1
|
Sul C, Lewis C, Dee N, Burns N, Oshima K, Schmidt E, Vohwinkel C, Nozik E. Release of extracellular superoxide dismutase into alveolar fluid protects against acute lung injury and inflammation in Staphylococcus aureus pneumonia. Am J Physiol Lung Cell Mol Physiol 2023; 324:L445-L455. [PMID: 36749572 PMCID: PMC10026994 DOI: 10.1152/ajplung.00217.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 01/13/2023] [Accepted: 02/03/2023] [Indexed: 02/08/2023] Open
Abstract
Acute respiratory distress syndrome (ARDS) remains a significant cause of morbidity and mortality in critically ill patients. Oxidative stress and inflammation play a crucial role in the pathogenesis of ARDS. Extracellular superoxide dismutase (EC-SOD) is abundant in the lung and is an important enzymatic defense against superoxide. Human single-nucleotide polymorphism in matrix binding region of EC-SOD leads to the substitution of arginine to glycine at position 213 (R213G) and results in release of EC-SOD into alveolar fluid, without affecting enzyme activity. We hypothesized that R213G EC-SOD variant protects against lung injury and inflammation via the blockade of neutrophil recruitment in infectious model of methicillin-resistant S. aureus (MRSA) pneumonia. After inoculation with MRSA, wild-type (WT) mice had impaired integrity of alveolar-capillary barrier and increased levels of IL-1β, IL-6, and TNF-α in the broncho-alveolar lavage fluid (BALF), while infected mice expressing R213G EC-SOD variant maintained the integrity of alveolar-capillary interface and had attenuated levels of proinflammatory cytokines. MRSA-infected mice expressing R213G EC-SOD variant also had attenuated neutrophil numbers in BALF and decreased expression of neutrophil chemoattractant CXCL1 by the alveolar epithelial ATII cells, compared with the infected WT group. The decreased neutrophil numbers in R213G mice were not due to increased rate of apoptosis. Mice expressing R213G variant had a differential effect on neutrophil functionality-the generation of neutrophil extracellular traps (NETs) but not myeloperoxidase (MPO) levels were attenuated in comparison with WT controls. Despite having the same bacterial load in the lung as WT controls, mice expressing R213G EC-SOD variant were protected from extrapulmonary dissemination of bacteria.
Collapse
Affiliation(s)
- Christina Sul
- Cardiovascular Pulmonary Research Laboratories, Department of Pediatrics, Division of Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Caitlin Lewis
- Cardiovascular Pulmonary Research Laboratories, Department of Pediatrics, Division of Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Nathan Dee
- Cardiovascular Pulmonary Research Laboratories, Department of Pediatrics, Division of Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Nana Burns
- Cardiovascular Pulmonary Research Laboratories, Department of Pediatrics, Division of Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Kaori Oshima
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Eric Schmidt
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Christine Vohwinkel
- Cardiovascular Pulmonary Research Laboratories, Department of Pediatrics, Division of Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Eva Nozik
- Cardiovascular Pulmonary Research Laboratories, Department of Pediatrics, Division of Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| |
Collapse
|
2
|
Park JH, Nordström U, Tsiakas K, Keskin I, Elpers C, Mannil M, Heller R, Nolan M, Alburaiky S, Zetterström P, Hempel M, Schara-Schmidt U, Biskup S, Steinacker P, Otto M, Weishaupt J, Hahn A, Santer R, Marquardt T, Marklund SL, Andersen PM. The motor system is exceptionally vulnerable to absence of the ubiquitously expressed superoxide dismutase-1. Brain Commun 2023; 5:fcad017. [PMID: 36793789 PMCID: PMC9924500 DOI: 10.1093/braincomms/fcad017] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 10/21/2022] [Accepted: 01/24/2023] [Indexed: 01/30/2023] Open
Abstract
Superoxide dismutase-1 is a ubiquitously expressed antioxidant enzyme. Mutations in SOD1 can cause amyotrophic lateral sclerosis, probably via a toxic gain-of-function involving protein aggregation and prion-like mechanisms. Recently, homozygosity for loss-of-function mutations in SOD1 has been reported in patients presenting with infantile-onset motor neuron disease. We explored the bodily effects of superoxide dismutase-1 enzymatic deficiency in eight children homozygous for the p.C112Wfs*11 truncating mutation. In addition to physical and imaging examinations, we collected blood, urine and skin fibroblast samples. We used a comprehensive panel of clinically established analyses to assess organ function and analysed oxidative stress markers, antioxidant compounds, and the characteristics of the mutant Superoxide dismutase-1. From around 8 months of age, all patients exhibited progressive signs of both upper and lower motor neuron dysfunction, cerebellar, brain stem, and frontal lobe atrophy and elevated plasma neurofilament concentration indicating ongoing axonal damage. The disease progression seemed to slow down over the following years. The p.C112Wfs*11 gene product is unstable, rapidly degraded and no aggregates were found in fibroblast. Most laboratory tests indicated normal organ integrity and only a few modest deviations were found. The patients displayed anaemia with shortened survival of erythrocytes containing decreased levels of reduced glutathione. A variety of other antioxidants and oxidant damage markers were within normal range. In conclusion, non-neuronal organs in humans show a remarkable tolerance to absence of Superoxide dismutase-1 enzymatic activity. The study highlights the enigmatic specific vulnerability of the motor system to both gain-of-function mutations in SOD1 and loss of the enzyme as in the here depicted infantile superoxide dismutase-1 deficiency syndrome.
Collapse
Affiliation(s)
- Julien H Park
- Department of Clinical Sciences, Neurosciences, Umeå University, 901 87 Umeå, Sweden,Department of General Paediatrics, University of Münster, 48149 Münster, Germany
| | - Ulrika Nordström
- Department of Clinical Sciences, Neurosciences, Umeå University, 901 87 Umeå, Sweden
| | - Konstantinos Tsiakas
- Department of Paediatrics, University Medical Centre Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Isil Keskin
- Department of Medical Biosciences, Pathology, Umeå University, 901 85 Umeå, Sweden
| | - Christiane Elpers
- Department of General Paediatrics, University of Münster, 48149 Münster, Germany
| | - Manoj Mannil
- Clinic for Radiology, University Hospital Münster, WWU University of Münster, 48149 Münster, Germany
| | - Raoul Heller
- Starship Children’s Health, Auckland City Hospital, Auckland 1142, New Zealand
| | - Melinda Nolan
- Starship Children’s Health, Auckland City Hospital, Auckland 1142, New Zealand
| | - Salam Alburaiky
- Starship Children’s Health, Auckland City Hospital, Auckland 1142, New Zealand
| | - Per Zetterström
- Department of Medical Biosciences, Clinical Chemistry, Umeå University, 901 87 Umeå, Sweden
| | - Maja Hempel
- Department of Paediatrics, University Medical Centre Hamburg-Eppendorf, 20251 Hamburg, Germany,Current address: Institute of Human Genetics, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | | | - Saskia Biskup
- CeGAT GmbH and Praxis für Humangenetik Tübingen, 72076 Tübingen, Germany
| | - Petra Steinacker
- Department of Neurology, Martin-Luther-University Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Markus Otto
- Department of Neurology, Martin-Luther-University Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Jochen Weishaupt
- Division for Neurodegenerative Diseases, Department of Neurology, Medical Faculty Mannheim, University of Heidelberg, 68167 Mannheim, Germany
| | - Andreas Hahn
- Department of Child Neurology, Justus Liebig University, 35392 Giessen, Germany
| | - René Santer
- Department of Paediatrics, University Medical Centre Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Thorsten Marquardt
- Department of General Paediatrics, University of Münster, 48149 Münster, Germany
| | - Stefan L Marklund
- Department of Medical Biosciences, Clinical Chemistry, Umeå University, 901 87 Umeå, Sweden
| | - Peter M Andersen
- Correspondence to: Peter Munch Andersen Department of Clinical Science, Neurosciences Umeå University, SE-901 85 Umeå, Sweden E-mail:
| |
Collapse
|
3
|
Elajaili H, Hernandez-Lagunas L, Harris P, Sparagna GC, Jonscher R, Ohlstrom D, Sucharov CC, Bowler RP, Suliman H, Fritz KS, Roede JR, Nozik ES. Extracellular superoxide dismutase (EC-SOD) R213G variant reduces mitochondrial ROS and preserves mitochondrial function in bleomycin-induced lung injury: EC-SOD R213G variant and intracellular redox regulation. ADVANCES IN REDOX RESEARCH 2022; 5:100035. [PMID: 38273965 PMCID: PMC10810244 DOI: 10.1016/j.arres.2022.100035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
Extracellular superoxide dismutase (EC-SOD) is highly expressed in the lung and vasculature. A common human single nucleotide polymorphism (SNP) in the matrix binding region of EC-SOD leads to a single amino acid substitution, R213G, and alters EC-SOD tissue binding affinity. The change in tissue binding affinity redistributes EC-SOD from tissue to extracellular fluids. Mice (R213G mice) expressing a knock-in of this EC-SOD SNP exhibit elevated plasma and reduced lung EC-SOD content and activity and are protected against bleomycin-induced lung injury and inflammation. It is unknown how the redistribution of EC-SOD alters site-specific redox-regulated molecules relevant for protection. In this study, we tested the hypothesis that the change in the local EC-SOD content would influence not only the extracellular redox microenvironment where EC-SOD is localized but also protect the intracellular redox status of the lung. Mice were treated with bleomycin and harvested 7 days post-treatment. Superoxide levels, measured by electron paramagnetic resonance (EPR), were lower in plasma and Bronchoalveolar lavage fluid (BALF) cells in R213G mice compared to wild-type (WT) mice, while lung cellular superoxide levels in R213G mice were not elevated post-bleomycin compared to WT mice despite low lung EC-SOD levels. Lung glutathione redox potential (EhGSSG), determined by HPLC and fluorescence, was more oxidized in WT compared to R213G mice. In R213G mice, lung mitochondrial oxidative stress was reduced shown by mitochondrial superoxide level measured by EPR in lung and the resistance to bleomycin-induced cardiolipin oxidation. Bleomycin treatment suppressed mitochondrial respiration in WT mice. Mitochondrial function was impaired at baseline in R213G mice but did not exhibit further suppression in respiration post-bleomycin. Collectively, the results indicate that R213G variant preserves intracellular redox state and protects mitochondrial function in the setting of bleomycin-induced inflammation.
Collapse
Affiliation(s)
- Hanan Elajaili
- Cardiovascular Pulmonary Research Laboratories and Pediatric Critical Care Medicine, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Laura Hernandez-Lagunas
- Cardiovascular Pulmonary Research Laboratories and Pediatric Critical Care Medicine, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Peter Harris
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Genevieve C. Sparagna
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Raleigh Jonscher
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Denis Ohlstrom
- Cardiovascular Pulmonary Research Laboratories and Pediatric Critical Care Medicine, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Carmen C. Sucharov
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | | | - Hagir Suliman
- Departments of Anesthesiology and Pathology, Duke University School of Medicine, Durham, North Carolina
| | - Kristofer S. Fritz
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - James R. Roede
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Eva S. Nozik
- Cardiovascular Pulmonary Research Laboratories and Pediatric Critical Care Medicine, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| |
Collapse
|
4
|
Li H, Hong W, Zeng Z, Gong S, Wu F, Wang Z, Tian H, Cheng J, Sun R, Gao M, Liang C, Cao W, Hu G, Li Y, Wei L, Zhou Y, Ran P. Association Between Extracellular Superoxide Dismutase Activity and 1-Year All-Cause Mortality in Patients With Acute Exacerbations of Chronic Obstructive Pulmonary Disease: A Prospective Cohort Study. Front Med (Lausanne) 2022; 9:811975. [PMID: 35360751 PMCID: PMC8963916 DOI: 10.3389/fmed.2022.811975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 02/03/2022] [Indexed: 11/13/2022] Open
Abstract
Background and ObjectivesAccumulating evidence suggests that oxidative stress is involved in the development of chronic obstructive pulmonary disease (COPD) and its progression. Activity of extracellular superoxide dismutase (ecSOD), the only extracellular enzyme eliminating superoxide radicals, has been reported to decline in acute exacerbations of COPD (AECOPD). However, the association between serum ecSOD activity and 1-year all-cause mortality in AECOPD patients remains unclear. The objective of our study was to explore the usefulness of ecSOD activity on admission in AECOPD as an objective predictor for 1-year all-cause mortality.MethodsWe measured serum ecSOD activity in AECOPD patients on admission in a prospective cohort study. We also recorded their laboratory and clinical data. Multivariate Cox regression was used to analyze the association between ecSOD activity and the risk of 1-year all-cause mortality. Restricted cubic spline curves were used to visualize the relationship between ecSOD activity and the hazard ratio of 1-year all-cause mortality.ResultsA total of 367 patients were followed up for 1 year, and 29 patients died during a 1-year follow-up period. Compared with survivors, the non-survivors were older (79.52 ± 8.39 vs. 74.38 ± 9.34 years old, p = 0.004) and had increased levels of tobacco consumption (47.07 ± 41.67 vs. 33.83 ± 31.79 pack-years, p = 0.037). Having an ecSOD activity ≤ 98.8 U/ml was an independent risk factor of 1-year all-cause mortality after adjustment for baseline differences, clinical variables and comorbidities [hazard ratio = 5.51, 95% confidence interval (CI): 2.35–12.95, p < 0.001].ConclusionLower serum ecSOD activity was a strong and independent predictor of 1-year all-cause mortality in AECOPD patients.
Collapse
Affiliation(s)
- Haiqing Li
- Department of Respiratory Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- State Key Laboratory of Respiratory Disease, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Wei Hong
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, China
| | - Zixiong Zeng
- Department of Respiratory Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Shan Gong
- Department of Respiratory Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Fan Wu
- State Key Laboratory of Respiratory Disease, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zihui Wang
- State Key Laboratory of Respiratory Disease, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Heshen Tian
- State Key Laboratory of Respiratory Disease, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Juan Cheng
- Department of Respiratory Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Ruiting Sun
- State Key Laboratory of Respiratory Disease, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Mi Gao
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, China
| | - Chunxiao Liang
- State Key Laboratory of Respiratory Disease, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Weitao Cao
- State Key Laboratory of Respiratory Disease, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Guoping Hu
- Department of Respiratory Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- *Correspondence: Guoping Hu
| | - Yuqun Li
- Department of Respiratory Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Liping Wei
- Department of Respiratory Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yumin Zhou
- State Key Laboratory of Respiratory Disease, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Pixin Ran
- State Key Laboratory of Respiratory Disease, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Pixin Ran
| |
Collapse
|
5
|
Sasaki T, Abe Y, Takayama M, Adachi T, Okano H, Hirose N, Arai Y. Association among extracellular superoxide dismutase genotype, plasma concentration, and comorbidity in the very old and centenarians. Sci Rep 2021; 11:8539. [PMID: 33879836 PMCID: PMC8058336 DOI: 10.1038/s41598-021-87982-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 04/07/2021] [Indexed: 12/30/2022] Open
Abstract
Superoxide dismutase 3 (SOD3), an antioxidant enzyme, is known as extracellular SOD (EC-SOD) because it is the predominant form in extracellular fluids. The diversity of plasma EC-SOD concentration is associated with the SOD3 p.R231G missense variant genotype. To clarify the association among SOD3 genotype, plasma EC-SOD concentration, and comorbidity in Oldest Old, we analyzed genome-wide associations with plasma EC-SOD concentration and associations between EC-SOD concentration and medical history classified by the SOD3 genotype in the Very Old (85–99 years old, n = 505) and Centenarians (over 100 years old, n = 595). The results revealed that SOD3 p.R231G was the most significant variant associated with plasma EC-SOD concentration. Although no significant difference was observed in medical histories between the SOD3 p.R231G variant non-carriers and carriers, higher EC-SOD concentration in plasma of SOD3 p.R231G variant non-carriers was associated with a high odds ratio for chronic kidney disease (OR = 2.70, 95% CI = 1.98–3.72) and low odds ratio for diabetes mellitus (DM) (OR = 0.61, 95% CI = 0.39–0.95). Comparison with 11 plasma biomarkers for age-related disease showed that plasma EC-SOD concentration correlated with adiponectin and estimated glomerular filtration rate with creatinine correction; therefore, we deduced that EC-SOD co-operates with adiponectin and possesses beneficial functions for DM in the Oldest Old.
Collapse
Affiliation(s)
- Takashi Sasaki
- Center for Supercentenarian Medical Research, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan.
| | - Yukiko Abe
- Center for Supercentenarian Medical Research, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Michiyo Takayama
- Center for Supercentenarian Medical Research, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan.,Center for Preventive Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Tetsuo Adachi
- Department of Biomedical Pharmaceutics, Laboratory of Clinical Pharmaceutics, Gifu Pharmaceutical University, Gifu, Japan
| | - Hideyuki Okano
- Center for Supercentenarian Medical Research, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan.,Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| | - Nobuyoshi Hirose
- Center for Supercentenarian Medical Research, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Yasumichi Arai
- Center for Supercentenarian Medical Research, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| |
Collapse
|
6
|
García-Valero J, Olloquequi J, Rodríguez E, Martín-Satué M, Texidó L, Ferrer J. Decreased Expression of EC-SOD and Fibulin-5 in Alveolar Walls of Lungs From COPD Patients. Arch Bronconeumol 2021; 58:S0300-2896(21)00016-8. [PMID: 33640211 DOI: 10.1016/j.arbres.2020.12.032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/18/2020] [Accepted: 12/22/2020] [Indexed: 11/25/2022]
Abstract
INTRODUCTION The aim of this study is to analyze the expression of the main oxidant scavenger superoxide dismutase (EC-SOD), its main binding protein Fibulin-5 and several oxidative and nitrosative-derived products in the lung of COPD patients and controls. MATERIALS AND METHODS Lung tissue samples from 19 COPD patients and 20 control subjects were analyzed. The architecture of elastic fibres was assessed by light and electron microscope histochemical techniques, and levels of EC-SOD and fibulin-5 were analyzed by immunohistochemistry and RT-PCR. The impact of oxidative stress on the extracellular matrix was estimated by immunolocalization of 4-hydroxynonenal (4-HNE), malondialdehyde (MDA) and 3-nitrotyrosine (3-NYT) adducts. RESULTS Alveolar walls of COPD patients exhibited abnormal accumulations of collapsing elastic fibres, showing a pierced pattern in the amorphous component. The semiquantitative analysis revealed that COPD patients have a significantly reduced expression of both EC-SOD and fibulin-5 (0.59±0.64 and 0.62±0.61, respectively) in alveolar, bronchiolar and arteriolar walls compared to control subjects (1.39±0.63 and 1.55±0.52, respectively, p<0.05). No significant changes in mRNA levels of these proteins were observed between groups. Among the oxidation markers, malondialdehyde was the best in distinguishing COPD patients. CONCLUSIONS COPD patients show a reduced expression of EC-SOD and fibulin-5 in the lung interstitium. Paralleling the reduction of EC-SOD levels, the decrease of fibulin-5 expression in COPD lungs supports the hypothesis of an impaired pulmonary antioxidant response in COPD patients.
Collapse
Affiliation(s)
- José García-Valero
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Jordi Olloquequi
- Laboratory of Cellular and Molecular Pathology, Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Talca, Chile
| | - Esther Rodríguez
- Department of Pneumology, Vall d'Hebron University Hospital, Universitat Autònoma de Barcelona and CIBER de Enfermedades Respiratorias (CIBERES), Barcelona, Spain
| | - Mireia Martín-Satué
- Department of Pathology and Experimental Therapeutics, Faculty of Medicine, University of Barcelona, Barcelona, Spain; Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Barcelona, Spain
| | - Laura Texidó
- Department of Pathology and Experimental Therapeutics, Faculty of Medicine, University of Barcelona, Barcelona, Spain
| | - Jaume Ferrer
- Department of Pneumology, Vall d'Hebron University Hospital, Universitat Autònoma de Barcelona and CIBER de Enfermedades Respiratorias (CIBERES), Barcelona, Spain.
| |
Collapse
|
7
|
Ohlstrom D, Hernandez-Lagunas L, Garcia AM, Allawzi A, Karimpour-Fard A, Sucharov CC, Nozik-Grayck E. MicroRNA regulation postbleomycin due to the R213G extracellular superoxide dismutase variant is predicted to suppress inflammatory and immune pathways. Physiol Genomics 2020; 52:245-254. [PMID: 32421439 DOI: 10.1152/physiolgenomics.00116.2019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Oxidative stress is a key contributor to the development of dysregulated inflammation in acute lung injury (ALI). A naturally occurring single nucleotide polymorphism in the key extracellular antioxidant enzyme, extracellular superoxide dismutase (EC-SOD), results in an arginine to glycine substitution (R213G) that promotes resolution of inflammation and protection against bleomycin-induced ALI. Previously we found that mice harboring the R213G mutation in EC-SOD exhibit a transcriptomic profile consistent with a striking suppression of inflammatory and immune pathways 7 days postbleomycin. However, the alterations in noncoding regulatory RNAs in wild-type (WT) and R213G EC-SOD lungs have not been examined. Therefore, we used next-generation microRNA (miR) Sequencing of lung tissue to identify dysregulated miRs 7 days after bleomycin in WT and R213G mice. Differential expression analysis identified 92 WT and 235 R213G miRs uniquely dysregulated in their respective genotypes. Subsequent pathway analysis identified that these miRs were predicted to regulate approximately half of the differentially expressed genes previously identified. The gene targets of these altered miRs indicate suppression of immune and inflammatory pathways in the R213G mice versus activation of these pathways in WT mice. Triggering receptor expressed on myeloid cells 1 (TREM1) signaling was identified as the inflammatory pathway with the most striking difference between WT and R213G lungs. miR-486b-3p was identified as the most dysregulated miR predicted to regulate the TREM1 pathway. We validated the increase in TREM1 signaling using miR-486b-3p antagomir transfection. These findings indicate that differential miR regulation is predicted to regulate the inflammatory gene profile, contributing to the protection against ALI in R213G mice.
Collapse
Affiliation(s)
- Denis Ohlstrom
- Developmental Lung Biology and Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine, University of Colorado, Anschutz Medical Campus, Aurora, C Colorado
| | - Laura Hernandez-Lagunas
- Developmental Lung Biology and Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine, University of Colorado, Anschutz Medical Campus, Aurora, C Colorado
| | - Anastacia M Garcia
- Department of Pediatrics, Division of Cardiology, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Ayed Allawzi
- Developmental Lung Biology and Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine, University of Colorado, Anschutz Medical Campus, Aurora, C Colorado
| | - Anis Karimpour-Fard
- Department of Pharmacology, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Carmen C Sucharov
- Department of Pediatrics, Division of Cardiology, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Eva Nozik-Grayck
- Developmental Lung Biology and Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine, University of Colorado, Anschutz Medical Campus, Aurora, C Colorado
| |
Collapse
|
8
|
Yan Z, Spaulding HR. Extracellular superoxide dismutase, a molecular transducer of health benefits of exercise. Redox Biol 2020; 32:101508. [PMID: 32220789 PMCID: PMC7109453 DOI: 10.1016/j.redox.2020.101508] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 03/14/2020] [Accepted: 03/16/2020] [Indexed: 02/06/2023] Open
Abstract
Extracellular superoxide dismutase (EcSOD) is the only extracellular scavenger of superoxide anion (O2.-) with unique binding capacity to cell surface and extracellular matrix through its heparin-binding domain. Enhanced EcSOD activity prevents oxidative stress and damage, which are fundamental in a variety of disease pathologies. In this review we will discuss the findings in humans and animal studies supporting the benefits of EcSOD induced by exercise training in reducing oxidative stress in various tissues. In particularly, we will highlight the importance of skeletal muscle EcSOD, which is induced by endurance exercise and redistributed through the circulation to the peripheral tissues, as a molecular transducer of exercise training to confer protection against oxidative stress and damage in various disease conditions.
Collapse
Affiliation(s)
- Zhen Yan
- Center for Skeletal Muscle Research at Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA; Department of Medicine, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA; Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA; Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA.
| | - Hannah R Spaulding
- Center for Skeletal Muscle Research at Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| |
Collapse
|
9
|
New therapeutic targets for the prevention of infectious acute exacerbations of COPD: role of epithelial adhesion molecules and inflammatory pathways. Clin Sci (Lond) 2019; 133:1663-1703. [PMID: 31346069 DOI: 10.1042/cs20181009] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 06/27/2019] [Accepted: 06/28/2019] [Indexed: 12/15/2022]
Abstract
Chronic respiratory diseases are among the leading causes of mortality worldwide, with the major contributor, chronic obstructive pulmonary disease (COPD) accounting for approximately 3 million deaths annually. Frequent acute exacerbations (AEs) of COPD (AECOPD) drive clinical and functional decline in COPD and are associated with accelerated loss of lung function, increased mortality, decreased health-related quality of life and significant economic costs. Infections with a small subgroup of pathogens precipitate the majority of AEs and consequently constitute a significant comorbidity in COPD. However, current pharmacological interventions are ineffective in preventing infectious exacerbations and their treatment is compromised by the rapid development of antibiotic resistance. Thus, alternative preventative therapies need to be considered. Pathogen adherence to the pulmonary epithelium through host receptors is the prerequisite step for invasion and subsequent infection of surrounding structures. Thus, disruption of bacterial-host cell interactions with receptor antagonists or modulation of the ensuing inflammatory profile present attractive avenues for therapeutic development. This review explores key mediators of pathogen-host interactions that may offer new therapeutic targets with the potential to prevent viral/bacterial-mediated AECOPD. There are several conceptual and methodological hurdles hampering the development of new therapies that require further research and resolution.
Collapse
|
10
|
Garcia AM, Allawzi A, Tatman P, Hernandez-Lagunas L, Swain K, Mouradian G, Bowler R, Karimpour-Fard A, Sucharov CC, Nozik-Grayck E. R213G polymorphism in SOD3 protects against bleomycin-induced inflammation and attenuates induction of proinflammatory pathways. Physiol Genomics 2018; 50:807-816. [PMID: 30004839 DOI: 10.1152/physiolgenomics.00053.2018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Extracellular superoxide dismutase (EC-SOD), one of three mammalian SOD isoforms, is the sole extracellular enzymatic defense against superoxide. A known human single nucleotide polymorphism (SNP) in the matrix-binding domain of EC-SOD characterized by an arginine-to-glycine substitution at position 213 (R213G) redistributes EC-SOD from the matrix into extracellular fluids. We previously reported that knock-in mice harboring the human R213G SNP (R213G mice) exhibited enhanced resolution of inflammation with subsequent protection against fibrosis following bleomycin treatment compared with wild-type (WT) littermates. Herein we set out to determine the underlying pathways with RNA-Seq analysis of WT and R213G lungs 7 days post-PBS and bleomycin. RNA-Seq analysis uncovered significant differential gene expression changes induced in WT and R213G strains in response to bleomycin. Ingenuity Pathways Analysis was used to predict differentially regulated up- and downstream processes based on transcriptional changes. Most prominent was the induction of inflammatory and immune responses in WT mice, which were suppressed in the R213G mice. Specifically, PKC signaling in T lymphocytes, IL-6, and NFΚB signaling were opposed in WT mice when compared with R213G. Several upstream regulators such as IFNγ, IRF3, and IKBKG were implicated in the divergent responses between WT and R213G mice. Our data suggest that the redistributed EC-SOD due to the R213G SNP attenuates the dysregulated inflammatory responses observed in WT mice. We speculate that redistributed EC-SOD protects against dysregulated alveolar inflammation via reprogramming of recruited immune cells toward a proresolving state.
Collapse
Affiliation(s)
- Anastacia M Garcia
- Department of Pediatrics, Division of Cardiology, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Ayed Allawzi
- Developmental Lung Biology and Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Philip Tatman
- Medical Scientist Training Program, University of Colorado, Anschutz Medical Campus, Aurora, Colorado.,Department of Medicine, Division of Cardiology, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Laura Hernandez-Lagunas
- Developmental Lung Biology and Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Kalin Swain
- Developmental Lung Biology and Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Gary Mouradian
- Developmental Lung Biology and Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Russell Bowler
- Department of Medicine, National Jewish Health , Denver, Colorado
| | - Anis Karimpour-Fard
- Department of Pharmacology, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Carmen C Sucharov
- Department of Medicine, Division of Cardiology, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Eva Nozik-Grayck
- Developmental Lung Biology and Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| |
Collapse
|
11
|
Sherlock LG, Trumpie A, Hernandez-Lagunas L, McKenna S, Fisher S, Bowler R, Wright CJ, Delaney C, Nozik-Grayck E. Redistribution of Extracellular Superoxide Dismutase Causes Neonatal Pulmonary Vascular Remodeling and PH but Protects Against Experimental Bronchopulmonary Dysplasia. Antioxidants (Basel) 2018; 7:antiox7030042. [PMID: 29538340 PMCID: PMC5874528 DOI: 10.3390/antiox7030042] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 03/03/2018] [Accepted: 03/13/2018] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND A naturally occurring single nucleotide polymorphism (SNP), (R213G), in extracellular superoxide dismutase (SOD3), decreases SOD3 matrix binding affinity. Humans and mature mice expressing the R213G SNP exhibit increased cardiovascular disease but decreased lung disease. The impact of this SNP on the neonatal lung at baseline or with injury is unknown. METHODS Wild type and homozygous R213G mice were injected with intraperitoneal bleomycin or phosphate buffered saline (PBS) three times weekly for three weeks and tissue harvested at 22 days of life. Vascular and alveolar development were evaluated by morphometric analysis and immunostaining of lung sections. Pulmonary hypertension (PH) was assessed by right ventricular hypertrophy (RVH). Lung protein expression for superoxide dismutase (SOD) isoforms, catalase, vascular endothelial growth factor receptor 2 (VEGFR2), endothelial nitric oxide synthase (eNOS) and guanosine triphosphate cyclohydrolase-1 (GTPCH-1) was evaluated by western blot. SOD activity and SOD3 expression were measured in serum. RESULTS In R213G mice, SOD3 lung protein expression decreased, serum SOD3 protein expression and SOD serum activity increased compared to wild type (WT) mice. Under control conditions, R213G mice developed pulmonary vascular remodeling (decreased vessel density and increased medial wall thickness) and PH; alveolar development was similar between strains. After bleomycin injury, in contrast to WT, R213G mice were protected from impaired alveolar development and their vascular abnormalities and PH did not worsen. Bleomycin decreased VEGFR2 and GTPCH-1 only in WT mice. CONCLUSION R213G neonatal mice demonstrate impaired vascular development and PH at baseline without alveolar simplification, yet are protected from bleomycin induced lung injury and worsening of pulmonary vascular remodeling and PH. These results show that vessel bound SOD3 is essential in normal pulmonary vascular development, and increased serum SOD3 expression and SOD activity prevent lung injury in experimental bronchopulmonary dysplasia (BPD) and PH.
Collapse
Affiliation(s)
- Laurie G Sherlock
- Department of Pediatrics, Section of Neonatology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.
| | - Ashley Trumpie
- Cardiovascular Pulmonary Research Laboratories, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.
| | - Laura Hernandez-Lagunas
- Cardiovascular Pulmonary Research Laboratories, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.
| | - Sarah McKenna
- Department of Pediatrics, Section of Neonatology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.
| | - Susan Fisher
- Department of Pediatrics, Section of Neonatology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.
| | - Russell Bowler
- Department of Medicine, National Jewish Health, Denver, CO 80206, USA.
| | - Clyde J Wright
- Department of Pediatrics, Section of Neonatology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.
| | - Cassidy Delaney
- Department of Pediatrics, Section of Neonatology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.
| | - Eva Nozik-Grayck
- Cardiovascular Pulmonary Research Laboratories, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.
- Pediatric Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.
| |
Collapse
|
12
|
Yeo J, Morales DA, Chen T, Crawford EL, Zhang X, Blomquist TM, Levin AM, Massion PP, Arenberg DA, Midthun DE, Mazzone PJ, Nathan SD, Wainz RJ, Nana-Sinkam P, Willey PFS, Arend TJ, Padda K, Qiu S, Federov A, Hernandez DAR, Hammersley JR, Yoon Y, Safi F, Khuder SA, Willey JC. RNAseq analysis of bronchial epithelial cells to identify COPD-associated genes and SNPs. BMC Pulm Med 2018; 18:42. [PMID: 29506519 PMCID: PMC5838965 DOI: 10.1186/s12890-018-0603-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 02/23/2018] [Indexed: 01/09/2023] Open
Abstract
Background There is a need for more powerful methods to identify low-effect SNPs that contribute to hereditary COPD pathogenesis. We hypothesized that SNPs contributing to COPD risk through cis-regulatory effects are enriched in genes comprised by bronchial epithelial cell (BEC) expression patterns associated with COPD. Methods To test this hypothesis, normal BEC specimens were obtained by bronchoscopy from 60 subjects: 30 subjects with COPD defined by spirometry (FEV1/FVC < 0.7, FEV1% < 80%), and 30 non-COPD controls. Targeted next generation sequencing was used to measure total and allele-specific expression of 35 genes in genome maintenance (GM) genes pathways linked to COPD pathogenesis, including seven TP53 and CEBP transcription factor family members. Shrinkage linear discriminant analysis (SLDA) was used to identify COPD-classification models. COPD GWAS were queried for putative cis-regulatory SNPs in the targeted genes. Results On a network basis, TP53 and CEBP transcription factor pathway gene pair network connections, including key DNA repair gene ERCC5, were significantly different in COPD subjects (e.g., Wilcoxon rank sum test for closeness, p-value = 5.0E-11). ERCC5 SNP rs4150275 association with chronic bronchitis was identified in a set of Lung Health Study (LHS) COPD GWAS SNPs restricted to those in putative regulatory regions within the targeted genes, and this association was validated in the COPDgene non-hispanic white (NHW) GWAS. ERCC5 SNP rs4150275 is linked (D’ = 1) to ERCC5 SNP rs17655 which displayed differential allelic expression (DAE) in BEC and is an expression quantitative trait locus (eQTL) in lung tissue (p = 3.2E-7). SNPs in linkage (D’ = 1) with rs17655 were predicted to alter miRNA binding (rs873601). A classifier model that comprised gene features CAT, CEBPG, GPX1, KEAP1, TP73, and XPA had pooled 10-fold cross-validation receiver operator characteristic area under the curve of 75.4% (95% CI: 66.3%–89.3%). The prevalence of DAE was higher than expected (p = 0.0023) in the classifier genes. Conclusions GM genes comprised by COPD-associated BEC expression patterns were enriched for SNPs with cis-regulatory function, including a putative cis-rSNP in ERCC5 that was associated with COPD risk. These findings support additional total and allele-specific expression analysis of gene pathways with high prior likelihood for involvement in COPD pathogenesis. Electronic supplementary material The online version of this article (10.1186/s12890-018-0603-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jiyoun Yeo
- Department of Pathology, The University of Toledo College of Medicine, 3000 Arlington Avenue, HEB 219, Toledo, OH, 43614, USA
| | - Diego A Morales
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, The University of Toledo College of Medicine, 3000 Arlington Avenue, HEB 219, Toledo, OH, 43614, USA
| | - Tian Chen
- Department of Mathematics and Statistics, The University of Toledo, 2801 W. Bancroft Street, Toledo, OH, 43606, USA
| | - Erin L Crawford
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, The University of Toledo College of Medicine, 3000 Arlington Avenue, HEB 219, Toledo, OH, 43614, USA
| | - Xiaolu Zhang
- Department of Medicine, The University of Toledo College of Medicine, 3000 Arlington Avenue, Toledo, OH, 43614, USA
| | - Thomas M Blomquist
- Department of Pathology, The University of Toledo College of Medicine, 3000 Arlington Avenue, HEB 219, Toledo, OH, 43614, USA
| | - Albert M Levin
- Department of Biostatistics, Henry Ford Health System, 1 Ford Place Detroit, MI, Detroit, MI, 48202, USA
| | - Pierre P Massion
- Thoracic Program, Vanderbilt Ingram Cancer Center, Nashville, TN, 37232, USA
| | | | - David E Midthun
- Department of Pulmonary and Critical Care Medicine, Mayo Clinic, 200 1st St SW, Rochester, MN, 55905, USA
| | - Peter J Mazzone
- Department of Pulmonary Medicine, Cleveland Clinic, 9500 Euclid Ave, Cleveland, OH, 44195, USA
| | - Steven D Nathan
- Department of Pulmonary Medicine, Inova Fairfax Hospital, 3300 Gallows Road, Falls Church, VA, 22042-3300, USA
| | - Ronald J Wainz
- The Toledo Hospital, 2142 N Cove Blvd, Toledo, OH, 43606, USA
| | - Patrick Nana-Sinkam
- Division of Pulmonary Diseases and Critical Care Medicine, Virginia Commonwealth University, USA, Richmond, VA, 23284-2512, USA.,Ohio State University James Comprehensive Cancer Center and Solove Research Institute, Columbus, OH, USA
| | - Paige F S Willey
- American Enterprise Institute, 1789 Massachusetts Ave NW, Washington, DC, 20036, USA
| | - Taylor J Arend
- The University of Toledo College of Medicine, 3000 Arlington Avenue, Toledo, OH, 43614, USA
| | - Karanbir Padda
- Emory University School of Medicine, 1648 Pierce Dr NE, Atlanta, GA, 30307, USA
| | - Shuhao Qiu
- Department of Medicine, The University of Toledo Medical Center, 3000 Arlington Avenue, Toledo, OH, 43614, USA
| | - Alexei Federov
- Department of Mathematics and Statistics, The University of Toledo, 2801 W. Bancroft Street, Toledo, OH, 43606, USA.,Department of Medicine, The University of Toledo College of Medicine, 3000 Arlington Avenue, Toledo, OH, 43614, USA
| | - Dawn-Alita R Hernandez
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, The University of Toledo College of Medicine, 3000 Arlington Avenue, RHC 0012, Toledo, OH, 43614, USA
| | - Jeffrey R Hammersley
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, The University of Toledo College of Medicine, 3000 Arlington Avenue, RHC 0012, Toledo, OH, 43614, USA
| | - Youngsook Yoon
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, The University of Toledo College of Medicine, 3000 Arlington Avenue, RHC 0012, Toledo, OH, 43614, USA
| | - Fadi Safi
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, The University of Toledo College of Medicine, 3000 Arlington Avenue, RHC 0012, Toledo, OH, 43614, USA
| | - Sadik A Khuder
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, The University of Toledo College of Medicine, 3000 Arlington Avenue, RHC 0012, Toledo, OH, 43614, USA
| | - James C Willey
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, The University of Toledo College of Medicine, 3000 Arlington Avenue, Toledo, OH, 43614, USA.
| |
Collapse
|
13
|
Kodal JB, Kobylecki CJ, Vedel-Krogh S, Nordestgaard BG, Bojesen SE. AHRR hypomethylation, lung function, lung function decline and respiratory symptoms. Eur Respir J 2018; 51:13993003.01512-2017. [PMID: 29348151 DOI: 10.1183/13993003.01512-2017] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 12/31/2017] [Indexed: 12/22/2022]
Abstract
Epigenome-wide association studies have shown a consistent association between smoking exposure and hypomethylation in the aryl hydrocarbon receptor repressor (AHRR) gene (cg05575921). We tested the hypothesis that AHRR hypomethylation is associated with low lung function, steeper lung function decline, and respiratory symptoms in the general population.AHRR methylation extent was measured in 9113 individuals from the 1991-1994 examination of the Copenhagen City Heart Study, using bisulfite-treated leukocyte DNA. Spirometry at the time of blood sampling was available for all individuals. Lung function was measured again for 4532 of these individuals in 2001-2003.Cross-sectionally, a 10% lower methylation extent was associated with a 0.2 z-score (95% CI 0.1-0.2) lower forced expiratory volume in 1 s (FEV1) after multivariable adjustment including smoking. Hypomethylation was also associated with a lower z-score for both forced vital capacity (FVC) and FEV1/FVC. In prospective analyses, individuals in the lowest versus highest tertile of methylation extent had a steeper decline in FEV1/height3 (p for examination×methylation interaction=0.003) and FVC/height3 (p=0.01), but not FEV1/FVC (p=0.08). Multivariable-adjusted odds ratios per 10% lower methylation extent were 1.31 (95% CI 1.18-1.45) for chronic bronchitis and 1.21 (95% CI 1.13-1.30) for any respiratory symptoms.AHRR hypomethylation was associated with low lung function, steeper lung function decline, and respiratory symptoms.
Collapse
Affiliation(s)
- Jakob B Kodal
- Dept of Clinical Biochemistry, Herlev and Gentofte Hospital, Copenhagen University Hospital, Copenhagen, Denmark.,Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Camilla J Kobylecki
- Dept of Clinical Biochemistry, Herlev and Gentofte Hospital, Copenhagen University Hospital, Copenhagen, Denmark.,Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Signe Vedel-Krogh
- Dept of Clinical Biochemistry, Herlev and Gentofte Hospital, Copenhagen University Hospital, Copenhagen, Denmark.,Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Børge G Nordestgaard
- Dept of Clinical Biochemistry, Herlev and Gentofte Hospital, Copenhagen University Hospital, Copenhagen, Denmark.,Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,The Copenhagen City Heart Study, Frederiksberg Hospital, Copenhagen University Hospital, Copenhagen, Denmark
| | - Stig E Bojesen
- Dept of Clinical Biochemistry, Herlev and Gentofte Hospital, Copenhagen University Hospital, Copenhagen, Denmark .,Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,The Copenhagen City Heart Study, Frederiksberg Hospital, Copenhagen University Hospital, Copenhagen, Denmark
| |
Collapse
|
14
|
Aghapour M, Raee P, Moghaddam SJ, Hiemstra PS, Heijink IH. Airway Epithelial Barrier Dysfunction in Chronic Obstructive Pulmonary Disease: Role of Cigarette Smoke Exposure. Am J Respir Cell Mol Biol 2018; 58:157-169. [DOI: 10.1165/rcmb.2017-0200tr] [Citation(s) in RCA: 142] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
| | - Pourya Raee
- Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Seyed Javad Moghaddam
- Department of Pulmonary Medicine, Division of Internal Medicine, the University of Texas M. D. Anderson Cancer Center, Houston, Texas
| | - Pieter S. Hiemstra
- Department of Pulmonology, Leiden University Medical Center, Leiden, the Netherlands; and
| | - Irene H. Heijink
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| |
Collapse
|
15
|
Griess B, Tom E, Domann F, Teoh-Fitzgerald M. Extracellular superoxide dismutase and its role in cancer. Free Radic Biol Med 2017; 112:464-479. [PMID: 28842347 PMCID: PMC5685559 DOI: 10.1016/j.freeradbiomed.2017.08.013] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 08/16/2017] [Accepted: 08/18/2017] [Indexed: 12/19/2022]
Abstract
Reactive oxygen species (ROS) are increasingly recognized as critical determinants of cellular signaling and a strict balance of ROS levels must be maintained to ensure proper cellular function and survival. Notably, ROS is increased in cancer cells. The superoxide dismutase family plays an essential physiological role in mitigating deleterious effects of ROS. Due to the compartmentalization of ROS signaling, EcSOD, the only superoxide dismutase in the extracellular space, has unique characteristics and functions in cellular signal transduction. In comparison to the other two intracellular SODs, EcSOD is a relatively new comer in terms of its tumor suppressive role in cancer and the mechanisms involved are less well understood. Nevertheless, the degree of differential expression of this extracellular antioxidant in cancer versus normal cells/tissues is more pronounced and prevalent than the other SODs. A significant association of low EcSOD expression with reduced cancer patient survival further suggests that loss of extracellular redox regulation promotes a conducive microenvironment that favors cancer progression. The vast array of mechanisms reported in mediating deregulation of EcSOD expression, function, and cellular distribution also supports that loss of this extracellular antioxidant provides a selective advantage to cancer cells. Moreover, overexpression of EcSOD inhibits tumor growth and metastasis, indicating a role as a tumor suppressor. This review focuses on the current understanding of the mechanisms of deregulation and tumor suppressive function of EcSOD in cancer.
Collapse
Affiliation(s)
- Brandon Griess
- Department of Biochemistry and Molecular Biology, Buffett Cancer Center, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, United States
| | - Eric Tom
- Department of Biochemistry and Molecular Biology, Buffett Cancer Center, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, United States
| | - Frederick Domann
- Free Radical and Radiation Biology Program, Radiation Oncology, University of Iowa, Iowa, IA 52242, United States
| | - Melissa Teoh-Fitzgerald
- Department of Biochemistry and Molecular Biology, Buffett Cancer Center, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, United States.
| |
Collapse
|
16
|
On the Origin of Superoxide Dismutase: An Evolutionary Perspective of Superoxide-Mediated Redox Signaling. Antioxidants (Basel) 2017; 6:antiox6040082. [PMID: 29084153 PMCID: PMC5745492 DOI: 10.3390/antiox6040082] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 10/23/2017] [Accepted: 10/27/2017] [Indexed: 12/15/2022] Open
Abstract
The field of free radical biology originated with the discovery of superoxide dismutase (SOD) in 1969. Over the last 5 decades, a plethora of research has been performed in species ranging from bacteria to mammals that has elucidated the molecular reaction, subcellular location, and specific isoforms of SOD. However, while humans have only begun to study this class of enzymes over the past 50 years, it has been estimated that these enzymes have existed for billions of years, and may be some of the original enzymes found in primitive life. As life evolved over this expanse of time, these enzymes have taken on new and different functional roles potentially in contrast to how they were originally derived. Herein, examination of the evolutionary history of these enzymes provides both an explanation and further inquiries into the modern-day role of SOD in physiology and disease.
Collapse
|
17
|
Gaurav R, Varasteh JT, Weaver MR, Jacobson SR, Hernandez-Lagunas L, Liu Q, Nozik-Grayck E, Chu HW, Alam R, Nordestgaard BG, Kobylecki CJ, Afzal S, Chupp GL, Bowler RP. The R213G polymorphism in SOD3 protects against allergic airway inflammation. JCI Insight 2017; 2:95072. [PMID: 28878123 DOI: 10.1172/jci.insight.95072] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 08/03/2017] [Indexed: 01/04/2023] Open
Abstract
Oxidative stress is important in the pathogenesis of allergic asthma. Extracellular superoxide dismutase (EC-SOD; SOD3) is the major antioxidant in lungs, but its role in allergic asthma is unknown. Here we report that asthmatics have increased SOD3 transcript levels in sputum and that a single nucleotide polymorphism (SNP) in SOD3 (R213G; rs1799895) changes lung distribution of EC-SOD, and decreases likelihood of asthma-related symptoms. Knockin mice analogous to the human R213G SNP had lower airway hyperresponsiveness, inflammation, and mucus hypersecretion with decreased interleukin-33 (IL-33) in bronchoalveolar lavage fluid and reduced type II innate lymphoid cells (ILC2s) in lungs. SOD mimetic (Mn (III) tetrakis (N-ethylpyridinium-2-yl) porphyrin) attenuated Alternaria-induced expression of IL-33 and IL-8 release in BEAS-2B cells. These results suggest that R213G SNP potentially benefits its carriers by resulting in high EC-SOD in airway-lining fluid, which ameliorates allergic airway inflammation by dampening the innate immune response, including IL-33/ST2-mediated changes in ILC2s.
Collapse
Affiliation(s)
- Rohit Gaurav
- Department of Medicine, National Jewish Health, Denver, Colorado, USA
| | - Jason T Varasteh
- Department of Medicine, National Jewish Health, Denver, Colorado, USA
| | - Michael R Weaver
- Department of Medicine, National Jewish Health, Denver, Colorado, USA
| | - Sean R Jacobson
- Department of Medicine, National Jewish Health, Denver, Colorado, USA
| | - Laura Hernandez-Lagunas
- Cardiovascular Pulmonary Research Laboratories and Department of Pediatrics, University of Colorado, Aurora, Colorado, USA
| | - Qing Liu
- Department of Internal Medicine, Yale University, New Haven, Connecticut, USA
| | - Eva Nozik-Grayck
- Cardiovascular Pulmonary Research Laboratories and Department of Pediatrics, University of Colorado, Aurora, Colorado, USA
| | - Hong Wei Chu
- Department of Medicine, National Jewish Health, Denver, Colorado, USA
| | - Rafeul Alam
- Department of Medicine, National Jewish Health, Denver, Colorado, USA
| | - Børge G Nordestgaard
- Department of Clinical Biochemistry, Herlev and Gentofte Hospital, and.,Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Shoaib Afzal
- Department of Clinical Biochemistry, Herlev and Gentofte Hospital, and.,Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Geoffrey L Chupp
- Department of Internal Medicine, Yale University, New Haven, Connecticut, USA
| | - Russell P Bowler
- Department of Medicine, National Jewish Health, Denver, Colorado, USA
| |
Collapse
|
18
|
Mouradian GC, Gaurav R, Pugliese S, El Kasmi K, Hartman B, Hernandez-Lagunas L, Stenmark KR, Bowler RP, Nozik-Grayck E. Superoxide Dismutase 3 R213G Single-Nucleotide Polymorphism Blocks Murine Bleomycin-Induced Fibrosis and Promotes Resolution of Inflammation. Am J Respir Cell Mol Biol 2017; 56:362-371. [PMID: 27805412 DOI: 10.1165/rcmb.2016-0153oc] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Loss of extracellular superoxide dismutase 3 (SOD3) contributes to inflammatory and fibrotic lung diseases. The human SOD3 R213G polymorphism decreases matrix binding, redistributing SOD3 from the lung to extracellular fluids, and protects against LPS-induced alveolar inflammation. We used R213G mice expressing a naturally occurring single-nucleotide polymorphism, rs1799895, within the heparin-binding domain of SOD3, which results in an amino acid substitution at position 213 to test the hypothesis that the redistribution of SOD3 into the extracellular fluids would impart protection against bleomycin-induced lung fibrosis and secondary pulmonary hypertension (PH). In R213G mice, SOD3 content and activity was increased in extracellular fluids and decreased in lung at baseline, with greater increases in bronchoalveolar lavage fluid (BALF) SOD3 compared with wild-type mice 3 days after bleomycin. R213G mice developed less fibrosis based on pulmonary mechanics, fibrosis scoring, collagen quantification, and gene expression at 21 days, and less PH by right ventricular systolic pressure and pulmonary arteriole medial wall thickening at 28 days. In wild-type mice, macrophages, lymphocytes, neutrophils, proinflammatory cytokines, and protein increased in BALF on Day 7 and/or 21. In R213G mice, total BALF cell counts increased on Day 7 but resolved by 21 days. At 1 or 3 days, BALF pro- and antiinflammatory cytokines and BALF protein were higher in R213G mice, resolving by 21 days. We conclude that the redistribution of SOD3 as a result of the R213G single-nucleotide polymorphism protects mice from bleomycin-induced fibrosis and secondary PH by improved resolution of alveolar inflammation.
Collapse
Affiliation(s)
- Gary C Mouradian
- 1 Developmental Lung Biology and Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado; and
| | - Rohit Gaurav
- 2 Department of Medicine, National Jewish Health, Denver, Colorado
| | - Steve Pugliese
- 1 Developmental Lung Biology and Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado; and
| | - Karim El Kasmi
- 1 Developmental Lung Biology and Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado; and
| | - Brittany Hartman
- 2 Department of Medicine, National Jewish Health, Denver, Colorado
| | - Laura Hernandez-Lagunas
- 1 Developmental Lung Biology and Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado; and
| | - Kurt R Stenmark
- 1 Developmental Lung Biology and Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado; and
| | - Russell P Bowler
- 2 Department of Medicine, National Jewish Health, Denver, Colorado
| | - Eva Nozik-Grayck
- 1 Developmental Lung Biology and Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado; and
| |
Collapse
|
19
|
Holmes MV, Ala-Korpela M, Smith GD. Mendelian randomization in cardiometabolic disease: challenges in evaluating causality. Nat Rev Cardiol 2017; 14:577-590. [PMID: 28569269 DOI: 10.1038/nrcardio.2017.78] [Citation(s) in RCA: 434] [Impact Index Per Article: 62.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Mendelian randomization (MR) is a burgeoning field that involves the use of genetic variants to assess causal relationships between exposures and outcomes. MR studies can be straightforward; for example, genetic variants within or near the encoding locus that is associated with protein concentrations can help to assess their causal role in disease. However, a more complex relationship between the genetic variants and an exposure can make findings from MR more difficult to interpret. In this Review, we describe some of these challenges in interpreting MR analyses, including those from studies using genetic variants to assess causality of multiple traits (such as branched-chain amino acids and risk of diabetes mellitus); studies describing pleiotropic variants (for example, C-reactive protein and its contribution to coronary heart disease); and those investigating variants that disrupt normal function of an exposure (for example, HDL cholesterol or IL-6 and coronary heart disease). Furthermore, MR studies on variants that encode enzymes responsible for the metabolism of an exposure (such as alcohol) are discussed, in addition to those assessing the effects of variants on time-dependent exposures (extracellular superoxide dismutase), cumulative exposures (LDL cholesterol), and overlapping exposures (triglycerides and non-HDL cholesterol). We elaborate on the molecular features of each relationship, and provide explanations for the likely causal associations. In doing so, we hope to contribute towards more reliable evaluations of MR findings.
Collapse
Affiliation(s)
- Michael V Holmes
- Medical Research Council Population Health Research Unit, University of Oxford, Roosevelt Drive, Oxford OX3 7LF, UK.,Clinical Trial Service Unit &Epidemiological Studies Unit, Nuffield Department of Population Health, University of Oxford, Big Data Institute Building, Old Road Campus, Roosevelt Drive, Oxford OX3 7BN, UK.,National Institute for Health Research, Oxford Biomedical Research Centre, Oxford University Hospital, Old Road, Oxford OX3 7LE, UK.,Medical Research Council Integrative Epidemiology Unit, University of Bristol, Oakfield House, Oakfield Grove, Bristol BS8 2BN, UK
| | - Mika Ala-Korpela
- Medical Research Council Integrative Epidemiology Unit, University of Bristol, Oakfield House, Oakfield Grove, Bristol BS8 2BN, UK.,Computational Medicine, Faculty of Medicine, University of Oulu and Biocenter Oulu, University of Oulu, Aapistie 5A, 90014, Oulu, Finland.,School of Social and Community Medicine, University of Bristol, Oakfield House, Oakfield Grove, Bristol BS8 2BN, UK
| | - George Davey Smith
- Medical Research Council Integrative Epidemiology Unit, University of Bristol, Oakfield House, Oakfield Grove, Bristol BS8 2BN, UK.,School of Social and Community Medicine, University of Bristol, Oakfield House, Oakfield Grove, Bristol BS8 2BN, UK
| |
Collapse
|
20
|
Kim Y, Jeon YJ, Ryu K, Kim TY. Zinc(II) ion promotes anti-inflammatory effects of rhSOD3 by increasing cellular association. BMB Rep 2017; 50:85-90. [PMID: 27881214 PMCID: PMC5342871 DOI: 10.5483/bmbrep.2017.50.2.150] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Indexed: 12/15/2022] Open
Abstract
Recently, we demonstrated that superoxide dismutase 3 (SOD3) is a strong candidate for biomedicine. Anti-oxidant function of SOD3 was accomplished without cell penetration, and it inhibited the inflammatory responses via non-enzymatic functions. SOD3 has the heparin binding domain associating cell surface. Interestingly, we found that Zn2+ promotes transduction effects of recombinant human SOD3 (rhSOD3) by increasing uptake via the heparin binding domain (HBD). We demonstrated an uptake of rhSOD3 from media to cell lysate via HBD, resulting in an accumulation of rhSOD3 in the nucleus, which was promoted by the presence of Zn2+. This resulted in increased inhibitory effects of rhSOD3 on NF-kB and STAT3 signals in the presence of Zn2+, which shows elevated association of rhSOD3 into the cells. These results suggest that an optimized procedure can help to enhance the inflammatory efficacy of rhSOD3, as a novel biomedicine. [BMB Reports 2017; 50(2): 85-90].
Collapse
Affiliation(s)
- Younghwa Kim
- Department of Emergency Medical Technology, Kyungil University, Gyeongsan 38428, Korea
| | - Yoon-Jae Jeon
- Laboratory of Dermato-Immunology, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | | | - Tae-Yoon Kim
- Laboratory of Dermato-Immunology, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| |
Collapse
|
21
|
Extracellular Superoxide Dismutase Enhances Recruitment of Immature Neutrophils to the Liver. Infect Immun 2016; 84:3302-3312. [PMID: 27600509 DOI: 10.1128/iai.00603-16] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 08/31/2016] [Indexed: 12/19/2022] Open
Abstract
Listeria monocytogenes is a Gram-positive intracellular pathogen that causes spontaneous abortion in pregnant women, as well as septicemia, meningitis, and gastroenteritis, primarily in immunocompromised individuals. Although L. monocytogenes can usually be effectively treated with antibiotics, there is still around a 25% mortality rate with individuals who develop clinical listeriosis. Neutrophils are innate immune cells required for the clearance of pathogenic organisms, including L. monocytogenes The diverse roles of neutrophils during both infectious and noninfectious inflammation have recently gained much attention. However, the impact of reactive oxygen species, and the enzymes that control their production, on neutrophil recruitment and function is not well understood. Using congenic mice with varying levels of extracellular superoxide dismutase (ecSOD) activity, we have recently shown that the presence of ecSOD decreases clearance of L. monocytogenes while increasing the recruitment of neutrophils that are not protective in the liver. The data presented here show that ecSOD activity does not lead to a cell-intrinsic increase in neutrophil-homing potential or a decrease in protection against L. monocytogenes Instead, ecSOD activity enhances the production of neutrophil-attracting factors and protects hyaluronic acid (HA) from damage. Furthermore, neutrophils from the livers of ecSOD-expressing mice have decreased intracellular and surface-bound myeloperoxidase, are less capable of killing phagocytosed L. monocytogenes, and have decreased oxidative burst. Collectively, our data reveal that ecSOD activity modulates neutrophil recruitment and function in a cell-extrinsic fashion, highlighting the importance of the enzyme in protecting tissues from oxidative damage.
Collapse
|
22
|
Kobylecki CJ, Afzal S, Nordestgaard BG. Does SOD3 R213G Homozygosity Influence Morbidity, Mortality, and Lung Function in the General Population? Antioxid Redox Signal 2016; 24:884-91. [PMID: 26901385 DOI: 10.1089/ars.2016.6629] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The extracellular superoxide dismutase (SOD3, EC-SOD) enzyme is a major extracellular scavenger of the superoxide anion, a free radical with the potential to cause oxidative damage. Previously, R213G heterozygosity has been associated with a decreased risk of chronic obstructive pulmonary disease (COPD) and an increased risk of ischemic heart disease (IHD). We questioned whether SOD3 R213G homozygosity (213GG) influences morbidity, mortality, and lung function. We found 14 R213G homozygotes (213GG) among 95,871 individuals (1/7000) from the Copenhagen General Population Study and the Copenhagen City Heart Study. The hazard ratio for homozygotes versus noncarriers (NC) (213RR) was 2.8 (95% confidence interval: 1.2-6.8, p = 0.02) for IHD, 1.8 (0.7-4.8, p = 0.25) for any form of cancer, and 2.3 (0.9-6.2, p = 0.10) for all-cause mortality. R213G heterozygosity was not associated with morbidity or mortality. Among never-smokers, we found a 20% lower forced expiratory volume in 1 s (FEV1)% predicted (p = 0.003), a 16% lower FVC% predicted (p = 0.01), and a 7% lower FEV1/FVC ratio (p = 0.02) in R213G homozygotes compared to NC. Our results lead to the hypotheses that the SOD3 enzyme plays a role in cardiovascular disease and in impairing and maintaining lung function in never-smokers. However, our findings should be retested in larger studies and in nonsmoking COPD patient cohorts. Antioxid. Redox Signal. 24, 884-891.
Collapse
Affiliation(s)
- Camilla J Kobylecki
- 1 Department of Clinical Biochemistry, Herlev and Gentofte Hospital, Copenhagen University Hospital , Herlev, Denmark
| | - Shoaib Afzal
- 2 Department of Clinical Biochemistry, Rigshospitalet, Copenhagen University Hospital , Copenhagen, Denmark
| | - Børge G Nordestgaard
- 1 Department of Clinical Biochemistry, Herlev and Gentofte Hospital, Copenhagen University Hospital , Herlev, Denmark
| |
Collapse
|
23
|
Denguezli M, Daldoul H, Harrabi I, Gnatiuc L, Coton S, Burney P, Tabka Z. COPD in Nonsmokers: Reports from the Tunisian Population-Based Burden of Obstructive Lung Disease Study. PLoS One 2016; 11:e0151981. [PMID: 27010214 PMCID: PMC4807055 DOI: 10.1371/journal.pone.0151981] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 03/07/2016] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND It's currently well known that smoking and increasing age constitute the most important risk factors for chronic obstructive pulmonary disease (COPD). However, little is known about COPD among nonsmokers. The present study aimed to investigate prevalence, risk factors and the profiles of COPD among nonsmokers based on the Tunisian Burden of Obstructive Lung Disease (BOLD) study. METHODS 807 adults aged 40 years+ were randomly selected from the general population. We collected information about history of respiratory disease, risk factors for COPD and quality of life. Post-bronchodilator spirometry was performed for assessment of COPD. COPD diagnostic was based on the post-bronchodilator FEV1/FVC ratio, according to the Global Initiative for Obstructive Lung Disease (GOLD) guidelines. The lower limit of normal (LLN) was determined as an alternative threshold for the FEV1/FVC ratio. RESULTS AND CONCLUSIONS Among 485 nonsmokers, 4.7% met the criteria for GOLD grade I and higher COPD. These proportions were similar even when the LLN was used as a threshold. None of the nonsmokers with COPD reported a previous doctor diagnosis of COPD compared to 7.1% of smokers. Nonsmokers accounted for 45.1% of the subjects fulfilling the GOLD spirometric criteria of COPD. Nonsmokers were predominately men and reported more asthma problems than obstructed smokers. Among nonsmokers significantly more symptoms and higher co-morbidity were found among those with COPD. Increasing age, male gender, occupational exposure, lower body mass index and a previous diagnosis of asthma are associated with increased risk for COPD in nonsmokers. This study confirms previous evidence that nonsmokers comprise a substantial proportion of individuals with COPD. Nonsmokers with COPD have a specific profile and should, thus, receive far greater attention to prevent and treat chronic airway obstruction.
Collapse
Affiliation(s)
- Meriam Denguezli
- Laboratory of Physiology, Faculty of Medicine Ibn El Jazzar, Sousse, Tunisia
| | - Hager Daldoul
- Laboratory of Physiology, Faculty of Medicine Ibn El Jazzar, Sousse, Tunisia
| | - Imed Harrabi
- Department of Epidemiology, University Hospital Farhat Hached, Sousse, Tunisia
| | - Louisa Gnatiuc
- National Heart and Lung Institute, Imperial College London, Royal Brompton Campus, London, United Kingdom
| | - Sonia Coton
- National Heart and Lung Institute, Imperial College London, Royal Brompton Campus, London, United Kingdom
| | - Peter Burney
- National Heart and Lung Institute, Imperial College London, Royal Brompton Campus, London, United Kingdom
| | - Zouhair Tabka
- Laboratory of Physiology, Faculty of Medicine Ibn El Jazzar, Sousse, Tunisia
| |
Collapse
|
24
|
Kim S, Kim H, Cho N, Lee SK, Han BG, Sull JW, Jee SH, Shin C. Identification of FAM13A gene associated with the ratio of FEV1 to FVC in Korean population by genome-wide association studies including gene-environment interactions. J Hum Genet 2015; 60:139-45. [PMID: 25608829 DOI: 10.1038/jhg.2014.118] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 11/28/2014] [Accepted: 12/09/2014] [Indexed: 01/12/2023]
Abstract
Chronic obstructive pulmonary disease (COPD) is a complex, multifactorial disease. Although smoking is a main risk factor for obstructive impairment, not all smokers develop this critical disease. We conducted a genome-wide association study to identify the association between genetic variants and pulmonary function and also examined how these variants relate to lung impairment in accordance with smoking behaviors. Using two community-based cohorts, the Ansan cohort (n=4319) and the Ansung cohort (n=3674), in the Korean Genome Epidemiology Study, we analyzed the association between genetic variants (single-nucleotide polymorphisms and haplotypes) and the ratio of FEV1 to FVC (FEV1/FVC) using multivariate linear regression models. Similar analyses were conducted after stratification by smoking status. Four genome-wide significant signals in the FAM13A gene (the strongest signal at rs2609264, P=1.76 × 10(-7) in a combined set) were associated with FEV1/FVC. For the association with ratio, the effect size in the CTGA haplotype (risk haplotype) was -0.57% (s.e., 0.11; P=2.10 × 10(-7)) as compared with the TCAG haplotype (reference haplotype) in a combined set. There was also a significant interaction of FAM13A haplotypes with heavy smoking on FEV1/FVC (P for interaction=0.028). We confirmed the previously reported association of FAM13A in 4q22.1 with pulmonary function. The FAM13A haplotypes also interacted with heavy smoking to affect the risk of reduced pulmonary function.
Collapse
Affiliation(s)
- Soriul Kim
- 1] Institute of Human Genomic Study, Ansan Hospital, Korea University, Ansan, Republic of Korea [2] Department of Public Health, Graduate School, Yonsei University, Seoul, Republic of Korea
| | - Hyun Kim
- Institute of Human Genomic Study, Ansan Hospital, Korea University, Ansan, Republic of Korea
| | - Namhan Cho
- Department of Preventive Medicine, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Seung Ku Lee
- Institute of Human Genomic Study, Ansan Hospital, Korea University, Ansan, Republic of Korea
| | - Bok-Ghee Han
- Center for Genome Science, National Institute of Health, Cheongwon, Republic of Korea
| | - Jae Woong Sull
- Department of Bio-Medical Laboratory Science, College of Health Science, Eulji University, Sungnam, Republic of Korea
| | - Sun Ha Jee
- Department of Epidemiology and Health Promotion, Graduate School of Public Health, Yonsei University, Seoul, Republic of Korea
| | - Chol Shin
- 1] Institute of Human Genomic Study, Ansan Hospital, Korea University, Ansan, Republic of Korea [2] Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Korea University Ansan Hospital, Ansan, Republic of Korea
| |
Collapse
|
25
|
Horsfall LJ, Hardy R, Wong A, Kuh D, Swallow DM. Genetic variation underlying common hereditary hyperbilirubinaemia (Gilbert's syndrome) and respiratory health in the 1946 British birth cohort. J Hepatol 2014; 61:1344-51. [PMID: 25086287 DOI: 10.1016/j.jhep.2014.07.028] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Revised: 07/17/2014] [Accepted: 07/21/2014] [Indexed: 01/01/2023]
Abstract
BACKGROUND & AIMS Bilirubin has potent antioxidant properties in vitro and raised serum levels have been associated with lower rates of respiratory disease. The enzyme uridine diphosphate glucuronosyltransferase polypeptide 1A1 (UGT1A1) is solely responsible for clearing bilirubin from the blood and homozygosity for seven thymine-adenine (TA) repeats in the TATA box regulatory element of the UGT1A1 gene underlies a mild hereditary unconjugated hyperbilirubinaemia (Gilbert's syndrome). Our aim was to investigate whether this genetic variation is associated with differences in respiratory health. METHODS The relationship between the promoter genotype underlying Gilbert's syndrome (UGT1A1 rs8175347 [TA]7/7) and respiratory outcomes assessed at ages 43, 53, and 60-64 were examined in 2190 members of the 1946 British birth cohort. RESULTS The (TA)7/7 genotype, present in 9% of the cohort, was associated with higher forced expiratory volume (FEV1) and forced vital capacity (FVC). The relationship was strongest for heavy smokers (⩾20 cigarettes per day) at age 53 with mean FEV1 409 ml higher (191 to 627; p<0.001) and mean FVC 530 ml higher (95% CI 262-798; p<0.001) for UGT1A1 (TA)7/7 Gilbert's syndrome participants than for all others, indicating a protection from the pulmonary consequences of heavy smoking. The odds of respiratory disease (chronic obstructive pulmonary disease, self-reported asthma, or prescription of respiratory drugs) were half in those with Gilbert's syndrome genotype (odds ratio 0.49 [95% CI 0.39-0.74]; p<0.001) compared to those without this genotype. CONCLUSIONS Genetically raised unconjugated serum bilirubin is associated with higher adult respiratory function and protection from respiratory disease.
Collapse
Affiliation(s)
- Laura J Horsfall
- Research Department of Primary Care and Population Health, Institute of Epidemiology & Health, University College London, UK; Research Department of Genetic, Environment and Evolution, University College London, UK.
| | - Rebecca Hardy
- MRC University Unit for Lifelong Health and Ageing at University College London, UK
| | - Andrew Wong
- MRC University Unit for Lifelong Health and Ageing at University College London, UK
| | - Diana Kuh
- MRC University Unit for Lifelong Health and Ageing at University College London, UK
| | - Dallas M Swallow
- Research Department of Genetic, Environment and Evolution, University College London, UK
| |
Collapse
|
26
|
Hartney JM, Stidham T, Goldstrohm DA, Oberley-Deegan RE, Weaver MR, Valnickova-Hansen Z, Scavenius C, Benninger RKP, Leahy KF, Johnson R, Gally F, Kosmider B, Zimmermann AK, Enghild JJ, Nozik-Grayck E, Bowler RP. A common polymorphism in extracellular superoxide dismutase affects cardiopulmonary disease risk by altering protein distribution. ACTA ACUST UNITED AC 2014; 7:659-66. [PMID: 25085920 DOI: 10.1161/circgenetics.113.000504] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
BACKGROUND The enzyme extracellular superoxide dismutase (EC-SOD; SOD3) is a major antioxidant defense in lung and vasculature. A nonsynonomous single-nucleotide polymorphism in EC-SOD (rs1799895) leads to an arginine to glycine amino acid substitution at position 213 (R213G) in the heparin-binding domain. In recent human genetic association studies, this single-nucleotide polymorphism attenuates the risk of lung disease, yet paradoxically increases the risk of cardiovascular disease. METHODS AND RESULTS Capitalizing on the complete sequence homology between human and mouse in the heparin-binding domain, we created an analogous R213G single-nucleotide polymorphism knockin mouse. The R213G single-nucleotide polymorphism did not change enzyme activity, but shifted the distribution of EC-SOD from lung and vascular tissue to extracellular fluid (eg, bronchoalveolar lavage fluid and plasma). This shift reduces susceptibility to lung disease (lipopolysaccharide-induced lung injury) and increases susceptibility to cardiopulmonary disease (chronic hypoxic pulmonary hypertension). CONCLUSIONS We conclude that EC-SOD provides optimal protection when localized to the compartment subjected to extracellular oxidative stress: thus, the redistribution of EC-SOD from the lung and pulmonary circulation to the extracellular fluids is beneficial in alveolar lung disease but detrimental in pulmonary vascular disease. These findings account for the discrepant risk associated with R213G in humans with lung diseases compared with cardiovascular diseases.
Collapse
Affiliation(s)
- John M Hartney
- From the Department of Medicine, National Jewish Health, Denver, CO (J.M.H., D.A.G., R.E.O.-D., M.R.W., K.F.L., F.G., B.K., R.P.B.); Integrated Department of Immunology, University of Colorado, Denver (J.M.H.); Departments of Pediatrics (T.S., R.K.P.B., R.J., E.N.-G.) and Bioengineering (R.K.P.B.), University of Colorado School of Medicine, Aurora; Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark (Z.V.-H., C.S., J.J.E.); and Institut de Biologie du Developpement de Marseille Luminy, Aix-Marseille University, Marseille, France (A.K.Z.)
| | - Timothy Stidham
- From the Department of Medicine, National Jewish Health, Denver, CO (J.M.H., D.A.G., R.E.O.-D., M.R.W., K.F.L., F.G., B.K., R.P.B.); Integrated Department of Immunology, University of Colorado, Denver (J.M.H.); Departments of Pediatrics (T.S., R.K.P.B., R.J., E.N.-G.) and Bioengineering (R.K.P.B.), University of Colorado School of Medicine, Aurora; Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark (Z.V.-H., C.S., J.J.E.); and Institut de Biologie du Developpement de Marseille Luminy, Aix-Marseille University, Marseille, France (A.K.Z.)
| | - David A Goldstrohm
- From the Department of Medicine, National Jewish Health, Denver, CO (J.M.H., D.A.G., R.E.O.-D., M.R.W., K.F.L., F.G., B.K., R.P.B.); Integrated Department of Immunology, University of Colorado, Denver (J.M.H.); Departments of Pediatrics (T.S., R.K.P.B., R.J., E.N.-G.) and Bioengineering (R.K.P.B.), University of Colorado School of Medicine, Aurora; Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark (Z.V.-H., C.S., J.J.E.); and Institut de Biologie du Developpement de Marseille Luminy, Aix-Marseille University, Marseille, France (A.K.Z.)
| | - Rebecca E Oberley-Deegan
- From the Department of Medicine, National Jewish Health, Denver, CO (J.M.H., D.A.G., R.E.O.-D., M.R.W., K.F.L., F.G., B.K., R.P.B.); Integrated Department of Immunology, University of Colorado, Denver (J.M.H.); Departments of Pediatrics (T.S., R.K.P.B., R.J., E.N.-G.) and Bioengineering (R.K.P.B.), University of Colorado School of Medicine, Aurora; Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark (Z.V.-H., C.S., J.J.E.); and Institut de Biologie du Developpement de Marseille Luminy, Aix-Marseille University, Marseille, France (A.K.Z.)
| | - Michael R Weaver
- From the Department of Medicine, National Jewish Health, Denver, CO (J.M.H., D.A.G., R.E.O.-D., M.R.W., K.F.L., F.G., B.K., R.P.B.); Integrated Department of Immunology, University of Colorado, Denver (J.M.H.); Departments of Pediatrics (T.S., R.K.P.B., R.J., E.N.-G.) and Bioengineering (R.K.P.B.), University of Colorado School of Medicine, Aurora; Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark (Z.V.-H., C.S., J.J.E.); and Institut de Biologie du Developpement de Marseille Luminy, Aix-Marseille University, Marseille, France (A.K.Z.)
| | - Zuzana Valnickova-Hansen
- From the Department of Medicine, National Jewish Health, Denver, CO (J.M.H., D.A.G., R.E.O.-D., M.R.W., K.F.L., F.G., B.K., R.P.B.); Integrated Department of Immunology, University of Colorado, Denver (J.M.H.); Departments of Pediatrics (T.S., R.K.P.B., R.J., E.N.-G.) and Bioengineering (R.K.P.B.), University of Colorado School of Medicine, Aurora; Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark (Z.V.-H., C.S., J.J.E.); and Institut de Biologie du Developpement de Marseille Luminy, Aix-Marseille University, Marseille, France (A.K.Z.)
| | - Carsten Scavenius
- From the Department of Medicine, National Jewish Health, Denver, CO (J.M.H., D.A.G., R.E.O.-D., M.R.W., K.F.L., F.G., B.K., R.P.B.); Integrated Department of Immunology, University of Colorado, Denver (J.M.H.); Departments of Pediatrics (T.S., R.K.P.B., R.J., E.N.-G.) and Bioengineering (R.K.P.B.), University of Colorado School of Medicine, Aurora; Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark (Z.V.-H., C.S., J.J.E.); and Institut de Biologie du Developpement de Marseille Luminy, Aix-Marseille University, Marseille, France (A.K.Z.)
| | - Richard K P Benninger
- From the Department of Medicine, National Jewish Health, Denver, CO (J.M.H., D.A.G., R.E.O.-D., M.R.W., K.F.L., F.G., B.K., R.P.B.); Integrated Department of Immunology, University of Colorado, Denver (J.M.H.); Departments of Pediatrics (T.S., R.K.P.B., R.J., E.N.-G.) and Bioengineering (R.K.P.B.), University of Colorado School of Medicine, Aurora; Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark (Z.V.-H., C.S., J.J.E.); and Institut de Biologie du Developpement de Marseille Luminy, Aix-Marseille University, Marseille, France (A.K.Z.)
| | - Katelyn F Leahy
- From the Department of Medicine, National Jewish Health, Denver, CO (J.M.H., D.A.G., R.E.O.-D., M.R.W., K.F.L., F.G., B.K., R.P.B.); Integrated Department of Immunology, University of Colorado, Denver (J.M.H.); Departments of Pediatrics (T.S., R.K.P.B., R.J., E.N.-G.) and Bioengineering (R.K.P.B.), University of Colorado School of Medicine, Aurora; Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark (Z.V.-H., C.S., J.J.E.); and Institut de Biologie du Developpement de Marseille Luminy, Aix-Marseille University, Marseille, France (A.K.Z.)
| | - Richard Johnson
- From the Department of Medicine, National Jewish Health, Denver, CO (J.M.H., D.A.G., R.E.O.-D., M.R.W., K.F.L., F.G., B.K., R.P.B.); Integrated Department of Immunology, University of Colorado, Denver (J.M.H.); Departments of Pediatrics (T.S., R.K.P.B., R.J., E.N.-G.) and Bioengineering (R.K.P.B.), University of Colorado School of Medicine, Aurora; Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark (Z.V.-H., C.S., J.J.E.); and Institut de Biologie du Developpement de Marseille Luminy, Aix-Marseille University, Marseille, France (A.K.Z.)
| | - Fabienne Gally
- From the Department of Medicine, National Jewish Health, Denver, CO (J.M.H., D.A.G., R.E.O.-D., M.R.W., K.F.L., F.G., B.K., R.P.B.); Integrated Department of Immunology, University of Colorado, Denver (J.M.H.); Departments of Pediatrics (T.S., R.K.P.B., R.J., E.N.-G.) and Bioengineering (R.K.P.B.), University of Colorado School of Medicine, Aurora; Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark (Z.V.-H., C.S., J.J.E.); and Institut de Biologie du Developpement de Marseille Luminy, Aix-Marseille University, Marseille, France (A.K.Z.)
| | - Beata Kosmider
- From the Department of Medicine, National Jewish Health, Denver, CO (J.M.H., D.A.G., R.E.O.-D., M.R.W., K.F.L., F.G., B.K., R.P.B.); Integrated Department of Immunology, University of Colorado, Denver (J.M.H.); Departments of Pediatrics (T.S., R.K.P.B., R.J., E.N.-G.) and Bioengineering (R.K.P.B.), University of Colorado School of Medicine, Aurora; Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark (Z.V.-H., C.S., J.J.E.); and Institut de Biologie du Developpement de Marseille Luminy, Aix-Marseille University, Marseille, France (A.K.Z.)
| | - Angela K Zimmermann
- From the Department of Medicine, National Jewish Health, Denver, CO (J.M.H., D.A.G., R.E.O.-D., M.R.W., K.F.L., F.G., B.K., R.P.B.); Integrated Department of Immunology, University of Colorado, Denver (J.M.H.); Departments of Pediatrics (T.S., R.K.P.B., R.J., E.N.-G.) and Bioengineering (R.K.P.B.), University of Colorado School of Medicine, Aurora; Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark (Z.V.-H., C.S., J.J.E.); and Institut de Biologie du Developpement de Marseille Luminy, Aix-Marseille University, Marseille, France (A.K.Z.)
| | - Jan J Enghild
- From the Department of Medicine, National Jewish Health, Denver, CO (J.M.H., D.A.G., R.E.O.-D., M.R.W., K.F.L., F.G., B.K., R.P.B.); Integrated Department of Immunology, University of Colorado, Denver (J.M.H.); Departments of Pediatrics (T.S., R.K.P.B., R.J., E.N.-G.) and Bioengineering (R.K.P.B.), University of Colorado School of Medicine, Aurora; Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark (Z.V.-H., C.S., J.J.E.); and Institut de Biologie du Developpement de Marseille Luminy, Aix-Marseille University, Marseille, France (A.K.Z.)
| | - Eva Nozik-Grayck
- From the Department of Medicine, National Jewish Health, Denver, CO (J.M.H., D.A.G., R.E.O.-D., M.R.W., K.F.L., F.G., B.K., R.P.B.); Integrated Department of Immunology, University of Colorado, Denver (J.M.H.); Departments of Pediatrics (T.S., R.K.P.B., R.J., E.N.-G.) and Bioengineering (R.K.P.B.), University of Colorado School of Medicine, Aurora; Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark (Z.V.-H., C.S., J.J.E.); and Institut de Biologie du Developpement de Marseille Luminy, Aix-Marseille University, Marseille, France (A.K.Z.)
| | - Russell P Bowler
- From the Department of Medicine, National Jewish Health, Denver, CO (J.M.H., D.A.G., R.E.O.-D., M.R.W., K.F.L., F.G., B.K., R.P.B.); Integrated Department of Immunology, University of Colorado, Denver (J.M.H.); Departments of Pediatrics (T.S., R.K.P.B., R.J., E.N.-G.) and Bioengineering (R.K.P.B.), University of Colorado School of Medicine, Aurora; Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark (Z.V.-H., C.S., J.J.E.); and Institut de Biologie du Developpement de Marseille Luminy, Aix-Marseille University, Marseille, France (A.K.Z.).
| |
Collapse
|
27
|
Abstract
Oxidative stress has many implications in the pathogenesis of lung diseases. In this review, we provide an overview of Reactive Oxygen Species (ROS) and nitrogen (RNS) species and antioxidants, how they relate to normal physiological function and the pathophysiology of different lung diseases, and therapeutic strategies. The production of ROS/RNS from endogenous and exogenous sources is first discussed, followed by antioxidant systems that restore oxidative balance and cellular homeostasis. The contribution of oxidant/antioxidant imbalance in lung disease pathogenesis is also discussed. An overview of therapeutic strategies is provided, such as augmenting NO bioactivity, blocking the production of ROS/RNS and replacement of deficient antioxidants. The limitations of current strategies and failures of clinical trials are then addressed, followed by discussion of novel experimental approaches for the development of improved antioxidant therapies.
Collapse
|
28
|
Gottfredsen RH, Goldstrohm DA, Hartney JM, Larsen UG, Bowler RP, Petersen SV. The cellular distribution of extracellular superoxide dismutase in macrophages is altered by cellular activation but unaffected by the naturally occurring R213G substitution. Free Radic Biol Med 2014; 69:348-56. [PMID: 24512907 PMCID: PMC4440334 DOI: 10.1016/j.freeradbiomed.2014.01.038] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Revised: 01/09/2014] [Accepted: 01/30/2014] [Indexed: 11/17/2022]
Abstract
Extracellular superoxide dismutase (EC-SOD) is responsible for the dismutation of the superoxide radical produced in the extracellular space and known to be expressed by inflammatory cells, including macrophages and neutrophils. Here we show that EC-SOD is produced by resting macrophages and associated with the cell surface via the extracellular matrix (ECM)-binding region. Upon cellular activation induced by lipopolysaccharide, EC-SOD is relocated and detected both in the cell culture medium and in lipid raft structures. Although the secreted material presented a significantly reduced ligand-binding capacity, this could not be correlated to proteolytic removal of the ECM-binding region, because the integrity of the material recovered from the medium was comparable to that of the cell surface-associated protein. The naturally occurring R213G amino acid substitution located in the ECM-binding region of EC-SOD is known to affect the binding characteristics of the protein. However, the analysis of macrophages expressing R213G EC-SOD did not present evidence of an altered cellular distribution. Our results suggest that EC-SOD plays a dynamic role in the inflammatory response mounted by activated macrophages.
Collapse
Affiliation(s)
| | | | - John M Hartney
- Department of Medicine, National Jewish Health, Denver, CO 80206, USA
| | - Ulrike G Larsen
- Department of Biomedicine, Aarhus University, DK-8000 Aarhus, Denmark
| | - Russell P Bowler
- Department of Medicine, National Jewish Health, Denver, CO 80206, USA
| | - Steen V Petersen
- Department of Biomedicine, Aarhus University, DK-8000 Aarhus, Denmark.
| |
Collapse
|
29
|
Yao H, Sundar IK, Ahmad T, Lerner C, Gerloff J, Friedman AE, Phipps RP, Sime PJ, McBurney MW, Guarente L, Rahman I. SIRT1 protects against cigarette smoke-induced lung oxidative stress via a FOXO3-dependent mechanism. Am J Physiol Lung Cell Mol Physiol 2014; 306:L816-28. [PMID: 24633890 DOI: 10.1152/ajplung.00323.2013] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Oxidative and carbonyl stress is increased in lungs of smokers and patients with chronic obstructive pulmonary disease (COPD), as well as in cigarette smoke (CS)-exposed rodent lungs. We previously showed that sirtuin1 (SIRT1), an antiaging protein, is reduced in lungs of CS-exposed mice and patients with COPD and that SIRT1 attenuates CS-induced lung inflammation and injury. It is not clear whether SIRT1 protects against CS-induced lung oxidative stress. Therefore, we determined the effect of SIRT1 on lung oxidative stress and antioxidants in response to CS exposure using loss- and gain-of-function approaches, as well as a pharmacological SIRT1 activation by SRT1720. We found that CS exposure increased protein oxidation and lipid peroxidation in lungs of wild-type (WT) mice, which was further augmented in SIRT1-deficient mice. Furthermore, both SIRT1 genetic overexpression and SRT1720 treatment significantly decreased oxidative stress induced by CS exposure. FOXO3 deletion augmented lipid peroxidation products but reduced antioxidants in response to CS exposure, which was not affected by SRT1720. Interestingly, SRT1720 treatment exhibited a similar effect on lipid peroxidation and antioxidants (i.e., manganese superoxide dismutase, heme oxygenase-1, and NADPH quinone oxidoreductase-1) in WT and nuclear factor (erythroid-derived 2)-like 2 (Nrf2)-deficient mice in response to CS exposure. This indicates that SIRT1 protects against CS-induced oxidative stress, which is mediated by FOXO3, but is independent of Nrf2. Overall, these findings reveal a novel function of SIRT1, which is to reduce CS-induced oxidative stress, and this may contribute to its protective effects against lung inflammation and subsequent development of COPD.
Collapse
Affiliation(s)
- Hongwei Yao
- Dept. of Environmental Medicine, Univ. of Rochester Medical Center, Box 850, 601 Elmwood Ave., Rochester, NY 14642.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Abstract
Why only 20% of smokers develop clinically relevant chronic obstructive pulmonary disease (COPD) was a puzzle for many years. Now, epidemiologic studies point clearly toward a large heritable component. The combination of genome-wide association studies and candidate gene analysis is helping to identify those genetic variants responsible for an individual's susceptibility to developing COPD. In this review, the current data implicating specific loci and genes in the pathogenesis of COPD are examined.
Collapse
Affiliation(s)
- Stefan J Marciniak
- Division of Respiratory Medicine, Department of Medicine, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK; Cambridge Institute for Medical Research (CIMR), University of Cambridge, Wellcome Trust/MRC Building, Hills Road, Cambridge CB2 0XY, UK.
| | - David A Lomas
- University College London, 1st Floor, Maple House, 149 Tottenham Court Road, London W1T 7NF, UK
| |
Collapse
|
31
|
Tang W, Bentley AR, Kritchevsky SB, Harris TB, Newman AB, Bauer DC, Meibohm B, Cassano PA. Genetic variation in antioxidant enzymes, cigarette smoking, and longitudinal change in lung function. Free Radic Biol Med 2013; 63:304-12. [PMID: 23688726 PMCID: PMC4060265 DOI: 10.1016/j.freeradbiomed.2013.05.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Revised: 04/08/2013] [Accepted: 05/10/2013] [Indexed: 12/25/2022]
Abstract
Antioxidant enzymes play an important role in the defense against oxidative stress in the lung and in the pathogenesis of chronic obstructive pulmonary disease (COPD). Sequence variation in genes encoding antioxidant enzymes may alter susceptibility to COPD by affecting longitudinal change in lung function in adults. We genotyped 384 sequence variants in 56 candidate genes in 1281 African American and 1794 European American elderly adults in the Health, Aging, and Body Composition study. Single-marker associations and gene-by-smoking interactions with rate of change in FEV₁ and FEV₁/FVC were evaluated using linear mixed-effects models, stratified by race/ethnicity. In European Americans, rs17883901 in GCLC was statistically significantly associated with rate of change in FEV₁/FVC; the recessive genotype (TT) was associated with a 0.9% per year steeper decline (P = 4.50 × 10(-5)). Statistically significant gene-by-smoking interactions were observed for variants in two genes in European Americans: the minor allele of rs2297765 in mGST3 attenuated the accelerated decline in FEV₁/FVC in smokers by 0.45% per year (P = 1.13 × 10(-4)); for participants with greater baseline smoking pack-years, the minor allele of rs2073192 in IDH3B was associated with an accelerated decline in FEV₁/FVC (P = 2.10 × 10(-4)). For both genes, nominally significant interactions (P < 0.01) were observed at the gene level in African Americans (P = 0.007 and 4.60 × 10(-4), respectively). Nominally significant evidence of association was observed for variants in SOD3 and GLRX2 in multiple analyses. This study identifies two novel genes associated with longitudinal lung function phenotypes in both African and European Americans and confirms a prior finding for GCLC. These findings suggest novel mechanisms and molecular targets for future research and advance the understanding of genetic determinants of lung function and COPD risk.
Collapse
Affiliation(s)
- Wenbo Tang
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Afzal S, Lange P, Bojesen SE, Freiberg JJ, Nordestgaard BG. Plasma 25-hydroxyvitamin D, lung function and risk of chronic obstructive pulmonary disease. Thorax 2013; 69:24-31. [DOI: 10.1136/thoraxjnl-2013-203682] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
33
|
Bauer M, Gräbsch C, Schlink U, Klopp N, Illig T, Krämer U, von Berg A, Schaaf B, Borte M, Heinrich J, Herbarth O, Lehmann I, Röder S. Genetic association between obstructive bronchitis and enzymes of oxidative stress. Metabolism 2012; 61:1771-9. [PMID: 22738861 DOI: 10.1016/j.metabol.2012.05.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Accepted: 05/22/2012] [Indexed: 11/30/2022]
Abstract
OBJECTIVE Obstructive respiratory diseases, mainly the chronic obstructive pulmonary disease (COPD) and asthma, are associated with functional polymorphisms of xenobiotic-metabolizing enzymes (XMEs). To date, association for obstructive bronchitis has not been described. MATERIAL/METHODS In this study, we investigated the genotypes from 26 functional polymorphisms of 20 XMEs in children (n, 1028) at the age of 6 years from the German prospective birth cohort study (LISAplus) and analyzed the associations between genotypes and obstructive bronchitis. RESULTS For the first time, we found noteworthy gene-disease associations for the functional PON1 M55L and EPHX1 H139R polymorphisms and gene-environment associations for the functional COMT V158M and NQO1 P187S polymorphisms after stratification for maternal active smoking behaviour during pregnancy. The noteworthy associations were substantiated by the biological findings that all the risk genotypes belong to genes involved in oxidative stress and code for proteins with a fast enzymatic activity or concomitantly appear in common estrogene-metabolizing pathway (COMT, NQO1). CONCLUSION The oxidative stress has to be taken into account in mechanism of the obstructive bronchitis in early childhood. The risk genotypes may serve as risk factors for respiratory obstruction rather than for signs of COPD or asthma.
Collapse
Affiliation(s)
- Mario Bauer
- UFZ-Helmholtz Centre for Environmental Research, Department of Environmental Immunology, Leipzig, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Kwon MJ, Jeon YJ, Lee KY, Kim TY. Superoxide dismutase 3 controls adaptive immune responses and contributes to the inhibition of ovalbumin-induced allergic airway inflammation in mice. Antioxid Redox Signal 2012; 17:1376-92. [PMID: 22583151 PMCID: PMC3437046 DOI: 10.1089/ars.2012.4572] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
AIMS The extracellular superoxide dismutase 3 (SOD3) is an isoform of SOD. Extensive studies have been focused on role of SOD3 as an antioxidant. However, the role of SOD3 in the immune responses that contribute to the inhibition of allergic lung inflammation has not been investigated. RESULTS Here, we report for the first time that SOD3 specifically inhibits dendritic cell maturation. Subsequently, SOD3 controls T cell activation and proliferation, and T helper 2 (Th2) and Th17 cell differentiation. As a consequence, the administration of SOD3 into mice alleviated Th2-cell-mediated ovalbumin (OVA)-induced allergic asthma. In addition, we demonstrated that SOD3 inhibits OVA-induced airway extracellular remodeling and Th2 cell trafficking. Through mass spectrometry analysis, the proteins interacting with SOD3 in the lung of asthma were identified. And it was revealed that signaling molecules, such as transforming growth factor (TGF) and epidermal growth factor (EGF) receptor, adhesion and adaptor molecules, kinases, phosphatases, NADPH oxidase, and apoptosis-related factor, were involved, which were altered by administration of SOD3. Relatively severe asthma was observed in SOD3 KO mice and was ameliorated by both the administration of SOD3 and adoptive transfer of SOD3-sufficient CD4 T cells. Moreover, the expression of endogenous SOD3 in the lung peaked early in OVA challenge and gradually decreased upon disease progression, while both SOD1 and SOD2 expression changed relatively little. INNOVATION AND CONCLUSION Thus, our data suggest that SOD3 is required to maintain lung homeostasis and acts, at least in part, as a controller of signaling and a decision maker to determine the progression of allergic lung disease.
Collapse
Affiliation(s)
- Myung-Ja Kwon
- Laboratory of Dermato-Immunology, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University, Seoul, Republic of Korea
| | - Yun-Jae Jeon
- Laboratory of Dermato-Immunology, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University, Seoul, Republic of Korea
| | - Kyo-Young Lee
- Department of Hospital Pathology, College of Medicine, The Catholic University, Seoul, Republic of Korea
| | - Tae-Yoon Kim
- Laboratory of Dermato-Immunology, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University, Seoul, Republic of Korea
| |
Collapse
|
35
|
Abstract
A genetic contribution to develop chronic obstructive pulmonary disease (COPD) is well established. However, the specific genes responsible for enhanced risk or host differences in susceptibility to smoke exposure remain poorly understood. The goal of this review is to provide a comprehensive literature overview on the genetics of COPD, highlight the most promising findings during the last few years, and ultimately provide an updated COPD gene list. Candidate gene studies on COPD and related phenotypes indexed in PubMed before January 5, 2012 are tabulated. An exhaustive list of publications for any given gene was looked for. This well-documented COPD candidate-gene list is expected to serve many purposes for future replication studies and meta-analyses as well as for reanalyzing collected genomic data in the field. In addition, this review summarizes recent genetic loci identified by genome-wide association studies on COPD, lung function, and related complications. Assembling resources, integrative genomic approaches, and large sample sizes of well-phenotyped subjects is part of the path forward to elucidate the genetic basis of this debilitating disease.
Collapse
Affiliation(s)
- Yohan Bossé
- Centre de recherche Institut universitaire de cardiologie et de pneumologie de Québec, Quebec, Canada.
| |
Collapse
|
36
|
Gottfredsen RH, Tran SMH, Larsen UG, Madsen P, Nielsen MS, Enghild JJ, Petersen SV. The C-terminal proteolytic processing of extracellular superoxide dismutase is redox regulated. Free Radic Biol Med 2012; 52:191-7. [PMID: 22062630 DOI: 10.1016/j.freeradbiomed.2011.10.443] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Revised: 10/08/2011] [Accepted: 10/13/2011] [Indexed: 01/12/2023]
Abstract
The antioxidant protein extracellular superoxide dismutase (EC-SOD) encompasses a C-terminal region that mediates interactions with a number of ligands in the extracellular matrix (ECM). This ECM-binding region can be removed by limited proteolysis before secretion, thus supporting the formation of EC-SOD tetramers with variable binding capacity. The ECM-binding region contains a cysteine residue (Cys219) that is known to be involved in an intersubunit disulfide bridge. We have determined the redox potential of this disulfide bridge and show that both EC-SOD dimers and EC-SOD monomers are present within the intracellular space. The proteolytic processing of the ECM-binding region in vitro was modulated by the redox status of Cys219, allowing cleavage under reducing conditions only. When wild-type EC-SOD or the monomeric variant Cys219Ser was expressed in mammalian cells proteolysis did not occur. However, when cells were exposed to oxidative stress conditions, proteolytic processing was observed for wild-type EC-SOD but not for the Cys219Ser variant. Although the cellular response to oxidative stress is complex, our data suggest that proteolytic removal of the ECM-binding region is regulated by the intracellular generation of an EC-SOD monomer and that Cys219 plays an important role as a redox switch allowing the cellular machinery to secrete cleaved EC-SOD.
Collapse
|
37
|
Abstract
Asthma is a chronic inflammatory lung disease that results in airflow limitation, hyperreactivity, and airway remodeling. There is strong evidence that an imbalance between the reducing and oxidizing systems favoring a more oxidative state is present in asthma. Endogenous and exogenous reactive oxygen species, such as superoxide anion, hydroxyl radical, hypohalite radical, and hydrogen peroxide, and reactive nitrogen species, such as nitric oxide, peroxynitrite, and nitrite, play a major role in the airway inflammation and are determinants of asthma severity. Asthma is also associated with decreased antioxidant defenses, such as superoxide dismutase, catalase, and glutathione. In this review, we will summarize the current knowledge and discuss the current and future strategies for the modulation of oxidative stress in asthma.
Collapse
|
38
|
Abstract
Previous family studies suggested that genetic variation contributes to COPD susceptibility. The only gene proven to influence COPD susceptibility is SERPINA1, encoding α1-antitrypsin. Most studies on COPD candidate genes except SERPINA1, have not been consistently replicated. However, longitudinal studies of decline in lung function, meta-analyses of candidate gene studies, and family-based linkage analyses suggested that variants in EPHX1, GST, MMP12, TGFB1, and SERPINE2 were associated with susceptibility to COPD. A genome-wide association (GWA) study has recently demonstrated that CHRNA3/5 in 15q25 was associated with COPD compared with control smokers. It was of interest that the CHRNA3/5 locus was associated with nicotine dependence and lung cancer as well. The associations of HHIP on 4q31 and FAM13A on 4q22 with COPD were also suggested in GWA studies. Another GWA study has shown that BICD1 in 12p11 was associated with the presence or absence of emphysema. Although every genetic study on COPD has some limitations including heterogeneity in smoking behaviors and comorbidities, it has contributed to the progress in elucidating the pathogenesis of COPD. Future studies will make us understand the mechanisms underlying the polygenic disease, leading to the development of a specific treatment for each phenotype.
Collapse
|
39
|
Fischer BM, Pavlisko E, Voynow JA. Pathogenic triad in COPD: oxidative stress, protease-antiprotease imbalance, and inflammation. Int J Chron Obstruct Pulmon Dis 2011; 6:413-21. [PMID: 21857781 PMCID: PMC3157944 DOI: 10.2147/copd.s10770] [Citation(s) in RCA: 196] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Indexed: 01/07/2023] Open
Abstract
Patients with chronic obstructive pulmonary disease (COPD) exhibit dominant features of chronic bronchitis, emphysema, and/or asthma, with a common phenotype of airflow obstruction. COPD pulmonary physiology reflects the sum of pathological changes in COPD, which can occur in large central airways, small peripheral airways, and the lung parenchyma. Quantitative or high-resolution computed tomography is used as a surrogate measure for assessment of disease progression. Different biological or molecular markers have been reported that reflect the mechanistic or pathogenic triad of inflammation, proteases, and oxidants and correspond to the different aspects of COPD histopathology. Similar to the pathogenic triad markers, genetic variations or polymorphisms have also been linked to COPD-associated inflammation, protease–antiprotease imbalance, and oxidative stress. Furthermore, in recent years, there have been reports identifying aging-associated mechanistic markers as downstream consequences of the pathogenic triad in the lungs from COPD patients. For this review, the authors have limited their discussion to a review of mechanistic markers and genetic variations and their association with COPD histopathology and disease status.
Collapse
Affiliation(s)
- Bernard M Fischer
- Department of Pediatrics, Duke University Medical Center, Durham, NC 27710, USA.
| | | | | |
Collapse
|
40
|
Regan EA, Mazur W, Meoni E, Toljamo T, Millar J, Vuopala K, Bowler RP, Rahman I, Nicks ME, Crapo JD, Kinnula VL. Smoking and COPD increase sputum levels of extracellular superoxide dismutase. Free Radic Biol Med 2011; 51:726-32. [PMID: 21621610 DOI: 10.1016/j.freeradbiomed.2011.05.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2011] [Revised: 04/28/2011] [Accepted: 05/09/2011] [Indexed: 02/02/2023]
Abstract
Extracellular superoxide dismutase (ECSOD) is the major superoxide-scavenging enzyme in the lung. Certain ECSOD polymorphisms are protective against COPD. We postulated that smokers and COPD subjects would have altered levels of ECSOD in the lung, airway secretions, and/or plasma. Lung tissue ECSOD was evaluated from nonsmokers, smokers, and subjects with mild to very severe COPD by Western blot, immunohistochemistry, and ELISA. ECSOD levels in plasma, bronchoalveolar lavage fluid (BALF), and induced-sputum supernatants were analyzed by ELISA and correlated with smoking history and disease status. Immunohistochemistry identified ECSOD in extracellular matrix around bronchioles, arteries, and alveolar walls, with decreases seen in the interstitium and vessels of severe COPD subjects using digital image analysis. Plasma ECSOD did not differ between COPD subjects and controls nor based on smoking status. ECSOD levels in induced sputum supernatants were elevated in current smokers and especially in COPD subjects compared to nonsmokers, whereas corresponding changes could not be seen in the BALF. ECSOD expression was reduced around vessels and bronchioles in COPD lungs. Substantial increases in sputum ECSOD in smokers and COPD is interpreted as an adaptive response to increased oxidative stress and may be a useful biomarker of disease activity in COPD.
Collapse
Affiliation(s)
- Elizabeth A Regan
- Department of Medicine, National Jewish Health, Denver, CO 80206, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Jun S, Fattman CL, Kim BJ, Jones H, Dory L. Allele-specific effects of ecSOD on asbestos-induced fibroproliferative lung disease in mice. Free Radic Biol Med 2011; 50:1288-96. [PMID: 21362472 PMCID: PMC5819745 DOI: 10.1016/j.freeradbiomed.2011.02.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Revised: 02/18/2011] [Accepted: 02/20/2011] [Indexed: 01/31/2023]
Abstract
Previous work by others suggests that there is a strain-dependent variation in the susceptibility to inflammatory lung injury in mice. Specifically, the 129/J mice appear to be more resistant to asbestos-induced pulmonary fibrosis than the C57BL/6 strain. A separate line of evidence suggests that extracellular superoxide dismutase (ecSOD) may play an important role in protecting the lung from such injuries. We have recently reported that the 129/J strain of mice has an ecSOD genotype and phenotype distinctly different from those of the C57BL/6 mice. In order to identify ecSOD as a potential "asbestos-injury resistance" gene, we bred congenic mice, on the C57BL/6 background, carrying the wild type (sod3wt) or the 129/J (sod3129) allele for ecSOD. This allowed us to examine the role of ecSOD polymorphism in susceptibility to lung injury in an otherwise identical genetic background. Interestingly, asbestos treatment induces a significant (~40%) increase in plasma ecSOD activity in the sod3129 mice, but not in the sod3wt mice. Asbestos administration results in a loss of ecSOD activity and protein from lung tissue of both congenic strains, but the lung ecSOD activity remains significantly higher in sod3129 mice. As expected, asbestos treatment results in a significant recovery of ecSOD protein in bronchoalveolar lavage fluid (BALF). The BALF of sod3129 mice also have significantly lower levels of proteins and inflammatory cells, especially neutrophils, accompanied by a significantly lower extent of lung injury, as measured by a pathology index score or hydroxyproline content. Immunohistochemistry reveals a significant loss of ecSOD from the tips of the respiratory epithelial cells in response to asbestos treatment and that the loss of immunodetectable ecSOD is compensated for by enzyme expression by infiltrating cells, especially in the sod3wt mice. Our studies thus identify ecSOD as an important anti-inflammatory gene, responsible for most, if not all of the resistance to asbestos-induced lung injury reported for the 129/J strain of mice. The data further suggest allele-specific differences in the regulation of ecSOD expression. These congenic mice therefore represent a very useful model to study the role of this enzyme in all inflammatory diseases. Polymorphisms in human ecSOD have also been reported and it appears logical to assume that such variations may have a profound effect on disease susceptibility.
Collapse
Affiliation(s)
- Sujung Jun
- Department of Molecular Biology and Immunology, University of North Texas Health Sciences Center at Fort Worth, Fort Worth, TX 76107
| | - Cheryl L. Fattman
- Department of Environmental and Occupational Health, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA 15219
| | - Byung-Jin Kim
- Department of Molecular Biology and Immunology, University of North Texas Health Sciences Center at Fort Worth, Fort Worth, TX 76107
| | - Harlan Jones
- Department of Molecular Biology and Immunology, University of North Texas Health Sciences Center at Fort Worth, Fort Worth, TX 76107
| | - Ladislav Dory
- Department of Molecular Biology and Immunology, University of North Texas Health Sciences Center at Fort Worth, Fort Worth, TX 76107
- To whom correspondence should be addressed to: UNT Health Science Center at Fort Worth, Department of Molecular Biology & Immunology, 3500 Camp Bowie Blvd., Fort Worth, TX 76107, Ph: 817-735-0180, Fax: 817-735-2118,
| |
Collapse
|
42
|
Yao H, Rahman I. Current concepts on oxidative/carbonyl stress, inflammation and epigenetics in pathogenesis of chronic obstructive pulmonary disease. Toxicol Appl Pharmacol 2011; 254:72-85. [PMID: 21296096 DOI: 10.1016/j.taap.2009.10.022] [Citation(s) in RCA: 172] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2008] [Revised: 10/04/2009] [Accepted: 10/04/2009] [Indexed: 12/17/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) is a global health problem. The current therapies for COPD are poorly effective and the mainstays of pharmacotherapy are bronchodilators. A better understanding of the pathobiology of COPD is critical for the development of novel therapies. In the present review, we have discussed the roles of oxidative/aldehyde stress, inflammation/immunity, and chromatin remodeling in the pathogenesis of COPD. An imbalance of oxidants/antioxidants caused by cigarette smoke and other pollutants/biomass fuels plays an important role in the pathogenesis of COPD by regulating redox-sensitive transcription factors (e.g., NF-κB), autophagy and unfolded protein response leading to chronic lung inflammatory response. Cigarette smoke also activates canonical/alternative NF-κB pathways and their upstream kinases leading to sustained inflammatory response in lungs. Recently, epigenetic regulation has been shown to be critical for the development of COPD because the expression/activity of enzymes that regulate these epigenetic modifications have been reported to be abnormal in airways of COPD patients. Hence, the significant advances made in understanding the pathophysiology of COPD as described herein will identify novel therapeutic targets for intervention in COPD.
Collapse
Affiliation(s)
- Hongwei Yao
- Department of Environmental Medicine, Lung Biology and Disease Program, University of Rochester Medical Center, Rochester, NY 1464, USA
| | | |
Collapse
|
43
|
Tollefson AK, Oberley-Deegan RE, Butterfield KT, Nicks ME, Weaver MR, Remigio LK, Decsesznak J, Chu H, Bratton DL, Riches DW, Bowler RP. Endogenous enzymes (NOX and ECSOD) regulate smoke-induced oxidative stress. Free Radic Biol Med 2010; 49:1937-46. [PMID: 20887783 PMCID: PMC3780970 DOI: 10.1016/j.freeradbiomed.2010.09.022] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2010] [Revised: 09/15/2010] [Accepted: 09/22/2010] [Indexed: 01/25/2023]
Abstract
Chronic obstructive pulmonary disease (COPD) is the fourth leading cause of death in the United States and the incidence is increasing as the population ages. Cigarette smoking is the primary risk factor; however, only a minority of smokers develop the disease. Inhalation of cigarette smoke introduces an abundance of free radicals into the lungs, causing oxidative stress and inflammation. We hypothesized that after the initial burst of oxidative stress associated with cigarette smoke exposure, a sustained source of endogenous free radical production is modulated by the antioxidant enzyme extracellular superoxide dismutase (ECSOD) and the superoxide-generating complex NADPH oxidase (NOX). Primary mouse macrophages exposed to cigarette smoke extract exhibited increased oxidative stress as indicated by fluorogenic dyes and isoprostane concentration, which was suppressed in the presence of both a superoxide dismutase mimetic and a NOX inhibitor. Similarly, primary macrophages isolated from ECSOD-overexpressing mice or NOX-deficient mice showed reduced oxidative stress in response to cigarette smoke treatment. In addition, both reduced glutathione and cytokines (MIP2 and IFNγ) were increased in bronchoalveolar lavage fluid of wild-type mice exposed to cigarette smoke but not in ECSOD-overexpressing or NOX-deficient mice. These data suggest that the mechanisms underlying the host defense against cigarette smoke-induced oxidative damage and subsequent development of COPD may include endogenous oxidases and antioxidant enzymes.
Collapse
Affiliation(s)
| | | | | | - Michael E. Nicks
- Department of Medicine, National Jewish Health, Denver, CO 80206, USA
| | - Michael R. Weaver
- Department of Medicine, National Jewish Health, Denver, CO 80206, USA
| | - Linda K. Remigio
- Department of Medicine, National Jewish Health, Denver, CO 80206, USA
| | | | - H.W. Chu
- Department of Medicine, National Jewish Health, Denver, CO 80206, USA
- University of Colorado at Denver and Health Sciences Center, Denver, CO 80262, USA
| | - Donna L. Bratton
- University of Colorado at Denver and Health Sciences Center, Denver, CO 80262, USA
| | - David W. Riches
- Department of Medicine, National Jewish Health, Denver, CO 80206, USA
- University of Colorado at Denver and Health Sciences Center, Denver, CO 80262, USA
| | - Russell P. Bowler
- Department of Medicine, National Jewish Health, Denver, CO 80206, USA
- University of Colorado at Denver and Health Sciences Center, Denver, CO 80262, USA
| |
Collapse
|
44
|
Clarke MB, Wright R, Irwin D, Bose S, Van Rheen Z, Birari R, Stenmark KR, McCord JM, Nozik-Grayck E. Sustained lung activity of a novel chimeric protein, SOD2/3, after intratracheal administration. Free Radic Biol Med 2010; 49:2032-9. [PMID: 20932897 PMCID: PMC3005855 DOI: 10.1016/j.freeradbiomed.2010.09.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2010] [Revised: 09/14/2010] [Accepted: 09/27/2010] [Indexed: 10/19/2022]
Abstract
Delivery of recombinant superoxide dismutase to the lung is limited by its short half-life and poor tissue penetration. We hypothesized that a chimeric protein, SOD2/3, containing the enzymatic domain of manganese superoxide dismutase (SOD2) and the heparan-binding domain of extracellular superoxide dismutase (SOD3), would allow for the delivery of more sustained lung and pulmonary vascular antioxidant activity compared to SOD2. We administered SOD2/3 to rats by intratracheal (i.t.), intraperitoneal (i.p.), or intravenous (i.v.) routes and evaluated the presence, localization, and activity of lung SOD2/3 1 day later using Western blot, immunohistochemistry, and SOD activity gels. The effect of i.t. SOD2/3 on the pulmonary and systemic circulation was studied in vivo in chronically catheterized rats exposed to acute hypoxia. Active SOD2/3 was detected in lung 1 day after i.t. administration but not detected after i.p. or i.v. SOD2/3 administration or i.t. SOD2. The physiologic response to acute hypoxia, vasoconstriction in the pulmonary circulation and vasodilation in the systemic circulation, was enhanced in rats treated 1 day earlier with i.t. SOD2/3. These findings indicate that i.t. administration of SOD2/3 effectively delivers sustained enzyme activity to the lung as well as pulmonary circulation and has a longer tissue half-life compared to native SOD2. Further testing in models of chronic lung or pulmonary vascular diseases mediated by excess superoxide should consider the longer tissue half-life of SOD2/3 as well as its potential systemic vascular effects.
Collapse
Affiliation(s)
- Margaret B. Clarke
- Pediatric Critical Care, Department of Pediatrics, University of Colorado Denver, School of Medicine, Aurora, Colorado, USA
| | - Rachel Wright
- Pediatric Critical Care, Department of Pediatrics, University of Colorado Denver, School of Medicine, Aurora, Colorado, USA
| | - David Irwin
- Pulmonary Medicine, Department of Medicine, University of Colorado Denver, School of Medicine, Aurora, Colorado, USA
- Cardiovascular Pulmonary Research Group, University of Colorado Denver, School of Medicine, Aurora, Colorado, USA
| | - Swapan Bose
- Pulmonary Medicine, Department of Medicine, University of Colorado Denver, School of Medicine, Aurora, Colorado, USA
| | - Zachary Van Rheen
- Pediatric Critical Care, Department of Pediatrics, University of Colorado Denver, School of Medicine, Aurora, Colorado, USA
| | - Rahul Birari
- Pediatric Critical Care, Department of Pediatrics, University of Colorado Denver, School of Medicine, Aurora, Colorado, USA
| | - Kurt R. Stenmark
- Pediatric Critical Care, Department of Pediatrics, University of Colorado Denver, School of Medicine, Aurora, Colorado, USA
- Cardiovascular Pulmonary Research Group, University of Colorado Denver, School of Medicine, Aurora, Colorado, USA
| | - Joe M. McCord
- Pulmonary Medicine, Department of Medicine, University of Colorado Denver, School of Medicine, Aurora, Colorado, USA
| | - Eva Nozik-Grayck
- Pediatric Critical Care, Department of Pediatrics, University of Colorado Denver, School of Medicine, Aurora, Colorado, USA
- Cardiovascular Pulmonary Research Group, University of Colorado Denver, School of Medicine, Aurora, Colorado, USA
| |
Collapse
|
45
|
Comandini A, Marzano V, Curradi G, Federici G, Urbani A, Saltini C. Markers of anti-oxidant response in tobacco smoke exposed subjects: a data-mining review. Pulm Pharmacol Ther 2010; 23:482-92. [PMID: 20594977 DOI: 10.1016/j.pupt.2010.05.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2010] [Revised: 05/12/2010] [Accepted: 05/25/2010] [Indexed: 12/14/2022]
Abstract
Tobacco smoke exposure is the cause of exaggerated inflammatory responses and tissue destruction leading to chronic bronchitis and emphysema. A number of studies have used biochemical and immunological technologies to identify biomarkers of severity, risk and pharmacological target of disease. Recently, genomic and proteomic studies have been carried out to explore tobacco smoke-induced lung damage mechanisms. Eight of these studies, including 81 healthy non-smokers, 138 healthy smokers and 24 smokers with COPD, had open platform generated data available online and were reviewed in order to identify markers of smoke-induced damage by analyzing differential gene and protein expression in healthy individuals exposed to tobacco smoke in comparison with chronic obstructive pulmonary disease (COPD) smokers and healthy non-smokers. To this end the Ingenuity Pathways Analysis, a web-based application enables identifying the main biological functions and pathways, was used. The pathway most significantly associated with healthy smokers was the Nrf2-mediated Oxidative Stress Response (p-value < 0.01): out of the 22 genes/proteins identified in healthy smokers, 19 were up-regulated and three down-regulated, compared to non-smokers. Interestingly, four genes/proteins of the same pathway were differentially regulated in COPD, one up-regulated and three down-regulated, compared to healthy smokers. Moreover, in the comparison between COPD and healthy smokers, our analysis showed that the most relevant pathway was the Mitochondrial Dysfunction (p-value < 0.01) with 12 differentially regulated genes/proteins. This data-mining review supports the notion that Nrf2-regulated anti-oxidant genes play a central role in protection against tobacco smoke toxic effects and may be amenable to use as COPD risk biomarkers. Furthermore, this review suggests that mitochondrial dysfunction may be involved in the development of COPD.
Collapse
Affiliation(s)
- Alessia Comandini
- Respiratory Medicine, Department of Internal Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | | | | | | | | | | |
Collapse
|
46
|
Sørheim IC, DeMeo DL, Washko G, Litonjua A, Sparrow D, Bowler R, Bakke P, Pillai SG, Coxson HO, Lomas DA, Silverman EK, Hersh CP. Polymorphisms in the superoxide dismutase-3 gene are associated with emphysema in COPD. COPD 2010; 7:262-8. [PMID: 20673035 DOI: 10.3109/15412555.2010.496821] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Superoxide dismutase-3 (SOD3) is a major extracellular antioxidant enzyme, and previous studies have indicated a possible role of this gene in chronic obstructive pulmonary disease (COPD). We hypothesized that polymorphisms in the SOD3 gene would be associated with COPD and COPD-related phenotypes. We genotyped three SOD3 polymorphisms (rs8192287 (E1), rs8192288 (I1), and rs1799895 (R213G)) in a case-control cohort, with severe COPD cases from the National Emphysema Treatment Trial (NETT, n = 389) and smoking controls from the Normative Aging Study (NAS, n = 472). We examined whether the single nucleotide polymorphisms (SNPs) were associated with COPD status, lung function variables, and quantitative computed tomography (CT) measurements of emphysema and airway wall thickness. Furthermore, we tried to replicate our initial findings in two family-based studies, the International COPD Genetics Network (ICGN, n = 3061) and the Boston Early-Onset COPD Study (EOCOPD, n = 949). In NETT COPD cases, the minor alleles of SNPs E1 and I1 were associated with a higher percentage of emphysema (%LAA950) on chest CT scan (p = .029 and p = .0058). The association with E1 was replicated in the ICGN family study, where the minor allele was associated with more emphysema (p = .048). Airway wall thickness was positively associated with the E1 SNP in ICGN; however, this finding was not confirmed in NETT. Quantitative CT data were not available in EOCOPD. The SNPs were not associated with lung function variables or COPD status in any of the populations. In conclusion, polymorphisms in the SOD3 gene were associated with CT emphysema but not COPD susceptibility, highlighting the importance of phenotype definition in COPD genetics studies.
Collapse
Affiliation(s)
- I C Sørheim
- Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Lin JL, Thomas PS. Current perspectives of oxidative stress and its measurement in chronic obstructive pulmonary disease. COPD 2010; 7:291-306. [PMID: 20673039 DOI: 10.3109/15412555.2010.496818] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Cigarette smoking, the principal aetiology of chronic obstructive pulmonary disease (COPD) in the developed countries, delivers and generates oxidative stress within the lungs. This imbalance of oxidant burden and antioxidant capacity has been implicated as an important contributing factor in the pathogenesis of COPD. Oxidative processes and free radical generation orchestrate the inflammation, mucous gland hyperplasia, and apoptosis of the airway lining epithelium which characterises COPD. Pivotal oxidative stress/pro-inflammatory molecules include reactive oxygen species such as the superoxides and hydroxyl radicals, pro-inflammatory cytokines including leukotrienes, interleukins, tumour necrosis factor alpha, and activated transcriptional factors such as nuclear factor kappa-B and activator protein 1. The lung has a large reserve of antioxidant agents such as glutathione and superoxide dismutase to counter oxidants. However, smoking also causes the depletion of antioxidants, which further contributes to oxidative tissue damage. The downregulation of antioxidant pathways has also been associated with acute exacerbations of COPD. The delivery of redox-protective antioxidants may have preventative and therapeutic potential of COPD. Although these observations have yet to translate into common clinical practice, preliminary clinical trials and studies of animal models have shown that interventions to counter this oxidative imbalance may have potential to better manage COPD. There is, thus, a need for the ability to monitor such interventions and exhaled breath condensate is rapidly emerging as a novel and noninvasive approach in the sampling of airway epithelial lining fluid which could be used for repeated analysis of oxidative stress and inflammation in the lungs.
Collapse
Affiliation(s)
- Jiun-Lih Lin
- University of New South Wales, Sydney, Australia.
| | | |
Collapse
|
48
|
Marwick JA, Chung KF. Glucocorticoid insensitivity as a future target of therapy for chronic obstructive pulmonary disease. Int J Chron Obstruct Pulmon Dis 2010; 5:297-309. [PMID: 20856829 PMCID: PMC2939685 DOI: 10.2147/copd.s7390] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Indexed: 11/23/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is characterized by an abnormal and chronic inflammatory response in the lung that underlies the chronic airflow obstruction of the small airways, the inexorable decline of lung function, and the severity of the disease. The control of this inflammation remains a key strategy for treating the disease; however, there are no current anti-inflammatory treatments that are effective. Although glucocorticoids (GCs) effectively control inflammation in many diseases such as asthma, they are less effective in COPD. The molecular mechanisms that contribute to the development of this relative GC-insensitive inflammation in the lung of patients with COPD remain unclear. However, recent studies have indicated novel mechanisms and possible therapeutic strategies. One of the major mechanisms proposed is an oxidant-mediated alteration in the signaling pathways in the inflammatory cells in the lung, which may result in the impairment of repressor proteins used by the GC receptor to inhibit the transcription of proinflammatory genes. Although these studies have described mechanisms and targets by which GC function can be restored in cells from patients with COPD, more work is needed to completely elucidate these and other pathways that may be involved in order to allow for more confident therapeutic targeting. Given the relative GC-insensitive nature of the inflammation in COPD, a combination of therapies in addition to a restoration of GC function, including effective alternative anti-inflammatory targets, antioxidants, and proresolving therapeutic strategies, is likely to provide better targeting and improvement in the management of the disease.
Collapse
Affiliation(s)
- John A Marwick
- Medical Research Council Centre for Inflammation Research, The Queen's Medical Research Institute, University of Edinburgh Medical School, Edinburgh, UK.
| | | |
Collapse
|
49
|
Yao H, Arunachalam G, Hwang JW, Chung S, Sundar IK, Kinnula VL, Crapo JD, Rahman I. Extracellular superoxide dismutase protects against pulmonary emphysema by attenuating oxidative fragmentation of ECM. Proc Natl Acad Sci U S A 2010; 107:15571-6. [PMID: 20713693 PMCID: PMC2932580 DOI: 10.1073/pnas.1007625107] [Citation(s) in RCA: 149] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Extracellular superoxide dismutase (ECSOD or SOD3) is highly expressed in lungs and functions as a scavenger of O(2)(*-). ECM fragmentation, which can be triggered by oxidative stress, participates in the pathogenesis of chronic obstructive pulmonary disease (COPD) through attracting inflammatory cells into the lungs. The level of SOD3 is significantly decreased in lungs of patients with COPD. However, the role of endogenous SOD3 in the development/progression of emphysema is unknown. We hypothesized that SOD3 protects against emphysema by attenuating oxidative fragmentation of ECM in mice. To test this hypothesis, SOD3-deficient, SOD3-transgenic, and WT C57BL/6J mice were exposed to cigarette smoke (CS) for 3 d (300 mg total particulate matter/m(3)) to 6 mo (100 mg/m(3) total particulate matter) or by intratracheal elastase injection. Airspace enlargement, lung inflammation, lung mechanical properties, and exercise tolerance were determined at different time points during CS exposure or after elastase administration. CS exposure and elastase administration caused airspace enlargement as well as impaired lung function and exercise capacity in SOD3-null mice, which were improved in mice overexpressing SOD3 and by pharmacological SOD mimetic. These phenomena were associated with SOD3-mediated protection against oxidative fragmentation of ECM, such as heparin sulfate and elastin, thereby attenuating lung inflammatory response. In conclusion, SOD3 attenuates emphysema and reduces oxidative fragmentation of ECM in mouse lung. Thus, pharmacological augmentation of SOD3 in the lung may have a therapeutic potential in the intervention of COPD/emphysema.
Collapse
Affiliation(s)
- Hongwei Yao
- Department of Environmental Medicine, Lung Biology and Disease Program, University of Rochester Medical Center, Rochester, NY 14642
| | - Gnanapragasam Arunachalam
- Department of Environmental Medicine, Lung Biology and Disease Program, University of Rochester Medical Center, Rochester, NY 14642
| | - Jae-woong Hwang
- Department of Environmental Medicine, Lung Biology and Disease Program, University of Rochester Medical Center, Rochester, NY 14642
| | - Sangwoon Chung
- Department of Environmental Medicine, Lung Biology and Disease Program, University of Rochester Medical Center, Rochester, NY 14642
| | - Isaac K. Sundar
- Department of Environmental Medicine, Lung Biology and Disease Program, University of Rochester Medical Center, Rochester, NY 14642
| | - Vuokko L. Kinnula
- Pulmonary Division, Department of Medicine, University of Helsinki and Helsinki University Hospital, FIN-00029 Helsinki, Finland; and
| | - James D. Crapo
- Department of Medicine, National Jewish Medical and Research Center, Denver, CO 80206
| | - Irfan Rahman
- Department of Environmental Medicine, Lung Biology and Disease Program, University of Rochester Medical Center, Rochester, NY 14642
| |
Collapse
|
50
|
Manni ML, Oury TD. Significance of Polymorphisms in the Superoxide Dismutase-3 Gene in COPD: It's all about Location! COPD 2010; 7:237-9. [DOI: 10.3109/15412555.2010.502818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|