1
|
Neutrophils and Asthma. Diagnostics (Basel) 2022; 12:diagnostics12051175. [PMID: 35626330 PMCID: PMC9140072 DOI: 10.3390/diagnostics12051175] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/04/2022] [Accepted: 05/05/2022] [Indexed: 02/04/2023] Open
Abstract
Although eosinophilic inflammation is characteristic of asthma pathogenesis, neutrophilic inflammation is also marked, and eosinophils and neutrophils can coexist in some cases. Based on the proportion of sputum cell differentiation, asthma is classified into eosinophilic asthma, neutrophilic asthma, neutrophilic and eosinophilic asthma, and paucigranulocytic asthma. Classification by bronchoalveolar lavage is also performed. Eosinophilic asthma accounts for most severe asthma cases, but neutrophilic asthma or a mixture of the two types can also present a severe phenotype. Biomarkers for the diagnosis of neutrophilic asthma include sputum neutrophils, blood neutrophils, chitinase-3-like protein, and hydrogen sulfide in sputum and serum. Thymic stromal lymphoprotein (TSLP)/T-helper 17 pathways, bacterial colonization/microbiome, neutrophil extracellular traps, and activation of nucleotide-binding oligomerization domain-like receptor family, pyrin domain-containing 3 pathways are involved in the pathophysiology of neutrophilic asthma and coexistence of obesity, gastroesophageal reflux disease, and habitual cigarette smoking have been associated with its pathogenesis. Thus, targeting neutrophilic asthma is important. Smoking cessation, neutrophil-targeting treatments, and biologics have been tested as treatments for severe asthma, but most clinical studies have not focused on neutrophilic asthma. Phosphodiesterase inhibitors, anti-TSLP antibodies, azithromycin, and anti-cholinergic agents are promising drugs for neutrophilic asthma. However, clinical research targeting neutrophilic inflammation is required to elucidate the optimal treatment.
Collapse
|
2
|
Lin YS, Chen YY, Chan NJ, Chang J, Li SS, Hsu CC. Airway Exposure to 1,3-Beta-d-Glucan Induces Airway Hyperresponsiveness in Guinea Pigs. ACS Pharmacol Transl Sci 2022; 5:169-175. [PMID: 35311019 PMCID: PMC8922299 DOI: 10.1021/acsptsci.1c00254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Indexed: 11/30/2022]
Abstract
1,3-Beta-d-glucan (β-glucan) is a component of mold cell walls and is frequently found in fungi and house dust mites. The studies of β-glucan are inconsistent, although it has been implicated in airway adverse responses. This study was carried out to determine whether airway hyperresponsiveness was seen 24 h after airway exposure to β-glucan in guinea pigs. Two matching guinea pigs were exposed intratracheally to either β-glucan or its vehicle. Twenty-four hours after intratracheal instillation, there was no difference between these two groups in the baseline of the total pulmonary resistance (R L), dynamic lung compliance (C dyn), arterial blood pressure, and heart rate. In contrast, the responses of R L to capsaicin injection were significantly increased in β-glucan animals; capsaicin at the same dose of 3.2 μg/kg increased R L by 184% in vehicle animals and by 400% in β-glucan animals. The effective dose 200% to capsaicin injection was lower in the β-glucan animals. Furthermore, the increases in R L were partially reduced after transient lung hyperinflation to recruit the occluding airways; however, the R L induced by capsaicin injection after lung hyperinflation was significantly larger than the baseline in β-glucan animals; also, the lung wet-to-dry ratio in capsaicin-injected animals was augmented in the β-glucan group. Moreover, the airway hyperresponsiveness was accompanied by increases in neutrophils in the bronchoalveolar lavage fluid in the β-glucan animals. Furthermore, the levels of substance P and the calcitonin gene-related peptide in the bronchoalveolar lavage fluid collected after capsaicin injection were increased in β-glucan animals. We provide definitive evidence that β-glucan can induce airway hyperresponsiveness in guinea pigs, and the neuropeptide releases play an important role in this airway hyperresponsiveness.
Collapse
Affiliation(s)
- You Shuei Lin
- Department
of Physiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan,Graduate
Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Yueh-Yin Chen
- Graduate
Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Nai-Ju Chan
- Graduate
Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Jungshan Chang
- Graduate
Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Shao-Sian Li
- Department
of Materials and Mineral Resources Engineering, National Taipei University of Technology, Taipei 106, Taiwan
| | - Chun-Chun Hsu
- Graduate
Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110, Taiwan,School
of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei 110, Taiwan,Division
of Pulmonary Medicine, Department of Internal Medicine, Taipei Medical University Hospital, Taipei 110, Taiwan,. Tel.: +886-2-2736-1661
ext. 3514
| |
Collapse
|
3
|
Xie Y, Abel PW, Casale TB, Tu Y. T H17 cells and corticosteroid insensitivity in severe asthma. J Allergy Clin Immunol 2022; 149:467-479. [PMID: 34953791 PMCID: PMC8821175 DOI: 10.1016/j.jaci.2021.12.769] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 11/30/2021] [Accepted: 12/15/2021] [Indexed: 02/03/2023]
Abstract
Asthma is classically described as having either a type 2 (T2) eosinophilic phenotype or a non-T2 neutrophilic phenotype. T2 asthma usually responds to classical bronchodilation therapy and corticosteroid treatment. Non-T2 neutrophilic asthma is often more severe. Patients with non-T2 asthma or late-onset T2 asthma show poor response to the currently available anti-inflammatory therapies. These therapeutic failures result in increased morbidity and cost associated with asthma and pose a major health care problem. Recent evidence suggests that some non-T2 asthma is associated with elevated TH17 cell immune responses. TH17 cells producing Il-17A and IL-17F are involved in the neutrophilic inflammation and airway remodeling processes in severe asthma and have been suggested to contribute to the development of subsets of corticosteroid-insensitive asthma. This review explores the pathologic role of TH17 cells in corticosteroid insensitivity of severe asthma and potential targets to treat this endotype of asthma.
Collapse
Affiliation(s)
- Yan Xie
- Department of Pharmacology and Neuroscience, Creighton University School of Medicine, Omaha, NE, USA
| | - Peter W. Abel
- Department of Pharmacology and Neuroscience, Creighton University School of Medicine, Omaha, NE, USA
| | - Thomas B. Casale
- Department of Internal Medicine, University of South Florida School of Medicine, Tampa, FL, USA
| | - Yaping Tu
- Department of Pharmacology and Neuroscience, Creighton University School of Medicine, Omaha, NE, USA
| |
Collapse
|
4
|
Alliouche Kerboua K, Benosmane L, Namoune S, Ouled-Diaf K, Ghaliaoui N, Bendjeddou D. Anti-inflammatory and antioxidant activity of the hot water-soluble polysaccharides from Anacyclus pyrethrum (L.) Lag. roots. JOURNAL OF ETHNOPHARMACOLOGY 2021; 281:114491. [PMID: 34364970 DOI: 10.1016/j.jep.2021.114491] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 07/28/2021] [Accepted: 08/04/2021] [Indexed: 06/13/2023]
Abstract
UNLABELLED ETHNOPHAMACOLOGICAL RELEVANCE: the roots of Anacyclus pyrethrum (L.) Lag. (Family: Asteraceae) are used in Algeria to treat respiratory infections, to cure chronic head and nostrils catarrh, and to clear the brain by stimulating the free flow of nasal mucous. They contain a high quantity of hot water-soluble polysaccharides. AIMS OF THE STUDY The study aims to evaluate the antioxidant and anti-inflammatory activity of polysaccharides extracted from Anacyclus pyrethrum roots (APPS). MATERIALS AND METHODS The APPS were extracted using boiling water, separated from proteins by the Sevag method then precipitated with 90% ethanol. The antioxidant effect of crude APPS was evaluated using FRAP assay. To investigate the anti-inflammatory potential, mice were treated with crude polysaccharides (25, 50, and 100 mg/kg, i.p.) for 3 days (14th, 15th, and 16th day of the experimentation). Respiratory inflammation was induced by HDM (House Dust Mite), mice were sensitized intranasally with 25 μg HDM suspended in 10 μl NaCl (5 μl/nostril) on days 0 and 7 then challenged with 5 μg HDM on days 14, 15, and 16. Mice were sacrificed 24 h after the last challenge. The number of immune cells in the blood in NL (Nasal Liquid) and in BAL (Broncho Alveolar Liquid) was enumerated, the spleen was removed to calculate the relative spleen weight and to count splénocytes, lungs histopathological examination was carried out to confirm the protective effect of APPS. Structural characterization of APPS was identified using FTIR (Fourier-Transform Infrared Spectroscopy) and SEM (Scanning Electron Microscopy). RESULTS The crude APPS possessed reducing power. In vivo assay, treatment with APPS causes a decrease in the number of blood leucocytes at all doses on the one hand, and in the relative spleen weight and splénocytes number on the other hand except at the dose of 50 mg/kg in which an enhancement of the number of splénocytes and immune cells in NL and BAL was significant. The histopathological examination showed clear protection of lung tissue damaged by HDM, after treatment with APPS mainly, at the dose of 50 mg/kg. CONCLUSION Our data clearly showed antioxidant and anti-inflammatory activity of APPS on HDM-challenged mice induced lungs inflammation by equilibrating the inflammatory reaction mostly, with an optimal dose of 50 mg/kg.
Collapse
Affiliation(s)
- Keltoum Alliouche Kerboua
- Laboratoire Biologie, Eau et Environnement (LBEE), Université 8 Mai 1945 Guelma, BP, 401, Guelma, 24000, Algeria.
| | - Lilia Benosmane
- Faculty of Natural and Life Sciences - Sciences of the Earth and the Universe, University of 8 Mai 1945, Guelma, Algeria
| | - Selma Namoune
- Faculty of Natural and Life Sciences - Sciences of the Earth and the Universe, University of 8 Mai 1945, Guelma, Algeria
| | - Khaoula Ouled-Diaf
- Faculty of Natural and Life Sciences - Sciences of the Earth and the Universe, University of 8 Mai 1945, Guelma, Algeria
| | - Nora Ghaliaoui
- Center of Research in Physical and Chemical Analysis CRAPC, BP 248 Algiers, RP, 16004, Algiers, Algeria
| | - Dalila Bendjeddou
- Faculty of Natural and Life Sciences - Sciences of the Earth and the Universe, University of 8 Mai 1945, Guelma, Algeria
| |
Collapse
|
5
|
Bourdin A, Charriot J, Boissin C, Ahmed E, Suehs C, De Sevin A, Volpato M, Pahus L, Gras D, Vachier I, Halimi L, Hamerlijnck D, Chanez P. Will the asthma revolution fostered by biologics also benefit adult ICU patients? Allergy 2021; 76:2395-2406. [PMID: 33283296 DOI: 10.1111/all.14688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/26/2020] [Accepted: 11/29/2020] [Indexed: 12/01/2022]
Abstract
PURPOSE Asthma exacerbations are inflammatory events that rarely result in full hospitalization following an ER visit. Unfortunately, certain patients require prolonged support, including occasional external lung support through ECMO or ECCOR (with subsequent further exposure to other life-threatening issues), and some die. In parallel, biologics are revolutionizing severe asthma management, mostly in T2 high patients. METHODS We extensively reviewed the current unmet needs surrounding ICU-admitted asthma exacerbations, with a focus on currently available drugs and the underlying biological processes involved. We explored whether currently available T2-targeting drugs can reasonably be seen as potential players not only for relapse prevention but also as candidate drugs for a faster resolution of such episodes. The patient's perspective was also sought. RESULTS About 30% of asthma exacerbations admitted to the ICU do not resolve within five days. Persistent severe airway obstruction despite massive doses of corticosteroids and maximal pharmacologically induced bronchodilation is the main cause of treatment failure. Previous ICU admission is the main risk factor for such episodes and may eventually be considered as a T2 surrogate marker. Fatal asthma cases are hallmarked by poorly steroid-sensitive T2-inflammation associated with severe mucus plugging. New, fast-acting T2-targeting biologics (already used for preventing asthma exacerbations) have the potential to circumvent steroid sensitivity pathways and decrease mucus plugging. This unmet need was confirmed by patients who reported highly negative, traumatizing experiences. CONCLUSIONS There is room for improvement in the management of ICU-admitted severe asthma episodes. Clinical trials assessing how biologics might improve ICU outcomes are direly needed.
Collapse
Affiliation(s)
- Arnaud Bourdin
- Department of Respiratory Diseases Univ Montpellier, CHU Montpellier Montpellier France
- PhyMedExp Univ MontpellierCNRSINSERM, CHU Montpellier Montpellier France
| | - Jérémy Charriot
- Department of Respiratory Diseases Univ Montpellier, CHU Montpellier Montpellier France
- PhyMedExp Univ MontpellierCNRSINSERM, CHU Montpellier Montpellier France
| | - Clément Boissin
- Department of Respiratory Diseases Univ Montpellier, CHU Montpellier Montpellier France
| | - Engi Ahmed
- Department of Respiratory Diseases Univ Montpellier, CHU Montpellier Montpellier France
| | - Carey Suehs
- Department of Respiratory Diseases Univ Montpellier, CHU Montpellier Montpellier France
- Department of Medical Information Univ Montpellier, CHU Montpellier Montpellier France
| | - Arthur De Sevin
- Department of Respiratory Diseases Univ Montpellier, CHU Montpellier Montpellier France
| | - Mathilde Volpato
- Department of Respiratory Diseases Univ Montpellier, CHU Montpellier Montpellier France
| | - Laurie Pahus
- Aix Marseille UnivAPHM, Hôpital NORDCIC 9502Clinique des bronches allergies et sommeil, Chemin des Bourrely, 13015 Marseille France
- Aix Marseille UnivCNRSEFS, ADES Marseille France
- Aix Marseille UnivINSERM U1263INRA 1260 (C2VN) Marseille France
| | - Delphine Gras
- Aix Marseille UnivINSERM U1263INRA 1260 (C2VN) Marseille France
| | - Isabelle Vachier
- Department of Respiratory Diseases Univ Montpellier, CHU Montpellier Montpellier France
| | - Laurence Halimi
- Department of Respiratory Diseases Univ Montpellier, CHU Montpellier Montpellier France
| | | | - Pascal Chanez
- Aix Marseille UnivAPHM, Hôpital NORDCIC 9502Clinique des bronches allergies et sommeil, Chemin des Bourrely, 13015 Marseille France
- Aix Marseille UnivINSERM U1263INRA 1260 (C2VN) Marseille France
| |
Collapse
|
6
|
Aitken ML, Somayaji R, Hinds TR, Pier M, Droguett K, Rios M, Skerrett SJ, Villalon M. Glycated Albumin Triggers an Inflammatory Response in the Human Airway Epithelium and Causes an Increase in Ciliary Beat Frequency. Front Physiol 2021; 12:653177. [PMID: 33967824 PMCID: PMC8102681 DOI: 10.3389/fphys.2021.653177] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 03/17/2021] [Indexed: 01/30/2023] Open
Abstract
The role of inflammation in airway epithelial cells and its regulation are important in several respiratory diseases. When disease is present, the barrier between the pulmonary circulation and the airway epithelium is damaged, allowing serum proteins to enter the airways. We identified that human glycated albumin (GA) is a molecule in human serum that triggers an inflammatory response in human airway epithelial cultures. We observed that single-donor human serum induced IL-8 secretion from primary human airway epithelial cells and from a cystic fibrosis airway cell line (CF1-16) in a dose-dependent manner. IL-8 secretion from airway epithelial cells was time dependent and rapidly increased in the first 4 h of incubation. Stimulation with GA promoted epithelial cells to secrete IL-8, and this increase was blocked by the anti-GA antibody. The IL-8 secretion induced by serum GA was 10–50-fold more potent than TNFα or LPS stimulation. GA also has a functional effect on airway epithelial cells in vitro, increasing ciliary beat frequency. Our results demonstrate that the serum molecule GA is pro-inflammatory and triggers host defense responses including increases in IL-8 secretion and ciliary beat frequency in the human airway epithelium. Although the binding site of GA has not yet been described, it is possible that GA could bind to the receptor for advanced glycated end products (RAGE), known to be expressed in the airway epithelium; however, further experiments are needed to identify the mechanism involved. We highlight a possible role for GA in airway inflammation.
Collapse
Affiliation(s)
- Moira L Aitken
- Department of Medicine, School of Medicine, University of Washington, Seattle, WA, United States
| | - Ranjani Somayaji
- Department of Medicine, School of Medicine, University of Washington, Seattle, WA, United States
| | - Thomas R Hinds
- Department of Pharmacy, School of Medicine, University of Washington, Seattle, WA, United States
| | - Maricela Pier
- Department of Medicine, School of Medicine, University of Washington, Seattle, WA, United States
| | - Karla Droguett
- Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Mariana Rios
- Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Shawn J Skerrett
- Department of Medicine, School of Medicine, University of Washington, Seattle, WA, United States.,Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Manuel Villalon
- Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
7
|
Sokolowska M, Rovati GE, Diamant Z, Untersmayr E, Schwarze J, Lukasik Z, Sava F, Angelina A, Palomares O, Akdis CA, O’Mahony L, Sanak M, Dahlen S, Woszczek G. Current perspective on eicosanoids in asthma and allergic diseases: EAACI Task Force consensus report, part I. Allergy 2021; 76:114-130. [PMID: 32279330 DOI: 10.1111/all.14295] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 03/13/2020] [Accepted: 03/25/2020] [Indexed: 12/25/2022]
Abstract
Eicosanoids are biologically active lipid mediators, comprising prostaglandins, leukotrienes, thromboxanes, and lipoxins, involved in several pathophysiological processes relevant to asthma, allergies, and allied diseases. Prostaglandins and leukotrienes are the most studied eicosanoids and established inducers of airway pathophysiology including bronchoconstriction and airway inflammation. Drugs inhibiting the synthesis of lipid mediators or their effects, such as leukotriene synthesis inhibitors, leukotriene receptors antagonists, and more recently prostaglandin D2 receptor antagonists, have been shown to modulate features of asthma and allergic diseases. This review, produced by an European Academy of Allergy and Clinical Immunology (EAACI) task force, highlights our current understanding of eicosanoid biology and its role in mediating human pathology, with a focus on new findings relevant for clinical practice, development of novel therapeutics, and future research opportunities.
Collapse
Affiliation(s)
- Milena Sokolowska
- Swiss Institute of Allergy and Asthma Research University of Zurich Davos Switzerland
- Christine Kühne ‐ Center for Allergy Research and Education (CK‐CARE) Davos Switzerland
| | - G. Enrico Rovati
- Department of Pharmaceutical Sciences University of Milan Milan Italy
| | - Zuzana Diamant
- Department of Respiratory Medicine & Allergology Skane University Hospital Lund Sweden
- Department of Respiratory Medicine First Faculty of Medicine Charles University and Thomayer Hospital Prague Czech Republic
| | - Eva Untersmayr
- Institute of Pathophysiology and Allergy Research Center for Pathophysiology, Infectiology and Immunology Medical University of Vienna Vienna Austria
| | - Jargen Schwarze
- Child Life and Health and Centre for Inflammation Research The University of Edinburgh Edinburgh UK
| | - Zuzanna Lukasik
- Swiss Institute of Allergy and Asthma Research University of Zurich Davos Switzerland
| | - Florentina Sava
- London North Genomic Laboratory Hub Great Ormond Street Hospital for Children NHS Foundation Trust London UK
| | - Alba Angelina
- Department of Biochemistry and Molecular Biology School of Chemistry Complutense University Madrid Spain
| | - Oscar Palomares
- Department of Biochemistry and Molecular Biology School of Chemistry Complutense University Madrid Spain
| | - Cezmi A. Akdis
- Swiss Institute of Allergy and Asthma Research University of Zurich Davos Switzerland
- Christine Kühne ‐ Center for Allergy Research and Education (CK‐CARE) Davos Switzerland
| | - Liam O’Mahony
- Departments of Medicine and Microbiology APC Microbiome Ireland University College Cork Cork Ireland
| | - Marek Sanak
- Department of Medicine Jagiellonian University Medical College Krakow Poland
| | - Sven‐Erik Dahlen
- Institute of Environmental Medicine Karolinska Institute Stockholm Sweden
- Centre for Allergy Research Karolinska Institute Stockholm Sweden
| | - Grzegorz Woszczek
- MRC/Asthma UK Centre in Allergic Mechanisms of Asthma School of Immunology & Microbial Sciences King's College London London UK
| |
Collapse
|
8
|
Mattos MS, Ferrero MR, Kraemer L, Lopes GAO, Reis DC, Cassali GD, Oliveira FMS, Brandolini L, Allegretti M, Garcia CC, Martins MA, Teixeira MM, Russo RC. CXCR1 and CXCR2 Inhibition by Ladarixin Improves Neutrophil-Dependent Airway Inflammation in Mice. Front Immunol 2020; 11:566953. [PMID: 33123138 PMCID: PMC7566412 DOI: 10.3389/fimmu.2020.566953] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 09/14/2020] [Indexed: 12/17/2022] Open
Abstract
Rationale Increased IL-8 levels and neutrophil accumulation in the airways are common features found in patients affected by pulmonary diseases such as Asthma, Idiopathic Pulmonary Fibrosis, Influenza-A infection and COPD. Chronic neutrophilic inflammation is usually corticosteroid insensitive and may be relevant in the progression of those diseases. Objective To explore the role of Ladarixin, a dual CXCR1/2 antagonist, in several mouse models of airway inflammation with a significant neutrophilic component. Findings Ladarixin was able to reduce the acute and chronic neutrophilic influx, also attenuating the Th2 eosinophil-dominated airway inflammation, tissue remodeling and airway hyperresponsiveness. Correspondingly, Ladarixin decreased bleomycin-induced neutrophilic inflammation and collagen deposition, as well as attenuated the corticosteroid resistant Th17 neutrophil-dominated airway inflammation and hyperresponsiveness, restoring corticosteroid sensitivity. Finally, Ladarixin reduced neutrophilic airway inflammation during cigarette smoke-induced corticosteroid resistant exacerbation of Influenza-A infection, improving lung function and mice survival. Conclusion CXCR1/2 antagonist Ladarixin offers a new strategy for therapeutic treatment of acute and chronic neutrophilic airway inflammation, even in the context of corticosteroid-insensitivity.
Collapse
Affiliation(s)
- Matheus Silverio Mattos
- Laboratory of Comparative Pathology, Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | - Lucas Kraemer
- Laboratory of Comparative Pathology, Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Gabriel Augusto Oliveira Lopes
- Laboratory of Comparative Pathology, Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Diego Carlos Reis
- Laboratory of Comparative Pathology, Department of General Pathology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Geovanni Dantas Cassali
- Laboratory of Comparative Pathology, Department of General Pathology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Fabricio Marcus Silva Oliveira
- Laboratory of Comparative Pathology, Department of General Pathology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | | | - Cristiana Couto Garcia
- Laboratory of Respiratory Virus and Measles, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| | | | - Mauro Martins Teixeira
- Laboratory of Immunopharmacology, Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Remo Castro Russo
- Laboratory of Comparative Pathology, Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Laboratory of Immunopharmacology, Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
9
|
Leukotriene D 4 role in allergic asthma pathogenesis from cellular and therapeutic perspectives. Life Sci 2020; 260:118452. [PMID: 32956660 DOI: 10.1016/j.lfs.2020.118452] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/10/2020] [Accepted: 09/12/2020] [Indexed: 01/05/2023]
Abstract
Asthma is a chronic inflammatory and allergic disease that is mainly characterized by reversible airway obstruction and bronchial hyperresponsiveness. The incidence of asthma is increasing with more than 350 million people worldwide are affected. Up to now, there is no therapeutic option for asthma and most of the prescribed drugs aim to ameliorate the symptoms of the disease especially during the acute exacerbations after trigger exposure. Asthma is a heterogonous disease that involves interactions between inflammatory mediators and cellular components within the disease microenvironment including inflammatory and structural cells. Cysteinyl leukotrienes (cys-LTs) are inflammatory lipid mediators that have potent roles in asthma pathogenesis. CysLTs consisting of LTC4, LTD4, and LTE4 are mainly secreted by leukocytes and act through three main G-protein coupled receptors (CysLT1R, CysLT2R, and CysLT3R). LTD4 is the most potent bronchoconstrictor which gives it the priority to be discussed in detail in this review. LTD4 binds with high affinity to CysLT1R and many studies showed that using CysLT1R antagonists such as montelukast has a beneficial effect for asthmatics especially in corticosteroid refractory cases. Since asthma is a heterogeneous inflammatory disease of many cell types involved in the disease pathogenies and LTD4 has a special role in inflammation and bronchoconstriction, this review highlights the role of LTD4 on each cellular component in asthma and the benefits of using CysLT1R antagonists in ameliorating LTD4-induced effects.
Collapse
|
10
|
Martin MJ, Beasley R, Harrison TW. Towards a personalised treatment approach for asthma attacks. Thorax 2020; 75:1119-1129. [PMID: 32839286 DOI: 10.1136/thoraxjnl-2020-214692] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 07/02/2020] [Accepted: 07/05/2020] [Indexed: 12/16/2022]
Abstract
Asthma attacks (exacerbations) are common, accounting for over 90 000 UK hospital admissions per annum. They kill nearly 1500 people per year in the UK, have significant associated direct and indirect costs and lead to accelerated and permanent loss of lung function. The recognition of asthma as a heterogeneous condition with multiple phenotypes has revolutionised the approach to the long-term management of the condition, with greater emphasis on personalised treatment and the introduction of the treatable traits concept. In contrast asthma attacks are poorly defined and understood and our treatment approach consists of bronchodilators and systemic corticosteroids. This review aims to explore the current limitations in the description, assessment and management of asthma attacks. We will outline the risk factors for attacks, strategies to modify this risk and describe the recognised characteristics of attacks as a first step towards the development of an approach for phenotyping and personalising the treatment of these critically important events. By doing this, we hope to gradually improve asthma attack treatment and reduce the adverse effects associated with recurrent courses of corticosteroids.
Collapse
Affiliation(s)
- Matthew J Martin
- Nottingham Respiratory Research Unit, University of Nottingham, Nottingham, UK
| | - Richard Beasley
- Medical Research Institute of New Zealand, Wellington, New Zealand
| | - Tim W Harrison
- Nottingham Respiratory Research Unit, University of Nottingham, Nottingham, UK
| |
Collapse
|
11
|
Lehman HK, Segal BH. The role of neutrophils in host defense and disease. J Allergy Clin Immunol 2020; 145:1535-1544. [PMID: 32283205 DOI: 10.1016/j.jaci.2020.02.038] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 01/15/2020] [Accepted: 02/05/2020] [Indexed: 12/21/2022]
Abstract
Neutrophils, the most abundant circulating leukocyte, are critical for host defense. Granulopoiesis is under the control of transcriptional factors and culminates in mature neutrophils with a broad armamentarium of antimicrobial pathways. These pathways include nicotinamide adenine dinucleotide phosphate oxidase, which generates microbicidal reactive oxidants, and nonoxidant pathways that target microbes through several mechanisms. Activated neutrophils can cause or worsen tissue injury, underscoring the need for calibration of activation and resolution of inflammation when infection has been cleared. Acquired neutrophil disorders are typically caused by cytotoxic chemotherapy or immunosuppressive agents. Primary neutrophil disorders typically result from disabling mutations of individual genes that result in impaired neutrophil number or function, and provide insight into basic mechanisms of neutrophil biology. Neutrophils can also be activated by noninfectious causes, including trauma and cellular injury, and can have off-target effects in which pathways that typically defend against infection exacerbate injury and disease. These off-target effects include acute organ injury, autoimmunity, and variable effects on the tumor microenvironment that can limit or worsen tumor progression. A greater understanding of neutrophil plasticity in these conditions is likely to pave the way to new therapeutic approaches.
Collapse
Affiliation(s)
- Heather K Lehman
- Division of Allergy/Immunology & Rheumatology, Department of Pediatrics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY
| | - Brahm H Segal
- Roswell Park Comprehensive Cancer Center, University at Buffalo, Buffalo, NY.
| |
Collapse
|
12
|
Liu J, Liu L, Sun J, Luo Q, Yan C, Zhang H, Liu F, Wei Y, Dong J. Icariin Protects Hippocampal Neurons From Endoplasmic Reticulum Stress and NF-κB Mediated Apoptosis in Fetal Rat Hippocampal Neurons and Asthma Rats. Front Pharmacol 2020; 10:1660. [PMID: 32082160 PMCID: PMC7005524 DOI: 10.3389/fphar.2019.01660] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Accepted: 12/18/2019] [Indexed: 11/13/2022] Open
Abstract
Icariin is a main component of the Chinese medicinal plant Epimedium brevicornu Maxim, exhibits potent activity against inflammatory diseases. Our previous data demonstrated the valid bioactivity of icariin on mitigating rodent asthma. Endoplasmic reticulum (ER) stress and nuclear factor-κB (NF-κB) pathway were involved in the pathogenesis of asthma. However, it remains poorly defined that whether icariin could inhibit ER stress and NF-κB mediated apoptosis in asthma and further influence the central neural system. Herein, we investigated the effects of icariin on primary cultured fetal rat hippocampal neurons and OVALPS-OVA induced asthma rat model. Asthma rat models were established by ovalbumin (OVA) and lipopolysaccharide (LPS) intraperitoneal injection and OVA inhalational challenge. Airway resistance was analyzed to evaluate lung function after last challenge and pathological changes were detected on lung tissues. Assessment of inflammatory cells counts in bronchoalveolar lavage fluids (BALF) were performed and ELISA was used to determine levels of interleukin (IL)-1β, tumor necrosis factor-α, IL-6, and interferon-γ in serum. Protein expression of BiP and IRE-1α, XBP-1s and phosphorylation-IκBα (p-IκBα), IκBα, and p65 as well as cytochrome c, caspase-3 (cleaved caspase-3), and caspase-9 (cleaved caspase-9) were tested by Western blot. We found that icariin could remarkably improve pulmonary function and reduce inflammatory cells in the lung, levels of inflammatory cytokines, and ER stress related proteins as well as NF-κB were prominently suppressed by icariin. Our results suggested that icariin had an inhibitory effect on airway inflammation and neuroprotective effect on ER stress and NF-κB mediated apoptosis in asthma rats and cultured fetal rat hippocampal neurons, which may provide new mechanistic insights into the asthma prevention and treatment of icariin.
Collapse
Affiliation(s)
- Jiaqi Liu
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China.,Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Lumei Liu
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China.,Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Jing Sun
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China.,Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Qingli Luo
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China.,Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Chen Yan
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China.,Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Hongying Zhang
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China.,Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Feng Liu
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China.,Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Ying Wei
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China.,Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Jingcheng Dong
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China.,Institutes of Integrative Medicine, Fudan University, Shanghai, China
| |
Collapse
|
13
|
Kalchiem-Dekel O, Yao X, Levine SJ. Meeting the Challenge of Identifying New Treatments for Type 2-Low Neutrophilic Asthma. Chest 2020; 157:26-33. [PMID: 31525357 PMCID: PMC6965689 DOI: 10.1016/j.chest.2019.08.2192] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 08/27/2019] [Accepted: 08/30/2019] [Indexed: 12/28/2022] Open
Key Words
- apo, apolipoprotein
- balf, bronchoalveolar lavage fluid
- bet, bromodomain and extraterminal
- cxcl, c-x-c motif chemokine ligand
- cxcr, c-x-c motif chemokine receptor
- dnazyme, deoxyribozyme
- g-csf, granulocyte-colony stimulating factor
- gm-csf, granulocyte/monocyte colony-stimulating factor
- hmsc, human mesenchymal stem cell
- ifn, interferon
- il, interleukin
- ilc, innate lymphoid cell
- lxa4, lipoxin a4
- netosis, neutrophil extracellular trap cell death
- nlrp, nucleotide-binding oligomerization domain, leucine-rich repeat, and pyrin domain-containing protein
- rorγt, retinoic acid-related orphan receptor γ, thymus specific
- tbet, t box expressed in t cells
- th1, th2, helper t cell type 1, type 2
- tnf, tumor necrosis factor
- saa, serum amyloid a
Collapse
Affiliation(s)
- Or Kalchiem-Dekel
- Laboratory of Asthma and Lung Inflammation, Pulmonary Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Xianglan Yao
- Laboratory of Asthma and Lung Inflammation, Pulmonary Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Stewart J Levine
- Laboratory of Asthma and Lung Inflammation, Pulmonary Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD.
| |
Collapse
|
14
|
de Groot LES, van de Pol MA, Fens N, Dierdorp BS, Dekker T, Kulik W, Majoor CJ, Hamann J, Sterk PJ, Lutter R. Corticosteroid Withdrawal-Induced Loss of Control in Mild to Moderate Asthma Is Independent of Classic Granulocyte Activation. Chest 2019; 157:16-25. [PMID: 31622588 DOI: 10.1016/j.chest.2019.09.027] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 09/03/2019] [Accepted: 09/23/2019] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Loss of asthma control and asthma exacerbations are associated with increased sputum eosinophil counts. However, whether eosinophils, or the also present neutrophils, actively contribute to the accompanying inflammation has not been extensively investigated. METHODS Twenty-three patients with mild to moderate asthma were included in a standardized prospective inhaled corticosteroid (ICS) withdrawal study; 22 of the patients experienced loss of asthma control. The study assessed various immune, inflammatory, and oxidative stress parameters, as well as markers of eosinophil and neutrophil activity, in exhaled breath condensate, plasma, and sputum collected at three phases (baseline, during loss of control, and following recovery). RESULTS Loss of asthma control was characterized by increased sputum eosinophils, whereas no differences were detected between the three phases for most inflammatory and oxidative stress responses. There were also no differences detected for markers of activated eosinophils (eosinophil cationic protein and bromotyrosine) and neutrophils (myeloperoxidase and chlorotyrosine). However, free eosinophilic granules and citrullinated histone H3, suggestive of eosinophil cytolysis and potentially eosinophil extracellular trap formation, were enhanced. Baseline blood eosinophils and changes in asymmetric dimethylarginine (an inhibitor of nitric oxide synthase) in plasma were found to correlate with the decrease in FEV1 percent predicted upon ICS withdrawal (both, rs = 0.46; P = .03). CONCLUSIONS The clinical effect in mild to moderate asthma upon interruption of ICS therapy is not related to the classic inflammatory activation of eosinophils and neutrophils. It may, however, reflect another pathway underlying the onset of loss of disease control and asthma exacerbations. TRIAL REGISTRY The Netherlands Trial Register; No.: NTR3316; URL: trialregister.nl/trial/3172.
Collapse
Affiliation(s)
- Linsey E S de Groot
- Department of Respiratory Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands; Department of Experimental Immunology (Amsterdam Infection & Immunity Institute), Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.
| | - Marianne A van de Pol
- Department of Respiratory Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Niki Fens
- Department of Respiratory Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Barbara S Dierdorp
- Department of Experimental Immunology (Amsterdam Infection & Immunity Institute), Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Tamara Dekker
- Department of Experimental Immunology (Amsterdam Infection & Immunity Institute), Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Wim Kulik
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Christof J Majoor
- Department of Respiratory Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Jörg Hamann
- Department of Experimental Immunology (Amsterdam Infection & Immunity Institute), Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Peter J Sterk
- Department of Respiratory Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - René Lutter
- Department of Respiratory Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands; Department of Experimental Immunology (Amsterdam Infection & Immunity Institute), Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
15
|
Adeli M, El-Shareif T, Hendaus MA. Asthma exacerbation related to viral infections: An up to date summary. J Family Med Prim Care 2019; 8:2753-2759. [PMID: 31681638 PMCID: PMC6820381 DOI: 10.4103/jfmpc.jfmpc_86_19] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 02/01/2019] [Accepted: 08/27/2019] [Indexed: 12/21/2022] Open
Abstract
Asthma exacerbation can be a major life threatening event. Viruses have been pinned as the cause behind the vast majority of these exacerbations. The purpose of this short review is to explore the mechanisms behind these exacerbations, focusing mostly on viral infections as triggers. We will also be discussing the phenotypes prone to asthma exacerbation, the pathophysiology of viral induced asthma and ventilation patterns of asthmatic lungs. This manuscript will assist primary care physicians in delineating the proper pathophysiology of the disease as well as the management.
Collapse
Affiliation(s)
- Mehdi Adeli
- Department of Pediatrics, Section of Academic General Pediatrics, Sidra Medicine, Doha, Qatar.,Department of Pediatrics, Hamad General Corporation, Doha, Qatar.,Department of Clinical Pediatrics, Weill- Cornell Medicine, Doha, Qatar
| | | | - Mohamed A Hendaus
- Department of Pediatrics, Section of Academic General Pediatrics, Sidra Medicine, Doha, Qatar.,Department of Pediatrics, Hamad General Corporation, Doha, Qatar.,Department of Clinical Pediatrics, Weill- Cornell Medicine, Doha, Qatar
| |
Collapse
|
16
|
Affiliation(s)
- Amanda L Tatler
- 1 University of Nottingham School of Medicine Nottingham, United Kingdom
| |
Collapse
|
17
|
Otsuka H, Otsuka K, Matsune S, Okubo K. Nasal Symptoms Reduction and Decreased Neutrophilia in Japanese Cedar Pollinosis With Prophylactic Treatment With a Combination of Montelukast, Fexofenadine, and Fluticasone Nasal Spray. Am J Rhinol Allergy 2019; 33:369-377. [PMID: 30821167 DOI: 10.1177/1945892419831924] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Background and Objective We reported neutrophil-associated tissue damage in cedar pollinosis subjects with refractory nasal symptoms prior to pollinosis season. Because the leukotriene receptor antagonist, montelukast, can inhibit neutrophil recruitment and activation, we investigated its effects on symptom relief and nasal neutrophilia in pollinosis subjects in the preseason. Methods In the pollinosis preseason, symptomatic (PreSyP, n = 149) and asymptomatic subjects (PreAsP, n = 145) were prophylactically treated, and in season symptomatic subjects (InSyP, n = 134) were treated. Individuals were assigned to 1 of 2 treatment protocols: administration of cetirizine and fluticasone nasal spray (Cet-Flu) or montelukast, fexofenadine, and fluticasone nasal spray (Mo-Fex-Flu). Differences in symptom relief and inflammatory cell infiltration in nasal swabs were investigated. Results In pollen season, 59% of PreSyP subjects given Cet-Flu and 88% of those treated with Mo-Fex-Flu had none or mild symptoms ( P < .00001). In PreAsP subjects in season, 71% of Cet-Flu and 98% of Mo-Fex-Flu recipients had none to mild symptoms ( P < .0000001). The proportions of subjects in the PreSyP group with nasal swabs with neutrophils 1+ to 3+ before and after treatment by Mo-Fex-Flu were 59% and 18%, respectively ( P < .0001), and in PreAsyP, subjects with neutrophils 2+ to 3+ were 17% and 5%, respectively ( P = .034). In PreSyP, a significant reduction in the percentage of subjects with mast cells >1+ was seen following both Cet-Flu ( P = .027) and Mo-Fex-Flu ( P = .0014) treatments. Conclusion In PreSyP and PreAsP subjects, treatments with Mo-Fex-Flu were more effective than Cet-Flu to reduce nasal symptom scores. These effects were associated with reduction in the number of neutrophils and mast cells in nasal swabs.
Collapse
Affiliation(s)
- Hirokuni Otsuka
- 1 Otsuka ENT Clinic, Yokohama, Kanagawa, Japan.,2 Department of Otorhinolaryngology, Nippon Medical School, Musashikosugi Hospital, Kawasaki, Kanagawa, Japan
| | - Kuninori Otsuka
- 3 Department of Otorhinolaryngology, Shin-Yurigaoka General Hospital, Kawasaki, Kanagawa, Japan
| | - Shoji Matsune
- 2 Department of Otorhinolaryngology, Nippon Medical School, Musashikosugi Hospital, Kawasaki, Kanagawa, Japan
| | - Kimihiro Okubo
- 4 Department of Otorhinolaryngology and Head and Neck Surgery, Nippon Medical School, Tokyo, Japan
| |
Collapse
|
18
|
Targeting Cytokines as Evolving Treatment Strategies in Chronic Inflammatory Airway Diseases. Int J Mol Sci 2018; 19:ijms19113402. [PMID: 30380761 PMCID: PMC6275012 DOI: 10.3390/ijms19113402] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 10/25/2018] [Accepted: 10/27/2018] [Indexed: 12/13/2022] Open
Abstract
Cytokines are key players in the initiation and propagation of inflammation in chronic inflammatory airway diseases such as chronic obstructive pulmonary disease (COPD), bronchiectasis and allergic asthma. This makes them attractive targets for specific novel anti-inflammatory treatment strategies. Recently, both interleukin-1 (IL-1) and IL-6 have been associated with negative health outcomes, mortality and a pro-inflammatory phenotype in COPD. IL-6 in COPD was shown to correlate negatively with lung function, and IL-1beta was induced by cigarette smoke in the bronchial epithelium, causing airway inflammation. Furthermore, IL-8 has been shown to be a pro-inflammatory marker in bronchiectasis, COPD and allergic asthma. Clinical trials using specific cytokine blockade therapies are currently emerging and have contributed to reduce exacerbations and steroid use in COPD. Here, we present a review of the current understanding of the roles of cytokines in the pathophysiology of chronic inflammatory airway diseases. Furthermore, outcomes of clinical trials in cytokine blockade as novel treatment strategies for selected patient populations with those diseases will be discussed.
Collapse
|
19
|
Patel KK, Webley WC. Respiratory Chlamydia Infection Induce Release of Hepoxilin A 3 and Histamine Production by Airway Neutrophils. Front Immunol 2018; 9:2357. [PMID: 30374355 PMCID: PMC6196283 DOI: 10.3389/fimmu.2018.02357] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 09/24/2018] [Indexed: 11/13/2022] Open
Abstract
Background: Hepoxilins are biologically active metabolites of arachidonic acid that are formed through the 12-lipoxygenase pathway. Hepoxilin A3 is now known to be an important regulator of mucosal inflammation in response to infection by bacterial pathogens and was recently identified as a potent neutrophil chemoattractant in the intestinal mucosa. Our goal in this study was to determine if airway infection with Chlamydia in a murine model of allergic airway disease (AAD) induces hepoxilin secretion along with airway neutrophilia. Methods: We utilized an AAD adult Balb/c mouse model to evaluate airway pathology and immune response by assaying bronchoalveolar lavage (BAL) fluid cytokine, cellularity, histidine decarboxylase (HDC) as well as histamine released in response to in-vivo chlamydial antigen stimulation of purified airway neutrophils. Hepoxilin A3 production was determined by Western blot identification of 12-lipoxygenase precursor (12-LO). Results: Chlamydial infection induced increased production of IL-2, IL-12, TNF-α, and IFN-γ in BAL fluid compared to uninfected animals. Chlamydia-infected mice responded with robust airway neutrophil infiltration and upon induction of AAD increased their production of IL-4, IL-5, and IL-13 by >3 fold compared to unsensitized groups. In addition, 12-LO mRNA was upregulated in infected, but not in uninfected AAD mice, suggesting the production of hepoxilin A3. mRNA expression of HDC was induced only in neutrophils from the airways of Chlamydia-infected mice, but was not seen in AAD only or uninfected controls. When purified neutrophils from infected animals were challenged with chlamydial antigen in vitro there was significant histamine release. Conclusions: Our data confirms the production and release of hepoxilin A3 in the murine airways concomitant with airway neutrophilia in response to chlamydial infection. We further confirmed that Chlamydia provokes the production and release of histamine by these neutrophils. These findings suggest that neutrophils, provoked by Chlamydia infection can synthesize and release histamine, thereby contributing directly to airway inflammation.
Collapse
Affiliation(s)
- Katir K Patel
- Department of Microbiology, University of Massachusetts Amherst, Amherst, MA, United States
| | - Wilmore C Webley
- Department of Microbiology, University of Massachusetts Amherst, Amherst, MA, United States
| |
Collapse
|
20
|
Snelgrove RJ, Patel DF, Patel T, Lloyd CM. The enigmatic role of the neutrophil in asthma: Friend, foe or indifferent? Clin Exp Allergy 2018; 48:1275-1285. [PMID: 29900603 DOI: 10.1111/cea.13191] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Whilst severe asthma has classically been categorized as a predominantly Th2-driven pathology, there has in recent years been a paradigm shift with the realization that it is a heterogeneous disease that may manifest with quite disparate underlying inflammatory and remodelling profiles. A subset of asthmatics, particularly those with a severe, corticosteroid refractory disease, present with a prominent neutrophilic component. Given the potential of neutrophils to impart extensive tissue damage and promote inflammation, it has been anticipated that these cells are closely implicated in the underlying pathophysiology of severe asthma. However, uncertainty persists as to why the neutrophil is present in the asthmatic lung and what precisely it is doing there, with evidence supporting its role as a protagonist of pathology being primarily circumstantial. Furthermore, our view of the neutrophil as a primitive, indiscriminate killer has evolved with the realization that neutrophils can exhibit a marked anti-inflammatory, pro-resolving and wound healing capacity. We suggest that the neutrophil likely exhibits pleiotropic and potentially conflicting roles in defining asthma pathophysiology-some almost certainly detrimental and some potentially beneficial-with context, timing and location all critical confounders. Accordingly, indiscriminate blockade of neutrophils with a broad sword approach is unlikely to be the answer, but rather we should first seek to understand their complex and multifaceted roles in the disease state and then target them with the same subtleties and specificity that they themselves exhibit.
Collapse
Affiliation(s)
- R J Snelgrove
- Inflammation Repair and Development Section, National Heart and Lung Institute, Imperial College London, London, UK
| | - D F Patel
- Inflammation Repair and Development Section, National Heart and Lung Institute, Imperial College London, London, UK
| | - T Patel
- Inflammation Repair and Development Section, National Heart and Lung Institute, Imperial College London, London, UK
| | - C M Lloyd
- Inflammation Repair and Development Section, National Heart and Lung Institute, Imperial College London, London, UK
| |
Collapse
|
21
|
Gelfand EW. Importance of the leukotriene B4-BLT1 and LTB4-BLT2 pathways in asthma. Semin Immunol 2018; 33:44-51. [PMID: 29042028 DOI: 10.1016/j.smim.2017.08.005] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 06/26/2017] [Accepted: 08/06/2017] [Indexed: 12/01/2022]
Abstract
For several decades, the leukotriene pathways have been implicated as playing a central role in the pathophysiology of asthma. The presence and elevation of numerous metabolites in the blood, sputum, and bronchoalveolar lavage fluid from asthmatics or experimental animals adds support to this notion. However, targeting of the leukotriene pathways has had, in general, limited success. The single exception in asthma therapy has been targeting of the cysteinyl leukotriene receptor 1, which clinically has proven effective but only in certain clinical situations. Interference with 5-lipoxygenase has had limited success, in part due to adverse drug effects. The importance of the LTB4-BLT1 pathway in asthma pathogenesis has extensive experimental support and findings, albeit limited, from clinical samples. The LTB4-BLT1 pathway was shown to be important as a neutrophil chemoattractant. Despite observations made more than two decades ago, the LTB4-BLT1 pathway has only recently been shown to exhibit important activities on subsets of T lymphocytes, both as a chemoattractant and on lymphocyte activation, as well as on dendritic cells, the major antigen presenting cell in the lung. The role of BLT2 in asthma remains unclear. Targeting of components of the LTB4-BLT1 pathway offers innovative therapeutic opportunities especially in patients with asthma that remain uncontrolled despite intensive corticosteroid treatment.
Collapse
Affiliation(s)
- Erwin W Gelfand
- Division of Cell Biology, Department of Pediatrics, National Jewish Health, 1400 Jackson Street, Denver, CO 80206, United States.
| |
Collapse
|
22
|
Holden KA, Roland D, Welsh KG, Gaillard EA. Comparison of Blood Eosinophil Numbers Between Acute Asthma and Stable Disease in Children with Preschool Wheeze. PEDIATRIC ALLERGY IMMUNOLOGY AND PULMONOLOGY 2017; 30:210-217. [DOI: 10.1089/ped.2017.0802] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Karl A. Holden
- National Institute for Health Research Leicester Respiratory Biomedical Research Centre, Department of Infection Immunity and Inflammation, Institute for Lung Health, University of Leicester, Leicester, United Kingdom
- Children's Hospital, University Hospitals of Leicester NHS Trust, Leicester, United Kingdom
| | - Damian Roland
- SAPPHIRE Group, Department of Health Sciences, University of Leicester, Leicester, United Kingdom
- Paediatric Emergency Medicine Leicester Academic (PEMLA) Group, Leicester Royal Infirmary, Leicester, United Kingdom
| | - Kathryn G. Welsh
- National Institute for Health Research Leicester Respiratory Biomedical Research Centre, Department of Infection Immunity and Inflammation, Institute for Lung Health, University of Leicester, Leicester, United Kingdom
- Children's Hospital, University Hospitals of Leicester NHS Trust, Leicester, United Kingdom
| | - Erol A. Gaillard
- National Institute for Health Research Leicester Respiratory Biomedical Research Centre, Department of Infection Immunity and Inflammation, Institute for Lung Health, University of Leicester, Leicester, United Kingdom
- Children's Hospital, University Hospitals of Leicester NHS Trust, Leicester, United Kingdom
| |
Collapse
|
23
|
Ray A, Kolls JK. Neutrophilic Inflammation in Asthma and Association with Disease Severity. Trends Immunol 2017; 38:942-954. [PMID: 28784414 PMCID: PMC5711587 DOI: 10.1016/j.it.2017.07.003] [Citation(s) in RCA: 284] [Impact Index Per Article: 40.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 06/28/2017] [Accepted: 07/11/2017] [Indexed: 01/22/2023]
Abstract
Asthma is a chronic inflammatory disorder of the airways. While the local infiltration of eosinophils and mast cells, and their role in the disease have long been recognized, neutrophil infiltration has also been assessed in many clinical studies. In these studies, airway neutrophilia was associated with asthma severity. Importantly, neutrophilia also correlates with asthma that is refractory to corticosteroids, the mainstay of asthma treatment. However, it is now increasingly recognized that neutrophils are a heterogeneous population, and a more precise phenotyping of these cells may help delineate different subtypes of asthma. Here, we review current knowledge of the role of neutrophils in asthma and highlight future avenues of research in this field.
Collapse
Affiliation(s)
- Anuradha Ray
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; University of Pittsburgh Asthma Institute@UPMC/UPSOM, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| | - Jay K Kolls
- Richard King Mellon Institute for Pediatric Research, Children's Hospital of Pittsburgh at University of Pittsburgh Medical Center/University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
24
|
Role of S100A9 in the development of neutrophilic inflammation in asthmatics and in a murine model. Clin Immunol 2017; 183:158-166. [PMID: 28847516 DOI: 10.1016/j.clim.2017.08.013] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 07/11/2017] [Accepted: 08/25/2017] [Indexed: 10/19/2022]
Abstract
S100A9 is an endogenous danger signal that promotes and exacerbates the neutrophilic inflammatory response. To investigate the role of S100A9 in neutrophilic asthma, S100A9 levels were measured in sputum from 101 steroid-naïve asthmatics using an ELISA kit and the levels were significantly correlated with percentages of neutrophils in sputum. Intranasal administration of recombinant S100A9 markedly increased neutrophil numbers at 8h and 24h later with concomitant elevation of IL-1β, IL-17, and IFN-γ levels. Treatment with an anti-S100A9 antibody restored the increased numbers of neutrophils and the increased airway resistance in OVA/CFA mice toward the levels of sham-treated mice. Concomitantly, the S100A9 and neutrophil elastase double positive cells were markedly reduced with attenuation of IL-1β, IL-17, and IFN-γ levels by the treatment with the anti-S100A9 antibody. Our data support a role of S100A9 to initiate and amplify the neutrophilic inflammation in asthma, possibly via inducing IL-1β, IL-17 and IFN-γ.
Collapse
|
25
|
Cokic SM, Hoet P, Godderis L, Wiemann M, Asbach C, Reichl FX, De Munck J, Van Meerbeek B, Van Landuyt KL. Cytotoxic effects of composite dust on human bronchial epithelial cells. Dent Mater 2016; 32:1482-1491. [PMID: 27726967 DOI: 10.1016/j.dental.2016.09.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 05/21/2016] [Accepted: 09/03/2016] [Indexed: 01/27/2023]
Abstract
INTRODUCTION Previous research revealed that during routine abrasive procedures like polishing, shaping or removing of composites, high amounts of respirable dust particles (<5μm) including nano-sized particles (<100nm) may be released. OBJECTIVE To determine the cytotoxic potential of composite dust particles on bronchial epithelium cells. METHODS Composite dust of five commercial composites (one nano-composite, two nano-hybrid and two hybrid composites) was generated following a clinically relevant protocol. Polymerized composite samples were cut with a rough diamond bur (grain size 100μm, speed 200,000rpm) and all composite dust was collected in a sterile chamber. Human bronchial epithelial cells (16HBE14o-) were exposed to serially diluted suspensions of composite dust in cell culture medium at concentrations between 1.1 and 3.3mg/ml. After 24h-exposure, cell viability and membrane integrity were assessed by the WST-1 and the LDH leakage assay, respectively. The release of IL-1β and IL-6 was evaluated. The composite dust particles were characterized by transmission electron microscopy and by dynamic and electrophoretic light scattering. RESULTS Neither membrane damage nor release of IL-1β was detected over the complete concentration range. However, metabolic activity gradually declined for concentrations higher than 660μg/ml and the release of IL-6 was reduced when cells were exposed to the highest concentrations of dust. SIGNIFICANCE Composite dust prepared by conventional dental abrasion methods only affected human bronchial epithelial cells in very high concentrations.
Collapse
Affiliation(s)
- Stevan M Cokic
- KU Leuven BIOMAT, Department of Oral Health Sciences, University of Leuven & Dentistry University Hospitals Leuven, Kapucijnenvoer 7, 3000 Leuven, Belgium
| | - Peter Hoet
- Centre for Environmental and Health, Department of Public Health and Primary Care, KU Leuven (University of Leuven), Kapucijnenvoer 35, 3000 Leuven, Belgium
| | - Lode Godderis
- Centre for Environmental and Health, Department of Public Health and Primary Care, KU Leuven (University of Leuven), Kapucijnenvoer 35, 3000 Leuven, Belgium; IDEWE, External Service for Prevention and Protection at Work, Heverlee, Belgium
| | - Martin Wiemann
- IBE R&D gGmbH, Institute for Lung Health, Mendelstraße 11, 48149 Münster, Germany
| | - Christof Asbach
- Institute of Energy and Environmental Technology (IUTA) e.V., Bliersheimer Straße 60, 47229 Duisburg, Germany
| | - Franz X Reichl
- Walther-Straub-Institute of Pharmacology and Toxicology, Ludwig-Maximilians-University of Munich, Nussbaumstraße 26, 80336 Munich, Germany
| | - Jan De Munck
- KU Leuven BIOMAT, Department of Oral Health Sciences, University of Leuven & Dentistry University Hospitals Leuven, Kapucijnenvoer 7, 3000 Leuven, Belgium
| | - Bart Van Meerbeek
- KU Leuven BIOMAT, Department of Oral Health Sciences, University of Leuven & Dentistry University Hospitals Leuven, Kapucijnenvoer 7, 3000 Leuven, Belgium
| | - Kirsten L Van Landuyt
- KU Leuven BIOMAT, Department of Oral Health Sciences, University of Leuven & Dentistry University Hospitals Leuven, Kapucijnenvoer 7, 3000 Leuven, Belgium.
| |
Collapse
|
26
|
Neutrophil recruitment by allergens contribute to allergic sensitization and allergic inflammation. Curr Opin Allergy Clin Immunol 2016; 16:45-50. [PMID: 26694038 DOI: 10.1097/aci.0000000000000231] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
PURPOSE OF REVIEW To discuss the presence and role of neutrophils in asthma and allergic diseases, and outline the importance of pollen and cat dander-induced innate neutrophil recruitment in induction of allergic sensitization and allergic inflammation. RECENT FINDINGS Uncontrolled asthma is associated with elevated numbers of neutrophils, and levels of neutrophil-attracting chemokine IL-8 and IL-17 in bronchoalveolar lavage fluids. These parameters negatively correlate with lung function. Pollen allergens and cat dander recruit neutrophils to the airways in a toll-like receptor 4, myeloid differentiation protein-2, and chemokine (C-X-C motif) receptor (CXCR) 2-dependent manner. Repeated recruitment of activated neutrophils by these allergens facilitates allergic sensitization and airway inflammation. Inhibition of neutrophil recruitment with CXCR2 inhibitor, disruption of toll-like receptor 4, or small interfering RNA against myeloid differentiation protein-2 also inhibits allergic inflammation. The molecular mechanisms by which innately recruited neutrophils contribute to shifting the airway inflammatory response induced by allergens from neutrophilic to an eosinophilic-allergic is an area of active research. SUMMARY Recent studies have revealed that neutrophil recruitment is important in the development of allergic sensitization and inflammation. Inhibition of neutrophils recruitment may be a strategy to control allergic inflammation.
Collapse
|
27
|
Guo Q, Li H, Liu J, Xu L, Yang L, Sun Z, Zhou B. Tunicamycin aggravates endoplasmic reticulum stress and airway inflammation via PERK-ATF4-CHOP signaling in a murine model of neutrophilic asthma. J Asthma 2016; 54:125-133. [PMID: 27383524 DOI: 10.1080/02770903.2016.1205085] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
INTRODUCTION Endoplasmic reticulum (ER) stress has been considered to be an important regulator of airway inflammation in the pathogenesis of bronchial asthma, but the mechanism of ER stress involved in neutrophilic asthma remain not fully understood. METHODS Tunicamycin is a mixture of homologous nucleoside antibiotics, which is used to induce ER stress. In the present study, Tunicamycin was administered to mouse bronchial epithelial cells and a neutrophilic asthma model (OVALPS-OVA mice), and ER stress indicators and inflammatory cytokines were measured by Western blotting and Elisa. RESULTS Tunicamycin not only induced ER stress in mouse bronchial epithelial cells, but also increased expression of inflammation indicators such as IL-6, IL-8, and TNF-α via PERK-ATF4-CHOP signaling. Additionally, the phosphorylation of PERK and the expression levels of ATF4 and CHOP proteins and inflammatory cytokines (IL-6, IL-8 and TNF-α) were elevated in the lung tissue of OVALPS-OVA mice. Administering tunicamycin further increased protein expression levels of ER stress indicators and inflammatory cytokines, and resulted in more severe asthma phenotypes in OVALPS-OVA mice, suggesting that PERK-ATF4-CHOP signaling is associated with airway inflammation in neutrophil-dominant asthma. CONCLUSIONS These data support the emerging notion that regulation of ER stress could be strongly associated with the development of neutrophilic asthma.
Collapse
Affiliation(s)
- Qinyue Guo
- a Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University , Xi'an , Shaanxi , China
| | - Huixia Li
- b Key Laboratory of Environment and Genes Related to Diseases, Medical School of Xi'an Jiaotong University , Xi'an , Shaanxi , China
| | - Jiali Liu
- b Key Laboratory of Environment and Genes Related to Diseases, Medical School of Xi'an Jiaotong University , Xi'an , Shaanxi , China
| | - Lin Xu
- c Department of Endocrinology , the Affiliated Guangren Hospital of Xi'an Jiaotong University , Xi'an , Shaanxi , China
| | - Lan Yang
- d Department of Respiratory , The First Affiliated Hospital of Xi'an Jiaotong University , Xi'an , Shaanxi , China
| | - Zhongmin Sun
- d Department of Respiratory , The First Affiliated Hospital of Xi'an Jiaotong University , Xi'an , Shaanxi , China
| | - Bo Zhou
- d Department of Respiratory , The First Affiliated Hospital of Xi'an Jiaotong University , Xi'an , Shaanxi , China
| |
Collapse
|
28
|
Abstract
Noneosinophilic airway inflammation occurs in approximately 50% of patients with asthma. It is subdivided into neutrophilic or paucigranulocytic inflammation, although the proportion of each subtype is uncertain because of variable cut-off points used to define neutrophilia. This article reviews the evidence for noneosinophilic inflammation being a target for therapy in asthma and assesses clinical trials of licensed drugs, novel small molecules and biologics agents in noneosinophilic inflammation. Current symptoms, rate of exacerbations and decline in lung function are generally less in noneosinophilic asthma than eosinophilic asthma. Noneosinophilic inflammation is associated with corticosteroid insensitivity. Neutrophil activation in the airways and systemic inflammation is reported in neutrophilic asthma. Neutrophilia in asthma may be due to corticosteroids, associated chronic pulmonary infection, altered airway microbiome or delayed neutrophil apoptosis. The cause of poorly controlled noneosinophilic asthma may differ between patients and involve several mechanism including neutrophilic inflammation, T helper 2 (Th2)-low or other subtypes of airway inflammation or corticosteroid insensitivity as well as noninflammatory pathways such as airway hyperreactivity and remodelling. Smoking cessation in asthmatic smokers and removal from exposure to some occupational agents reduces neutrophilic inflammation. Preliminary studies of 'off-label' use of licensed drugs suggest that macrolides show efficacy in nonsmokers with noneosinophilic severe asthma and statins, low-dose theophylline and peroxisome proliferator-activated receptor gamma (PPARγ) agonists may benefit asthmatic smokers with noneosinophilic inflammation. Novel small molecules targeting neutrophilic inflammation, such as chemokine (CXC) receptor 2 (CXCR2) antagonists reduce neutrophils, but do not improve clinical outcomes in studies to date. Inhaled phosphodiesterase (PDE)4 inhibitors, dual PDE3 and PDE4 inhibitors, p38MAPK (mitogen-activated protein kinase) inhibitors, tyrosine kinase inhibitors and PI (phosphoinositide) 3kinase inhibitors are under development and these compounds may be of benefit in noneosinophilic inflammation. The results of clinical trials of biological agents targeting mediators associated with noneosinophilic inflammation, such as interleukin (IL)-17 and tumor necrosis factor (TNF)-α are disappointing. Greater understanding of the mechanisms of noneosinophilic inflammation in asthma should lead to improved therapies.
Collapse
Affiliation(s)
- Neil C Thomson
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow G12 0YN, UK
| |
Collapse
|
29
|
Abstract
Leukocyte infiltration of the lung is a characteristic feature of allergic asthma and it is thought that these cells are selectively recruited by chemokines. Extensive research has confirmed that chemokine receptors are expressed on the main cell types involved in asthma, including eosinophils, T helper type 2 cells, mast cells and even neutrophils. Moreover, animal experiments have outlined a functional role for these receptors and their ligands. Chemokines signal via seven-transmembrane spanning G-protein coupled receptors, which are favored targets of the pharmaceutical industry due to the possibility of designing small-molecule inhibitors. In fact, this family represents the first group of cytokines where small-molecule inhibitors have been designed. However, the search for efficient antagonists of chemokine/chemokine receptors has not been easy; a particular feature of the chemokine system is the number of molecules with overlapping functions and binding specificities, as well as the difficulty in reconciling the in vivo biologic functional validation of chemokines in rodent models with the development of antagonists which bind the human receptor, because of the lack of species cross-reactivity. The chemokines and their receptors that are active during allergic reactions are reviewed. Possible points of interaction that may be a target for development of new therapies, as well as the progress to date in developing inhibitors of key chemokine receptors for asthma therapy, are also discussed.
Collapse
Affiliation(s)
- Clare M Lloyd
- Leukocyte Biology Section, NHLI, Faculty of Medicine, Imperial College, London, England
| | | |
Collapse
|
30
|
The anti-inflammatory and pro-resolution effects of aspirin-triggered RvD1 (AT-RvD1) on peripheral blood mononuclear cells from patients with severe asthma. Int Immunopharmacol 2016; 35:142-148. [PMID: 27044027 DOI: 10.1016/j.intimp.2016.03.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 03/03/2016] [Accepted: 03/11/2016] [Indexed: 12/19/2022]
Abstract
Asthma is an inflammatory disease that is characterized by a predominance of eosinophils and/or neutrophils in the airways. In the resolution of inflammation, lipid mediators such as resolvin D1 (RvD1) and its epimer aspirin-triggered RvD1 (AT-RvD1) are produced and demonstrate anti-inflammatory and pro-resolution effects. In experimental models such as airway allergic inflammation induced by ovalbumin in mice, RvD1 and AT-RvD1 alleviate some of the most important phenotypes of asthma. Here, we demonstrated the effects of AT-RvD1 on peripheral blood mononuclear cells (PBMCs) from healthy individuals and patients with severe asthma stimulated with lipopolysaccharide (LPS) or Dermatophagoides pteronyssinus (DM). AT-RvD1 (100nM) reduced the concentration of TNF-α in PBMCs from healthy individuals and patients with severe asthma stimulated with LPS or DM. In addition, AT-RvD1 lowered the production of IL-10 only in PBMCs from patients with severe asthma stimulated with LPS. These effects were associated in part with decreasing NF-κB activation. Moreover, AT-RvD1 significantly increased phagocytosis of apoptotic neutrophils by monocytes from patients with severe asthma. In conclusion, AT-RvD1 demonstrated both anti-inflammatory and pro-resolution effects in PBMCs from patients with severe asthma and could become in the future an alternative treatment for asthma.
Collapse
|
31
|
Drug Signature-based Finding of Additional Clinical Use of LC28-0126 for Neutrophilic Bronchial Asthma. Sci Rep 2015; 5:17784. [PMID: 26626943 PMCID: PMC4667219 DOI: 10.1038/srep17784] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 11/03/2015] [Indexed: 12/20/2022] Open
Abstract
In recent decades, global pharmaceutical companies have suffered from an R&D innovation gap between the increased cost of a new drug’s development and the decreased number of approvals. Drug repositioning offers another opportunity to fill the gap because the approved drugs have a known safety profile for human use, allowing for a reduction of the overall cost of drug development by eliminating rigorous safety assessment. In this study, we compared the transcriptional profile of LC28-0126, an investigational drug for acute myocardial infarction (MI) at clinical trial, obtained from healthy male subjects with molecular activity profiles in the Connectivity Map. We identified dyphilline, an FDA-approved drug for bronchial asthma, as a top ranked connection with LC28-0126. Subsequently, we demonstrated that LC28-0126 effectively ameliorates the pathophysiology of neutrophilic bronchial asthma in OVALPS-OVA mice accompanied with a reduction of inflammatory cell counts in the bronchoalveolar lavage fluid (BALF), inhibition of the release of proinflammatory cytokines, relief of airway hyperactivity, and improvement of histopathological changes in the lung. Taken together, we suggest that LC28-0126 could be a potential therapeutic for bronchial asthma. In addition, this study demonstrated the potential general utility of computational drug repositioning using clinical profiles of the investigational drug.
Collapse
|
32
|
Thrombin-induced IL-8/CXCL8 release is mediated by CK2, MSK1, and NF-κB pathways in human lung epithelial cells. Eur J Pharmacol 2015; 767:135-43. [PMID: 26463037 DOI: 10.1016/j.ejphar.2015.10.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 10/07/2015] [Accepted: 10/08/2015] [Indexed: 12/15/2022]
Abstract
Airway inflammation plays a major role in the pathophysiology of lung inflammatory diseases such as asthma. Thrombin, a serine protease, is known to mediate central functions in thrombosis and hemostasis and also plays a critical role in lung inflammation via producing chemokine release including interleukin (IL)-8/CXCL8. Our previous studies showed that c-Src- and Rac-dependent nuclear factor (NF)-κB signaling pathways participate in thrombin-induced IL-8/CXCL8 release in human lung epithelial cells. In this study, we further investigated the role of casein kinase 2 (CK2)/mitogen stress-activated protein kinase 1 (MSK1)-dependent p65 phosphorylation in thrombin-induced NF-κB activation and IL-8/CXCL8 release. Thrombin-induced IL-8/CXCL8 release was inhibited by CK2 inhibitors (apigenin and tetrabromobenzotriazole, TBB), small interfering RNA of CK2β (CK2β siRNA), and MSK1 siRNA. Treatment of cells with thrombin caused increases in CK2β phosphorylation at Ser209, which was inhibited by a protein kinase C α (PKCα) inhibitor (Ro-32-0432). Thrombin-induced MSK1 phosphorylation at Ser581 and Akt phosphorylation at Ser473 were inhibited by apigenin. Moreover, the thrombin-induced increase in IL-8/CXCL8 release was attenuated by p65 siRNA. Stimulation of cells with thrombin resulted in an increase in p65 phosphorylation at Ser276, which was inhibited by apigenin and MSK1 siRNA. Thrombin-induced κB-luciferase activity was also inhibited by apigenin and MSK1 siRNA. Taken together, these results show that thrombin activates the PKCα/CK2/MSK1 signaling pathways, which in turn initiates p65 phosphorylation and NF-κB activation, and ultimately induces IL-8/CXCL8 release in human lung epithelial cells.
Collapse
|
33
|
Analysis of a Panel of 48 Cytokines in BAL Fluids Specifically Identifies IL-8 Levels as the Only Cytokine that Distinguishes Controlled Asthma from Uncontrolled Asthma, and Correlates Inversely with FEV1. PLoS One 2015; 10:e0126035. [PMID: 26011707 PMCID: PMC4444276 DOI: 10.1371/journal.pone.0126035] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Accepted: 03/27/2015] [Indexed: 01/09/2023] Open
Abstract
We sought to identify cells and cytokines in bronchoalveolar lavage (BAL) fluids that distinguish asthma from healthy control subjects and those that distinguish controlled asthma from uncontrolled asthma. Following informed consent, 36 human subjects were recruited for this study. These included 11 healthy control subjects, 15 subjects with controlled asthma with FEV1≥80% predicted and 10 subjects with uncontrolled asthma with FEV1 <80% predicted. BAL fluid was obtained from all subjects. The numbers of different cell types and the levels of 48 cytokines were measured in these fluids. Compared to healthy control subjects, patients with asthma had significantly more percentages of eosinophils and neutrophils, IL-1RA, IL-1α, IL-1β, IL-2Rα, IL-5, IL-6, IL-7, IL-8, G-CSF, GROα (CXCL1), MIP-1β (CCL4), MIG (CXCL9), RANTES (CCL5) and TRAIL in their BAL fluids. The only inflammatory markers that distinguished controlled asthma from uncontrolled asthma were neutrophil percentage and IL-8 levels, and both were inversely correlated with FEV1. We examined whether grouping asthma subjects on the basis of BAL eosinophil % or neutrophil % could identify specific cytokine profiles. The only differences between neutrophil-normal asthma (neutrophil≤2.4%) and neutrophil-high asthma (neutrophils%>2.4%) were a higher BAL fluid IL-8 levels, and a lower FEV1 in the latter group. By contrast, compared to eosinophil-normal asthma (eosinophils≤0.3%), eosinophil-high asthma (eosinophils>0.3%) had higher levels of IL-5, IL-13, IL-16, and PDGF-bb, but same neutrophil percentage, IL-8, and FEV1. Our results identify neutrophils and IL-8 are the only inflammatory components in BAL fluids that distinguish controlled asthma from uncontrolled asthma, and both correlate inversely with FEV1.
Collapse
|
34
|
AT-RvD1 modulates CCL-2 and CXCL-8 production and NF-κB, STAT-6, SOCS1, and SOCS3 expression on bronchial epithelial cells stimulated with IL-4. BIOMED RESEARCH INTERNATIONAL 2015; 2015:178369. [PMID: 26075216 PMCID: PMC4436447 DOI: 10.1155/2015/178369] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 09/22/2014] [Accepted: 09/23/2014] [Indexed: 01/22/2023]
Abstract
Bronchial epithelial cells represent the first line of defense against microorganisms and allergens in the airways and play an important role in chronic inflammatory processes such as asthma. In an experimental model, both RvD1 and AT-RvD1, lipid mediators of inflammation resolution, ameliorated some of the most important phenotypes of experimental asthma. Here, we extend these results and demonstrate the effect of AT-RvD1 on bronchial epithelial cells (BEAS-2B) stimulated with IL-4. AT-RvD1 (100 nM) decreased both CCL2 and CXCL-8 production, in part by decreasing STAT6 and NF-κB pathways. Furthermore, the effects of AT-RvD1 were ALX/FRP2 receptor dependent, as the antagonist of this receptor (BOC1) reversed the inhibition of these chemokines by AT-RvD1. In addition, AT-RvD1 decreased SOCS1 and increased SOCS3 expression, which play important roles in Th1 and Th17 modulation, respectively. In conclusion, AT-RvD1 demonstrated significant effects on the IL-4-induced activation of bronchial epithelial cells and consequently the potential to modulate neutrophilic and eosinophilic airway inflammation in asthma. Taken together, these findings identify AT-RvD1 as a potential proresolving therapeutic agent for allergic responses in the airways.
Collapse
|
35
|
Turkeli A, Yilmaz O, Taneli F, Horasan GD, Kanik ET, Kizilkaya M, Gozukara C, Yuksel H. IL-5, IL-8 and MMP -9 levels in exhaled breath condensate of atopic and nonatopic asthmatic children. Respir Med 2015; 109:680-8. [PMID: 25937050 DOI: 10.1016/j.rmed.2015.04.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 03/27/2015] [Accepted: 04/06/2015] [Indexed: 09/30/2022]
Abstract
RATIONALE Asthma is a heterogeneous disease, and a great majority of pediatric patients with asthma demonstrate atopic characteristics and develop a Th2 type cytokine response. Nonatopic asthma, on the other hand, is seen more rarely. METHODS In this study, levels of IL-5, IL-8 and MMP-9 were measured in exhaled breath condensate (EBC) of the subjects to demonstrate the extent of tissue damage as well as eosinophilic and neutrophilic inflammation in children with atopic and nonatopic asthma. A total of 37 children with atopic asthma and 37 children with nonatopic asthma were enrolled in the study. Patients who exhibited protease positive aeroallergen (House dust mite, mould mix, olea, grass mix) sensitivity in allergen skin prick test were included in the atopic asthma group. To evaluate the EBC, the fluid content of the breath was collected by having the patients exhale into an EBC device, after which the IL-5, IL-8 and MMP-9 levels were assayed using the ELISA method. RESULTS The atopic asthmatics exhibited significantly higher IL-5 levels in their EBC samples than the nonatopic asthmatics (0.271 [0.198-0.489] pg/ml and 0.198 [0.125-0.344] pg/ml, respectively, p = 0.04), while no significant differences were observed in the levels of IL-8 and MMP-9 in the EBC samples of the atopic and nonatopic asthmatics. CONCLUSIONS IL-5 levels, as a marker of eosinophilic inflammation, were demonstrated to be higher in the children with atopic asthma when compared to those with nonatopic asthma in EBC. The fact that no significant difference was apparent in the IL-8 levels between the groups suggests that it is the severity of the disease rather than the atopic state that plays an important role in IL-8 levels. Since no difference was recorded between the groups in terms of MMP-9 levels, lung damage in asthma sufferers seems to develop independent of atopia.
Collapse
Affiliation(s)
- Ahmet Turkeli
- Celal Bayar University Medical Faculty, Dept. of Pediatric Allergy and Pulmonology, Manisa, Turkey
| | - Ozge Yilmaz
- Celal Bayar University Medical Faculty, Dept. of Pediatric Allergy and Pulmonology, Manisa, Turkey
| | - Fatma Taneli
- Celal Bayar University Medical Faculty, Dept. of Biochemistry, Manisa, Turkey
| | - Gonul Dinc Horasan
- Celal Bayar University Medical Faculty, Dept. of Public Health, Manisa, Turkey
| | - Esra Toprak Kanik
- Celal Bayar University Medical Faculty, Dept. of Pediatric Allergy and Pulmonology, Manisa, Turkey
| | - Metehan Kizilkaya
- Celal Bayar University Medical Faculty, Dept. of Pediatrics, Manisa, Turkey
| | - Ceyhun Gozukara
- Celal Bayar University Medical Faculty, Dept. of Biochemistry, Manisa, Turkey
| | - Hasan Yuksel
- Celal Bayar University Medical Faculty, Dept. of Pediatric Allergy and Pulmonology, Manisa, Turkey.
| |
Collapse
|
36
|
Reliable quantitative score for grading chest X-ray using the dynamic of blood cell count in adult asthma. EGYPTIAN JOURNAL OF CHEST DISEASES AND TUBERCULOSIS 2015. [DOI: 10.1016/j.ejcdt.2014.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
37
|
Burrows KE, Dumont C, Thompson CL, Catley MC, Dixon KL, Marshall D. OX40 blockade inhibits house dust mite driven allergic lung inflammation in mice and in vitro allergic responses in humans. Eur J Immunol 2015; 45:1116-28. [PMID: 25545270 DOI: 10.1002/eji.201445163] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 11/18/2014] [Accepted: 12/19/2014] [Indexed: 12/21/2022]
Abstract
The costimulatory receptor OX40 is expressed on activated T cells and regulates T-cell responses. Here, we show the efficacy and mechanism of action of an OX40 blocking antibody using the chronic house dust mite (HDM) mouse model of lung inflammation and in vitro HDM stimulation of cells from HDM allergic human donors. We have demonstrated that OX40 blockade leads to a reduction in the number of eosinophils and neutrophils in the lavage fluid and lung tissue of HDM sensitized mice. This was accompanied by a decrease in activated and memory CD4(+) T cells in the lungs and further analysis revealed that both the Th2 and Th17 populations were inhibited. Improved lung function and decreased HDM-specific antibody responses were also noted. Significantly, efficacy was observed even when anti-OX40 treatment was delayed until after inflammation was established. OX40 blockade also inhibited the release of the Th2 cytokines IL-5 and IL-13 from cells isolated from HDM allergic human donors. Altogether, our data provide evidence of a role of the OX40/OX40L pathway in ongoing allergic lung inflammation and support clinical studies of a blocking OX40 antibody in Th2 high severe asthma patients.
Collapse
Affiliation(s)
- Katie E Burrows
- Immunology Therapeutic Area, UCB Pharma, Slough, Berkshire, UK
| | | | | | | | | | | |
Collapse
|
38
|
Liu M, Yokomizo T. The role of leukotrienes in allergic diseases. Allergol Int 2015; 64:17-26. [PMID: 25572555 DOI: 10.1016/j.alit.2014.09.001] [Citation(s) in RCA: 111] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 09/17/2014] [Accepted: 09/19/2014] [Indexed: 11/18/2022] Open
Abstract
Leukotrienes (LTs), both LTB4 and the cysteinyl LTs (CysLTs) LTC4, LTD4 and LTE4, are implicated in a wide variety of inflammatory disorders. These lipid mediators are generated from arachidonic acid via multistep enzymatic reactions through which arachidonic acid is liberated from membrane phospholipids through the action of phospholipase A2. LTB4 and CysLTs exert their biological effects by binding to cognate receptors, which belong to the G protein-coupled receptor superfamily. LTB4 is widely considered to be a potent chemoattractant for most subsets of leukocytes, whereas CysLTs are potent bronchoconstrictors that have effects on airway remodeling. LTs play a central role in the pathogenesis of asthma and many other inflammatory diseases. This review will provide an update on the synthesis, biological function, and relevance of LTs to the pathobiology of allergic diseases, and examine the current and future therapeutic prospects of LT modifiers.
Collapse
Affiliation(s)
- Min Liu
- Department of Biochemistry, Juntendo University School of Medicine, Tokyo, Japan; Department of Respiratory Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Takehiko Yokomizo
- Department of Biochemistry, Juntendo University School of Medicine, Tokyo, Japan.
| |
Collapse
|
39
|
Hou X, Wan H, Ai X, Shi Y, Ni Y, Tang W, Shi G. Histone deacetylase inhibitor regulates the balance of Th17/Treg in allergic asthma. CLINICAL RESPIRATORY JOURNAL 2014; 10:371-9. [PMID: 25307458 DOI: 10.1111/crj.12227] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Revised: 08/28/2014] [Accepted: 09/29/2014] [Indexed: 11/29/2022]
Abstract
BACKGROUND AND AIMS The aim of this study is to investigate the expression pattern of histone deacetylase 9 in peripheral blood of patients with allergic asthma and its regulatory effect on the balance of Th17/Treg cells involved in the pathogenesis of asthma. METHODS flap-Ub promoter-GFP-WRE vector was used to construct the Jurkat-HA-FOXP3 cell line. After histone deacetylase inhibitor-trichostatin A (TSA) treatment, FOXP3 and RORγt expression were detected by real-time-polymerase chain reaction (RT-PCR). BALB/c mice were randomly assigned to control group, TSA treatment and the asthma group. Serum Immunoglobulin E (IgE) was detected with enzyme-linked immunosorbent assay (ELISA), airway inflammation in lung tissue evaluated by haematoxylin/eosin staining, bronchoalveolar lavage fluid (BALF) cell number and differential counted, interleukin (IL)-17A and TGF-β concentrations in BALF measured with ELISA, and expression of RORγt and FOXP3 messenger RNA (mRNA)measured by RT-PCR. Forty-seven patients with asthma were recruited and assigned to intermittent, mild and moderate-severe group. GATA3, IL-4, histone deacetylases (HDAC) 9 mRNA expression level were measured by RT-PCR. RESULTS After TSA treatment, FOXP3 mRNA level was upregulated, while RORγt mRNA level was downregulated. FOXP3 protein level was also upregulated by TSA. In vivo, TSA treatment can inhibit IL-17 but promote transforming growth factor-beta production in the BALF of asthma mice, and inhibited the expression of Th17 cells and RORγt mRNA in lung; also can promote Foxp3 mRNA expression. GATA3, IL-4 mRNA expression levels were upregulated in patients with asthma than the healthy control. HDAC9 mRNA expression level was associated with the severity of disease. CONCLUSION The histone deacetylase inhibitor TSA can regulate the balance of Th17/Treg in asthma by regulating the activity of histone deacetylase.
Collapse
Affiliation(s)
- Xiaoxia Hou
- Department of Pulmonary Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huanying Wan
- Department of Pulmonary Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiangyan Ai
- Department of Pulmonary Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuheng Shi
- Department of Pulmonary Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yingmeng Ni
- Department of Pulmonary Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei Tang
- Department of Pulmonary Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guochao Shi
- Department of Pulmonary Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
40
|
Kim SR, Kim DI, Kim SH, Lee H, Lee KS, Cho SH, Lee YC. NLRP3 inflammasome activation by mitochondrial ROS in bronchial epithelial cells is required for allergic inflammation. Cell Death Dis 2014. [PMID: 25356867 DOI: 10.1038/cddis.2014.460.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Abnormality in mitochondria has been suggested to be associated with development of allergic airway disorders. In this study, to evaluate the relationship between mitochondrial reactive oxygen species (ROS) and NLRP3 inflammasome activation in allergic asthma, we used a newly developed mitochondrial ROS inhibitor, NecroX-5. NecroX-5 reduced the increase of mitochondrial ROS generation in airway inflammatory cells, as well as bronchial epithelial cells, NLRP3 inflammasome activation, the nuclear translocation of nuclear factor-κB, increased expression of various inflammatory mediators and pathophysiological features of allergic asthma in mice. Finally, blockade of IL-1β substantially reduced airway inflammation and hyperresponsiveness in the asthmatic mice. These findings suggest that mitochondrial ROS have a critical role in the pathogenesis of allergic airway inflammation through the modulation of NLRP3 inflammasome activation, providing a novel role of airway epithelial cells expressing NLRP3 inflammasome as an immune responder.
Collapse
Affiliation(s)
- S R Kim
- Department of Internal Medicine, Research Center for Pulmonary Disorders, Chonbuk National University Medical School, Research Institute of Clinical Medicine of Chonbuk National University - Biomedical Research Institute of Chonbuk National University Hospital, Deokjin-gu, Jeonju, South Korea
| | - D I Kim
- Department of Internal Medicine, Research Center for Pulmonary Disorders, Chonbuk National University Medical School, Research Institute of Clinical Medicine of Chonbuk National University - Biomedical Research Institute of Chonbuk National University Hospital, Deokjin-gu, Jeonju, South Korea
| | - S H Kim
- Department of Product Strategy and Development, LG Life Sciences Ltd, Seoul, Korea
| | - H Lee
- Department of Internal Medicine, Research Center for Pulmonary Disorders, Chonbuk National University Medical School, Research Institute of Clinical Medicine of Chonbuk National University - Biomedical Research Institute of Chonbuk National University Hospital, Deokjin-gu, Jeonju, South Korea
| | - K S Lee
- Department of Internal Medicine, Research Center for Pulmonary Disorders, Chonbuk National University Medical School, Research Institute of Clinical Medicine of Chonbuk National University - Biomedical Research Institute of Chonbuk National University Hospital, Deokjin-gu, Jeonju, South Korea
| | - S H Cho
- Division of Allergy-Immunology, Department of Medicine, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - Y C Lee
- Department of Internal Medicine, Research Center for Pulmonary Disorders, Chonbuk National University Medical School, Research Institute of Clinical Medicine of Chonbuk National University - Biomedical Research Institute of Chonbuk National University Hospital, Deokjin-gu, Jeonju, South Korea
| |
Collapse
|
41
|
NLRP3 inflammasome activation by mitochondrial ROS in bronchial epithelial cells is required for allergic inflammation. Cell Death Dis 2014; 5:e1498. [PMID: 25356867 PMCID: PMC4237270 DOI: 10.1038/cddis.2014.460] [Citation(s) in RCA: 148] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 09/17/2014] [Accepted: 09/18/2014] [Indexed: 12/14/2022]
Abstract
Abnormality in mitochondria has been suggested to be associated with development of allergic airway disorders. In this study, to evaluate the relationship between mitochondrial reactive oxygen species (ROS) and NLRP3 inflammasome activation in allergic asthma, we used a newly developed mitochondrial ROS inhibitor, NecroX-5. NecroX-5 reduced the increase of mitochondrial ROS generation in airway inflammatory cells, as well as bronchial epithelial cells, NLRP3 inflammasome activation, the nuclear translocation of nuclear factor-κB, increased expression of various inflammatory mediators and pathophysiological features of allergic asthma in mice. Finally, blockade of IL-1β substantially reduced airway inflammation and hyperresponsiveness in the asthmatic mice. These findings suggest that mitochondrial ROS have a critical role in the pathogenesis of allergic airway inflammation through the modulation of NLRP3 inflammasome activation, providing a novel role of airway epithelial cells expressing NLRP3 inflammasome as an immune responder.
Collapse
|
42
|
Lee TH, Song HJ, Park CS. Role of inflammasome activation in development and exacerbation of asthma. Asia Pac Allergy 2014; 4:187-96. [PMID: 25379478 PMCID: PMC4215437 DOI: 10.5415/apallergy.2014.4.4.187] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 10/03/2014] [Indexed: 12/13/2022] Open
Abstract
Human airways contact with pathogen-associated molecular patterns and danger-associated molecular patterns present in many environments. Asthmatic's airways may be more susceptible to these patterns and lead to inflammasome activation; however, the participation of inflammasome in the development and exacerbation of asthma is not fully understood and remains controversial. Asthma is a heterogeneous group composed of different airway inflammation patterns with different underlying immune mechanisms. One mechanism is neutrophilic airway inflammation based on the axis of inflammasome activation, interleukin (IL) 1β/IL-18 production, T helper 17 activation, IL-8/IL-6 overproduction, and neutrophilic inflammation. The role of inflammasome activation has been highlighted in experimental asthma models and some evidence of inflammasome activation has been recently demonstrated in human neutrophilic asthmatic airways. In addition to caspase-1 activation, proteinase 3 and other protease from activated neutrophils directly cleave pro-IL-1β and pro-IL-18 to IL-1β and IL-18, which contribute to the phenotype of subsequent adaptive immune responses without inflammasome activation. Data suggests that neutrophilics in asthmatic airways may have an additional effect in initiating inflammasome activation and amplifying immune responses. Among the mediators from neutrophils, S100A9 seems to be one candidate mediator to explain the action of neutrophils in amplifying the airway inflammation in concert with inflammasome.
Collapse
Affiliation(s)
- Tae-Hyeong Lee
- Department of Interdisciplinary Program in Biomedical Science Major, Soonchunhyang University Graduate School, Bucheon 420-767, Korea
| | - Hyun Ji Song
- Department of Interdisciplinary Program in Biomedical Science Major, Soonchunhyang University Graduate School, Bucheon 420-767, Korea
| | - Choon-Sik Park
- Genome Research Center for Allergy and Respiratory Disease, Division of Allergy and Respiratory Medicine, Soonchunhyang University Bucheon Hospital, Bucheon 420-767, Korea
| |
Collapse
|
43
|
Boivin R, Vargas A, Lefebvre-Lavoie J, Lauzon AM, Lavoie JP. Inhaled corticosteroids modulate the (+)insert smooth muscle myosin heavy chain in the equine asthmatic airways. Thorax 2014; 69:1113-9. [PMID: 25205586 DOI: 10.1136/thoraxjnl-2014-205572] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
RATIONALE Overexpression of the (+)insert smooth muscle myosin heavy chain (SMMHC) isoform could contribute to airway bronchospasm by increasing the velocity of contraction. Whether the (+)insert isoform is present in the small airways and its expression is reversible in asthma are unknown. OBJECTIVES To determine the anatomical location and the expression kinetics of the (+)insert SMMHC isoform in airways of horses with heaves and to evaluate its modulation in response to disease status. METHODS We evaluated the (+)insert SMMHC isoform in the airways of horses with heaves during disease exacerbation and remission, and in controls. The expression kinetics of the SMMHC (+)insert was then assessed at multiple time points in two studies: first, in horses with heaves treated for a 1-year period with antigen avoidance alone, inhaled corticosteroids alone or both; second, in horses with heaves before and after a 30-day natural antigen exposure. Gene expression analysis was assessed by quantitative PCR and protein expression was confirmed by targeted mass spectrometry. MEASUREMENTS AND MAIN RESULTS The (+)insert SMMHC isoform was significantly increased in central and peripheral airways, but not in the trachea of heaves-affected horses in clinical exacerbation when compared horses with heaves in remission and controls. Both corticosteroid administration and antigen avoidance led to a significant reduction of the (+)insert expression in the airways. The (+)insert SMMHC isoform was not significantly increased in airways after 1 month of antigenic re-exposure. CONCLUSIONS The (+)insert SMMHC expression is increased throughout the bronchial tree in horses with heaves and reversible by corticosteroids administration and antigen avoidance.
Collapse
Affiliation(s)
- Roxane Boivin
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Montreal, St-Hyacinthe, Quebec, Canada
| | - Amandine Vargas
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Montreal, St-Hyacinthe, Quebec, Canada
| | - Josiane Lefebvre-Lavoie
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Montreal, St-Hyacinthe, Quebec, Canada
| | - Anne-Marie Lauzon
- Meakins-Christie Laboratory, Department of Medicine, McGill University, Montreal, Quebec, Canada
| | - Jean-Pierre Lavoie
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Montreal, St-Hyacinthe, Quebec, Canada
| |
Collapse
|
44
|
Russo RC, Garcia CC, Teixeira MM, Amaral FA. The CXCL8/IL-8 chemokine family and its receptors in inflammatory diseases. Expert Rev Clin Immunol 2014; 10:593-619. [DOI: 10.1586/1744666x.2014.894886] [Citation(s) in RCA: 317] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
45
|
Liu R, Bai J, Xu G, Xuan L, Zhang T, Meng A, Hou Q. Multi-allergen challenge stimulates steriod-resistant airway inflammation via NF-κB-mediated IL-8 expression. Inflammation 2014; 36:845-54. [PMID: 23456484 DOI: 10.1007/s10753-013-9611-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Neutrophilic airway inflammation associated with multiple allergens has been related to steroid-resistant asthma. However, most animal models use only one allergen, which cannot simulate asthma closely as seen in patients. To determine the mechanism of inflammatory process involved in this severe condition, BALB/c mice were repetitively challenged with the pooled extract of dust mite, ragweed, and Aspergillus species (DRA). We found that DRA increased interleukin (IL)-10 and TGF-β levels and neutrophil recruitment in bronchial alveolar lavage fluid. We also found that although dexamethasone suppressed the release of these two cytokines, mast cells recruitment, and mucus hypersecretion, it actually increased neutrophil infiltration and the level of keratinocyte-derived chemokine (mKC), a functional homolog of human IL-8. Treatment of human lung alveolar A549 cells with Der p1, an extract of house dust mite Dermatophagoides pteronyssinus, increased the expression of IL-8 and activity of NF-κB. The elevated IL-8 level was suppressed by BAY11-7082, a selective NF-κB inhibitor, but not by dexamethasone. These results suggest that increased IL-8 (mKC) levels may be involved in steroid-resistant neutrophilic airway inflammation through an NF-κB-dependent pathway.
Collapse
Affiliation(s)
- Renping Liu
- Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | | | | | | | | | | | | |
Collapse
|
46
|
Huang C, Xie M, He X, Gao H. Activity of sputum p38 MAPK is correlated with airway inflammation and reduced FEV1 in COPD patients. Med Sci Monit 2013; 19:1229-35. [PMID: 24382347 PMCID: PMC3890402 DOI: 10.12659/msm.889880] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Accepted: 10/24/2013] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Inflammation and remodeling of the small airways are major determinants of the progression and severity of COPD. The present study explored the correlation between sputum p38 mitogen-activated protein kinase (MAPK) activity and airway inflammation and reduction of lung function in the patients with chronic obstructive pulmonary disease (COPD). MATERIAL AND METHODS Sputum samples were collected from 48 COPD patients and 12 healthy persons. Sputum p38 MAPK activity was measured by Western blotting and sputum levels of CXCL8 and neutrophil, and lung function was measured. The correlation between p38MAPK activity and airway inflammation and reduction of lung function was analyzed. RESULTS Our results showed the significantly increased expression of phospho-p38 MAPK and CXCL8 in the sputum samples of the COPD patients. The p38 MAPK activity was remarkably correlated with the CXCL8 level and neutrophils infiltration in the airway, and the decline of lung function in the COPD patients. CONCLUSIONS These findings suggest the pivotal role of p38 MAPK in the airway inflammation of COPD patients. We propose p38 MAPK as a potential target for the treatment of COPD.
Collapse
|
47
|
Lin CH, Nai PL, Bien MY, Yu CC, Chen BC. Thrombin-Induced CCAAT/Enhancer-Binding Protein β Activation and IL-8/CXCL8 Expression via MEKK1, ERK, and p90 Ribosomal S6 Kinase 1 in Lung Epithelial Cells. THE JOURNAL OF IMMUNOLOGY 2013; 192:338-48. [DOI: 10.4049/jimmunol.1203323] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
48
|
Kim SR, Kim DI, Kang MR, Lee KS, Park SY, Jeong JS, Lee YC. Endoplasmic reticulum stress influences bronchial asthma pathogenesis by modulating nuclear factor κB activation. J Allergy Clin Immunol 2013; 132:1397-408. [PMID: 24161747 DOI: 10.1016/j.jaci.2013.08.041] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2012] [Revised: 08/06/2013] [Accepted: 08/13/2013] [Indexed: 11/16/2022]
Abstract
BACKGROUND Despite many studies on endoplasmic reticulum (ER) stress in patients with various inflammatory diseases, there is scarce information on ER stress in patients with bronchial asthma. OBJECTIVE In this study we aimed to elucidate the role of ER stress in the pathogenesis of bronchial asthma. METHODS Using mice sensitized with ovalbumin (OVA) and LPS and challenged with OVA (OVA(LPS)-OVA mice), as well as mice sensitized and challenged with OVA (OVA-OVA mice), we investigated whether ER stress is involved in the pathogenesis of bronchial asthma. Moreover, we also determined the levels of ER stress markers in blood and bronchoalveolar lavage fluid from asthmatic patients. RESULTS The OVA(LPS)-OVA mice showed that the expression of ER stress markers and the protein levels of unfolded protein response-related markers in lung tissue were significantly increased after OVA challenge. Moreover, we found that ER stress markers in PBMCs and bronchoalveolar lavage fluid from human asthmatic patients were dramatically increased compared with those from healthy control subjects. In OVA(LPS)-OVA mice 4-phenylbutyric acid (4-PBA), a chemical chaperone, significantly reduced the increases in ER stress, nuclear translocation of nuclear factor κB, inflammatory cytokine levels, dendritic cell infiltration, Toll-like receptor 4 expression, airway inflammation, and bronchial hyperresponsiveness, whereas it further enhanced the increase in IL-10 levels. Additionally, the established asthmatic features of OVA-OVA mice were substantially attenuated by 4-PBA administered after completion of OVA challenge. CONCLUSION These results indicate that ER stress might be implicated in the pathogenesis of bronchial asthma at least in part through modulation of nuclear factor κB activation.
Collapse
Affiliation(s)
- So Ri Kim
- Department of Internal Medicine, Research Center for Pulmonary Disorders, Chonbuk National University Medical School, Research Institute of Clinical Medicine of Chonbuk National University-Biomedical Research Institute of Chonbuk National University Hospital, Jeonju, Korea
| | | | | | | | | | | | | |
Collapse
|
49
|
Fogli LK, Sundrud MS, Goel S, Bajwa S, Jensen K, Derudder E, Sun A, Coffre M, Uyttenhove C, Van Snick J, Schmidt-Supprian M, Rao A, Grunig G, Durbin J, Casola S, Casola SS, Rajewsky K, Koralov SB. T cell-derived IL-17 mediates epithelial changes in the airway and drives pulmonary neutrophilia. THE JOURNAL OF IMMUNOLOGY 2013; 191:3100-11. [PMID: 23966625 DOI: 10.4049/jimmunol.1301360] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Th17 cells are a proinflammatory subset of effector T cells that have been implicated in the pathogenesis of asthma. Their production of the cytokine IL-17 is known to induce local recruitment of neutrophils, but the direct impact of IL-17 on the lung epithelium is poorly understood. In this study, we describe a novel mouse model of spontaneous IL-17-driven lung inflammation that exhibits many similarities to asthma in humans. We have found that STAT3 hyperactivity in T lymphocytes causes an expansion of Th17 cells, which home preferentially to the lungs. IL-17 secretion then leads to neutrophil infiltration and lung epithelial changes, in turn leading to a chronic inflammatory state with increased mucus production and decreased lung function. We used this model to investigate the effects of IL-17 activity on airway epithelium and identified CXCL5 and MIP-2 as important factors in neutrophil recruitment. The neutralization of IL-17 greatly reduces pulmonary neutrophilia, underscoring a key role for IL-17 in promoting chronic airway inflammation. These findings emphasize the role of IL-17 in mediating neutrophil-driven pulmonary inflammation and highlight a new mouse model that may be used for the development of novel therapies targeting Th17 cells in asthma and other chronic pulmonary diseases.
Collapse
Affiliation(s)
- Laura K Fogli
- Department of Pathology, New York University School of Medicine, New York, NY 10016, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Guo YL, Huang H, Zeng DX, Zhao JP, Fang HJ, Lavoie JP. Interleukin (IL)-4 induces production of cytokine-induced neutrophil chemoattractants (CINCs) and intercellular adhesion molecule (ICAM)-1 in lungs of asthmatic rats. ACTA ACUST UNITED AC 2013; 33:470-478. [PMID: 23904363 DOI: 10.1007/s11596-013-1144-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Revised: 05/15/2013] [Indexed: 12/31/2022]
Abstract
The present study aimed to examine the effect of interleukin (IL)-4 on neutrophil chemotaxis in airway inflammation in asthmatic rats and the possible mechanism. Male Wistar rats were intranasally instilled with recombinant rat (rr) IL-4 (rrIL-4) at different doses [2, 4 or 8 μg/animal, dissolved in 200 μL normal saline (NS)] or rrIL-4 at 4 μg/animal (dissolved in 200 μL NS). NS (200 μL) and LPS (6 mg/kg/animal, dissolved in 200 μL NS) were intranasally given respectively in the negative and positive control groups. Moreover, the asthmatic lung inflammation was induced in rats which were then intranasally treated with rrIL-4 (4 μg/animal) or LPS (6 mg/kg/animal). The normal rats treated with different doses of rrIL-4 and those asthmatic rats were sacrificed 6 h later. And animals instilled with rrIL-4 at 4 μg were sacrificed 6, 12 or 24 h later. The bronchoalveolar lavage fluid (BALF) and lungs were harvested for detection of leukocyte counts by Wright-Giemsa staining and lung histopathology by haematoxylin-eosin (HE) staining. The levels of cytokine-induced neutrophil chemoattractant (CINC)-1 and intercellular adhesion molecule (ICAM)-1 in BALF were determined by ELISA. Real-time PCR was used to measure the mRNA expression of CINCs (CINC-1, CINC-2α, CINC-2β, CINC-3) and ICAM-1 in lung tissues. The results showed that the intranasal instillation of IL-4 did not induce a recruitment of neutrophils in BALF in rats. However, IL-4 could increase the CINC-1 level in BALF in a dose-dependent manner at 6 h. But the mRNA expression levels of CINC-1, CINC-2α, CINC-2β, CINC-3 were not significantly increased in lungs of IL-4-treated rats relative to NS negative control group. Moreover, IL-4 was found to augment the mRNA expression of ICAM-1 in lungs and the ICAM-1 level in BALF at 6 h. However, the increase in CINC-1 and ICAM-1 levels in BALF of IL-4-treated asthmatic rats was not significantly different from that in untreated asthmatic rats. These findings indicate that IL-4 does not directly recruit neutrophils in the rat lungs, but it may contribute to airway neutrophilia through up-regulation of CINC-1 and ICAM-1.
Collapse
Affiliation(s)
- Ya-Li Guo
- Department of Respiratory Diseases and Critical Care Medicine, Tongji Hospital, Tonji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Department of Respiratory Diseases and Critical Care Medicine, Henan Provincial People's Hospital, Zhengzhou, 450003, China
| | - Hong Huang
- Department of Respiratory Diseases and Critical Care Medicine, Tongji Hospital, Tonji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Da-Xiong Zeng
- Department of Respiratory Medicine, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Jian-Ping Zhao
- Department of Respiratory Diseases and Critical Care Medicine, Tongji Hospital, Tonji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Hui-Juan Fang
- Department of Respiratory Diseases and Critical Care Medicine, Tongji Hospital, Tonji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jean-Pierre Lavoie
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, J2S 7C6, Canada
| |
Collapse
|