1
|
Rashwan ME, Amer MAS, Elshemey WM, Elfiky AA. Nonhuman primates as valuable models for mpox drug and vaccine discovery. Expert Opin Drug Discov 2025:1-9. [PMID: 40178341 DOI: 10.1080/17460441.2025.2489473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 04/02/2025] [Indexed: 04/05/2025]
Abstract
INTRODUCTION In recent months, monkeypox (mpox) virus (MPXV) infections has grown to be a major worldwide concern. Cynomolgus monkeys, rhesus macaques, marmosets, and baboons are the nonhuman primate (NHP) models that provide the much needed means for developing new therapies against MPXV due to their genetic proximity to humans. AREA COVERED In this review, the authors discuss epidemiology, transmission, clinical presentation, and the use of NHP in studying the treatment of MPXV over the past two decades on Google Scholar. NHP models have been widely used to evaluate the efficacy of antiviral drugs and antibodies, providing important information regarding immune responses and disease. NHPs continue to be an important mainstay in preclinical testing, enabling the optimization of the efficacy and safety of drugs, antibodies, and vaccines to accelerate the development of effective MPXV treatments for humans. EXPERT OPINION The intravenous forms of medications like cidofovir, brincidofovir, and Vaccinia Immune Globulin (VIG) constitute the basis of MPXV therapy. Additionally, antibodies such as HAI, PN, and CF assess the efficacy of smallpox vaccination against MPXV in primates. This would help both the development of diagnostic tools and the optimization of vaccine strategies. Moreover, the similarities between MPXV and vaccinia or variola can play a role in developing targeted antiviral treatment methods.
Collapse
Affiliation(s)
- Mahmoud E Rashwan
- Physics Department, Faculty of Science, Sohag University, Sohag, Egypt
| | | | - Wael M Elshemey
- Physics Department, Faculty of Science, Islamic University in Madinah, Madinah, Saudi Arabia
| | - Abdo A Elfiky
- Biophysics Department, Faculty of Science, Cairo University, Giza, Egypt
| |
Collapse
|
2
|
Arroyo R, Kingma PS. Surfactant protein D and bronchopulmonary dysplasia: a new way to approach an old problem. Respir Res 2021; 22:141. [PMID: 33964929 PMCID: PMC8105703 DOI: 10.1186/s12931-021-01738-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 05/03/2021] [Indexed: 02/07/2023] Open
Abstract
Surfactant protein D (SP-D) is a collectin protein synthesized by alveolar type II cells in the lungs. SP-D participates in the innate immune defense of the lungs by helping to clear infectious pathogens and modulating the immune response. SP-D has shown an anti-inflammatory role by down-regulating the release of pro-inflammatory mediators in different signaling pathways such as the TLR4, decreasing the recruitment of inflammatory cells to the lung, and modulating the oxidative metabolism in the lungs. Recombinant human SP-D (rhSP-D) has been successfully produced mimicking the structure and functions of native SP-D. Several in vitro and in vivo experiments using different animal models have shown that treatment with rhSP-D reduces the lung inflammation originated by different insults, and that rhSP-D could be a potential treatment for bronchopulmonary dysplasia (BPD), a rare disease for which there is no effective therapy up to date. BPD is a complex disease in preterm infants whose incidence increases with decreasing gestational age at birth. Lung inflammation, which is caused by different prenatal and postnatal factors like infections, lung hyperoxia and mechanical ventilation, among others, is the key player in BPD. Exacerbated inflammation causes lung tissue injury that results in a deficient gas exchange in the lungs of preterm infants and frequently leads to long-term chronic lung dysfunction during childhood and adulthood. In addition, low SP-D levels and activity in the first days of life in preterm infants have been correlated with a worse pulmonary outcome in BPD. Thus, SP-D mediated functions in the innate immune response could be critical aspects of the pathogenesis in BPD and SP-D could inhibit lung tissue injury in this preterm population. Therefore, administration of rhSP-D has been proposed as promising therapy that could prevent BPD.
Collapse
Affiliation(s)
- Raquel Arroyo
- Division of Neonatology and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave. ML7029, Cincinnati, OH, 45229-3039, USA
| | - Paul S Kingma
- Division of Neonatology and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave. ML7029, Cincinnati, OH, 45229-3039, USA. .,Airway Therapeutics Inc, Cincinnati, OH, 45249, USA. .,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA.
| |
Collapse
|
3
|
Widowski H, Reynaert NL, Ophelders DRMG, Hütten MC, Nikkels PGJ, Severens-Rijvers CAH, Cleutjens JPM, Kemp MW, Newnham JP, Saito M, Usuda H, Payne MS, Jobe AH, Kramer BW, Delhaas T, Wolfs TGAM. Sequential Exposure to Antenatal Microbial Triggers Attenuates Alveolar Growth and Pulmonary Vascular Development and Impacts Pulmonary Epithelial Stem/Progenitor Cells. Front Med (Lausanne) 2021; 8:614239. [PMID: 33693012 PMCID: PMC7937719 DOI: 10.3389/fmed.2021.614239] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 02/02/2021] [Indexed: 01/01/2023] Open
Abstract
Perinatal inflammatory stress is strongly associated with adverse pulmonary outcomes after preterm birth. Antenatal infections are an essential perinatal stress factor and contribute to preterm delivery, induction of lung inflammation and injury, pre-disposing preterm infants to bronchopulmonary dysplasia. Considering the polymicrobial nature of antenatal infection, which was reported to result in diverse effects and outcomes in preterm lungs, the aim was to examine the consequences of sequential inflammatory stimuli on endogenous epithelial stem/progenitor cells and vascular maturation, which are crucial drivers of lung development. Therefore, a translational ovine model of antenatal infection/inflammation with consecutive exposures to chronic and acute stimuli was used. Ovine fetuses were exposed intra-amniotically to Ureaplasma parvum 42 days (chronic stimulus) and/or to lipopolysaccharide 2 or 7 days (acute stimulus) prior to preterm delivery at 125 days of gestation. Pulmonary inflammation, endogenous epithelial stem cell populations, vascular modulators and morphology were investigated in preterm lungs. Pre-exposure to UP attenuated neutrophil infiltration in 7d LPS-exposed lungs and prevented reduction of SOX-9 expression and increased SP-B expression, which could indicate protective responses induced by re-exposure. Sequential exposures did not markedly impact stem/progenitors of the proximal airways (P63+ basal cells) compared to single exposure to LPS. In contrast, the alveolar size was increased solely in the UP+7d LPS group. In line, the most pronounced reduction of AEC2 and proliferating cells (Ki67+) was detected in these sequentially UP + 7d LPS-exposed lambs. A similar sensitization effect of UP pre-exposure was reflected by the vessel density and expression of vascular markers VEGFR-2 and Ang-1 that were significantly reduced after UP exposure prior to 2d LPS, when compared to UP and LPS exposure alone. Strikingly, while morphological changes of alveoli and vessels were seen after sequential microbial exposure, improved lung function was observed in UP, 7d LPS, and UP+7d LPS-exposed lambs. In conclusion, although sequential exposures did not markedly further impact epithelial stem/progenitor cell populations, re-exposure to an inflammatory stimulus resulted in disturbed alveolarization and abnormal pulmonary vascular development. Whether these negative effects on lung development can be rescued by the potentially protective responses observed, should be examined at later time points.
Collapse
Affiliation(s)
- Helene Widowski
- Department of Pediatrics, Maastricht University Medical Center, Maastricht, Netherlands.,Department of BioMedical Engineering, Maastricht University Medical Center, Maastricht, Netherlands.,GROW School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, Netherlands
| | - Niki L Reynaert
- Department of Respiratory Medicine, Maastricht University, Maastricht, Netherlands.,NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, Netherlands
| | - Daan R M G Ophelders
- Department of Pediatrics, Maastricht University Medical Center, Maastricht, Netherlands.,GROW School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, Netherlands
| | - Matthias C Hütten
- Neonatology, Pediatrics Department, Faculty of Health, Medicine and Life Sciences, Maastricht University Medical Center, Maastricht, Netherlands.,University Children's Hospital Würzburg, University of Würzburg, Würzburg, Germany
| | - Peter G J Nikkels
- Department of Pathology, University Medical Center Utrecht, Utrecht, Netherlands
| | | | - Jack P M Cleutjens
- Department of Pathology, Maastricht University Medical Center, Maastricht, Netherlands.,CARIM School for Cardiovascular Diseases, Maastricht University Medical Center, Maastricht, Netherlands
| | - Matthew W Kemp
- Division of Obstetrics and Gynecology, The University of Western Australia, Crawley, WA, Australia
| | - John P Newnham
- Division of Obstetrics and Gynecology, The University of Western Australia, Crawley, WA, Australia
| | - Masatoshi Saito
- Division of Obstetrics and Gynecology, The University of Western Australia, Crawley, WA, Australia.,Tohoku University Centre for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, Japan
| | - Haruo Usuda
- Division of Obstetrics and Gynecology, The University of Western Australia, Crawley, WA, Australia.,Tohoku University Centre for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, Japan
| | - Matthew S Payne
- Division of Obstetrics and Gynecology, The University of Western Australia, Crawley, WA, Australia
| | - Alan H Jobe
- Division of Obstetrics and Gynecology, The University of Western Australia, Crawley, WA, Australia.,Perinatal Institute Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Boris W Kramer
- Department of Pediatrics, Maastricht University Medical Center, Maastricht, Netherlands.,GROW School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, Netherlands.,School for Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Tammo Delhaas
- Department of BioMedical Engineering, Maastricht University Medical Center, Maastricht, Netherlands.,CARIM School for Cardiovascular Diseases, Maastricht University Medical Center, Maastricht, Netherlands
| | - Tim G A M Wolfs
- Department of Pediatrics, Maastricht University Medical Center, Maastricht, Netherlands.,GROW School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, Netherlands
| |
Collapse
|
4
|
Awasthi S, Rahman N, Rui B, Kumar G, Awasthi V, Breshears M, Kosanke S. Lung and general health effects of Toll-like receptor-4 (TLR4)-interacting SPA4 peptide. BMC Pulm Med 2020; 20:179. [PMID: 32576172 PMCID: PMC7310322 DOI: 10.1186/s12890-020-01187-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 05/13/2020] [Indexed: 11/25/2022] Open
Abstract
Background A surfactant protein-A-derived peptide, which we call SPA4 peptide (amino acids: GDFRYSDGTPVNYTNWYRGE), alleviates lung infection and inflammation. This study investigated the effects of intratracheally administered SPA4 peptide on systemic, lung, and health parameters in an outbred mouse strain, and in an intratracheal lipopolysaccharide (LPS) challenge model. Methods The outbred CD-1 mice were intratracheally administered with incremental doses of SPA4 peptide (0.625–10 μg/g body weight) once every 24 h, for 3 days. Mice left untreated and those treated with vehicle were included as controls. Mice were euthanized after 24 h of last administration of SPA4 peptide. In order to assess the biological activity of SPA4 peptide, C57BL6 mice were intratracheally challenged with 5 μg LPS/g body weight and treated with 50 μg SPA4 peptide via intratracheal route 1 h post LPS-challenge. Mice were euthanized after 4 h of LPS challenge. Signs of sickness and body weights were regularly monitored. At the time of necropsy, blood and major organs were harvested. Blood gas and electrolytes, serum biochemical profiles and SPA4 peptide-specific immunoglobulin G (IgG) antibody levels, and common lung injury markers (levels of total protein, albumin, and lactate, lactate dehydrogenase activity, and lung wet/dry weight ratios) were determined. Lung, liver, spleen, kidney, heart, and intestine were examined histologically. Differences in measured parameters were analyzed among study groups by analysis of variance test. Results The results demonstrated no signs of sickness or changes in body weight over 3 days of treatment with various doses of SPA4 peptide. It did not induce any major toxicity or IgG antibody response to SPA4 peptide. The SPA4 peptide treatment also did not affect blood gas, electrolytes, or serum biochemistry. There was no evidence of injury to the tissues and organs. However, the SPA4 peptide suppressed the LPS-induced lung inflammation. Conclusions These findings provide an initial toxicity profile of SPA4 peptide. Intratracheal administration of escalating doses of SPA4 peptide does not induce any significant toxicity at tissue and organ levels. However, treatment with a dose of 50 μg SPA4 peptide, comparable to 2.5 μg/g body weight, alleviates LPS-induced lung inflammation.
Collapse
Affiliation(s)
- Shanjana Awasthi
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, 1110 N. Stonewall Avenue, Oklahoma City, OK, 73117, USA.
| | - Negar Rahman
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, 1110 N. Stonewall Avenue, Oklahoma City, OK, 73117, USA
| | - Bin Rui
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, 1110 N. Stonewall Avenue, Oklahoma City, OK, 73117, USA
| | - Gaurav Kumar
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, 1110 N. Stonewall Avenue, Oklahoma City, OK, 73117, USA
| | - Vibhudutta Awasthi
- Department of Pharmaceutical Sciences, and Research Imaging Facility, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73117, USA
| | - Melanie Breshears
- Department of Veterinary Pathobiology, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Stanley Kosanke
- Division of Comparative Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| |
Collapse
|
5
|
Dendritic cell-based immunization induces Coccidioides Ag2/PRA-specific immune response. Vaccine 2019; 37:1685-1691. [PMID: 30795939 DOI: 10.1016/j.vaccine.2019.01.034] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 12/08/2018] [Accepted: 01/08/2019] [Indexed: 12/12/2022]
Abstract
Valley Fever, or coccidioidomycosis, is caused by a soil-borne, highly virulent fungal pathogen, Coccidioides spp. Infection with Coccidioides can be life-threatening. Since an effective treatment is not available and the T cell-mediated immune response is protective, vaccine development is of interest. In this study, a primary dendritic cell (DC)-vaccine was evaluated for its ability to stimulate Coccidioides antigen-specific immune response in an extremely susceptible BALB/c mouse model. The DC-vaccine (Ag2-DC) was prepared by non-virally transfecting the primary bone marrow-derived DCs with a plasmid DNA encoding Ag2/PRA (protective epitope of Coccidioides). Mice were intranasally immunized with Ag2-DC on days 2 and 10. Immunized mice were necropsied on days 8, 32, and 44. Major organs and blood samples were harvested. The most common indicators of injury (protein, lactate, and albumin), Ag/PRA-specific cytokine-secreting cells, and IgG and its isotypes were determined by biochemical and immunologic assays, respectively. No signs of sickness were noted. Similarly, no significant changes were observed in the levels of total lung protein, lactate, and albumin, in immunized mice compared with healthy control mice. Interferon (IFN-γ), and interleukin (IL)-4 and IL-17 cytokine-secreting cells were observed in lung and lymph nodes upon Ag2-DC immunization. Our results showed that the levels of serum IgG and its isotypes were increased in Ag2-DC-immunized mice. This report provides evidence of DC immunization-stimulated Ag2/PRA-specific immune responses.
Collapse
|
6
|
Awasthi S, Singh B, Ramani V, Xie J, Kosanke S. TLR4-interacting SPA4 peptide improves host defense and alleviates tissue injury in a mouse model of Pseudomonas aeruginosa lung infection. PLoS One 2019; 14:e0210979. [PMID: 30689633 PMCID: PMC6349318 DOI: 10.1371/journal.pone.0210979] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 01/04/2019] [Indexed: 11/18/2022] Open
Abstract
Interaction between surfactant protein-A (SP-A) and toll-like receptor (TLR)4 plays a critical role in host defense. In this work, we studied the host defense function of SPA4 peptide (amino acids GDFRYSDGTPVNYTNWYRGE), derived from the TLR4-interacting region of SP-A, against Pseudomonas aeruginosa. We determined the binding of SPA4 peptide to live bacteria, and its direct antibacterial activity against P. aeruginosa. Pro-phagocytic and anti-inflammatory effects were investigated in JAWS II dendritic cells and primary alveolar macrophages. The biological relevance of SPA4 peptide was evaluated in a mouse model of acute lung infection induced by intratracheal challenge with P. aeruginosa. Our results demonstrate that the SPA4 peptide does not interact with or kill P. aeruginosa when cultured outside the host. The SPA4 peptide treatment induces the uptake and localization of bacteria in the phagolysosomes of immune cells. At the same time, the secreted amounts of TNF-α are significantly reduced in cell-free supernatants of SPA4 peptide-treated cells. In cells overexpressing TLR4, the TLR4-induced phagocytic response is maintained, but the levels of TLR4-stimulated TNF-α are reduced. Furthermore, our results demonstrate that the therapeutic administration of SPA4 peptide reduces bacterial burden, inflammatory cytokines and chemokines, intracellular signaling, and lactate levels, and alleviates lung edema and tissue damage in P. aeruginosa-infected mice. Together, our results suggest that the treatment with SPA4 peptide can help control the bacterial burden, inflammation, and tissue injury in a P. aeruginosa lung infection model.
Collapse
Affiliation(s)
- Shanjana Awasthi
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center (OUHSC), Oklahoma City, Oklahoma, United States of America
- * E-mail:
| | - Bhupinder Singh
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center (OUHSC), Oklahoma City, Oklahoma, United States of America
| | - Vijay Ramani
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center (OUHSC), Oklahoma City, Oklahoma, United States of America
| | - Jun Xie
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center (OUHSC), Oklahoma City, Oklahoma, United States of America
| | - Stanley Kosanke
- Department of Pathology, OUHSC, Oklahoma City, Oklahoma, United States of America
| |
Collapse
|
7
|
|
8
|
Sorensen GL. Surfactant Protein D in Respiratory and Non-Respiratory Diseases. Front Med (Lausanne) 2018; 5:18. [PMID: 29473039 PMCID: PMC5809447 DOI: 10.3389/fmed.2018.00018] [Citation(s) in RCA: 132] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 01/19/2018] [Indexed: 12/16/2022] Open
Abstract
Surfactant protein D (SP-D) is a multimeric collectin that is involved in innate immune defense and expressed in pulmonary, as well as non-pulmonary, epithelia. SP-D exerts antimicrobial effects and dampens inflammation through direct microbial interactions and modulation of host cell responses via a series of cellular receptors. However, low protein concentrations, genetic variation, biochemical modification, and proteolytic breakdown can induce decomposition of multimeric SP-D into low-molecular weight forms, which may induce pro-inflammatory SP-D signaling. Multimeric SP-D can decompose into trimeric SP-D, and this process, and total SP-D levels, are partly determined by variation within the SP-D gene, SFTPD. SP-D has been implicated in the development of respiratory diseases including respiratory distress syndrome, bronchopulmonary dysplasia, allergic asthma, and chronic obstructive pulmonary disease. Disease-induced breakdown or modifications of SP-D facilitate its systemic leakage from the lung, and circulatory SP-D is a promising biomarker for lung injury. Moreover, studies in preclinical animal models have demonstrated that local pulmonary treatment with recombinant SP-D is beneficial in these diseases. In recent years, SP-D has been shown to exert antimicrobial and anti-inflammatory effects in various non-pulmonary organs and to have effects on lipid metabolism and pro-inflammatory effects in vessel walls, which enhance the risk of atherosclerosis. A common SFTPD polymorphism is associated with atherosclerosis and diabetes, and SP-D has been associated with metabolic disorders because of its effects in the endothelium and adipocytes and its obesity-dampening properties. This review summarizes and discusses the reported genetic associations of SP-D with disease and the clinical utility of circulating SP-D for respiratory disease prognosis. Moreover, basic research on the mechanistic links between SP-D and respiratory, cardiovascular, and metabolic diseases is summarized. Perspectives on the development of SP-D therapy are addressed.
Collapse
Affiliation(s)
- Grith L Sorensen
- Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
9
|
Vinod S, Gow A, Weinberger B, Potak D, Hiatt M, Chandra S, Hegyi T. Serum surfactant protein D as a marker for bronchopulmonary dysplasia. J Matern Fetal Neonatal Med 2017; 32:815-819. [DOI: 10.1080/14767058.2017.1392506] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Suja Vinod
- Department of Pediatrics, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Andrew Gow
- Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ, USA
| | - Barry Weinberger
- Department of Neonatal-Perinatal Medicine, Cohen Children’s Medical Center, New Hyde Park, NY, USA
| | - Debra Potak
- Department of Neonatal-Perinatal Medicine, Cohen Children’s Medical Center, New Hyde Park, NY, USA
| | - Mark Hiatt
- Department of Pediatrics, St. Peter’s University Hospital, New Brunswick, NJ, USA
| | - Shaku Chandra
- Department of Pediatrics, St. Peter’s University Hospital, New Brunswick, NJ, USA
| | - Thomas Hegyi
- Department of Pediatrics, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| |
Collapse
|
10
|
Yoder BA, Coalson JJ. Animal models of bronchopulmonary dysplasia. The preterm baboon models. Am J Physiol Lung Cell Mol Physiol 2014; 307:L970-7. [PMID: 25281639 DOI: 10.1152/ajplung.00171.2014] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Much of the progress in improved neonatal care, particularly management of underdeveloped preterm lungs, has been aided by investigations of multiple animal models, including the neonatal baboon (Papio species). In this article we highlight how the preterm baboon model at both 140 and 125 days gestation (term equivalent 185 days) has advanced our understanding and management of the immature human infant with neonatal lung disease. Not only is the 125-day baboon model extremely relevant to the condition of bronchopulmonary dysplasia but there are also critical neurodevelopmental and other end-organ pathological features associated with this model not fully discussed in this limited forum. We also describe efforts to incorporate perinatal infection into these preterm models, both fetal and neonatal, and particularly associated with Ureaplasma/Mycoplasma organisms. Efforts to rekindle the preterm primate model for future evaluations of therapies such as stem cell replacement, early lung recruitment interventions coupled with noninvasive surfactant and high-frequency nasal ventilation, and surfactant therapy coupled with antioxidant or anti-inflammatory medications, to name a few, should be undertaken.
Collapse
Affiliation(s)
- Bradley A Yoder
- Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, Utah; and
| | - Jacqueline J Coalson
- Department of Pathology, University of Texas Health Science Center at San Antonio, San Antonio, Texas
| |
Collapse
|
11
|
Yee M, Buczynski BW, O’Reilly MA. Neonatal hyperoxia stimulates the expansion of alveolar epithelial type II cells. Am J Respir Cell Mol Biol 2014; 50:757-66. [PMID: 24188066 PMCID: PMC4068921 DOI: 10.1165/rcmb.2013-0207oc] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Accepted: 10/29/2013] [Indexed: 01/02/2023] Open
Abstract
Supplemental oxygen used to treat infants born prematurely disrupts angiogenesis and is a risk factor for persistent pulmonary disease later in life. Although it is unclear how neonatal oxygen affects development of the respiratory epithelium, alveolar simplification and depletion of type II cells has been observed in adult mice exposed to hyperoxia between postnatal Days 0 and 4. Because hyperoxia inhibits cell proliferation, we hypothesized that it depleted the adult lung of type II cells by inhibiting their proliferation at birth. Newborn mice were exposed to room air (RA) or hyperoxia, and the oxygen-exposed mice were recovered in RA. Hyperoxia stimulated mRNA expressed by type II (Sftpc, Abca3) and type I (T1α, Aquaporin 5) cells and inhibited Pecam expressed by endothelial cells. 5-Bromo-2'-deoxyuridine labeling and fate mapping with enhanced green fluorescence protein controlled statically by the Sftpc promoter or conditionally by the Scgb1a1 promoter revealed increased Sftpc and Abca3 mRNA seen on Day 4 reflected an increase in expansion of type II cells shortly after birth. When mice were returned to RA, this expanded population of type II cells was slowly depleted until few were detected by 8 weeks. These findings reveal that hyperoxia stimulates alveolar epithelial cell expansion when it disrupts angiogenesis. The loss of type II cells during recovery in RA may contribute to persistent pulmonary diseases such as those reported in children born preterm who were exposed to supplemental oxygen.
Collapse
Affiliation(s)
- Min Yee
- Department of Pediatrics and
| | - Bradley W. Buczynski
- Department of Environmental Medicine, School of Medicine and Dentistry, The University of Rochester, Rochester New York
| | | |
Collapse
|
12
|
Lopez E, Gascoin G, Flamant C, Merhi M, Tourneux P, Baud O. Exogenous surfactant therapy in 2013: what is next? Who, when and how should we treat newborn infants in the future? BMC Pediatr 2013; 13:165. [PMID: 24112693 PMCID: PMC3851818 DOI: 10.1186/1471-2431-13-165] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Accepted: 09/19/2013] [Indexed: 11/10/2022] Open
Abstract
Background Surfactant therapy is one of the few treatments that have dramatically changed clinical practice in neonatology. In addition to respiratory distress syndrome (RDS), surfactant deficiency is observed in many other clinical situations in term and preterm infants, raising several questions regarding the use of surfactant therapy. Objectives This review focuses on several points of interest, including some controversial or confusing topics being faced by clinicians together with emerging or innovative concepts and techniques, according to the state of the art and the published literature as of 2013. Surfactant therapy has primarily focused on RDS in the preterm newborn. However, whether this treatment would be of benefit to a more heterogeneous population of infants with lung diseases other than RDS needs to be determined. Early trials have highlighted the benefits of prophylactic surfactant administration to newborns judged to be at risk of developing RDS. In preterm newborns that have undergone prenatal lung maturation with steroids and early treatment with continuous positive airway pressure (CPAP), the criteria for surfactant administration, including the optimal time and the severity of RDS, are still under discussion. Tracheal intubation is no longer systematically done for surfactant administration to newborns. Alternative modes of surfactant administration, including minimally-invasive and aerosolized delivery, could thus allow this treatment to be used in cases of RDS in unstable preterm newborns, in whom the tracheal intubation procedure still poses an ethical and medical challenge. Conclusion The optimization of the uses and methods of surfactant administration will be one of the most important challenges in neonatal intensive care in the years to come.
Collapse
Affiliation(s)
- Emmanuel Lopez
- Réanimation et Pédiatrie Néonatales, Groupe Hospitalier Robert Debré, APHP, 48 Bd Sérurier, Paris, 75019, France.
| | | | | | | | | | | | | |
Collapse
|
13
|
Ramani V, Madhusoodhanan R, Kosanke S, Awasthi S. A TLR4-interacting SPA4 peptide inhibits LPS-induced lung inflammation. Innate Immun 2013; 19:596-610. [PMID: 23475791 DOI: 10.1177/1753425912474851] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The interaction between surfactant protein-A (SP-A) and TLR4 is important for host defense. We have recently identified an SPA4 peptide region from the interface of SP-A-TLR4 complex. Here, we studied the involvement of the SPA4 peptide region in SP-A-TLR4 interaction using a two-hybrid system, and biological effects of SPA4 peptide in cell systems and a mouse model. HEK293 cells were transfected with plasmid DNAs encoding SP-A or a SP-A-mutant lacking SPA4 peptide region and TLR4. Luciferase activity was measured as the end-point of SP-A-TLR4 interaction. NF-κB activity was also assessed simultaneously. Next, the dendritic cells or mice were challenged with Escherichia coli-derived LPS and treated with SPA4 peptide. Endotoxic shock-like symptoms and inflammatory parameters (TNF-α, NF-κB, leukocyte influx) were assessed. Our results reveal that the SPA4 peptide region contributes to the SP-A-TLR4 interaction and inhibits the LPS-induced NF-κB activity and TNF-α. We also observed that the SPA4 peptide inhibits LPS-induced expression of TNF-α, nuclear localization of NF-κB-p65 and cell influx, and alleviates the endotoxic shock-like symptoms in a mouse model. Our results suggest that the anti-inflammatory activity of the SPA4 peptide through its binding to TLR4 can be of therapeutic benefit.
Collapse
Affiliation(s)
- Vijay Ramani
- 1Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | | | | | | |
Collapse
|
14
|
Rakhesh M, Cate M, Vijay R, Shrikant A, Shanjana A. A TLR4-interacting peptide inhibits lipopolysaccharide-stimulated inflammatory responses, migration and invasion of colon cancer SW480 cells. Oncoimmunology 2012; 1:1495-1506. [PMID: 23264896 PMCID: PMC3525605 DOI: 10.4161/onci.22089] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Inflammation is a major risk factor for carcinogenesis in patients affected by chronic colitis, yet the molecular mechanisms underlying the progression from chronic inflammation to cancer are not completely understood. Activation of the Toll-like receptor 4 (TLR4)-NFκB signaling axis is associated with inflammation. Thus, we hypothesized that inhibition of TLR4-NFκB signaling might help in limiting inflammatory responses and inflammation-induced oncogenesis. In this work, we studied the effects of a TLR4-interacting surfactant protein A-derived (SPA4) peptide on lipopolysaccharide (LPS)-induced TLR4-NFκB signaling and cancer progression. We first characterized this peptide for its ability to bind the TLR4 ligand-LPS and for physico-chemical characteristics. Inflammation was induced by challenging the colon cancer SW480 cells with Escherichia coli LPS. Cells were then treated with varying amounts of the SPA4 peptide. Changes in the expression of TLR4, interleukin (IL)-1β and IL-6, in intracellular NFκB-related signal transducers (IKBα, p65, phosphorylated IKBα, phosphorylated p65, RelB, COX-2) as well as in the transcriptional activity of NFκB were studied by immunocytochemistry, immunoblotting and NFκB reporter assay, respectively. Simultaneously, the effects on LPS-induced cell migration and invasion were determined. We found that the SPA4 peptide does not bind to LPS. Rather, its binding to TLR4 inhibits the LPS-induced phosphorylation of p65, production of IL-1β and IL-6, activity of NFκB, migration and invasion of SW480 cells. In conclusion, our results suggest that the inhibition of TLR4-NFκB signaling by a TLR4-binding peptide may help for the treatment of chronic inflammation and prevention of inflammation-induced cancer in patients with colitis.
Collapse
Affiliation(s)
- Madhusoodhanan Rakhesh
- Department of Pharmaceutical Sciences; University of Oklahoma Health Sciences Center; Oklahoma City, OK USA
| | - Moriasi Cate
- Department of Molecular and Integrative Physiology; University of Kansas Medical Center; Kansas City, KS USA
| | - Ramani Vijay
- Department of Pharmaceutical Sciences; University of Oklahoma Health Sciences Center; Oklahoma City, OK USA
| | - Anant Shrikant
- Department of Molecular and Integrative Physiology; University of Kansas Medical Center; Kansas City, KS USA
| | - Awasthi Shanjana
- Department of Pharmaceutical Sciences; University of Oklahoma Health Sciences Center; Oklahoma City, OK USA
| |
Collapse
|
15
|
Lung dendritic cell developmental programming, environmental stimuli, and asthma in early periods of life. J Allergy (Cairo) 2012; 2012:176468. [PMID: 23209481 PMCID: PMC3503332 DOI: 10.1155/2012/176468] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Revised: 09/29/2012] [Accepted: 09/30/2012] [Indexed: 12/22/2022] Open
Abstract
Dendritic cells (DCs) are important cells of our innate immune system. Their role is critical in inducing adaptive immunity, tolerance, or allergic response in peripheral organs—lung and skin. The lung DCs are not developed prenatally before birth. The DCs develop after birth presumably during the first year of life; exposures to any foreign antigen or infectious organisms during this period can significantly affect DC developmental programming and generation of distinct DC phenotypes and functions. These changes can have both short-term and long-term health effects which may be very relevant in childhood asthma and predisposition for a persistent response in adulthood. An understanding of DC development at molecular and cellular levels can help in protecting neonates and infants against problematic environmental exposures and developmental immunotoxicity. This knowledge can eventually help in designing novel pharmacological modulators to skew the DC characteristics and immune responses to benefit the host across a lifetime.
Collapse
|
16
|
Pulmonary Collectins in Diagnosis and Prevention of Lung Diseases. ANIMAL LECTINS: FORM, FUNCTION AND CLINICAL APPLICATIONS 2012. [PMCID: PMC7121960 DOI: 10.1007/978-3-7091-1065-2_43] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Pulmonary surfactant is a complex mixture of lipids and proteins, and is synthesized and secreted by alveolar type II epithelial cells and bronchiolar Clara cells. It acts to keep alveoli from collapsing during the expiratory phase of the respiratory cycle. After its secretion, lung surfactant forms a lattice structure on the alveolar surface, known as tubular myelin. Surfactant proteins (SP)-A, B, C and D make up to 10% of the total surfactant. SP-B and SPC are relatively small hydrophobic proteins, and are involved in the reduction of surface-tension at the air-liquid interface. SP-A and SP-D, on the other hand, are large oligomeric, hydrophilic proteins that belong to the collagenous Ca2+-dependent C-type lectin family (known as “Collectins”), and play an important role in host defense and in the recycling and transport of lung surfactant (Awasthi 2010) (Fig. 43.1). In particular, there is increasing evidence that surfactant-associated proteins A and -D (SP-A and SP-D, respectively) contribute to the host defense against inhaled microorganisms (see 10.1007/978-3-7091-1065_24 and 10.1007/978-3-7091-1065_25). Based on their ability to recognize pathogens and to regulate the host defense, SP-A and SP-D have been recently categorized as “Secretory Pathogen Recognition Receptors”. While SP-A and SP-D were first identified in the lung; the expression of these proteins has also been observed at other mucosal surfaces, such as lacrimal glands, gastrointestinal mucosa, genitourinary epithelium and periodontal surfaces. SP-A is the most prominent among four proteins in the pulmonary surfactant-system. The expression of SP-A is complexly regulated on the transcriptional and the chromosomal level. SP-A is a major player in the pulmonary cytokine-network and moreover has been described to act in the pulmonary host defense. This chapter gives an overview on the understanding of role of SP-A and SP-D in for human pulmonary disorders and points out the importance for pathology-orientated research to further elucidate the role of these molecules in adult lung diseases. As an outlook, it will become an issue of pulmonary pathology which might provide promising perspectives for applications in research, diagnosis and therapy (Awasthi 2010).
Collapse
|
17
|
Awasthi S, Madhusoodhanan R, Wolf R. Surfactant protein-A and toll-like receptor-4 modulate immune functions of preterm baboon lung dendritic cell precursor cells. Cell Immunol 2011; 268:87-96. [PMID: 21439559 PMCID: PMC3104394 DOI: 10.1016/j.cellimm.2011.02.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2010] [Accepted: 02/28/2011] [Indexed: 01/04/2023]
Abstract
Lung infections are important risk factors for an increased morbidity and mortality in prematurely-delivered babies. Immaturity of the innate immune components makes them extremely susceptible to infection. Recently, we isolated lung dendritic cell (DC)-precursor cells from preterm fetal baboons. The isolated cells were found to be defective in phagocytosing Escherichia coli under basal conditions. In this study, we investigated the effects of exogenously-added purified native lung surfactant protein (SP)-A and recombinant toll-like receptor (TLR)-4-MD2 proteins on phagocytic uptake and cytokine secreting ability of fetal baboon lung DC-precursor cells. The cells were pulsed with SP-A and/or TLR4-MD2 proteins and the phagocytic function was investigated by incubating the cells with fluorescent-labeled E. coli bioparticles and analyzed by spectrofluorometry. The amounts of TNF-α secreted in cell-free supernatants were measured by ELISA. Our results demonstrate that SP-A and TLR4-MD2 proteins, whether added alone or together, induce phagocytosis of E. coli (p<0.05). The SP-A does not affect TNF-α secretion, while the TLR4-MD2 protein induces TNF-α. However, simultaneous addition of SP-A with TLR4-MD2 protein reduces the TLR4-MD2-protein induced TNF-α to basal level. In conclusion, our results indicate that an exogenous administration of SP-A can potentially induce phagocytic activity and anti-inflammatory effect in preterm babies, and help control infection and inflammation.
Collapse
Affiliation(s)
- Shanjana Awasthi
- Department of Pharmaceutical Sciences, University of Oklahoma Health Science Center, Oklahoma City, OK 73117, USA.
| | | | | |
Collapse
|
18
|
Awasthi S, Brown K, King C, Awasthi V, Bondugula R. A toll-like receptor-4-interacting surfactant protein-A-derived peptide suppresses tumor necrosis factor-α release from mouse JAWS II dendritic cells. J Pharmacol Exp Ther 2011; 336:672-81. [PMID: 21159752 PMCID: PMC3061537 DOI: 10.1124/jpet.110.173765] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2010] [Accepted: 12/08/2010] [Indexed: 02/03/2023] Open
Abstract
Surfactant protein-A (SP-A) and Toll-like receptor-4 (TLR4) proteins are recognized as pathogen-recognition receptors. An exaggerated activation of TLR4 induces inflammatory response, whereas SP-A protein down-regulates inflammation. We hypothesized that SP-A-TLR4 interaction may lead to inhibition of inflammation. In this study, we investigated interaction between native baboon lung SP-A and baboon and human TLR4-MD2 proteins by coimmunoprecipitation/immunoblotting and microwell-based methods. The interaction between SP-A and TLR4-MD2 proteins was then analyzed using a bioinformatics approach. In the in silico model of SP-A-TLR4-MD2 complex, we identified potential binding regions and amino acids at the interface of SP-A-TLR4. Using this information, we synthesized a library of human SP-A-derived peptides that contained interacting amino acids. Next, we tested whether the TLR4-interacting SP-A peptides would suppress inflammatory cytokines. The peptides were screened for any changes in the tumor necrosis factor-α (TNF-α) response against lipopolysaccharide (LPS) stimuli in the mouse JAWS II dendritic cell line. Different approaches used in this study suggested binding between SP-A and TLR4-MD2 proteins. In cells pretreated with peptides, three of seven peptides increased TNF-α production against LPS. However, two of these peptides (SPA4: GDFRYSDGTPVNYTNWYRGE and SPA5: YVGLTEGPSPGDFRYSDFTP) decreased the TNF-α production in LPS-challenged JAWS II dendritic cells; SPA4 peptide showed more pronounced inhibitory effect than SPA5 peptide. In conclusion, we identify a human SP-A-derived peptide (SPA4 peptide) that interacts with TLR4-MD2 protein and inhibits the LPS-stimulated release of TNF-α in JAWS II dendritic cells.
Collapse
Affiliation(s)
- Shanjana Awasthi
- Department of Pharmaceutical Sciences, University of Oklahoma Health Science Center, Oklahoma City, OK, USA.
| | | | | | | | | |
Collapse
|
19
|
Jian MY, Koizumi T, Yokoyama T, Tsushima K, Kubo K. Comparison of acid-induced inflammatory responses in the rat lung during high frequency oscillatory and conventional mechanical ventilation. Inflamm Res 2010; 59:931-7. [PMID: 20425135 DOI: 10.1007/s00011-010-0204-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2010] [Revised: 04/08/2010] [Accepted: 04/08/2010] [Indexed: 10/19/2022] Open
Abstract
BACKGROUND The present study was performed to compare the effects of high frequency oscillatory ventilation (HFOV) with conventional mechanical ventilation (CMV) on pulmonary inflammatory responses in a rat acid-induced lung injury model. METHODS Anesthetized rats were instilled intratracheally with HCl (0.1 N, 2 mL/kg) and then randomly divided into three mechanical ventilation settings: HFOV (an oscillatory frequency of 15 Hz, mean airway pressure (MAP) of 9 cmH(2)O), CMV at tidal volume of 12 and 6 mL/kg for 5 h. RESULTS After HCl instillation, HFOV significantly attenuated the increases in neutrophil infiltration and TNF-α concentration in bronchoalveolar lavage fluid compared with the CMV groups. During HFOV, there was an inhibition of an increase in TNF-α mRNA expression and a decrease in SP-A mRNA expression induced by acid instillation. CONCLUSION This animal study demonstrates that HFOV is a suitable form of mechanical ventilation to prevent inflammatory responses in acid-induced lung injury.
Collapse
Affiliation(s)
- Ming-Yuan Jian
- The First Department of Internal Medicine, Shinshu University School of Medicine, Asahi, Matsumoto, Japan
| | | | | | | | | |
Collapse
|
20
|
Okogbule-Wonodi AC, Chesko KL, Famuyide ME, Viscardi RM. Surfactant protein-A enhances ureaplasmacidal activity in vitro. Innate Immun 2010; 17:145-51. [PMID: 20197455 DOI: 10.1177/1753425909360552] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Persistent respiratory tract colonization with Ureaplasma spp. in preterm infants is a significant risk factor for the development of the chronic lung disorder, bronchopulmonary dysplasia (BPD). Surfactant protein-A (SP-A), a lung collectin critical for bacterial clearance and regulating inflammation, is deficient in the preterm lung. In an experimental Ureaplasma-pneumonia model, infected SP-A deficient mice exhibited delayed bacterial clearance and an exaggerated inflammatory response compared to infected wild-type mice. The objective was to analyze the role of SP-A in Ureaplasma clearance in vitro. SUBJECTS AND METHODS We analyzed SP-A binding to Ureaplasma isolates and SP-A-mediated ureaplasmal phagocytosis and killing by cultured RAW 264.7 macrophages. RESULTS Calcium-dependent SP-A binding was similar among Ureaplasma isolates tested. Pre-incubation of RAW 264.7 cells with SP-A (10-50 μg/ml) enhanced phagocytosis of fluorescein-isothiocyanate (FITC)-labeled Ureaplasma. Surfactant protein-A also increased ureaplasmacidal activity of RAW 264.7 cells by 2.1-fold over 4 h. Pre-incubation of RAW 264.7 cells with 10 μg/ml SP-A reduced lipopolysaccharide (LPS) (100 ng/ml) and Ureaplasma (10(6) color changing units/ml)-stimulated release of tumor necrosis factor-α (TNF-α) by 46% and 43%, respectively, but did not affect transforming growth factor β(1) (TGFβ(1)) release. CONCLUSIONS These in vitro data confirm that SP-A is important in host defense to perinatally-acquired Ureaplasma infection.
Collapse
Affiliation(s)
- Adora C Okogbule-Wonodi
- Department of Pediatrics, School of Medicine, University of Maryland-Baltimore (UMB), 29 S. Greene St., Baltimore, MD 21201, USA
| | | | | | | |
Collapse
|
21
|
Sato A, Whitsett JA, Scheule RK, Ikegami M. Surfactant protein-d inhibits lung inflammation caused by ventilation in premature newborn lambs. Am J Respir Crit Care Med 2010; 181:1098-105. [PMID: 20133924 DOI: 10.1164/rccm.200912-1818oc] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE Premature newborns frequently require manual ventilation for resuscitation during which lung injury occurs. Although surfactant protein (SP)-D regulates pulmonary inflammation, SP-D levels are low in the preterm lung. Commercial surfactants for treatment of respiratory distress syndrome do not contain SP-D. OBJECTIVES To determine whether addition of recombinant human SP-D (rhSP-D) to commercial surfactant influences lung inflammation in ventilated premature newborn lambs. METHODS Prematurely delivered lambs (130 d gestation age) were resuscitated with 100% O(2) and peak inspiratory pressure 40 cm H(2)O for 20 minutes and then treated with Survanta or Survanta containing rhSP-D. Ventilation was then changed to regulate tidal volume at 8 to 9 ml/kg. At 5 hours of age lambs were killed for sample collection. MEASUREMENTS AND MAIN RESULTS Sequential blood gas and tidal volume were similar in lambs treated with or without rhSP-D, indicating that lung immaturity and ventilatory stress used to support premature lambs were comparable between the two groups. Ventilation caused pulmonary inflammation in lambs treated with surfactant alone. In contrast, surfactant containing rhSP-D decreased neutrophil numbers in bronchoalveolar lavage fluid and decreased neutrophil elastase activity in lung tissue. IL-8 mRNA and IL-8 protein were significantly decreased in the +rhSP-D group lamb lungs, to 20% of those in controls. The addition of rhSP-D also rendered Survanta more resistant to plasma protein inhibition of surfactant function. CONCLUSIONS Treatment with rhSP-D-containing surfactant inhibited lung inflammation and enhanced the resistance of surfactant to inhibition, supporting its potential usefulness for prevention of lung injury in the preterm newborn.
Collapse
Affiliation(s)
- Atsuyasu Sato
- Cincinnati Children's Hospital Medical Center, Division of Pulmonary Biology, 3333 Burnet Avenue, Cincinnati, OH 45229-3039, USA
| | | | | | | |
Collapse
|
22
|
Famuyide ME, Hasday JD, Carter HC, Chesko KL, He JR, Viscardi RM. Surfactant protein-A limits Ureaplasma-mediated lung inflammation in a murine pneumonia model. Pediatr Res 2009; 66:162-7. [PMID: 19390477 PMCID: PMC2758107 DOI: 10.1203/pdr.0b013e3181aabd66] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Ureaplasma respiratory tract colonization stimulates prolonged, dysregulated inflammation in the lungs of preterm infants, contributing to bronchopulmonary dysplasia (BPD) pathogenesis. Surfactant protein-A (SP-A), a lung collectin critical for bacterial clearance and regulating inflammation, is deficient in the preterm lung. To analyze the role of SP-A in modulating Ureaplasma-mediated lung inflammation, SP-A deficient (SP-A-/-) and WT mice were inoculated intratracheally with a mouse-adapted U. parvum isolate and indices of inflammation were sequentially assessed up to 28 d postinoculation. Compared with infected WT and noninfected controls, Ureaplasma-infected SP-A-/- mice exhibited an exaggerated inflammatory response evidenced by rapid influx of neutrophils and macrophages into the lung, and higher bronchoalveolar lavage TNF-alpha, mouse analogue of human growth-related protein alpha (KC), and monocyte chemotactic factor (MCP-1) concentrations. However, nitrite generation in response to Ureaplasma infection was blunted at 24 h and Ureaplasma clearance was delayed in SP-A-/- mice compared with WT mice. Coadministration of human SP-A with the Ureaplasma inoculum to SP-A-/- mice reduced the inflammatory response, but did not improve the bacterial clearance rate. SP-A deficiency may contribute to the prolonged inflammatory response in the Ureaplasma-infected preterm lung, but other factors may contribute to the impaired Ureaplasma clearance.
Collapse
Affiliation(s)
- Mobolaji E Famuyide
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | | | | | | | | | | |
Collapse
|
23
|
Chaiworapongsa T, Hong JS, Hull WM, Romero R, Whitsett JA. Amniotic fluid concentration of surfactant proteins in intra-amniotic infection. J Matern Fetal Neonatal Med 2009; 21:663-70. [PMID: 18828060 DOI: 10.1080/14767050802215664] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
OBJECTIVE Pulmonary surfactant is a complex molecule of lipids and proteins synthesized and secreted by type II alveolar cells into the alveolar epithelial lining. Both lipid and protein components are essential for lung function in postnatal life. Infection is a well-established cause of preterm delivery, and several inflammatory cytokines play a role in the mechanisms of preterm parturition. An increased concentration of inflammatory cytokines in amniotic fluid or fetal plasma has been linked to the onset of preterm parturition and fetal/neonatal injury, including cerebral palsy and chronic lung disease. Experimental evidence indicates that inflammatory mediators also regulate surfactant protein synthesis, and histologic chorioamnionitis is associated with a decreased incidence of hyaline membrane disease in neonates. This study was conducted to determine if amniotic fluid concentrations of surfactant protein (SP)-A, SP-B, and SP-D change in patients with and without intra-amniotic infection (IAI). MATERIALS AND METHODS A case-control study was conducted to determine amniotic fluid concentrations of SP-A, SP-B, SP-D, and total protein in patients who had an amniocentesis performed between 18 and 34 weeks of gestation for the detection of IAI in patients with spontaneous preterm labor with intact membranes (n = 42) and cervical insufficiency prior to the application of cerclage (n = 6). Amniotic fluid samples were selected from a bank of biological specimens and included patients with (n = 16) and without (n = 32) IAI matched for gestational age at amniocentesis. Intra-amniotic infection was defined as a positive amniotic fluid culture for microorganisms. Each group was further subdivided according to a history of corticosteroid administration within 7 days prior to amniocentesis into the following subgroups: (1) patients without IAI who had received antenatal corticosteroids (n = 21), (2) patients with IAI who had received antenatal corticosteroids (n = 9), (3) patients without IAI who had not received antenatal corticosteroids (n = 11), and (4) patients with IAI who had not received antenatal corticosteroids (n = 7). Amniotic fluid was obtained by transabdominal amniocentesis. SP-A, SP-B, and SP-D concentrations in amniotic fluid were determined by enzyme-linked immunosorbent assay (ELISA). Non-parametric statistics were used for analysis. RESULTS Women with IAI had a higher median amniotic fluid concentration of SP-B and of SP-B/total protein, but not other SPs, than those without IAI (both p = 0.03). Among patients who had received antenatal corticosteroids, the median amniotic fluid concentration of SP-B and of SP-B/total protein was significantly higher in patients with IAI than in those without IAI (SP-B, IAI: median 148 ng/mL, range 37.3-809 ng/mL vs. without IAI: median 7.2 ng/mL, range 0-1035 ng/mL; p = 0.005 and SP-B/total protein, IAI: median 14.1 ng/mg, range 4.3-237.5 ng/mg vs. without IAI: median 1.45 ng/mg, range 0-79.5 ng/mg; p = 0.003). Among women who had not received antenatal corticosteroids, the median amniotic fluid concentrations of SP-B and of SP-B/total protein were not significantly different between patients with and without IAI (SP-B, IAI: median 4 ng/mL, range 0-31.4 ng/mL vs. without IAI: median 3.4 ng/mL, range 0-37 ng/mL; p = 0.8 and SP-B/total protein, IAI: median 0.55 ng/mg, range 0-6.96 ng/mg vs. without IAI: median 0.59 ng/mg, range 0-3.28 ng/mg; p = 0.9). The median amniotic fluid concentrations of SP-A, SP-A/total protein, SP-D, and SP-D/total protein were not significantly different between patients with and without IAI whether they received antenatal corticosteroids or not (all p > 0.05). CONCLUSIONS IAI was associated with an increased amniotic fluid concentration of SP-B in patients who received antenatal corticosteroids within 7 days prior to amniocentesis.
Collapse
|
24
|
Awasthi S, Cropper J, Brown KM. Developmental expression of Toll-like receptors-2 and -4 in preterm baboon lung. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2008; 32:1088-1098. [PMID: 18377992 DOI: 10.1016/j.dci.2008.02.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2007] [Revised: 01/14/2008] [Accepted: 02/16/2008] [Indexed: 05/26/2023]
Abstract
Preterm babies are susceptible to respiratory infection due to immature lung and immune system. Immune cells express Toll-like receptors (TLRs), which may be important in local host defense of preterm infants. We studied the expression of TLR2 and TLR4 in lung tissues of fetal baboons delivered at 125, 140, and 175 days of gestation (dGA; term=185+/-2 days) and preterm baboons that became naturally infected with bacterial/fungal pathogens. The TLR-mRNA and protein were quantified by Northern and Western blotting, respectively. The expression of both TLRs was significantly low at 125 and 140dGA. At 175dGA, the levels reached equivalent to those in adult baboons. However, in naturally infected baboons, the TLR4-mRNA was reduced (p<0.05); TLR2-mRNA expression remained unaltered. The protein expression of both TLRs was found increased in naturally infected baboons. Our results suggest that the lung TLR expression is developmentally regulated and altered during respiratory infection in preterm babies.
Collapse
Affiliation(s)
- Shanjana Awasthi
- Department of Pharmaceutical Sciences, University of Oklahoma Health Science Center, 1110 N. Stonewall Avenue, Oklahoma City, OK 73117, USA.
| | | | | |
Collapse
|
25
|
Ikegami M, Scoville EA, Grant S, Korfhagen T, Brondyk W, Scheule RK, Whitsett JA. Surfactant Protein-D and Surfactant Inhibit Endotoxin-Induced Pulmonary Inflammation. Chest 2007; 132:1447-54. [DOI: 10.1378/chest.07-0864] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
|
26
|
Tagaram HRS, Wang G, Umstead TM, Mikerov AN, Thomas NJ, Graff GR, Hess JC, Thomassen MJ, Kavuru MS, Phelps DS, Floros J. Characterization of a human surfactant protein A1 (SP-A1) gene-specific antibody; SP-A1 content variation among individuals of varying age and pulmonary health. Am J Physiol Lung Cell Mol Physiol 2006; 292:L1052-63. [PMID: 17189324 DOI: 10.1152/ajplung.00249.2006] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The human surfactant protein A (SP-A) locus consists of two functional genes (SP-A1, SP-A2) with gene-specific products exhibiting qualitative and quantitative differences. The aim here was twofold: 1) generate SP-A1 gene-specific antibody, and 2) use this to assess gene-specific SP-A content in the bronchoalveolar lavage fluid (BALF). An SP-A1-specific polyclonal antibody (hSP-A1_Ab(68-88)_Col) was raised in chicken, and its specificity was determined by immunoblot and ELISA using mammalian Chinese hamster ovary (CHO) cell-expressed SP-A1 and SP-A2 variants and by immunofluorescence with stably transfected CHO cell lines expressing SP-A1 or SP-A2 variants. SP-A1 content was evaluated according to age and lung status. A gradual decrease (P < 0.05) in SP-A1/SP-A ratio was observed in healthy subjects (HS) with increased age, although no significant change was observed in total SP-A content among age groups. Total SP-A and SP-A1 content differed significantly between alveolar proteinosis (AP) patients and HS, with no significant difference observed in SP-A1/SP-A ratio between AP and HS. The cystic fibrosis (CF) ratio was significantly higher compared with AP, HS, and noncystic fibrosis (NCF), even though SP-A1 and total SP-A were decreased in CF compared with most of the other groups. The ratio was higher in culture-positive vs. culture-negative samples from CF and NCF (P = 0.031). A trend of an increased ratio was observed in culture-positive CF (0.590 +/- 0.10) compared with culture-positive NCF (0.368 +/- 0.085). In summary, we developed and characterized an SP-A1 gene-specific antibody and used it to identify gene-specific SP-A content in BALFs as a function of age and lung health.
Collapse
Affiliation(s)
- Hephzibah Rani S Tagaram
- Departments of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Abstract
Here, we describe the approach of defining the genetic contribution to disease and discuss the polymorphisms of some genes that are associated with respiratory disease. The common allelic variants of SP-A1, SP-A2, SP-B, SP-C, and SP-D genes are associated with respiratory distress syndrome (RDS), bronchopulmonary dysplasia (BPD), or respiratory syncytial virus (RSV) bronchiolitis. The main SP-A haplotype, interactively with SP-B Ile131Thr polymorphism and with constitutional and environmental factors, influences the risk of RDS. The polymorphisms of SP-A2 and SP-D are associated with the risk of severe RSV. The polymorphism may turn out to be important in susceptibility to influenza virus. The SP-B intron 4 deletion variant is the risk factor of BPD. Understanding the molecular mechanisms behind the hereditary risk may lead to new focused treatment strategies.
Collapse
Affiliation(s)
- Mikko Hallman
- Department of Pediatrics and Biocenter Oulu, University of Oulu, Oulu, Finland.
| | | |
Collapse
|
28
|
Dahl M, Holmskov U, Husby S, Juvonen PO. Surfactant protein D levels in umbilical cord blood and capillary blood of premature infants. The influence of perinatal factors. Pediatr Res 2006; 59:806-10. [PMID: 16641214 DOI: 10.1203/01.pdr.0000219122.81734.03] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Surfactant protein D (SP-D) is a collectin that plays an important role in the innate immune system and takes part in the surfactant homeostasis by regulating the surfactant pool size. The aims of this study were to investigate the values of SP-D in umbilical cord blood and capillary blood of premature infants and to relate the levels to perinatal conditions. A total of 254 premature infants were enrolled in the present study. Umbilical cord blood was drawn at the time of birth and capillary blood at regular intervals throughout the admission. The concentration of SP-D in umbilical cord blood and capillary blood was measured using ELISA technique. The median concentration of SP-D in umbilical cord blood was twice as high as in mature infants, 769 ng/mL (range 140-2,551), with lowest values in infants with intrauterine growth retardation (IUGR) and rupture of membranes (ROM). The median concentration of SP-D in capillary blood day 1 was 1,466 ng/mL (range 410-5,051 ng/mL), with lowest values in infants born with ROM and delivered vaginally. High SP-D levels in umbilical cord blood and capillary blood on day 1 were found to be more likely in infants in need for respiratory support or surfactant treatment and susceptibility to infections. We conclude that SP-D concentrations in umbilical cord blood and capillary blood in premature infants are twice as high as in mature infants and depend on several perinatal conditions. High SP-D levels in umbilical cord blood and capillary blood on day 1 were found to be related to increased risk of RDS and infections.
Collapse
Affiliation(s)
- Marianne Dahl
- Department of Pediatrics, Odense University Hospital, DK-5000 Odense C, Denmark.
| | | | | | | |
Collapse
|
29
|
ter Horst SAJ, Fijlstra M, Sengupta S, Walther FJ, Wagenaar GTM. Spatial and temporal expression of surfactant proteins in hyperoxia-induced neonatal rat lung injury. BMC Pulm Med 2006; 6:8. [PMID: 16620381 PMCID: PMC1475638 DOI: 10.1186/1471-2466-6-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2006] [Accepted: 04/18/2006] [Indexed: 11/17/2022] Open
Abstract
Background Bronchopulmonary dysplasia, a complex chronic lung disease in premature children in which oxidative stress and surfactant deficiency play a crucial role, is characterized by arrested alveolar and vascular development of the immature lung. The spatial and temporal patterns of expression of surfactant proteins are not yet fully established in newborn infants and animal models suffering from BPD. Methods We studied the mRNA expression of surfactant proteins (SP) A, -B, -C and -D and Clara cell secretory protein (CC10) with RT-PCR and in situ hybridization and protein expression of CC10, SP-A and -D with immunohistochemistry in the lungs of a preterm rat model, in which experimental BPD was induced by prolonged oxidative stress. Results Gene expression of all surfactant proteins (SP-A, -B, -C and -D) was high at birth and initially declined during neonatal development, but SP-A, -B, and -D mRNA levels increased during exposure to hyperoxia compared to room-air controls. Peak levels were observed in adult lungs for SP-A, SP-C and CC10. Except for SP-A, the cellular distribution of SP-B, -C, -D and CC10, studied with in situ hybridization and/or immunohistochemistry, did not change in room air nor in hyperoxia. Exposure to normoxia was associated with high levels of SP-A mRNA and protein in alveolar type 2 cells and low levels in bronchial Clara cells, whereas hyperoxia induced high levels of SP-A expression in bronchial Clara cells. Conclusion The increased expression of SP-A mRNA under hyperoxia can be attributed, at least in part, to an induction of mRNA and protein expression in bronchial Clara cells. The expanded role of Clara cells in the defence against hyperoxic injury suggests that they support alveolar type 2 cell function and may play an important role in the supply of surfactant proteins to the lower airways.
Collapse
Affiliation(s)
- Simone AJ ter Horst
- Department of Pediatrics, Division of Neonatology, Leiden University Medical Center, J6-S, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Margot Fijlstra
- Department of Pediatrics, Division of Neonatology, Leiden University Medical Center, J6-S, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Sujata Sengupta
- Department of Pediatrics, Division of Neonatology, Leiden University Medical Center, J6-S, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Frans J Walther
- Department of Pediatrics, Division of Neonatology, Leiden University Medical Center, J6-S, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
- Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, 1124 West Carson Street, Bldg F-5 South, Torrance, California 90502, USA
| | - Gerry TM Wagenaar
- Department of Pediatrics, Division of Neonatology, Leiden University Medical Center, J6-S, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| |
Collapse
|
30
|
Ikegami M, Carter K, Bishop K, Yadav A, Masterjohn E, Brondyk W, Scheule RK, Whitsett JA. Intratracheal recombinant surfactant protein d prevents endotoxin shock in the newborn preterm lamb. Am J Respir Crit Care Med 2006; 173:1342-7. [PMID: 16556693 PMCID: PMC2662974 DOI: 10.1164/rccm.200509-1485oc] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE The susceptibility of neonates to pulmonary and systemic infection has been associated with the immaturity of both lung structure and the immune system. Surfactant protein (SP) D is a member of the collectin family of innate immune molecules that plays an important role in innate host defense of the lung. OBJECTIVES We tested whether treatment with recombinant human SP-D influenced the response of the lung and systemic circulation to intratracheally administered Escherichia coli lipopolysaccharides. METHODS After intratracheal lipopolysaccharide instillation, preterm newborn lambs were treated with surfactant and ventilated for 5 h. MEASUREMENT Survival rate, physiologic lung function, lung and systemic inflammation, and endotoxin level in plasma were evaluated. MAIN RESULTS In control lambs, intratracheal lipopolysaccharides caused septic shock and death associated with increased endotoxin in plasma. In contrast, all lambs treated with recombinant human SP-D were physiologically stable and survived. Leakage of lipopolysaccharides from the lungs to the systemic circulation was prevented by intratracheal recombinant human SP-D. Recombinant human SP-D prevented systemic inflammation and decreased the expression of IL-1beta, IL-8, and IL-6 in the spleen and liver. Likewise, recombinant human SP-D decreased IL-1beta and IL-6 in the lung and IL-8 in the plasma. Recombinant human SP-D did not alter pulmonary mechanics following endotoxin exposure. Recombinant human SP-D was readily detected in the lung 5 h after intratracheal instillation. CONCLUSIONS Intratracheal recombinant human SP-D prevented shock caused by endotoxin released from the lung during ventilation in the premature newborn.
Collapse
Affiliation(s)
- Machiko Ikegami
- Cincinnati Children's Hospital, Division of Pulmonary Biology, 3333 Burnet Avenue, University of Cincinnati, Ohio 45229-3039, USA.
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Dahl M, Juvonen PO, Holmskov U, Husby S. Surfactant protein D in newborn infants: factors influencing surfactant protein D levels in umbilical cord blood and capillary blood. Pediatr Res 2005; 58:908-12. [PMID: 16183822 DOI: 10.1203/01.pdr.0000181379.72900.ec] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Surfactant protein D (SP-D) is a collectin that plays an important role in the innate immune system. The role of SP-D in the metabolism of surfactant is as yet quite unclear. The aims of this study were to establish normal values of SP-D in the umbilical cord blood and capillary blood of mature newborn infants and to assess the influence of perinatal conditions on these levels. A total of 458 infants were enrolled in the present study. Umbilical cord blood was drawn at the time of birth and capillary blood at age 4 to 10 d. The concentration of SP-D in umbilical cord blood and capillary blood was measured by enzyme-linked immunosorbent assay. The median concentration of SP-D in umbilical cord blood was 392.1 ng/mL and was found to be influenced by maternal smoking and labor. The median concentration of SP-D in capillary blood was 777.5 ng/mL and was found to be influenced by the mode of delivery, the highest levels being observed in infants born by cesarean section. It was concluded that SP-D concentrations in umbilical cord blood and capillary blood are highly variable and depend on several perinatal conditions. Further studies are needed to elucidate the effect of respiratory distress and infection on SP-D concentrations.
Collapse
Affiliation(s)
- Marianne Dahl
- Department of Paediatrics, Odense University Hospital, University of Southern Denmark, SK-5000 Odense, Denmark.
| | | | | | | |
Collapse
|
32
|
Abstract
This is a brief review of neonatal chronic lung disease, sometimes called the 'new bronchopulmonary dysplasia (BPD)'. The clinical, radiographic and pathological features of this condition have changed considerably in recent years because of major advances in perinatal care, including widespread use of antenatal glucocorticoid therapy, postnatal surfactant replacement and improved respiratory and nutritional support. Authentic animal models, featuring lengthy mechanical ventilation of surfactant-treated, premature neonatal baboons and lambs, have provided important insights on the pathophysiology and treatment of this disease. Lung histopathology after 2-4 weeks of positive-pressure ventilation with oxygen-rich gas results in failed formation of alveoli and lung capillaries, excess disordered elastin accumulation, smooth muscle overgrowth in small pulmonary arteries and airways, chronic inflammation and interstitial edema. Treatment interventions that have been tested in these animal models include nasal application of continuous positive airway pressure, high-frequency mechanical ventilation, inhaled nitric oxide and retinol. The challenge now is to improve understanding of the molecular mechanisms that regulate normal lung growth and development, and to clarify the dysregulation of lung structure and function that occurs with injury and subsequent repair so that effective treatment or prevention strategies can be devised and implemented.
Collapse
Affiliation(s)
- Richard D Bland
- Stanford University School of Medicine, Stanford, CA 94305-5162, USA.
| |
Collapse
|
33
|
Awasthi S, Magee DM, Coalson JJ. Coccidioides posadasii infection alters the expression of pulmonary surfactant proteins (SP)-A and SP-D. Respir Res 2004; 5:28. [PMID: 15588319 PMCID: PMC543449 DOI: 10.1186/1465-9921-5-28] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2004] [Accepted: 12/10/2004] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Coccidioidomycosis or Valley Fever is caused by Coccidioides in Southwest US and Central America. Primary pulmonary infection is initiated by inhalation of air-borne arthroconidia. Since, lung is the first organ that encounters arthroconidia, different components of the pulmonary innate immune system may be involved in the regulation of host defense. Pulmonary surfactant proteins (SP)-A and SP-D have been recognized to play an important role in binding and phagocytosis of various microorganisms, but their roles in Coccidioides infection are not known. METHODS In this study, we studied the changes in amounts of pulmonary SP-A, SP-D and phospholipid in murine model of Coccidioides posadasii infection, and binding of SP-A and SP-D to Coccidioidal antigens. Mice were challenged intranasally with a lethal dose of C. posadasii (n = 30 arthroconidia) and bronchoalveolar lavage fluid (BALF) samples were collected on day 10, post infection. In another group of animals, mice were immunized with protective formalin killed spherule (FKS) vaccine prior to infection. The concentrations of BALF SP-A, SP-D, total phospholipid were measured using enzyme linked immunosorbent assay and biochemical assays. RESULTS We found that in lavage fluid samples of C. posadasii infected mice, the concentrations of total phospholipid, SP-A and SP-D were 17 % (SEM 3.5, p < 0.001), 38 % (SEM 5.8, p < 0.001) and 4 % (SEM 1.3, p < 0.001) of those in lavage fluid samples of non-infected control mice, respectively. However, the concentrations of SP-A and SP-D remained unchanged in BALF samples of C. posadasii protected mice after immunization with FKS vaccine. Also, we found that both SP-A and SP-D bind to Coccidiodal antigens. CONCLUSION Our results suggest that the C. posadasii infection perturbs the pulmonary SP-A, SP-D, and phospholipids, potentially enabling the disease progression and promoting fungal dissemination.
Collapse
Affiliation(s)
- Shanjana Awasthi
- Department of Pathology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - D Mitchell Magee
- Department of Microbiology and Immunology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Center for Biomedical Inventions, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jacqueline J Coalson
- Department of Pathology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| |
Collapse
|
34
|
Abstract
BACKGROUND Viral acute respiratory infections represent a significant cause of morbidity and mortality across all ages, especially in patients with chronic underlying conditions. Although recognized anecdotally, the risks of viral infection to those children with chronic underlying conditions rendering them technology dependent, or to those children with neuromuscular disorders, have not been well studied. METHODS Studies of children with underlying conditions that result in technology dependence and those with neuromuscular disorders who required hospitalization for respiratory syncytial virus infection are reviewed. Additionally surveys of physician perceptions toward risk factors for severe viral illness and prevention in this population of patients are reported. Possible mechanisms to explain the increased risk of disease severity with viral respiratory infections are explored as well. RESULTS Current or recent use of supplemental oxygen is associated with more severe disease in children with chronic underlying conditions, especially bronchopulmonary dysplasia. Supplemental oxygen use may be a marker for several factors known to increase the severity of viral respiratory illnesses. Children with neuromuscular weakness are also likely to experience more severe disease, most likely resulting from compromised airway clearance. CONCLUSIONS Although the number of children who are technology-dependent or have severe neuromuscular weakness is small, their risk of severe disease after viral respiratory infection may be similar to that of premature infants or other high risk groups. A better understanding of the factors responsible for severe viral disease in these children would help create better strategies for treatment and prevention.
Collapse
Affiliation(s)
- Howard B Panitch
- University of Pennsylvania School of Medicine, Division of Pulmonary Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| |
Collapse
|
35
|
Grubor B, Gallup JM, Ramírez-Romero R, Bailey TB, Crouch EC, Brogden KA, Ackermann MR. Surfactant protein D expression in normal and pneumonic ovine lung. Vet Immunol Immunopathol 2004; 101:235-42. [PMID: 15350753 DOI: 10.1016/j.vetimm.2004.05.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2004] [Revised: 05/07/2004] [Accepted: 05/10/2004] [Indexed: 11/18/2022]
Abstract
Surfactant protein D (SP-D) is a collagenous calcium-dependent lectin constitutively expressed by alveolar type II pneumocytes and non-ciliated bronchiolar epithelial (Clara) cells. It binds to surface glycoconjugates expressed by a wide variety of microorganisms such as Gram-negative bacteria, influenza A virus, and various fungi, leading to pathogen inactivation or enhanced neutrophil and macrophage activity. Since a hallmark of bronchopneumonia is the initiation of inflammation in the bronchi and bronchoalveolar junction, we chose a classic ruminant model of bronchopneumonia caused by Mannheimia haemolytica to study the expression of SP-D within the bronchioles of infected lambs. Healthy weaned lambs were inoculated with either pyrogen-free saline (controls) or M. haemolytica intrabronchially using a fiber-optic bronchoscope. SP-D protein and mRNA expression in lung was detected by immunohistochemistry (IHC) and fluorogenic real-time relative quantitative reverse transcriptase polymerase chain reaction (real-time RT-PCR), respectively, during acute (1 day), subacute (15 days), and chronic (45 days) bronchopneumonia. At 15 and 45 days post-inoculation, areas of lung had peribronchiolar inflammatory cell infiltrate, epithelial cell hyperplasia, tortuosity of the airway lumens, and decreased intensity of SP-D protein staining and number of positive cells. The levels of SP-D mRNA were not increased or significantly altered by M. haemolytica infection when compared to control animals. In conclusion, cell-associated SP-D protein expression significantly decreases within hyperplastic epithelium of lungs from infected animals during chronic bronchopneumonia. Exhaustion of SP-D protein reserves and absence of SP-D gene upregulation during the progression of bacterial pneumonia into chronicity may result in failure to clear the pathogen from the lung and/or cause animals to be more susceptible to re-infection.
Collapse
Affiliation(s)
- Branka Grubor
- Department of Veterinary Pathology, College of Veterinary Medicine, Iowa State University, Veterinary Medicine, Ames, IA 50011-1250, USA.
| | | | | | | | | | | | | |
Collapse
|
36
|
Abstract
Pulmonary surfactant, a complex of lipids and proteins, maintains alveolar integrity and participates in the control of host defense and inflammation in the lung. Surfactant proteins A, B, C, and D are important components of surfactant that play diverse roles in the surface tension reducing as well as host defense and inflammation control functions of surfactant. Hyperoxia or exposure of cells/tissues to elevated levels of oxygen occurs when high levels of oxygen are used to treat a variety of pulmonary disorders that include respiratory distress syndrome of premature infants, emphysema, sarcoidosis, end-stage lung diseases, and others. The lung serves as a primary target organ in hyperoxia, and hyperoxic lung injury is characterized by pulmonary edema, inflammation, and respiratory failure. Hyperoxic lung injury is associated with significant changes in the expression of surfactant proteins that likely serves as an adaptive response to elevated oxygen levels. In most animal species studied, hyperoxia increases the tissue expression of surfactant protein mRNAs. A limited number of studies have indicated that the increased tissue expression of surfactant protein mRNAs is associated with increased levels of surfactant proteins in the bronchoalveolar lavage.
Collapse
Affiliation(s)
- Vijay Boggaram
- Department of Molecular Biology, The University of Texas Health Center at Tyler, Tyler, TX 75708-3154, USA.
| |
Collapse
|
37
|
George CLS, White ML, O'Neill ME, Thorne PS, Schwartz DA, Snyder JM. Altered surfactant protein A gene expression and protein metabolism associated with repeat exposure to inhaled endotoxin. Am J Physiol Lung Cell Mol Physiol 2003; 285:L1337-44. [PMID: 12922979 DOI: 10.1152/ajplung.00064.2003] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Chronically inhaled endotoxin, which is ubiquitous in many occupational and domestic environments, can adversely affect the respiratory system resulting in an inflammatory response and decreased lung function. Surfactant-associated protein A (SP-A) is part of the lung innate immune system and may attenuate the inflammatory response in various types of lung injury. Using a murine model to mimic occupational exposures to endotoxin, we hypothesized that SP-A gene expression and protein would be elevated in response to repeat exposure to inhaled grain dust and to purified lipopolysaccharide (LPS). Our results demonstrate that repeat exposure to inhaled endotoxin, either in the form of grain dust or purified LPS, results in increased whole lung SP-A gene expression and type II alveolar epithelial cell hyperplasia, whereas SP-A protein levels in lung lavage fluid are decreased. Furthermore, these alterations in SP-A gene activity and protein metabolism are dependent on an intact endotoxin signaling system.
Collapse
Affiliation(s)
- Caroline L S George
- Department of Pediatrics, Division of Pediatric Critical Care, University of Iowa, Iowa City, IA 52242, USA.
| | | | | | | | | | | |
Collapse
|
38
|
Morimoto Y, Ding L, Oyabu T, Kim H, Ogami A, Hirohashi M, Nagatomo H, Yamato H, Akiyama I, Hori H, Higashi T, Tanaka I. Gene Expression of Surfactant Protein‐A and Thyroid Transcription Factor‐1 in Lungs of Rats Exposed to Silicon‐Carbide Whisker
in vivo. J Occup Health 2003; 45:307-12. [PMID: 14646272 DOI: 10.1539/joh.45.307] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Intratracheal instillation studies have shown that exposure to silicon carbide whisker (SiCW), an asbestos substitute, produces pulmonary fibrotic changes, suggesting that SICW might have a fibrogenic potential. It is thought that surfactant protein is a good biomarker of lung injury and pulmonary fibrotic activity. In order to explore whether or not surfactant protein is associated with lung disorder through exposure to SiCW, we examined the expression of SP-A, SP-C and thyroid transcription factor-1 (TTF-1), a common transcription factor of SP-A and SP-C mRNA in lungs exposed to SiCW. Male Wistar rats were administered 2 mg or 10 mg of SiCW suspended in saline by a single intratracheal instillation, and were sacrificed at 3 d, 1 wk, 1 month, 3 months and 6 months after the intratracheal instillation. RNA was subsequently extracted from the lungs, and expression of SP-A, SP-C and TTF-1 mRNA from the lungs was observed by reverse transcription-polymerase chain reaction (RT-PCR). Exposure to 2 mg of SiCW showed a decrease in mRNA of SP-A and TTF-1 at 6 months, but exposure to 10 mg of SiCW showed decreased levels of SP-A and TTF-1 mRNA at 3 d and 6 months. On the other hand, 2 mg of SiCW increased the level of SP-C mRNA from 3 d to 3 months, and 10 mg of SiCW decreased the levels of SP-C mRNA in the rat lungs at 3 d, 1 month and 6 months. No clear tendency to the expression of SP-C was observed, but the patterns of expression of TTF-1 and SP-A were similar. These data suggest that SP-A and TTF-1 are associated with not only the acute phase but also the chronic phase in lungs exposed to SiCW.
Collapse
Affiliation(s)
- Yasuo Morimoto
- Institute of Industrial and Ecological Sciences, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi, Kitakyushu 807-8555, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Abstract
The preterm infant has functionally immature monocytes. The effects of common clinical interventions and exposures that might modulate inflammation were evaluated using monocytes isolated from blood of preterm lambs [130 d gestational age (GA)], near-term lambs (141 d GA), and adult sheep. Endotoxin stimulated hydrogen peroxide production by adult monocytes, but monocytes from 130-d and 141-d GA lambs had a reduced and delayed hydrogen peroxide production. Endotoxin did not decrease apoptosis of monocytes from 130-d and 141-d GA lambs but decreased apoptosis of adult monocytes. Dexamethasone increased the phagocytosis of bacteria and apoptotic cells by adult monocytes by 35% but not by monocytes from 130-d and 141-d GA lambs. Synthetic and natural surfactants and dipalmitoylphosphatidylcholine increased phagocytosis of apoptotic cells by monocytes from preterm, term, and adult sheep. Monocytes from preterm and term lambs differ from adult monocytes in tests of both the initiation and the resolution of inflammation. The reduced phagocytosis of apoptotic cells by monocytes from the preterm may contribute to prolonged inflammation in diseases such as bronchopulmonary dysplasia.
Collapse
Affiliation(s)
- Boris W Kramer
- Cincinnati Children's Hospital Medical Center, Division of Pulmonary Biology, Cincinnati, OH 45229-3039, USA
| | | | | |
Collapse
|
40
|
Cogo PE, Zimmermann LJI, Pesavento R, Sacchetto E, Burighel A, Rosso F, Badon T, Verlato G, Carnielli VP. Surfactant kinetics in preterm infants on mechanical ventilation who did and did not develop bronchopulmonary dysplasia. Crit Care Med 2003; 31:1532-8. [PMID: 12771629 DOI: 10.1097/01.ccm.0000063043.25167.99] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE To characterize surfactant kinetics in vivo in two groups of premature infants on different levels of mechanical ventilation and at different risk of developing bronchopulmonary dysplasia. DESIGN Controlled observational study in two independent groups of infants. SETTING Neonatal intensive care unit. PATIENTS Thirteen preterm infants (26 +/- 0.5 wks, birth weight 801 +/- 64 g) on high ventilatory setting and who finally all developed bronchopulmonary dysplasia (MechVentBPD), and eight (26 +/- 0.5 wks, birth weight 887 +/- 103 g) who had minimal or no lung disease and of whom none developed bronchopulmonary dysplasia (MechVentNoBPD). MEASUREMENTS AND MAIN RESULTS Endotracheal 13C-labeled dipalmitoyl-phosphatidylcholine was administered and subsequent measurements of the 13C enrichment of surfactant-disaturated phosphatidylcholine (DSPC) from serial tracheal aspirates were made by gas chromatography-mass spectrometry. We calculated disaturated phosphatidylcholine pharmacokinetic variables in terms of half-life and apparent pool size from the enrichment decay curves over time. DSPC concentration from tracheal aspirates was expressed as milligrams/milliliter epithelial lining fluid (ELF-DSPC). Data are presented as mean +/- se. In MechVentBPD infants vs. MechVentNoBPD, ELF-DSPC was much reduced, 2.9 +/- 0.6 vs. 9.4 +/- 3.0 mg/mL ELF (p =.03), half-life was shorter, 19.4 +/- 2.8 vs. 42.5 +/- 6.3 hrs (p =.002), and apparent pool size larger, 136 +/- 21 vs. 65.8 +/- 16.0 mg/kg (p =.057). In MechVentBPD, apparent DSPC pool size positively correlated with mean airway pressure x Fio(2) and inversely correlated with ELF-DSPC. ELF-DSPC was inversely correlated with mean airway pressure x Fio(2). No significant correlations were found in the MechVentNoBPD group. CONCLUSIONS MechVentBPD infants showed profound alteration of surfactant kinetics compared with preterm infants with minimal lung disease, and these alterations were correlated with severity of ventilatory support.
Collapse
Affiliation(s)
- Paola E Cogo
- Department of Pediatrics, University of Padova, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Beresford MW, Shaw NJ. Bronchoalveolar lavage surfactant protein a, B, and d concentrations in preterm infants ventilated for respiratory distress syndrome receiving natural and synthetic surfactants. Pediatr Res 2003; 53:663-70. [PMID: 12612206 DOI: 10.1203/01.pdr.0000054653.89527.f8] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Surfactant proteins (SPs) play an important role in surfactant metabolism and function. Understanding their relative contribution to clinical outcome remains incomplete. Exogenous surfactants differ in their SP content and physiologic effects. The aims of this study were to measure bronchoalveolar lavage (BAL) SP concentrations from preterm infants ventilated for respiratory distress syndrome and to assess their association with clinical outcome. Fifty preterm infants randomized to receive a natural or synthetic surfactant were lavaged each day for the first week and twice weekly thereafter using a standardized nonbronchoscopic technique. BAL SP-A, SP-B, and SP-D concentrations were measured using ELISA. Median BAL SP-A, SP-B, and SP-D concentrations for the whole cohort rose significantly during the first postnatal week (p < 0.05). SP-A concentration did not differ between outcome groups. BAL SP-B concentration rose significantly in lungs that were not supplemented with SP-B. Infants dying had significantly lower BAL SP-B concentrations on d 2 and 6 compared with survivors. BAL SP-D concentrations were significantly lower on d 2 and 3 among infants in supplemental oxygen on d 28 compared with those in air. BAL SP-A and SP-D concentrations did not differ significantly between infants randomized to receive a natural or synthetic surfactant. Lower BAL SP-B and SP-D but not SP-A concentrations were associated with worse clinical prognosis.
Collapse
|
42
|
Janssen DJMT, Carnielli VP, Cogo PE, Seidner SR, Luijendijk IHI, Wattimena JLD, Jobe AH, Zimmermann LJI. Surfactant phosphatidylcholine half-life and pool size measurements in premature baboons developing bronchopulmonary dysplasia. Pediatr Res 2002; 52:724-9. [PMID: 12409520 DOI: 10.1203/00006450-200211000-00019] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Because minimal information is available about surfactant metabolism in bronchopulmonary dysplasia, we measured half-lives and pool sizes of surfactant phosphatidylcholine in very preterm baboons recovering from respiratory distress syndrome and developing bronchopulmonary dysplasia, using stable isotopes, radioactive isotopes, and direct pool size measurements. Eight ventilated premature baboons received (2)H-DPPC (dipalmitoyl phosphatidylcholine) on d 5 of life, and radioactive (14)C-DPPC with a treatment dose of surfactant on d 8. After 14 d, lung pool sizes of saturated phosphatidylcholine were measured. Half-life of (2)H-DPPC (d 5) in tracheal aspirates was 28 +/- 4 h (mean +/- SEM). Half-life of radioactive DPPC (d 8) was 35 +/- 4 h. Saturated phosphatidylcholine pool size measured with stable isotopes on d 5 was 129 +/- 14 micro mol/kg, and 123 +/- 11 micro mol/kg on d 14 at autopsy. Half-lives were comparable to those obtained at d 0 and d 6 in our previous baboon studies. We conclude that surfactant metabolism does not change during the early development of bronchopulmonary dysplasia, more specifically, the metabolism of exogenous surfactant on d 8 is similar to that on the day of birth. Surfactant pool size is low at birth, increases after surfactant therapy, and is kept constant during the first 2 wk of life by endogenous surfactant synthesis. Measurements with stable isotopes are comparable to measurements with radioactive tracers and measurements at autopsy.
Collapse
Affiliation(s)
- Daphne J M T Janssen
- Department of Pediatrics/Neonatology, Sophia's Children's Hospital/Erasmus University Rotterdam, Rotterdam, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Ikegami M, Jobe AH. Postnatal lung inflammation increased by ventilation of preterm lambs exposed antenatally to Escherichia coli endotoxin. Pediatr Res 2002; 52:356-62. [PMID: 12193667 DOI: 10.1203/00006450-200209000-00008] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Chorioamnionitis resulting in exposure of the fetal lung to inflammation is frequent before preterm delivery. The initiation of mechanical ventilation in the preterm recruits granulocytes to the lungs and increases proinflammatory cytokine expression in the lungs. We hypothesized that when the prematurely born newborn with chorioamnionitis was ventilated, inflammation would increase. Therefore, we asked whether inflammatory exposure to the fetal lung caused by intra-amniotic endotoxin (10 mg, Escherichia coli 055:beta 5) given at 100 d gestation would alter the inflammatory responses to the mechanical ventilation in surfactant-treated preterm lambs delivered at 130 d gestation. Cells in alveolar washes, proinflammatory cytokine expression, and surfactant protein mRNA expression were not different for saline and endotoxin exposed lambs that were not ventilated. The endotoxin- and saline-exposed control animals had similar lung function for 6 h of ventilation. Bronchoalveolar lavage fluid from the ventilated and antenatal endotoxin-exposed animals contained 5.7 times more monocytes, 12 times more lymphocytes, and a nonsignificant increase in neutrophils. Cells from the bronchoalveolar lavage fluid expressed 3-fold more IL-6 and IL-8 mRNA than did cells from the saline exposed comparison animals. An antenatal exposure of the fetal lung to endotoxin enhanced the subsequent inflammatory response of the ventilated preterm lung.
Collapse
Affiliation(s)
- Machiko Ikegami
- Cincinnati Children's Hospital Medical Center, Division of Pulmonary Biology, Cincinnati, Ohio 45229-3039, USA.
| | | |
Collapse
|
44
|
Moss TJM, Newnham JP, Willett KE, Kramer BW, Jobe AH, Ikegami M. Early gestational intra-amniotic endotoxin: lung function, surfactant, and morphometry. Am J Respir Crit Care Med 2002; 165:805-11. [PMID: 11897648 DOI: 10.1164/ajrccm.165.6.2108053] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
We determined the effects in preterm lambs of endotoxin-induced inflammation at early gestational ages on lung function and structure and on the surfactant system. Pregnant ewes were randomized to one of five intra-amniotic endotoxin (Escherichia coli 055:B5) groups: 1 mg injected at 60 days of gestation, 1 mg at 80 days, 1 mg at 100 days, 1 mg at 60 days plus 100 days, or 0.6 mg/ day infused from Day 80 to Day 108. Control lambs received saline treatments. At 125 days, lung function was improved in all endotoxin groups. Marked increases in saturated phosphatidylcholine in lung tissue but not alveolar lavage samples were seen in all endotoxin groups except the 60- plus 100-day group. Surfactant protein mRNA and protein pool sizes were affected differently according to the timing of endotoxin treatment, but a large increase in the amount of mature surfactant protein B in alveolar lavage samples was observed in all endotoxin groups. Lung-to-body weight ratio, alveolar number, total surface area, and alveolar wall thickness were reduced by 80- to 108-day endotoxin. Intra-amniotic inflammatory stimuli in early gestation can alter pulmonary development, with the net effect of improving preterm lung function, despite changes in surfactant and lung growth that are similar to changes in the lungs of ventilated animals developing bronchopulmonary dysplasia.
Collapse
Affiliation(s)
- Timothy J M Moss
- School of Women's and Infants' Health and Centre for Child Health Research, University of Western Australia, Perth, Australia.
| | | | | | | | | | | |
Collapse
|
45
|
LeVine AM, Hartshorn K, Elliott J, Whitsett J, Korfhagen T. Absence of SP-A modulates innate and adaptive defense responses to pulmonary influenza infection. Am J Physiol Lung Cell Mol Physiol 2002; 282:L563-72. [PMID: 11839553 DOI: 10.1152/ajplung.00280.2001] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Mice lacking surfactant protein SP-A [SP-A(-/-)] and wild type SP-A(+/+) mice were infected with influenza A virus (IAV) by intranasal instillation. Decreased clearance of IAV was observed in SP-A(-/-) mice and was associated with increased pulmonary inflammation. Treatment of SP-A(-/-) mice with exogenous SP-A enhanced viral clearance and decreased lung inflammation. Uptake of IAV by alveolar macrophages was similar in SP-A(-/-) and SP-A(+/+) mice. Myeloperoxidase activity was reduced in isolated bronchoalveolar lavage neutrophils from SP-A(-/-) mice. B lymphocytes and activated T lymphocytes were increased in the lung and spleen, whereas T helper (Th) 1 responses were increased [interferon-gamma, interleukin (IL)-2, and IgG(2a)] and Th2 responses were decreased (IL-4, and IL-10, and IgG(1)) in the lungs of SP-A(-/-) mice 7 days after IAV infection. In the absence of SP-A, impaired viral clearance was associated with increased lung inflammation, decreased neutrophil myeloperoxidase activity, and increased Th1 responses. Because the airway is the usual portal of entry for IAV and other respiratory pathogens, SP-A is likely to play a role in innate defense and adaptive immune responses to IAV.
Collapse
Affiliation(s)
- Ann Marie LeVine
- Division of Pulmonary Biology, Children's Hospital Medical Center, Cincinnati, Ohio 45229-3039, USA.
| | | | | | | | | |
Collapse
|
46
|
Klein JM, McCarthy TA, Dagle JM, Snyder JM. Antisense inhibition of surfactant protein A decreases tubular myelin formation in human fetal lung in vitro. Am J Physiol Lung Cell Mol Physiol 2002; 282:L386-93. [PMID: 11839531 DOI: 10.1152/ajplung.00410.2000] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Surfactant protein A (SP-A) is the most abundant of the surfactant-associated proteins. SP-A is involved in the formation of tubular myelin, the modulation of the surface tension-reducing properties of surfactant phospholipids, the metabolism of surfactant phospholipids, and local pulmonary host defense. We hypothesized that elimination of SP-A would alter the regulation of SP-B gene expression and the formation of tubular myelin. Midtrimester human fetal lung explants were cultured for 3-5 days in the presence or absence of an antisense 18-mer phosphorothioate oligonucleotide (ON) complementary to SP-A mRNA. After 3 days in culture, SP-A mRNA was undetectable in antisense ON-treated explants. After 5 days in culture, levels of SP-A protein were also decreased by antisense treatment. SP-B mRNA levels were not affected by the antisense SP-A ON treatment. However, there was decreased tubular myelin formation in the antisense SP-A ON-treated tissue. We conclude that selective elimination of SP-A mRNA and protein results in a decrease in tubular myelin formation in human fetal lung without affecting SP-B mRNA. We speculate that SP-A is critical to the formation of tubular myelin during human lung development and that the regulation of SP-B gene expression is independent of SP-A gene expression.
Collapse
Affiliation(s)
- Jonathan M Klein
- Departments of Pediatrics, University of Iowa, Iowa City, Iowa 52242-1083, USA.
| | | | | | | |
Collapse
|
47
|
Kramer BW, Ikegami M, Jobe AH. Intratracheal endotoxin causes systemic inflammation in ventilated preterm lambs. Am J Respir Crit Care Med 2002; 165:463-9. [PMID: 11850337 DOI: 10.1164/ajrccm.165.4.2011118] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Intratracheal endotoxin causes acute inflammation in the adult lung, and injurious styles of mechanical ventilation can result in systemic inflammation derived from the lungs. We asked how ventilated premature and near-term lungs responded to intratracheal endotoxin and if systemic inflammation occurred. Lambs delivered at 130 d gestational age (GA) were treated with surfactant or surfactant plus endotoxin (0.1 mg/kg or 10 mg/kg) (Escherichia coli, serotype O55:B5) and were ventilated for 6 h. Both endotoxin doses resulted in impaired gas exchange and systemic inflammation in the preterm lambs. Lambs at 141 d GA (term 146 d) were given either 10 mg/kg intratracheal endotoxin, 10 mg/kg endotoxin plus high tidal volume ventilation for the first 30 min of life, or 5 microg/kg endotoxin given intravenously. Endotoxin alone (10 mg/kg) caused lung inflammation but no systemic effects after 6 h of ventilation. Lambs given 10 mg/kg endotoxin plus high tidal volume ventilation or 5 microg/kg endotoxin intravenously had decreased gas exchange and systemic inflammation. Endotoxin was detected in the plasma of lambs at 130 d GA but not at 141 d GA. Inflammation in the lungs was more severe in preterm animals. Mechanical ventilation of the endotoxin-exposed preterm lung resulted in systemic effects at a low endotoxin dose and without high tidal volume ventilation.
Collapse
Affiliation(s)
- Boris W Kramer
- Children's Hospital Medical Center, Division of Pulmonary Biology, Cincinnati, Ohio 45229-3039, USA
| | | | | |
Collapse
|
48
|
LeVine AM, Whitsett JA, Hartshorn KL, Crouch EC, Korfhagen TR. Surfactant protein D enhances clearance of influenza A virus from the lung in vivo. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 167:5868-73. [PMID: 11698462 DOI: 10.4049/jimmunol.167.10.5868] [Citation(s) in RCA: 217] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Mice lacking surfactant protein surfactant protein D (SP-D(-/-)) and wild-type mice (SP-D(+/+)) were infected with influenza A virus (IAV) by intranasal instillation. IAV infection increased the endogenous SP-D concentration in wild-type mice. SP-D-deficient mice showed decreased viral clearance of the Phil/82 strain of IAV and increased production of inflammatory cytokines in response to viral challenge. However, the less glycosylated strain of IAV, Mem/71, which is relatively resistant to SP-D in vitro, was cleared efficiently from the lungs of SP-D(-/-) mice. Viral clearance of the Phil/82 strain of IAV and the cytokine response were both normalized by the coadministration of recombinant SP-D. Since the airway is the usual portal of entry for influenza A virus and other respiratory pathogens, SP-D is likely to play an important role in innate defense responses to IAV.
Collapse
Affiliation(s)
- A M LeVine
- Division of Pulmonary Biology, Children's Hospital Medical Center, Cincinnati, OH 45229, USA.
| | | | | | | | | |
Collapse
|
49
|
Abstract
Surfactant is a metabolically active assembly of phospholipids and surfactant-specific proteins that is essential for normal lung mechanics. The surfactant proteins SP-A and SP-D also have important innate host defense functions. Surfactant metabolism in the developing lung differs from the adult lung by having slower kinetics of secretion with a longer half-life and more efficient recycling. Ventilation styles that injure the lung also result in altered surfactant function.
Collapse
Affiliation(s)
- A H Jobe
- Division of Pulmonary Biology, Children's Hospital Medical Center, Cincinnati, Ohio, USA.
| | | |
Collapse
|
50
|
Abstract
This review article emphasizes the critical role of nonhuman primates (NHPs) in biomedical research. It focuses on the most recent contributions that NHPs have made to the understanding, treatment, and prevention of important infectious diseases (e.g., acquired immunodeficiency syndrome, hepatitis, malaria) and chronic degenerative disorders of the central nervous system (e.g., Parkinson's and Alzheimer's diseases). The close phylogenetic relation of NHPs to humans not only opens avenues for testing the safety and efficacy of new drugs and vaccines but also offers promise for evaluating the potential of new gene-based treatments for human infectious and genetic diseases.
Collapse
Affiliation(s)
- L R Sibal
- Foundation for Biomedical Research, Washington, D.C. USA
| | | |
Collapse
|