1
|
Sharma R, Tiwari A, Kho AT, Celedón JC, Weiss ST, Tantisira KG, McGeachie MJ. Systems Genomics Reveals microRNA Regulation of ICS Response in Childhood Asthma. Cells 2023; 12:1505. [PMID: 37296627 PMCID: PMC10309175 DOI: 10.3390/cells12111505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/29/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
BACKGROUND Asthmatic patients' responses to inhaled corticosteroids (ICS) are variable and difficult to quantify. We have previously defined a Cross-sectional Asthma STEroid Response (CASTER) measure of ICS response. MicroRNAs (miRNAs) have shown strong effects on asthma and inflammatory processes. OBJECTIVE The purpose of this study was to identify key associations between circulating miRNAs and ICS response in childhood asthma. METHODS Small RNA sequencing in peripheral blood serum from 580 children with asthma on ICS treatment from The Genetics of Asthma in Costa Rica Study (GACRS) was used to identify miRNAs associated with ICS response using generalized linear models. Replication was conducted in children on ICS from the Childhood Asthma Management Program (CAMP) cohort. The association between replicated miRNAs and the transcriptome of lymphoblastoid cell lines in response to a glucocorticoid was assessed. RESULTS The association study on the GACRS cohort identified 36 miRNAs associated with ICS response at 10% false discovery rate (FDR), three of which (miR-28-5p, miR-339-3p, and miR-432-5p) were in the same direction of effect and significant in the CAMP replication cohort. In addition, in vitro steroid response lymphoblastoid gene expression analysis revealed 22 dexamethasone responsive genes were significantly associated with three replicated miRNAs. Furthermore, Weighted Gene Co-expression Network Analysis (WGCNA) revealed a significant association between miR-339-3p and two modules (black and magenta) of genes associated with immune response and inflammation pathways. CONCLUSION This study highlighted significant association between circulating miRNAs miR-28-5p, miR-339-3p, and miR-432-5p and ICS response. miR-339-3p may be involved in immune dysregulation, which leads to a poor response to ICS treatment.
Collapse
Affiliation(s)
- Rinku Sharma
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Anshul Tiwari
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37235, USA
| | - Alvin T. Kho
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Computational Health Informatics Program, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Juan C. Celedón
- Division of Pediatric Pulmonary Medicine, UPMC Children’s Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Scott T. Weiss
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Kelan G. Tantisira
- Division of Pediatric Respiratory Medicine, University of California San Diego, Rady Children’s Hospital, San Diego, CA 92123, USA
| | - Michael J. McGeachie
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
2
|
Godbole NM, Chowdhury AA, Chataut N, Awasthi S. Tight Junctions, the Epithelial Barrier, and Toll-like Receptor-4 During Lung Injury. Inflammation 2022; 45:2142-2162. [PMID: 35779195 PMCID: PMC9649847 DOI: 10.1007/s10753-022-01708-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/31/2022] [Accepted: 06/13/2022] [Indexed: 11/25/2022]
Abstract
Lung epithelium is constantly exposed to the environment and is critically important for the orchestration of initial responses to infectious organisms, toxins, and allergic stimuli, and maintenance of normal gaseous exchange and pulmonary function. The integrity of lung epithelium, fluid balance, and transport of molecules is dictated by the tight junctions (TJs). The TJs are formed between adjacent cells. We have focused on the topic of the TJ structure and function in lung epithelial cells. This review includes a summary of the last twenty years of literature reports published on the disrupted TJs and epithelial barrier in various lung conditions and expression and regulation of specific TJ proteins against pathogenic stimuli. We discuss the molecular signaling and crosstalk among signaling pathways that control the TJ structure and function. The Toll-like receptor-4 (TLR4) recognizes the pathogen- and damage-associated molecular patterns released during lung injury and inflammation and coordinates cellular responses. The molecular aspects of TLR4 signaling in the context of TJs or the epithelial barrier are not fully known. We describe the current knowledge and possible networking of the TLR4-signaling with cellular and molecular mechanisms of TJs, lung epithelial barrier function, and resistance to treatment strategies.
Collapse
Affiliation(s)
- Nachiket M Godbole
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, 1110 N. Stonewall Avenue, Oklahoma City, OK, 73117, USA
| | - Asif Alam Chowdhury
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, 1110 N. Stonewall Avenue, Oklahoma City, OK, 73117, USA
| | - Neha Chataut
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, 1110 N. Stonewall Avenue, Oklahoma City, OK, 73117, USA
| | - Shanjana Awasthi
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, 1110 N. Stonewall Avenue, Oklahoma City, OK, 73117, USA.
| |
Collapse
|
3
|
Caramori G, Nucera F, Mumby S, Lo Bello F, Adcock IM. Corticosteroid resistance in asthma: Cellular and molecular mechanisms. Mol Aspects Med 2022; 85:100969. [PMID: 34090658 DOI: 10.1016/j.mam.2021.100969] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 05/19/2021] [Accepted: 05/21/2021] [Indexed: 12/17/2022]
Abstract
Inhaled glucocorticoids (GCs) are drugs widely used as treatment for asthma patients. They prevent the recruitment and activation of lung immune and inflammatory cells and, moreover, have profound effects on airway structural cells to reverse the effects of disease on airway inflammation. GCs bind to a specific receptor, the glucocorticoid receptor (GR), which is a member of the nuclear receptor superfamily and modulates pro- and anti-inflammatory gene transcription through a number of distinct and complementary mechanisms. Targets genes include many pro-inflammatory mediators such as chemokines, cytokines, growth factors and their receptors. Inhaled GCs are very effective for most asthma patients with little, if any, systemic side effects depending upon the dose. However, some patients show poor asthma control even after the administration of high doses of topical or even systemic GCs. Several mechanisms relating to inflammation have been considered to be responsible for the onset of the relative GC resistance observed in these patients. In these patients, the side-effect profile of GCs prevent continued use of high doses and new drugs are needed. Targeting the defective pathways associated with GC function in these patients may also reactivate GC responsiveness.
Collapse
Affiliation(s)
- Gaetano Caramori
- Pneumologia, Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali (BIOMORF), Università di Messina, Messina, Italy.
| | - Francesco Nucera
- Pneumologia, Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali (BIOMORF), Università di Messina, Messina, Italy
| | - Sharon Mumby
- National Heart and Lung Institute, Imperial College London and the NIHR Imperial Biomedical Research Centre, London, UK
| | - Federica Lo Bello
- Pneumologia, Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali (BIOMORF), Università di Messina, Messina, Italy
| | - Ian M Adcock
- National Heart and Lung Institute, Imperial College London and the NIHR Imperial Biomedical Research Centre, London, UK.
| |
Collapse
|
4
|
Su XM, Ren Y, Li ML, Bai SY, Yu N, Kong LF, Kang J. Proteomics profiling asthma induced-lysine acetylation. EXCLI JOURNAL 2020; 19:734-744. [PMID: 32636726 PMCID: PMC7332788 DOI: 10.17179/excli2019-1508] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 05/25/2020] [Indexed: 12/24/2022]
Abstract
Asthma is a chronic inflammatory disease that has been extensively studied for many years. However, finding a complete cure remains a significant challenge. Protein acetylation, especially histone acetylation, plays a significant role in the anti-asthma process. Histone deacetylation inhibitors (HDACi) have been shown to have a curative effect on asthma in clinical practice. An asthmatic mouse model was created by ovalbumin induction. Proteome and acetylproteome analysis were performed on lung tissues. HDACi were tested in the asthmatic mice. A total of 5346 proteins and 581 acetylation sites were identified, among which 154 proteins and 68 acetylation peptides were significantly altered by asthma. Many activated and deactivated processes, pathways, and protein groups were identified through bioinformatics analysis. Sequence motif preference analysis gave rise to a novel Kac-related core histone region, -KAXXK-, which was postulated as a key regulatory unit of histone acetylation. Asthma involves a variety of proteome dynamics and is controlled by protein lysine acetylation through the core motif -KAXXK-. These findings provide novel avenues to target and treat asthma.
Collapse
Affiliation(s)
- Xin-Ming Su
- Department of Pulmonary and Critical Care Medicine, Institute of Respiratory Diseases, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Yuan Ren
- Department of Pulmonary and Critical Care Medicine, Institute of Respiratory Diseases, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Meng-Lu Li
- Department of Pulmonary and Critical Care Medicine, Institute of Respiratory Diseases, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Shi-Yao Bai
- Department of Pulmonary and Critical Care Medicine, Institute of Respiratory Diseases, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Na Yu
- Department of Pulmonary and Critical Care Medicine, Institute of Respiratory Diseases, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Ling-Fei Kong
- Department of Pulmonary and Critical Care Medicine, Institute of Respiratory Diseases, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Jian Kang
- Department of Pulmonary and Critical Care Medicine, Institute of Respiratory Diseases, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, China
| |
Collapse
|
5
|
Barnes PJ. Kinases as Novel Therapeutic Targets in Asthma and Chronic Obstructive Pulmonary Disease. Pharmacol Rev 2017; 68:788-815. [PMID: 27363440 DOI: 10.1124/pr.116.012518] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Multiple kinases play a critical role in orchestrating the chronic inflammation and structural changes in the respiratory tract of patients with asthma and chronic obstructive pulmonary disease (COPD). Kinases activate signaling pathways that lead to contraction of airway smooth muscle and release of inflammatory mediators (such as cytokines, chemokines, growth factors) as well as cell migration, activation, and proliferation. For this reason there has been great interest in the development of kinase inhibitors as anti-inflammatory therapies, particular where corticosteroids are less effective, as in severe asthma and COPD. However, it has proven difficult to develop selective kinase inhibitors that are both effective and safe after oral administration and this has led to a search for inhaled kinase inhibitors, which would reduce systemic exposure. Although many kinases have been implicated in inflammation and remodeling of airway disease, very few classes of drug have reached the stage of clinical studies in these diseases. The most promising drugs are p38 MAP kinases, isoenzyme-selective PI3-kinases, Janus-activated kinases, and Syk-kinases, and inhaled formulations of these drugs are now in development. There has also been interest in developing inhibitors that block more than one kinase, because these drugs may be more effective and with less risk of losing efficacy with time. No kinase inhibitors are yet on the market for the treatment of airway diseases, but as kinase inhibitors are improved from other therapeutic areas there is hope that these drugs may eventually prove useful in treating refractory asthma and COPD.
Collapse
Affiliation(s)
- Peter J Barnes
- National Heart and Lung Institute, Imperial College, London, United Kingdom
| |
Collapse
|
6
|
Hardy RS, Doig CL, Hussain Z, O'Leary M, Morgan SA, Pearson MJ, Naylor A, Jones SW, Filer A, Stewart PM, Buckley CD, Lavery GG, Cooper MS, Raza K. 11β-Hydroxysteroid dehydrogenase type 1 within muscle protects against the adverse effects of local inflammation. J Pathol 2016; 240:472-483. [PMID: 27578244 PMCID: PMC5111591 DOI: 10.1002/path.4806] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 08/01/2016] [Accepted: 08/19/2016] [Indexed: 12/11/2022]
Abstract
Muscle wasting is a common feature of inflammatory myopathies. Glucocorticoids (GCs), although effective at suppressing inflammation and inflammatory muscle loss, also cause myopathy with prolonged administration. 11β-Hydroxysteroid dehydrogenase type 1 (11β-HSD1) is a bidirectional GC-activating enzyme that is potently upregulated by inflammation within mesenchymal-derived tissues. We assessed the regulation of this enzyme with inflammation in muscle, and examined its functional impact on muscle. The expression of 11β-HSD1 in response to proinflammatory stimuli was determined in a transgenic murine model of chronic inflammation (TNF-Tg) driven by overexpression of tumour necrosis factor (TNF)-α within tissues, including muscle. The inflammatory regulation and functional consequences of 11β-HSD1 expression were examined in primary cultures of human and murine myotubes and human and murine muscle biopsies ex vivo. The contributions of 11β-HSD1 to muscle inflammation and wasting were assessed in vivo with the TNF-Tg mouse on an 11β-HSD1 null background. 11β-HSD1 was significantly upregulated within the tibialis anterior and quadriceps muscles from TNF-Tg mice. In human and murine primary myotubes, 11β-HSD1 expression and activity were significantly increased in response to the proinflammatory cytokine TNF-α (mRNA, 7.6-fold, p < 0.005; activity, 4.1-fold, p < 0.005). Physiologically relevant levels of endogenous GCs activated by 11β-HSD1 suppressed proinflammatory cytokine output (interkeukin-6, TNF-α, and interferon-γ), but had little impact on markers of muscle wasting in human myotube cultures. TNF-Tg mice on an 11β-11β-HSD1 knockout background developed greater muscle wasting than their TNF-Tg counterparts (27.4% less; p < 0.005), with smaller compacted muscle fibres and increased proinflammatory gene expression relative to TNF-Tg mice with normal 11β-HSD1 activity. This study demonstrates that inflammatory stimuli upregulate 11β-HSD1 expression and GC activation within muscle. Although concerns have been raised that excess levels of GCs may be detrimental to muscle, in this inflammatory TNF-α-driven model, local endogenous GC activation appears to be an important anti-inflammatory response that protects against inflammatory muscle wasting in vivo. © 2016 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Rowan S Hardy
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK.,Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK.,Centre for Endocrinology Diabetes and Metabolism, Birmingham Health Partners, Edgbaston, Birmingham, UK
| | - Craig L Doig
- Centre for Endocrinology Diabetes and Metabolism, Birmingham Health Partners, Edgbaston, Birmingham, UK
| | - Zahrah Hussain
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK.,Centre for Endocrinology Diabetes and Metabolism, Birmingham Health Partners, Edgbaston, Birmingham, UK
| | - Mary O'Leary
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - Stuart A Morgan
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK.,Centre for Endocrinology Diabetes and Metabolism, Birmingham Health Partners, Edgbaston, Birmingham, UK
| | - Mark J Pearson
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - Amy Naylor
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - Simon W Jones
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - Andrew Filer
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - Paul M Stewart
- Faculty of Medicine and Health, School of Medicine, University of Leeds, Leeds, UK
| | | | - Gareth G Lavery
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK.,Centre for Endocrinology Diabetes and Metabolism, Birmingham Health Partners, Edgbaston, Birmingham, UK
| | - Mark S Cooper
- ANZAC Research Institute, University of Sydney, Sydney, Australia
| | - Karim Raza
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK.,Sandwell and West Birmingham Hospitals NHS Trust, Birmingham, UK
| |
Collapse
|
7
|
Raju KRS, Ambhore NS, Mulukutla S, Gupta S, Murthy V, Kumar MNK, Madhunapantula SRV, Kuppuswamy G, Elango K. Salicylic acid derivatives as potential anti asthmatic agents using disease responsive drug delivery system for prophylactic therapy of allergic asthma. Med Hypotheses 2015; 87:75-9. [PMID: 26643666 DOI: 10.1016/j.mehy.2015.11.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 11/13/2015] [Accepted: 11/22/2015] [Indexed: 11/19/2022]
Abstract
Asthma is a multi-factorial and complicated lung disorder of the immune system which has expanded to a wider ambit unveiling its etiology to be omnipresent at both ends of the spectrum involving basic pharmacology and in-depth immunology. As asthma occurs through triggered activation of various immune cells due to different stimuli, it poses a great challenge to uncover specific targets for therapeutic interventions. Recent pharmacotherapeutic approaches for asthma have been focused on molecular targeting of transcription factors and their signaling pathways; mainly nucleus factor kappa B (NFκB) and its associated pathways which orchestrate the synthesis of pro-inflammatory cytokines (IL-1β, TNF-α, GM-CSF), chemokines (RANTES, MIP-1a, eotaxin), adhesion molecules (ICAM-1, VCAM-1) and inflammatory enzymes (cyclooxygenase-2 and iNOS). 5-aminosalicylic acid (5-ASA) and sodium salicylate are known to suppress NFκB activation by inhibiting inhibitor of kappa B kinase (IKκB). In order to target the transcription factor, a suitable carrier system for delivering the drug to the intracellular space is essential. 5-ASA and sodium salicylate loaded liposomes incorporated into PEG-4-acrylate and CCRGGC microgels (a polymer formed by crosslinking of trypsin sensitive peptide and PEG-4-acrylate) could probably suit the needs for developing a disease responsive drug delivery system which will serve as a prophylactic therapy for asthmatic patients.
Collapse
Affiliation(s)
| | - Nilesh S Ambhore
- Department of Pharmacology, JSS College of Pharmacy, Ootacamund, JSS University, Mysore, Tamilnadu 643001, India
| | - Shashank Mulukutla
- Department of Pharmacology, JSS College of Pharmacy, Ootacamund, JSS University, Mysore, Tamilnadu 643001, India
| | - Saurabh Gupta
- Department of Pharmacology, Indore Institute of Pharmacy, Indore, Madhya Pradesh, India
| | - Vishakantha Murthy
- Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| | - M N Kiran Kumar
- Department of Dermatology and Allergology, Allergy-Centrum-Charité, CCM, Charité - Universitätsmedizin, Berlin, Germany
| | | | - Gowthamarajan Kuppuswamy
- Department of Pharmaceutics, JSS College of Pharmacy, Ootacamund, JSS University, Mysore, Tamilnadu, India
| | - Kannan Elango
- Department of Pharmacology, JSS College of Pharmacy, Ootacamund, JSS University, Mysore, Tamilnadu 643001, India
| |
Collapse
|
8
|
Schuliga M. NF-kappaB Signaling in Chronic Inflammatory Airway Disease. Biomolecules 2015; 5:1266-83. [PMID: 26131974 PMCID: PMC4598751 DOI: 10.3390/biom5031266] [Citation(s) in RCA: 310] [Impact Index Per Article: 34.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 05/31/2015] [Accepted: 06/04/2015] [Indexed: 12/21/2022] Open
Abstract
Asthma and chronic obstructive pulmonary disease (COPD) are obstructive airway disorders which differ in their underlying causes and phenotypes but overlap in patterns of pharmacological treatments. In both asthma and COPD, oxidative stress contributes to airway inflammation by inducing inflammatory gene expression. The redox-sensitive transcription factor, nuclear factor (NF)-kappaB (NF-κB), is an important participant in a broad spectrum of inflammatory networks that regulate cytokine activity in airway pathology. The anti-inflammatory actions of glucocorticoids (GCs), a mainstay treatment for asthma, involve inhibition of NF-κB induced gene transcription. Ligand bound GC receptors (GRs) bind NF-κB to suppress the transcription of NF-κB responsive genes (i.e., transrepression). However, in severe asthma and COPD, the transrepression of NF-κB by GCs is negated as a consequence of post-translational changes to GR and histones involved in chromatin remodeling. Therapeutics which target NF-κB activation, including inhibitors of IκB kinases (IKKs) are potential treatments for asthma and COPD. Furthermore, reversing GR/histone acetylation shows promise as a strategy to treat steroid refractory airway disease by augmenting NF-κB transrepression. This review examines NF-κB signaling in airway inflammation and its potential as target for treatment of asthma and COPD.
Collapse
Affiliation(s)
- Michael Schuliga
- Lung Health Research Centre (LHRC), Department Pharmacology and Therapeutics, University of Melbourne, Grattan St., Parkville 3010, Victoria, Australia.
| |
Collapse
|
9
|
Astragalus extract attenuates allergic airway inflammation and inhibits nuclear factor κB expression in asthmatic mice. Am J Med Sci 2014; 346:390-5. [PMID: 23267235 DOI: 10.1097/maj.0b013e3182753175] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
BACKGROUND Astragalus membranaceus from traditional Chinese herbal medicines previously showed that it possesses a strong anti-inflammatory activity. The purpose of this study was to elucidate the effect of astragalus on allergen-induced airway inflammation and airway hyperresponsiveness and investigate its possible molecular mechanisms. METHODS Female BALB/c mice sensitized and challenged with ovalbumin (OVA) developed airway inflammation. Bronchoalveolar lavage fluid was assessed for total and differential cell counts and cytokine and chemokine levels. In vivo airway responsiveness to increasing concentrations of methacholine was measured 24 hours after the last OVA challenge using whole-body plethysmography. The expression of inhibitory κB-α and p65 in lung tissues was measured by Western blotting. RESULTS Astragalus extract attenuated lung inflammation, goblet cell hyperplasia and airway hyperresponsiveness in OVA-induced asthma and decreased eosinophils and lymphocytes in bronchoalveolar lavage fluid. In addition, astragalus extract treatment reduced expression of the key initiators of allergic T(H)2-associated cytokines (interleukin 4, interleukin 5) (P < 0.05). Furthermore, astragalus extract could inhibit nuclear factor κB (NF-κB) expression and suppress NF-κB translocation from the cytoplasm to the nucleus in lung tissue samples. CONCLUSIONS Taken together, our current study demonstrated a potential therapeutic value of astragalus extract in the treatment of asthma and it may act by inhibiting the expression of the NF-κB pathway.
Collapse
|
10
|
Randall MJ, Kostin SF, Burgess EJ, Hoyt LR, Ather JL, Lundblad LK, Poynter ME. Anti-inflammatory effects of levalbuterol-induced 11β-hydroxysteroid dehydrogenase type 1 activity in airway epithelial cells. Front Endocrinol (Lausanne) 2014; 5:236. [PMID: 25628603 PMCID: PMC4290686 DOI: 10.3389/fendo.2014.00236] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 12/18/2014] [Indexed: 12/24/2022] Open
Abstract
Airway epithelial NF-κB activation is observed in asthmatic subjects and is a cause of airway inflammation in mouse models of allergic asthma. Combination therapy with inhaled short-acting β2-agonists and corticosteroids significantly improves lung function and reduces inflammation in asthmatic subjects. Corticosteroids operate through a number of mechanisms to potently inhibit NF-κB activity. Since β2-agonists can induce expression of 11β-HSD1, which converts inactive 11-keto corticosteroids into active 11-hydroxy corticosteroids, thereby potentiating the effects of endogenous glucocorticoids, we examined whether this mechanism is involved in the inhibition of NF-κB activation induced by the β-agonist albuterol in airway epithelial cells. Treatment of transformed murine Club cells (MTCC) with (R)-albuterol (levalbuterol), but not with (S)- or a mixture of (R + S)- (racemic) albuterol, augmented mRNA expression of 11β-HSD1. MTCC were stably transfected with luciferase (luc) reporter constructs under transcriptional regulation by NF-κB (NF-κB/luc) or glucocorticoid response element (GRE/luc) consensus motifs. Stimulation of NF-κB/luc MTCC with lipopolysaccharide (LPS) or tumor necrosis factor-α (TNFα) induced luc activity, which was inhibited by pretreatment with (R)-, but not (S)- or racemic albuterol. Furthermore, pretreatment of GRE/luc MTCC with (R)-, but not with (S)- or racemic albuterol, augmented 11-keto corticosteroid (cortisone) induced luc activity, which was diminished by the 11β-HSD inhibitor glycyrrhetinic acid (18β-GA), indicating that there was a conversion of inactive 11-keto to active 11-hydroxy corticosteroids. LPS- and TNFα-induced NF-κB/luc activity was diminished in MTCC cells treated with a combination of cortisone and (R)-albuterol, an effect that was inhibited by 18β-GA. Finally, pretreatment of MTCC cells with the combination of cortisone and (R)-albuterol diminished LPS- and TNFα-induced pro-inflammatory cytokine production to an extent similar to that of dexamethasone. These results demonstrate that levalbuterol augments expression of 11β-HSD1 in airway epithelial cells, reducing LPS-induced NF-κB transcriptional activity and pro-inflammatory cytokine production through the conversion of inactive 11-keto corticosteroids into the active 11-hydroxy form in this cell type.
Collapse
Affiliation(s)
- Matthew J. Randall
- Division of Pulmonary Disease and Critical Care Medicine, Department of Medicine, College of Medicine, The University of Vermont, Burlington, VT, USA
| | - Shannon F. Kostin
- Division of Pulmonary Disease and Critical Care Medicine, Department of Medicine, College of Medicine, The University of Vermont, Burlington, VT, USA
| | - Edward J. Burgess
- Division of Pulmonary Disease and Critical Care Medicine, Department of Medicine, College of Medicine, The University of Vermont, Burlington, VT, USA
| | - Laura R. Hoyt
- Division of Pulmonary Disease and Critical Care Medicine, Department of Medicine, College of Medicine, The University of Vermont, Burlington, VT, USA
| | - Jennifer L. Ather
- Division of Pulmonary Disease and Critical Care Medicine, Department of Medicine, College of Medicine, The University of Vermont, Burlington, VT, USA
| | - Lennart K. Lundblad
- Division of Pulmonary Disease and Critical Care Medicine, Department of Medicine, College of Medicine, The University of Vermont, Burlington, VT, USA
| | - Matthew E. Poynter
- Division of Pulmonary Disease and Critical Care Medicine, Department of Medicine, College of Medicine, The University of Vermont, Burlington, VT, USA
- *Correspondence: Matthew E. Poynter, Division of Pulmonary Disease and Critical Care Medicine, Department of Medicine, College of Medicine, The University of Vermont, 89 Beaumont Avenue, Given Building E410A, Burlington, VT 05405, USA e-mail:
| |
Collapse
|
11
|
Aristoteles LRCRB, Righetti RF, Pinheiro NM, Franco RB, Starling CM, da Silva JCP, Pigati PA, Caperuto LC, Prado CM, Dolhnikoff M, Martins MA, Leick EA, Tibério IFLC. Modulation of the oscillatory mechanics of lung tissue and the oxidative stress response induced by arginase inhibition in a chronic allergic inflammation model. BMC Pulm Med 2013; 13:52. [PMID: 23947680 PMCID: PMC3751598 DOI: 10.1186/1471-2466-13-52] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2012] [Accepted: 08/07/2013] [Indexed: 02/07/2023] Open
Abstract
Background The importance of the lung parenchyma in the pathophysiology of asthma has previously been demonstrated. Considering that nitric oxide synthases (NOS) and arginases compete for the same substrate, it is worthwhile to elucidate the effects of complex NOS-arginase dysfunction in the pathophysiology of asthma, particularly, related to distal lung tissue. We evaluated the effects of arginase and iNOS inhibition on distal lung mechanics and oxidative stress pathway activation in a model of chronic pulmonary allergic inflammation in guinea pigs. Methods Guinea pigs were exposed to repeated ovalbumin inhalations (twice a week for 4 weeks). The animals received 1400 W (an iNOS-specific inhibitor) for 4 days beginning at the last inhalation. Afterwards, the animals were anesthetized and exsanguinated; then, a slice of the distal lung was evaluated by oscillatory mechanics, and an arginase inhibitor (nor-NOHA) or vehicle was infused in a Krebs solution bath. Tissue resistance (Rt) and elastance (Et) were assessed before and after ovalbumin challenge (0.1%), and lung strips were submitted to histopathological studies. Results Ovalbumin-exposed animals presented an increase in the maximal Rt and Et responses after antigen challenge (p<0.001), in the number of iNOS positive cells (p<0.001) and in the expression of arginase 2, 8-isoprostane and NF-kB (p<0.001) in distal lung tissue. The 1400 W administration reduced all these responses (p<0.001) in alveolar septa. Ovalbumin-exposed animals that received nor-NOHA had a reduction of Rt, Et after antigen challenge, iNOS positive cells and 8-isoprostane and NF-kB (p<0.001) in lung tissue. The activity of arginase 2 was reduced only in the groups treated with nor-NOHA (p <0.05). There was a reduction of 8-isoprostane expression in OVA-NOR-W compared to OVA-NOR (p<0.001). Conclusions In this experimental model, increased arginase content and iNOS-positive cells were associated with the constriction of distal lung parenchyma. This functional alteration may be due to a high expression of 8-isoprostane, which had a procontractile effect. The mechanism involved in this response is likely related to the modulation of NF-kB expression, which contributed to the activation of the arginase and iNOS pathways. The association of both inhibitors potentiated the reduction of 8-isoprostane expression in this animal model.
Collapse
Affiliation(s)
- Luciana R C R B Aristoteles
- Department of Clinical Medicine, School of Medicine, University of Sao Paulo, 01246-903 São Paulo, SP, Brazil.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Baty F, Rüdiger J, Miglino N, Kern L, Borger P, Brutsche M. Exploring the transcription factor activity in high-throughput gene expression data using RLQ analysis. BMC Bioinformatics 2013; 14:178. [PMID: 23742070 PMCID: PMC3686578 DOI: 10.1186/1471-2105-14-178] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Accepted: 05/30/2013] [Indexed: 12/14/2022] Open
Abstract
Background Interpretation of gene expression microarray data in the light of external information on both columns and rows (experimental variables and gene annotations) facilitates the extraction of pertinent information hidden in these complex data. Biologists classically interpret genes of interest after retrieving functional information from a subset of genes of interest. Transcription factors play an important role in orchestrating the regulation of gene expression. Their activity can be deduced by examining the presence of putative transcription factors binding sites in the gene promoter regions. Results In this paper we present the multivariate statistical method RLQ which aims to analyze microarray data where additional information is available on both genes and samples. As an illustrative example, we applied RLQ methodology to analyze transcription factor activity associated with the time-course effect of steroids on the growth of primary human lung fibroblasts. RLQ could successfully predict transcription factor activity, and could integrate various other sources of external information in the main frame of the analysis. The approach was validated by means of alternative statistical methods and biological validation. Conclusions RLQ provides an efficient way of extracting and visualizing structures present in a gene expression dataset by directly modeling the link between experimental variables and gene annotations.
Collapse
Affiliation(s)
- Florent Baty
- Division of Pulmonary Medicine, Cantonal Hospital St, Gallen, Rorschacherstrasse 95, CH-9007 St, Gallen, Switzerland.
| | | | | | | | | | | |
Collapse
|
13
|
Toledo AC, Sakoda CPP, Perini A, Pinheiro NM, Magalhães RM, Grecco S, Tibério IFLC, Câmara NO, Martins MA, Lago JHG, Prado CM. Flavonone treatment reverses airway inflammation and remodelling in an asthma murine model. Br J Pharmacol 2013; 168:1736-49. [PMID: 23170811 PMCID: PMC3605879 DOI: 10.1111/bph.12062] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Revised: 10/28/2012] [Accepted: 11/05/2012] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND AND PURPOSE Asthma is an inflammatory disease that involves airway hyperresponsiveness and remodelling. Flavonoids have been associated to anti-inflammatory and antioxidant activities and may represent a potential therapeutic treatment of asthma. Our aim was to evaluate the effects of the sakuranetin treatment in several aspects of experimental asthma model in mice. EXPERIMENTAL APPROACH Male BALB/c mice received ovalbumin (i.p.) on days 0 and 14, and were challenged with aerolized ovalbumin 1% on days 24, 26 and 28. Ovalbumin-sensitized animals received vehicle (saline and dimethyl sulfoxide, DMSO), sakuranetin (20 mg kg(-1) per mice) or dexamethasone (5 mg kg(-1) per mice) daily beginning from 24th to 29th day. Control group received saline inhalation and nasal drop vehicle. On day 29, we determined the airway hyperresponsiveness, inflammation and remodelling as well as specific IgE antibody. RANTES, IL-5, IL-4, Eotaxin, IL-10, TNF-α, IFN-γ and GMC-SF content in lung homogenate was performed by Bioplex assay, and 8-isoprostane and NF-kB activations were visualized in inflammatory cells by immunohistochemistry. KEY RESULTS We have demonstrated that sakuranetin treatment attenuated airway hyperresponsiveness, inflammation and remodelling; and these effects could be attributed to Th2 pro-inflammatory cytokines and oxidative stress reduction as well as control of NF-kB activation. CONCLUSIONS AND IMPLICATIONS These results highlighted the importance of counteracting oxidative stress by flavonoids in this asthma model and suggest sakuranetin as a potential candidate for studies of treatment of asthma.
Collapse
Affiliation(s)
- A C Toledo
- Departments of Medicine, School of Medicine, University de São Paulo, São Paulo, Brazil
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Sewald K, Braun A. Assessment of immunotoxicity using precision-cut tissue slices. Xenobiotica 2013; 43:84-97. [PMID: 23199366 PMCID: PMC3518294 DOI: 10.3109/00498254.2012.731543] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Revised: 09/12/2012] [Accepted: 09/14/2012] [Indexed: 01/06/2023]
Abstract
1.When the immune system encounters incoming infectious agents, this generally leads to immunity. The evoked immune response is usually robust, but can be severely perturbed by potentially harmful environmental agents such as chemicals, pharmaceuticals and allergens. 2.Immunosuppression, hypersensitivity and autoimmunity may occur due to changed immune activity. Evaluation of the immunotoxic potency of agents as part of risk assessment is currently established in vivo with animal models and in vitro with cell lines or primary cells. 3.Although in vivo testing is usually the most relevant situation for many agents, more and more in vitro models are being developed for assessment of immunotoxicity. In this context, hypersensitivity and immunosuppression are considered to be a primary focus for developing in vitro methods. Three-dimensional organotypic tissue models are also part of current research in immunotoxicology. 4.In recent years, there has been a revival of interest in organotypic tissue models. In the context of immunotoxicity testing, precision-cut lung slices in particular have been intensively studied. Therefore, this review is very much focused on pulmonary immunotoxicology. Respiratory hypersensitivity and inflammation are further highlighted aspects of this review. Immunotoxicity assessment currently is of limited use in other tissue models, which are therefore described only briefly within this review.
Collapse
Affiliation(s)
- Katherina Sewald
- Department of Airway Immunology , Fraunhofer ITEM, Hannover, Germany.
| | | |
Collapse
|
15
|
Shimizu K, Konno S, Ozaki M, Umezawa K, Yamashita K, Todo S, Nishimura M. Dehydroxymethylepoxyquinomicin (DHMEQ), a novel NF-kappaB inhibitor, inhibits allergic inflammation and airway remodelling in murine models of asthma. Clin Exp Allergy 2012; 42:1273-81. [PMID: 22805475 DOI: 10.1111/j.1365-2222.2012.04007.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND Dehydroxymethylepoxyquinomicin (DHMEQ) is a newly developed compound that inhibits nuclear factor κB activation and is reported to ameliorate animal models of various inflammatory diseases without significant adverse effects. Because nuclear factor κB is a transcription factor that plays a critical role in the pathophysiology of asthma, DHMEQ may be of therapeutic benefit in asthma. OBJECTIVE The purpose of this study was to evaluate the effects of DHMEQ on airway inflammation and remodelling in murine models of asthma. METHODS The BALB/c mice were sensitized and then challenged acutely or chronically with ovalbumin and administered DHMEQ intraperitoneally before each challenge. Inflammation of airways, lung histopathology and airway hyper responsiveness to methacholine challenge were evaluated. In addition, the effect of DHMEQ on production of cytokines and eotaxin-1 by murine splenocytes, human peripheral blood mononuclear cells and bronchial epithelial cells was investigated. RESULTS Airway hyper responsiveness was ameliorated in both acutely and chronically challenged models by treatment with DHMEQ. DHMEQ significantly reduced eosinophilic airway inflammation and levels of Th2 cytokines in bronchoalveolar lavage fluid in the acute model. It also inhibited parameters of airway remodelling including mucus production, peribronchial fibrosis and the expression of α-smooth muscle actin. Moreover, the production of Th2 cytokines from murine splenocytes and human peripheral blood mononuclear cells and the production of eotaxin-1 by bronchial epithelial cells were inhibited by DHMEQ. CONCLUSIONS AND CLINICAL RELEVANCE These results indicate that DHMEQ inhibits allergic airway inflammation and airway remodelling in murine models of asthma. DHMEQ may have therapeutic potential in the treatment of asthma.
Collapse
Affiliation(s)
- K Shimizu
- First Department of Medicine, Hokkaido University School of Medicine, Kita-ku, Sapporo, Japan
| | | | | | | | | | | | | |
Collapse
|
16
|
Tomita K, Caramori G, Ito K, Sano H, Lim S, Oates T, Cosio B, Chung KF, Tohda Y, Barnes PJ, Adcock IM. STAT6 expression in T cells, alveolar macrophages and bronchial biopsies of normal and asthmatic subjects. JOURNAL OF INFLAMMATION-LONDON 2012; 9:5. [PMID: 22401596 PMCID: PMC3364916 DOI: 10.1186/1476-9255-9-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2011] [Accepted: 03/09/2012] [Indexed: 02/05/2023]
Abstract
Background Asthma is characterised by increased numbers of Th2-like cells in the airways and IgE secretion. Generation of Th2 cells requires interleukin (IL)-4 and IL-13 acting through their specific receptors and activating the transcription factor, signal transducer and activator of transcription 6 (STAT6). STAT6 knockout mice fail to produce IgE, airway hyperresponsiveness and bronchoalveolar lavage eosinophilia after allergen sensitisation, suggesting a critical role for STAT6 in allergic responses. Methods We have investigated the expression of STAT6 in peripheral blood T-lymphocytes, alveolar macrophages and bronchial biopsies from 17 normal subjects and 18 mild-moderate steroid-naïve stable asthmatic patients. Results STAT6 expression was variable and was detected in T-lymphocytes, macrophages and bronchial epithelial cells from all subjects with no difference between normal and stable asthmatic subjects. Conclusions STAT6 expression in different cells suggests that it may be important in regulating the expression of not only Th2-like cytokines in T cells of man, but may also regulate STAT-inducible genes in alveolar macrophages and airway epithelial cells.
Collapse
Affiliation(s)
- Katsuyuki Tomita
- Department of Respiratory Medicine and Allergology, Kinki University School of Medicine, Osaka, Japan
| | - Gaetano Caramori
- Section of Respiratory Diseases, Department of Clinical and Experimental Medicine, Università di Ferrara, Ferrara, Italy.,Airway Disease Section, National Heart and Lung Institute, Imperial College of London, London, UK
| | - Kazuhiro Ito
- Airway Disease Section, National Heart and Lung Institute, Imperial College of London, London, UK
| | - Hiroyuki Sano
- Department of Respiratory Medicine and Allergology, Kinki University School of Medicine, Osaka, Japan
| | - Sam Lim
- Airway Disease Section, National Heart and Lung Institute, Imperial College of London, London, UK
| | - Timothy Oates
- Airway Disease Section, National Heart and Lung Institute, Imperial College of London, London, UK
| | - Borja Cosio
- Airway Disease Section, National Heart and Lung Institute, Imperial College of London, London, UK
| | - K Fan Chung
- Airway Disease Section, National Heart and Lung Institute, Imperial College of London, London, UK
| | - Yuji Tohda
- Department of Respiratory Medicine and Allergology, Kinki University School of Medicine, Osaka, Japan
| | - Peter J Barnes
- Airway Disease Section, National Heart and Lung Institute, Imperial College of London, London, UK
| | - Ian M Adcock
- Airway Disease Section, National Heart and Lung Institute, Imperial College of London, London, UK
| |
Collapse
|
17
|
Regulation of IkappaBalpha function and NF-kappaB signaling: AEBP1 is a novel proinflammatory mediator in macrophages. Mediators Inflamm 2010; 2010:823821. [PMID: 20396415 PMCID: PMC2855089 DOI: 10.1155/2010/823821] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2009] [Accepted: 01/12/2010] [Indexed: 02/08/2023] Open
Abstract
NF-κB comprises a family of transcription factors that are critically involved in various inflammatory processes. In this paper, the role of NF-κB in inflammation and atherosclerosis and the regulation of the NF-κB signaling pathway are summarized. The structure, function, and regulation of the NF-κB inhibitors, IκBα and IκBβ, are reviewed. The regulation of NF-κB activity by glucocorticoid receptor (GR) signaling and IκBα sumoylation is also discussed. This paper focuses on the recently reported regulatory function that adipocyte enhancer-binding protein 1 (AEBP1) exerts on NF-κB transcriptional activity in macrophages, in which AEBP1 manifests itself as a potent modulator of NF-κB via physical interaction with IκBα and a critical mediator of inflammation. Finally, we summarize the regulatory roles that recently identified IκBα-interacting proteins play in NF-κB signaling. Based on its proinflammatory roles in macrophages, AEBP1 is anticipated to serve as a therapeutic target towards the treatment of various inflammatory conditions and disorders.
Collapse
|
18
|
Li G, Wang D, Sun M, Li G, Hu J, Zhang Y, Yuan Y, Ji H, Chen N, Liu G. Discovery and optimization of novel 3-piperazinylcoumarin antagonist of chemokine-like factor 1 with oral antiasthma activity in mice. J Med Chem 2010; 53:1741-54. [PMID: 20099827 DOI: 10.1021/jm901652p] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Chemokine-like factor 1 (CKLF1) is a novel functional cytokine that acts through its receptor CC chemokine receptor 4 (CCR4). Activation of CCR4 by CKLF1 plays an important role in diseases such as asthma and multiple sclerosis. This article describes a cell-based screening assay using an FITC-labeled CCR4 agonist (CKLF1-C27), a CKLF1 peptide fragment. Screening of our in-stock small-molecule library identified a 3-piperazinylcoumarin analogue 1 (IC(50) = 4.36 x 10(-6) M) that led to the discovery of orally active compound 41 (IC(50) = 2.12 x 10(-8) M) through systematic optimization. Compound 41 blocked the calcium mobilization and chemotaxis induced by CKLF1-C27 and reduced the asthmatic pathologic changes in lung tissue of human CKLF1-transfected mice. Further studies indicated that compound 41 ameliorated pathological changes via inhibition of the NF-kappaB signal pathway.
Collapse
Affiliation(s)
- Gang Li
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 2 Nanwei Rd, Beijing 100050, PR China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Barnes PJ. Inhaled Corticosteroids. Pharmaceuticals (Basel) 2010; 3:514-540. [PMID: 27713266 PMCID: PMC4033967 DOI: 10.3390/ph3030514] [Citation(s) in RCA: 146] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2010] [Accepted: 03/02/2010] [Indexed: 11/16/2022] Open
Abstract
Inhaled corticosteroids (ICS) are the most effective controllers of asthma. They suppress inflammation mainly by switching off multiple activated inflammatory genes through reversing histone acetylation via the recruitment of histone deacetylase 2 (HDAC2). Through suppression of airway inflammation ICS reduce airway hyperresponsiveness and control asthma symptoms. ICS are now first-line therapy for all patients with persistent asthma, controlling asthma symptoms and preventing exacerbations. Inhaled long-acting β₂-agonists added to ICS further improve asthma control and are commonly given as combination inhalers, which improve compliance and control asthma at lower doses of corticosteroids. By contrast, ICS provide much less clinical benefit in COPD and the inflammation is resistant to the action of corticosteroids. This appears to be due to a reduction in HDAC2 activity and expression as a result of oxidative stress. ICS are added to bronchodilators in patients with severe COPD to reduce exacerbations. ICS, which are absorbed from the lungs into the systemic circulation, have negligible systemic side effects at the doses most patients require, although the high doses used in COPD has some systemic side effects and increases the risk of developing pneumonia.
Collapse
Affiliation(s)
- Peter J Barnes
- National Heart and Lung Institute, Imperial College, London, UK.
| |
Collapse
|
20
|
Alcorn JF, Ckless K, Brown AL, Guala AS, Kolls JK, Poynter ME, Irvin CG, van der Vliet A, Janssen-Heininger YMW. Strain-dependent activation of NF-kappaB in the airway epithelium and its role in allergic airway inflammation. Am J Physiol Lung Cell Mol Physiol 2009; 298:L57-66. [PMID: 19897746 DOI: 10.1152/ajplung.00037.2009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
NF-kappaB activation in the airway epithelium has been established as a critical pathway in ovalbumin (Ova)-induced airway inflammation in BALB/c mice (Poynter ME, Cloots R, van Woerkom T, Butnor KJ, Vacek P, Taatjes DJ, Irvin CG, Janssen-Heininger YM. J Immunol 173: 7003-7009, 2004). BALB/c mice are susceptible to the development of allergic airway disease, whereas other strains of mice, such as C57BL/6, are considered more resistant. The goal of the present study was to determine the proximal signals required for NF-kappaB activation in the airway epithelium in allergic airway disease and to unravel whether these signals are strain-dependent. Our previous studies, conducted in the BALB/c mouse background, demonstrated that transgenic mice expressing a dominant-negative version of IkappaBalpha in the airway epithelium (CC10-IkappaBalpha(SR)) were protected from Ova-induced inflammation. In contrast to these earlier observations, we demonstrate here that CC10-IkappaBalpha(SR) transgenic mice on the C57BL/6 background were not protected from Ova-induced allergic airway inflammation. Consistent with this finding, Ova-induced nuclear localization of the RelA subunit of NF-kappaB was not observed in C57BL/6 mice, in contrast to the marked nuclear presence of RelA in BALB/c mice. Evaluation of cytokine profiles in bronchoalveolar lavage demonstrated elevated expression of TNF-alpha in BALB/c mice compared with C57BL/6 mice after an acute challenge with Ova. Finally, neutralization of TNF-alpha by a blocking antibody prevented nuclear localization of RelA in BALB/c mice after Ova challenge. These data suggest that the mechanism of response of the airway epithelium of immunized C57BL/6 mice to antigen challenge is fundamentally different from that of immunized BALB/c mice and highlight the potential importance of TNF-alpha in regulating epithelial NF-kappaB activation in allergic airway disease.
Collapse
Affiliation(s)
- John F Alcorn
- Department of Pathology, Univ. of Vermont, HSRF Bldg., Rm. 216A, Burlington, VT 05405, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Uhl EW, Clarke TJ, Hogan RJ. Differential expression of nuclear factor-kappaB mediates increased pulmonary expression of tumor necrosis factor-alpha and virus-induced asthma. Viral Immunol 2009; 22:79-89. [PMID: 19326995 DOI: 10.1089/vim.2008.0083] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Infections with respiratory pathogens such as respiratory syncytial virus and rhinovirus have been associated with the development of long-term chronic airway disease. To better understand the events responsible for this clinical outcome, a rodent model of virus-induced chronic airway disease has been characterized. Upon infection with Sendai virus (parainfluenza virus type-1), Brown Norway (BN) rats develop an asthma-like clinical syndrome, while Fischer 344 (F344) rats fully recover. Our previous studies demonstrated that after infection, tumor necrosis factor-alpha (TNF-alpha) expression is substantially higher in BN rats compared to F344 rats, and this may at least partially mediate the virus-induced airway abnormalities. To investigate the underlying mechanism(s) for the increased TNF-alpha expression, the role of nuclear factor-kappaB (NF-kappaB), an important regulator of TNF-alpha gene transcription, was examined. Supershift electrophoretic mobility shift assays (EMSAs) indicate that normal F344 rats predominantly express the p65 subunit of NF-kappaB in the lungs, and virus infection temporarily increases expression of the p50 subunit. In contrast, normal BN rats have higher expression of the p50 subunit in the pulmonary tract. Upon infection, p50-subunit expression in BN rats increases to levels higher than those observed in virus-infected F344 rats. Interestingly, treatment of infected BN rats with dexamethasone at doses known to prevent virus-induced airway abnormalities increases pulmonary expression of the p65 subunit, and decreases TNF-alpha mRNA levels in the lungs. Furthermore, direct inhibition of TNF-alpha also increases pulmonary expression of p65 in virus-infected BN, but not F344, rats. Taken together, these results suggest that differential expression of NF-kappaB subunits may play an important role in the development of post-viral chronic airway abnormalities.
Collapse
Affiliation(s)
- Elizabeth W Uhl
- Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA.
| | | | | |
Collapse
|
22
|
|
23
|
Lee M, Kim S, Kwon OK, Oh SR, Lee HK, Ahn K. Anti-inflammatory and anti-asthmatic effects of resveratrol, a polyphenolic stilbene, in a mouse model of allergic asthma. Int Immunopharmacol 2009; 9:418-24. [PMID: 19185061 DOI: 10.1016/j.intimp.2009.01.005] [Citation(s) in RCA: 133] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2008] [Revised: 12/29/2008] [Accepted: 01/05/2009] [Indexed: 11/16/2022]
Abstract
Asthma is an inflammatory disease of the airways, and the current focus in managing asthma is the control of inflammation. Resveratrol (3,4,5-trihydroxystilbene) is a polyphenolic stilbene found in the skins of red fruits, including grapes, that may be responsible for some of the health benefits ascribed to consumption of red wine. We investigated the suppressive effects of resveratrol on asthmatic parameters such as cytokine release, eosinophilia, airway hyperresponsiveness, and mucus hypersecretion, in an OVA-induced allergic mouse model of asthma. Resveratrol significantly inhibited increases in T-helper-2-type cytokines such as IL-4 and IL-5 in plasma and bronchoalveolar lavage fluid (BALF), and also effectively suppressed airway hyperresponsiveness, eosinophilia, and mucus hypersecretion, in the asthmatic mouse model. The efficacy of resveratrol was similar to that of dexamethasone, a glucocorticoid used as a positive control. These results suggest that resveratrol may have applications in the treatment of bronchial asthma.
Collapse
Affiliation(s)
- Meeyoung Lee
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Yusung, Daejeon, Korea
| | | | | | | | | | | |
Collapse
|
24
|
Abstract
The lung disease of cystic fibrosis (CF) is characterized by a vicious cycle of airway obstruction, chronic bacterial infection, and vigorous inflammation, which ultimately results in bronchiectasis. Recognition that excessive and persistent inflammation is a key factor in lung destruction has prompted investigation into anti-inflammatory therapies. Although effective, the use of systemic corticosteroids has been limited by the unacceptable adverse effect profile. Inhaled corticosteroids (ICS) are a widely prescribed anti-inflammatory agent in CF, likely as a result of clinicians' familiarity with these agents and their excellent safety profile at low doses in asthmatic patients. However, while multiple studies are limited by small sample size and short duration, they consistently failed to demonstrate statistically or clinically significant benefits of ICS use in CF. This review provides an overview of the inflammatory response in CF, the mechanisms of action of corticosteroids, the safety of ICS, and the literature relevant to the use of ICS in CF.
Collapse
Affiliation(s)
- Kristie R Ross
- Department of Pediatrics, Division of Pulmonology, Case Western Reserve University School of Medicine, Rainbow Babies and Children's Hospital, Cleveland, Ohio, USA.
| | | | | |
Collapse
|
25
|
White SR, Fischer BM, Marroquin BA, Stern R. Interleukin-1beta mediates human airway epithelial cell migration via NF-kappaB. Am J Physiol Lung Cell Mol Physiol 2008; 295:L1018-27. [PMID: 18849440 DOI: 10.1152/ajplung.00065.2008] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Migration of airway epithelial cells (AEC) is a necessary component of airway mucosal repair after injury. The cytokine IL-1beta, present in airway inflammation, has protean effects on constituent cells within the mucosa, but its effects on epithelial repair are not known. We examined migration in differentiated primary human AEC grown in air-liquid interface culture for up to 3 wk and in the 16HBE14o(-) cell line. Wounds were created by mechanical abrasion and followed to closure using digital microscopy. Concurrent treatment with IL-1beta (<or=10 ng/ml) significantly accelerated migration in primary differentiated cells and in the 16HBE14o(-) cell line but did not accelerate migration in primary differentiated AEC collected from asthmatic donors. IL-1beta treatment did not augment phosphorylation of stress-activated protein kinases normally activated by mechanical injury, such as heat shock protein 27, ERK1/2, and JNK, and did not elicit phosphorylation of signal transducer and activator of transcription-3. However, introduction of a silencing RNA to block expression of the p65 component of NF-kappaB blocked IL-1beta-accelerated migration substantially. Our data demonstrate that IL-1beta accelerates migration of normal, but not asthmatic, differentiated AEC by a mechanism that requires activation of the NF-kappaB signaling complex and suggests a trophic role for this cytokine in airway epithelial repair after injury.
Collapse
Affiliation(s)
- Steven R White
- Univ. of Chicago, Section of Pulmonary and Critical Care Medicine, 5841 S. Maryland Ave., MC 6076, Chicago, IL 60637, USA.
| | | | | | | |
Collapse
|
26
|
Adams NP, Bestall JC, Lasserson TJ, Jones P, Cates CJ. Fluticasone versus placebo for chronic asthma in adults and children. Cochrane Database Syst Rev 2008:CD003135. [PMID: 18843640 DOI: 10.1002/14651858.cd003135.pub4] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
BACKGROUND Inhaled fluticasone propionate (FP) is a relatively new inhaled corticosteroid for the treatment of asthma. OBJECTIVES To assess efficacy and safety outcomes in studies that compared FP to placebo for treatment of chronic asthma. SEARCH STRATEGY We searched the Cochrane Airways Group Specialised Register (January 2008), reference lists of articles, contacted trialists and searched abstracts of major respiratory society meetings (1997-2006). SELECTION CRITERIA Randomised trials in children and adults comparing FP to placebo in the treatment of chronic asthma. Two reviewers independently assessed articles for inclusion and risk of bias. DATA COLLECTION AND ANALYSIS Two review authors extracted data. Quantitative analyses were undertaken using Review Manager software. MAIN RESULTS Eighty-six studies met the inclusion criteria, recruiting 16,160 participants. In non-oral steroid treated asthmatics with mild and moderate disease FP resulted in improvements from baseline compared with placebo across all dose ranges (100 to 1000 mcg/d) in FEV1 (between 0.1 to 0.43 litres); morning PEF (between 23 and 46 L/min); symptom scores (based on a standardised scale, between 0.44 and 0.7); reduction in rescue beta-2 agonist use (between 1 and 1.4 puffs/day). High dose FP increased the number of patients who could withdraw from prednisolone: FP 1000-1500 mcg/day Peto Odds Ratio 14.07 (95% CI 7.17 to 27.57). FP at all doses led to a greater likelihood of sore throat, hoarseness and oral Candidiasis. AUTHORS' CONCLUSIONS Doses of FP in the range 100-1000 mcg/day are effective. In most patients with mild-moderate asthma improvements with low dose FP are only a little less than those associated with high doses when compared with placebo. High dose FP appears to have worthwhile oral-corticosteroid reducing properties. FP use is accompanied by an increased likelihood of oropharyngeal side effects.
Collapse
Affiliation(s)
- Nick P Adams
- Respiratory Medicine, Worthing & Southlands NHS Trust, Worthing , UK.
| | | | | | | | | |
Collapse
|
27
|
Targeting the NF-kappaB pathway in asthma and chronic obstructive pulmonary disease. Pharmacol Ther 2008; 121:1-13. [PMID: 18950657 PMCID: PMC7172981 DOI: 10.1016/j.pharmthera.2008.09.003] [Citation(s) in RCA: 300] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2008] [Accepted: 09/09/2008] [Indexed: 11/23/2022]
Abstract
Asthma and chronic obstructive pulmonary disease are inflammatory lung disorders responsible for significant morbidity and mortality worldwide. While the importance of allergic responses in asthma is well known, respiratory viral and bacterial infections and pollutants especially cigarette smoke are important factors in the pathogenesis of both diseases. Corticosteroid treatment remains the first preference of treatment in either disease, however these therapies are not always completely effective, and are associated with side effects and steroid resistance. Due to such limitations, development of new treatments represents a major goal for both the pharmaceutical industry and academic researchers. There are now excellent reasons to promote NF-kappaB signalling intermediates and Rel family proteins as potential therapeutic targets for both asthma and chronic obstructive pulmonary disease. This notion is supported by the fact that much of the underlying inflammation of both diseases independent of stimuli, is mediated at least in part, by NF-kappaB mediated signalling events in several cell types. Also, a range of inhibitors of NF-kappaB signalling intermediates are now available, including DNA oligonucleotides and DNA-peptide molecules that act as NF-kappaB decoy sequences, small molecule inhibitors such as IKK-beta inhibitors, and proteasome inhibitors affecting NF-kappaB signalling, that have either shown promise in animal models or have begun clinical trials in other disorders. This review will focus on the role of NF-kappaB in both diseases, will discuss its suitability as a target, and will highlight recent key studies that support the potential of NF-kappaB as a therapeutic target in these two important inflammatory lung diseases.
Collapse
|
28
|
Vieira RP, de Andrade VF, Duarte ACS, Dos Santos ABG, Mauad T, Martins MA, Dolhnikoff M, Carvalho CRF. Aerobic conditioning and allergic pulmonary inflammation in mice. II. Effects on lung vascular and parenchymal inflammation and remodeling. Am J Physiol Lung Cell Mol Physiol 2008; 295:L670-9. [PMID: 18757522 DOI: 10.1152/ajplung.00465.2007] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Recent evidence suggests that asthma leads to inflammation and remodeling not only in the airways but also in pulmonary vessels and parenchyma. In addition, some studies demonstrated that aerobic training decreases chronic allergic inflammation in the airways; however, its effects on the pulmonary vessels and parenchyma have not been previously evaluated. Our objective was to test the hypothesis that aerobic conditioning reduces inflammation and remodeling in pulmonary vessels and parenchyma in a model of chronic allergic lung inflammation. Balb/c mice were sensitized at days 0, 14, 28, and 42 and challenged with ovalbumin (OVA) from day 21 to day 50. Aerobic training started on day 21 and continued until day 50. Pulmonary vessel and parenchyma inflammation and remodeling were evaluated by quantitative analysis of eosinophils and mononuclear cells and by collagen and elastin contents and smooth muscle thickness. Immunohistochemistry was performed to quantify the density of positive cells to interleukin (IL)-2, IL-4, IL-5, interferon-gamma, IL-10, monocyte chemotatic protein (MCP)-1, nuclear factor (NF)-kappaB p65, and insulin-like growth factor (IGF)-I. OVA exposure induced pulmonary blood vessels and parenchyma inflammation as well as increased expression of IL-4, IL-5, MCP-1, NF-kappaB p65, and IGF-I by inflammatory cells were reduced by aerobic conditioning. OVA exposure also induced an increase in smooth muscle thickness and elastic and collagen contents in pulmonary vessels, which were reduced by aerobic conditioning. Aerobic conditioning increased the expression of IL-10 in sensitized mice. We conclude that aerobic conditioning decreases pulmonary vascular and parenchymal inflammation and remodeling in this experimental model of chronic allergic lung inflammation in mice.
Collapse
Affiliation(s)
- Rodolfo P Vieira
- School of Medicine, Univesity of São Paulo, 01246-903, São Paulo, SP, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Henjakovic M, Sewald K, Switalla S, Kaiser D, Müller M, Veres TZ, Martin C, Uhlig S, Krug N, Braun A. Ex vivo testing of immune responses in precision-cut lung slices. Toxicol Appl Pharmacol 2008; 231:68-76. [PMID: 18504053 DOI: 10.1016/j.taap.2008.04.003] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2008] [Revised: 04/02/2008] [Accepted: 04/02/2008] [Indexed: 10/24/2022]
Abstract
The aim of this study was the establishment of precision-cut lung slices (PCLS) as a suitable ex vivo alternative approach to animal experiments for investigation of immunomodulatory effects. For this purpose we characterized the changes of cytokine production and the expression of cell surface markers after incubation of PCLS with immunoactive substances lipopolysaccharide (LPS), macrophage-activating lipopeptide-2 (MALP-2), interferon gamma (IFNgamma), and dexamethasone. Viability of PCLS from wild-type and CD11c-enhanced yellow fluorescent protein (CD11-EYFP)-transgenic mice was controlled by measurement of lactate dehydrogenase (LDH) enzyme activity and live/dead fluorescence staining using confocal microscopy. Cytokines and chemokines were detected with Luminex technology and ELISA. Antigen presenting cell (APC) markers were investigated in living mouse PCLS in situ using confocal microscopy. LPS triggered profound pro-inflammatory effects in PCLS. Dexamethasone prevented LPS-induced production of cytokines/chemokines such as interleukin (IL)-5, IL-1alpha, TNFalpha, IL-12(p40), and RANTES in PCLS. Surface expression of MHC class II, CD40, and CD11c, but not CD86 was present in APCs of naive PCLS. Incubation with LPS enhanced specifically the expression of MHC class II on diverse cells. MALP-2 only failed to alter cytokine or chemokine levels, but was highly effective in combination with IFNgamma resulting in increased levels of TNFalpha, IL-12(p40), RANTES, and IL-1alpha. PCLS showed characteristic responses to typical pro-inflammatory stimuli and may thus provide a suitable ex vivo technique to predict the immunomodulatory potency of inhaled substances.
Collapse
Affiliation(s)
- M Henjakovic
- Fraunhofer Institute of Toxicology and Experimental Medicine, Department of Immunology, Allergology and Immunotoxicology, Nikolai-Fuchs-Str. 1, 30625 Hannover, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Pantano C, Ather JL, Alcorn JF, Poynter ME, Brown AL, Guala AS, Beuschel SL, Allen GB, Whittaker LA, Bevelander M, Irvin CG, Janssen-Heininger YMW. Nuclear factor-kappaB activation in airway epithelium induces inflammation and hyperresponsiveness. Am J Respir Crit Care Med 2008; 177:959-69. [PMID: 18263801 DOI: 10.1164/rccm.200707-1096oc] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
RATIONALE Nuclear factor (NF)-kappaB is a prominent proinflammatory transcription factor that plays a critical role in allergic airway disease. Previous studies demonstrated that inhibition of NF-kappaB in airway epithelium causes attenuation of allergic inflammation. OBJECTIVES We sought to determine if selective activation of NF-kappaB within the airway epithelium in the absence of other agonists is sufficient to cause allergic airway disease. METHODS A transgenic mouse expressing a doxycycline (Dox)-inducible, constitutively active (CA) version of inhibitor of kappaB (IkappaB) kinase-beta (IKKbeta) under transcriptional control of the rat CC10 promoter, was generated. MEASUREMENTS AND MAIN RESULTS After administration of Dox, expression of the CA-IKKbeta transgene induced the nuclear translocation of RelA in airway epithelium. IKKbeta-triggered activation of NF-kappaB led to an increased content of neutrophils and lymphocytes, and concomitant production of proinflammatory mediators, responses that were not observed in transgenic mice not receiving Dox, or in transgene-negative littermate control animals fed Dox. Unexpectedly, expression of the IKKbeta transgene in airway epithelium was sufficient to cause airway hyperresponsiveness and smooth muscle thickening in absence of an antigen sensitization and challenge regimen, the presence of eosinophils, or the induction of mucus metaplasia. CONCLUSIONS These findings demonstrate that selective activation NF-kappaB in airway epithelium is sufficient to induce airway hyperresponsiveness and smooth muscle thickening, which are both critical features of allergic airway disease.
Collapse
Affiliation(s)
- Cristen Pantano
- Department of Pathology, University of Vermont, Burlington, Vermont 05405, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Stellato C. Glucocorticoid actions on airway epithelial responses in immunity: functional outcomes and molecular targets. J Allergy Clin Immunol 2008; 120:1247-63; quiz 1264-5. [PMID: 18073120 DOI: 10.1016/j.jaci.2007.10.041] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2007] [Revised: 10/26/2007] [Accepted: 10/29/2007] [Indexed: 12/27/2022]
Abstract
Research on the biology of airway epithelium in the last decades has progressively uncovered the many roles of this cell type during the immune response. Far from the early view of the epithelial layer simply as a passive barrier, the airway epithelium is now considered a central player in mucosal immunity, providing innate mechanisms of first-line host defense as well as facilitating adaptive immune responses. Alterations of the epithelial phenotype are primarily involved in the pathogenesis of allergic airways disease, particularly in severe asthma. Appreciation of the epithelium as target of glucocorticoid therapy has also grown, because of studies defining the pathways and mediators affected by glucocorticoids, and studies illustrating the relevance of the control of the response from epithelium in the overall efficacy of topical and systemic therapy with glucocorticoids. Studies of the mechanism of action of glucocorticoids within the biology of the immune response of the epithelium have uncovered mechanisms of gene regulation involving both transcriptional and posttranscriptional events. The view of epithelium as therapeutic target therefore has plenty of room to evolve, as new knowledge on the role of epithelium in immunity is established and novel pathways mediating glucocorticoid regulation are elucidated.
Collapse
Affiliation(s)
- Cristiana Stellato
- Division of Allergy and Clinical Immunology, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
32
|
Matsumura Y. Peripheral blood mononuclear cell NF-kappaB p105 mRNA decreases during asthmatic attacks. Biomed Pharmacother 2007; 62:147-52. [PMID: 17913447 DOI: 10.1016/j.biopha.2007.08.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2007] [Accepted: 08/07/2007] [Indexed: 10/22/2022] Open
Abstract
BACKGROUND NF-kappaB is a transcription factor involved in expression of many inflammatory cytokines, chemical transmitters, and adhesion molecules. It has been reported to play a major role in the pathogenesis of asthma. NF-kappaB p50, which is the actual subunit that results from the cleavage of p105, is required for the induction of eosinophilia via IL-5 and chemokines. METHODS The subjects were 10 patients with a mean age of 59.3 years (14-82 years). NF-kappaB p105 mRNA in peripheral blood mononuclear cells during the presence or absence of asthmatic attacks was investigated. Total RNA was extracted from peripheral blood mononuclear cells. After cDNA was synthesized using random primers, NF-kappaB p105 mRNA level was measured by real-time polymerase chain reaction. RESULTS The NF-kappaB p105 mRNA level in peripheral blood mononuclear cells was lower during asthmatic attacks than in the absence of attacks, showing a significant difference (Wilcoxon's signed rank test: p<0.01). CONCLUSIONS A drop in NF-kappaB p105 during an asthma attack could result in increased NF-kappaB activity. There is a possibility that a change in the NF-kappaB p105 mRNA level might indicate some pathogenetic state in bronchial asthma attacks.
Collapse
Affiliation(s)
- Yasuhiro Matsumura
- Department of Internal Medicine, Akishima Hospital, 1260 Nakagami-cho, Akishima-shi, Tokyo 196-0022, Japan.
| |
Collapse
|
33
|
Abstract
Inflammatory lung diseases are characterised by increased expression of multiple inflammatory genes that are regulated by proinflammatory transcription factors, such as NF-kappaB. Gene expression is regulated by modifications such as acetylation of core histones through the concerted action of coactivators such as CBP (cAMP-response element binding protein (CREB)-binding protein) which have intrinsic histone acetyltransferase (HAT) activity and are able to recruit other HAT enzymes. Conversely gene repression is mediated via histone deacetylases (HDAC) and other corepressors. In biopsies from asthmatic subjects there is an increase in HAT activity and some reduction in HDAC activity. Both of these changes are partially reversed by corticosteroid therapy. Corticosteroids switch off inflammatory genes in asthma through a combination of a direct inhibition of HAT activity and by the recruitment of HDAC2 to the activated NF-kappaB-stimulated inflammatory gene complex. In chronic obstructive pulmonary disease (COPD), a corticosteroid insensitive disease, there is a reduction in HDAC activity and HDAC2 expression, which may account for the amplified inflammation and resistance to the actions of corticosteroids. The reduction in HDAC2 may be secondary to oxidative and nitrative stress as a result of cigarette smoking and severe inflammation. This may also occur to differing degrees in severe asthma, smoking asthmatic patients and cystic fibrosis. Similar mechanisms may also account for the steroid resistance seen within latent adenovirus infections. The reduction in HDAC activity induced by oxidative stress can be restored by theophylline, acting through specific kinases, which may be able to reverse steroid resistance in COPD and other inflammatory lung diseases. The modulation of HAT/HDAC activity may lead to the development of novel anti-inflammatory approaches to inflammatory lung diseases that are currently difficult to treat.
Collapse
Affiliation(s)
- Ian M Adcock
- National Heart and Lung Institute, Imperial College London, UK.
| | | | | |
Collapse
|
34
|
Zhou LF, Zhu Y, Cui XF, Xie WP, Hu AH, Yin KS. Arsenic trioxide, a potent inhibitor of NF-kappaB, abrogates allergen-induced airway hyperresponsiveness and inflammation. Respir Res 2006; 7:146. [PMID: 17178007 PMCID: PMC1769498 DOI: 10.1186/1465-9921-7-146] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2006] [Accepted: 12/20/2006] [Indexed: 12/31/2022] Open
Abstract
Background Overactivation of nuclear factor κB (NF-κB) orchestrates airway eosinophilia, but does not dampen airway hyperresponsiveness in asthma. NF-κB repression by arsenic trioxide (As2O3) contributes to apoptosis of eosinophils (EOS) in airways. Here we provide evidence that As2O3 abrogates allergen (OVA)-induced airway eosinophilia by modulating the expression of IκBα, an NF-κB inhibitory protein, and decreases the airway hyperresponsiveness. Methods Using a murine model of asthma, the airway hyperresponsiveness was conducted by barometric whole-body plethysmography. Airway eosinophilia, OVA-specific IgE in serum, and chemokine eotaxin and RANTES (regulated upon activation, normal T cell expressed and secreted) in bronchoalveolar lavage fluid were measured by lung histology, Diff-Quick staining, and ELISA. Chemokine-induced EOS chemotactic activity was evaluated using EOS chemotaxis assay. Electrophoretic mobility shift assay and Western blot analysis were performed to assess pulmonary NF-κB activation and IκBα expression, respectively. Results As2O3 attenuated the allergen-induced serum IgE, chemokine expression of eotaxin and RANTES, and the EOS recruitment in bronchoalveolar lavage fluid, which is associated with an increased IκBα expression as well as a decreased NF-κB activation. Also, As2O3 suppressed the chemotaxis of EOS dose-dependently in vitro. Additionally, As2O3 significantly ameliorated the allergen-driven airway hyperresponsiveness, the cardinal feature underlying asthma. Conclusion These findings demonstrate an essential role of NF-κB in airway eosinophilia, and illustrate a potential dissociation between airway inflammation and hyperresponsiveness. As2O3 likely exerts its broad anti-inflammatory effects by suppression of NF-κB activation through augmentation of IκBα expression in asthma.
Collapse
Affiliation(s)
- Lin-Fu Zhou
- Department of Respiratory Medicine, The First Affiliated Hospital, Nanjing Medical University, Nanjing, China
- Global Health Programs, University of Pennsylvania School of Medicine, Philadelphia, USA
- Division of Pulmonary Medicine, Joseph Stokes Jr. Research Institute, The Children's Hospital of Philadelphia, University of Pennsylvania School of Medicine, Philadelphia, USA
| | - Yi Zhu
- Department of Respiratory Medicine, The First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Xue-Fan Cui
- Department of Respiratory Medicine, The First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Wei-Ping Xie
- Department of Respiratory Medicine, The First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Ai-Hua Hu
- Division of Pulmonary Medicine, Joseph Stokes Jr. Research Institute, The Children's Hospital of Philadelphia, University of Pennsylvania School of Medicine, Philadelphia, USA
| | - Kai-Sheng Yin
- Department of Respiratory Medicine, The First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|
35
|
Barnes PJ. How corticosteroids control inflammation: Quintiles Prize Lecture 2005. Br J Pharmacol 2006; 148:245-54. [PMID: 16604091 PMCID: PMC1751559 DOI: 10.1038/sj.bjp.0706736] [Citation(s) in RCA: 533] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Corticosteroids are the most effective anti-inflammatory therapy for many chronic inflammatory diseases, such as asthma but are relatively ineffective in other diseases such as chronic obstructive pulmonary disease (COPD). Chronic inflammation is characterised by the increased expression of multiple inflammatory genes that are regulated by proinflammatory transcription factors, such as nuclear factor-kappaB and activator protein-1, that bind to and activate coactivator molecules, which then acetylate core histones to switch on gene transcription. Corticosteroids suppress the multiple inflammatory genes that are activated in chronic inflammatory diseases, such as asthma, mainly by reversing histone acetylation of activated inflammatory genes through binding of liganded glucocorticoid receptors (GR) to coactivators and recruitment of histone deacetylase-2 (HDAC2) to the activated transcription complex. At higher concentrations of corticosteroids GR homodimers also interact with DNA recognition sites to active transcription of anti-inflammatory genes and to inhibit transcription of several genes linked to corticosteroid side effects. In patients with COPD and severe asthma and in asthmatic patients who smoke HDAC2 is markedly reduced in activity and expression as a result of oxidative/nitrative stress so that inflammation becomes resistant to the anti-inflammatory actions of corticosteroids. Theophylline, by activating HDAC, may reverse this corticosteroid resistance. This research may lead to the development of novel anti-inflammatory approaches to manage severe inflammatory diseases.
Collapse
Affiliation(s)
- Peter J Barnes
- National Heart and Lung Institute, Imperial College, Section of Airway Disease, Dovehouse St, London SW3 6LY, UK.
| |
Collapse
|
36
|
Wu Y, Zhou C, Tao J, Li S. Montelukast prevents the decrease of interleukin-10 and inhibits NF-kappaB activation in inflammatory airway of asthmatic guinea pigs. Can J Physiol Pharmacol 2006; 84:531-7. [PMID: 16902598 DOI: 10.1139/y06-003] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Interleukin (IL)-10 is an important immunoregulatory and anti-inflammatory cytokine, whereas nuclear factor-kappaB (NF-kappaB) plays an important role in the pathogenesis of asthma. In the present study, the effects of montelukast on the level of IL-10 and on the activation of NF-kappaB in the inflammatory airway of asthmatic guinea pigs were investigated. Guinea pigs were sensitized by ovalbumin. Pulmonary inflammation was observed by hematoxylin and eosin staining. The eosinophils in broncho-alveolar lavage fluid and blood were separated by density gradient centrifugation and counted under microscope. The level of IL-10 in broncho-alveolar lavage fluid was measured by enzyme-linked immunoadsorbent assay. Activation of NF-kappaB in lung tissues was inspected by immunohistochemistry. Montelukast at medium and high doses prevented the decrease of IL-10 in broncho-alveolar lavage fluid (n = 8, p < 0.01 vs. asthma model group), inhibited the activation of NF-kappaB in lung tissues (n = 8; medium dose, p < 0.05; high dose, p < 0.01; vs. asthma model group). There was a significantly negative correlation between the level of IL-10 and the activation of NF-kappaB in lung tissues (r = -0.488, p < 0.01). Montelukast reduced the severity of airway inflammation and the number of eosinophils in asthmatic guinea pigs. From all these findings we conclude that montelukast can prevent the decrease of IL-10 and inhibit the activation of NF-kappaB in inflammatory airway of asthmatic guinea pigs, which may be the new important mechanisms of montelukast's anti-airway-inflammation effects in asthmatic guinea pigs.
Collapse
Affiliation(s)
- Yuqing Wu
- Department of Pharmacology, Nanjing Medical University, 210029, Hanzhong Road 140, Nanjing, China
| | | | | | | |
Collapse
|
37
|
Barnes PJ. Targeting histone deacetylase 2 in chronic obstructive pulmonary disease treatment. Expert Opin Ther Targets 2006; 9:1111-21. [PMID: 16300464 DOI: 10.1517/14728222.9.6.1111] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
There is increasing evidence that histone acetylation plays a critical role in the regulation of inflammatory genes and in mediating the anti-inflammatory effects of corticosteroids. Inflammatory stimuli through transcription factors, such as NF-kappaB, recruit co-activator molecules with intrinsic histone acetyltransferase activity, leading to hyperacetylation of core histones and gene activation. Histone deacetylases (HDACs) reverse this process and suppress inflammatory genes. Corticosteroids, the most effective anti-inflammatory drugs so far available, recruit HDAC2 to activated inflammatory gene complexes through an interaction with glucocorticoid receptor and thus switch off activated inflammatory genes. In chronic obstructive pulmonary disease and in asthmatic patients who smoke, there is a reduction in HDAC2 activity and expression, resulting in amplification of inflammation and corticosteroid resistance. Therapeutic strategies to increase HDAC activity may, therefore, be expected to reduce inflammation and restore steroid responsiveness. These strategies include low doses of theophylline or antioxidants and nitric oxide synthase inhibitors. HDACs may be inhibited directly by siRNA and in the future by small-molecule activators may be discovered through high output screening. These drugs may represent a novel approach to treating chronic inflammatory diseases.
Collapse
Affiliation(s)
- Peter J Barnes
- National Heart and Lung Institute, Imperial College School of Medicine, London SW3 6LY, UK.
| |
Collapse
|
38
|
Pereira R, Medeiros YS, Fröde TS. Antiinflammatory effects of Tacrolimus in a mouse model of pleurisy. Transpl Immunol 2006; 16:105-11. [PMID: 16860713 DOI: 10.1016/j.trim.2006.04.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2006] [Revised: 04/18/2006] [Accepted: 04/25/2006] [Indexed: 10/24/2022]
Abstract
INTRODUCTION Tacrolimus is an antibiotic macrolide with immunosuppressant properties isolated from Streptomyces tsukubaensis. OBJECTIVES This study evaluated whether the acute and systemic administration of Tacrolimus significantly interfered in leukocyte migration, exudation, myeloperoxidase and adenosine-deaminase and nitric oxide levels, as well as Interleukin-1 (IL-1beta) and tumor necrosis factor alpha (TNFalpha) levels in a mouse model of pleurisy in comparison to those obtained with dexamethasone. MATERIALS AND METHODS Pleurisy was induced by carrageenan (Cg, 1%), bradykinin (BK, 10 nmol), histamine (HIS, 1 micromol) or substance P (PS, 20 nmol) administered by intrapleural route (ipl.) and the inflammatory parameters (cell migration and exudation) were analyzed 4 h after. In the model of pleurisy induced by carrageenan, other markers in the pleural fluid, such as cytokines (TNFalpha and Il-1beta), nitrite/nitrate (NOx), myeloperoxidase (MPO) and adenosine-deaminase (ADA) levels, were also studied. Dexamethaseone (0.5 mg/kg, i.p., 0.5 h before) was also analyzed in all protocols. RESULTS In the pleurisy induced by carrageenan, Tacrolimus (1 mg/kg, i.p.) and dexamethasone (0.5 mg/kg, i.p.) administered 0.5 h before caused a significant decrease in leukocytes, neutrophils and exudation (P < 0.01). Under the same conditions, Tacrolimus and dexamethasone did not modify the blood's white or red cells (P > 0.05). Tacrolimus showed a long lasting antiinflammatory effect, inhibiting leukocytes and neutrophils for up to 24 h (P < 0.01), whereas the inhibition of exudation was less marked (up to 2 h) (P < 0.01). These drugs caused a marked reduction in MPO activity, as well as IL-1beta and TNFalpha levels (P < 0.01), but only Tacrolimus inhibited ADA activity (P < 0.01). On the other hand, dexamethasone, but not Tacrolimus, inhibited NOx levels (P < 0.01). In the same conditions, Tacrolimus significantly inhibited cell migration induced by either bradykinin, histamine or substance P (P < 0.05). In a similar manner, dexamethasone inhibited leukocyte influx induced by bradykinin and histamine (P < 0.05). Regarding exudation effects, dexamethasone markedly inhibited this parameter induced by BK, HIS or SP, whereas Tacrolimus only inhibited exudation caused by HIS (P < 0.05). CONCLUSIONS The results of the present work indicate that Tacrolimus showed important antiinflammatory properties against pleurisy in mice that are different from those caused by dexamethasone. The inhibition of proinflammatory cytokine (TNFalpha, IL-1beta), enzyme (myeloperoxidase, adenosine-deaminase) and mediator (bradykinin, histamine, substance P) release and/or action appears to account for Tacrolimus's actions.
Collapse
Affiliation(s)
- Robson Pereira
- Department of Medical Science, Universidade Federal de Santa Catarina, Campus Universitário - Trindade, 88040-970, Florianópolis, SC, Brazil
| | | | | |
Collapse
|
39
|
Couëtil LL, Art T, Moffarts B, Becker M, Mélotte D, Jaspar F, Bureau F, Lekeux P. Effect of Beclomethasone Dipropionate and Dexamethasone Isonicotinate on Lung Function, Bronchoalveolar Lavage Fluid Cytology, and Transcription Factor Expression in Airways of Horses with Recurrent Airway Obstruction. J Vet Intern Med 2006. [DOI: 10.1111/j.1939-1676.2006.tb02875.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
|
40
|
Mickleborough TD, Rundell KW. Dietary polyunsaturated fatty acids in asthma- and exercise-induced bronchoconstriction. Eur J Clin Nutr 2006; 59:1335-46. [PMID: 16047026 DOI: 10.1038/sj.ejcn.1602250] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Despite progress that has been made in the treatment of asthma, the prevalence and burden of this disease has continued to increase. While pharmacological treatment of asthma is usually highly effective, medications may have significant side effects or exhibit tachyphylaxis. Alternative therapies for treatment that reduce the dose requirements of pharmacological interventions would be beneficial, and could potentially reduce the public health burden of this disease. Ecological and temporal data suggest that dietary factors may have a role in recent increases in the prevalence of asthma. A possible contributing factor to the increased incidence of asthma in Western societies may be the consumption of a proinflammatory diet. In the typical Western diet, 20- to 25-fold more omega (n)-6 polyunsaturated fatty acids (PUFA) than n-3 PUFA are consumed, which promotes the release of proinflammatory arachidonic acid metabolites (leukotrienes and prostanoids). This review will analyze the evidence for the health effects of n-3 PUFA in asthma- and exercise-induced bronchoconstriction (EIB). While clinical data evaluating the effect of omega-3 fatty acid supplementation in asthma has been equivocal, it has recently been shown that fish oil supplementation, rich in n-3 PUFA, reduces airway narrowing, medication use, and proinflammatory mediator generation in nonatopic elite athletes with EIB. These findings are provocative and suggest that dietary fish oil supplementation may be a viable treatment modality and/or adjunct therapy in asthma and EIB.
Collapse
Affiliation(s)
- T D Mickleborough
- Human Performance and Exercise Biochemistry Laboratory, Department of Kinesiology, Indiana University, Bloomington, 47401, USA.
| | | |
Collapse
|
41
|
Adcock IM, Ford P, Ito K, Barnes PJ. Epigenetics and airways disease. Respir Res 2006; 7:21. [PMID: 16460559 PMCID: PMC1382219 DOI: 10.1186/1465-9921-7-21] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2005] [Accepted: 02/06/2006] [Indexed: 12/31/2022] Open
Abstract
Epigenetics is the term used to describe heritable changes in gene expression that are not coded in the DNA sequence itself but by post-translational modifications in DNA and histone proteins. These modifications include histone acetylation, methylation, ubiquitination, sumoylation and phosphorylation. Epigenetic regulation is not only critical for generating diversity of cell types during mammalian development, but it is also important for maintaining the stability and integrity of the expression profiles of different cell types. Until recently, the study of human disease has focused on genetic mechanisms rather than on non-coding events. However, it is becoming increasingly clear that disruption of epigenetic processes can lead to several major pathologies, including cancer, syndromes involving chromosomal instabilities, and mental retardation. Furthermore, the expression and activity of enzymes that regulate these epigenetic modifications have been reported to be abnormal in the airways of patients with respiratory disease. The development of new diagnostic tools might reveal other diseases that are caused by epigenetic alterations. These changes, despite being heritable and stably maintained, are also potentially reversible and there is scope for the development of 'epigenetic therapies' for disease.
Collapse
Affiliation(s)
- Ian M Adcock
- Airways Disease Section, National Heart and Lung Institute, Imperial College London, UK
| | - Paul Ford
- Airways Disease Section, National Heart and Lung Institute, Imperial College London, UK
| | - Kazuhiro Ito
- Airways Disease Section, National Heart and Lung Institute, Imperial College London, UK
| | - P J Barnes
- Airways Disease Section, National Heart and Lung Institute, Imperial College London, UK
| |
Collapse
|
42
|
Abstract
Corticosteroids are the most effective anti-inflammatory therapy for asthma and other chronic inflammatory and immune diseases. Recently new insights have been gained into the molecular mechanisms whereby corticosteroids suppress inflammation. Inflammation is characterised by the increased expression of multiple inflammatory genes that are regulated by proinflammatory transcription factors, such as nuclear factor-kappaB and activator protein-1. These transcription factors bind to and activate coactivator molecules, which acetylate core histones and switch on gene transcription. Corticosteroids suppress the multiple inflammatory genes that are activated in asthmatic airways mainly by reversing histone acetylation of activated inflammatory genes through binding of glucocorticoid receptors to coactivators and recruitment of histone deacetylase-2 (HDAC2) to the activated inflammatory gene transcription complex. Activated glucocorticoid receptors also bind to recognition sites in the promoters of certain genes to activate their transcription, resulting in secretion of anti-inflammatory proteins, such as mitogen-activated protein kinase phosphatase, which inhibits MAP kinase signalling pathways. Glucocorticoid receptors may also interact with other recognition sites to inhibit transcription, for example of several genes linked to their side effects. In some patients with steroid-resistant asthma there are abnormalities in GR signalling pathways. In chronic obstructive pulmonary disease (COPD) patients and asthmatic patients who smoke HDAC2 is markedly impaired as a result of oxidative and nitrative stress so that inflammation is resistant to the anti-inflammatory effects of corticosteroids. Corticosteroids are likely to remain the mainstay of asthma therapy and new therapeutic strategies may reverse the corticosteroid insensitivity in COPD and severe asthma.
Collapse
Affiliation(s)
- Peter J Barnes
- Department of Thoracic Medicine, National Heart and Lung Institute, Imperial College, Dovehouse St, London SW3 6LY, UK.
| |
Collapse
|
43
|
Barnes PJ. Molecular mechanisms and cellular effects of glucocorticosteroids. Immunol Allergy Clin North Am 2006; 25:451-68. [PMID: 16054537 DOI: 10.1016/j.iac.2005.05.003] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
GCSs exert their anti-inflammatory effects through influencing multiple signal transduction pathways. Their most important action is switching off multiple activated inflammatory genes through inhibition of HAT and recruitment of HDAC2 activity to the inflammatory gene transcriptional complex. In addition, GCSs may activate several anti-inflammatory genes and increase the degradation of mRNA encoding certain inflammatory proteins. This broad array of actions may account for the striking effectiveness of GCSs in complex inflammatory diseases such as asthma and the difficulty in finding alternative anti-inflammatory drugs. There is now a better understanding of how the responsiveness to GCSs is reduced in patients who have severe asthma, who have asthma and smoke, and who have COPD. An important mechanism now emerging is a reduction in HDAC2 activity as a result of oxidative stress. These new insights into GCS action may lead to new approaches to treating inflammatory lung diseases and in particular to increasing effectiveness of steroids in situations where they are less effective.
Collapse
Affiliation(s)
- Peter J Barnes
- Department of Thoracic Medicine, National Heart and Lung Institute, Dovehouse Street, London SW3 6LY, UK.
| |
Collapse
|
44
|
Uller L, Lloyd CM, Rydell-Törmänen K, Persson CGA, Erjefält JS. Effects of steroid treatment on lung CC chemokines, apoptosis and transepithelial cell clearance during development and resolution of allergic airway inflammation. Clin Exp Allergy 2006; 36:111-21. [PMID: 16393273 PMCID: PMC3389735 DOI: 10.1111/j.1365-2222.2006.02396.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
BACKGROUND Steroid treatment of allergic eosinophilic airway diseases is considered to attenuate cell recruitment by inhibiting several chemokines and to cause eosinophil clearance through inducement of apoptosis of these cells. However, roles of these mechanisms in the actions of steroids in vivo have not been fully established. Also, as regards clearance of tissue eosinophils other mechanisms than apoptosis may operate in vivo. OBJECTIVE This study explores anti-inflammatory effects of steroids instituted during either development or resolution of airway allergic inflammation. METHODS Immunized mice were subjected to week-long daily allergen challenges (ovalbumin). Steroid treatment was instituted either amidst the challenges or exclusively post-allergen challenge. CC chemokines, goblet cell hyperplasia, occurrence of eosinophil apoptosis, and airway tissue as well as lumen eosinophilia were examined at different time-points. RESULTS Daily steroids instituted amid the allergen challenges non-selectively attenuated a range of chemokines, permitted egression of tissue eosinophils into airway lumen to increase, and reduced development of lung tissue eosinophilia. Steroid treatment instituted post-challenge selectively inhibited the CC-chemokine regulation upon activation, normal T cell expressed and secrted (RANTES), permitted continued egression of eosinophils into airway lumen, and resolved the tissue eosinophilia. Eosinophil apoptosis rarely occurred at development and resolution of the allergic eosinophilic inflammation whether the animals were steroid treated or not. However, anti-Fas monoclonal antibodies given to mice with established eosinophilia post-challenge produced apoptosis of the tissue eosinophils indicating that apoptotic eosinophils, if they occur, are well detectible in vivo. CONCLUSION Airway tissue eosinophils are likely eliminated through egression into airway lumen with little involvement of apoptosis and phagocytosis. Our data further suggest that therapeutic steroids may resolve airway inflammation by permitting clearance of tissue eosinophils through egression and inhibiting RANTES-dependent cell recruitment to lung tissues.
Collapse
Affiliation(s)
- L Uller
- Department of Experimental Medical Science, Lund University, Lund, Sweden.
| | | | | | | | | |
Collapse
|
45
|
Adams NP, Bestall JC, Lasserson TJ, Jones PW, Cates C. Fluticasone versus placebo for chronic asthma in adults and children. Cochrane Database Syst Rev 2005:CD003135. [PMID: 16235315 DOI: 10.1002/14651858.cd003135.pub3] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Inhaled fluticasone propionate (FP) is a relatively new inhaled corticosteroid for the treatment of asthma. OBJECTIVES 1. To assess efficacy and safety outcomes in studies that compared FP to placebo for treatment of chronic asthma.2. To explore the presence of a dose-response effect. SEARCH STRATEGY We searched the Cochrane Airways Group Specialised Register (January 2005), reference lists of articles, contacted trialists and searched abstracts of major respiratory society meetings (1997-2004). SELECTION CRITERIA Randomised trials in children and adults comparing FP to placebo in the treatment of chronic asthma. Two reviewers independently assessed articles for inclusion and methodological quality. DATA COLLECTION AND ANALYSIS Two reviewers extracted data. Quantitative analyses were undertaken using RevMan 4.2 MAIN RESULTS Seventy-five studies met the inclusion criteria (14,208 participants). Methodological quality was high. In non-oral steroid treated asthmatics with mild and moderate disease FP resulted in improvements from baseline compared with placebo across all dose ranges (100 to 1000 mcg/d) in FEV1 (between 0.13 to 0.45 litres); morning PEF (between 23 and 47 L/min); symptom scores (based on a standardised scale, between 0.5 and 0.85); reduction in rescue beta-2 agonist use (between 1.2 and 2.2 puffs/day). High dose FP increased the number of patients who could withdraw from prednisolone: FP 1000-1500 mcg/day Peto Odds Ratio 14.07 (95% CI 7.17 to 27.57). FP at all doses led to a greater likelihood of sore throat, hoarseness and oral Candidiasis. Twenty-one patients would need to be treated for one extra to develop Candidiasis (FP 500 mcg/day), whilst only three or four patients need to be treated to avoid one extra patient being withdrawn due to lack of efficacy at all doses of FP. AUTHORS' CONCLUSIONS Doses of FP in the range 100-1000 mcg/day are effective. In most patients with mild-moderate asthma improvements with low dose FP are only a little less than those associated with high doses when compared with placebo. High dose FP appears to have worthwhile oral-corticosteroid reducing properties. FP use is accompanied by an increased likelihood of oropharyngeal side effects.
Collapse
|
46
|
Walter MJ, Holtzman MJ. A centennial history of research on asthma pathogenesis. Am J Respir Cell Mol Biol 2005; 32:483-9. [PMID: 15901618 PMCID: PMC2715318 DOI: 10.1165/rcmb.f300] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Affiliation(s)
- Michael J Walter
- Pulmonary and Critical Care Medicine, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | | |
Collapse
|
47
|
Michailidis C, Pozniak AL, Mandalia S, Basnayake S, Nelson MR, Gazzard BG. Clinical characteristics of IRIS syndrome in patients with HIV and tuberculosis. Antivir Ther 2005; 10:417-22. [PMID: 15918332 DOI: 10.1177/135965350501000303] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Some patients with HIV/tuberculosis (TB) coinfection who are on anti-TB treatment and highly active antiretroviral therapy (HAART) will develop an exacerbation of symptoms, signs or radiological manifestations of TB that are not due to relapse or recurrence of their TB. The aetiology of these immune reconstitution inflammatory syndrome (IRIS) reactions is unknown but it is presumed that they occur, at least in part, as a consequence of HAART-related reconstitution of immunity. METHODS Patients who were diagnosed with their first episode of definitive or presumed TB between January 2001 and July 2003 were identified from the Chelsea and Westminster TB/HIV database. The patients were classified into those who developed IRIS and those who did not using a set definition of the syndrome. Demographic, clinical and laboratory data relating to both HIV and TB were compared between the two groups. RESULTS A total of 55 cases of TB were identified, of which 45 cases were confirmed on culture or gene probe and 10 were presumed cases. Fourteen cases (25.5%) developed IRIS with a median (range) duration of 2.53 (0.53-14.97) months. The median baseline CD4 [interquartile range (IQR)] for the IRIS group was significantly lower at 80 (33-117) cells/mm3 (P = 0.05) than the non-IRIS group at 139 (77-284) cells/mm3. A significantly greater proportion of patients in the IRIS group [11/14 (78.60%), P = 0.011] had baseline CD4 < 100cells/mm3 compared with the non-IRIS group [16/41 (39.0%)]. There was no significant difference between the two groups when comparing the log10 baseline viral load (VL). Eight (57.0%) patients in the IRIS group had disseminated TB at baseline compared with seven (17.0%) in the non-IRIS group (P = 0.006). In those who had a detectable VL at baseline, the median fold change (IQR) in CD4 from baseline to 3 months was significantly higher in the IRIS group patients, 1.5 (0.6-5.6), compared with 0.7 (-0.2 to 1.0) for those in the non-IRIS group (P = 0.046). CONCLUSIONS Patients who develop IRIS are more likely to present with disseminated TB, have a CD4 count < 100 cells/mm3 and have a prompt rise in CD4 count in the initial 3 months of HAART.
Collapse
|
48
|
Mickleborough TD, Ionescu AA, Rundell KW. Omega-3 Fatty acids and airway hyperresponsiveness in asthma. J Altern Complement Med 2005; 10:1067-75. [PMID: 15674003 DOI: 10.1089/acm.2004.10.1067] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Despite the progress that has been made in the treatment of asthma, the prevalence and burden of this disease has continued to increase. Exercise is a powerful trigger of asthma symptoms and reversible airflow obstruction and may result in the avoidance of physical activity by patients with asthma, resulting in detrimental consequences to their health. Approximately 90% of patients with asthma are hyperresponsive to exercise and experience exercise-induced bronchoconstriction (EIB). While pharmacologic treatment of asthma is usually highly effective, medications often have significant side-effects or exhibit tachyphylaxis. Alternative therapies for treatment (complementary medicine) that reduce the dose requirements of pharmacologic interventions would be beneficial, and could potentially reduce the public health burden of this disease. There is accumulating evidence that dietary modification has potential to influence the severity of asthma and reduce the prevalence and incidence of this condition. A possible contributing factor to the increased incidence of asthma in Western societies may be the consumption of a proinflammatory diet. In the typical Western diet, 20- to 25-fold more omega- 6 polyunsaturated fatty acids (PUFA) than omega-3 PUFA are consumed, which causes the release of proinflammatory arachidonic acid metabolites (leukotrienes and prostanoids). This review analyzes the existing literature on omega-3 PUFA supplementation as a potential modifier of airway hyperresponsiveness in asthma and includes studies concerning the efficacy of omega-3 PUFA supplementation in EIB. While clinical data evaluating the effect of omega-3 PUFA supplementation in asthma has been equivocal, it has recently been shown that pharmaceutical-grade fish oil (omega-3 PUFA) supplementation reduces airway hyperresponsiveness after exercise, medication use, and proinflammatory mediator generation in nonatopic elite athletes with EIB. These findings are provocative and suggest that dietary omega-3 PUFA supplementation may be a viable treatment modality and/or adjunct therapy in airway hyperresponsiveness. Further studies are needed to confirm these results and understand their mechanism of action.
Collapse
Affiliation(s)
- Timothy D Mickleborough
- Department of Kinesiology, Indiana University, 1025 East 7th Street, HPER 112, Bloomington, IN 47401, USA.
| | | | | |
Collapse
|
49
|
Chung YW, Oh HY, Kim JY, Kim JH, Kim IY. Allergen-induced proteolytic cleavage of annexin-1 and activation of cytosolic phospholipase A2 in the lungs of a mouse model of asthma. Proteomics 2005; 4:3328-34. [PMID: 15378764 DOI: 10.1002/pmic.200400895] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
To identify proteins that might play an important role in allergen-induced asthma, we analyzed lung extracts prepared from allergen (ovalbumin)-challenged animals in a mouse model of this condition. The combination of two-dimensional gel electrophoresis and mass spectrometry revealed that annexin-1, a 37 kDa anti-inflammatory protein that inhibits the activity of cytosolic phospholipase A(2) (cPLA(2)), was down-regulated by allergen challenge in the lungs of ovalbumin-sensitized mice. Immunoblot analysis showed that this effect of ovalbumin challenge was attributable to proteolytic cleavage of annexin-1. The ovalbumin-induced degradation of annexin-1 was blocked by pretreatment of mice with the antioxidant N-acetylcysteine (NAC) or with sodium selenite, both of which have previously been shown to exert anti-inflammatory effects in this asthma model. Ovalbumin challenge also both increased the expression of cPLA(2) in lung tissue and reduced the extent of the interaction between cPLA(2) and annexin-1, and these effects were inhibited by NAC or selenite. Moreover, the concentrations of cysteinyl leukotrienes in bronchoalveolar lavage fluid and of leukotriene B(4) in lung tissue were increased by ovalbumin challenge in a NAC- or selenite-sensitive manner. Together, these results suggest that allergen-induced oxidative stress results in proteolysis of annexin-1 and consequent up-regulation of cPLA(2) activity and leukotriene production in this mouse model of asthma, and that the anti-inflammatory effects of selenite may provide a basis for the development of new antiasthmatic drugs.
Collapse
Affiliation(s)
- Youn Wook Chung
- Laboratory of Cellular and Molecular Biochemistry, School of Life Sciences and Biotechnology, Korea University, Seoul, Korea
| | | | | | | | | |
Collapse
|
50
|
Poynter ME, Cloots R, van Woerkom T, Butnor KJ, Vacek P, Taatjes DJ, Irvin CG, Janssen-Heininger YMW. NF-kappa B activation in airways modulates allergic inflammation but not hyperresponsiveness. THE JOURNAL OF IMMUNOLOGY 2005; 173:7003-9. [PMID: 15557197 PMCID: PMC2830271 DOI: 10.4049/jimmunol.173.11.7003] [Citation(s) in RCA: 120] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Airways display robust NF-kappaB activation and represent targets for anti-inflammatory asthma therapies, but the functional importance of NF-kappaB activation in airway epithelium remains enigmatic. Therefore, transgenic mice were created in which NF-kappaB activation is repressed specifically in airways (CC10-IkappaBalpha(SR) mice). In response to inhaled Ag, transgenic mice demonstrated significantly ameliorated inflammation, reduced levels of chemokines, T cell cytokines, mucus cell metaplasia, and circulating IgE compared with littermate controls. Despite these findings, Ag-driven airways hyperresponsiveness was not attenuated in CC10-IkappaBalpha(SR) mice. This study clearly demonstrates that airway epithelial NF-kappaB activation orchestrates Ag-induced inflammation and subsequent adaptive immune responses, but does not contribute to airways hyperresponsiveness, the cardinal feature that underlies asthma.
Collapse
Affiliation(s)
- Matthew E. Poynter
- Vermont Lung Center and the Department of Medicine, Division of Pulmonary and Critical Care
| | - Roy Cloots
- Department of Pathology, University of Vermont, Burlington, VT 05405
| | - Tiest van Woerkom
- Vermont Lung Center and the Department of Medicine, Division of Pulmonary and Critical Care
| | - Kelly J. Butnor
- Department of Pathology, University of Vermont, Burlington, VT 05405
| | - Pamela Vacek
- Department of Pathology, University of Vermont, Burlington, VT 05405
- Department of Medical Biostatistics, University of Vermont, Burlington, VT 05405
| | | | - Charles G. Irvin
- Vermont Lung Center and the Department of Medicine, Division of Pulmonary and Critical Care
| | - Yvonne M. W. Janssen-Heininger
- Department of Pathology, University of Vermont, Burlington, VT 05405
- Address correspondence and reprint requests to Dr. Matthew Poynter, Department of Pathology, University of Vermont, 149 Beaumont Avenue, Burlington, VT 05405.
| |
Collapse
|