARDS patients potentially underlines the importance of sizing tidal volume on respiratory system compliance rather than on predicted body weight. SIGNIFICANCE The present review article aims to describe the main alterations of respiratory mechanics in ARDS as a potent bedside tool to understand severity and guide mechanical ventilation settings, thus representing a readily available clinical resource for ICU physicians.
Collapse
Affiliation(s)
- Tommaso Mauri
- Department of Pathophysiology and Transplantation, University of Milan, Via Festa del Perdono 7, 20122 Milan, Italy. Department of Anesthesia, Critical Care and Emergency, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via F. Sforza 35, 20122 Milan, Italy
| | | | | | | | | |
Collapse
|
37
|
Radermacher P, Maggiore SM, Mercat A. FiftyYears ofResearch inARDS.Gas Exchange in Acute Respiratory Distress Syndrome. Am J Respir Crit Care Med 2017; 196:964-984. [DOI: 10.1164/rccm.201610-2156so] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Peter Radermacher
- Institute of Anaesthesiological Pathophysiology and Process Engineering, University Medical School, Ulm, Germany
| | - Salvatore Maurizio Maggiore
- Section of Anesthesia, Analgesia, Perioperative, and Intensive Care, Department of Medical, Oral, and Biotechnological Sciences, School of Medicine and Health Sciences, “SS. Annunziata” Hospital, “Gabriele d’Annunzio” University of Chieti-Pescara, Chieti, Italy; and
| | - Alain Mercat
- Department of Medical Intensive Care and Hyperbaric Medicine, Angers University Hospital, Angers, France
| |
Collapse
|
38
|
Abstract
The management of the acute respiratory distress syndrome (ARDS) patient is fundamental to the field of intensive care medicine, and it presents unique challenges owing to the specialized mechanical ventilation techniques that such patients require. ARDS is a highly lethal disease, and there is compelling evidence that mechanical ventilation itself, if applied in an injurious fashion, can be a contributor to ARDS mortality. Therefore, it is imperative for any clinician central to the care of ARDS patients to understand the fundamental framework that underpins the approach to mechanical ventilation in this special scenario. The current review summarizes the major components of the mechanical ventilation strategy as it applies to ARDS.
Collapse
Affiliation(s)
- Oleg Epelbaum
- a Division of Pulmonary, Critical Care, and Sleep Medicine , Westchester Medical Center, New York Medical College , Valhalla , NY , USA
| | - Wilbert S Aronow
- b Division of Cardiology , Westchester Medical Center, New York Medical College , Valhalla , NY , USA
| |
Collapse
|
39
|
Prodhan P, Noviski N. Pediatric Acute Hypoxemic Respiratory Failure: Management of Oxygenation. J Intensive Care Med 2016; 19:140-53. [PMID: 15154995 DOI: 10.1177/0885066604263859] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Acute hypoxemic respiratory failure (AHRF) is one of the hallmarks of acute lung injury (ALI) and acute respiratory distress syndrome (ARDS), which are caused by an inflammatory process initiated by any of a number of potential systemic and/or pulmonary insults that result in heterogeneous disruption of the capillary-pithelial interface. In these critically sick patients, optimizing the management of oxygenation is crucial. Physicians managing pediatric patients with ALI or ARDS are faced with a complex array of options influencing oxygenation. Certain treatment strategies can influence clinical outcomes, such as a lung protective ventilation strategy that specifies a low tidal volume (6 mL/kg) and a plateau pressure limit (30 cm H2O). Other strategies such as different levels of positive end expiratory pressure, altered inspiration to expiration time ratios, recruitment maneuvers, prone positioning, and extraneous gases or drugs may also affect clinical outcomes. This article reviews state-of-the-art strategies on the management of oxygenation in acute hypoxemic respiratory failure in children.
Collapse
Affiliation(s)
- Parthak Prodhan
- Division of Pediatric Critical Care Medicine, MassGeneral Hospital for Children, Boston, Massachusetts 02114, USA
| | | |
Collapse
|
40
|
Chiumello D, Marino A, Brioni M, Cigada I, Menga F, Colombo A, Crimella F, Algieri I, Cressoni M, Carlesso E, Gattinoni L. Lung Recruitment Assessed by Respiratory Mechanics and Computed Tomography in Patients with Acute Respiratory Distress Syndrome. What Is the Relationship? Am J Respir Crit Care Med 2016; 193:1254-63. [DOI: 10.1164/rccm.201507-1413oc] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
41
|
Lamia B, Molano LC, Muir JF, Cuvelier A. [Cardiopulmonary interactions in the course of mechanical ventilation]. Rev Mal Respir 2016; 33:865-876. [PMID: 26857198 DOI: 10.1016/j.rmr.2015.11.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 11/15/2015] [Indexed: 10/22/2022]
Abstract
INTRODUCTION The haemodynamic consequences of ventilation are multiple and complex and may affect all the determinants of cardiac performance such as heart rate, preload, contractility and afterload. These consequences affect both right and left ventricle and are also related to the biventricular interdependence. STATE-OF-THE-ART Ventilation modifies the lung volume and also the intrathoracic pressure. Variations in lung volume have consequences on the pulmonary vascular resistance, hypoxic pulmonary vasoconstriction and ventricular interdependence. Variations in intrathoracic pressure have a major impact and affect systemic venous return, right ventricular preload, left ventricular preload, right ventricular afterload, left ventricular afterload and myocardial contracility. The haemodynamic consequences of positive pressure ventilation depend on the underlying chronic cardiopulmonary pathologies leading to the acute respiratory failure that was the indication for ventilation. CONCLUSION In this review, we will focus on severe COPD exacerbation, acute left heart failure and weaning from ventilation.
Collapse
Affiliation(s)
- B Lamia
- UPRES EA 3830, service de pneumologie et soins intensifs respiratoires, institut hospitalo-universitaire de recherche biomédicale et d'innovation, CHU de Rouen, université de Rouen, 76031 Rouen cedex, France.
| | - L-C Molano
- UPRES EA 3830, service de pneumologie et soins intensifs respiratoires, institut hospitalo-universitaire de recherche biomédicale et d'innovation, CHU de Rouen, université de Rouen, 76031 Rouen cedex, France
| | - J-F Muir
- UPRES EA 3830, service de pneumologie et soins intensifs respiratoires, institut hospitalo-universitaire de recherche biomédicale et d'innovation, CHU de Rouen, université de Rouen, 76031 Rouen cedex, France
| | - A Cuvelier
- UPRES EA 3830, service de pneumologie et soins intensifs respiratoires, institut hospitalo-universitaire de recherche biomédicale et d'innovation, CHU de Rouen, université de Rouen, 76031 Rouen cedex, France
| |
Collapse
|
42
|
Abstract
PURPOSE OF REVIEW To provide an overview on most recent knowledge on methods currently available for monitoring of recruitment maneuvers at the bedside. RECENT FINDINGS The effects of recruitment maneuvers on clinical outcomes in patients with moderate to severe acute respiratory distress syndrome and in patients with healthy lungs undergoing major surgery were recently assessed. Despite being part of a multifaceted approach of protective ventilation, recruitment maneuvers are supposed to decrease mortality and improve postoperative outcomes. However, the role of recruitment maneuver remains controversial in routine practice owing to concerns regarding complications, especially its effects on hemodynamics. In addition, although recruitment maneuvers are being increasingly used, there remains a great deal of uncertainty regarding the precise way to evaluate the effect of recruitment.An effective recruitment maneuver is expected to reinflate nonaerated lung units. End-expiratory lung volume, compliance, dead space, volumetric capnography, and bedside imaging techniques such as lung ultrasound and electrical impedance tomography have all different strengths and weaknesses. A multimodal and multiparametric approach could be a valuable option for bedside monitoring of recruitment maneuvers both in the ICU and in the operative room. SUMMARY Several methods offer evaluation of lung recruitability and allow the monitoring of positive and negative effects of recruitment maneuvers. More than the type of method used, a multifaceted approach of monitoring of recruitment maneuvers should be regarded.
Collapse
|
43
|
Casserly B, McCool FD, Saunders J, Selvakumar N, Levy MM. End-Expiratory Volume and Oxygenation: Targeting PEEP in ARDS Patients. Lung 2015; 194:35-41. [PMID: 26645226 DOI: 10.1007/s00408-015-9823-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 11/03/2015] [Indexed: 10/22/2022]
Abstract
INTRODUCTION Changes in end-expiratory lung volume (∆EELV) in response to changes in PEEP (∆PEEP) have not been reported in mechanically ventilated patients with ARDS. The purpose of this study was to determine the utility of measurements of ∆EELV in determining optimal PEEP in ARDS patients. METHODS Nine patients with ARDS were prospectively recruited. ∆EELV was measured using magnetometers during serial decremental PEEP trials. Changes in PaO2 (∆PaO2) were simultaneously measured. Static respiratory system compliance (CRS), ∆PaO2/∆PEEP, and ∆EELV/∆PEEP were calculated at each level of PEEP. RESULTS For the group, ∆EELV decreased by 1.09 ± 0.13 L (mean ± SD) as PEEP was reduced from 20 to 0 cm H2O with the greatest changes in ∆EELV occurring over the mid range of the decremental PEEP curve. Optimal values for CRS, ∆EELV/∆PEEP, and ∆PaO2/∆PEEP could be identified for each patient and occurred at PEEP levels ranging from 10 to 17.5 cm H2O. There was a significant correlation (r = 0.712, p = 0.047) between ∆PaO2/∆PEEP and ∆EELV/∆PEEP. CONCLUSIONS ∆EELV can be measured from a decremental PEEP curve. Since ∆EELV is highly correlated with ∆PaO2, measures of ∆PaO2/∆PEEP may provide a surrogate for measures of ∆EELV/∆PEEP. Combining measures of ∆EELV/∆PEEP with measures of CRS may provide a novel means of determining optimal PEEP in patients with ARDS.
Collapse
Affiliation(s)
- Brian Casserly
- Pulmonary, Critical Care, and Sleep Medicine, Mid-Western Regional Hospital, Dooradoyle, Limerick, Ireland. .,University Hospital Limerick, Dooradoyle, Limerick, Ireland.
| | - F Dennis McCool
- Division of Pulmonary, Critical Care and Sleep Medicine, The Memorial Hospital of Rhode Island, 111 Brewster Street, Pawtucket, RI, USA
| | - Jean Saunders
- Director of Statistical Consulting Unit, University of Limerick, Limerick, Ireland
| | | | - Mitchell M Levy
- Division of Pulmonary, Critical Care and Sleep Medicine, Rhode Island Hospital, 593 Eddy Street, Providence, RI, USA
| |
Collapse
|
44
|
Mrozek S, Constantin JM, Geeraerts T. Brain-lung crosstalk: Implications for neurocritical care patients. World J Crit Care Med 2015; 4:163-178. [PMID: 26261769 PMCID: PMC4524814 DOI: 10.5492/wjccm.v4.i3.163] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Revised: 04/29/2015] [Accepted: 05/28/2015] [Indexed: 02/06/2023] Open
Abstract
Major pulmonary disorders may occur after brain injuries as ventilator-associated pneumonia, acute respiratory distress syndrome or neurogenic pulmonary edema. They are key points for the management of brain-injured patients because respiratory failure and mechanical ventilation seem to be a risk factor for increased mortality, poor neurological outcome and longer intensive care unit or hospital length of stay. Brain and lung strongly interact via complex pathways from the brain to the lung but also from the lung to the brain. Several hypotheses have been proposed with a particular interest for the recently described “double hit” model. Ventilator setting in brain-injured patients with lung injuries has been poorly studied and intensivists are often fearful to use some parts of protective ventilation in patients with brain injury. This review aims to describe the epidemiology and pathophysiology of lung injuries in brain-injured patients, but also the impact of different modalities of mechanical ventilation on the brain in the context of acute brain injury.
Collapse
|
45
|
STAHL CA, MÖLLER K, STEINMANN D, HENZLER D, LUNDIN S, STENQVIST O. Determination of 'recruited volume' following a PEEP step is not a measure of lung recruitability. Acta Anaesthesiol Scand 2015; 59:35-46. [PMID: 25348890 DOI: 10.1111/aas.12432] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 09/23/2014] [Indexed: 01/17/2023]
Abstract
BACKGROUND It has been proposed that the analysis of positive end-expiratory pressure (PEEP)-induced volume changes can quantify alveolar recruitment. The potential of a lung to be recruited is expected to be high in acute respiratory distress syndrome (ARDS), where collapsed lung tissue is very common. The volume change that is beyond the delta volume because of the patient's compliance has been termed 'recruited volume' (RecV). However, data of patients with low and high RecV showed less severe lung disease in high 'recruiters', indicating that RecV may not equal the 'potentially recruitable lung tissue' seen in computed tomography scans. We hypothesized that RecV is higher in lung-healthy (LH) patients with little collapsed lung compared with ARDS patients. METHODS RecV and inspiratory capacity (IC) were determined in 12 LH and in 25 ARDS patients during incremental PEEP (steps of 2 cmH2 O). RecV was determined as the time-dependent increase in end-expiratory volume following the first expiration to the new PEEP level (ΔTDV). Gas distribution in LH patients was analyzed by electric impedance tomography. RESULTS Cumulative RecV(ΔTDV) and IC were higher (P < 0.01) in LH compared with ARDS patients, 1739 ml vs. 832 ml and 4432 ml vs. 2020 ml, respectively. In both groups, RecV correlated excellently with IC (R(2) = 0.86). In LH, RecV emanated mainly from nondependent lung regions at PEEP below 15 cmH2O. Maximum plateau pressure was reached with fewer PEEP steps in ARDS compared with LH patients (11 vs. 14, P < 0.01). CONCLUSION Our findings suggest that RecV predominately measures a slow fraction of inflation of already aerated lung tissue and not recruitment of collapsed alveoli.
Collapse
Affiliation(s)
- C. A. STAHL
- Department of Anesthesiology and Intensive Care Medicine; University Medical Center Freiburg; Freiburg Germany
| | - K. MÖLLER
- Institute of Technical Medicine (ITeM); Furtwangen University; Villingen-Schwenningen Germany
| | - D. STEINMANN
- Department of Anesthesiology and Intensive Care Medicine; University Medical Center Freiburg; Freiburg Germany
| | - D. HENZLER
- Klinik für Anästhesiologie, Operative Intensivmedizin, Rettungsmedizin, Schmerztherapie; Klinikum Herford; Herford Germany
| | - S. LUNDIN
- Anesthesia and Intensive Care; Sahlgrenska University Hospital; Gothenburg Sweden
| | - O. STENQVIST
- Anesthesia and Intensive Care; Sahlgrenska University Hospital; Gothenburg Sweden
| |
Collapse
|
46
|
Guo R, Fan E. Beyond low tidal volumes: ventilating the patient with acute respiratory distress syndrome. Clin Chest Med 2014; 35:729-41. [PMID: 25453421 DOI: 10.1016/j.ccm.2014.08.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The cornerstone of lung protective ventilation in patients with acute respiratory distress syndrome (ARDS) is a pressure- and volume-limited strategy. Other interventions have also been investigated. Although no method for positive end-expiratory pressure (PEEP) titration has proven most advantageous, experimental and clinical data support the use of higher PEEP in patients with moderate/severe ARDS. There is no benefit to the early use of high-frequency oscillatory ventilation (HFOV) in patients with moderate/severe ARDS, although it may be considered as rescue therapy. Further investigations of novel methods of bedside monitoring of mechanical ventilation may help identify the optimal ventilatory strategy.
Collapse
Affiliation(s)
- Ray Guo
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Eddy Fan
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
47
|
Goligher EC, Kavanagh BP, Rubenfeld GD, Adhikari NKJ, Pinto R, Fan E, Brochard LJ, Granton JT, Mercat A, Marie Richard JC, Chretien JM, Jones GL, Cook DJ, Stewart TE, Slutsky AS, Meade MO, Ferguson ND. Oxygenation response to positive end-expiratory pressure predicts mortality in acute respiratory distress syndrome. A secondary analysis of the LOVS and ExPress trials. Am J Respir Crit Care Med 2014; 190:70-6. [PMID: 24919111 DOI: 10.1164/rccm.201404-0688oc] [Citation(s) in RCA: 131] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE Previous trials of higher positive end-expiratory pressure (PEEP) for acute respiratory distress syndrome (ARDS) failed to demonstrate mortality benefit, possibly because of differences in lung recruitability among patients with ARDS. OBJECTIVES To determine whether the physiological response to increased PEEP is associated with mortality. METHODS In a secondary analysis of the Lung Open Ventilation Study (LOVS, n = 983), we examined the relationship between the initial response to changes in PEEP after randomization and mortality. We sought to corroborate our findings using data from a different trial of higher PEEP (ExPress, n = 749). MEASUREMENTS AND MAIN RESULTS The oxygenation response (change in ratio of arterial partial pressure of oxygen to fraction of inspired oxygen: P/F) after the initial change in PEEP after randomization varied widely (median, 9.5 mm Hg; interquartile range, -16 to 47) and was only weakly related to baseline P/F or the magnitude of PEEP change. Among patients in whom PEEP was increased after randomization, an increase in P/F was associated with reduced mortality (multivariable logistic regression; adjusted odds ratio, 0.80 [95% confidence interval, 0.72-0.89] per 25-mm Hg increase in P/F), particularly in patients with severe disease (baseline P/F [less-than-or-equal-to] 150 mm Hg). Changes in compliance and dead space were not associated with mortality. These findings were confirmed by a similar analysis of data from the ExPress trial. CONCLUSIONS Patients with ARDS who respond to increased PEEP by improved oxygenation have a lower risk of death. The oxygenation response to PEEP might be used to predict whether patients will benefit from higher versus lower PEEP.
Collapse
|
48
|
Guerin C, Richard JC. Current ventilatory management of patients with acute lung injury/acute respiratory distress syndrome. Expert Rev Respir Med 2014; 2:119-33. [DOI: 10.1586/17476348.2.1.119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
49
|
Santa Cruz R, Rojas JI, Nervi R, Heredia R, Ciapponi A. High versus low positive end-expiratory pressure (PEEP) levels for mechanically ventilated adult patients with acute lung injury and acute respiratory distress syndrome. Cochrane Database Syst Rev 2013; 2013:CD009098. [PMID: 23740697 PMCID: PMC6517097 DOI: 10.1002/14651858.cd009098.pub2] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
BACKGROUND Mortality in patients with acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) remains high. These patients require mechanical ventilation, but this modality has been associated with ventilator-induced lung injury. High levels of positive end-expiratory pressure (PEEP) could reduce this condition and improve patient survival. OBJECTIVES To assess the benefits and harms of high versus low levels of PEEP in patients with ALI and ARDS. SEARCH METHODS We searched the Cochrane Central Register of Controlled Trials (CENTRAL) (The Cochrane Library, 2013, Issue 4), MEDLINE (1950 to May 2013), EMBASE (1982 to May 2013), LILACS (1982 to May 2013) and SCI (Science Citation Index). We used the Science Citation Index to find references that have cited the identified trials. We did not specifically conduct manual searches of abstracts of conference proceedings for this review. We also searched for ongoing trials (www.trialscentral.org; www.clinicaltrial.gov and www.controlled-trials.com). SELECTION CRITERIA We included randomized controlled trials that compared the effects of two levels of PEEP in ALI and ARDS participants who were intubated and mechanically ventilated in intensive care for at least 24 hours. DATA COLLECTION AND ANALYSIS Two review authors assessed the trial quality and extracted data independently. We contacted investigators to identify additional published and unpublished studies. MAIN RESULTS We included seven studies that compared high versus low levels of PEEP (2565 participants). In five of the studies (2417 participants), a comparison was made between high and low levels of PEEP with the same tidal volume in both groups, but in the remaining two studies (148 participants), the tidal volume was different between high- and low-level groups. We saw evidence of risk of bias in three studies, and the remaining studies fulfilled all criteria for adequate trial quality.In the main analysis, we assessed mortality occurring before hospital discharge only in those studies that compared high versus low PEEP with the same tidal volume in both groups. With the three studies that were included, the meta-analysis revealed no statistically significant differences between the two groups (relative risk (RR) 0.90, 95% confidence interval (CI) 0.81 to 1.01), nor was any statistically significant difference seen in the risk of barotrauma (RR 0.97, 95% CI 0.66 to 1.42). Oxygenation was improved in the high-PEEP group, although data derived from the studies showed a considerable degree of statistical heterogeneity. The number of ventilator-free days showed no significant difference between the two groups. Available data were insufficient to allow pooling of length of stay in the intensive care unit (ICU). The subgroup of participants with ARDS showed decreased mortality in the ICU, although it must be noted that in two of the three included studies, the authors used a protective ventilatory strategy involving a low tidal volume and high levels of PEEP. AUTHORS' CONCLUSIONS Available evidence indicates that high levels of PEEP, as compared with low levels, did not reduce mortality before hospital discharge. The data also show that high levels of PEEP produced no significant difference in the risk of barotrauma, but rather improved participants' oxygenation to the first, third, and seventh days. This review indicates that the included studies were characterized by clinical heterogeneity.
Collapse
Affiliation(s)
- Roberto Santa Cruz
- Department of Intensive Care,Hospital Regional of RioGallegos, Rio Gallegos, Argentina.
| | | | | | | | | |
Collapse
|
50
|
Pulmonary acute respiratory distress syndrome: positive end-expiratory pressure titration needs stress index. J Surg Res 2013; 185:347-52. [PMID: 23731684 DOI: 10.1016/j.jss.2013.05.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Revised: 04/29/2013] [Accepted: 05/03/2013] [Indexed: 11/20/2022]
Abstract
BACKGROUND The heterogeneity of lung injury in pulmonary acute respiratory distress syndrome (ARDS) may have contributed to the greater response of hyperinflated area with positive end-expiratory pressure (PEEP). PEEP titrated by stress index can reduce the risk of alveolar hyperinflation in patients with pulmonary ARDS. The authors sought to investigate the effects of PEEP titrated by stress index on lung recruitment and protection after recruitment maneuver (RM) in pulmonary ARDS patients. MATERIALS AND METHODS Thirty patients with pulmonary ARDS were enrolled. After RM, PEEP was randomly set according to stress index, oxygenation, static pulmonary compliance (Cst), or lower inflection point (LIP) + 2 cmH2O strategies. Recruitment volume, gas exchange, respiratory mechanics, and hemodynamic parameters were collected. RESULTS PEEP titrated by stress index (15.1 ± 1.8 cmH2O) was similar to the levels titrated by oxygenation (14.5 ± 2.9 cmH2O), higher than that titrated by Cst (11.3 ± 2.5 cmH2O) and LIP (12.9 ± 1.6 cmH2O) (P < 0.05). Compared with baseline, PaO2/FiO2 and recruitment volume were significantly improved after PEEP titration with the four strategies (P < 0.05). PaO2/FiO2 and recruitment volume were similar when using PEEP titrated by stress index and oxygenation but higher than that titrated by Cst and LIP. Compared with baseline, lung compliance increased significantly when PEEP determined by Cst, but there was no difference of Cst in these four strategies. There was no influence of PEEP titration with the four strategies on hemodynamic parameters. CONCLUSIONS PEEP titration by stress index might be more beneficial for pulmonary ARDS patients after RM.
Collapse
|