1
|
Vaillancourt M, Aguilar D, Fernandes SE, Jorth PA. A chronic Pseudomonas aeruginosa mouse lung infection modeling the pathophysiology and inflammation of human cystic fibrosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.07.617039. [PMID: 39416002 PMCID: PMC11482824 DOI: 10.1101/2024.10.07.617039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Investigation of chronic cystic fibrosis (CF) lung infections has been limited by a lack of murine models that reproduce obstructive lung pathology, chronicity of bacterial infections, and complex inflammation in human CF lung pathology. Three different approaches have been used separately to address these limitations, including using transgenic Scnn1b-Tg mice overexpressing a lung epithelial sodium channel to mimic the mucus-rich and hyperinflammatory CF lung environment, using synthetic CF sputum medium (SCFM) in an acute infection to induce bacterial phenotypes consistent with human CF, or using agar beads to promote chronic infections. Here, we combine these three models to establish a chronic Pseudomonas aeruginosa lung infection model using SCFM agar beads and Scnn1b-Tg mice (SCFM-Tg-mice) to recapitulate nutrients, mucus, and inflammation characteristic of the human CF lung environment. Like people with CF, SCFM-Tg-mice failed to clear bacterial infections. Lung function measurements showed that infected SCFM-Tg-mice had decreased inspiratory capacity and compliance, elevated airway resistance, and significantly reduced FVC and FEV0.1. Using spectral flow cytometry and multiplex cytokine arrays we show that, like people with CF, SCFM-Tg-mice developed inflammation characterized by eosinophil infiltration and Th2 lymphocytic cytokine responses. Chronically infected SCFM-Tg-mice developed an exacerbated mix of innate and Th1, Th2, and Th17-mediated inflammation, causing higher lung cellular damage, and elevated numbers of unusual Siglec F+ neutrophils. Thus, SCFM-Tg-mice represents a powerful tool to investigate bacterial pathogenesis and potential treatments for chronic CF lung infections and reveal a potential role for Siglec F+ neutrophils in CF inflammation.
Collapse
Affiliation(s)
- Mylene Vaillancourt
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Diane Aguilar
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Sheryl E. Fernandes
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Peter A. Jorth
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
| |
Collapse
|
2
|
Cui G, Moustafa DA, Zhao S, Cegla AV, Lyles JT, Goldberg JB, Chandler JD, McCarty NA. Chronic hyperglycemia aggravates lung function in a Scnn1b-Tg murine model. Am J Physiol Lung Cell Mol Physiol 2024; 327:L473-L486. [PMID: 39010826 PMCID: PMC11482466 DOI: 10.1152/ajplung.00279.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 05/02/2024] [Accepted: 06/29/2024] [Indexed: 07/17/2024] Open
Abstract
Cystic fibrosis-related diabetes (CFRD), the most common comorbidity in cystic fibrosis (CF), leads to increased mortality by accelerating the decline in lung function. Scnn1b-Tg transgenic mice overexpressing the epithelial sodium channel β subunit exhibit spontaneous CF-like lung disease, including airway mucus obstruction and chronic inflammation. Here, we established a chronic CFRD-like model using Scnn1b-Tg mice made diabetic by injection of streptozotocin (STZ). In Ussing chamber recordings of the trachea, Scnn1b-Tg mice exhibited larger amiloride-sensitive currents and forskolin-activated currents, without a difference in adenosine triphosphate (ATP)-activated currents compared with wild-type (WT) littermates. Both diabetic WT (WT-D) and diabetic Scnn1b-Tg (Scnn1b-Tg-D) mice on the same genetic background exhibited substantially elevated blood glucose at 8 wk; glucose levels also were elevated in bronchoalveolar lavage fluid (BALF). Bulk lung RNA-seq data showed significant differences between WT-D and Scnn1b-Tg-D mice. Neutrophil counts in BALF were substantially increased in Scnn1b-Tg-D lungs compared with controls (Scnn1b-Tg-con) and compared with WT-D lungs. Lung histology data showed enhanced parenchymal destruction, alveolar wall thickening, and neutrophilic infiltration in Scnn1b-Tg-D mice compared with WT-D mice, consistent with the development of a spontaneous lung infection. We intranasally administered Pseudomonas aeruginosa to induce lung infection in these mice for 24 h, which led to severe lung leukocytic infiltration and an increase in pro-inflammatory cytokine levels in the BALF. In summary, we established a chronic CFRD-like lung mouse model using the Scnn1b-Tg mice. The model can be used for future studies toward understanding the mechanisms underlying the lung pathophysiology associated with CFRD and developing novel therapeutics.NEW & NOTEWORTHY We established a chronic CFRD-like mouse model using the Scnn1b-Tg transgenic mice overexpressing the epithelial sodium channel β subunit made diabetic by injection of streptozotocin. The results underscore the urgent need to develop novel therapeutics for CF lung disease.
Collapse
Affiliation(s)
- Guiying Cui
- Division of Pulmonology, Asthma, Cystic Fibrosis, and Sleep, Department of Pediatrics, Emory + Children's Center for Cystic Fibrosis and Airways Disease Research, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, Georgia, United States
| | - Dina A Moustafa
- Division of Pulmonology, Asthma, Cystic Fibrosis, and Sleep, Department of Pediatrics, Emory + Children's Center for Cystic Fibrosis and Airways Disease Research, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, Georgia, United States
| | - Shilin Zhao
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Analia Vazquez Cegla
- Division of Pulmonology, Asthma, Cystic Fibrosis, and Sleep, Department of Pediatrics, Emory + Children's Center for Cystic Fibrosis and Airways Disease Research, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, Georgia, United States
| | - James T Lyles
- Division of Pulmonology, Asthma, Cystic Fibrosis, and Sleep, Department of Pediatrics, Emory + Children's Center for Cystic Fibrosis and Airways Disease Research, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, Georgia, United States
| | - Joanna B Goldberg
- Division of Pulmonology, Asthma, Cystic Fibrosis, and Sleep, Department of Pediatrics, Emory + Children's Center for Cystic Fibrosis and Airways Disease Research, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, Georgia, United States
| | - Joshua D Chandler
- Division of Pulmonology, Asthma, Cystic Fibrosis, and Sleep, Department of Pediatrics, Emory + Children's Center for Cystic Fibrosis and Airways Disease Research, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, Georgia, United States
| | - Nael A McCarty
- Division of Pulmonology, Asthma, Cystic Fibrosis, and Sleep, Department of Pediatrics, Emory + Children's Center for Cystic Fibrosis and Airways Disease Research, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, Georgia, United States
| |
Collapse
|
3
|
Mao Y, Suryawanshi A, Patial S, Saini Y. Airspaces-derived exosomes contain disease-relevant protein signatures in a mouse model of cystic fibrosis (CF)-like mucoinflammatory lung disease. Front Pharmacol 2024; 15:1460692. [PMID: 39386033 PMCID: PMC11461968 DOI: 10.3389/fphar.2024.1460692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 08/26/2024] [Indexed: 10/12/2024] Open
Abstract
Exosomes, membrane-bound extracellular vesicles, ranging from approximately 30-200 nm in diameter, are released by almost all cell types and play critical roles in intercellular communication. In response to the prevailing stress, the exosome-bound protein signatures vary in abundance and composition. To identify the bronchoalveolar lavage fluid (BALF) exosome-bound proteins associated with mucoinflammatory lung disease and to gain insights into their functional implications, we compared BALF exosomes-derived proteins from adult Scnn1b transgenic (Scnn1b-Tg+) and wild type (WT) mice. A total of 3,144 and 3,119 proteins were identified in BALF exosomes from Scnn1b-Tg+ and WT mice, respectively. Using cutoff criteria (Log2 fold-change > 1 and adjusted p-value < 0.05), the comparison of identified proteins revealed 127 and 30 proteins that were significantly upregulated and downregulated, respectively, in Scnn1b-Tg+ versus WT mice. In addition, 52 and 27 proteins were exclusively enriched in Scnn1b-Tg+ and WT mice, respectively. The identified exosome-bound proteins from the homeostatic airspaces of WT mice were mostly relevant to the normal physiological processes. The protein signatures enriched in the BALF exosomes of Scnn1b-Tg+ mice were relevant to macrophage activation and mucoinflammatory processes. Ingenuity pathway analyses revealed that the enriched proteins in Scnn1b-Tg+ mice contributed to the inflammatory responses and antimicrobial defense pathways. Selective proteins including, RETNLA/FIZZ1, LGALS3/Galectin-3, S100A8/MRP8, and CHIL3/YM1 were immunolocalized to specific cell types. The comparative analysis between enriched BALF exosome proteins and previously identified differentially upregulated genes in Scnn1b-Tg+ versus WT mice suggested that the compartment-/cell-specific upregulation in gene expression dictates the enrichment of their respective proteins in the lung airspaces. Taken together, this study demonstrates that the BALF exosome-bound protein signatures reflect disease-relevant disturbances. Our findings suggest that the exosomes carry disease-relevant protein signatures that can be used as a diagnostic as well as predictive biomarkers for mucoinflammatory lung disease.
Collapse
Affiliation(s)
- Yun Mao
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
| | - Amol Suryawanshi
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
| | - Sonika Patial
- Comparative and Molecular Pathogenesis Branch, Division of Translational Toxicology, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, NC, United States
| | - Yogesh Saini
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
| |
Collapse
|
4
|
Brown R, Dougan C, Ferris P, Delaney R, Houston CJ, Rodgers A, Downey DG, Mall MA, Connolly B, Small D, Weldon S, Taggart CC. SLPI deficiency alters airway protease activity and induces cell recruitment in a model of muco-obstructive lung disease. Front Immunol 2024; 15:1433642. [PMID: 39301022 PMCID: PMC11410634 DOI: 10.3389/fimmu.2024.1433642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 08/20/2024] [Indexed: 09/22/2024] Open
Abstract
Secretory leukocyte protease inhibitor (SLPI) is an important cationic protein involved in innate airway immunity and highly expressed in mucosal secretions, shown to target and inhibit neutrophil elastase (NE), cathepsin G and trypsin activity to limit proteolytic activity. In addition to the potent anti-protease activity, SLPI has been demonstrated to exert a direct anti-inflammatory effect, which is mediated via increased inhibition and competitive binding of NF-κB, regulating immune responses through limiting transcription of pro-inflammatory gene targets. In muco-obstructive lung disorders, such as Chronic Obstructive Pulmonary Disease (COPD) and Cystic Fibrosis (CF), there is an observed elevation in airway SLPI protein concentrations as a result of increased lung inflammation and disease progression. However, studies have identified COPD patients presenting with diminished SLPI concentrations. Furthermore, there is a decrease in SLPI concentrations through cleavage and subsequent inactivation by NE degradation in Pseudomonas aeruginosa infected people with CF (pwCF). These observations suggest reduced SLPI protein levels may contribute to the compromising of airway immunity indicating a potential role of decreased SLPI levels in the pathogenesis of muco-obstructive lung disease. The Beta Epithelial Na+ Channel transgenic (ENaC-Tg) mouse model phenotype exhibits characteristics which replicate the pathological features observed in conditions such as COPD and CF, including mucus accumulation, alterations in airway morphology and increased pulmonary inflammation. To evaluate the effect of SLPI in muco-obstructive pulmonary disease, ENaC-Tg mice were crossed with SLPI knock-out (SLPI-/-) mice, generating a ENaC-Tg/SLPI-/- colony to further investigate the role of SLPI in chronic lung disease and determine the effect of its ablation on disease pathogenesis.
Collapse
Affiliation(s)
- Ryan Brown
- Airway Innate Immunity Research (AiiR) Group, Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, United Kingdom
| | - Caoifa Dougan
- Airway Innate Immunity Research (AiiR) Group, Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, United Kingdom
| | - Peter Ferris
- Airway Innate Immunity Research (AiiR) Group, Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, United Kingdom
| | - Rebecca Delaney
- Airway Innate Immunity Research (AiiR) Group, Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, United Kingdom
| | - Claire J Houston
- Airway Innate Immunity Research (AiiR) Group, Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, United Kingdom
| | - Aoife Rodgers
- Airway Innate Immunity Research (AiiR) Group, Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, United Kingdom
| | - Damian G Downey
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, United Kingdom
| | - Marcus A Mall
- Department of Translational Pulmonology, Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), University of Heidelberg, Heidelberg, Germany
- Department of Pediatric Pulmonology and Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
| | - Bronwen Connolly
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, United Kingdom
| | - Donna Small
- Airway Innate Immunity Research (AiiR) Group, Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, United Kingdom
- Patrick G Johnston Centre for Cancer Research, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, United Kingdom
| | - Sinéad Weldon
- Airway Innate Immunity Research (AiiR) Group, Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, United Kingdom
| | - Clifford C Taggart
- Airway Innate Immunity Research (AiiR) Group, Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, United Kingdom
| |
Collapse
|
5
|
Han H, Meister M, Peng G, Yuan Y, Qiao J, Yang JJ, Liu ZR, Ji X. Inhalation of nicotine-containing electronic cigarette vapor exacerbates the features of COPD by inducing ferroptosis in βENaC-overexpressing mice. Front Immunol 2024; 15:1429946. [PMID: 38947318 PMCID: PMC11211252 DOI: 10.3389/fimmu.2024.1429946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 05/27/2024] [Indexed: 07/02/2024] Open
Abstract
Introduction Chronic obstructive pulmonary disease (COPD) is currently listed as the 3rd leading cause of death in the United States. Accumulating data shows the association between COPD occurrence and the usage of electronic nicotine delivery systems (ENDS) in patients. However, the underlying pathogenesis mechanisms of COPD have not been fully understood. Methods In the current study, bENaC-overexpressing mice (bENaC mice) were subjected to whole-body ENDS exposure. COPD related features including emphysema, mucus accumulation, inflammation and fibrosis are examined by tissue staining, FACS analysis, cytokine measurement. Cell death and ferroptosis of alveolar epithelial cells were further evaluated by multiple assays including staining, FACS analysis and lipidomics. Results ENDS-exposed mice displayed enhanced emphysema and mucus accumulation, suggesting that ENDS exposure promotes COPD features. ENDS exposure also increased immune cell number infiltration in bronchoalveolar lavage and levels of multiple COPD-related cytokines in the lungs, including CCL2, IL-4, IL-13, IL-10, M-CSF, and TNF-α. Moreover, we observed increased fibrosis in ENDS-exposed mice, as evidenced by elevated collagen deposition and a-SMA+ myofibroblast accumulation. By investigating possible mechanisms for how ENDS promoted COPD, we demonstrated that ENDS exposure induced cell death of alveolar epithelial cells, evidenced by TUNEL staining and Annexin V/PI FACS analysis. Furthermore, we identified that ENDS exposure caused lipid dysregulations, including TAGs (9 species) and phospholipids (34 species). As most of these lipid species are highly associated with ferroptosis, we confirmed ENDS also enhanced ferroptosis marker CD71 in both type I and type II alveolar epithelial cells. Discussion Overall, our data revealed that ENDS exposure exacerbates features of COPD in bENaC mice including emphysema, mucus accumulation, abnormal lung inflammation, and fibrosis, which involves the effect of COPD development by inducing ferroptosis in the lung.
Collapse
Affiliation(s)
- Hongwei Han
- Department of Biology, Georgia State University, Atlanta, GA, United States
| | - Maureen Meister
- Department of Nutrition, Georgia State University, Atlanta, GA, United States
| | - Guangda Peng
- Department of Biology, Georgia State University, Atlanta, GA, United States
| | - Yi Yuan
- Department of Biology, Georgia State University, Atlanta, GA, United States
| | - Jingjuan Qiao
- Department of Chemistry, Georgia State University, Atlanta, GA, United States
| | - Jenny J. Yang
- Department of Chemistry, Georgia State University, Atlanta, GA, United States
| | - Zhi-Ren Liu
- Department of Biology, Georgia State University, Atlanta, GA, United States
| | - Xiangming Ji
- Department of Nutrition, Georgia State University, Atlanta, GA, United States
| |
Collapse
|
6
|
Heyndrickx I, Deswarte K, Verstraete K, Verschueren KHG, Smole U, Aegerter H, Dansercoer A, Hammad H, Savvides SN, Lambrecht BN. Ym1 protein crystals promote type 2 immunity. eLife 2024; 12:RP90676. [PMID: 38194250 PMCID: PMC10945506 DOI: 10.7554/elife.90676] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024] Open
Abstract
Spontaneous protein crystallization is a rare event, yet protein crystals are frequently found in eosinophil-rich inflammation. In humans, Charcot-Leyden crystals (CLCs) are made from galectin-10 (Gal10) protein, an abundant protein in eosinophils. Although mice do not encode Gal10 in their genome, they do form pseudo-CLCs, made from the chitinase-like proteins Ym1 and/or Ym2, encoded by Chil3 and Chil4 and made by myeloid and epithelial cells respectively. Here, we investigated the biological effects of pseudo-CLCs since their function is currently unknown. We produced recombinant Ym1 crystals which were shown to have identical crystal packing and structure by X-ray crystallography as in vivo native crystals derived from murine lung. When administered to the airways of mice, crystalline but not soluble Ym1 stimulated innate and adaptive immunity and acted as a type 2 immune adjuvant for eosinophilic inflammation via triggering of dendritic cells (DCs). Murine Ym1 protein crystals found at sites of eosinophilic inflammation reinforce type 2 immunity and could serve as a surrogate model for studying the biology of human CLCs.
Collapse
Affiliation(s)
- Ines Heyndrickx
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation ResearchGhentBelgium
- Department of Internal Medicine and Pediatrics, Ghent UniversityGhentBelgium
| | - Kim Deswarte
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation ResearchGhentBelgium
- Department of Internal Medicine and Pediatrics, Ghent UniversityGhentBelgium
| | - Kenneth Verstraete
- Unit for Structural Biology, VIB-UGent Center for Inflammation ResearchGhentBelgium
- Department of Biochemistry and Microbiology, Ghent UniversityGhentBelgium
| | - Koen HG Verschueren
- Unit for Structural Biology, VIB-UGent Center for Inflammation ResearchGhentBelgium
- Department of Biochemistry and Microbiology, Ghent UniversityGhentBelgium
| | - Ursula Smole
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation ResearchGhentBelgium
- Department of Internal Medicine and Pediatrics, Ghent UniversityGhentBelgium
| | - Helena Aegerter
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation ResearchGhentBelgium
- Department of Internal Medicine and Pediatrics, Ghent UniversityGhentBelgium
| | - Ann Dansercoer
- Unit for Structural Biology, VIB-UGent Center for Inflammation ResearchGhentBelgium
- Department of Biochemistry and Microbiology, Ghent UniversityGhentBelgium
| | - Hamida Hammad
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation ResearchGhentBelgium
- Department of Internal Medicine and Pediatrics, Ghent UniversityGhentBelgium
| | - Savvas N Savvides
- Unit for Structural Biology, VIB-UGent Center for Inflammation ResearchGhentBelgium
- Department of Biochemistry and Microbiology, Ghent UniversityGhentBelgium
| | - Bart N Lambrecht
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation ResearchGhentBelgium
- Department of Internal Medicine and Pediatrics, Ghent UniversityGhentBelgium
- Department of Pulmonary Medicine, Erasmus University Medical Center RotterdamRotterdamNetherlands
| |
Collapse
|
7
|
Harris ES, Novak L, Fernandez-Petty CM, Lindgren NR, Baker SM, Birket SE, Rowe SM. SNSP113 (PAAG) improves mucociliary transport and lung pathology in the Scnn1b-Tg murine model of CF lung disease. J Cyst Fibros 2023; 22:1104-1112. [PMID: 37714777 PMCID: PMC10843010 DOI: 10.1016/j.jcf.2023.08.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 07/25/2023] [Accepted: 08/29/2023] [Indexed: 09/17/2023]
Abstract
BACKGROUND Mucus stasis, a hallmark of muco-obstructive disease, results from impaired mucociliary transport and leads to lung function decline and chronic infection. Although therapeutics that target mucus stasis in the airway, such as hypertonic saline or rhDNAse, show some therapeutic benefit, they do not address the underlying electrostatic defect apparent in mucins in CF and related conditions. We have previously shown poly (acetyl, arginyl) glucosamine (PAAG, developed as SNSP113), a soluble, cationic polymer, significantly improves mucociliary transport in a rat model of CF by normalizing the charge defects of CF mucin. Here, we report efficacy in the CFTR-sufficient, ENaC hyperactive, Scnn1b-Tg mouse model that develops airway muco-obstruction due to sodium hyperabsorption and airway dehydration. METHODS Scnn1b-Tg mice were treated with either 250 µg/mL SNSP113 or vehicle control (1.38% glycerol in PBS) via nebulization once daily for 7 days and then euthanized for analysis. Micro-Optical Coherence Tomography-based evaluation of excised mouse trachea was used to determine the effect on the functional microanatomy. Tissue analysis was performed by routine histopathology. RESULTS Nebulized treatment of SNSP113 significantly improved mucociliary transport in the airways of Scnn1b-Tg mice, without altering the airway surface or periciliary liquid layer. In addition, SNSP113 significantly reversed epithelial hypertrophy and goblet cell metaplasia. Finally, SNSP113 significantly ameliorated eosinophilic crystalline pneumonia and lung consolidation in addition to inflammatory macrophage influx in this model. CONCLUSION Overall, this study extends the efficacy of SNSP113 as a potential therapeutic to alleviate mucus stasis in muco-obstructive diseases in CF and potentially in related conditions.
Collapse
Affiliation(s)
- Elex S Harris
- Gregory Fleming James Cystic Fibrosis Research Center, Univ. of Alabama at Birmingham, Birmingham, AL, USA
| | - Lea Novak
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Courtney M Fernandez-Petty
- Gregory Fleming James Cystic Fibrosis Research Center, Univ. of Alabama at Birmingham, Birmingham, AL, USA
| | - Natalie R Lindgren
- Gregory Fleming James Cystic Fibrosis Research Center, Univ. of Alabama at Birmingham, Birmingham, AL, USA
| | | | - Susan E Birket
- Gregory Fleming James Cystic Fibrosis Research Center, Univ. of Alabama at Birmingham, Birmingham, AL, USA; Departments of Pediatrics, and Cell Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Steven M Rowe
- Gregory Fleming James Cystic Fibrosis Research Center, Univ. of Alabama at Birmingham, Birmingham, AL, USA; Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA; Departments of Pediatrics, and Cell Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
8
|
Ghosh A, Coakley RD, Alexis NE, Tarran R. Vaping-Induced Proteolysis Causes Airway Surface Dehydration. Int J Mol Sci 2023; 24:15348. [PMID: 37895029 PMCID: PMC10607227 DOI: 10.3390/ijms242015348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/11/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
Proteases such as neutrophil elastase cleave and activate the epithelial sodium channel (ENaC), causing airway dehydration. Our current study explores the impact of increased protease levels in vapers' airways on ENaC activity and airway dehydration. Human bronchial epithelial cultures (HBECs) were exposed to bronchoalveolar lavage fluid (BALF) from non-smokers, smokers and vapers. Airway surface liquid (ASL) height was measured by confocal microscopy as a marker of hydration. ENaC cleavage was measured by Western blotting. Human peripheral blood neutrophils were treated with a menthol-flavored e-liquid (Juul), and the resulting secretions were added to HBECs. BALF from smokers and vapers significantly and equally increased ENaC activity and decreased ASL height. The ASL height decrease was attenuated by protease inhibitors. Non-smokers' BALF had no effect on ENaC or ASL height. BALF from smokers and vapers, but not non-smokers, induced ENaC cleavage. E-liquid-treated neutrophil secretions cleaved ENaC and decreased ASL height. Our study demonstrated that elevated protease levels in vapers' airways have functional significance since they can activate ENaC, resulting in airway dehydration. Lung dehydration contributes to diseases like cystic fibrosis (CF), chronic obstructive pulmonary disease (COPD) and asthma. Thus, our data predict that vaping, like smoking, will cause airway surface dehydration that likely leads to lung disease.
Collapse
Affiliation(s)
- Arunava Ghosh
- Department of Cell Biology & Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA;
| | - Raymond D. Coakley
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA;
| | - Neil E. Alexis
- Center for Environmental Medicine, Asthma and Lung Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA;
| | - Robert Tarran
- Division of Genetic, Environmental and Inhalational Disease, Department of Internal Medicine, Kansas University Medical Center, Kansas City, KS 66103, USA
| |
Collapse
|
9
|
Mikami Y, Grubb BR, Rogers TD, Dang H, Asakura T, Kota P, Gilmore RC, Okuda K, Morton LC, Sun L, Chen G, Wykoff JA, Ehre C, Vilar J, van Heusden C, Livraghi-Butrico A, Gentzsch M, Button B, Stutts MJ, Randell SH, O’Neal WK, Boucher RC. Chronic airway epithelial hypoxia exacerbates injury in muco-obstructive lung disease through mucus hyperconcentration. Sci Transl Med 2023; 15:eabo7728. [PMID: 37285404 PMCID: PMC10664029 DOI: 10.1126/scitranslmed.abo7728] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 05/17/2023] [Indexed: 06/09/2023]
Abstract
Unlike solid organs, human airway epithelia derive their oxygen from inspired air rather than the vasculature. Many pulmonary diseases are associated with intraluminal airway obstruction caused by aspirated foreign bodies, virus infection, tumors, or mucus plugs intrinsic to airway disease, including cystic fibrosis (CF). Consistent with requirements for luminal O2, airway epithelia surrounding mucus plugs in chronic obstructive pulmonary disease (COPD) lungs are hypoxic. Despite these observations, the effects of chronic hypoxia (CH) on airway epithelial host defense functions relevant to pulmonary disease have not been investigated. Molecular characterization of resected human lungs from individuals with a spectrum of muco-obstructive lung diseases (MOLDs) or COVID-19 identified molecular features of chronic hypoxia, including increased EGLN3 expression, in epithelia lining mucus-obstructed airways. In vitro experiments using cultured chronically hypoxic airway epithelia revealed conversion to a glycolytic metabolic state with maintenance of cellular architecture. Chronically hypoxic airway epithelia unexpectedly exhibited increased MUC5B mucin production and increased transepithelial Na+ and fluid absorption mediated by HIF1α/HIF2α-dependent up-regulation of β and γENaC (epithelial Na+ channel) subunit expression. The combination of increased Na+ absorption and MUC5B production generated hyperconcentrated mucus predicted to perpetuate obstruction. Single-cell and bulk RNA sequencing analyses of chronically hypoxic cultured airway epithelia revealed transcriptional changes involved in airway wall remodeling, destruction, and angiogenesis. These results were confirmed by RNA-in situ hybridization studies of lungs from individuals with MOLD. Our data suggest that chronic airway epithelial hypoxia may be central to the pathogenesis of persistent mucus accumulation in MOLDs and associated airway wall damage.
Collapse
Affiliation(s)
- Yu Mikami
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Barbara R. Grubb
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Troy D. Rogers
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Hong Dang
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Takanori Asakura
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Pradeep Kota
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Rodney C. Gilmore
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Kenichi Okuda
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Lisa C. Morton
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Ling Sun
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Gang Chen
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Jason A. Wykoff
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Camille Ehre
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Juan Vilar
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Catharina van Heusden
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | | | - Martina Gentzsch
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Brian Button
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - M. Jackson Stutts
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Scott H. Randell
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Wanda K. O’Neal
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Richard C. Boucher
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| |
Collapse
|
10
|
Addante A, Raymond W, Gitlin I, Charbit A, Orain X, Scheffler AW, Kuppe A, Duerr J, Daniltchenko M, Drescher M, Graeber SY, Healy AM, Oscarson S, Fahy JV, Mall MA. A novel thiol-saccharide mucolytic for the treatment of muco-obstructive lung diseases. Eur Respir J 2023; 61:2202022. [PMID: 37080569 PMCID: PMC10209473 DOI: 10.1183/13993003.02022-2022] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 03/13/2023] [Indexed: 04/22/2023]
Abstract
BACKGROUND Mucin disulfide cross-links mediate pathologic mucus formation in muco-obstructive lung diseases. MUC-031, a novel thiol-modified carbohydrate compound, cleaves disulfides to cause mucolysis. The aim of this study was to determine the mucolytic and therapeutic effects of MUC-031 in sputum from patients with cystic fibrosis (CF) and mice with muco-obstructive lung disease (βENaC-Tg mice). METHODS We compared the mucolytic efficacy of MUC-031 and existing mucolytics (N-acetylcysteine (NAC) and recombinant human deoxyribonuclease I (rhDNase)) using rheology to measure the elastic modulus (G') of CF sputum, and we tested effects of MUC-031 on airway mucus plugging, inflammation and survival in βENaC-Tg mice to determine its mucolytic efficacy in vivo. RESULTS In CF sputum, compared to the effects of rhDNase and NAC, MUC-031 caused a larger decrease in sputum G', was faster in decreasing sputum G' by 50% and caused mucolysis of a larger proportion of sputum samples within 15 min of drug addition. Compared to vehicle control, three treatments with MUC-031 in 1 day in adult βENaC-Tg mice decreased airway mucus content (16.8±3.2 versus 7.5±1.2 nL·mm-2, p<0.01) and bronchoalveolar lavage cells (73 833±6930 versus 47 679±7736 cells·mL-1, p<0.05). Twice-daily treatment with MUC-031 for 2 weeks also caused decreases in these outcomes in adult and neonatal βENaC-Tg mice and reduced mortality from 37% in vehicle-treated βENaC-Tg neonates to 21% in those treated with MUC-031 (p<0.05). CONCLUSION MUC-031 is a potent and fast-acting mucolytic that decreases airway mucus plugging, lessens airway inflammation and improves survival in βENaC-Tg mice. These data provide rationale for human trials of MUC-031 in muco-obstructive lung diseases.
Collapse
Affiliation(s)
- Annalisa Addante
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Centre for Lung Research (DZL), associated partner, Berlin, Germany
| | - Wilfred Raymond
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, USA
| | - Irina Gitlin
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, USA
| | - Annabelle Charbit
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, USA
| | - Xavier Orain
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, USA
| | - Aaron Wolfe Scheffler
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA, USA
| | - Aditi Kuppe
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Centre for Lung Research (DZL), associated partner, Berlin, Germany
| | - Julia Duerr
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Centre for Lung Research (DZL), associated partner, Berlin, Germany
| | - Maria Daniltchenko
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Marika Drescher
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Simon Y Graeber
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Centre for Lung Research (DZL), associated partner, Berlin, Germany
- Berlin Institute of Health (BIH) at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Anne-Marie Healy
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, Dublin, Ireland
| | - Stefan Oscarson
- Centre for Synthesis and Chemical Biology, University College Dublin, Belfield, Ireland
| | - John V Fahy
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, USA
- Division of Pulmonary and Critical Care Medicine, University of California San Francisco, San Francisco, CA, USA
- J.V. Fahy and M.A. Mall contributed equally as senior authors
| | - Marcus A Mall
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Centre for Lung Research (DZL), associated partner, Berlin, Germany
- Berlin Institute of Health (BIH) at Charité - Universitätsmedizin Berlin, Berlin, Germany
- J.V. Fahy and M.A. Mall contributed equally as senior authors
| |
Collapse
|
11
|
Vega Pittao ML, Schifino G, Pisani L, Nava S. Home High-Flow Therapy in Patients with Chronic Respiratory Diseases: Physiological Rationale and Clinical Results. J Clin Med 2023; 12:jcm12072663. [PMID: 37048745 PMCID: PMC10094854 DOI: 10.3390/jcm12072663] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/30/2023] [Accepted: 03/31/2023] [Indexed: 04/05/2023] Open
Abstract
High-flow therapy (HFT) is the administration of gas flows above 15 L/min. It is a non-invasive respiratory support that delivers heated (up to 38 °C), humidified (100% Relative Humidity, RH; 44 mg H2O/L Absolute Humidity, AH), oxygen-enriched air when necessary, through a nasal cannula or a tracheostomy interface. Over the last few years, the use of HFT in critically ill hypoxemic adults has increased. Although the clinical benefit of home high-flow therapy (HHFT) remains unclear, some research findings would support the use of HHFT in chronic respiratory diseases. The aim of this review is to describe the HFT physiological principles and summarize the published clinical findings. Finally, we will discuss the differences between hospital and home implementation, as well as the various devices available for HHFT application.
Collapse
Affiliation(s)
- Maria Laura Vega Pittao
- Alma Mater Studiorum, Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40138 Bologna, Italy
- Respiratory and Critical Care Unit, IRCCS Azienda Ospedaliero Universitaria di Bologna, 40138 Bologna, Italy
| | - Gioacchino Schifino
- Alma Mater Studiorum, Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40138 Bologna, Italy
- Respiratory and Critical Care Unit, IRCCS Azienda Ospedaliero Universitaria di Bologna, 40138 Bologna, Italy
| | - Lara Pisani
- Alma Mater Studiorum, Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40138 Bologna, Italy
- Respiratory and Critical Care Unit, IRCCS Azienda Ospedaliero Universitaria di Bologna, 40138 Bologna, Italy
| | - Stefano Nava
- Alma Mater Studiorum, Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40138 Bologna, Italy
- Respiratory and Critical Care Unit, IRCCS Azienda Ospedaliero Universitaria di Bologna, 40138 Bologna, Italy
| |
Collapse
|
12
|
Wong SL, Kardia E, Vijayan A, Umashankar B, Pandzic E, Zhong L, Jaffe A, Waters SA. Molecular and Functional Characteristics of Airway Epithelium under Chronic Hypoxia. Int J Mol Sci 2023; 24:ijms24076475. [PMID: 37047450 PMCID: PMC10095024 DOI: 10.3390/ijms24076475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/20/2023] [Accepted: 03/24/2023] [Indexed: 04/14/2023] Open
Abstract
Localized and chronic hypoxia of airway mucosa is a common feature of progressive respiratory diseases, including cystic fibrosis (CF). However, the impact of prolonged hypoxia on airway stem cell function and differentiated epithelium is not well elucidated. Acute hypoxia alters the transcription and translation of many genes, including the CF transmembrane conductance regulator (CFTR). CFTR-targeted therapies (modulators) have not been investigated in vitro under chronic hypoxic conditions found in CF airways in vivo. Nasal epithelial cells (hNECs) derived from eight CF and three non-CF participants were expanded and differentiated at the air-liquid interface (26-30 days) at ambient and 2% oxygen tension (hypoxia). Morphology, global proteomics (LC-MS/MS) and function (barrier integrity, cilia motility and ion transport) of basal stem cells and differentiated cultures were assessed. hNECs expanded at chronic hypoxia, demonstrating epithelial cobblestone morphology and a similar proliferation rate to hNECs expanded at normoxia. Hypoxia-inducible proteins and pathways in stem cells and differentiated cultures were identified. Despite the stem cells' plasticity and adaptation to chronic hypoxia, the differentiated epithelium was significantly thinner with reduced barrier integrity. Stem cell lineage commitment shifted to a more secretory epithelial phenotype. Motile cilia abundance, length, beat frequency and coordination were significantly negatively modulated. Chronic hypoxia reduces the activity of epithelial sodium and CFTR ion channels. CFTR modulator drug response was diminished. Our findings shed light on the molecular pathophysiology of hypoxia and its implications in CF. Targeting hypoxia can be a strategy to augment mucosal function and may provide a means to enhance the efficacy of CFTR modulators.
Collapse
Affiliation(s)
- Sharon L Wong
- School of Biomedical Sciences, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW 2052, Australia
- Molecular and Integrative Cystic Fibrosis Research Centre (miCF_RC), University of New South Wales, Sydney, NSW 2052, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW 2052, Australia
| | - Egi Kardia
- School of Biomedical Sciences, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW 2052, Australia
- Molecular and Integrative Cystic Fibrosis Research Centre (miCF_RC), University of New South Wales, Sydney, NSW 2052, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW 2052, Australia
| | - Abhishek Vijayan
- School of Biomedical Sciences, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW 2052, Australia
- Molecular and Integrative Cystic Fibrosis Research Centre (miCF_RC), University of New South Wales, Sydney, NSW 2052, Australia
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Bala Umashankar
- School of Biomedical Sciences, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW 2052, Australia
- Molecular and Integrative Cystic Fibrosis Research Centre (miCF_RC), University of New South Wales, Sydney, NSW 2052, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW 2052, Australia
| | - Elvis Pandzic
- Katharina Gaus Light Microscopy Facility, Mark Wainwright Analytical Centre, University of New South Wales, Sydney, NSW 2052, Australia
| | - Ling Zhong
- Bioanalytical Mass Spectrometry Facility, University of New South Wales, Sydney, NSW 2052, Australia
| | - Adam Jaffe
- Molecular and Integrative Cystic Fibrosis Research Centre (miCF_RC), University of New South Wales, Sydney, NSW 2052, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW 2052, Australia
- Department of Respiratory Medicine, Sydney Children's Hospital, Sydney, NSW 2052, Australia
| | - Shafagh A Waters
- School of Biomedical Sciences, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW 2052, Australia
- Molecular and Integrative Cystic Fibrosis Research Centre (miCF_RC), University of New South Wales, Sydney, NSW 2052, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW 2052, Australia
- Department of Respiratory Medicine, Sydney Children's Hospital, Sydney, NSW 2052, Australia
| |
Collapse
|
13
|
Aegerter H, Lambrecht BN. The Pathology of Asthma: What Is Obstructing Our View? ANNUAL REVIEW OF PATHOLOGY 2023; 18:387-409. [PMID: 36270294 DOI: 10.1146/annurev-pathol-042220-015902] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Despite the advent of sophisticated and efficient new biologics to treat inflammation in asthma, the disease persists. Even following treatment, many patients still experience the well-known symptoms of wheezing, shortness of breath, and coughing. What are we missing? Here we examine the evidence that mucus plugs contribute to a substantial portion of disease, not only by physically obstructing the airways but also by perpetuating inflammation. In this way, mucus plugs may act as an immunogenic stimulus even in the absence of allergen or with the use of current therapeutics. The alterations of several parameters of mucus biology, driven by type 2 inflammation, result in sticky and tenacious sputum, which represents a potent threat, first due to the difficulties in expectoration and second by acting as a platform for viral, bacterial, or fungal colonization that allows exacerbations. Therefore, in this way, mucus plugs are an overlooked but critical feature of asthmatic airway disease.
Collapse
Affiliation(s)
- Helena Aegerter
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium; .,Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Bart N Lambrecht
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium; .,Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium.,Department of Pulmonary Medicine, Erasmus MC, Rotterdam, The Netherlands
| |
Collapse
|
14
|
Mao Y, Patial S, Saini Y. Airway epithelial cell-specific deletion of HMGB1 exaggerates inflammatory responses in mice with muco-obstructive airway disease. Front Immunol 2023; 13:944772. [PMID: 36741411 PMCID: PMC9892197 DOI: 10.3389/fimmu.2022.944772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 11/28/2022] [Indexed: 01/21/2023] Open
Abstract
High mobility group box 1 (HMGB1), a ubiquitous chromatin-binding protein required for gene transcription regulation, is released into the extracellular microenvironment by various structural and immune cells, where it is known to act as an alarmin. Here, we investigated the role of airway epithelium-specific HMGB1 in the pathogenesis of muco-obstructive lung disease in Scnn1b-transgenic (Tg+) mouse, a model of human cystic fibrosis (CF)-like lung disease. We hypothesized that airway epithelium-derived HMGB1 modulates muco-inflammatory lung responses in the Tg+ mice. The airway epithelium-specific HMGB1-deficient mice were generated and the effects of HMGB1 deletion on immune cell recruitment, airway epithelial cell composition, mucous cell metaplasia, and bacterial clearance were determined. The airway epithelium-specific deletion of HMGB1 in wild-type (WT) mice did not result in any morphological alterations in the airway epithelium. The deficiency of HMGB1 in airway epithelial cells in the Tg+ mice, however, resulted in significantly increased infiltration of macrophages, neutrophils, and eosinophils which was associated with significantly higher levels of inflammatory mediators, including G-CSF, KC, MIP-2, MCP-1, MIP-1α, MIP-1β, IP-10, and TNF-α in the airspaces. Furthermore, as compared to the HMGB1-sufficient Tg+ mice, the airway epithelial cell-specific HMGB1-deficient Tg+ mice exhibited poor resolution of spontaneous bacterial infection. The HMGB1 deficiency in the airway epithelial cells of Tg+ mice did not alter airway epithelial cell-specific responses including epithelial cell proliferation, mucous cell metaplasia, and mucus obstruction. Collectively, our findings provide novel insights into the role of airway epithelial cell-derived HMGB1 in the pathogenesis of CF-like lung disease in Tg+ mice.
Collapse
|
15
|
Wagner C, Balázs A, Schatterny J, Zhou-Suckow Z, Duerr J, Schultz C, Mall MA. Genetic Deletion of Mmp9 Does Not Reduce Airway Inflammation and Structural Lung Damage in Mice with Cystic Fibrosis-like Lung Disease. Int J Mol Sci 2022; 23:13405. [PMID: 36362203 PMCID: PMC9657231 DOI: 10.3390/ijms232113405] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/25/2022] [Accepted: 10/28/2022] [Indexed: 09/10/2023] Open
Abstract
Elevated levels of matrix metalloprotease 9 (MMP-9) and neutrophil elastase (NE) are associated with bronchiectasis and lung function decline in patients with cystic fibrosis (CF). MMP-9 is a potent extracellular matrix-degrading enzyme which is activated by NE and has been implicated in structural lung damage in CF. However, the role of MMP-9 in the in vivo pathogenesis of CF lung disease is not well understood. Therefore, we used β-epithelial Na+ channel-overexpressing transgenic (βENaC-Tg) mice as a model of CF-like lung disease and determined the effect of genetic deletion of Mmp9 (Mmp9-/-) on key aspects of the pulmonary phenotype. We found that MMP-9 levels were elevated in the lungs of βENaC-Tg mice compared with wild-type littermates. Deletion of Mmp9 had no effect on spontaneous mortality, inflammatory markers in bronchoalveolar lavage, goblet cell metaplasia, mucus hypersecretion and emphysema-like structural lung damage, while it partially reduced mucus obstruction in βENaC-Tg mice. Further, lack of Mmp9 had no effect on increased inspiratory capacity and increased lung compliance in βENaC-Tg mice, whereas both lung function parameters were improved with genetic deletion of NE. We conclude that MMP-9 does not play a major role in the in vivo pathogenesis of CF-like lung disease in mice.
Collapse
Affiliation(s)
- Claudius Wagner
- Department of Translational Pulmonology, University of Heidelberg, 69117 Heidelberg, Germany
- Translational Lung Research Center (TLRC), Member of the German Center for Lung Research (DZL), Im Neuenheimer Feld 156, 69120 Heidelberg, Germany
| | - Anita Balázs
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité—Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
- Berlin Institute of Health, Charité—Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Jolanthe Schatterny
- Department of Translational Pulmonology, University of Heidelberg, 69117 Heidelberg, Germany
- Translational Lung Research Center (TLRC), Member of the German Center for Lung Research (DZL), Im Neuenheimer Feld 156, 69120 Heidelberg, Germany
| | - Zhe Zhou-Suckow
- Department of Translational Pulmonology, University of Heidelberg, 69117 Heidelberg, Germany
- Translational Lung Research Center (TLRC), Member of the German Center for Lung Research (DZL), Im Neuenheimer Feld 156, 69120 Heidelberg, Germany
| | - Julia Duerr
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité—Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
- Berlin Institute of Health, Charité—Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Carsten Schultz
- Translational Lung Research Center (TLRC), Member of the German Center for Lung Research (DZL), Im Neuenheimer Feld 156, 69120 Heidelberg, Germany
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR 97239, USA
| | - Marcus A. Mall
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité—Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
- Berlin Institute of Health, Charité—Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
- German Center for Lung Research (DZL), Associated Partner Site, Augustenburger Platz 1, 13353 Berlin, Germany
| |
Collapse
|
16
|
Hill DB, Button B, Rubinstein M, Boucher RC. Physiology and pathophysiology of human airway mucus. Physiol Rev 2022; 102:1757-1836. [PMID: 35001665 PMCID: PMC9665957 DOI: 10.1152/physrev.00004.2021] [Citation(s) in RCA: 90] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 12/13/2021] [Accepted: 12/19/2021] [Indexed: 01/27/2023] Open
Abstract
The mucus clearance system is the dominant mechanical host defense system of the human lung. Mucus is cleared from the lung by cilia and airflow, including both two-phase gas-liquid pumping and cough-dependent mechanisms, and mucus transport rates are heavily dependent on mucus concentration. Importantly, mucus transport rates are accurately predicted by the gel-on-brush model of the mucociliary apparatus from the relative osmotic moduli of the mucus and periciliary-glycocalyceal (PCL-G) layers. The fluid available to hydrate mucus is generated by transepithelial fluid transport. Feedback interactions between mucus concentrations and cilia beating, via purinergic signaling, coordinate Na+ absorptive vs Cl- secretory rates to maintain mucus hydration in health. In disease, mucus becomes hyperconcentrated (dehydrated). Multiple mechanisms derange the ion transport pathways that normally hydrate mucus in muco-obstructive lung diseases, e.g., cystic fibrosis (CF), chronic obstructive pulmonary disease (COPD), non-CF bronchiectasis (NCFB), and primary ciliary dyskinesia (PCD). A key step in muco-obstructive disease pathogenesis is the osmotic compression of the mucus layer onto the airway surface with the formation of adherent mucus plaques and plugs, particularly in distal airways. Mucus plaques create locally hypoxic conditions and produce airflow obstruction, inflammation, infection, and, ultimately, airway wall damage. Therapies to clear adherent mucus with hydrating and mucolytic agents are rational, and strategies to develop these agents are reviewed.
Collapse
Affiliation(s)
- David B Hill
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Joint Department of Biomedical Engineering, The University of North Carolina and North Carolina State University, Chapel Hill, North Carolina
| | - Brian Button
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Michael Rubinstein
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Department of Mechanical Engineering and Materials Science, Biomedical Engineering, Physics, and Chemistry, Duke University, Durham, North Carolina
| | - Richard C Boucher
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
17
|
Kim N, Kwak G, Rodriguez J, Livraghi-Butrico A, Zuo X, Simon V, Han E, Shenoy SK, Pandey N, Mazur M, Birket SE, Kim A, Rowe SM, Boucher R, Hanes J, Suk JS. Inhaled gene therapy of preclinical muco-obstructive lung diseases by nanoparticles capable of breaching the airway mucus barrier. Thorax 2022; 77:812-820. [PMID: 34697091 PMCID: PMC9129924 DOI: 10.1136/thoraxjnl-2020-215185] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 08/27/2021] [Indexed: 02/03/2023]
Abstract
INTRODUCTION Inhaled gene therapy of muco-obstructive lung diseases requires a strategy to achieve therapeutically relevant gene transfer to airway epithelium covered by particularly dehydrated and condensed mucus gel layer. Here, we introduce a synthetic DNA-loaded mucus-penetrating particle (DNA-MPP) capable of providing safe, widespread and robust transgene expression in in vivo and in vitro models of muco-obstructive lung diseases. METHODS We investigated the ability of DNA-MPP to mediate reporter and/or therapeutic transgene expression in lung airways of a transgenic mouse model of muco-obstructive lung diseases (ie, Scnn1b-Tg) and in air-liquid interface cultures of primary human bronchial epithelial cells harvested from an individual with cystic fibrosis. A plasmid designed to silence epithelial sodium channel (ENaC) hyperactivity, which causes airway surface dehydration and mucus stasis, was intratracheally administered via DNA-MPP to evaluate therapeutic effects in vivo with or without pretreatment with hypertonic saline, a clinically used mucus-rehydrating agent. RESULTS DNA-MPP exhibited marked greater reporter transgene expression compared with a mucus-impermeable formulation in in vivo and in vitro models of muco-obstructive lung diseases. DNA-MPP carrying ENaC-silencing plasmids provided efficient downregulation of ENaC and reduction of mucus burden in the lungs of Scnn1b-Tg mice, and synergistic impacts on both gene transfer efficacy and therapeutic effects were achieved when DNA-MPP was adjuvanted with hypertonic saline. DISCUSSION DNA-MPP constitutes one of the rare gene delivery systems providing therapeutically meaningful gene transfer efficacy in highly relevant in vivo and in vitro models of muco-obstructive lung diseases due to its unique ability to efficiently penetrate airway mucus.
Collapse
Affiliation(s)
- Namho Kim
- Center for Nanomedicine, Wilmer Eye Institute, Johns Hopkins Medicine, Baltimore, Maryland, USA
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Whiting School of Engineering, Baltimore, Maryland, USA
| | - Gijung Kwak
- Center for Nanomedicine, Wilmer Eye Institute, Johns Hopkins Medicine, Baltimore, Maryland, USA
- Department of Ophthalmology, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Jason Rodriguez
- Center for Nanomedicine, Wilmer Eye Institute, Johns Hopkins Medicine, Baltimore, Maryland, USA
- Department of Ophthalmology, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Alessandra Livraghi-Butrico
- Marisco Lung Institute and Cystic Fibrosis Research Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Xinyuan Zuo
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Whiting School of Engineering, Baltimore, Maryland, USA
| | - Valentina Simon
- Center for Nanomedicine, Wilmer Eye Institute, Johns Hopkins Medicine, Baltimore, Maryland, USA
| | - Eric Han
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Siddharth Kaup Shenoy
- Center for Nanomedicine, Wilmer Eye Institute, Johns Hopkins Medicine, Baltimore, Maryland, USA
- Department of Ophthalmology, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Nikhil Pandey
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Marina Mazur
- Gregory Fleming James Cystic Fibrosis Research Center, The University of Alabama School of Medicine, Birmingham, Alabama, USA
| | - Susan E Birket
- Gregory Fleming James Cystic Fibrosis Research Center, The University of Alabama School of Medicine, Birmingham, Alabama, USA
- Department of Medicine, The University of Alabama, Birmingham, Alabama, USA
| | - Anthony Kim
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Steven M Rowe
- Gregory Fleming James Cystic Fibrosis Research Center, The University of Alabama School of Medicine, Birmingham, Alabama, USA
- Department of Medicine, The University of Alabama, Birmingham, Alabama, USA
| | - Richard Boucher
- Marisco Lung Institute and Cystic Fibrosis Research Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Justin Hanes
- Center for Nanomedicine, Wilmer Eye Institute, Johns Hopkins Medicine, Baltimore, Maryland, USA
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Whiting School of Engineering, Baltimore, Maryland, USA
- Department of Ophthalmology, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
- Department of Biomedical Engineering, Environmental and Health Sciences, Oncology, Neurosurgery, and Pharmacology and Molecular Sciences, Johns Hopkins University, Baltimore, Maryland, USA
| | - Jung Soo Suk
- Center for Nanomedicine, Wilmer Eye Institute, Johns Hopkins Medicine, Baltimore, Maryland, USA
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Whiting School of Engineering, Baltimore, Maryland, USA
- Department of Ophthalmology, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
18
|
Yatera K, Mukae H. Nitric oxide/nitric oxide synthase in the pathogenesis of pulmonary emphysema. Respir Investig 2022; 60:443-445. [PMID: 35589513 DOI: 10.1016/j.resinv.2022.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 04/18/2022] [Indexed: 06/15/2023]
Affiliation(s)
- Kazuhiro Yatera
- Department of Respiratory Medicine, University of Occupational and Environmental Health, Japan, 1-1, Iseigaoka, Yahata-nishiku, Kitakyushu city, Fukuoka 807-8555, Japan.
| | - Hiroshi Mukae
- Nagasaki University School of Medicine Graduate School of Biomedical Sciences, Department of Respiratory Medicine, 1-7-1, Sakamoto, Nagasaki, 852-8501, Japan
| |
Collapse
|
19
|
Lodge KM, Vassallo A, Liu B, Long M, Tong Z, Newby PR, Agha-Jaffar D, Paschalaki K, Green CE, Belchamber KBR, Ridger VC, Stockley RA, Sapey E, Summers C, Cowburn AS, Chilvers ER, Li W, Condliffe AM. Hypoxia Increases the Potential for Neutrophil-mediated Endothelial Damage in Chronic Obstructive Pulmonary Disease. Am J Respir Crit Care Med 2022; 205:903-916. [PMID: 35044899 PMCID: PMC9838628 DOI: 10.1164/rccm.202006-2467oc] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Rationale: Patients with chronic obstructive pulmonary disease (COPD) experience excess cardiovascular morbidity and mortality, and exacerbations further increase the risk of such events. COPD is associated with persistent blood and airway neutrophilia and systemic and tissue hypoxia. Hypoxia augments neutrophil elastase release, enhancing capacity for tissue injury. Objective: To determine whether hypoxia-driven neutrophil protein secretion contributes to endothelial damage in COPD. Methods: The healthy human neutrophil secretome generated under normoxic or hypoxic conditions was characterized by quantitative mass spectrometry, and the capacity for neutrophil-mediated endothelial damage was assessed. Histotoxic protein concentrations were measured in normoxic versus hypoxic neutrophil supernatants and plasma from patients experiencing COPD exacerbation and healthy control subjects. Measurements and Main Results: Hypoxia promoted PI3Kγ-dependent neutrophil elastase secretion, with greater release seen in neutrophils from patients with COPD. Supernatants from neutrophils incubated under hypoxia caused pulmonary endothelial cell damage, and identical supernatants from COPD neutrophils increased neutrophil adherence to endothelial cells. Proteomics revealed differential neutrophil protein secretion under hypoxia and normoxia, and hypoxia augmented secretion of a subset of histotoxic granule and cytosolic proteins, with significantly greater release seen in COPD neutrophils. The plasma of patients with COPD had higher content of hypoxia-upregulated neutrophil-derived proteins and protease activity, and vascular injury markers. Conclusions: Hypoxia drives a destructive "hypersecretory" neutrophil phenotype conferring enhanced capacity for endothelial injury, with a corresponding signature of neutrophil degranulation and vascular injury identified in plasma of patients with COPD. Thus, hypoxic enhancement of neutrophil degranulation may contribute to increased cardiovascular risk in COPD. These insights may identify new therapeutic opportunities for endothelial damage in COPD.
Collapse
Affiliation(s)
- Katharine M Lodge
- Department of Medicine, School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom.,National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Arlette Vassallo
- Department of Medicine, School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Bin Liu
- Department of Medicine, School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Merete Long
- Department of Infection, Immunity, and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom; and
| | - Zhen Tong
- Department of Medicine, School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Paul R Newby
- Institute of Inflammation and Ageing, University of Birmingham and
| | - Danya Agha-Jaffar
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Koralia Paschalaki
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Clara E Green
- Institute of Inflammation and Ageing, University of Birmingham and
| | | | - Victoria C Ridger
- Department of Infection, Immunity, and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom; and
| | - Robert A Stockley
- University Hospitals Birmingham NHS Foundation Trust, Queen Elizabeth Hospital Birmingham, Birmingham, United Kingdom
| | - Elizabeth Sapey
- Institute of Inflammation and Ageing, University of Birmingham and.,University Hospitals Birmingham NHS Foundation Trust, Queen Elizabeth Hospital Birmingham, Birmingham, United Kingdom
| | - Charlotte Summers
- Department of Medicine, School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Andrew S Cowburn
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Edwin R Chilvers
- Department of Medicine, School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom.,National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Wei Li
- Department of Medicine, School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Alison M Condliffe
- Department of Medicine, School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom.,Department of Infection, Immunity, and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom; and
| |
Collapse
|
20
|
Kim SK, Hong SJ, Yoo DM, Min C, Choi HG. Association between asthma or chronic obstructive pulmonary disease and chronic otitis media. Sci Rep 2022; 12:4228. [PMID: 35273329 PMCID: PMC8913729 DOI: 10.1038/s41598-022-08287-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 02/11/2022] [Indexed: 11/09/2022] Open
Abstract
We hypothesized that asthma/chronic obstructive pulmonary disease (COPD) might increase the risk of chronic otitis media (COM), as asthma or COPD affects other diseases. The aim of this research was to investigate whether the incidence of COM is affected by a diagnosis of asthma or COPD in patients compared to matched controls from the national health screening cohort. A COM group (n = 11,587) and a control group that was 1:4 matched for age, sex, income, and residence area (n = 46,348) were selected. The control group included participants who never received treatment for COM from Korean National Health Insurance Service-Health Screening Cohort from 2002 to 2015. The crude and adjusted odds ratios (ORs) of previous asthma/COPD before the index date for COM were analyzed using conditional logistic regression. The analyses were stratified by age, sex, income, and region of residence. The period prevalence of asthma (17.5% vs. 14.3%, p < 0.001) and COPD (6.6% vs. 5.0%, p < 0.001) were significantly higher in the COM group than in the control group. In addition, the odds of asthma and COPD were significantly higher in the COM group than in the control group. Both asthma (adjusted OR 1.23, 95% confidence interval [CI] 1.16-1.31, p < 0.001) and COPD (adjusted OR 1.23, 95% CI 1.13-1.35, p < 0.001) increased the ORs for COM. This positive association between asthma/COPD and COM indicates that asthma/COPD might increase the incidence of COM.
Collapse
Affiliation(s)
- Sung Kyun Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, Hallym University College of Medicine, Dongtan, Korea.,Laboratory of Brain & Cognitive Sciences for Convergence Medicine, Hallym University College of Medicine, Anyang, Korea
| | - Seok Jin Hong
- Department of Otorhinolaryngology-Head and Neck Surgery, Hallym University College of Medicine, Dongtan, Korea
| | - Dae Myoung Yoo
- Hallym Data Science Laboratory, Hallym University College of Medicine, Anyang, Korea
| | - Chanyang Min
- Hallym Data Science Laboratory, Hallym University College of Medicine, Anyang, Korea.,Graduate School of Public Health, Seoul National University, Seoul, Korea
| | - Hyo Geun Choi
- Hallym Data Science Laboratory, Hallym University College of Medicine, Anyang, Korea. .,Department of Otorhinolaryngology-Head and Neck Surgery, Hallym University College of Medicine, Hallym University Sacred Heart Hospital, 22, Gwanpyeong-ro 170, Anyang, Gyeonggi, 14068, Republic of Korea.
| |
Collapse
|
21
|
Kiefer A, Plattner E, Ruppel R, Weiss C, Zhou-Suckow Z, Mall M, Renner M, Müller H. DMBT1 is upregulated in cystic fibrosis, affects ciliary motility, and is reduced by acetylcysteine. Mol Cell Pediatr 2022; 9:4. [PMID: 35249163 PMCID: PMC8898207 DOI: 10.1186/s40348-022-00136-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 01/26/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Cystic fibrosis (CF) is the most common genetic disorder in the Caucasian population. Despite remarkable improvements in morbidity and mortality during the last decades, the disease still limits survival and reduces quality of life of affected patients. Moreover, CF still represents substantial economic burden for healthcare systems. Inflammation and infection already start in early life and play important roles in pulmonary impairment. The aim of this study is to analyze the potential role of DMBT1, a protein with functions in inflammation, angiogenesis, and epithelial differentiation, in CF. RESULTS Immunohistochemically DMBT1 protein expression was upregulated in lung tissues of CF patients compared to healthy controls. Additionally, pulmonary expression of Dmbt1 was approximately 6-fold increased in an established transgenic mouse model of CF-like lung disease (ENaC tg) compared to wild-type mice as detected by qRT-PCR. Since acetylcysteine (ACC) has been shown to reduce inflammatory markers in the airways, its potential influence on DMBT1 expression was analyzed. A549 cells stably transfected with an expression plasmid encoding the largest (8kb) DMBT1 variant (DMBT1+ cells) or an empty vector control (DMBT1- cells) and incubated with ACC both showed significantly reduced DMBT1 concentrations in the culture medium (p = 0.0001). To further elucidate the function of DMBT1 in pulmonary airways, respiratory epithelial cells were examined by phase contrast microscopy. Addition of human recombinant DMBT1 resulted in altered cilia motility and irregular beat waves (p < 0.0001) suggesting a potential effect of DMBT1 on airway clearance. CONCLUSIONS DMBT1 is part of inflammatory processes in CF and may be used as a potential biomarker for CF lung disease and a potential tool to monitor CF progression. Furthermore, DMBT1 has a negative effect on ciliary motility thereby possibly compromising airway clearance. Application of ACC, leading to reduced DMBT1 concentrations, could be a potential therapeutic option for CF patients.
Collapse
Affiliation(s)
- Alexander Kiefer
- Department of Pediatrics, University Hospital Erlangen, University of Erlangen-Nürnberg, Loschgestr. 15, 91054, Erlangen, Germany.,Department of Pediatric Pneumology and Allergology, St. Hedwig's Hospital of the Order of St. John, University Children's Hospital Regensburg (KUNO), Steinmetzstr. 1-3, 93049, Regensburg, Germany
| | - Erika Plattner
- Department of Pediatrics, University Hospital Erlangen, University of Erlangen-Nürnberg, Loschgestr. 15, 91054, Erlangen, Germany
| | - Renate Ruppel
- Department of Pediatrics, University Hospital Erlangen, University of Erlangen-Nürnberg, Loschgestr. 15, 91054, Erlangen, Germany
| | - Christel Weiss
- Department of Medical Statistics and Biomathematics, University Hospital Mannheim, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Zhe Zhou-Suckow
- Department of Translational Pulmonology, Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), University of Heidelberg, Im Neuenheimer Feld, 69120, Heidelberg, Germany
| | - Marcus Mall
- Department of Pediatric Pulmonology, Immunology and Critical Care Medicine, Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Marcus Renner
- Institute of Pathology, University of Heidelberg, Im Neuenheimer Feld 224, 69120, Heidelberg, Germany
| | - Hanna Müller
- Department of Pediatrics, Neonatology and Pediatric Intensive Care, University of Marburg, Baldingerstraße, 35043, Marburg, Germany. .,Department of Pediatrics, Division of Neonatology and Pediatric Intensive Care, University Hospital Erlangen, University of Erlangen-Nürnberg, Loschgestr. 15, 91054, Erlangen, Germany.
| |
Collapse
|
22
|
Balázs A, Millar-Büchner P, Mülleder M, Farztdinov V, Szyrwiel L, Addante A, Kuppe A, Rubil T, Drescher M, Seidel K, Stricker S, Eils R, Lehmann I, Sawitzki B, Röhmel J, Ralser M, Mall MA. Age-Related Differences in Structure and Function of Nasal Epithelial Cultures From Healthy Children and Elderly People. Front Immunol 2022; 13:822437. [PMID: 35296085 PMCID: PMC8918506 DOI: 10.3389/fimmu.2022.822437] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 01/28/2022] [Indexed: 11/13/2022] Open
Abstract
The nasal epithelium represents the first line of defense against inhaled pathogens, allergens, and irritants and plays a key role in the pathogenesis of a spectrum of acute and chronic airways diseases. Despite age-dependent clinical phenotypes triggered by these noxious stimuli, little is known about how aging affects the structure and function of the airway epithelium that is crucial for lung homeostasis and host defense. The aim of this study was therefore to determine age-related differences in structural and functional properties of primary nasal epithelial cultures from healthy children and non-smoking elderly people. To achieve this goal, highly differentiated nasal epithelial cultures were established from nasal brushes at air–liquid interface and used to study epithelial cell type composition, mucin (MUC5AC and MUC5B) expression, and ion transport properties. Furthermore, we determined age-dependent molecular signatures using global proteomic analysis. We found lower numeric densities of ciliated cells and higher levels of MUC5AC expression in cultures from children vs. elderly people. Bioelectric studies showed no differences in basal ion transport properties, ENaC-mediated sodium absorption, or CFTR-mediated chloride transport, but detected decreased calcium-activated TMEM16A-mediated chloride secretory responses in cultures from children vs. elderly people. Proteome analysis identified distinct age-dependent molecular signatures associated with ciliation and mucin biosynthesis, as well as other pathways implicated in aging. Our data identified intrinsic, age-related differences in structure and function of the nasal epithelium and provide a basis for further studies on the role of these findings in age-dependent airways disease phenotypes observed with a spectrum of respiratory infections and other noxious stimuli.
Collapse
Affiliation(s)
- Anita Balázs
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Chariteí - Universitaätsmedizin Berlin, Berlin, Germany
- German Center for Lung Research (DZL), Associated Partner Site, Berlin, Germany
- *Correspondence: Anita Balázs, ; Marcus A. Mall,
| | - Pamela Millar-Büchner
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Chariteí - Universitaätsmedizin Berlin, Berlin, Germany
- German Center for Lung Research (DZL), Associated Partner Site, Berlin, Germany
| | - Michael Mülleder
- Charité - Universitätsmedizin Berlin, Core Facility - High-Throughput Mass Spectrometry, Berlin, Germany
| | - Vadim Farztdinov
- Charité - Universitätsmedizin Berlin, Core Facility - High-Throughput Mass Spectrometry, Berlin, Germany
| | - Lukasz Szyrwiel
- Charité - Universitätsmedizin Berlin, Core Facility - High-Throughput Mass Spectrometry, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Department of Biochemistry, Berlin, Germany
| | - Annalisa Addante
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Chariteí - Universitaätsmedizin Berlin, Berlin, Germany
- German Center for Lung Research (DZL), Associated Partner Site, Berlin, Germany
| | - Aditi Kuppe
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Chariteí - Universitaätsmedizin Berlin, Berlin, Germany
- German Center for Lung Research (DZL), Associated Partner Site, Berlin, Germany
| | - Tihomir Rubil
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Chariteí - Universitaätsmedizin Berlin, Berlin, Germany
- German Center for Lung Research (DZL), Associated Partner Site, Berlin, Germany
| | - Marika Drescher
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Chariteí - Universitaätsmedizin Berlin, Berlin, Germany
| | - Kathrin Seidel
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Chariteí - Universitaätsmedizin Berlin, Berlin, Germany
| | - Sebastian Stricker
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Chariteí - Universitaätsmedizin Berlin, Berlin, Germany
| | - Roland Eils
- German Center for Lung Research (DZL), Associated Partner Site, Berlin, Germany
- Center for Digital Health, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Irina Lehmann
- German Center for Lung Research (DZL), Associated Partner Site, Berlin, Germany
- Molecular Epidemiology Unit, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Birgit Sawitzki
- Institute of Medical Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Jobst Röhmel
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Chariteí - Universitaätsmedizin Berlin, Berlin, Germany
| | - Markus Ralser
- Charité - Universitätsmedizin Berlin, Department of Biochemistry, Berlin, Germany
- The Francis Crick Institute, Molecular Biology of Metabolism Laboratory, London, United Kingdom
| | - Marcus A. Mall
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Chariteí - Universitaätsmedizin Berlin, Berlin, Germany
- German Center for Lung Research (DZL), Associated Partner Site, Berlin, Germany
- Berlin Institute of Health (BIH) at Charité, Berlin, Germany
- *Correspondence: Anita Balázs, ; Marcus A. Mall,
| |
Collapse
|
23
|
Association between pneumonia and chronic otitis media: A nested case-control study using a national health screening cohort. Int J Infect Dis 2022; 118:54-61. [DOI: 10.1016/j.ijid.2022.02.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 01/29/2022] [Accepted: 02/16/2022] [Indexed: 11/18/2022] Open
|
24
|
Zhu L, Duerr J, Zhou-Suckow Z, Wagner WL, Weinheimer O, Salomon JJ, Leitz D, Konietzke P, Yu H, Ackermann M, Stiller W, Kauczor HU, Mall MA, Wielpütz MO. µCT to quantify muco-obstructive lung disease and effects of neutrophil elastase knockout in mice. Am J Physiol Lung Cell Mol Physiol 2022; 322:L401-L411. [PMID: 35080183 DOI: 10.1152/ajplung.00341.2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Muco-obstructive lung diseases are characterized by airway obstruction and hyperinflation, which can be quantified by imaging. Our aim was to evaluate µCT for longitudinal quantification of muco-obstructive lung disease in β-epithelial Na+ channel overexpressing (Scnn1b-TG) mice and of the effects of neutrophil elastase (NE) knockout on its progression. Lungs from wild-type (WT), NE-/-, Scnn1b-TG, and Scnn1b-TG/NE-/- mice were scanned with 9 µm resolution at 0, 5, 14 and 60 days of age, and airway and parenchymal disease was quantified. Mucus adhesion lesions (MAL) were persistently increased in Scnn1b-TG compared to WT mice from 0 days (20.25±6.50 vs. 9.60±2.07, P<0.05), and this effect was attenuated in Scnn1b-TG/NE-/- mice (5.33±3.67, P<0.001). Airway wall area percentage (WA%) was increased in Scnn1b-TG mice compared to WT from 14 days onward (59.2±6.3% vs. 49.8±9.0%, P<0.001) but was similar in Scnn1b-TG/NE-/- compared to WT at 60 days (46.4±9.2% vs. 45.4±11.5%, P=0.97). Air proportion (Air%) and mean linear intercept (Lm) were persistently increased in Scnn1b-TG compared to WT from 5 days on (53.9±4.5% vs. 30.0±5.5% and 78.82±8.44µm vs. 65.66±4.15µm, respectively, P<0.001), whereas in Scnn1b-TG/NE-/- Air% and Lm were similar to WT from birth (27.7±5.5% vs.27.2±5.9%, P =0.92 and 61.48±9.20µm vs. 61.70±6.73µm, P=0.93, respectively). Our results suggest that µCT is sensitive to detect the onset and progression of muco-obstructive lung disease and effects of genetic deletion of NE on morphology of airways and lung parenchyma in Scnn1b-TG mice, and that it may serve as a sensitive endpoint for preclinical studies of novel therapeutic interventions for muco-obstructive lung diseases.
Collapse
Affiliation(s)
- Lin Zhu
- Department of Diagnostic and Interventional Radiology, University Hospital of Heidelberg, Heidelberg, Germany.,Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany.,Department of Diagnostic and Interventional Radiology with Nuclear Medicine, Thoraxklinik at the University Hospital of Heidelberg, Heidelberg, Germany
| | - Julia Duerr
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany.,Department of Translational Pulmonology, University Hospital Heidelberg, Heidelberg, Germany.,Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité-Universitätsmedizin Berlin, Berlin, Germany.,German Center for Lung Research (DZL), associated partner Berlin, Germany
| | - Zhe Zhou-Suckow
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany.,Department of Translational Pulmonology, University Hospital Heidelberg, Heidelberg, Germany
| | - Willi L Wagner
- Department of Diagnostic and Interventional Radiology, University Hospital of Heidelberg, Heidelberg, Germany.,Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany.,Department of Diagnostic and Interventional Radiology with Nuclear Medicine, Thoraxklinik at the University Hospital of Heidelberg, Heidelberg, Germany
| | - Oliver Weinheimer
- Department of Diagnostic and Interventional Radiology, University Hospital of Heidelberg, Heidelberg, Germany.,Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany.,Department of Diagnostic and Interventional Radiology with Nuclear Medicine, Thoraxklinik at the University Hospital of Heidelberg, Heidelberg, Germany
| | - Johanna Jessica Salomon
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany.,Department of Translational Pulmonology, University Hospital Heidelberg, Heidelberg, Germany
| | - Dominik Leitz
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany.,Department of Translational Pulmonology, University Hospital Heidelberg, Heidelberg, Germany.,Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité-Universitätsmedizin Berlin, Berlin, Germany.,German Center for Lung Research (DZL), associated partner Berlin, Germany
| | - Philip Konietzke
- Department of Diagnostic and Interventional Radiology, University Hospital of Heidelberg, Heidelberg, Germany.,Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany.,Department of Diagnostic and Interventional Radiology with Nuclear Medicine, Thoraxklinik at the University Hospital of Heidelberg, Heidelberg, Germany
| | - Hong Yu
- Department of Radiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Maximilian Ackermann
- Institute of Functional and Clinical Anatomy, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany.,Institute of Pathology and Department of Molecular Pathology, Helios University Clinic Wuppertal, University of Witten-Herdecke, Wuppertal, Germany
| | - Wolfram Stiller
- Department of Diagnostic and Interventional Radiology, University Hospital of Heidelberg, Heidelberg, Germany.,Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany
| | - Hans-Ulrich Kauczor
- Department of Diagnostic and Interventional Radiology, University Hospital of Heidelberg, Heidelberg, Germany.,Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany.,Department of Diagnostic and Interventional Radiology with Nuclear Medicine, Thoraxklinik at the University Hospital of Heidelberg, Heidelberg, Germany
| | - Marcus A Mall
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany.,Department of Translational Pulmonology, University Hospital Heidelberg, Heidelberg, Germany.,Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité-Universitätsmedizin Berlin, Berlin, Germany.,German Center for Lung Research (DZL), associated partner Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany
| | - Mark Oliver Wielpütz
- Department of Diagnostic and Interventional Radiology, University Hospital of Heidelberg, Heidelberg, Germany.,Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany.,Department of Diagnostic and Interventional Radiology with Nuclear Medicine, Thoraxklinik at the University Hospital of Heidelberg, Heidelberg, Germany
| |
Collapse
|
25
|
Hey J, Paulsen M, Toth R, Weichenhan D, Butz S, Schatterny J, Liebers R, Lutsik P, Plass C, Mall MA. Epigenetic reprogramming of airway macrophages promotes polarization and inflammation in muco-obstructive lung disease. Nat Commun 2021; 12:6520. [PMID: 34764283 PMCID: PMC8586227 DOI: 10.1038/s41467-021-26777-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 10/19/2021] [Indexed: 12/12/2022] Open
Abstract
Lung diseases, such as cystic fibrosis and COPD, are characterized by mucus obstruction and chronic airway inflammation, but their mechanistic link remains poorly understood. Here, we focus on the function of the mucostatic airway microenvironment on epigenetic reprogramming of airway macrophages (AM) and resulting transcriptomic and phenotypical changes. Using a mouse model of muco-obstructive lung disease (Scnn1b-transgenic), we identify epigenetically controlled, differentially regulated pathways and transcription factors involved in inflammatory responses and macrophage polarization. Functionally, AMs from Scnn1b-transgenic mice have reduced efferocytosis and phagocytosis, and excessive inflammatory responses upon lipopolysaccharide challenge, mediated through enhanced Irf1 function and expression. Ex vivo stimulation of wild-type AMs with native mucus impairs efferocytosis and phagocytosis capacities. In addition, mucus induces gene expression changes, comparable with those observed in AMs from Scnn1b-transgenic mice. Our data show that mucostasis induces epigenetic reprogramming of AMs, leading to changes favoring tissue damage and disease progression. Targeting these altered AMs may support therapeutic approaches in patients with muco-obstructive lung diseases.
Collapse
Affiliation(s)
- Joschka Hey
- grid.7497.d0000 0004 0492 0584Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), Heidelberg, Germany ,grid.7700.00000 0001 2190 4373Ruprecht Karl University of Heidelberg, Heidelberg, Germany ,grid.452624.3Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany
| | - Michelle Paulsen
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany. .,Department of Translational Pulmonology, University of Heidelberg, Heidelberg, Germany. .,Novo Nordisk Foundation Center for Stem Cell Biology, University of Copenhagen, Copenhagen, Denmark.
| | - Reka Toth
- grid.7497.d0000 0004 0492 0584Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), Heidelberg, Germany ,grid.7497.d0000 0004 0492 0584Division of Molecular Thoracic Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Dieter Weichenhan
- grid.7497.d0000 0004 0492 0584Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Simone Butz
- grid.452624.3Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany ,grid.7700.00000 0001 2190 4373Department of Translational Pulmonology, University of Heidelberg, Heidelberg, Germany
| | - Jolanthe Schatterny
- grid.452624.3Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany ,grid.7700.00000 0001 2190 4373Department of Translational Pulmonology, University of Heidelberg, Heidelberg, Germany
| | - Reinhard Liebers
- grid.7497.d0000 0004 0492 0584Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), Heidelberg, Germany ,grid.461742.2Present Address: National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Pavlo Lutsik
- grid.7497.d0000 0004 0492 0584Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Christoph Plass
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), Heidelberg, Germany. .,Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany.
| | - Marcus A. Mall
- grid.452624.3Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany ,grid.7700.00000 0001 2190 4373Department of Translational Pulmonology, University of Heidelberg, Heidelberg, Germany ,grid.7468.d0000 0001 2248 7639Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité-Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany ,grid.484013.aBerlin Institute of Health at Charité – Universitätsmedizin Berlin, Berlin, Germany ,grid.452624.3German Center for Lung Research (DZL), Associated Partner, Berlin, Germany
| |
Collapse
|
26
|
Choudhary I, Vo T, Paudel K, Yadav R, Mao Y, Patial S, Saini Y. Postnatal Ozone Exposure Disrupts Alveolar Development, Exaggerates Mucoinflammatory Responses, and Suppresses Bacterial Clearance in Developing Scnn1b-Tg + Mice Lungs. THE JOURNAL OF IMMUNOLOGY 2021; 207:1165-1179. [PMID: 34330754 DOI: 10.4049/jimmunol.2001286] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 06/03/2021] [Indexed: 11/19/2022]
Abstract
Increased levels of ambient ozone, one of the six criteria air pollutants, result in respiratory tract injury and worsening of ongoing lung diseases. However, the effect of ozone exposure on the respiratory tract undergoing active lung development and simultaneously experiencing mucoinflammatory lung diseases, such as cystic fibrosis, remains unclear. To address these questions, we exposed Scnn1b transgenic (Scnn1b-Tg+) mice, a mouse model of cystic fibrosis-like lung disease, and littermate wild-type (WT) mice to ozone from postnatal days (PND) 3-20 and examined the lung phenotypes at PND21. As compared with filtered air (FA)-exposed WT mice, the ozone-exposed WT mice exhibited marked alveolar space enlargement, in addition to significant eosinophilic infiltration, type 2 inflammation, and mucous cell metaplasia. Ozone-exposed Scnn1b-Tg+ mice also exhibited significantly increased alveolar space enlargement, which was also accompanied by exaggerated granulocytic infiltration, type 2 inflammation, and a greater degree of mucus obstruction. The alveolar space enlargement in ozone-exposed WT, FA-exposed Scnn1b-Tg+, and ozone-exposed Scnn1b-Tg+ mice was accompanied by elevated levels of MMP12 protein in macrophages and Mmp12 mRNA in the lung homogenates. Finally, although bacterial burden was largely resolved by PND21 in FA-exposed Scnn1b-Tg+ mice, ozone-exposed Scnn1b-Tg+ mice exhibited compromised bacterial clearance, which was also associated with increased levels of IL-10, an immunosuppressive cytokine, and marked mucus obstruction. Taken together, our data show that ozone exposure results in alveolar space remodeling during active phases of lung development and markedly exaggerates the mucoinflammatory outcomes of pediatric-onset lung disease, including bacterial infections, granulocytic inflammation, mucus obstruction, and alveolar space enlargement.
Collapse
Affiliation(s)
- Ishita Choudhary
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA
| | - Thao Vo
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA
| | - Kshitiz Paudel
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA
| | - Radha Yadav
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA
| | - Yun Mao
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA
| | - Sonika Patial
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA
| | - Yogesh Saini
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA
| |
Collapse
|
27
|
Han H, Peng G, Meister M, Yao H, Yang JJ, Zou MH, Liu ZR, Ji X. Electronic Cigarette Exposure Enhances Lung Inflammatory and Fibrotic Responses in COPD Mice. Front Pharmacol 2021; 12:726586. [PMID: 34393802 PMCID: PMC8355703 DOI: 10.3389/fphar.2021.726586] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 07/14/2021] [Indexed: 12/18/2022] Open
Abstract
Although a few studies show that the use of electronic nicotine delivery systems (ENDS) may ameliorate objective and subjective outcomes in COPD smokers who switched to electronic cigarettes, it is unclear whether e-cigarette exposure alters lung pathological features and inflammatory response in COPD. Here, we employed βENaC-overexpressing mice bearing COPD-like pulmonary abnormality, and exposed them to ENDS. We found that ENDS exposure aggravated airspace enlargement and mucus production in βENaC-overexpressing mice, which was associated with increased MMP12 and Muc5ac, respectively. ENDS exposure to mice significantly increased the numbers of macrophages, particularly in M2 macrophages in bronchoalveolar lavage (BAL) fluid, despite ENDS did not induce M2 macrophage polarization in a cultured murine macrophage cell line (RAW264.7). There were no changes in neutrophils in BAL fluid by ENDS exposure. Multiple cytokine productions were increased including M-CSF, IL-1rα, IL-10, and TGF-β1, in BAL fluid from mice when exposed to ENDS. The Sirius Red staining and hydroxyproline assay showed ENDS-exposed mice displayed enhanced fibrotic phenotypes compared to control mice. In conclusion, ENDS exposure enhances airspace enlargement, mucus secretion, and fibrogenesis in COPD mice. This is associated with increased MMP12, inflammatory responses, and M2 macrophage phenotype. This study provides pre-clinical data implicating that electronic cigarette exposure is not safe in COPD patients who want to replace traditional cigarettes with ENDS.
Collapse
Affiliation(s)
- Hongwei Han
- Department of Biology, Georgia State University, Atlanta, GA, United States.,Division of Pulmonary and Critical Care, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Guangda Peng
- Department of Biology, Georgia State University, Atlanta, GA, United States
| | - Maureen Meister
- Department of Nutrition, Georgia State University, Atlanta, GA, United States
| | - Hongwei Yao
- Division of Biology and Medicine, Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, United States
| | - Jenny J Yang
- Department of Chemistry, Georgia State University, Atlanta, GA, United States
| | - Ming-Hui Zou
- Center for Molecular and Translational Medicine, Georgia State University, Atlanta, GA, United States
| | - Zhi-Ren Liu
- Department of Biology, Georgia State University, Atlanta, GA, United States
| | - Xiangming Ji
- Department of Nutrition, Georgia State University, Atlanta, GA, United States
| |
Collapse
|
28
|
Leitz DHW, Duerr J, Mulugeta S, Seyhan Agircan A, Zimmermann S, Kawabe H, Dalpke AH, Beers MF, Mall MA. Congenital Deletion of Nedd4-2 in Lung Epithelial Cells Causes Progressive Alveolitis and Pulmonary Fibrosis in Neonatal Mice. Int J Mol Sci 2021; 22:6146. [PMID: 34200296 PMCID: PMC8201155 DOI: 10.3390/ijms22116146] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 05/31/2021] [Accepted: 05/31/2021] [Indexed: 12/12/2022] Open
Abstract
Recent studies found that expression of NEDD4-2 is reduced in lung tissue from patients with idiopathic pulmonary fibrosis (IPF) and that the conditional deletion of Nedd4-2 in lung epithelial cells causes IPF-like disease in adult mice via multiple defects, including dysregulation of the epithelial Na+ channel (ENaC), TGFβ signaling and the biosynthesis of surfactant protein-C proprotein (proSP-C). However, knowledge of the impact of congenital deletion of Nedd4-2 on the lung phenotype remains limited. In this study, we therefore determined the effects of congenital deletion of Nedd4-2 in the lung epithelial cells of neonatal doxycycline-induced triple transgenic Nedd4-2fl/fl/CCSP-rtTA2S-M2/LC1 mice, with a focus on clinical phenotype, survival, lung morphology, inflammation markers in BAL, mucin expression, ENaC function and proSP-C trafficking. We found that the congenital deletion of Nedd4-2 caused a rapidly progressive lung disease in neonatal mice that shares key features with interstitial lung diseases in children (chILD), including hypoxemia, growth failure, sterile pneumonitis, fibrotic lung remodeling and high mortality. The congenital deletion of Nedd4-2 in lung epithelial cells caused increased expression of Muc5b and mucus plugging of distal airways, increased ENaC activity and proSP-C mistrafficking. This model of congenital deletion of Nedd4-2 may support studies of the pathogenesis and preclinical development of therapies for chILD.
Collapse
Affiliation(s)
- Dominik H. W. Leitz
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353 Berlin, Germany; (D.H.W.L.); (M.A.M.)
- Translational Lung Research Center (TLRC), Member of the German Center for Lung Research (DZL), Department of Translational Pulmonology, University of Heidelberg, Im Neuenheimer Feld 156, 69120 Heidelberg, Germany;
- German Center for Lung Research (DZL), Associated Partner Site, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Julia Duerr
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353 Berlin, Germany; (D.H.W.L.); (M.A.M.)
- Translational Lung Research Center (TLRC), Member of the German Center for Lung Research (DZL), Department of Translational Pulmonology, University of Heidelberg, Im Neuenheimer Feld 156, 69120 Heidelberg, Germany;
- German Center for Lung Research (DZL), Associated Partner Site, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Surafel Mulugeta
- Division of Pulmonary, Allergy, and Critical Care Medicine, Perelman School of Medicine, University of Pennsylvania, 3450 Hamilton Walk Suite 216, Philadelphia, PA 19104, USA; (S.M.); (M.F.B.)
| | - Ayça Seyhan Agircan
- Translational Lung Research Center (TLRC), Member of the German Center for Lung Research (DZL), Department of Translational Pulmonology, University of Heidelberg, Im Neuenheimer Feld 156, 69120 Heidelberg, Germany;
- German Center for Lung Research (DZL), Associated Partner Site, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Stefan Zimmermann
- Department of Infectious Diseases, Medical Microbiology and Hygiene, University of Heidelberg, 69120 Heidelberg, Germany;
| | - Hiroshi Kawabe
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, Hermann-Rein-Str. 3D, 37075 Goettingen, Germany;
- Laboratory of Molecular Life Science, Department of Gerontology, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, 2-2 Minatojima-Minamimachi Chuo-ku, Kobe 650-0047, Japan
- Division of Pathogenetic Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, 1-5-6 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan
- Department of Pharmacology, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511, Japan
| | - Alexander H. Dalpke
- Institute of Medical Microbiology and Virology, Medical Faculty, University Hospital Carl Gustav Carus Dresden, Technische Universität Dresden, 01307 Dresden, Germany;
| | - Michael F. Beers
- Division of Pulmonary, Allergy, and Critical Care Medicine, Perelman School of Medicine, University of Pennsylvania, 3450 Hamilton Walk Suite 216, Philadelphia, PA 19104, USA; (S.M.); (M.F.B.)
| | - Marcus A. Mall
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353 Berlin, Germany; (D.H.W.L.); (M.A.M.)
- Translational Lung Research Center (TLRC), Member of the German Center for Lung Research (DZL), Department of Translational Pulmonology, University of Heidelberg, Im Neuenheimer Feld 156, 69120 Heidelberg, Germany;
- German Center for Lung Research (DZL), Associated Partner Site, Augustenburger Platz 1, 13353 Berlin, Germany
- Berlin Institute of Health, Charité—Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| |
Collapse
|
29
|
Hagner M, Albrecht M, Guerra M, Braubach P, Halle O, Zhou-Suckow Z, Butz S, Jonigk D, Hansen G, Schultz C, Dittrich AM, Mall MA. IL-17A from innate and adaptive lymphocytes contributes to inflammation and damage in cystic fibrosis lung disease. Eur Respir J 2021; 57:13993003.00716-2019. [PMID: 33303549 DOI: 10.1183/13993003.00716-2019] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 11/15/2020] [Indexed: 11/05/2022]
Abstract
BACKGROUND Elevated levels of interleukin (IL)-17A were detected in the airways of patients with cystic fibrosis (CF), but its cellular sources and role in the pathogenesis of CF lung disease remain poorly understood. The aim of this study was to determine the sources of IL-17A and its role in airway inflammation and lung damage in CF. METHODS We performed flow cytometry to identify IL-17A-producing cells in lungs and peripheral blood from CF patients and β-epithelial Na+ channel transgenic (Scnn1b-Tg) mice with CF-like lung disease, and determined the effects of genetic deletion of Il17a and Rag1 on the pulmonary phenotype of Scnn1b-Tg mice. RESULTS T-helper 17 cells, CD3+CD8+ T-cells, γδ T-cells, invariant natural killer T-cells and innate lymphoid cells contribute to IL-17A secretion in lung tissue, lymph nodes and peripheral blood of patients with CF. Scnn1b-Tg mice displayed increased pulmonary expression of Il17a and elevated IL-17A-producing innate and adaptive lymphocytes with a major contribution by γδ T-cells. Lack of IL-17A, but not the recombination activating protein RAG1, reduced neutrophilic airway inflammation in Scnn1b-Tg mice. Genetic deletion of Il17a or Rag1 had no effect on mucus obstruction, but reduced structural lung damage and revealed an IL-17A-dependent macrophage activation in Scnn1b-Tg mice. CONCLUSIONS We identify innate and adaptive sources of IL-17A in CF lung disease. Our data demonstrate that IL-17A contributes to airway neutrophilia, macrophage activation and structural lung damage in CF-like lung disease in mice. These results suggest IL-17A as a novel target for anti-inflammatory therapy of CF lung disease.
Collapse
Affiliation(s)
- Matthias Hagner
- Dept of Translational Pulmonology, Translational Lung Research Center (TLRC), University of Heidelberg, Heidelberg, Germany.,German Center for Lung Research (DZL), Germany.,These authors contributed equally to the study
| | - Melanie Albrecht
- German Center for Lung Research (DZL), Germany.,Clinic for Pediatric Pulmonology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany.,These authors contributed equally to the study
| | - Matteo Guerra
- Dept of Translational Pulmonology, Translational Lung Research Center (TLRC), University of Heidelberg, Heidelberg, Germany.,German Center for Lung Research (DZL), Germany.,Molecular Medicine Partnership Unit (MMPU), European Molecular Biology Laboratory, Heidelberg, Germany.,Collaboration for Joint PhD Degree between EMBL and Heidelberg University, Faculty of Biosciences, Heidelberg, Germany
| | - Peter Braubach
- German Center for Lung Research (DZL), Germany.,Institute for Pathology, Hannover Medical School, Hannover, Germany
| | - Olga Halle
- German Center for Lung Research (DZL), Germany.,Clinic for Pediatric Pulmonology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
| | - Zhe Zhou-Suckow
- Dept of Translational Pulmonology, Translational Lung Research Center (TLRC), University of Heidelberg, Heidelberg, Germany.,German Center for Lung Research (DZL), Germany
| | - Simone Butz
- Dept of Translational Pulmonology, Translational Lung Research Center (TLRC), University of Heidelberg, Heidelberg, Germany.,German Center for Lung Research (DZL), Germany
| | - Danny Jonigk
- German Center for Lung Research (DZL), Germany.,Institute for Pathology, Hannover Medical School, Hannover, Germany
| | - Gesine Hansen
- German Center for Lung Research (DZL), Germany.,Clinic for Pediatric Pulmonology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
| | - Carsten Schultz
- German Center for Lung Research (DZL), Germany.,Molecular Medicine Partnership Unit (MMPU), European Molecular Biology Laboratory, Heidelberg, Germany.,Dept of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, OR, USA
| | - Anna-Maria Dittrich
- German Center for Lung Research (DZL), Germany.,Clinic for Pediatric Pulmonology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany.,These authors contributed equally as senior authors
| | - Marcus A Mall
- Dept of Translational Pulmonology, Translational Lung Research Center (TLRC), University of Heidelberg, Heidelberg, Germany .,German Center for Lung Research (DZL), Germany.,Dept of Pediatric Pulmonology, Immunology and Intensive Care Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany.,These authors contributed equally as senior authors
| |
Collapse
|
30
|
McKelvey MC, Brown R, Ryan S, Mall MA, Weldon S, Taggart CC. Proteases, Mucus, and Mucosal Immunity in Chronic Lung Disease. Int J Mol Sci 2021; 22:5018. [PMID: 34065111 PMCID: PMC8125985 DOI: 10.3390/ijms22095018] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/06/2021] [Accepted: 05/06/2021] [Indexed: 12/13/2022] Open
Abstract
Dysregulated protease activity has long been implicated in the pathogenesis of chronic lung diseases and especially in conditions that display mucus obstruction, such as chronic obstructive pulmonary disease, cystic fibrosis, and non-cystic fibrosis bronchiectasis. However, our appreciation of the roles of proteases in various aspects of such diseases continues to grow. Patients with muco-obstructive lung disease experience progressive spirals of inflammation, mucostasis, airway infection and lung function decline. Some therapies exist for the treatment of these symptoms, but they are unable to halt disease progression and patients may benefit from novel adjunct therapies. In this review, we highlight how proteases act as multifunctional enzymes that are vital for normal airway homeostasis but, when their activity becomes immoderate, also directly contribute to airway dysfunction, and impair the processes that could resolve disease. We focus on how proteases regulate the state of mucus at the airway surface, impair mucociliary clearance and ultimately, promote mucostasis. We discuss how, in parallel, proteases are able to promote an inflammatory environment in the airways by mediating proinflammatory signalling, compromising host defence mechanisms and perpetuating their own proteolytic activity causing structural lung damage. Finally, we discuss some possible reasons for the clinical inefficacy of protease inhibitors to date and propose that, especially in a combination therapy approach, proteases represent attractive therapeutic targets for muco-obstructive lung diseases.
Collapse
Affiliation(s)
- Michael C. McKelvey
- Airway Innate Immunity Research (AiiR) Group, Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University Belfast, Belfast BT9 7BL, UK; (M.C.M.); (R.B.); (S.R.); (S.W.)
| | - Ryan Brown
- Airway Innate Immunity Research (AiiR) Group, Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University Belfast, Belfast BT9 7BL, UK; (M.C.M.); (R.B.); (S.R.); (S.W.)
| | - Sinéad Ryan
- Airway Innate Immunity Research (AiiR) Group, Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University Belfast, Belfast BT9 7BL, UK; (M.C.M.); (R.B.); (S.R.); (S.W.)
| | - Marcus A. Mall
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité—Universitätsmedizin Berlin, 13353 Berlin, Germany;
- Berlin Institute of Health (BIH), 10178 Berlin, Germany
- German Center for Lung Research (DZL), 35392 Gießen, Germany
| | - Sinéad Weldon
- Airway Innate Immunity Research (AiiR) Group, Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University Belfast, Belfast BT9 7BL, UK; (M.C.M.); (R.B.); (S.R.); (S.W.)
| | - Clifford C. Taggart
- Airway Innate Immunity Research (AiiR) Group, Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University Belfast, Belfast BT9 7BL, UK; (M.C.M.); (R.B.); (S.R.); (S.W.)
| |
Collapse
|
31
|
Page LK, Staples KJ, Spalluto CM, Watson A, Wilkinson TMA. Influence of Hypoxia on the Epithelial-Pathogen Interactions in the Lung: Implications for Respiratory Disease. Front Immunol 2021; 12:653969. [PMID: 33868294 PMCID: PMC8044850 DOI: 10.3389/fimmu.2021.653969] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 03/09/2021] [Indexed: 12/11/2022] Open
Abstract
Under normal physiological conditions, the lung remains an oxygen rich environment. However, prominent regions of hypoxia are a common feature of infected and inflamed tissues and many chronic inflammatory respiratory diseases are associated with mucosal and systemic hypoxia. The airway epithelium represents a key interface with the external environment and is the first line of defense against potentially harmful agents including respiratory pathogens. The protective arsenal of the airway epithelium is provided in the form of physical barriers, and the production of an array of antimicrobial host defense molecules, proinflammatory cytokines and chemokines, in response to activation by receptors. Dysregulation of the airway epithelial innate immune response is associated with a compromised immunity and chronic inflammation of the lung. An increasing body of evidence indicates a distinct role for hypoxia in the dysfunction of the airway epithelium and in the responses of both innate immunity and of respiratory pathogens. Here we review the current evidence around the role of tissue hypoxia in modulating the host-pathogen interaction at the airway epithelium. Furthermore, we highlight the work needed to delineate the role of tissue hypoxia in the pathophysiology of chronic inflammatory lung diseases such as asthma, cystic fibrosis, and chronic obstructive pulmonary disease in addition to novel respiratory diseases such as COVID-19. Elucidating the molecular mechanisms underlying the epithelial-pathogen interactions in the setting of hypoxia will enable better understanding of persistent infections and complex disease processes in chronic inflammatory lung diseases and may aid the identification of novel therapeutic targets and strategies.
Collapse
Affiliation(s)
- Lee K. Page
- Clinical and Experimental Sciences, University of Southampton Faculty of Medicine, Southampton, United Kingdom
| | - Karl J. Staples
- Clinical and Experimental Sciences, University of Southampton Faculty of Medicine, Southampton, United Kingdom
- NIHR Southampton Biomedical Research Centre, Southampton Centre for Biomedical Research, Southampton General Hospital, Southampton, United Kingdom
| | - C. Mirella Spalluto
- Clinical and Experimental Sciences, University of Southampton Faculty of Medicine, Southampton, United Kingdom
- NIHR Southampton Biomedical Research Centre, Southampton Centre for Biomedical Research, Southampton General Hospital, Southampton, United Kingdom
| | - Alastair Watson
- Clinical and Experimental Sciences, University of Southampton Faculty of Medicine, Southampton, United Kingdom
- NIHR Southampton Biomedical Research Centre, Southampton Centre for Biomedical Research, Southampton General Hospital, Southampton, United Kingdom
- Birmingham Medical School, University of Birmingham, Birmingham, United Kingdom
| | - Tom M. A. Wilkinson
- Clinical and Experimental Sciences, University of Southampton Faculty of Medicine, Southampton, United Kingdom
- NIHR Southampton Biomedical Research Centre, Southampton Centre for Biomedical Research, Southampton General Hospital, Southampton, United Kingdom
| |
Collapse
|
32
|
Brown R, Small DM, Doherty DF, Holsinger L, Booth R, Williams R, Ingram RJ, Elborn JS, Mall MA, Taggart CC, Weldon S. Therapeutic Inhibition of Cathepsin S Reduces Inflammation and Mucus Plugging in Adult βENaC-Tg Mice. Mediators Inflamm 2021; 2021:6682657. [PMID: 33828414 PMCID: PMC8004367 DOI: 10.1155/2021/6682657] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 01/28/2021] [Accepted: 02/10/2021] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Elevated levels of the cysteine protease cathepsin S (CatS) are associated with chronic mucoobstructive lung diseases such as cystic fibrosis (CF) and chronic obstructive pulmonary disease (COPD). We have previously demonstrated that prophylactic treatment with a CatS inhibitor from birth reduces inflammation, mucus plugging, and lung tissue damage in juvenile β-epithelial Na+ channel-overexpressing transgenic (βENaC-Tg) mice with chronic inflammatory mucoobstructive lung disease. In this study, we build upon this work to examine the effects of therapeutic intervention with a CatS inhibitor in adult βENaC-Tg mice with established disease. METHODS βENaC-Tg mice and wild-type (WT) littermates were treated with a CatS inhibitor from 4 to 6 weeks of age, and CatS-/- βENaC-Tg mice were analysed at 6 weeks of age. Bronchoalveolar lavage (BAL) fluid inflammatory cell counts were quantified, and lung tissue destruction and mucus obstruction were analysed histologically. RESULTS At 6 weeks of age, βENaC-Tg mice developed significant airway inflammation, lung tissue damage, and mucus plugging when compared to WT mice. CatS-/- βENaC-Tg mice and βENaC-Tg mice receiving inhibitor had significantly reduced airway mononuclear and polymorphonuclear (PMN) cell counts as well as mucus plugging. However, in contrast to CatS-/- βENaC-Tg mice, therapeutic inhibition of CatS in βENaC-Tg mice had no effect on established emphysema-like lung tissue damage. CONCLUSIONS These results suggest that while early CatS targeting may be required to prevent the onset and progression of lung tissue damage, therapeutic CatS targeting effectively inhibited airway inflammation and mucus obstruction. These results indicate the important role CatS may play in the pathogenesis and progression of mucoobstructive lung disease.
Collapse
Affiliation(s)
- Ryan Brown
- Airway Innate Immunity Research (AiiR) Group, Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK
| | - Donna M. Small
- Airway Innate Immunity Research (AiiR) Group, Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK
| | - Declan F. Doherty
- Airway Innate Immunity Research (AiiR) Group, Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK
| | | | | | - Richard Williams
- Patrick G Johnston Centre for Cancer Research, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK
| | - Rebecca J. Ingram
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK
| | - J. Stuart Elborn
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK
| | - Marcus A. Mall
- Department of Translational Pulmonology, Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), University of Heidelberg, Heidelberg, Germany
- Department of Pediatric Pulmonology, Immunology and Critical Care Medicine, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
| | - Clifford C. Taggart
- Airway Innate Immunity Research (AiiR) Group, Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK
| | - Sinéad Weldon
- Airway Innate Immunity Research (AiiR) Group, Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK
| |
Collapse
|
33
|
Tucker SL, Sarr D, Rada B. Neutrophil extracellular traps are present in the airways of ENaC-overexpressing mice with cystic fibrosis-like lung disease. BMC Immunol 2021; 22:7. [PMID: 33478382 PMCID: PMC7819174 DOI: 10.1186/s12865-021-00397-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 01/10/2021] [Indexed: 12/13/2022] Open
Abstract
Background Neutrophils are key components of the exacerbated inflammation and tissue damage in cystic fibrosis (CF) airways. Neutrophil extracellular traps (NETs) trap and kill extracellular pathogens. While NETs are abundant in the airways of CF patients and have been hypothesized to contribute to lung damage in CF, the in vivo role of NETs remains controversial, partially due to lack of appropriate animal models. The goal of this study was to detect NETs and to further characterize neutrophil-mediated inflammation in the airways of mice overexpressing the epithelial sodium channel (βENaC-Tg mice on C57BL/6 background) in their lung with CF-like airway disease, in the absence of any apparent bacterial infections. Methods Histology scoring of lung tissues, flow cytometry, multiplex ELISA, immunohistochemistry and immunofluorescence were used to characterize NETs and the airway environment in uninfected, βENaC-Tg mice at 6 and 8 weeks of age, the most chronic time points so far studied in this model. Results Excessive neutrophilic infiltration characterized the lungs of uninfected, βENaC-Tg mice at 6 and 8 weeks of age. The bronchoalveolar lavage fluid (BALF) of βENaC-Tg mice contains increased levels of CF-associated cytokines and chemokines: KC, MIP-1α/β, MCP-1, G-CSF, IL-5, and IL-6. The BALF of βENaC-Tg mice contain MPO-DNA complexes, indicative of the presence of NETs. Immunofluorescence and flow cytometry of BALF neutrophils and lung tissues demonstrated increased histone citrullination, a NET-specific marker, in βENaC-Tg mice. Conclusions NETs are detected in the airways of βENaC-Tg mice, in the absence of bacterial infections. These data demonstrate the usefulness of the βENaC-Tg mouse to serve as a model for studying the role of NETs in chronic CF airway inflammation. Supplementary Information The online version contains supplementary material available at 10.1186/s12865-021-00397-w.
Collapse
Affiliation(s)
- Samantha L Tucker
- Department of Infectious Diseases, College of Veterinary Medicine, The University of Georgia, Athens, GA, USA
| | - Demba Sarr
- Department of Infectious Diseases, College of Veterinary Medicine, The University of Georgia, Athens, GA, USA
| | - Balázs Rada
- Department of Infectious Diseases, College of Veterinary Medicine, The University of Georgia, Athens, GA, USA.
| |
Collapse
|
34
|
McCarron A, Parsons D, Donnelley M. Animal and Cell Culture Models for Cystic Fibrosis: Which Model Is Right for Your Application? THE AMERICAN JOURNAL OF PATHOLOGY 2020; 191:228-242. [PMID: 33232694 DOI: 10.1016/j.ajpath.2020.10.017] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 10/01/2020] [Accepted: 10/23/2020] [Indexed: 01/18/2023]
Abstract
Over the past 30 years, a range of cystic fibrosis (CF) animal models have been generated for research purposes. Different species, including mice, rats, ferrets, rabbits, pigs, sheep, zebrafish, and fruit flies, have all been used to model CF disease. While access to such a variety of animal models is a luxury for any research field, it also complicates the decision-making process when it comes to selecting the right model for an investigation. The purpose of this review is to provide a guide for selecting the most appropriate CF animal model for any given application. In this review, the characteristics and phenotypes of each animal model are described, along with a discussion of the key considerations that must be taken into account when choosing a suitable animal model. Available in vitro systems of CF are also described and can offer a useful alternative to using animal models. Finally, the future of CF animal model generation and its use in research are speculated upon.
Collapse
Affiliation(s)
- Alexandra McCarron
- Robinson Research Institute, University of Adelaide, Adelaide, South Australia, Australia; Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia; Department of Respiratory and Sleep Medicine, Women's and Children's Hospital, North Adelaide, South Australia, Australia.
| | - David Parsons
- Robinson Research Institute, University of Adelaide, Adelaide, South Australia, Australia; Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia; Department of Respiratory and Sleep Medicine, Women's and Children's Hospital, North Adelaide, South Australia, Australia
| | - Martin Donnelley
- Robinson Research Institute, University of Adelaide, Adelaide, South Australia, Australia; Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia; Department of Respiratory and Sleep Medicine, Women's and Children's Hospital, North Adelaide, South Australia, Australia
| |
Collapse
|
35
|
Vega G, Guequén A, Philp AR, Gianotti A, Arzola L, Villalón M, Zegarra-Moran O, Galietta LJ, Mall MA, Flores CA. Lack of Kcnn4 improves mucociliary clearance in muco-obstructive lung disease. JCI Insight 2020; 5:140076. [PMID: 32814712 PMCID: PMC7455130 DOI: 10.1172/jci.insight.140076] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 07/08/2020] [Indexed: 12/11/2022] Open
Abstract
Airway mucociliary clearance (MCC) is the main mechanism of lung defense keeping airways free of infection and mucus obstruction. Airway surface liquid volume, ciliary beating, and mucus are central for proper MCC and critically regulated by sodium absorption and anion secretion. Impaired MCC is a key feature of muco-obstructive diseases. The calcium-activated potassium channel KCa.3.1, encoded by Kcnn4, participates in ion secretion, and studies showed that its activation increases Na+ absorption in airway epithelia, suggesting that KCa3.1-induced hyperpolarization was sufficient to drive Na+ absorption. However, its role in airway epithelium is not fully understood. We aimed to elucidate the role of KCa3.1 in MCC using a genetically engineered mouse. KCa3.1 inhibition reduced Na+ absorption in mouse and human airway epithelium. Furthermore, the genetic deletion of Kcnn4 enhanced cilia beating frequency and MCC ex vivo and in vivo. Kcnn4 silencing in the Scnn1b-transgenic mouse (Scnn1btg/+), a model of muco-obstructive lung disease triggered by increased epithelial Na+ absorption, improved MCC, reduced Na+ absorption, and did not change the amount of mucus but did reduce mucus adhesion, neutrophil infiltration, and emphysema. Our data support that KCa3.1 inhibition attenuated muco-obstructive disease in the Scnn1btg/+ mice. K+ channel modulation may be a therapeutic strategy to treat muco-obstructive lung diseases. Silencing the calcium-activated potassium channel KCa.3.1 improves mucociliary clearance in muco-obstructive lung disease by decreasing sodium absorption in the airways.
Collapse
Affiliation(s)
| | - Anita Guequén
- Centro de Estudios Científicos, Valdivia, Chile.,Universidad Austral de Chile, Valdivia, Chile
| | - Amber R Philp
- Centro de Estudios Científicos, Valdivia, Chile.,Universidad Austral de Chile, Valdivia, Chile
| | | | - Llilian Arzola
- Departamento de Fisiología, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Manuel Villalón
- Departamento de Fisiología, Pontificia Universidad Católica de Chile, Santiago, Chile
| | | | - Luis Jv Galietta
- Telethon Institute of Genetics and Medicine, Pozzuoli, Italy.,Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| | - Marcus A Mall
- Department of Pediatric Pulmonology, Immunology and Critical Care Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Berlin Institute of Health, Berlin, Germany.,German Center for Lung Research, Berlin, Germany
| | | |
Collapse
|
36
|
Lewis BW, Choudhary I, Paudel K, Mao Y, Sharma R, Wang Y, Deshane JS, Boucher RC, Patial S, Saini Y. The Innate Lymphoid System Is a Critical Player in the Manifestation of Mucoinflammatory Airway Disease in Mice. THE JOURNAL OF IMMUNOLOGY 2020; 205:1695-1708. [PMID: 32817334 DOI: 10.4049/jimmunol.2000530] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 07/21/2020] [Indexed: 11/19/2022]
Abstract
Innate lymphoid and adaptive immune cells are known to regulate epithelial responses, including mucous cell metaplasia (MCM), but their roles in mucoinflammatory airway diseases, such as cystic fibrosis, remain unknown. Scnn1b transgenic (Scnn1b-Tg+) mice, which recapitulate cystic fibrosis-like mucoinflammatory airway disease, deficient in innate lymphoid (Il2rg knockout mice [Il2rg KO]), adaptive immune (Rag1 knockout mice [Rag1 KO]), or both systems (Il2rg KO/Rag1 KO), were employed to investigate their respective contributions in the pathogenesis of mucoinflammatory airway disease. As previously reported, immunocompetent Tg+ juveniles exhibited spontaneous neonatal bacterial infections with robust mucoinflammatory features, including elevated expression of Th2-associated markers accompanied by MCM, elevated MUC5B expression, and airway mucus obstruction. The bacterial burden was increased in Il2rg KO/Tg+ juveniles but returned to significantly lower levels in Il2rg KO/Rag1 KO/Tg+ juveniles. Mechanistically, this improvement reflected reduced production of adaptive immunity-derived IL-10 and, in turn, increased activation of macrophages. Although all the mucoinflammatory features were comparable between the immunocompetent Tg+ and Rag1 KO/Tg+ juveniles, the Il2rg KO/Tg+ and Il2rg KO/Rag1 KO/Tg+ juveniles exhibited suppressed expression levels of Th2 markers, diminished MCM, suppressed MUC5B expression, and reduced mucus obstruction. Collectively, these data indicate that, in the context of airway mucus obstruction, the adaptive immune system suppresses antibacterial macrophage activation, whereas the innate lymphoid system contributes to MCM, mucin production, and mucus obstruction.
Collapse
Affiliation(s)
- Brandon W Lewis
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803
| | - Ishita Choudhary
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803
| | - Kshitiz Paudel
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803
| | - Yun Mao
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803
| | - Rahul Sharma
- National Hansen's Disease Program, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803
| | - Yong Wang
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294; and
| | - Jessy S Deshane
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294; and
| | - Richard C Boucher
- Marsico Lung Institute/University of North Carolina Cystic Fibrosis Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Sonika Patial
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803
| | - Yogesh Saini
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803;
| |
Collapse
|
37
|
Brown R, Paulsen M, Schmidt S, Schatterny J, Frank A, Hirtz S, Delaney R, Doherty D, Hagner M, Taggart C, Weldon S, Mall MA. Lack of IL-1 Receptor Signaling Reduces Spontaneous Airway Eosinophilia in Juvenile Mice with Muco-Obstructive Lung Disease. Am J Respir Cell Mol Biol 2020; 62:300-309. [PMID: 31499011 DOI: 10.1165/rcmb.2018-0359oc] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Previous studies demonstrated spontaneous type 2 airway inflammation with eosinophilia in juvenile Scnn1b (sodium channel, non-voltage-gated 1, β-subunit)-transgenic (Scnn1b-Tg) mice with muco-obstructive lung disease. IL-1 receptor (IL-1R) signaling has been implicated in allergen-driven airway disease; however, its role in eosinophilic inflammation in muco-obstructive lung disease remains unknown. In this study, we examined the role of IL-1R signaling in the development of airway eosinophilia and type 2 inflammation in juvenile Scnn1b-Tg mice. We determined effects of genetic deletion of Il1r1 (IL-1 receptor type I) on eosinophil counts, transcript levels of key type 2 cytokines, markers of eosinophil activation and apoptosis, and tissue morphology in lungs of Scnn1b-Tg mice at different time points during neonatal development. Furthermore, we measured endothelial surface expression of intercellular adhesion molecule 1 (ICAM-1), an integrin involved in eosinophil transendothelial migration, and determined effects of eosinophil depletion using an anti-IL-5 antibody on lung morphology. Lack of IL-1R reduced airway eosinophilia and structural lung damage, but it did not reduce concentrations of type 2 cytokines and associated eosinophil activation in Scnn1b-Tg mice. Structural lung damage in Scnn1b-Tg mice was also reduced by eosinophil depletion. Lack of IL-1R was associated with reduced expression of ICAM-1 on lung endothelial cells and reduced eosinophil counts in lungs from Scnn1b-Tg mice. We conclude that IL-1R signaling is implicated in airway eosinophilia independent of type 2 cytokines in juvenile Scnn1b-Tg mice. Our data suggest that IL-1R signaling may be relevant in the pathogenesis of eosinophilic airway inflammation in muco-obstructive lung diseases, which may be mediated in part by ICAM-1-dependent transmigration of eosinophils into the lungs.
Collapse
Affiliation(s)
- Ryan Brown
- Department of Translational Pulmonology, Translational Lung Research Centre Heidelberg, German Center for Lung Research, University of Heidelberg, Heidelberg, Germany
| | - Michelle Paulsen
- Department of Translational Pulmonology, Translational Lung Research Centre Heidelberg, German Center for Lung Research, University of Heidelberg, Heidelberg, Germany
| | - Simone Schmidt
- Department of Translational Pulmonology, Translational Lung Research Centre Heidelberg, German Center for Lung Research, University of Heidelberg, Heidelberg, Germany
| | - Jolanthe Schatterny
- Department of Translational Pulmonology, Translational Lung Research Centre Heidelberg, German Center for Lung Research, University of Heidelberg, Heidelberg, Germany
| | - Angela Frank
- Department of Translational Pulmonology, Translational Lung Research Centre Heidelberg, German Center for Lung Research, University of Heidelberg, Heidelberg, Germany
| | - Stephanie Hirtz
- Department of Translational Pulmonology, Translational Lung Research Centre Heidelberg, German Center for Lung Research, University of Heidelberg, Heidelberg, Germany
| | - Rebecca Delaney
- Airway Innate Immunity Research Group, Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, Northern Ireland
| | - Declan Doherty
- Airway Innate Immunity Research Group, Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, Northern Ireland
| | - Matthias Hagner
- Department of Translational Pulmonology, Translational Lung Research Centre Heidelberg, German Center for Lung Research, University of Heidelberg, Heidelberg, Germany
| | - Cliff Taggart
- Airway Innate Immunity Research Group, Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, Northern Ireland
| | - Sinéad Weldon
- Airway Innate Immunity Research Group, Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, Northern Ireland
| | - Marcus A Mall
- Department of Translational Pulmonology, Translational Lung Research Centre Heidelberg, German Center for Lung Research, University of Heidelberg, Heidelberg, Germany.,Department of Pediatric Pulmonology, Immunology and Intensive Care Medicine, Charité-Universitätsmedizin Berlin, Berlin, Germany; and.,Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
38
|
Jaramillo AM, Evans CM. It Takes 1 for Type 2: IL-1 Receptor Mediates Eosinophilia in Scnn1b Transgenic Mice. Am J Respir Cell Mol Biol 2020; 62:269-270. [PMID: 31600081 PMCID: PMC7055691 DOI: 10.1165/rcmb.2019-0332ed] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Affiliation(s)
- Ana M Jaramillo
- Division of Pulmonary Sciences and Critical Care MedicineUniversity of Colorado Denver School of MedicineAurora, Colorado
| | - Christopher M Evans
- Division of Pulmonary Sciences and Critical Care MedicineUniversity of Colorado Denver School of MedicineAurora, Colorado
| |
Collapse
|
39
|
Conditional deletion of Nedd4-2 in lung epithelial cells causes progressive pulmonary fibrosis in adult mice. Nat Commun 2020; 11:2012. [PMID: 32332792 PMCID: PMC7181726 DOI: 10.1038/s41467-020-15743-6] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 03/26/2020] [Indexed: 12/13/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic progressive interstitial lung disease characterized by patchy scarring of the distal lung with limited therapeutic options and poor prognosis. Here, we show that conditional deletion of the ubiquitin ligase Nedd4-2 (Nedd4l) in lung epithelial cells in adult mice produces chronic lung disease sharing key features with IPF including progressive fibrosis and bronchiolization with increased expression of Muc5b in peripheral airways, honeycombing and characteristic alterations in the lung proteome. NEDD4-2 is implicated in the regulation of the epithelial Na+ channel critical for proper airway surface hydration and mucus clearance and the regulation of TGFβ signaling, which promotes fibrotic remodeling. Our data support a role of mucociliary dysfunction and aberrant epithelial pro-fibrotic response in the multifactorial disease pathogenesis. Further, treatment with the anti-fibrotic drug pirfenidone reduced pulmonary fibrosis in this model. This model may therefore aid studies of the pathogenesis and therapy of IPF. Idiopathic pulmonary fibrosis (IPF) is a devastating disease with poor prognosis. Here, the authors show that deficiency of the E3 ubiqutin-protein ligase Nedd4-2 in airway epithelial cells causes IPF-like disease in adult mice. This model may aid studies of the pathogenesis and therapy of IPF.
Collapse
|
40
|
Montgomery ST, Frey DL, Mall MA, Stick SM, Kicic A. Rhinovirus Infection Is Associated With Airway Epithelial Cell Necrosis and Inflammation via Interleukin-1 in Young Children With Cystic Fibrosis. Front Immunol 2020; 11:596. [PMID: 32328066 PMCID: PMC7161373 DOI: 10.3389/fimmu.2020.00596] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 03/13/2020] [Indexed: 12/19/2022] Open
Abstract
Introduction: The responses of cystic fibrosis (CF) airway epithelial cells (AEC) to rhinovirus (RV) infection are likely to contribute to early pathobiology of lung disease with increased neutrophilic inflammation and lower apoptosis reported. Necrosis of AEC resulting in airway inflammation driven by IL-1 signaling is a characteristic finding in CF detectable in airways of young children. Being the most common early-life infection, RV-induced epithelial necrosis may contribute to early neutrophilic inflammation in CF via IL-1 signaling. As little is known about IL-1 and biology of CF lung disease, this study assessed cellular and pro-inflammatory responses of CF and non-CF AEC following RV infection, with the hypothesis that RV infection drives epithelial necrosis and IL-1 driven inflammation. Methods:Primary AEC obtained from children with (n = 6) and without CF (n = 6) were infected with RV (MOI 3) for 24 h and viable, necrotic and apoptotic events quantified via flow cytometry using a seven-step gating strategy (% total events). IL-1α, IL-1β, IL-1Ra, IL-8, CXCL10, CCL5, IFN-β, IL-28A, IL-28B, and IL-29 were also measured in cell culture supernatants (pg/mL). Results:RV infection reduced viable events in non-CF AEC (p < 0.05), increased necrotic events in non-CF and CF AEC (p < 0.05) and increased apoptotic events in non-CF AEC (p < 0.05). Infection induced IL-1α and IL-1β production in both phenotypes (p < 0.05) but only correlated with necrosis (IL-1α: r = 0.80; IL-1β: r = 0.77; p < 0.0001) in CF AEC. RV infection also increased IL-1Ra in non-CF and CF AEC (p < 0.05), although significantly more in non-CF AEC (p < 0.05). Finally, infection stimulated IL-8 production in non-CF and CF AEC (p < 0.05) and correlated with IL-1α (r = 0.63 & r = 0.74 respectively; p < 0.0001). Conclusions:This study found RV infection drives necrotic cell death in CF AEC. Furthermore, RV induced IL-1 strongly correlated with necrotic cell death in these cells. As IL-1R signaling drives airway neutrophilia and mucin production, these observations suggest RV infection early in life may exacerbate inflammation and mucin accumulation driving early CF lung disease. Since IL-1R can be targeted therapeutically with IL-1Ra, these data suggest a new anti-inflammatory therapeutic approach targeting downstream effects of IL-1R signaling to mitigate viral-induced, muco-inflammatory triggers of early lung disease.
Collapse
Affiliation(s)
- Samuel T Montgomery
- Faculty of Health and Medical Sciences, School of Biomedical Sciences, The University of Western Australia, Crawley, WA, Australia
| | - Dario L Frey
- Department of Translational Pulmonology, Translational Lung Research Center Heidelberg, University of Heidelberg, Heidelberg, Germany.,German Center for Lung Research, Heidelberg, Germany
| | - Marcus A Mall
- German Center for Lung Research, Heidelberg, Germany.,Department of Pediatric Pulmonology, Immunology and Critical Care Medicine, Charité-Universitätsmedizin Berlin, Berlin, Germany.,Berlin Institute of Health, Berlin, Germany
| | - Stephen M Stick
- Faculty of Health and Medical Sciences, School of Biomedical Sciences, The University of Western Australia, Crawley, WA, Australia.,Telethon Kids Institute, The University of Western Australia, Crawley, WA, Australia.,Department of Respiratory and Sleep Medicine, Perth Children's Hospital, Nedlands, WA, Australia.,Centre for Cell Therapy and Regenerative Medicine, School of Medicine and Pharmacology, The University of Western Australia, Nedlands, WA, Australia
| | - Anthony Kicic
- Faculty of Health and Medical Sciences, School of Biomedical Sciences, The University of Western Australia, Crawley, WA, Australia.,Telethon Kids Institute, The University of Western Australia, Crawley, WA, Australia.,Department of Respiratory and Sleep Medicine, Perth Children's Hospital, Nedlands, WA, Australia.,Centre for Cell Therapy and Regenerative Medicine, School of Medicine and Pharmacology, The University of Western Australia, Nedlands, WA, Australia.,School of Public Health, Curtin University, Bentley, WA, Australia.,Telethon Kids Institute, The University of Western Australia, Crawley, WA, Australia.,St John of God Hospital, Subiaco, WA, Australia
| | | |
Collapse
|
41
|
Lewis BW, Vo T, Choudhary I, Kidder A, Bathula C, Ehre C, Wakamatsu N, Patial S, Saini Y. Ablation of IL-33 Suppresses Th2 Responses but Is Accompanied by Sustained Mucus Obstruction in the Scnn1b Transgenic Mouse Model. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2020; 204:1650-1660. [PMID: 32060135 PMCID: PMC7714586 DOI: 10.4049/jimmunol.1900234] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 01/14/2020] [Indexed: 12/14/2022]
Abstract
Cystic fibrosis is characterized by dehydration of the airway surface liquid layer with persistent mucus obstruction. Th2 immune responses are often manifested as increased mucous cell density (mucous cell metaplasia) associated with mucus obstruction. IL-33 is a known inducer of Th2 immune responses, but its roles in mucus obstruction and related phenotypes in a cystic fibrosis-like lung disease model (i.e., Scnn1b-Tg-positive [Tg+]) mouse, remain unclear. Accordingly, IL-33 knockout (IL-33KO) Tg+ mice were examined and compared with IL-33 heterozygous (IL-33HET) Tg+ mice. As compared with IL-33HET/Tg+ mice, IL-33KO/Tg+ mice had complete absence of bronchoalveolar lavage fluid eosinophilia, accompanied with significant reduction in bronchoalveolar lavage fluid concentration of IL-5, a cytokine associated with eosinophil differentiation and recruitment, and IL-4, a major Th2 cytokine. As compared with IL-33HET/Tg+ mice, IL-33KO/Tg+ mice had significantly reduced levels of Th2-associated gene signatures (Slc26a4, Clca1, Retnla, and Chi3l4), along with complete loss of intracellular mucopolysaccharide staining in the airway epithelium. As compared with IL-33HET/Tg+ mice, although the IL-33KO/Tg+ mice had significantly reduced levels of MUC5AC protein expression, they showed no reduction in the degree of mucus obstruction, MUC5B protein expression, bacterial burden, and neonatal mortality. Interestingly, the histological features, including subepithelial airway inflammation and alveolar space enlargement, were somewhat exaggerated in IL-33KO/Tg+ mice compared with IL-33HET/Tg+ mice. Taken together, our data indicate that although IL-33 modulates Th2 inflammatory responses and MUC5AC protein production, mucus obstruction is not dependent on IL-33.
Collapse
Affiliation(s)
- Brandon W Lewis
- Department of Comparative Biomedical Sciences, Louisiana State University, Baton Rouge, LA 70803
| | - Thao Vo
- Department of Comparative Biomedical Sciences, Louisiana State University, Baton Rouge, LA 70803
| | - Ishita Choudhary
- Department of Comparative Biomedical Sciences, Louisiana State University, Baton Rouge, LA 70803
| | - Allison Kidder
- Department of Comparative Biomedical Sciences, Louisiana State University, Baton Rouge, LA 70803
| | - Chandra Bathula
- Department of Comparative Biomedical Sciences, Louisiana State University, Baton Rouge, LA 70803
| | - Camille Ehre
- Marsico Lung Institute, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599; and
| | - Nobuko Wakamatsu
- Department of Pathobiological Sciences, Louisiana State University, Baton Rouge, LA 70803
| | - Sonika Patial
- Department of Comparative Biomedical Sciences, Louisiana State University, Baton Rouge, LA 70803
| | - Yogesh Saini
- Department of Comparative Biomedical Sciences, Louisiana State University, Baton Rouge, LA 70803;
| |
Collapse
|
42
|
Lodge KM, Cowburn AS, Li W, Condliffe AM. The Impact of Hypoxia on Neutrophil Degranulation and Consequences for the Host. Int J Mol Sci 2020; 21:ijms21041183. [PMID: 32053993 PMCID: PMC7072819 DOI: 10.3390/ijms21041183] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 02/06/2020] [Accepted: 02/08/2020] [Indexed: 12/16/2022] Open
Abstract
Neutrophils are key effector cells of innate immunity, rapidly recruited to defend the host against invading pathogens. Neutrophils may kill pathogens intracellularly, following phagocytosis, or extracellularly, by degranulation and the release of neutrophil extracellular traps; all of these microbicidal strategies require the deployment of cytotoxic proteins and proteases, packaged during neutrophil development within cytoplasmic granules. Neutrophils operate in infected and inflamed tissues, which can be profoundly hypoxic. Neutrophilic infiltration of hypoxic tissues characterises a myriad of acute and chronic infectious and inflammatory diseases, and as well as potentially protecting the host from pathogens, neutrophil granule products have been implicated in causing collateral tissue damage in these scenarios. This review discusses the evidence for the enhanced secretion of destructive neutrophil granule contents observed in hypoxic environments and the potential mechanisms for this heightened granule exocytosis, highlighting implications for the host. Understanding the dichotomy of the beneficial and detrimental consequences of neutrophil degranulation in hypoxic environments is crucial to inform potential neutrophil-directed therapeutics in order to limit persistent, excessive, or inappropriate inflammation.
Collapse
Affiliation(s)
- Katharine M. Lodge
- Faculty of Medicine, National Heart and Lung Institute, Imperial College London, London SW3 6LY, UK; (K.M.L.); (A.S.C.)
| | - Andrew S. Cowburn
- Faculty of Medicine, National Heart and Lung Institute, Imperial College London, London SW3 6LY, UK; (K.M.L.); (A.S.C.)
| | - Wei Li
- Department of Medicine, University of Cambridge, Cambridge CB2 0SP, UK;
| | - Alison M. Condliffe
- Department of Infection, Immunity and Cardiovascular Diseases, University of Sheffield, Sheffield S10 2RX, UK
- Correspondence:
| |
Collapse
|
43
|
Abstract
A spectrum of intrapulmonary airway diseases, for example, cigarette smoke-induced bronchitis, cystic fibrosis, primary ciliary dyskinesia, and non-cystic fibrosis bronchiectasis, can be categorized as "mucoobstructive" airway diseases. A common theme for these diseases appears to be the failure to properly regulate mucus concentration, producing mucus hyperconcentration that slows mucus transport and, importantly, generates plaque/plug adhesion to airway surfaces. These mucus plaques/plugs generate long diffusion distances for oxygen, producing hypoxic niches within adherent airway mucus and subjacent epithelia. Data suggest that concentrated mucus plaques/plugs are proinflammatory, in part mediated by release of IL-1α from hypoxic cells. The infectious component of mucoobstructive diseases may be initiated by anaerobic bacteria that proliferate within the nutrient-rich hypoxic mucus environment. Anaerobes ultimately may condition mucus to provide the environment for a succession to classic airway pathogens, including Staphylococcus aureus, Haemophilus influenzae, and ultimately Pseudomonas aeruginosa. Novel therapies to treat mucoobstructive diseases focus on restoring mucus concentration. Strategies to rehydrate mucus range from the inhalation of osmotically active solutes, designed to draw water into airway surfaces, to strategies designed to manipulate the relative rates of sodium absorption versus chloride secretion to endogenously restore epithelial hydration. Similarly, strategies designed to reduce the mucin burden in the airways, either by reducing mucin production/secretion or by clearing accumulated mucus (e.g., reducing agents), are under development. Thus, the new insights into a unifying process, that is, mucus hyperconcentration, that drives a significant component of the pathogenesis of mucoobstructive diseases promise multiple new therapeutic strategies to aid patients with this syndrome.
Collapse
|
44
|
Balázs A, Mall MA. Mucus obstruction and inflammation in early cystic fibrosis lung disease: Emerging role of the IL-1 signaling pathway. Pediatr Pulmonol 2019; 54 Suppl 3:S5-S12. [PMID: 31715090 DOI: 10.1002/ppul.24462] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 07/11/2019] [Indexed: 12/18/2022]
Abstract
Mucus plugging constitutes a nutrient-rich nidus for a bacterial infection that has long been recognized as a potent stimulus for neutrophilic airway inflammation driving progressive lung damage in people with cystic fibrosis (CF). However, mucus plugging and neutrophilic inflammation are already present in many infants and young children with CF even in the absence of detectable bacterial infection. A series of observational studies in young children with CF, as well as investigations in animal models with CF-like lung disease support the concept that mucus plugging per se can trigger inflammation before the onset of airways infection. Here we review emerging evidence suggesting that activation of the interleukin-1 (IL-1) signaling pathway by hypoxic epithelial cell necrosis, leading to the release of IL-1α in mucus-obstructed airways, may be an important mechanistic link between mucus plugging and sterile airway inflammation in early CF lung disease. Furthermore, we discuss recent data from preclinical studies demonstrating that treatment with the IL-1 receptor (IL-1R) antagonist anakinra has anti-inflammatory as well as mucus modulating effects in mice with CF-like lung disease and primary cultures of human CF airway epithelia. Collectively, these studies support an important role of the IL-1 signaling pathway in sterile neutrophilic inflammation and mucus hypersecretion and suggest inhibition of this pathway as a promising anti-inflammatory strategy in patients with CF and potentially other muco-obstructive lung diseases.
Collapse
Affiliation(s)
- Anita Balázs
- Department of Pediatric Pulmonology, Immunology and Intensive Care Medicine, Charité-Universitätsmedizin Berlin, Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany.,German Center for Lung Research (DZL), Berlin, Germany
| | - Marcus A Mall
- Department of Pediatric Pulmonology, Immunology and Intensive Care Medicine, Charité-Universitätsmedizin Berlin, Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany.,German Center for Lung Research (DZL), Berlin, Germany
| |
Collapse
|
45
|
Immunopathology of Airway Surface Liquid Dehydration Disease. J Immunol Res 2019; 2019:2180409. [PMID: 31396541 PMCID: PMC6664684 DOI: 10.1155/2019/2180409] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 04/29/2019] [Accepted: 05/26/2019] [Indexed: 12/30/2022] Open
Abstract
The primary purpose of pulmonary ventilation is to supply oxygen (O2) for sustained aerobic respiration in multicellular organisms. However, a plethora of abiotic insults and airborne pathogens present in the environment are occasionally introduced into the airspaces during inhalation, which could be detrimental to the structural integrity and functioning of the respiratory system. Multiple layers of host defense act in concert to eliminate unwanted constituents from the airspaces. In particular, the mucociliary escalator provides an effective mechanism for the continuous removal of inhaled insults including pathogens. Defects in the functioning of the mucociliary escalator compromise the mucociliary clearance (MCC) of inhaled pathogens, which favors microbial lung infection. Defective MCC is often associated with airway mucoobstruction, increased occurrence of respiratory infections, and progressive decrease in lung function in mucoobstructive lung diseases including cystic fibrosis (CF). In this disease, a mutation in the cystic fibrosis transmembrane conductance regulator (CFTR) gene results in dehydration of the airway surface liquid (ASL) layer. Several mice models of Cftr mutation have been developed; however, none of these models recapitulate human CF-like mucoobstructive lung disease. As an alternative, the Scnn1b transgenic (Scnn1b-Tg+) mouse model overexpressing a transgene encoding sodium channel nonvoltage-gated 1, beta subunit (Scnn1b) in airway club cells is available. The Scnn1b-Tg+ mouse model exhibits airway surface liquid (ASL) dehydration, impaired MCC, increased mucus production, and early spontaneous pulmonary bacterial infections. High morbidity and mortality among mucoobstructive disease patients, high economic and health burden, and lack of scientific understanding of the progression of mucoobstruction warrants in-depth investigation of the cause of mucoobstruction in mucoobstructive disease models. In this review, we will summarize published literature on the Scnn1b-Tg+ mouse and analyze various unanswered questions on the initiation and progression of mucobstruction and bacterial infections.
Collapse
|
46
|
Brinks V, Lipinska K, de Jager M, Beumer W, Button B, Livraghi-Butrico A, Henig N, Matthee B. The Cystic Fibrosis-Like Airway Surface Layer Is not a Significant Barrier for Delivery of Eluforsen to Airway Epithelial Cells. J Aerosol Med Pulm Drug Deliv 2019; 32:303-316. [PMID: 31120356 DOI: 10.1089/jamp.2018.1502] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Background: Eluforsen (previously known as QR-010) is a 33-mer antisense oligonucleotide under development for oral inhalation in cystic fibrosis (CF) patients with the delta F508 mutation. Previous work has shown that eluforsen restores CF transmembrane conductance regulator (CFTR) function in vitro and in vivo. To be effective, eluforsen has first to reach its primary target, the lung epithelial cells. Therefore, it has to diffuse through the CF airway surface layer (ASL), which in CF is characterized by the presence of thick and viscous mucus, impaired mucociliary clearance, and persistent infections. The goal of this study was to assess delivery of eluforsen through CF-like ASL. Methods and Results: First, air-liquid interface studies with cultured primary airway epithelial cells revealed that eluforsen rapidly diffuses through CF-like mucus at clinically relevant doses when nebulized once or repeatedly, over a range of testing doses. Furthermore, eluforsen concentrations remained stable in CF patient sputum for at least 48 hours, and eluforsen remained intact in the presence of various inhaled CF medications for at least 24 hours. When testing biodistribution of eluforsen after orotracheal administration in vivo, no differences in lung, liver, trachea, and kidney eluforsen concentration were observed between mice with a CF-like lung phenotype (ENaC-overexpressing mice) and control wild-type (WT) littermates. Also, eluforsen was visualized in the airway epithelial cell layer of CF-like muco-obstructed mice and WT littermates. Finally, studies of eluforsen uptake and binding to bacteria prevalent in CF lungs, and diffusion through bacterial biofilms showed that eluforsen was stable and not absorbed by, or bound to bacteria. In addition, eluforsen was found to be able to penetrate Pseudomonas aeruginosa biofilms. Conclusions: The thickened and concentrated CF ASL does not constitute a significant barrier for delivery of eluforsen, and feasibility of oral inhalation of eluforsen is supported by these data.
Collapse
Affiliation(s)
| | | | | | | | - Brian Button
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.,Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | | | | | | |
Collapse
|
47
|
Saini Y, Lewis BW, Yu D, Dang H, Livraghi-Butrico A, Del Piero F, O'Neal WK, Boucher RC. Effect of LysM+ macrophage depletion on lung pathology in mice with chronic bronchitis. Physiol Rep 2019; 6:e13677. [PMID: 29667749 PMCID: PMC5904692 DOI: 10.14814/phy2.13677] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Revised: 03/04/2018] [Accepted: 03/10/2018] [Indexed: 11/24/2022] Open
Abstract
Macrophages (MΦ) are key sentinels of respiratory exposure to inhaled environmental stimuli. In normal “healthy” tissues, MΦ are believed to be a dormant cell type that, upon exposure to stress‐causing stimuli, may get activated to exhibit pro‐ or anti‐inflammatory roles. To test whether stress present in chronic bronchitic (CB) airways triggers MΦ to manifest protective or detrimental responses, the DTA+ (LysM‐regulated Diphtheria Toxin A expressing) strain with partial MΦ‐deficiency was crossed with the Scnn1b‐Tg mouse model of CB and the progenies were studied at 4–5 weeks of age. Compared with DTA− littermates, the DTA+ mice had ~50% reduction in bronchoalveolar lavage (BAL) MΦ, and the recovered MΦ were immature, phenotypically distinct, and functionally defective. DTA+/Scnn1b‐Tg mice exhibited a similar depletion of LysM+ MΦ offset by a significant increase in LysM‐ MΦ in the BAL. In DTA+/Scnn1b‐Tg mice, lung disease was more severe than in DTA−/Scnn1b‐Tg littermates, as indicated by an increased incidence of mucus plugging, mucous cells, airway inflammation, higher levels of cytokines/chemokines (KC, TNF‐α, MIP‐2, M‐CSF, IL‐5, and IL‐17), and worsened alveolar airspace enlargement. DTA+/Scnn1b‐Tg mice exhibited increased occurrence of lymphoid nodules, which was concomitant with elevated levels of immunoglobulins in BAL. Collectively, these data indicate that numerical deficiency of MΦ in stressed airspaces is responded via compensatory increase in the recruitment of immature MΦ and altered non‐MΦ effector cell‐centered responses, for example, mucus production and adaptive immune defense. Overall, these data identify dynamic roles of MΦ in moderating, rather than exacerbating, the severity of lung disease in a model of CB.
Collapse
Affiliation(s)
- Yogesh Saini
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana
| | - Brandon W Lewis
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana
| | - Dongfang Yu
- Marsico Lung Institute/Cystic Fibrosis Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Hong Dang
- Marsico Lung Institute/Cystic Fibrosis Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Alessandra Livraghi-Butrico
- Marsico Lung Institute/Cystic Fibrosis Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Fabio Del Piero
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana
| | - Wanda K O'Neal
- Marsico Lung Institute/Cystic Fibrosis Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Richard C Boucher
- Marsico Lung Institute/Cystic Fibrosis Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
48
|
Chen G, Volmer AS, Wilkinson KJ, Deng Y, Jones LC, Yu D, Bustamante-Marin XM, Burns KA, Grubb BR, O'Neal WK, Livraghi-Butrico A, Boucher RC. Role of Spdef in the Regulation of Muc5b Expression in the Airways of Naive and Mucoobstructed Mice. Am J Respir Cell Mol Biol 2019; 59:383-396. [PMID: 29579396 DOI: 10.1165/rcmb.2017-0127oc] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Understanding how expression of airway secretory mucins MUC5B and MUC5AC is regulated in health and disease is important to elucidating the pathogenesis of mucoobstructive respiratory diseases. The transcription factor SPDEF (sterile α-motif pointed domain epithelial specific transcription factor) is a key regulator of MUC5AC, but its role in regulating MUC5B in health and in mucoobstructive lung diseases is unknown. Characterization of Spdef-deficient mice upper and lower airways demonstrated region-specific, Spdef-dependent regulation of basal Muc5b expression. Neonatal Spdef-deficient mice exhibited reductions in BAL Muc5ac and Muc5b. Adult Spdef-deficient mice partially phenocopied Muc5b-deficient mice as they exhibited reduced Muc5b in nasopharyngeal and airway epithelia but not in olfactory Bowman glands, 75% incidence of nasopharyngeal hair/mucus plugs, and mild bacterial otitis media, without defective mucociliary clearance in the nasopharynx. In contrast, tracheal mucociliary clearance was reduced in Spdef-deficient mice in the absence of lung disease. To evaluate the role of Spdef in the development and persistence of Muc5b-predominant mucoobstructive lung disease, Spdef-deficient mice were crossed with Scnn1b-transgenic (Scnn1b-Tg) mice, which exhibit airway surface dehydration-induced airway mucus obstruction and inflammation. Spdef-deficient Scnn1b-Tg mice exhibited reduced Muc5ac, but not Muc5b, expression and BAL content. Airway mucus obstruction was not decreased in Spdef-deficient Scnn1b-Tg mice, consistent with Muc5b-dominant Scnn1b disease, but increased airway neutrophilia was observed compared with Spdef-sufficient Scnn1b-Tg mice. Collectively, these results indicate that Spdef regulates baseline Muc5b expression in respiratory epithelia but does not contribute to Muc5b regulation in a mouse model of Muc5b-predominant mucus obstruction caused by airway dehydration.
Collapse
Affiliation(s)
- Gang Chen
- Marsico Lung Institute and University of North Carolina Cystic Fibrosis Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Allison S Volmer
- Marsico Lung Institute and University of North Carolina Cystic Fibrosis Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Kristen J Wilkinson
- Marsico Lung Institute and University of North Carolina Cystic Fibrosis Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Yangmei Deng
- Marsico Lung Institute and University of North Carolina Cystic Fibrosis Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Lisa C Jones
- Marsico Lung Institute and University of North Carolina Cystic Fibrosis Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Dongfang Yu
- Marsico Lung Institute and University of North Carolina Cystic Fibrosis Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Ximena M Bustamante-Marin
- Marsico Lung Institute and University of North Carolina Cystic Fibrosis Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Kimberlie A Burns
- Marsico Lung Institute and University of North Carolina Cystic Fibrosis Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Barbara R Grubb
- Marsico Lung Institute and University of North Carolina Cystic Fibrosis Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Wanda K O'Neal
- Marsico Lung Institute and University of North Carolina Cystic Fibrosis Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Alessandra Livraghi-Butrico
- Marsico Lung Institute and University of North Carolina Cystic Fibrosis Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Richard C Boucher
- Marsico Lung Institute and University of North Carolina Cystic Fibrosis Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
49
|
Small DM, Brown RR, Doherty DF, Abladey A, Zhou-Suckow Z, Delaney RJ, Kerrigan L, Dougan CM, Borensztajn KS, Holsinger L, Booth R, Scott CJ, López-Campos G, Elborn JS, Mall MA, Weldon S, Taggart CC. Targeting of cathepsin S reduces cystic fibrosis-like lung disease. Eur Respir J 2019; 53:13993003.01523-2018. [PMID: 30655278 DOI: 10.1183/13993003.01523-2018] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 12/27/2018] [Indexed: 11/05/2022]
Abstract
Cathepsin S (CatS) is upregulated in the lungs of patients with cystic fibrosis (CF). However, its role in CF lung disease pathogenesis remains unclear.In this study, β-epithelial Na+ channel-overexpressing transgenic (βENaC-Tg) mice, a model of CF-like lung disease, were crossed with CatS null (CatS-/-) mice or treated with the CatS inhibitor VBY-999.Levels of active CatS were elevated in the lungs of βENaC-Tg mice compared with wild-type (WT) littermates. CatS-/-βENaC-Tg mice exhibited decreased pulmonary inflammation, mucus obstruction and structural lung damage compared with βENaC-Tg mice. Pharmacological inhibition of CatS resulted in a significant decrease in pulmonary inflammation, lung damage and mucus plugging in the lungs of βENaC-Tg mice. In addition, instillation of CatS into the lungs of WT mice resulted in inflammation, lung remodelling and upregulation of mucin expression. Inhibition of the CatS target, protease-activated receptor 2 (PAR2), in βENaC-Tg mice resulted in a reduction in airway inflammation and mucin expression, indicating a role for this receptor in CatS-induced lung pathology.Our data indicate an important role for CatS in the pathogenesis of CF-like lung disease mediated in part by PAR2 and highlight CatS as a therapeutic target.
Collapse
Affiliation(s)
- Donna M Small
- Airway Innate Immunity Research (AiiR) Group, Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK.,These two authors contributed equally to this work
| | - Ryan R Brown
- Airway Innate Immunity Research (AiiR) Group, Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK.,These two authors contributed equally to this work
| | - Declan F Doherty
- Airway Innate Immunity Research (AiiR) Group, Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK
| | - Anthony Abladey
- Airway Innate Immunity Research (AiiR) Group, Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK
| | - Zhe Zhou-Suckow
- Dept of Translational Pulmonology, Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), University of Heidelberg, Heidelberg, Germany
| | - Rebecca J Delaney
- Airway Innate Immunity Research (AiiR) Group, Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK
| | - Lauren Kerrigan
- Airway Innate Immunity Research (AiiR) Group, Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK
| | - Caoifa M Dougan
- Airway Innate Immunity Research (AiiR) Group, Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK
| | - Keren S Borensztajn
- INSERM UMRS_933, Université Pierre et Marie Curie, Hôpital Trousseau, Paris, France
| | | | | | - Christopher J Scott
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, UK
| | - Guillermo López-Campos
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK
| | - J Stuart Elborn
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK.,Respiratory Medicine, Imperial College and Royal Brompton Hospital, London, UK
| | - Marcus A Mall
- Dept of Translational Pulmonology, Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), University of Heidelberg, Heidelberg, Germany.,Dept of Pediatric Pulmonology and Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany
| | - Sinéad Weldon
- Airway Innate Immunity Research (AiiR) Group, Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK
| | - Clifford C Taggart
- Airway Innate Immunity Research (AiiR) Group, Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK
| |
Collapse
|
50
|
Engle ML, Monk JN, Jania CM, Martin JR, Gomez JC, Dang H, Parker JS, Doerschuk CM. Dynamic changes in lung responses after single and repeated exposures to cigarette smoke in mice. PLoS One 2019; 14:e0212866. [PMID: 30818335 PMCID: PMC6395068 DOI: 10.1371/journal.pone.0212866] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 02/11/2019] [Indexed: 12/18/2022] Open
Abstract
Cigarette smoke is well recognized to cause injury to the airways and the alveolar walls over time. This injury usually requires many years of exposure, suggesting that the lungs may rapidly develop responses that initially protect it from this repetitive injury. Our studies tested the hypotheses that smoke induces an inflammatory response and changes in mRNA profiles that are dependent on sex and the health status of the lung, and that the response of the lungs to smoke differs after 1 day compared to 5 days of exposure. Male and female wildtype (WT) and Scnn1b-transgenic (βENaC) mice, which have chronic bronchitis and emphysematous changes due to dehydrated mucus, were exposed to cigarette smoke or sham air conditions for 1 or 5 days. The inflammatory response and gene expression profiles were analyzed in lung tissue. Overall, the inflammatory response to cigarette smoke was mild, and changes in mediators were more numerous after 1 than 5 days. βENaC mice had more airspace leukocytes than WT mice, and smoke exposure resulted in additional significant alterations. Many genes and gene sets responded similarly at 1 and 5 days: genes involved in oxidative stress responses were upregulated while immune response genes were downregulated. However, certain genes and biological processes were regulated differently after 1 compared to 5 days. Extracellular matrix biology genes and gene sets were upregulated after 1 day but downregulated by 5 days of smoke compared to sham exposure. There was no difference in the transcriptional response to smoke between WT and βENaC mice or between male and female mice at either 1 or 5 days. Taken together, these studies suggest that the lungs rapidly alter gene expression after only one exposure to cigarette smoke, with few additional changes after four additional days of repeated exposure. These changes may contribute to preventing lung damage.
Collapse
Affiliation(s)
- Michelle L. Engle
- Marsico Lung Institute, University of North Carolina, Chapel Hill, NC, United States of America
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC, United States of America
| | - Justine N. Monk
- Marsico Lung Institute, University of North Carolina, Chapel Hill, NC, United States of America
- Pathobiology and Translational Science Graduate Program, University of North Carolina, Chapel Hill, NC, United States of America
| | - Corey M. Jania
- Marsico Lung Institute, University of North Carolina, Chapel Hill, NC, United States of America
- Division of Pulmonary Diseases and Critical Care Medicine, University of North Carolina, Chapel Hill, NC, United States of America
- Department of Medicine, University of North Carolina, Chapel Hill, NC, United States of America
| | - Jessica R. Martin
- Marsico Lung Institute, University of North Carolina, Chapel Hill, NC, United States of America
| | - John C. Gomez
- Marsico Lung Institute, University of North Carolina, Chapel Hill, NC, United States of America
| | - Hong Dang
- Marsico Lung Institute, University of North Carolina, Chapel Hill, NC, United States of America
| | - Joel S. Parker
- Department of Genetics, University of North Carolina, Chapel Hill, NC, United States of America
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, United States of America
| | - Claire M. Doerschuk
- Marsico Lung Institute, University of North Carolina, Chapel Hill, NC, United States of America
- Division of Pulmonary Diseases and Critical Care Medicine, University of North Carolina, Chapel Hill, NC, United States of America
- Department of Medicine, University of North Carolina, Chapel Hill, NC, United States of America
| |
Collapse
|