1
|
Talwar D, Prajapat D, Talwar S, Talwar D. Retrospective Observational Study to Assess Safety and Tolerability of Nebulized Colistin for the Treatment of Patients With Pneumonia in Real-World Settings in Respiratory ICU. Cureus 2024; 16:e54652. [PMID: 38524091 PMCID: PMC10959766 DOI: 10.7759/cureus.54652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/21/2024] [Indexed: 03/26/2024] Open
Abstract
INTRODUCTION Colistin is used to treat hospital-acquired pneumonia and ventilator-associated pneumonia. However, direct drug deposition at the site of infection may improve its efficacy and reduce systemic exposure. The aim of this study was to assess the safety and tolerability of nebulized colistin among Indian patients diagnosed with pneumonia caused by multidrug-resistant gram-negative bacilli in real-world settings. METHODOLOGY We retrospectively reviewed the medical records of patients treated with nebulized colistin for pneumonia. We assessed the adverse events and relevant abnormal laboratory findings of nebulized colistin therapy. RESULTS All enrolled patients (N=30, males: 22, females: 8; average age: 71.06 years) were treated for 13.36 days. Almost 80% of patients had a history of shortness of breath, which was a major symptom when they were admitted to the hospital. The patients were administered nebulized colistin for an average of six days (8 hours per day). The most common dosing schedule was 1 million international units (MIU)/8 hours. No serious adverse event was observed, and only one patient died while on the treatment but the death was not related to colistin treatment. The average sequential organ failure assessment score for all patients was 6.5. CONCLUSION Our study demonstrated the efficient clinical utility and well-tolerated safety profile of nebulized colistin in the treatment of patients with pneumonia. Neurotoxicity and nephrotoxicity were not reported. Since a significant percentage of patients were with chronic respiratory diseases, our study further indicates the safety and effectiveness of nebulized colistin in chronic obstructive pulmonary disease (COPD) patients too.
Collapse
Affiliation(s)
- Deepak Talwar
- Pulmonary, Sleep, and Critical Care Medicine, Metro Centre for Respiratory Diseases, Noida, IND
| | - Deepak Prajapat
- Pulmonary and Critical Care Medicine, Metro Centre for Respiratory Diseases, Noida, IND
| | - Surbhi Talwar
- Nephrology, University Hospitals Coventry and Warwickshire (UHCW), Coventry, GBR
| | - Dhruv Talwar
- Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Medical Sciences (Deemed to be University), Wardha, IND
| |
Collapse
|
2
|
Motos A, Yang H, Li Bassi G, Yang M, Meli A, Battaglini D, Cabrera R, Bobi J, Pagliara F, Frigola G, Camprubí-Rimblas M, Fernández-Barat L, Rigol M, Ferrer-Segarra A, Kiarostami K, Martinez D, Nicolau DP, Artigas A, Pelosi P, Vila J, Torres A. Inhaled amikacin for pneumonia treatment and dissemination prevention: an experimental model of severe monolateral Pseudomonas aeruginosa pneumonia. Crit Care 2023; 27:60. [PMID: 36788582 PMCID: PMC9930251 DOI: 10.1186/s13054-023-04331-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 01/22/2023] [Indexed: 02/16/2023] Open
Abstract
BACKGROUND Pseudomonas aeruginosa pneumonia is commonly treated with systemic antibiotics to ensure adequate treatment of multidrug resistant (MDR) bacteria. However, intravenous (IV) antibiotics often achieve suboptimal pulmonary concentrations. We therefore aimed to evaluate the effect of inhaled amikacin (AMK) plus IV meropenem (MEM) on bactericidal efficacy in a swine model of monolateral MDR P. aeruginosa pneumonia. METHODS We ventilated 18 pigs with monolateral MDR P. aeruginosa pneumonia for up to 102 h. At 24 h after the bacterial challenge, the animals were randomized to receive 72 h of treatment with either inhaled saline (control), IV MEM only, or IV-MEM plus inhaled AMK (MEM + AMK). We dosed IV MEM at 25 mg/kg every 8 h and inhaled AMK at 400 mg every 12 h. The primary outcomes were the P. aeruginosa burden and histopathological injury in lung tissue. Secondary outcomes included the P. aeruginosa burden in tracheal secretions and bronchoalveolar lavage fluid, the development of antibiotic resistance, the antibiotic distribution, and the levels of inflammatory markers. RESULTS The median (25-75th percentile) P. aeruginosa lung burden for animals in the control, MEM only, and MEM + AMK groups was 2.91 (1.75-5.69), 0.72 (0.12-3.35), and 0.90 (0-4.55) log10 CFU/g (p = 0.009). Inhaled therapy had no effect on preventing dissemination compared to systemic monotherapy, but it did have significantly higher bactericidal efficacy in tracheal secretions only. Remarkably, the minimum inhibitory concentration of MEM increased to > 32 mg/L after 72-h exposure to monotherapy in 83% of animals, while the addition of AMK prevented this increase (p = 0.037). Adjunctive therapy also slightly affected interleukin-1β downregulation. Despite finding high AMK concentrations in pulmonary samples, we found no paired differences in the epithelial lining fluid concentration between infected and non-infected lungs. Finally, a non-significant trend was observed for higher amikacin penetration in low-affected lung areas. CONCLUSIONS In a swine model of monolateral MDR P. aeruginosa pneumonia, resistant to the inhaled AMK and susceptible to the IV antibiotic, the use of AMK as an adjuvant treatment offered no benefits for either the colonization of pulmonary tissue or the prevention of pathogen dissemination. However, inhaled AMK improved bacterial eradication in the proximal airways and hindered antibiotic resistance.
Collapse
Affiliation(s)
- Ana Motos
- Servei de Pneumologia i Al•lèrgia Respiratòria, Pneumology Department, Hospital Clínic, Thorax Institute, Calle Villarroel 170, Esc 6/8 Planta 2, 08036, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- University of Barcelona, Barcelona, Spain
- Centro de Investigación Biomedica En Red- Enfermedades Respiratorias (CIBERES), Barcelona, Spain
| | - Hua Yang
- Servei de Pneumologia i Al•lèrgia Respiratòria, Pneumology Department, Hospital Clínic, Thorax Institute, Calle Villarroel 170, Esc 6/8 Planta 2, 08036, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- University of Barcelona, Barcelona, Spain
| | - Gianluigi Li Bassi
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Critical Care Research Group, The Prince Charles Hospital, University of Queensland, Queensland University of Technology, UnitingCare Hospitals, Wesley Medical Research, Brisbane, Australia
| | - Minlan Yang
- Servei de Pneumologia i Al•lèrgia Respiratòria, Pneumology Department, Hospital Clínic, Thorax Institute, Calle Villarroel 170, Esc 6/8 Planta 2, 08036, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- University of Barcelona, Barcelona, Spain
| | - Andrea Meli
- Servei de Pneumologia i Al•lèrgia Respiratòria, Pneumology Department, Hospital Clínic, Thorax Institute, Calle Villarroel 170, Esc 6/8 Planta 2, 08036, Barcelona, Spain
- Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico Internal Medicine Department, Respiratory Unit and Adult Cystic Fibrosis Center, and Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - Denise Battaglini
- Servei de Pneumologia i Al•lèrgia Respiratòria, Pneumology Department, Hospital Clínic, Thorax Institute, Calle Villarroel 170, Esc 6/8 Planta 2, 08036, Barcelona, Spain
- University of Barcelona, Barcelona, Spain
- Anesthesia and Critical Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neurosciences, Genoa, Italy
| | - Roberto Cabrera
- Servei de Pneumologia i Al•lèrgia Respiratòria, Pneumology Department, Hospital Clínic, Thorax Institute, Calle Villarroel 170, Esc 6/8 Planta 2, 08036, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomedica En Red- Enfermedades Respiratorias (CIBERES), Barcelona, Spain
| | - Joaquim Bobi
- Servei de Pneumologia i Al•lèrgia Respiratòria, Pneumology Department, Hospital Clínic, Thorax Institute, Calle Villarroel 170, Esc 6/8 Planta 2, 08036, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Francesco Pagliara
- Servei de Pneumologia i Al•lèrgia Respiratòria, Pneumology Department, Hospital Clínic, Thorax Institute, Calle Villarroel 170, Esc 6/8 Planta 2, 08036, Barcelona, Spain
- Anesthesia and Critical Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neurosciences, Genoa, Italy
| | - Gerard Frigola
- Department of Pathology, Hospital Clinic, Barcelona, Spain
| | - Marta Camprubí-Rimblas
- Centro de Investigación Biomedica En Red- Enfermedades Respiratorias (CIBERES), Barcelona, Spain
- Critical Care Center, ParcTaulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí (I3PT), Universitat Autònoma de Barcelona, Sabadell, Spain
| | - Laia Fernández-Barat
- Servei de Pneumologia i Al•lèrgia Respiratòria, Pneumology Department, Hospital Clínic, Thorax Institute, Calle Villarroel 170, Esc 6/8 Planta 2, 08036, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- University of Barcelona, Barcelona, Spain
- Centro de Investigación Biomedica En Red- Enfermedades Respiratorias (CIBERES), Barcelona, Spain
| | - Montserrat Rigol
- Servei de Pneumologia i Al•lèrgia Respiratòria, Pneumology Department, Hospital Clínic, Thorax Institute, Calle Villarroel 170, Esc 6/8 Planta 2, 08036, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Antoni Ferrer-Segarra
- Servei de Pneumologia i Al•lèrgia Respiratòria, Pneumology Department, Hospital Clínic, Thorax Institute, Calle Villarroel 170, Esc 6/8 Planta 2, 08036, Barcelona, Spain
- Anestesiologia i Reanimació, Hospital del Mar - Parc de Salut Mar, Barcelona, Spain
| | - Kasra Kiarostami
- Servei de Pneumologia i Al•lèrgia Respiratòria, Pneumology Department, Hospital Clínic, Thorax Institute, Calle Villarroel 170, Esc 6/8 Planta 2, 08036, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- University of Barcelona, Barcelona, Spain
| | | | - David P Nicolau
- Center for Anti-Infective Research and Development, Hartford Hospital, Hartford, CT, USA
| | - Antonio Artigas
- Centro de Investigación Biomedica En Red- Enfermedades Respiratorias (CIBERES), Barcelona, Spain
- Critical Care Center, ParcTaulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí (I3PT), Universitat Autònoma de Barcelona, Sabadell, Spain
| | - Paolo Pelosi
- Anesthesia and Critical Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neurosciences, Genoa, Italy
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, Genoa, Italy
| | - Jordi Vila
- Barcelona Centre for International Health Research (CRESIB), ISGlobal, Barcelona, Spain
- Department of Clinical Microbiology, Centre for Biomedical Diagnosis, Hospital Clínic, Barcelona, Spain
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto Salud Carlos III, Madrid, Spain
| | - Antoni Torres
- Servei de Pneumologia i Al•lèrgia Respiratòria, Pneumology Department, Hospital Clínic, Thorax Institute, Calle Villarroel 170, Esc 6/8 Planta 2, 08036, Barcelona, Spain.
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.
- University of Barcelona, Barcelona, Spain.
- Centro de Investigación Biomedica En Red- Enfermedades Respiratorias (CIBERES), Barcelona, Spain.
| |
Collapse
|
3
|
Chen TF, Song L, Gao YH, Li H, Li JL, Hou HP, Peng B, Wang HY, Cheng WH, Ye ZG, Li YF, Zhang GP. Pharmacokinetics of baicalin and oroxyloside in plasma and different tissues of rats after transnasal aerosol inhalation and intravenous injection of Tanreqing. Front Pharmacol 2022; 13:951613. [PMID: 36071852 PMCID: PMC9442038 DOI: 10.3389/fphar.2022.951613] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 07/15/2022] [Indexed: 11/13/2022] Open
Abstract
To avoid adverse drug reactions associated with injection, off-label nebulization of Tanreqing (TRQ) injection is often used in China to treat respiratory diseases. However, the aerodynamic properties and lung availability of TRQ aerosols remain largely uninvestigated. This study aimed to investigate the size distribution of TRQ aerosols and to compare the pharmacokinetics and tissue distribution of two compounds from TRQ (baicalin and oroxyloside) after transnasal aerosol inhalation and intravenous administration. Furthermore, this study aimed to evaluate the efficacy of TRQ against lipopolysaccharide-induced lung inflammation. The Dv(50) and transmission of TRQ aerosols were 2.512 μm and 74.867%, respectively. The Cmax of baicalin and oroxyloside in rat plasma after inhalation was lower than that after intravenous injection. After inhalation, the area under the curve (AUC) of baicalin and oroxyloside in tissues (lung, bronchoalveolar lavage fluid, and trachea) was 7.9–115.3 and 9.5–16.0 times that observed after intravenous administration, respectively. Baicalin and oroxyloside maintained high concentrations 4 h after inhalation, but only 1 h after intravenous injection. The mean lung-to-plasma concentration ratios of baicalin and oroxyloside were 287.6 and 49.9 times higher than with intravenous administration. Inhaled TRQ achieved the same effect against lipopolysaccharide-induced lung inflammation in mice at doses of only 1/16–1/8 of those administered intravenously. The results indicate that TRQ inhalation is a promising alternative to intravenous injections for the treatment of respiratory infection.
Collapse
Affiliation(s)
- Teng-Fei Chen
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Science, Beijing, China
| | - Ling Song
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Science, Beijing, China
| | - Yun-Hang Gao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Science, Beijing, China
| | - Han Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Science, Beijing, China
| | - Jian-Liang Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Science, Beijing, China
| | - Hong-Ping Hou
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Science, Beijing, China
| | - Bo Peng
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Science, Beijing, China
| | - Hui-Ying Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Science, Beijing, China
| | - Wen-Hao Cheng
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, China
| | - Zu-Guang Ye
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Science, Beijing, China
- *Correspondence: Guang-Ping Zhang, ; Ying-Fei Li, ; Zu-Guang Ye,
| | - Ying-Fei Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Science, Beijing, China
- *Correspondence: Guang-Ping Zhang, ; Ying-Fei Li, ; Zu-Guang Ye,
| | - Guang-Ping Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Science, Beijing, China
- *Correspondence: Guang-Ping Zhang, ; Ying-Fei Li, ; Zu-Guang Ye,
| |
Collapse
|
4
|
Katiyar SK, Gaur SN, Solanki RN, Sarangdhar N, Suri JC, Kumar R, Khilnani GC, Chaudhary D, Singla R, Koul PA, Mahashur AA, Ghoshal AG, Behera D, Christopher DJ, Talwar D, Ganguly D, Paramesh H, Gupta KB, Kumar T M, Motiani PD, Shankar PS, Chawla R, Guleria R, Jindal SK, Luhadia SK, Arora VK, Vijayan VK, Faye A, Jindal A, Murar AK, Jaiswal A, M A, Janmeja AK, Prajapat B, Ravindran C, Bhattacharyya D, D'Souza G, Sehgal IS, Samaria JK, Sarma J, Singh L, Sen MK, Bainara MK, Gupta M, Awad NT, Mishra N, Shah NN, Jain N, Mohapatra PR, Mrigpuri P, Tiwari P, Narasimhan R, Kumar RV, Prasad R, Swarnakar R, Chawla RK, Kumar R, Chakrabarti S, Katiyar S, Mittal S, Spalgais S, Saha S, Kant S, Singh VK, Hadda V, Kumar V, Singh V, Chopra V, B V. Indian Guidelines on Nebulization Therapy. Indian J Tuberc 2022; 69 Suppl 1:S1-S191. [PMID: 36372542 DOI: 10.1016/j.ijtb.2022.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 06/03/2022] [Accepted: 06/09/2022] [Indexed: 06/16/2023]
Abstract
Inhalational therapy, today, happens to be the mainstay of treatment in obstructive airway diseases (OADs), such as asthma, chronic obstructive pulmonary disease (COPD), and is also in the present, used in a variety of other pulmonary and even non-pulmonary disorders. Hand-held inhalation devices may often be difficult to use, particularly for children, elderly, debilitated or distressed patients. Nebulization therapy emerges as a good option in these cases besides being useful in the home care, emergency room and critical care settings. With so many advancements taking place in nebulizer technology; availability of a plethora of drug formulations for its use, and the widening scope of this therapy; medical practitioners, respiratory therapists, and other health care personnel face the challenge of choosing appropriate inhalation devices and drug formulations, besides their rational application and use in different clinical situations. Adequate maintenance of nebulizer equipment including their disinfection and storage are the other relevant issues requiring guidance. Injudicious and improper use of nebulizers and their poor maintenance can sometimes lead to serious health hazards, nosocomial infections, transmission of infection, and other adverse outcomes. Thus, it is imperative to have a proper national guideline on nebulization practices to bridge the knowledge gaps amongst various health care personnel involved in this practice. It will also serve as an educational and scientific resource for healthcare professionals, as well as promote future research by identifying neglected and ignored areas in this field. Such comprehensive guidelines on this subject have not been available in the country and the only available proper international guidelines were released in 1997 which have not been updated for a noticeably long period of over two decades, though many changes and advancements have taken place in this technology in the recent past. Much of nebulization practices in the present may not be evidence-based and even some of these, the way they are currently used, may be ineffective or even harmful. Recognizing the knowledge deficit and paucity of guidelines on the usage of nebulizers in various settings such as inpatient, out-patient, emergency room, critical care, and domiciliary use in India in a wide variety of indications to standardize nebulization practices and to address many other related issues; National College of Chest Physicians (India), commissioned a National task force consisting of eminent experts in the field of Pulmonary Medicine from different backgrounds and different parts of the country to review the available evidence from the medical literature on the scientific principles and clinical practices of nebulization therapy and to formulate evidence-based guidelines on it. The guideline is based on all possible literature that could be explored with the best available evidence and incorporating expert opinions. To support the guideline with high-quality evidence, a systematic search of the electronic databases was performed to identify the relevant studies, position papers, consensus reports, and recommendations published. Rating of the level of the quality of evidence and the strength of recommendation was done using the GRADE system. Six topics were identified, each given to one group of experts comprising of advisors, chairpersons, convenor and members, and such six groups (A-F) were formed and the consensus recommendations of each group was included as a section in the guidelines (Sections I to VI). The topics included were: A. Introduction, basic principles and technical aspects of nebulization, types of equipment, their choice, use, and maintenance B. Nebulization therapy in obstructive airway diseases C. Nebulization therapy in the intensive care unit D. Use of various drugs (other than bronchodilators and inhaled corticosteroids) by nebulized route and miscellaneous uses of nebulization therapy E. Domiciliary/Home/Maintenance nebulization therapy; public & health care workers education, and F. Nebulization therapy in COVID-19 pandemic and in patients of other contagious viral respiratory infections (included later considering the crisis created due to COVID-19 pandemic). Various issues in different sections have been discussed in the form of questions, followed by point-wise evidence statements based on the existing knowledge, and recommendations have been formulated.
Collapse
Affiliation(s)
- S K Katiyar
- Department of Tuberculosis & Respiratory Diseases, G.S.V.M. Medical College & C.S.J.M. University, Kanpur, Uttar Pradesh, India.
| | - S N Gaur
- Vallabhbhai Patel Chest Institute, University of Delhi, Respiratory Medicine, School of Medical Sciences and Research, Sharda University, Greater NOIDA, Uttar Pradesh, India
| | - R N Solanki
- Department of Tuberculosis & Chest Diseases, B. J. Medical College, Ahmedabad, Gujarat, India
| | - Nikhil Sarangdhar
- Department of Pulmonary Medicine, D. Y. Patil School of Medicine, Navi Mumbai, Maharashtra, India
| | - J C Suri
- Department of Pulmonary, Critical Care & Sleep Medicine, Vardhman Mahavir Medical College & Safdarjung Hospital, New Delhi, India
| | - Raj Kumar
- Vallabhbhai Patel Chest Institute, Department of Pulmonary Medicine, National Centre of Allergy, Asthma & Immunology; University of Delhi, Delhi, India
| | - G C Khilnani
- PSRI Institute of Pulmonary, Critical Care, & Sleep Medicine, PSRI Hospital, Department of Pulmonary Medicine & Sleep Disorders, All India Institute of Medical Sciences, New Delhi, India
| | - Dhruva Chaudhary
- Department of Pulmonary & Critical Care Medicine, Pt. Bhagwat Dayal Sharma Post Graduate Institute of Medical Sciences, Rohtak, Haryana, India
| | - Rupak Singla
- Department of Tuberculosis & Respiratory Diseases, National Institute of Tuberculosis & Respiratory Diseases (formerly L.R.S. Institute), Delhi, India
| | - Parvaiz A Koul
- Sher-i-Kashmir Institute of Medical Sciences, Srinagar, Jammu & Kashmir, India
| | - Ashok A Mahashur
- Department of Respiratory Medicine, P. D. Hinduja Hospital, Mumbai, Maharashtra, India
| | - A G Ghoshal
- National Allergy Asthma Bronchitis Institute, Kolkata, West Bengal, India
| | - D Behera
- Department of Pulmonary Medicine, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - D J Christopher
- Department of Pulmonary Medicine, Christian Medical College, Vellore, Tamil Nadu, India
| | - Deepak Talwar
- Metro Centre for Respiratory Diseases, Noida, Uttar Pradesh, India
| | | | - H Paramesh
- Paediatric Pulmonologist & Environmentalist, Lakeside Hospital & Education Trust, Bengaluru, Karnataka, India
| | - K B Gupta
- Department of Tuberculosis & Respiratory Medicine, Pt. Bhagwat Dayal Sharma Post Graduate Institute of Medical Sciences Rohtak, Haryana, India
| | - Mohan Kumar T
- Department of Pulmonary, Critical Care & Sleep Medicine, One Care Medical Centre, Coimbatore, Tamil Nadu, India
| | - P D Motiani
- Department of Pulmonary Diseases, Dr. S. N. Medical College, Jodhpur, Rajasthan, India
| | - P S Shankar
- SCEO, KBN Hospital, Kalaburagi, Karnataka, India
| | - Rajesh Chawla
- Respiratory and Critical Care Medicine, Indraprastha Apollo Hospitals, New Delhi, India
| | - Randeep Guleria
- All India Institute of Medical Sciences, Department of Pulmonary Medicine & Sleep Disorders, AIIMS, New Delhi, India
| | - S K Jindal
- Department of Pulmonary Medicine, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - S K Luhadia
- Department of Tuberculosis and Respiratory Medicine, Geetanjali Medical College and Hospital, Udaipur, Rajasthan, India
| | - V K Arora
- Indian Journal of Tuberculosis, Santosh University, NCR Delhi, National Institute of TB & Respiratory Diseases Delhi, India; JIPMER, Puducherry, India
| | - V K Vijayan
- Vallabhbhai Patel Chest Institute, Department of Pulmonary Medicine, University of Delhi, Delhi, India
| | - Abhishek Faye
- Centre for Lung and Sleep Disorders, Nagpur, Maharashtra, India
| | | | - Amit K Murar
- Respiratory Medicine, Cronus Multi-Specialty Hospital, New Delhi, India
| | - Anand Jaiswal
- Respiratory & Sleep Medicine, Medanta Medicity, Gurugram, Haryana, India
| | - Arunachalam M
- All India Institute of Medical Sciences, New Delhi, India
| | - A K Janmeja
- Department of Respiratory Medicine, Government Medical College, Chandigarh, India
| | - Brijesh Prajapat
- Pulmonary and Critical Care Medicine, Yashoda Hospital and Research Centre, Ghaziabad, Uttar Pradesh, India
| | - C Ravindran
- Department of TB & Chest, Government Medical College, Kozhikode, Kerala, India
| | - Debajyoti Bhattacharyya
- Department of Pulmonary Medicine, Institute of Liver and Biliary Sciences, Army Hospital (Research & Referral), New Delhi, India
| | | | - Inderpaul Singh Sehgal
- Department of Pulmonary Medicine, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - J K Samaria
- Centre for Research and Treatment of Allergy, Asthma & Bronchitis, Department of Chest Diseases, IMS, BHU, Varanasi, Uttar Pradesh, India
| | - Jogesh Sarma
- Department of Pulmonary Medicine, Gauhati Medical College and Hospital, Guwahati, Assam, India
| | - Lalit Singh
- Department of Respiratory Medicine, SRMS Institute of Medical Sciences, Bareilly, Uttar Pradesh, India
| | - M K Sen
- Department of Respiratory Medicine, ESIC Medical College, NIT Faridabad, Haryana, India; Department of Pulmonary, Critical Care & Sleep Medicine, Vardhman Mahavir Medical College & Safdarjung Hospital, New Delhi, India
| | - Mahendra K Bainara
- Department of Pulmonary Medicine, R.N.T. Medical College, Udaipur, Rajasthan, India
| | - Mansi Gupta
- Department of Pulmonary Medicine, Sanjay Gandhi PostGraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| | - Nilkanth T Awad
- Department of Pulmonary Medicine, Lokmanya Tilak Municipal Medical College, Mumbai, Maharashtra, India
| | - Narayan Mishra
- Department of Pulmonary Medicine, M.K.C.G. Medical College, Berhampur, Orissa, India
| | - Naveed N Shah
- Department of Pulmonary Medicine, Chest Diseases Hospital, Government Medical College, Srinagar, Jammu & Kashmir, India
| | - Neetu Jain
- Department of Pulmonary, Critical Care & Sleep Medicine, PSRI, New Delhi, India
| | - Prasanta R Mohapatra
- Department of Pulmonary Medicine & Critical Care, All India Institute of Medical Sciences, Bhubaneswar, Orissa, India
| | - Parul Mrigpuri
- Department of Pulmonary Medicine, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, India
| | - Pawan Tiwari
- School of Excellence in Pulmonary Medicine, NSCB Medical College, Jabalpur, Madhya Pradesh, India
| | - R Narasimhan
- Department of EBUS and Bronchial Thermoplasty Services at Apollo Hospitals, Chennai, Tamil Nadu, India
| | - R Vijai Kumar
- Department of Pulmonary Medicine, MediCiti Medical College, Hyderabad, Telangana, India
| | - Rajendra Prasad
- Vallabhbhai Patel Chest Institute, University of Delhi and U.P. Rural Institute of Medical Sciences & Research, Safai, Uttar Pradesh, India
| | - Rajesh Swarnakar
- Department of Respiratory, Critical Care, Sleep Medicine and Interventional Pulmonology, Getwell Hospital & Research Institute, Nagpur, Maharashtra, India
| | - Rakesh K Chawla
- Department of, Respiratory Medicine, Critical Care, Sleep & Interventional Pulmonology, Saroj Super Speciality Hospital, Jaipur Golden Hospital, Rajiv Gandhi Cancer Hospital, Delhi, India
| | - Rohit Kumar
- Department of Pulmonary, Critical Care & Sleep Medicine, Vardhman Mahavir Medical College & Safdarjung Hospital, New Delhi, India
| | - S Chakrabarti
- Department of Pulmonary, Critical Care & Sleep Medicine, Vardhman Mahavir Medical College & Safdarjung Hospital, New Delhi, India
| | | | - Saurabh Mittal
- Department of Pulmonary, Critical Care & Sleep Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Sonam Spalgais
- Department of Pulmonary Medicine, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, India
| | | | - Surya Kant
- Department of Respiratory (Pulmonary) Medicine, King George's Medical University, Lucknow, Uttar Pradesh, India
| | - V K Singh
- Centre for Visceral Mechanisms, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, India
| | - Vijay Hadda
- Department of Pulmonary Medicine & Sleep Disorders, All India Institute of Medical Sciences, New Delhi, India
| | - Vikas Kumar
- All India Institute of Medical Sciences, Raipur, Chhattisgarh, India
| | - Virendra Singh
- Mahavir Jaipuria Rajasthan Hospital, Jaipur, Rajasthan, India
| | - Vishal Chopra
- Department of Chest & Tuberculosis, Government Medical College, Patiala, Punjab, India
| | - Visweswaran B
- Interventional Pulmonology, Yashoda Hospitals, Hyderabad, Telangana, India
| |
Collapse
|
5
|
|
6
|
Boisson M, Bouglé A, Sole-Lleonart C, Dhanani J, Arvaniti K, Rello J, Rouby JJ, Mimoz O. Nebulized Antibiotics for Healthcare- and Ventilator-Associated Pneumonia. Semin Respir Crit Care Med 2022; 43:255-270. [PMID: 35042259 DOI: 10.1055/s-0041-1740340] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Global emergence of multidrug-resistant and extensive drug-resistant gram-negative bacteria has increased the risk of treatment failure, especially for healthcare- or ventilator-associated pneumonia (HAP/VAP). Nebulization of antibiotics, by providing high intrapulmonary antibiotic concentrations, represents a promising approach to optimize the treatment of HAP/VAP due to multidrug-resistant and extensive drug-resistant gram-negative bacteria, while limiting systemic antibiotic exposure. Aminoglycosides and colistin methanesulfonate are the most common nebulized antibiotics. Although optimal nebulized drug dosing regimen is not clearly established, high antibiotic doses should be administered using vibrating-mesh nebulizer with optimized ventilator settings to ensure safe and effective intrapulmonary concentrations. When used preventively, nebulized antibiotics reduced the incidence of VAP without any effect on mortality. This approach is not yet recommended and large randomized controlled trials should be conducted to confirm its benefit and explore the impact on antibiotic selection pressure. Compared with high-dose intravenous administration, high-dose nebulized colistin methanesulfonate seems to be more effective and safer in the treatment of ventilator-associated tracheobronchitis and VAP caused by multidrug resistant and extensive-drug resistant gram-negative bacteria. Adjunctive nebulized aminoglycosides could increase the clinical cure rate and bacteriological eradication in patients suffering from HAP/VAP due to multidrug-resistant and extensive drug-resistant gram-negative bacteria. As nebulized aminoglycosides broadly diffuse in the systemic circulation of patients with extensive bronchopneumonia, monitoring of plasma trough concentrations is recommended during the period of nebulization. Large randomized controlled trials comparing high dose of nebulized colistin methanesulfonate to high dose of intravenous colistin methanesulfonate or to intravenous new β-lactams in HAP/VAP due to multidrug-resistant and extensive drug-resistant gram-negative bacteria are urgently needed.
Collapse
Affiliation(s)
- Matthieu Boisson
- INSERM U1070, Université de Poitiers, UFR de Médecine Pharmacie, Poitiers, France.,Service de Prévention et de Contrôle de l'Infection, Hôpitaux Universitaires de Genève, Genève, Suisse
| | - Adrien Bouglé
- Medicine Sorbonne University, Anaesthesiology and Critical Care, Cardiology Institute, Paris, France.,Department of Anaesthesiology and Critical Care, La Pitié-Salpêtrière Hospital, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Candela Sole-Lleonart
- Intensive Care Unit, Consorci Hospitalari de Vic (CHV), The University of Vic - Central University of Catalonia (UVic-UCC), Vic, Barcelona, Spain
| | - Jayesh Dhanani
- Department of Intensive care medicine, Centre for Clinical Research, The University of Queensland, The Royal Brisbane and Women's Hospital Herston, Brisbane, Australia
| | - Kostoula Arvaniti
- Intensive Care Unit Department, Papageorgiou Hospital of Thessaloniki, Thessaloniki, Greece
| | - Jordi Rello
- Centro de Investigación Biomédica en Red (CIBERES), Instituto de Salud Carlos III, Madrid, Spain.,Clinical Research and Innovation in Pneumonia and Sepsis, Vall d'Hebron Institute of Research (VHIR), Barcelona, Spain.,Clinical Research, CHU Nîmes, Université Montpellier-Nîmes, Nîmes, France
| | - Jean-Jacques Rouby
- Department of Anaesthesiology and Critical Care, Medicine Sorbonne University, Multidisciplinary Intensive Care Unit, La Pitié Salpêtrière Hospital, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Olivier Mimoz
- INSERM U1070 Université de Poitiers, UFR de Médecine Pharmacie and Service des Urgences Adultes & SAMU 86, Centre Hospitalier Universitaire de Poitiers, Poitiers, France
| | | |
Collapse
|
7
|
Camara CI, Bertocchi L, Ricci C, Bassi R, Bianchera A, Cantu’ L, Bettini R, Del Favero E. Hyaluronic Acid-Dexamethasone Nanoparticles for Local Adjunct Therapy of Lung Inflammation. Int J Mol Sci 2021; 22:10480. [PMID: 34638821 PMCID: PMC8509068 DOI: 10.3390/ijms221910480] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/16/2021] [Accepted: 09/24/2021] [Indexed: 12/15/2022] Open
Abstract
The delivery of a dexamethasone formulation directly into the lung appears as an appropriate strategy to strengthen the systemic administration, reducing the dosage in the treatment of lung severe inflammations. For this purpose, a hyaluronic acid-dexamethasone formulation was developed, affording an inhalable reconstituted nanosuspension suitable to be aerosolized. The physico-chemical and biopharmaceutical properties of the formulation were tested: size, stability, loading of the spray-dried dry powder, reconstitution capability upon redispersion in aqueous media. Detailed structural insights on nanoparticles after reconstitution were obtained by light and X-ray scattering techniques. (1) The size of the nanoparticles, around 200 nm, is in the proper range for a possible engulfment by macrophages. (2) Their structure is of the core-shell type, hosting dexamethasone nanocrystals inside and carrying hyaluronic acid chains on the surface. This specific structure allows for nanosuspension stability and provides nanoparticles with muco-inert properties. (3) The nanosuspension can be efficiently aerosolized, allowing for a high drug fraction potentially reaching the deep lung. Thus, this formulation represents a promising tool for the lung administration via nebulization directly in the pipe of ventilators, to be used as such or as adjunct therapy for severe lung inflammation.
Collapse
Affiliation(s)
- Candelaria Ines Camara
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, LITA, Via Fratelli Cervi 93, 20090 Segrate, Italy; (C.I.C.); (C.R.); (R.B.); (L.C.)
- Instituto de Investigaciones en Fisicoquímica de Córdoba (INFIQC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba 5000, Argentina
| | - Laura Bertocchi
- Department of Food and Drug, Università di Parma, Parco Area delle Scienze, 27/A, 43124 Parma, Italy; (L.B.); (A.B.); (R.B.)
| | - Caterina Ricci
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, LITA, Via Fratelli Cervi 93, 20090 Segrate, Italy; (C.I.C.); (C.R.); (R.B.); (L.C.)
| | - Rosaria Bassi
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, LITA, Via Fratelli Cervi 93, 20090 Segrate, Italy; (C.I.C.); (C.R.); (R.B.); (L.C.)
| | - Annalisa Bianchera
- Department of Food and Drug, Università di Parma, Parco Area delle Scienze, 27/A, 43124 Parma, Italy; (L.B.); (A.B.); (R.B.)
| | - Laura Cantu’
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, LITA, Via Fratelli Cervi 93, 20090 Segrate, Italy; (C.I.C.); (C.R.); (R.B.); (L.C.)
| | - Ruggero Bettini
- Department of Food and Drug, Università di Parma, Parco Area delle Scienze, 27/A, 43124 Parma, Italy; (L.B.); (A.B.); (R.B.)
| | - Elena Del Favero
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, LITA, Via Fratelli Cervi 93, 20090 Segrate, Italy; (C.I.C.); (C.R.); (R.B.); (L.C.)
| |
Collapse
|
8
|
Sato M, Honda A, Maki H, Toyama K, Yamaguchi R, Ikeda M, Moriya K, Kurokawa M. Successful treatment of pneumonia caused by multidrug-resistant Pseudomonas aeruginosa after allogeneic hematopoietic stem cell transplantation with colistin and amikacin inhalation therapy. J Infect Chemother 2021; 28:91-94. [PMID: 34518095 DOI: 10.1016/j.jiac.2021.08.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/23/2021] [Accepted: 08/29/2021] [Indexed: 11/27/2022]
Abstract
Pseudomonas aeruginosa is a Gram-negative bacillus that often causes severe infections during immunosuppression in patients with hematologic malignancies. P. aeruginosa can easily acquire drug resistance, and often develops into multidrug-resistant P. aeruginosa (MDRP). Although many antibiotics are used in combination to treat MDRP infections, colistin and amikacin are less likely to be transferred to the lungs, and inhalation therapy may be used. Herein, we report a Case of pneumonia caused by MDRP after allogeneic hematopoietic stem cell transplantation (HSCT) treated with inhaled colistin and amikacin. This 61-year-old female patient was diagnosed with myelodysplastic syndromes and underwent allogeneic HSCT from an 8/8 HLA-matched unrelated donor after reduced-intensity conditioning. On the day of the stem cell infusion, the patient's sputum culture was found to be positive for MDRP. The patient subsequently developed bacteremia, pneumonia, and lung abscess caused by MDRP, and we administered multidrug antibiotic therapy including colistin and amikacin inhalation therapy. The patient's blood cultures were subsequently turned negative, and the lung abscess disappeared. To our knowledge, this is the first case of MDRP pneumonia after HSCT in which colistin and amikacin inhalation therapy was effective.
Collapse
Affiliation(s)
- Michiaki Sato
- Department of Hematology and Oncology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Akira Honda
- Department of Hematology and Oncology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hiroaki Maki
- Department of Hematology and Oncology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kazuhiro Toyama
- Department of Hematology and Oncology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Ryo Yamaguchi
- Department of Pharmacy, The University of Tokyo Hospital, Japan
| | - Mahoko Ikeda
- Department of Infection Control and Prevention, Faculty of Medicine, The University of Tokyo, Japan
| | - Kyoji Moriya
- Department of Infection Control and Prevention, Faculty of Medicine, The University of Tokyo, Japan
| | - Mineo Kurokawa
- Department of Hematology and Oncology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; Department of Cell Therapy and Transplantation Medicine, The University of Tokyo Hospital, Tokyo, Japan.
| |
Collapse
|
9
|
Gysin M, Acevedo CT, Haldimann K, Bodendoerfer E, Imkamp F, Bulut K, Buehler PK, Brugger SD, Becker K, Hobbie SN. Antimicrobial susceptibility patterns of respiratory Gram-negative bacterial isolates from COVID-19 patients in Switzerland. Ann Clin Microbiol Antimicrob 2021; 20:64. [PMID: 34493302 PMCID: PMC8422836 DOI: 10.1186/s12941-021-00468-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Accepted: 08/27/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Bacterial superinfections associated with COVID-19 are common in ventilated ICU patients and impact morbidity and lethality. However, the contribution of antimicrobial resistance to the manifestation of bacterial infections in these patients has yet to be elucidated. METHODS We collected 70 Gram-negative bacterial strains, isolated from the lower respiratory tract of ventilated COVID-19 patients in Zurich, Switzerland between March and May 2020. Species identification was performed using MALDI-TOF; antibiotic susceptibility profiles were determined by EUCAST disk diffusion and CLSI broth microdilution assays. Selected Pseudomonas aeruginosa isolates were analyzed by whole-genome sequencing. RESULTS Pseudomonas aeruginosa (46%) and Enterobacterales (36%) comprised the two largest etiologic groups. Drug resistance in P. aeruginosa isolates was high for piperacillin/tazobactam (65.6%), cefepime (56.3%), ceftazidime (46.9%) and meropenem (50.0%). Enterobacterales isolates showed slightly lower levels of resistance to piperacillin/tazobactam (32%), ceftriaxone (32%), and ceftazidime (36%). All P. aeruginosa isolates and 96% of Enterobacterales isolates were susceptible to aminoglycosides, with apramycin found to provide best-in-class coverage. Genotypic analysis of consecutive P. aeruginosa isolates in one patient revealed a frameshift mutation in the transcriptional regulator nalC that coincided with a phenotypic shift in susceptibility to β-lactams and quinolones. CONCLUSIONS Considerable levels of antimicrobial resistance may have contributed to the manifestation of bacterial superinfections in ventilated COVID-19 patients, and may in some cases mandate consecutive adaptation of antibiotic therapy. High susceptibility to amikacin and apramycin suggests that aminoglycosides may remain an effective second-line treatment of ventilator-associated bacterial pneumonia, provided efficacious drug exposure in lungs can be achieved.
Collapse
Affiliation(s)
- Marina Gysin
- Institute of Medical Microbiology, University of Zurich, Gloriastrasse 30, 8006, Zurich, Switzerland
| | - Claudio Tirso Acevedo
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Raemistrasse 100, 8091, Zurich, Switzerland
| | - Klara Haldimann
- Institute of Medical Microbiology, University of Zurich, Gloriastrasse 30, 8006, Zurich, Switzerland
| | - Elias Bodendoerfer
- Institute of Medical Microbiology, University of Zurich, Gloriastrasse 30, 8006, Zurich, Switzerland
| | - Frank Imkamp
- Institute of Medical Microbiology, University of Zurich, Gloriastrasse 30, 8006, Zurich, Switzerland
| | - Karl Bulut
- Institute of Medical Microbiology, University of Zurich, Gloriastrasse 30, 8006, Zurich, Switzerland
| | - Philipp Karl Buehler
- Institute for Intensive Care Medicine, University Hospital Zurich and University of Zurich, Raemistrasse 100, 8091, Zurich, Switzerland
| | - Silvio Daniel Brugger
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Raemistrasse 100, 8091, Zurich, Switzerland
| | - Katja Becker
- Institute of Medical Microbiology, University of Zurich, Gloriastrasse 30, 8006, Zurich, Switzerland
| | - Sven N Hobbie
- Institute of Medical Microbiology, University of Zurich, Gloriastrasse 30, 8006, Zurich, Switzerland.
| |
Collapse
|
10
|
Wei-Ya C, Fei-Fei Y, Cui L, Wen-Hui L, Jie H, Yong-Hong L. Comparison of plasma and pulmonary availability of chlorogenic acid, forsythiaside A and baicalin after intratracheal and intravenous administration of Shuang-Huang-Lian injection. JOURNAL OF ETHNOPHARMACOLOGY 2021; 274:114082. [PMID: 33813012 DOI: 10.1016/j.jep.2021.114082] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/19/2021] [Accepted: 03/25/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The off-label nebulization of Shuang-Huang-Lian (SHL) injection is often utilized to treat respiratory tract infections in China. However, the pulmonary biopharmaceutics of SHL was generally unknown, limiting the rational selection of therapeutic dose and dose frequency. AIM OF THE STUDY To characterize the size distribution of nebulized aerosols and to compare the pharmacokinetics and the lung distribution of three chemical makers of SHL, chlorogenic acid (CHA), forsythiaside A (FTA) and baicalin (BC), after intratracheal and intravenous administration of SHL to rats. MATERIALS AND METHODS The droplet size distribution profiles over nebulization process were dynamically monitored using a laser diffraction method whereas the levels of CHA, FTA and BC in plasma, lung tissues and bronchoalveolar lavage fluids (BALF) were determined by a validated LC-MS/MS assay. The pulmonary anti-inflammatory efficacy was evaluated using a lipopolysaccharide (LPS) induced lung inflammation model as indicated by the level of tumor necrosis factor-α (TNF-α) in BALF. RESULTS The nebulization of SHL showed good inhalability and allowed the aerosols to reach the upper or lower respiratory tract dependent on the performance of selected nebulizers. Following intratracheal administration of SHL at different doses, CHA, FTA and BC were absorbed into the bloodstream with the mean absorption time being 67.5, 63.5 and 114 min, respectively, rendering mean absolute bioavailabilities between 42.4% and 61.4% roughly independent of delivered dose. Relative to the intravenous injection, the intrapulmonary delivery increased the lung-to-plasma concentration ratios of CHA, FTA and BC by more than 100 folds and markedly improved the lung availability by 563-676 folds, leading to enhanced and prolonged lung retention. The production of TNF-α in BALF was decreased by ~50% at an intratracheal dose of 125 μL/kg SHL to LPS-treated mice. CONCLUSION The nebulization delivery of SHL is a promising alternative to the intravenous injection for the treatment of respiratory tract infections.
Collapse
Affiliation(s)
- Chen Wei-Ya
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151 Malianwa North Road, Haidian District, Beijing, 100193, PR China
| | - Yang Fei-Fei
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151 Malianwa North Road, Haidian District, Beijing, 100193, PR China
| | - Li Cui
- Increasepharm (Hengqin) Institute Coporation Limited, No. 2522 Huan Dao North Road, Hengqin New Area, Zhuhai, 519000, PR China
| | - Li Wen-Hui
- Beijing Increasepharm Coporation Limited, Changping District, Beijing, 102200, PR China
| | - Hu Jie
- Beijing Increasepharm Coporation Limited, Changping District, Beijing, 102200, PR China.
| | - Liao Yong-Hong
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151 Malianwa North Road, Haidian District, Beijing, 100193, PR China.
| |
Collapse
|
11
|
Initial In Vivo Evaluation of a Novel Amikacin-Deoxycholate Hydrophobic Salt Delivers New Insights on Amikacin Partition in Blood and Tissues. Pharmaceutics 2021; 13:pharmaceutics13010085. [PMID: 33435166 PMCID: PMC7827485 DOI: 10.3390/pharmaceutics13010085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/05/2021] [Accepted: 01/07/2021] [Indexed: 12/19/2022] Open
Abstract
In this study, an initial in vivo evaluation of a new amikacin-deoxycholate hydrophobic salt aimed at potentiating amikacin action against hard-to-treat lung infections was undertaken by quantifying, for the first time, amikacin in whole blood. Pharmacokinetic evaluation after intranasal administration in a murine model showed higher drug retention in the lungs compared to blood, with no significant differences between the salt and the free drug. Upon repeated administrations, the two treatments resulted in nonsignificant tissue damage and mild higher inflammation for the hydrophobic salt. Whole-blood analysis highlighted an unreported high partition of amikacin in blood components up to 48 h, while significant lung levels were measured up to 72 h. Such a new observation was considered responsible for the nearly overlapping pharmacokinetic profiles of the two treatments. To overcome such an issue, a dry powder in an inhalable form may be best suited. Moreover, if confirmed in humans, and considering the current once-a-day regimen for amikacin aerosols, important yet-to-be-explored clinical implications may be postulated for such amikacin persistence in the organism.
Collapse
|
12
|
Sécher T, Bodier-Montagutelli E, Guillon A, Heuzé-Vourc'h N. Correlation and clinical relevance of animal models for inhaled pharmaceuticals and biopharmaceuticals. Adv Drug Deliv Rev 2020; 167:148-169. [PMID: 32645479 DOI: 10.1016/j.addr.2020.06.029] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 06/10/2020] [Accepted: 06/29/2020] [Indexed: 12/01/2022]
Abstract
Nonclinical studies are fundamental for the development of inhaled drugs, as for any drug product, and for successful translation to clinical practice. They include in silico, in vitro, ex vivo and in vivo studies and are intended to provide a comprehensive understanding of the inhaled drug beneficial and detrimental effects. To date, animal models cannot be circumvented during drug development programs, acting as surrogates of humans to predict inhaled drug response, fate and toxicity. Herein, we review the animal models used during the different development stages of inhaled pharmaceuticals and biopharmaceuticals, highlighting their strengths and limitations.
Collapse
Affiliation(s)
- T Sécher
- INSERM, Research Center for Respiratory Diseases, U1100, Tours, France; University of Tours, Tours, France
| | - E Bodier-Montagutelli
- INSERM, Research Center for Respiratory Diseases, U1100, Tours, France; University of Tours, Tours, France; CHRU de Tours, Pharmacy Department, Tours, France
| | - A Guillon
- INSERM, Research Center for Respiratory Diseases, U1100, Tours, France; University of Tours, Tours, France; CHRU de Tours, Critical Care Department, Tours, France
| | - N Heuzé-Vourc'h
- INSERM, Research Center for Respiratory Diseases, U1100, Tours, France; University of Tours, Tours, France.
| |
Collapse
|
13
|
Nebulization of Vancomycin Provides Higher Lung Tissue Concentrations than Intravenous Administration in Ventilated Female Piglets with Healthy Lungs. Anesthesiology 2020; 132:1516-1527. [PMID: 32053565 DOI: 10.1097/aln.0000000000003171] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
BACKGROUND Intravenous vancomycin is used to treat ventilator-associated pneumonia caused by methicillin-resistant Staphylococcus aureus, but achieves high rates of failure. Vancomycin nebulization may be efficient to provide high vancomycin lung tissue concentrations. The aim of this study was to compare lung tissue and serum concentrations of vancomycin administered intravenously and by aerosol in mechanically ventilated and anesthetized healthy piglets. METHODS Twelve female piglets received a single intravenous dose of vancomycin (15 mg/kg) and were killed 1 (n = 6) or 12 h (n = 6) after the end of administration. Twelve piglets received a single nebulized dose of vancomycin (37.5 mg/kg) and were killed 1 (n = 6) or 12 h (n = 6) after the end of the aerosol administration. In each group, vancomycin lung tissue concentrations were assessed on postmortem lung specimens using high-performance liquid chromatography. Blood samples were collected for serum vancomycin concentration measurement 30 min and 1, 2, 4, 6, 8, and 12 h after the end of vancomycin administration. Pharmacokinetics was analyzed by nonlinear mixed effect modeling. RESULTS One hour after vancomycin administration, lung tissue concentrations in the aerosol group were 13 times the concentrations in the intravenous group (median and interquartile range: 161 [71, 301] μg/g versus 12 [4, 42] μg/g; P < 0.0001). Twelve hours after vancomycin administration, lung tissue concentrations in the aerosol group were 63 (23, 119) μg/g and 0 (0, 19) μg/g in the intravenous group (P < 0.0001). A two-compartment weight-scaled allometric model with first-order absorption and elimination best fit serum pharmacokinetics after both routes of administration. Area under the time-concentration curve from 0 to 12 h was lower in the aerosol group in comparison to the intravenous group (56 [8, 70] mg · h · l vs. 121 [103, 149] mg · h · l, P = 0.002). Using a population model, vancomycin bioavailability was 13% (95% CI, 6 to 69; coefficient of variation = 85%) and absorption rate was slow (absorption half life = 0.3 h). CONCLUSIONS Administration of vancomycin by nebulization resulted in higher lung tissue concentrations than the intravenous route.
Collapse
|
14
|
Maes D, Boyen F, Haesebrouck F, Gautier-Bouchardon AV. Antimicrobial treatment of Mycoplasma hyopneumoniae infections. Vet J 2020; 259-260:105474. [PMID: 32553237 DOI: 10.1016/j.tvjl.2020.105474] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 05/14/2020] [Accepted: 05/18/2020] [Indexed: 12/13/2022]
Abstract
Mycoplasma hyopneumoniae (M. hyopneumoniae) is the primary agent of enzootic pneumonia, a chronic and economically important respiratory disease of pigs. Control and prevention of M. hyopneumoniae infections can be accomplished by optimization of management and housing conditions, and by vaccination. The present paper summarizes the current knowledge on the main characteristics and efficacy of antimicrobials used for the treatment of clinical M. hyopneumoniae infections, the in vitro and in vivo activities of these antimicrobials and the reported resistance mechanisms against some. Potentially active antimicrobials against M. hyopneumoniae include tetracyclines, macrolides, lincosamides, pleuromutilins, amphenicols, aminoglycosides, aminocyclitols and fluoroquinolones. Antimicrobial treatment can be administered either orally or parenterally. Based on the overall results of efficacy studies performed under experimental and/or field conditions, the majority of agents belonging to these antimicrobial classes improved clinical parameters (clinical signs, lung lesions) and reduced performance losses due to M. hyopneumoniae infection. Antimicrobials may, however, not be able to prevent infection or to eradicate the bacterium from the respiratory tract. The decision to medicate should, therefore, be considered carefully. M. hyopneumoniae shows an intrinsic resistance against β-lactam antibiotics, sulfonamides and trimethoprim. A few reports have shown acquired antimicrobial resistance against some antibiotics, along with associated resistance mechanisms. The results of antimicrobial susceptibility testing are difficult to interpret in terms of treatment outcome, as no clinical breakpoints have been defined for M. hyopneumoniae.
Collapse
Affiliation(s)
- Dominiek Maes
- Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium.
| | - Filip Boyen
- Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | | | - Anne V Gautier-Bouchardon
- Mycoplasmology, Bacteriology and Antimicrobial Resistance Unit, Ploufragan-Plouzané-Niort Laboratory, French Agency for Food, Environmental and Occupational Health and Safety (Anses), France
| |
Collapse
|
15
|
Wei-Ya C, Yuan-Song W, Chun-Yu L, Yu-Bin J, Fei-Fei Y, Yong-Hong L. Comparison of pulmonary availability and anti-inflammatory effect of dehydroandrographolide succinate via intratracheal and intravenous administration. Eur J Pharm Sci 2020; 147:105290. [DOI: 10.1016/j.ejps.2020.105290] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 02/15/2020] [Accepted: 03/01/2020] [Indexed: 10/24/2022]
|
16
|
Jean SS, Chang YC, Lin WC, Lee WS, Hsueh PR, Hsu CW. Epidemiology, Treatment, and Prevention of Nosocomial Bacterial Pneumonia. J Clin Med 2020; 9:jcm9010275. [PMID: 31963877 PMCID: PMC7019939 DOI: 10.3390/jcm9010275] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/14/2020] [Accepted: 01/15/2020] [Indexed: 12/17/2022] Open
Abstract
Septicaemia likely results in high case-fatality rates in the present multidrug-resistant (MDR) era. Amongst them are hospital-acquired pneumonia (HAP) and ventilator-associated pneumonia (VAP), two frequent fatal septicaemic entities amongst hospitalised patients. We reviewed the PubMed database to identify the common organisms implicated in HAP/VAP, to explore the respective risk factors, and to find the appropriate antibiotic choice. Apart from methicillin-resistant Staphylococcus aureus and Pseudomonas aeruginosa, extended-spectrum β-lactamase-producing Enterobacteriaceae spp., MDR or extensively drug-resistant (XDR)-Acinetobacter baumannii complex spp., followed by Stenotrophomonas maltophilia, Chryseobacterium indologenes, and Elizabethkingia meningoseptica are ranked as the top Gram-negative bacteria (GNB) implicated in HAP/VAP. Carbapenem-resistant Enterobacteriaceae notably emerged as an important concern in HAP/VAP. The above-mentioned pathogens have respective risk factors involved in their acquisition. In the present XDR era, tigecycline, colistin, and ceftazidime-avibactam are antibiotics effective against the Klebsiella pneumoniae carbapenemase and oxacillinase producers amongst the Enterobacteriaceae isolates implicated in HAP/VAP. Antibiotic combination regimens are recommended in the treatment of MDR/XDR-P. aeruginosa or A. baumannii complex isolates. Some special patient populations need prolonged courses (>7-day) and/or a combination regimen of antibiotic therapy. Implementation of an antibiotic stewardship policy and the measures recommended by the United States (US) Institute for Healthcare were shown to decrease the incidence rates of HAP/VAP substantially.
Collapse
Affiliation(s)
- Shio-Shin Jean
- Department of Emergency, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan;
- Department of Emergency Medicine, Department of Emergency and Critical Care Medicine, Wan Fang Hospital, Taipei Medicine University, Taipei 110, Taiwan
- Correspondence: ; Tel.: +886-2-29307930 (ext. 1262)
| | - Yin-Chun Chang
- Division of Thoracic Surgery, Department of Surgery, Wan Fang Hospital, Taipei Medical University, Taipei 110, Taiwan; (Y.-C.C.); (W.-C.L.)
| | - Wei-Cheng Lin
- Division of Thoracic Surgery, Department of Surgery, Wan Fang Hospital, Taipei Medical University, Taipei 110, Taiwan; (Y.-C.C.); (W.-C.L.)
| | - Wen-Sen Lee
- Division of Infectious Diseases, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei 110, Taiwan;
- Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Po-Ren Hsueh
- Department of Laboratory Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei 100, Taiwan;
- Department Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei 100, Taiwan
| | - Chin-Wan Hsu
- Department of Emergency, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan;
- Department of Emergency Medicine, Department of Emergency and Critical Care Medicine, Wan Fang Hospital, Taipei Medicine University, Taipei 110, Taiwan
| |
Collapse
|
17
|
Lung Pharmacokinetics of Tobramycin by Intravenous and Nebulized Dosing in a Mechanically Ventilated Healthy Ovine Model. Anesthesiology 2019; 131:344-355. [PMID: 31107274 DOI: 10.1097/aln.0000000000002752] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
BACKGROUND Nebulized antibiotics may be used to treat ventilator-associated pneumonia. In previous pharmacokinetic studies, lung interstitial space fluid concentrations have never been reported. The aim of the study was to compare intravenous and nebulized tobramycin concentrations in the lung interstitial space fluid, epithelial lining fluid, and plasma in mechanically ventilated sheep with healthy lungs. METHODS Ten anesthetized and mechanically ventilated healthy ewes underwent surgical insertion of microdialysis catheters in upper and lower lobes of both lungs and the jugular vein. Five ewes were given intravenous tobramycin 400 mg, and five were given nebulized tobramycin 400 mg. Microdialysis samples were collected every 20 min for 8 h. Bronchoalveolar lavage was performed at 1 and 6 h. RESULTS The peak lung interstitial space fluid concentrations were lower with intravenous tobramycin 20.2 mg/l (interquartile range, 12 mg/l, 26.2 mg/l) versus the nebulized route 48.3 mg/l (interquartile range, 8.7 mg/l, 513 mg/l), P = 0.002. For nebulized tobramycin, the median epithelial lining fluid concentrations were higher than the interstitial space fluid concentrations at 1 h (1,637; interquartile range, 650, 1,781, vs. 16 mg/l, interquartile range, 7, 86, P < 0.001) and 6 h (48, interquartile range, 17, 93, vs. 4 mg/l, interquartile range, 2, 9, P < 0.001). For intravenous tobramycin, the median epithelial lining fluid concentrations were lower than the interstitial space fluid concentrations at 1 h (0.19, interquartile range, 0.11, 0.31, vs. 18.5 mg/l, interquartile range, 9.8, 23.4, P < 0.001) and 6 h (0.34, interquartile range, 0.2, 0.48, vs. 3.2 mg/l, interquartile range, 0.9, 4.4, P < 0.001). CONCLUSIONS Compared with intravenous tobramycin, nebulized tobramycin achieved higher lung interstitial fluid and epithelial lining fluid concentrations without increasing systemic concentrations.
Collapse
|
18
|
Leone M, Bouadma L, Bouhemad B, Brissaud O, Dauger S, Gibot S, Hraiech S, Jung B, Kipnis E, Launey Y, Luyt C, Margetis D, Michel F, Mokart D, Montravers P, Monsel A, Nseir S, Pugin J, Roquilly A, Velly L, Zahar J, Bruyère R, Chanques G. Pneumonies associées aux soins de réanimation* RFE commune SFAR–SRLF. MEDECINE INTENSIVE REANIMATION 2019. [DOI: 10.3166/rea-2019-0106] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
19
|
Abstract
Pneumonia, including community-acquired bacterial pneumonia, hospital-acquired bacterial pneumonia, and ventilator-acquired bacterial pneumonia, carries unacceptably high morbidity and mortality. Despite advances in antimicrobial therapy, emergence of multidrug resistance and high rates of treatment failure have made optimization of antibiotic efficacy a priority. This review focuses on pharmacokinetic and pharmacodynamic approaches to antibacterial optimization within the lung environment and in the setting of critical illness. Strategies for including these approaches in drug development programs as well as clinical practice are described and reviewed.
Collapse
Affiliation(s)
- Ana Motos
- Center for Anti-Infective Research and Development, Hartford Hospital, 80 Seymour Street, Hartford, CT 06102, USA; Division of Animal Experimentation, Department of Pulmonary and Critical Care, Hospital Clinic, 170 Villarroel Street, Barcelona 08036, Spain
| | - James M Kidd
- Center for Anti-Infective Research and Development, Hartford Hospital, 80 Seymour Street, Hartford, CT 06102, USA
| | - David P Nicolau
- Center for Anti-Infective Research and Development, Hartford Hospital, 80 Seymour Street, Hartford, CT 06102, USA; Division of Infectious Diseases, Hartford Hospital, 80 Seymour Street, Hartford, CT 06102, USA.
| |
Collapse
|
20
|
Luyt CE, Hékimian G, Bréchot N, Chastre J. Aerosol Therapy for Pneumonia in the Intensive Care Unit. Clin Chest Med 2019; 39:823-836. [PMID: 30390752 DOI: 10.1016/j.ccm.2018.08.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Antibiotic aerosolization in patients with ventilator-associated pneumonia (VAP) allows very high concentrations of antimicrobial agents in the respiratory secretions, far more than those achievable using the intravenous route. However, data in critically ill patients with pneumonia are limited. Administration of aerosolized antibiotics might increase the likelihood of clinical resolution, but no significant improvements in important outcomes have been consistently documented. Thus, aerosolized antibiotics should be restricted to the treatment of extensively resistant gram-negative pneumonia. In these cases, the use of a vibrating-mesh nebulizer seems to be more efficient, but specific settings and conditions are required to improve lung delivery.
Collapse
Affiliation(s)
- Charles-Edouard Luyt
- Service de Réanimation Médicale, Institut de Cardiologie, Groupe Hospitalier Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, 47-83 Boulevard de l'Hôpital, Paris Cedex 13 75651, France
| | - Guillaume Hékimian
- Service de Réanimation Médicale, Institut de Cardiologie, Groupe Hospitalier Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, 47-83 Boulevard de l'Hôpital, Paris Cedex 13 75651, France
| | - Nicolas Bréchot
- Service de Réanimation Médicale, Institut de Cardiologie, Groupe Hospitalier Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, 47-83 Boulevard de l'Hôpital, Paris Cedex 13 75651, France
| | - Jean Chastre
- Service de Réanimation Médicale, Institut de Cardiologie, Groupe Hospitalier Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, 47-83 Boulevard de l'Hôpital, Paris Cedex 13 75651, France; Sorbonne Universités, UPMC Université Paris 06, INSERM, UMRS_1166-ICAN Institute of Cardiometabolism and Nutrition, Paris, France.
| |
Collapse
|
21
|
Guillon A, Darrouzain F, Heuzé-Vourc'h N, Petitcollin A, Barc C, Vecellio L, Cormier B, Lanotte P, Sarradin P, Dequin PF, Paintaud G, Ehrmann S. Intra-tracheal amikacin spray delivery in healthy mechanically ventilated piglets. Pulm Pharmacol Ther 2019; 57:101807. [PMID: 31102741 DOI: 10.1016/j.pupt.2019.101807] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 04/12/2019] [Accepted: 05/14/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Nebulization during mechanical ventilation is impeded by large extra-pulmonary drug deposition and long administration durations which currently limit implementation of inhaled antibiotic therapy. Direct intra-tracheal delivery using a sprayer represents an appealing alternative investigated in small animal models, but large animal data are lacking. METHODS Amikacin was administered through intravenous infusion (20 mg/kg), nebulization (60 mg/kg) and direct intra-tracheal spray (30 mg/kg) to 10 intubated piglets, in a randomized cross-over design. Amikacin concentrations were measured in the serum and pulmonary parenchyma. Anatomic deposition was investigated using immuno-histochemistry. RESULTS Spray delivery resulted in higher amikacin outputs than nebulization and infusion. Pulmonary inhaled delivery techniques yielded much higher lung concentrations and much lower serum concentrations than intravenous infusion. However, unlike nebulization and infusion, intra-tracheal spray delivery was associated with more than 100- and 1000-fold variability in lung concentrations between and within animals. Amikacin specific immuno-histochemistry showed consistent bronchial and alveolar drug deposition with all modalities. CONCLUSION Nebulization remains the most reliable and simple technique to deliver inhaled amikacin uniformly to the lung during mechanical ventilation. Further development of tracheal sprays is required to take advantage of potential benefits related to high drug output and low extra-pulmonary deposition in large animals.
Collapse
Affiliation(s)
- Antoine Guillon
- CHRU de Tours, Médecine Intensive Réanimation, INSERM CIC 1415, CRICS-Triggersep, Tours, France; Université de Tours, INSERM, Centre d'étude des pathologies respiratoires (CEPR), UMR 1100, Tours, France
| | | | - Nathalie Heuzé-Vourc'h
- Université de Tours, INSERM, Centre d'étude des pathologies respiratoires (CEPR), UMR 1100, Tours, France
| | | | - Céline Barc
- INRA Val de Loire, Plateforme d'infectiologie expérimentale, UE 1277, Nouzilly, France
| | - Laurent Vecellio
- Université de Tours, INSERM, Centre d'étude des pathologies respiratoires (CEPR), UMR 1100, Tours, France
| | | | - Philippe Lanotte
- CHRU de Tours, Bactériologie-Virologie, Tours, France; ISP, INRA, Université de Tours, UMR1282, F-37380, Nouzilly, France
| | - Pierre Sarradin
- INRA Val de Loire, Plateforme d'infectiologie expérimentale, UE 1277, Nouzilly, France
| | - Pierre-François Dequin
- CHRU de Tours, Médecine Intensive Réanimation, INSERM CIC 1415, CRICS-Triggersep, Tours, France; Université de Tours, INSERM, Centre d'étude des pathologies respiratoires (CEPR), UMR 1100, Tours, France
| | | | - Stephan Ehrmann
- CHRU de Tours, Médecine Intensive Réanimation, INSERM CIC 1415, CRICS-Triggersep, Tours, France; Université de Tours, INSERM, Centre d'étude des pathologies respiratoires (CEPR), UMR 1100, Tours, France.
| |
Collapse
|
22
|
Why don't we have more inhaled antibiotics to treat ventilator-associated pneumonia? Clin Microbiol Infect 2019; 25:1195-1199. [PMID: 31035015 DOI: 10.1016/j.cmi.2019.04.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 04/17/2019] [Accepted: 04/18/2019] [Indexed: 11/21/2022]
Abstract
BACKGROUND The increasing prevalence of ventilator-associated pneumonia (VAP) due to either multidrug-resistant (MDR) organisms or infections with limited treatment options (i.e. susceptible to only aminoglycosides or colisitin) coupled with a dearth of new antimicrobials has led clinicians to pursue alternative management strategies including the use of inhaled antibiotics (IA). OBJECTIVES To review the evidence surrounding the use of IA in the treatment of VAP with a focus on establishing a path whereby adjunctive IA could become a standard therapy for the treatment of specific VAP patient populations. SOURCES A meta-analysis performed by the 2016 IDSA/ATS Hospital-acquired Pneumonia Guideline Committee; a PubMed and clinicaltrials.gov search for subsequent trials of IA for the treatment of VAP. CONTENT Based on a meta-analysis of nine studies (RR 1.29; 95% CI 1.13-1.47), the 2016 IDSA/ATS Hospital-acquired Pneumonia Guideline Committee recommended that adjunctive IA be used to treat VAP due to Gram-negative bacilli that are susceptible to only aminoglycosides or polymyxins. Two subsequent randomized trials of adjunctive IA for the treatment of mechanically ventilated patients with pneumonia failed to demonstrate a benefit. Despite these results, an updated meta-analysis (n = 11) including these two recent trials suggests a benefit of adjunctive IA for the treatment of VAP due to MDR and difficult-to-treat infections (RR 1.2; 95% CI 1.05-1.57). IMPLICATIONS Patients with VAP and limited intravenous antibiotic options are the individuals most likely to benefit from adjunctive IA and should be the focus of future investigative studies. Although vibrating mesh nebulizers predominate in pharmaceutical company-sponsored trials, these devices have not been directly compared with the traditional jet nebulizers in terms of efficacy or safety.
Collapse
|
23
|
Burgener EB, Sweere JM, Bach MS, Secor PR, Haddock N, Jennings LK, Marvig RL, Johansen HK, Rossi E, Cao X, Tian L, Nedelec L, Molin S, Bollyky PL, Milla CE. Filamentous bacteriophages are associated with chronic Pseudomonas lung infections and antibiotic resistance in cystic fibrosis. Sci Transl Med 2019; 11:eaau9748. [PMID: 30996083 PMCID: PMC7021451 DOI: 10.1126/scitranslmed.aau9748] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 01/14/2019] [Accepted: 03/27/2019] [Indexed: 12/31/2022]
Abstract
Filamentous bacteriophage (Pf phage) contribute to the virulence of Pseudomonas aeruginosa infections in animal models, but their relevance to human disease is unclear. We sought to interrogate the prevalence and clinical relevance of Pf phage in patients with cystic fibrosis (CF) using sputum samples from two well-characterized patient cohorts. Bacterial genomic analysis in a Danish longitudinal cohort of 34 patients with CF revealed that 26.5% (n = 9) were consistently Pf phage positive. In the second cohort, a prospective cross-sectional cohort of 58 patients with CF at Stanford, sputum qPCR analysis showed that 36.2% (n = 21) of patients were Pf phage positive. In both cohorts, patients positive for Pf phage were older, and in the Stanford CF cohort, patients positive for Pf phage were more likely to have chronic P. aeruginosa infection and had greater declines in pulmonary function during exacerbations than patients negative for Pf phage presence in the sputum. Last, P. aeruginosa strains carrying Pf phage exhibited increased resistance to antipseudomonal antibiotics. Mechanistically, in vitro analysis showed that Pf phage sequesters these same antibiotics, suggesting that this mechanism may thereby contribute to the selection of antibiotic resistance over time. These data provide evidence that Pf phage may contribute to clinical outcomes in P. aeruginosa infection in CF.
Collapse
Affiliation(s)
- Elizabeth B Burgener
- Center for Excellence in Pulmonary Biology, Department of Pediatrics, Stanford University, Stanford, CA 94305, USA.
| | - Johanna M Sweere
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University, Stanford, CA 94305, USA
- Stanford Immunology, Stanford University, Stanford, CA 94305, USA
| | - Michelle S Bach
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Patrick R Secor
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
| | - Naomi Haddock
- Stanford Immunology, Stanford University, Stanford, CA 94305, USA
| | - Laura K Jennings
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
| | - Rasmus L Marvig
- Center for Genomic Medicine, Rigshospitalet-Copenhagen University Hospital, Copenhagen, Denmark
| | - Helle Krogh Johansen
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen Ø, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen N, Denmark
| | - Elio Rossi
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen Ø, Denmark
| | - Xiou Cao
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Lu Tian
- Biomedical Data Science Administration and Statistics, Stanford University, Stanford, CA 94305, USA
| | - Laurence Nedelec
- Primary Care and Population Health, Stanford University, Stanford, CA 94305, USA
| | - Søren Molin
- Primary Care and Population Health, Stanford University, Stanford, CA 94305, USA
| | - Paul L Bollyky
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University, Stanford, CA 94305, USA
- Stanford Immunology, Stanford University, Stanford, CA 94305, USA
| | - Carlos E Milla
- Center for Excellence in Pulmonary Biology, Department of Pediatrics, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
24
|
Boisson M, Mimoz O, Hadzic M, Marchand S, Adier C, Couet W, Grégoire N. Pharmacokinetics of intravenous and nebulized gentamicin in critically ill patients. J Antimicrob Chemother 2018; 73:2830-2837. [DOI: 10.1093/jac/dky239] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 05/23/2018] [Indexed: 11/14/2022] Open
Affiliation(s)
- Matthieu Boisson
- Inserm U1070, Pôle Biologie Santé, 1 rue Georges Bonnet, Poitiers, France
- Université de Poitiers, UFR Médecine-Pharmacie, 6 rue de la milétrie, Poitiers, France
- CHU de Poitiers, Département d’Anesthésie-Réanimation, 2 rue de la milétrie, Poitiers, France
| | - Olivier Mimoz
- Inserm U1070, Pôle Biologie Santé, 1 rue Georges Bonnet, Poitiers, France
- Université de Poitiers, UFR Médecine-Pharmacie, 6 rue de la milétrie, Poitiers, France
- CHU de Poitiers, Service des Urgences – SAMU 86 – SMUR, 2 rue de la milétrie, Poitiers, France
| | - Mirza Hadzic
- CHU de Poitiers, Département d’Anesthésie-Réanimation, 2 rue de la milétrie, Poitiers, France
| | - Sandrine Marchand
- Inserm U1070, Pôle Biologie Santé, 1 rue Georges Bonnet, Poitiers, France
- Université de Poitiers, UFR Médecine-Pharmacie, 6 rue de la milétrie, Poitiers, France
- CHU de Poitiers, Service de Toxicologie-Pharmacocinétique, 2 rue de la milétrie, Poitiers, France
| | - Christophe Adier
- Inserm U1070, Pôle Biologie Santé, 1 rue Georges Bonnet, Poitiers, France
- CHU de Poitiers, Service de Toxicologie-Pharmacocinétique, 2 rue de la milétrie, Poitiers, France
| | - William Couet
- Inserm U1070, Pôle Biologie Santé, 1 rue Georges Bonnet, Poitiers, France
- Université de Poitiers, UFR Médecine-Pharmacie, 6 rue de la milétrie, Poitiers, France
- CHU de Poitiers, Service de Toxicologie-Pharmacocinétique, 2 rue de la milétrie, Poitiers, France
| | - Nicolas Grégoire
- Inserm U1070, Pôle Biologie Santé, 1 rue Georges Bonnet, Poitiers, France
- Université de Poitiers, UFR Médecine-Pharmacie, 6 rue de la milétrie, Poitiers, France
| |
Collapse
|
25
|
Poulakou G, Matthaiou DK, Nicolau DP, Siakallis G, Dimopoulos G. Inhaled Antimicrobials for Ventilator-Associated Pneumonia: Practical Aspects. Drugs 2018; 77:1399-1412. [PMID: 28741229 DOI: 10.1007/s40265-017-0787-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Positive experience with inhaled antibiotics in pulmonary infections of patients with cystic fibrosis has paved the way for their utilization in mechanically ventilated, critically ill patients with lower respiratory tract infections. A successful antibiotic delivery depends upon the size of the generated particle and the elimination of drug impaction in the large airways and the ventilator circuit. Generated droplet size is mainly affected by the type of the nebulizer employed. Currently, jet, ultrasonic, and vibrating mesh nebulizers are marketed; the latter can deliver optimal antibiotic particle size. Promising novel drug-device combinations are able to release drug concentrations of 25- to 300-fold the minimum inhibitory concentration of the targeted pathogens into the pulmonary alveoli. The most important practical steps of nebulization include pre-assessment and preparation of the patient (suctioning, sedation, possible bronchodilation, adjustment of necessary ventilator settings); adherence to the procedure (drug preparation, avoidance of unnecessary tubing connections, interruption of heated humidification, removal of heat-moisture exchanger); inspection of the procedure (check for residual in drug chamber, change of expiratory filter, return sedation, and ventilator settings to previous status); and surveillance of the patient for adverse events (close monitoring of the patient and particularly of peak airway pressure and bronchoconstriction). Practical aspects of nebulization are very important to ensure optimal drug delivery and safe procedure for the patient. Therefore, the development of an operational checklist is a priority for every department adopting this modality.
Collapse
Affiliation(s)
- Garyphallia Poulakou
- Fourth Department of Internal Medicine and Infectious Diseases Unit, Athens National and Kapodistrian University, Medical School, Attikon University General Hospital of Athens, 1 Rimini St, 12462, Athens, Greece.
| | - Dimitrios K Matthaiou
- Department of Critical Care, University Hospital Attikon, Faculty of Medicine, National and Kapodistrian University of Athens, 1 Rimini St, Haidari, 12462, Athens, Greece
| | - David P Nicolau
- Center for Anti-Infective Research and Development, Hartford Hospital, 80 Seymour Street, Hartford, CT, 06102, USA
| | - Georgios Siakallis
- Fourth Department of Internal Medicine and Infectious Diseases Unit, Athens National and Kapodistrian University, Medical School, Attikon University General Hospital of Athens, 1 Rimini St, 12462, Athens, Greece
| | - George Dimopoulos
- Department of Critical Care, University Hospital Attikon, Faculty of Medicine, National and Kapodistrian University of Athens, 1 Rimini St, Haidari, 12462, Athens, Greece
| |
Collapse
|
26
|
Liu C, Zhang YT, Peng ZY, Zhou Q, Hu B, Zhou H, Li JG. Aerosolized Amikacin as Adjunctive Therapy of Ventilator-associated Pneumonia Caused by Multidrug-resistant Gram-negative Bacteria: A Single-center Randomized Controlled Trial. Chin Med J (Engl) 2018; 130:1196-1201. [PMID: 28485320 PMCID: PMC5443026 DOI: 10.4103/0366-6999.205846] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Background: Aerosolized amikacin (AA) is a current option for the management of ventilator-associated pneumonia (VAP) caused by multidrug-resistant Gram-negative bacteria (MDR-GNB), as it is reported that AA could increase the alveolar level of the drug without increasing systemic toxicity. This study aimed to evaluate the efficacy and safety of AA as an adjunctive therapy for VAP caused by MDR-GNB. Methods: In this single-center, double-blind study conducted in a 36-bed general Intensive Care Unit (ICU) in a tertiary hospital from June 2014 to June 2016, 52 ICU patients with confirmed MDR-GNB VAP were randomized to two groups (AA group, n = 27 and placebo group, n = 25). Amikacin (400 mg, q8h) or saline placebo (4 ml, q8h) was aerosolized for 7 days. The attending physician determined the administration of systemic antibiotics for VAP. Patients were followed up for 28 days. Bacteriological eradication, clinical pulmonary infection score (CPIS), and serum creatinine were assessed on day 7 of therapy. New resistance to amikacin, cure rate of VAP, weaning rate, and mortality were assessed on day 28. Results: The baseline characteristics of patients in both groups were similar. At the end of the treatment, 13 of the 32 initially detected bacterial isolates were eradicated in AA group, compared to 4 of 28 in placebo group (41% vs. 14%, P = 0.024). As for patients, 11 of 27 patients treated with AA and 4 of 25 patients treated with placebo have eradication (41% vs. 16%, P = 0.049). The adjunction of AA reduced CPIS (4.2 ± 1.6 vs. 5.8 ± 2.1, P = 0.007). New drug resistance to amikacin and the change in serum creatinine were not detected in AA group. No significant differences in the clinical cure rate in survivors (48% vs. 35%, P = 0.444), weaning rate (48% vs. 32%, P = 0.236), and mortality (22% vs. 32%, P = 0.427) were detected between the two groups on day 28. Conclusions: As an adjunctive therapy of MDR-GNB VAP, AA successfully eradicated existing MDR organisms without inducing new resistance to amikacin or change in serum creatinine. However, the improvement of mortality was not found.
Collapse
Affiliation(s)
- Chang Liu
- Department of Intensive Care Unit, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, China
| | - Yu-Ting Zhang
- Department of Intensive Care Unit, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, China
| | - Zhi-Yong Peng
- Department of Intensive Care Unit, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, China
| | - Qing Zhou
- Department of Intensive Care Unit, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, China
| | - Bo Hu
- Department of Intensive Care Unit, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, China
| | - Hui Zhou
- Department of Intensive Care Unit, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, China
| | - Jian-Guo Li
- Department of Intensive Care Unit, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, China
| |
Collapse
|
27
|
Leone M, Bouadma L, Bouhemad B, Brissaud O, Dauger S, Gibot S, Hraiech S, Jung B, Kipnis E, Launey Y, Luyt CE, Margetis D, Michel F, Mokart D, Montravers P, Monsel A, Nseir S, Pugin J, Roquilly A, Velly L, Zahar JR, Bruyère R, Chanques G. Hospital-acquired pneumonia in ICU. Anaesth Crit Care Pain Med 2018; 37:83-98. [DOI: 10.1016/j.accpm.2017.11.006] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
28
|
Pulido L, Burgos D, García Morato J, Luna CM. Does animal model on ventilator-associated pneumonia reflect physiopathology of sepsis mechanisms in humans? ANNALS OF TRANSLATIONAL MEDICINE 2017; 5:452. [PMID: 29264369 PMCID: PMC5721223 DOI: 10.21037/atm.2017.11.35] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Accepted: 11/21/2017] [Indexed: 11/06/2022]
Abstract
Ventilator-associated pneumonia (VAP) is the leading cause of death in critically ill patients in intensive care units. In the last 20 years, different animal models have been a valuable tool for the study of pathophysiology and phenotypic characteristics of different lung infections observed in humans, becoming an essential link between ''in vitro'' testing and clinical studies. Different animal models have been used to study the mechanism of a deregulated inflammatory response and host tissue damage of sepsis in VAP, as well as different infection parameters such as clinical, physiological, microbiological and pathological facts in several large and small mammals. In addition, the dosage of inflammatory modulators and their consequences in local and systemic inflammation, or even the administration of antibiotics, have been evaluated with very interesting results. Although some bronchial inoculation ways do not resemble the common pathophysiologic mechanisms, the experimental model of VAP induced by the inoculation of high concentrations of pathogens in mechanically ventilated animals is useful for studying the local and systemic responses of sepsis in VAP and it reproduces biological mechanisms such as acute lung injury, distress response, cardiac events and immune modulation comparable with clinical studies.
Collapse
Affiliation(s)
- Laura Pulido
- Department of Pulmonary Medicine, Experimental Surgery University Center, Hospital de Clínicas José de San Martín, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Diego Burgos
- Department of Pulmonary Medicine, Experimental Surgery University Center, Hospital de Clínicas José de San Martín, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Joaquín García Morato
- Thoracic Surgery Division, Department of Surgery, Experimental Surgery University Center, Hospital de Clínicas José de San Martín, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Carlos M. Luna
- Department of Pulmonary Medicine, Experimental Surgery University Center, Hospital de Clínicas José de San Martín, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
29
|
Dugernier J, Ehrmann S, Sottiaux T, Roeseler J, Wittebole X, Dugernier T, Jamar F, Laterre PF, Reychler G. Aerosol delivery during invasive mechanical ventilation: a systematic review. Crit Care 2017; 21:264. [PMID: 29058607 PMCID: PMC5651640 DOI: 10.1186/s13054-017-1844-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 09/15/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND This systematic review aimed to assess inhaled drug delivery in mechanically ventilated patients or in animal models. Whole lung and regional deposition and the impact of the ventilator circuit, the artificial airways and the administration technique for aerosol delivery were analyzed. METHODS In vivo studies assessing lung deposition during invasive mechanical ventilation were selected based on a systematic search among four databases. Two investigators independently assessed the eligibility and the risk of bias. RESULTS Twenty-six clinical and ten experimental studies were included. Between 30% and 43% of nominal drug dose was lost to the circuit in ventilated patients. Whole lung deposition of up to 16% and 38% of nominal dose (proportion of drug charged in the device) were reported with nebulizers and metered-dose inhalers, respectively. A penetration index inferior to 1 observed in scintigraphic studies indicated major proximal deposition. However, substantial concentrations of antibiotics were measured in the epithelial lining fluid (887 (406-12,819) μg/mL of amikacin) of infected patients and in sub-pleural specimens (e.g., 197 μg/g of amikacin) dissected from infected piglets, suggesting a significant distal deposition. The administration technique varied among studies and may explain a degree of the variability of deposition that was observed. CONCLUSIONS Lung deposition was lower than 20% of nominal dose delivered with nebulizers and mostly occurred in proximal airways. Further studies are needed to link substantial concentrations of antibiotics in infected pulmonary fluids to pulmonary deposition. The administration technique with nebulizers should be improved in ventilated patients in order to ensure an efficient but safe, feasible and reproducible technique.
Collapse
Affiliation(s)
- Jonathan Dugernier
- Institut de Recherche Expérimentale et Clinique (IREC), Pneumologie, ORL & Dermatologie, Cliniques universitaires Saint-Luc, Avenue Hippocrate 10, 1200, Brussels, Belgium. .,Soins Intensifs, Cliniques universitaires Saint-Luc, Avenue Hippocrate 10, 1200, Brussels, Belgium. .,Médecine Physique, Cliniques universitaires Saint-Luc, Avenue Hippocrate 10, 1200, Brussels, Belgium.
| | - Stephan Ehrmann
- Université François Rabelais, UMR 1100, F-37032, Tours, France.,INSERM, Centre d'étude des Pathologies Respiratoires, UMR 1100, F-37032, Tours, France.,CHRU de Tours, Réanimation polyvalente, F-37044, Tours, France
| | - Thierry Sottiaux
- Soins Intensifs, Clinique Notre-Dame de Grace, Chaussée de Nivelles 212, 6041, Charleroi, Belgium
| | - Jean Roeseler
- Soins Intensifs, Cliniques universitaires Saint-Luc, Avenue Hippocrate 10, 1200, Brussels, Belgium
| | - Xavier Wittebole
- Soins Intensifs, Cliniques universitaires Saint-Luc, Avenue Hippocrate 10, 1200, Brussels, Belgium
| | - Thierry Dugernier
- Soins Intensifs, Clinique Saint-Pierre, Avenue Reine Fabiola 9, 1340, Ottignies, Belgium
| | - François Jamar
- Médecine Nucléaire, Cliniques universitaires Saint-Luc, Avenue Hippocrate 10, 1200, Brussels, Belgium
| | - Pierre-François Laterre
- Soins Intensifs, Cliniques universitaires Saint-Luc, Avenue Hippocrate 10, 1200, Brussels, Belgium
| | - Gregory Reychler
- Institut de Recherche Expérimentale et Clinique (IREC), Pneumologie, ORL & Dermatologie, Cliniques universitaires Saint-Luc, Avenue Hippocrate 10, 1200, Brussels, Belgium.,Médecine Physique, Cliniques universitaires Saint-Luc, Avenue Hippocrate 10, 1200, Brussels, Belgium.,Pneumologie, Cliniques universitaires Saint-Luc, Avenue Hippocrate 10, 1200, Brussels, Belgium
| |
Collapse
|
30
|
Management of multidrug resistant Gram-negative bacilli infections in solid organ transplant recipients: SET/GESITRA-SEIMC/REIPI recommendations. Transplant Rev (Orlando) 2017; 32:36-57. [PMID: 28811074 DOI: 10.1016/j.trre.2017.07.001] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 07/02/2017] [Indexed: 12/17/2022]
Abstract
Solid organ transplant (SOT) recipients are especially at risk of developing infections by multidrug resistant (MDR) Gram-negative bacilli (GNB), as they are frequently exposed to antibiotics and the healthcare setting, and are regulary subject to invasive procedures. Nevertheless, no recommendations concerning prevention and treatment are available. A panel of experts revised the available evidence; this document summarizes their recommendations: (1) it is important to characterize the isolate's phenotypic and genotypic resistance profile; (2) overall, donor colonization should not constitute a contraindication to transplantation, although active infected kidney and lung grafts should be avoided; (3) recipient colonization is associated with an increased risk of infection, but is not a contraindication to transplantation; (4) different surgical prophylaxis regimens are not recommended for patients colonized with carbapenem-resistant GNB; (5) timely detection of carriers, contact isolation precautions, hand hygiene compliance and antibiotic control policies are important preventive measures; (6) there is not sufficient data to recommend intestinal decolonization; (7) colonized lung transplant recipients could benefit from prophylactic inhaled antibiotics, specially for Pseudomonas aeruginosa; (8) colonized SOT recipients should receive an empirical treatment which includes active antibiotics, and directed therapy should be adjusted according to susceptibility study results and the severity of the infection.
Collapse
|
31
|
Nebulization of Antiinfective Agents in Invasively Mechanically Ventilated Adults: A Systematic Review and Meta-analysis. Anesthesiology 2017; 126:890-908. [PMID: 28248714 DOI: 10.1097/aln.0000000000001570] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
BACKGROUND Nebulization of antiinfective agents is a common but unstandardized practice in critically ill patients. METHODS A systematic review of 1,435 studies was performed in adults receiving invasive mechanical ventilation. Two different administration strategies (adjunctive and substitute) were considered clinically relevant. Inclusion was restricted to studies using jet, ultrasonic, and vibrating-mesh nebulizers. Studies involving children, colonized-but-not-infected adults, and cystic fibrosis patients were excluded. RESULTS Five of the 11 studies included had a small sample size (fewer than 50 patients), and only 6 were randomized. Diversity of case-mix, dosage, and devices are sources of bias. Only a few patients had severe hypoxemia. Aminoglycosides and colistin were the most common antibiotics, being safe regarding nephrotoxicity and neurotoxicity, but increased respiratory complications in 9% (95% CI, 0.01 to 0.18; I = 52%), particularly when administered to hypoxemic patients. For tracheobronchitis, a significant decrease in emergence of resistance was evidenced (risk ratio, 0.18; 95% CI, 0.05 to 0.64; I = 0%). Similar findings were observed in pneumonia by susceptible pathogens, without improvement in mortality or ventilation duration. In pneumonia caused by resistant pathogens, higher clinical resolution (odds ratio, 1.96; 95% CI, 1.30 to 2.96; I = 0%) was evidenced. These findings were not consistently evidenced in the assessment of efficacy against pneumonia caused by susceptible pathogens. CONCLUSIONS Performance of randomized trials evaluating the impact of nebulized antibiotics with more homogeneous populations, standardized drug delivery, predetermined clinical efficacy, and safety outcomes is urgently required. Infections by resistant pathogens might potentially have higher benefit from nebulized antiinfective agents. Nebulization, without concomitant systemic administration of the drug, may reduce nephrotoxicity but may also be associated with higher risk of respiratory complications.
Collapse
|
32
|
Rello J, Solé-Lleonart C, Rouby JJ, Chastre J, Blot S, Poulakou G, Luyt CE, Riera J, Palmer LB, Pereira JM, Felton T, Dhanani J, Bassetti M, Welte T, Roberts JA. Use of nebulized antimicrobials for the treatment of respiratory infections in invasively mechanically ventilated adults: a position paper from the European Society of Clinical Microbiology and Infectious Diseases. Clin Microbiol Infect 2017; 23:629-639. [PMID: 28412382 DOI: 10.1016/j.cmi.2017.04.011] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 04/03/2017] [Accepted: 04/06/2017] [Indexed: 10/19/2022]
Abstract
With an established role in cystic fibrosis and bronchiectasis, nebulized antibiotics are increasingly being used to treat respiratory infections in critically ill invasively mechanically ventilated adult patients. Although there is limited evidence describing their efficacy and safety, in an era when there is a need for new strategies to enhance antibiotic effectiveness because of a shortage of new agents and increases in antibiotic resistance, the potential of nebulization of antibiotics to optimize therapy is considered of high interest, particularly in patients infected with multidrug-resistant pathogens. This Position Paper of the European Society of Clinical Microbiology and Infectious Diseases provides recommendations based on the Grading of Recommendations Assessment, Development and Evaluation (GRADE) methodology regarding the use of nebulized antibiotics in invasively mechanically ventilated adults, based on a systematic review and meta-analysis of the existing literature (last search July 2016). Overall, the panel recommends avoiding the use of nebulized antibiotics in clinical practice, due to a weak level of evidence of their efficacy and the high potential for underestimated risks of adverse events (particularly, respiratory complications). Higher-quality evidence is urgently needed to inform clinical practice. Priorities of future research are detailed in the second part of the Position Paper as guidance for researchers in this field. In particular, the panel identified an urgent need for randomized clinical trials of nebulized antibiotic therapy as part of a substitution approach to treatment of pneumonia due to multidrug-resistant pathogens.
Collapse
Affiliation(s)
- J Rello
- CIBERES, Universitat Autonòma de Barcelona, European Study Group of Infections in Critically Ill Patients, Barcelona, Spain.
| | - C Solé-Lleonart
- Service de Médecine Intensive Adulte, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland.
| | - J-J Rouby
- Multidisciplinary Intensive Care Unit, Department of Anesthesiology and Critical Care, La Pitié-Salpêtrière Hospital, Assistance Publique-Hôpitaux de Paris, University Pierre et Marie Curie of Paris 6, Paris, France
| | - J Chastre
- Service de Réanimation Médicale, Groupe Hospitalier Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Université Pierre et Marie Curie of Paris, Paris, France
| | - S Blot
- Department of Internal Medicine, Faculty of Medicine & Health Science, Ghent University, Ghent, Belgium
| | - G Poulakou
- 4th Department of Internal Medicine, Athens University School of Medicine, Attikon University General Hospital, Athens, Greece
| | - C-E Luyt
- Multidisciplinary Intensive Care Unit, Department of Anesthesiology and Critical Care, La Pitié-Salpêtrière Hospital, Assistance Publique-Hôpitaux de Paris, University Pierre et Marie Curie of Paris 6, Paris, France
| | - J Riera
- Clinical Research & Innovation in Pneumonia and Sepsis, Vall d'Hebron Institute of Research, CIBERES, Barcelona, Spain
| | - L B Palmer
- Pulmonary, Critical Care and Sleep Division, Department of Medicine, State University of New York at Stony Brook, Stony Brook, NY, USA
| | - J M Pereira
- Emergency and Intensive Care Department, Centro Hospitalar S. João EPE, Porto, Portugal; Department of Medicine, Faculty of Medicine, University of Porto, Porto, Portugal
| | - T Felton
- Acute Intensive Care Unit, University Hospital of South Manchester, Manchester, United Kingdom
| | - J Dhanani
- Burns Trauma and Critical Care Research Centre and Centre for Translational Anti-infective Pharmacodynamics, The University of Queensland, Butterfield Street, Herston, Brisbane, Australia
| | - M Bassetti
- Infectious Diseases Division, Santa Maria Misericordia University Hospital, Udine, Italy
| | - T Welte
- German Centre for Lung Research (DZL), Department of Respiratory Medicine, Medizinische Hochschule, Hannover, Germany
| | - J A Roberts
- Burns Trauma and Critical Care Research Centre and Centre for Translational Anti-infective Pharmacodynamics, The University of Queensland, Butterfield Street, Herston, Brisbane, Australia
| |
Collapse
|
33
|
Rello J, Rouby JJ, Sole-Lleonart C, Chastre J, Blot S, Luyt CE, Riera J, Vos MC, Monsel A, Dhanani J, Roberts JA. Key considerations on nebulization of antimicrobial agents to mechanically ventilated patients. Clin Microbiol Infect 2017; 23:640-646. [PMID: 28347790 DOI: 10.1016/j.cmi.2017.03.018] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 03/21/2017] [Indexed: 11/30/2022]
Abstract
Nebulized antibiotics have an established role in patients with cystic fibrosis or bronchiectasis. Their potential benefit to treat respiratory infections in mechanically ventilated patients is receiving increasing interest. In this consensus statement of the European Society of Clinical Microbiology and Infectious Diseases, the body of evidence of the therapeutic utility of aerosolized antibiotics in mechanically ventilated patients was reviewed and resulted in the following recommendations: Vibrating-mesh nebulizers should be preferred to jet or ultrasonic nebulizers. To decrease turbulence and limit circuit and tracheobronchial deposition, we recommend: (a) the use of specifically designed respiratory circuits avoiding sharp angles and characterized by smooth inner surfaces, (b) the use of specific ventilator settings during nebulization including use of a volume controlled mode using constant inspiratory flow, tidal volume 8 mL/kg, respiratory frequency 12 to 15 bpm, inspiratory:expiratory ratio 50%, inspiratory pause 20% and positive end-expiratory pressure 5 to 10 cm H2O and (c) the administration of a short-acting sedative agent if coordination between the patient and the ventilator is not obtained, to avoid patient's flow triggering and episodes of peak decelerating inspiratory flow. A filter should be inserted on the expiratory limb to protect the ventilator flow device and changed between each nebulization to avoid expiratory flow obstruction. A heat and moisture exchanger and/or conventional heated humidifier should be stopped during the nebulization period to avoid a massive loss of aerosolized particles through trapping and condensation. If these technical requirements are not followed, there is a high risk of treatment failure and adverse events in mechanically ventilated patients receiving nebulized antibiotics for pneumonia.
Collapse
Affiliation(s)
- J Rello
- European Study Group for Infections in Critically Ill Patients (ESGCIP), Barcelona, Spain.
| | - J J Rouby
- Multidisciplinary Intensive Care Unit, Department of Anesthesiology and Critical Care, La Pitié-Salpêtrière hospital, Assistance Publique Hôpitaux de Paris, University Pierre et Marie Curie (UPMC) of Paris 6, Paris, France
| | | | - J Chastre
- Service de Réanimation Médicale, Groupe Hospitalier Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Université Pierre et Marie Curie (UPMC) of Paris 6, Paris, France
| | - S Blot
- Department of Internal Medicine, Faculty of Medicine & Health Science, Ghent University, European Study Group for Infections in Critically Ill Patients (ESGCIP), Ghent, Belgium
| | - C E Luyt
- Service de Réanimation Médicale, Groupe Hospitalier Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Université Pierre et Marie Curie (UPMC) of Paris 6, Paris, France
| | - J Riera
- Critical Care Department, Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Vall d'Hebron Institut of Research, Barcelona, Spain
| | - M C Vos
- Department of Medical Microbiology and Infectious Diseases, European Study Group of Nosocomial Infections (ESGNI), Rotterdam, The Netherlands
| | - A Monsel
- Multidisciplinary Intensive Care Unit, Department of Anesthesiology and Critical Care, La Pitié-Salpêtrière hospital, Assistance Publique Hôpitaux de Paris, University Pierre et Marie Curie (UPMC) of Paris 6, Paris, France
| | - J Dhanani
- Burns Trauma and Critical Care Research Centre and Centre for Translational Anti-infective Pharmacodynamics, The University of Queensland, Brisbane, Australia
| | - J A Roberts
- Burns Trauma and Critical Care Research Centre and Centre for Translational Anti-infective Pharmacodynamics, The University of Queensland, Brisbane, Australia
| |
Collapse
|
34
|
Poulakou G, Siakallis G, Tsiodras S, Arfaras-Melainis A, Dimopoulos G. Nebulized antibiotics in mechanically ventilated patients: roadmap and challenges. Expert Rev Anti Infect Ther 2017; 15:211-229. [DOI: 10.1080/14787210.2017.1268052] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- G Poulakou
- 4th Department of Internal Medicine and Infectious Diseases Unit, Athens National and Kapodistrian University, Medical School, Attikon University General Hospital of Athens, Athens, Greece
| | - G Siakallis
- 4th Department of Internal Medicine and Infectious Diseases Unit, Athens National and Kapodistrian University, Medical School, Attikon University General Hospital of Athens, Athens, Greece
| | - S Tsiodras
- 4th Department of Internal Medicine and Infectious Diseases Unit, Athens National and Kapodistrian University, Medical School, Attikon University General Hospital of Athens, Athens, Greece
| | - A Arfaras-Melainis
- 4th Department of Internal Medicine and Infectious Diseases Unit, Athens National and Kapodistrian University, Medical School, Attikon University General Hospital of Athens, Athens, Greece
| | - G Dimopoulos
- Department of Critical Care, University Hospital ATTIKON, Faculty of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
35
|
Bassetti M, Luyt CE, Nicolau DP, Pugin J. Characteristics of an ideal nebulized antibiotic for the treatment of pneumonia in the intubated patient. Ann Intensive Care 2016; 6:35. [PMID: 27090532 PMCID: PMC4835402 DOI: 10.1186/s13613-016-0140-x] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 04/06/2016] [Indexed: 02/06/2023] Open
Abstract
Gram-negative pneumonia in patients who are intubated and mechanically ventilated is associated with increased morbidity and mortality as well as higher healthcare costs compared with those who do not have the disease. Intravenous antibiotics are currently the standard of care for pneumonia; however, increasing rates of multidrug resistance and limited penetration of some classes of antimicrobials into the lungs reduce the effectiveness of this treatment option, and current clinical cure rates are variable, while recurrence rates remain high. Inhaled antibiotics may have the potential to improve outcomes in this patient population, but their use is currently restricted by a lack of specifically formulated solutions for inhalation and a limited number of devices designed for the nebulization of antibiotics. In this article, we review the challenges clinicians face in the treatment of pneumonia and discuss the characteristics that would constitute an ideal inhaled drug/device combination. We also review inhaled antibiotic options currently in development for the treatment of pneumonia in patients who are intubated and mechanically ventilated.
Collapse
Affiliation(s)
- Matteo Bassetti
- Infectious Diseases Clinic, Santa Maria Misericordia University Hospital, Udine, Italy.
| | - Charles-Edouard Luyt
- Service de Réanimation, Institut de Cardiologie, Groupe Hospitalier Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Paris, France.,Sorbonne Universités, UPMC Université Paris 06, INSERM, UMRS_1166-ICAN Institute of Cardiometabolism and Nutrition, Paris, France
| | - David P Nicolau
- Center for Anti-Infective Research and Development, Hartford Hospital, Hartford, USA
| | - Jérôme Pugin
- Service des Soins Intensifs, University Hospitals of Geneva and Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
36
|
Antibióticos nebulizados. ¿Una opción adecuada para el tratamiento de la infección respiratoria relacionada con la ventilación mecánica? Med Intensiva 2015; 39:97-100. [DOI: 10.1016/j.medin.2014.10.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 09/29/2014] [Accepted: 10/16/2014] [Indexed: 11/21/2022]
|
37
|
Guillon A, Mercier E, Lanotte P, Haguenoer E, Darrouzain F, Barc C, Sarradin P, Si-Tahar M, Heuzé-Vourc'h N, Diot P, Vecellio L. Aerosol Route to Administer Teicoplanin in Mechanical Ventilation: In Vitro Study, Lung Deposition and Pharmacokinetic Analyses in Pigs. J Aerosol Med Pulm Drug Deliv 2015; 28:290-8. [PMID: 25616054 DOI: 10.1089/jamp.2014.1164] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKROUND Glycopeptides given intravenously achieve low airway concentrations. Nebulization of teicoplanin may be an efficient way of delivering a high concentration of this antibiotic to the lung. This multistep study assessed the feasibility of teicoplanin nebulization during mechanical ventilation by evaluating: the stability of its antibiotic effect; epithelial tolerance; lung deposition and systemic absorption in ventilated pigs. METHODS Nebulized and non-nebulized teicoplanin activity was tested on Staphylococcus aureus cultures. The cytotoxic effect of teicoplanin on human respiratory epithelial cells was assessed by measuring lactate dehydrogenase activity released, cell viability, and transepithelial electrical resistance. Volume median diameter of particles of nebulized teicoplanin was measured by laser diffraction during mechanical ventilation. The deposited mass of teicoplanin nebulized with a vibrating mesh nebulizer in ventilated piglets was assessed by scintigraphy. Blood pharmacokinetics of teicoplanin administered either intravenously or by nebulization was compared. RESULTS No decrease of antibiotic activity was observed after nebulization. In vitro cytotoxicity of teicoplanin was only observed with 1000 times the dose recommended for intravenous administration. Volume median diameter of particles was 2.5±0.1 μm. Of the initial nebulizer charge of teicoplanin, 24±7% was present in the lungs of ventilated pigs after the nebulization. Amount absorbed in blood was low (3.4%±0.9%) after nebulization, and blood stream elimination half-life value was 25.4 h. CONCLUSIONS Teicoplanin was administered efficiently by nebulization during mechanical ventilation, without any effect on its pharmacological properties or any cytotoxicity. The pharmacokinetic parameters are promising in view of its time-dependent killing process. All the results of our multi-step study highlighted the potential of teicoplanin to be nebulized during mechanical ventilation.
Collapse
Affiliation(s)
- Antoine Guillon
- 1 Université François Rabelais de Tours , EA6305, Tours, France .,2 INSERM, U1100, Centre d'Etude des Pathologies Respiratoires , Tours, France .,3 CHRU de Tours, Service de Réanimation Polyvalente , Tours, France
| | - Emmanuelle Mercier
- 1 Université François Rabelais de Tours , EA6305, Tours, France .,2 INSERM, U1100, Centre d'Etude des Pathologies Respiratoires , Tours, France .,3 CHRU de Tours, Service de Réanimation Polyvalente , Tours, France
| | - Philippe Lanotte
- 4 Université François Rabelais de Tours , UMR1282 ISP, Tours, France .,5 INRA , UMR 1282 ISP, Nouzilly, France .,6 Service de Bactériologie-Virologie , Tours, France
| | - Eve Haguenoer
- 4 Université François Rabelais de Tours , UMR1282 ISP, Tours, France .,6 Service de Bactériologie-Virologie , Tours, France
| | | | - Céline Barc
- 8 INRA , UE1277, Plate-Forme d'Infectiologie Expérimentale, Nouzilly, France
| | - Pierre Sarradin
- 8 INRA , UE1277, Plate-Forme d'Infectiologie Expérimentale, Nouzilly, France
| | - Mustapha Si-Tahar
- 1 Université François Rabelais de Tours , EA6305, Tours, France .,2 INSERM, U1100, Centre d'Etude des Pathologies Respiratoires , Tours, France
| | - Nathalie Heuzé-Vourc'h
- 1 Université François Rabelais de Tours , EA6305, Tours, France .,2 INSERM, U1100, Centre d'Etude des Pathologies Respiratoires , Tours, France
| | - Patrice Diot
- 1 Université François Rabelais de Tours , EA6305, Tours, France .,2 INSERM, U1100, Centre d'Etude des Pathologies Respiratoires , Tours, France
| | - Laurent Vecellio
- 1 Université François Rabelais de Tours , EA6305, Tours, France .,9 Aerodrug, Université François Rabelais , Faculté de Médecine, Tours, France
| |
Collapse
|
38
|
Mercier E, Darrouzain F, Montharu J, Guillon A, Diot P, Paintaud G, Vecellio L. Lung and Serum Teicoplanin Concentration After Aerosol and Intravenous Administration in a Rat Model. J Aerosol Med Pulm Drug Deliv 2014; 27:306-12. [DOI: 10.1089/jamp.2013.1060] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Emmanuelle Mercier
- Université François Rabelais, EA 6305, F-37032 Tours, France
- INSERM, Centre d'Etudes des Pathologies Respiratoires, UMR 1100/EA6305, 37032 Tours, France
- CHRU de Tours, Service de Réanimation Médicale, CHRU Tours, 37044 Tours, France
| | - François Darrouzain
- CHRU de Tours, Laboratoire de Pharmacologie-Toxicologie, F-37044 Tours, France
| | - Jerome Montharu
- Université François Rabelais, EA 6305, F-37032 Tours, France
- PPF Animaleries, Université F. Rabelais, F-37000 Tours, France
| | - Antoine Guillon
- Université François Rabelais, EA 6305, F-37032 Tours, France
- INSERM, Centre d'Etudes des Pathologies Respiratoires, UMR 1100/EA6305, 37032 Tours, France
- CHRU de Tours, Service de Réanimation Médicale, CHRU Tours, 37044 Tours, France
| | - Patrice Diot
- Université François Rabelais, EA 6305, F-37032 Tours, France
- INSERM, Centre d'Etudes des Pathologies Respiratoires, UMR 1100/EA6305, 37032 Tours, France
| | - Gilles Paintaud
- Université François Rabelais, EA 6305, F-37032 Tours, France
- CHRU de Tours, Laboratoire de Pharmacologie-Toxicologie, F-37044 Tours, France
- CNRS UMR 7292, Université F. Rabelais, Tours, France
| | - Laurent Vecellio
- Université François Rabelais, EA 6305, F-37032 Tours, France
- INSERM, Centre d'Etudes des Pathologies Respiratoires, UMR 1100/EA6305, 37032 Tours, France
- Aerodrug, Université François Rabelais – Faculté de Médecine, Tours, France
| |
Collapse
|
39
|
Indications des aérosols d’antibiotiques chez les patients sous ventilation mécanique. MEDECINE INTENSIVE REANIMATION 2014. [DOI: 10.1007/s13546-014-0861-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
40
|
Luyt CE, Bréchot N, Combes A, Trouillet JL, Chastre J. Delivering antibiotics to the lungs of patients with ventilator-associated pneumonia: an update. Expert Rev Anti Infect Ther 2013; 11:511-21. [PMID: 23627857 DOI: 10.1586/eri.13.36] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Ventilator-associated pneumonia is a serious hospital-acquired infection, with 20-70% crude mortality and 10-40% estimated attributable mortality. Insufficient antibiotic concentrations at the infection site when these drugs are given intravenously may lead to poor outcomes, particularly when difficult-to-treat pathogens are responsible; for example, Pseudomonas aeruginosa, extended spectrum beta lactamase-producing Gram-negative bacilli, Acinetobacter spp. and/or methicillin-resistant Staphylococcus aureus. Direct drug delivery to the infection site via aerosolization combined with intravenous administration achieves concentrations exceeding MICs of the pathogens, even those with impaired susceptibility. Experimental and recent clinical results demonstrated our markedly improved ability to deliver aerosolized antibiotics to the lung with new-generation devices, for example, vibrating-mesh nebulizers. Convincing clinical data from a large randomized trial are still lacking to support the routine administration of aerosolized antibiotics to treat ventilator-associated pneumonia, even though some small-randomized trials' observations are encouraging.
Collapse
Affiliation(s)
- Charles-Edouard Luyt
- Service de Réanimation Médicale, Institut de Cardiologie, Groupe Hospitalier Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, 47-83, Boulevard de l'Hôpital, 75651 Paris Cedex 13, France.
| | | | | | | | | |
Collapse
|
41
|
Ehrmann S, Roche-Campo F, Sferrazza Papa GF, Isabey D, Brochard L, Apiou-Sbirlea G. Aerosol therapy during mechanical ventilation: an international survey. Intensive Care Med 2013; 39:1048-56. [DOI: 10.1007/s00134-013-2872-5] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Accepted: 01/31/2013] [Indexed: 11/28/2022]
|
42
|
Pitance L, Vecellio L, Delval G, Reychler G, Reychler H, Liistro G. Aerosol delivery through tracheostomy tubes: an in vitro study. J Aerosol Med Pulm Drug Deliv 2012; 26:76-83. [PMID: 22691111 DOI: 10.1089/jamp.2011.0962] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Our study investigated the influence of the cannula's inner diameter (ID) and of its removal on the expected respiratory dose of amikacin, using three different jet nebulizer configurations (Sidestream(®)): vented (N1), unvented with a piece of corrugated tubing attached to the expiratory limb of the T attachment (N2), and unvented alone (N3). METHODS The jet nebulizer was filled with amikacin (500 mg/4 mL) and was attached to the tracheostomy tube. A lung model simulating spontaneous breathing was connected to the tracheostomy tube. A filter was connected between the nebulizer and the tracheostomy tube to measure the inhaled dose, and between the tracheostomy tube and the lung model to measure the respiratory dose. Different cannula IDs were tested (6.5, 8, 8.5, and 10 mm), and aerosol lost in the cannulas was determined. RESULTS AND CONCLUSIONS Respiratory dose varied between 96±1 mg and 44±3 mg, with higher values observed with N2. The aerosol lost in the cannula was significant and represented up to 63% of the inhaled dose. There was a negative correlation between the cannula's ID and the aerosol lost in the cannula. After removal of the internal cannula, an increase in the respiratory dose of up to 31.3% was observed. We recommend removing the inner tracheostomy cannula to nebulize a larger amount of drug through a tracheostomy tube. Among the three jet nebulizer configurations studied, we recommend the unvented one with a piece of corrugated tubing attached to the expiratory limb of the T attachment.
Collapse
Affiliation(s)
- L Pitance
- Oral and Maxillofacial Surgery Unit, Université Catholique de Louvain, Cliniques Universitaires Saint-Luc, 1200 Brussels, Belgium
| | | | | | | | | | | |
Collapse
|
43
|
Bozkurt-Güzel C, Gerçeker AA. Post-antibiotic effect of colistin, alone and in combination with amikacin, on Pseudomonas aeruginosa strains isolated from cystic fibrosis patients. J Antibiot (Tokyo) 2011; 65:83-6. [PMID: 22126897 DOI: 10.1038/ja.2011.101] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Cagla Bozkurt-Güzel
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Istanbul University, Beyazit, Turkey.
| | | |
Collapse
|
44
|
Tang HJ, Chuang YC, Ko WC, Chen CC, Shieh JM, Chen CH, Lee NY, Chiang SR. Comparative evaluation of intratracheal colistimethate sodium, imipenem, and meropenem in BALB/c mice with carbapenem-resistant Acinetobacter baumannii pneumonia. Int J Infect Dis 2011; 16:e34-40. [PMID: 22088863 DOI: 10.1016/j.ijid.2011.09.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2010] [Revised: 09/08/2011] [Accepted: 09/26/2011] [Indexed: 11/25/2022] Open
Abstract
OBJECTIVE The identification of the optimal agent for administration via the respiratory tract when treating pneumonia caused by carbapenem-resistant Acinetobacter baumannii (CRAB). METHODS A murine model of acute CRAB pneumonia was established by intratracheal (i.t.) inoculation with 2.5 × 10⁷ colony-forming units (CFU) of A. baumannii strain Ab396 plus 10% porcine mucin. After 4h the infected BALB/c mice were treated intratracheally with 25μl of either 0.85% saline (control group), colistimethate sodium (CMS) (166 666 U/kg, CMS group), imipenem/cilastatin (30/30 mg/kg, imipenem group), or meropenem (20mg/kg, meropenem group), every 8h. The therapeutic efficacy of these agents was examined. RESULTS A. baumannii strain Ab396 was susceptible to CMS only. However, meropenem treatment did give a significantly superior survival rate (100%) compared to treatment with imipenem (50%), CMS (33%), or saline (0%) (p<0.001 vs. the control and CMS groups, p=0.006 vs. the imipenem group, by log-rank test). Furthermore, compared to the other groups, the meropenem group demonstrated significantly more favorable results in terms of tissue penetration of the antibiotic, bacterial clearance, normalization of the wet lung-to-body weight ratio, and down-regulation of pro-inflammatory cytokine levels in the lungs. CONCLUSIONS Administration of meropenem via the respiratory tract proved to have the best therapeutic efficacy among the antibiotics tested when treating advanced murine CRAB pneumonia.
Collapse
Affiliation(s)
- Hung-Jen Tang
- Department of Internal Medicine, Chi Mei Medical Center, 901, Chung-Hwa Road, Yung-Kang City, Tainan, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Art T, Ramery E, Fraipont A, Lekeux P. Pulmonary function, airway cytology and bronchoalveolar lavage fluid drug concentration after aerosol administration of cefquinome to horses. EQUINE VET EDUC 2010. [DOI: 10.1111/j.2042-3292.2010.00116.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
46
|
Nebulized and intravenous colistin in experimental pneumonia caused by Pseudomonas aeruginosa. Intensive Care Med 2010; 36:1147-55. [PMID: 20397007 DOI: 10.1007/s00134-010-1879-4] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2009] [Accepted: 02/16/2010] [Indexed: 10/19/2022]
Abstract
PURPOSE Emergence of multidrug-resistant strains in intensive care units has renewed interest in colistin, which often remains the only available antimicrobial agent active against resistant Pseudomonas aeruginosa. The aim of this study is to compare lung tissue deposition and antibacterial efficiency between nebulized and intravenous administration of colistin in piglets with pneumonia caused by P. aeruginosa. METHODS In ventilated piglets, colistimethate was administered 24 h following bronchial inoculation of Pseudomonas aeruginosa (minimum inhibitory concentration of colistin = 2 microg ml(-1)) either by nebulization (8 mg kg(-1) every 12 h, n = 6) or by intravenous infusion (3.2 mg kg(-1) every 8 h, n = 6). All piglets were killed 49 h after inoculation. Colistin peak lung tissue concentrations and lung bacterial burden were assessed on multiple post mortem subpleural lung specimens. RESULTS Median colistin peak lung concentration following nebulization was 2.8 microg g(-1) (25-75% interquartile range = 0.8-13.7 microg g(-1)). Colistin was undetected in lung tissue following intravenous infusion. In the aerosol group, peak lung tissue concentrations were significantly greater in lung segments with mild pneumonia (median = 10.0 microg g(-1), 25-75% interquartile range = 1.8-16.1 microg g(-1)) than in lung segments with severe pneumonia (median = 1.2 microg g(-1), 25-75% interquartile range = 0.5-3.3 microg g(-1)) (p < 0.01). After 24 h of treatment, 67% of pulmonary segments had bacterial counts <10(2) cfu g(-1) following nebulization and 28% following intravenous administration (p < 0.001). In control animals, 12% of lung segments had bacterial counts <10(2) cfu g(-1) 49 h following bronchial inoculation. CONCLUSION Nebulized colistin provides rapid and efficient bacterial killing in ventilated piglets with inoculation pneumonia caused by Pseudomonas aeruginosa.
Collapse
|
47
|
Sood B, Chen X, Dawe E, Malian M, Maddipati K. Tissue Distribution, Metabolism and Excretion of PGE1 Following Prolonged High-Dose Inhalation in Neonatal Pigs. INT J PHARMACOL 2010. [DOI: 10.3923/ijp.2010.224.230] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
48
|
Luyt CE, Clavel M, Guntupalli K, Johannigman J, Kennedy JI, Wood C, Corkery K, Gribben D, Chastre J. Pharmacokinetics and lung delivery of PDDS-aerosolized amikacin (NKTR-061) in intubated and mechanically ventilated patients with nosocomial pneumonia. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2009; 13:R200. [PMID: 20003269 PMCID: PMC2811890 DOI: 10.1186/cc8206] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2008] [Revised: 03/19/2009] [Accepted: 12/10/2009] [Indexed: 01/29/2023]
Abstract
Introduction Aminoglycosides aerosolization might achieve better diffusion into the alveolar compartment than intravenous use. The objective of this multicenter study was to evaluate aerosol-delivered amikacin penetration into the alveolar epithelial lining fluid (ELF) using a new vibrating mesh nebulizer (Pulmonary Drug Delivery System (PDDS), Nektar Therapeutics), which delivers high doses to the lungs. Methods Nebulized amikacin (400 mg bid) was delivered to the lungs of 28 mechanically ventilated patients with Gram-negative VAP for 7-14 days, adjunctive to intravenous therapy. On treatment day 3, 30 minutes after completing aerosol delivery, all the patients underwent bronchoalveolar lavage in the infection-involved area and the ELF amikacin concentration was determined. The same day, urine and serum amikacin concentrations were determined at different time points. Results Median (range) ELF amikacin and maximum serum amikacin concentrations were 976.1 (135.7-16127.6) and 0.9 (0.62-1.73) μg/mL, respectively. The median total amount of amikacin excreted in urine during the first and second 12-hour collection on day 3 were 19 (12.21-28) and 21.2 (14.1-29.98) μg, respectively. During the study period, daily through amikacin measurements were below the level of nephrotoxicity. Sixty-four unexpected adverse events were reported, among which 2 were deemed possibly due to nebulized amikacin: one episode of worsening renal failure, and one episode of bronchospasm. Conclusions PDDS delivery of aerosolized amikacin achieved very high aminoglycoside concentrations in ELF from radiography-controlled infection-involved zones, while maintaining safe serum amikacin concentrations. The ELF concentrations always exceeded the amikacin minimum inhibitory concentrations for Gram-negative microorganisms usually responsible for these pneumonias. The clinical impact of amikacin delivery with this system remains to be determined. Trial Registration ClinicalTrials.gov Identifier: NCT01021436.
Collapse
Affiliation(s)
- Charles-Edouard Luyt
- Service de Réanimation Médicale, Groupe Hospitalier Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Université Paris-Pierre-et-Marie-Curie, 75651 Paris Cedex 13, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Safdar A, Shelburne SA, Evans SE, Dickey BF. Inhaled therapeutics for prevention and treatment of pneumonia. Expert Opin Drug Saf 2009; 8:435-49. [PMID: 19538104 DOI: 10.1517/14740330903036083] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The lungs are the most common site of serious infection owing to their large surface area exposed to the external environment and minimum barrier defense. However, this architecture makes the lungs readily available for topical therapy. Therapeutic aerosols include those directed towards improving mucociliary clearance of pathogens, stimulation of innate resistance to microbial infection, cytokine stimulation of immune function and delivery of antibiotics. In our opinion inhaled antimicrobials are underused, especially in patients with difficult-to-treat lung infections. The use of inhaled antimicrobial therapy has become an important part of the treatment of airway infection with Pseudomonas aeruginosa in cystic fibrosis and the prevention of invasive fungal infection in patients undergoing heart and lung transplantation. Cytokine inhaled therapy has also been explored in the treatment of neoplastic and infectious disease. The choice of pulmonary drug delivery systems remains critical as air-jet and ultrasonic nebulizer may deliver sub-optimum drug concentration if not used properly. In future development of this field, we recommend an emphasis on the study of the use of aerosolized hypertonic saline solution to reduce pathogen burden in the airways of subjects infected with microbes of low virulence, stimulation of innate resistance to prevent pneumonia in immunocompromised subjects using cytokines or synthetic pathogen-associated molecular pattern analogues and more opportunities for the use of inhaled antimicrobials. These therapeutics are still in their infancy but show great promise.
Collapse
Affiliation(s)
- Amar Safdar
- The University of Texas, Department of Infectious Diseases, M. D. Anderson Cancer Center, Infection Control and Employee Health, 402, 1515 Holcombe Boulevard, Texas 77030, Houston, USA.
| | | | | | | |
Collapse
|
50
|
Ferrari F, Lu Q, Girardi C, Petitjean O, Marquette CH, Wallet F, Rouby JJ. Nebulized ceftazidime in experimental pneumonia caused by partially resistant Pseudomonas aeruginosa. Intensive Care Med 2009; 35:1792-800. [PMID: 19652947 DOI: 10.1007/s00134-009-1605-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2009] [Accepted: 07/08/2009] [Indexed: 11/27/2022]
Abstract
PURPOSE Ventilator-associated pneumonia caused by Pseudomonas aeruginosa with impaired sensitivity to ceftazidime is frequent in critically ill patients. The aim of the study was to compare lung tissue deposition and antibacterial efficiency between nebulized and intravenous administrations of ceftazidime in ventilated piglets with pneumonia caused by Pseudomonas aeruginosa with impaired sensitivity to ceftazidime. METHODS Ceftazidime was administered 24 h following the intra-bronchial inoculation of Pseudomonas aeruginosa (minimum inhibitory concentration = 16 microg ml(-1)), either by nebulization (25 mg kg(-1) every 3 h, n = 6) or by continuous intravenous infusion (90 mg kg(-1) over 24 h after an initial rapid infusion of 30 mg kg(-1), n = 6). Four non-treated inoculated animals served as controls. All piglets were killed 48 h (intravenous and control groups) or 51 h (aerosol group) after inoculation. Lung tissue concentrations and lung bacterial burden were assessed on multiple post-mortem sub-pleural lung specimens [(lower limit of quantitation = 10(2) colony forming unit (cfu g(-1))]. RESULTS Ceftazidime trough lung tissue concentrations following nebulization were greater than steady-state lung tissue concentrations following continuous intravenous infusion [median and interquartile range, 24.8 (12.6-59.6) microg g(-1) vs. 6.1 (4.6-10.8) microg g(-1)] (p < 0.001). After 24 h of ceftazidime administration, 83% of pulmonary segments had bacterial counts <10(2) cfu g(-1) following nebulization and only 30% following intravenous administration (p < 0.001). In control animals, 10% of lung segments had bacterial counts <10(2) cfu g(-1) 48 h following bronchial inoculation. CONCLUSION Nebulized ceftazidime provides more efficient bacterial killing in ventilated piglets with pneumonia caused by Pseudomonas aeruginosa with impaired sensitivity to ceftazidime.
Collapse
Affiliation(s)
- Fabio Ferrari
- Réanimation Polyvalente Pierre Viars, Département d'Anesthésie-Réanimation, UPMC Univ Paris 06, Hôpital Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, 47-83 boulevard de l'Hôpital, 75013, Paris, France
| | | | | | | | | | | | | | | |
Collapse
|