1
|
Taub L, Hampton TH, Sarkar S, Doing G, Neff SL, Finger CE, Ferreira Fukutani K, Stanton BA. E.PathDash, pathway activation analysis of publicly available pathogen gene expression data. mSystems 2024:e0103024. [PMID: 39422483 DOI: 10.1128/msystems.01030-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 09/20/2024] [Indexed: 10/19/2024] Open
Abstract
E.PathDash facilitates re-analysis of gene expression data from pathogens clinically relevant to chronic respiratory diseases, including a total of 48 studies, 548 samples, and 404 unique treatment comparisons. The application enables users to assess broad biological stress responses at the KEGG pathway or gene ontology level and also provides data for individual genes. E.PathDash reduces the time required to gain access to data from multiple hours per data set to seconds. Users can download high-quality images such as volcano plots and boxplots, differential gene expression results, and raw count data, making it fully interoperable with other tools. Importantly, users can rapidly toggle between experimental comparisons and different studies of the same phenomenon, enabling them to judge the extent to which observed responses are reproducible. As a proof of principle, we invited two cystic fibrosis scientists to use the application to explore scientific questions relevant to their specific research areas. Reassuringly, pathway activation analysis recapitulated results reported in original publications, but it also yielded new insights into pathogen responses to changes in their environments, validating the utility of the application. All software and data are freely accessible, and the application is available at scangeo.dartmouth.edu/EPathDash. IMPORTANCE Chronic respiratory illnesses impose a high disease burden on our communities and people with respiratory diseases are susceptible to robust bacterial infections from pathogens, including Pseudomonas aeruginosa and Staphylococcus aureus, that contribute to morbidity and mortality. Public gene expression datasets generated from these and other pathogens are abundantly available and an important resource for synthesizing existing pathogenic research, leading to interventions that improve patient outcomes. However, it can take many hours or weeks to render publicly available datasets usable; significant time and skills are needed to clean, standardize, and apply reproducible and robust bioinformatic pipelines to the data. Through collaboration with two microbiologists, we have shown that E.PathDash addresses this problem, enabling them to elucidate pathogen responses to a variety of over 400 experimental conditions and generate mechanistic hypotheses for cell-level behavior in response to disease-relevant exposures, all in a fraction of the time.
Collapse
Affiliation(s)
- Lily Taub
- Department of Microbiology and Immunology, Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire, USA
| | - Thomas H Hampton
- Department of Microbiology and Immunology, Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire, USA
| | - Sharanya Sarkar
- Department of Microbiology and Immunology, Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire, USA
| | - Georgia Doing
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut, USA
| | - Samuel L Neff
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, USA
| | - Carson E Finger
- Department of Microbiology and Immunology, Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire, USA
| | - Kiyoshi Ferreira Fukutani
- Department of Microbiology and Immunology, Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire, USA
| | - Bruce A Stanton
- Department of Microbiology and Immunology, Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire, USA
| |
Collapse
|
2
|
Arefian Jazi M, Hajikhani B, Goudarzi M, Ebrahimipour G. Exploiting immunopotential PAPI-1 encoded type IVb major pilin targeting Pseudomonas aeruginosa. Heliyon 2024; 10:e36859. [PMID: 39281519 PMCID: PMC11401190 DOI: 10.1016/j.heliyon.2024.e36859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 08/22/2024] [Accepted: 08/23/2024] [Indexed: 09/18/2024] Open
Abstract
Pseudomonas aeruginosa (P. aeruginosa) significantly contributes to nosocomial infections and necessitates research into novel treatment methods. For the first time, this research evaluated the immunoprotective potential of recombinant PAPI-1 encoded type IV pili targeting P. aeruginosa in BALB/C mice. The target sequence was identified, and a PilS2-encoding vector was constructed. The vector was then expressed and purified in E. coli BL21 (DE3). The PilS2 protein was inoculated into BALB/C mice in four groups, with or without alum, to measure total IgG, its subclasses, and cytokines. MTT and opsonophagocytosis tests were used to examine the immunological response. PilS2, especially when paired with alum, boosts the humoral immune response by enhancing IgG and IL-4 levels. However, PilS2 did not affect IL-17 or IFN-γ and only increased lymphocyte proliferation. Antibodies targeting PilS2 increased phagocytic cell death of P. aeruginosa by over 95 %, indicating possible therapies for P. aeruginosa infections. Our study on the immunopotentiation of P. aeruginosa PilS2 paves the way for pilin-based vaccines and immunotherapy targeting this pathogen.
Collapse
Affiliation(s)
- Mojgan Arefian Jazi
- Department of Microbiology and Microbial Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
- Department of Microbiology, School of Medicine Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bahareh Hajikhani
- Department of Microbiology, School of Medicine Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Goudarzi
- Department of Microbiology, School of Medicine Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Gholamhossein Ebrahimipour
- Department of Microbiology and Microbial Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| |
Collapse
|
3
|
Hu JC, Sethi S. New methods to detect bacterial or viral infections in patients with chronic obstructive pulmonary disease. Expert Rev Respir Med 2024; 18:693-707. [PMID: 39175157 DOI: 10.1080/17476348.2024.2396413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/22/2024] [Accepted: 08/21/2024] [Indexed: 08/24/2024]
Abstract
INTRODUCTION Patients with chronic obstructive pulmonary disease (COPD) are frequently colonized and infected by respiratory pathogens. Identifying these infectious etiologies is critical for understanding the microbial dynamics of COPD and for the appropriate use of antimicrobials during exacerbations. AREAS COVERED Traditional methods, such as bacterial and viral cultures, have been standard in diagnosing respiratory infections. However, these methods have significant limitations, including lack of sensitivity and prolonged turnaround time. Modern molecular approaches offer rapid, sensitive, and specific detection, though they also come with their own challenges. This review explores and evaluates the clinical utility of the latest advancements in detecting bacterial and viral respiratory infections in COPD, encompassing molecular techniques, biomarkers, and emerging technologies. EXPERT OPINION In the evolving landscape of COPD management, integrating molecular diagnostics and emerging technologies holds great promise. The enhanced sensitivity of molecular techniques has significantly advanced our understanding of the role of microbes in COPD. However, many of these technologies have primarily been developed for pneumonia diagnosis or research applications, and their clinical utility in managing COPD requires further evaluation.
Collapse
Affiliation(s)
- John C Hu
- Division of Infectious Diseases, Department of Medicine, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - Sanjay Sethi
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, NY, USA
| |
Collapse
|
4
|
Weimann A, Dinan AM, Ruis C, Bernut A, Pont S, Brown K, Ryan J, Santos L, Ellison L, Ukor E, Pandurangan AP, Krokowski S, Blundell TL, Welch M, Blane B, Judge K, Bousfield R, Brown N, Bryant JM, Kukavica-Ibrulj I, Rampioni G, Leoni L, Harrison PT, Peacock SJ, Thomson NR, Gauthier J, Fothergill JL, Levesque RC, Parkhill J, Floto RA. Evolution and host-specific adaptation of Pseudomonas aeruginosa. Science 2024; 385:eadi0908. [PMID: 38963857 DOI: 10.1126/science.adi0908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 05/02/2024] [Indexed: 07/06/2024]
Abstract
The major human bacterial pathogen Pseudomonas aeruginosa causes multidrug-resistant infections in people with underlying immunodeficiencies or structural lung diseases such as cystic fibrosis (CF). We show that a few environmental isolates, driven by horizontal gene acquisition, have become dominant epidemic clones that have sequentially emerged and spread through global transmission networks over the past 200 years. These clones demonstrate varying intrinsic propensities for infecting CF or non-CF individuals (linked to specific transcriptional changes enabling survival within macrophages); have undergone multiple rounds of convergent, host-specific adaptation; and have eventually lost their ability to transmit between different patient groups. Our findings thus explain the pathogenic evolution of P. aeruginosa and highlight the importance of global surveillance and cross-infection prevention in averting the emergence of future epidemic clones.
Collapse
Affiliation(s)
- Aaron Weimann
- Victor Phillip Dahdaleh Heart & Lung Research Institute, University of Cambridge, Cambridge, UK
- University of Cambridge Molecular Immunity Unit, MRC Laboratory of Molecular Biology, Cambridge, UK
- Cambridge Centre for AI in Medicine, University of Cambridge, Cambridge, UK
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Adam M Dinan
- Victor Phillip Dahdaleh Heart & Lung Research Institute, University of Cambridge, Cambridge, UK
- University of Cambridge Molecular Immunity Unit, MRC Laboratory of Molecular Biology, Cambridge, UK
- Cambridge Centre for AI in Medicine, University of Cambridge, Cambridge, UK
| | - Christopher Ruis
- Victor Phillip Dahdaleh Heart & Lung Research Institute, University of Cambridge, Cambridge, UK
- University of Cambridge Molecular Immunity Unit, MRC Laboratory of Molecular Biology, Cambridge, UK
- Cambridge Centre for AI in Medicine, University of Cambridge, Cambridge, UK
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Audrey Bernut
- Laboratory of Pathogens and Host Immunity (LPHI), UMR5235, CNRS/Université de Montpellier, Montpellier, France
| | - Stéphane Pont
- Laboratory of Pathogens and Host Immunity (LPHI), UMR5235, CNRS/Université de Montpellier, Montpellier, France
| | - Karen Brown
- Victor Phillip Dahdaleh Heart & Lung Research Institute, University of Cambridge, Cambridge, UK
- University of Cambridge Molecular Immunity Unit, MRC Laboratory of Molecular Biology, Cambridge, UK
- Cambridge Centre for Lung Infection, Royal Papworth Hospital, Cambridge, UK
| | - Judy Ryan
- Victor Phillip Dahdaleh Heart & Lung Research Institute, University of Cambridge, Cambridge, UK
- University of Cambridge Molecular Immunity Unit, MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Lúcia Santos
- Department of Physiology, Bioscience Institute, University College Cork, Cork, Ireland
| | - Louise Ellison
- University of Cambridge Molecular Immunity Unit, MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Emem Ukor
- University of Cambridge Molecular Immunity Unit, MRC Laboratory of Molecular Biology, Cambridge, UK
- Cambridge Centre for Lung Infection, Royal Papworth Hospital, Cambridge, UK
| | - Arun P Pandurangan
- Victor Phillip Dahdaleh Heart & Lung Research Institute, University of Cambridge, Cambridge, UK
- Department of Biochemistry, University of Cambridge, Cambridge, UK
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - Sina Krokowski
- Victor Phillip Dahdaleh Heart & Lung Research Institute, University of Cambridge, Cambridge, UK
- University of Cambridge Molecular Immunity Unit, MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Tom L Blundell
- Victor Phillip Dahdaleh Heart & Lung Research Institute, University of Cambridge, Cambridge, UK
- Department of Biochemistry, University of Cambridge, Cambridge, UK
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - Martin Welch
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Beth Blane
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - Kim Judge
- Wellcome Sanger Institute, Hinxton, UK
| | - Rachel Bousfield
- Department of Medicine, University of Cambridge, Cambridge, UK
- Cambridge University Hospitals Trust, Cambridge, UK
| | | | | | - Irena Kukavica-Ibrulj
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec City, Québec, Canada
| | - Giordano Rampioni
- Department of Science, University Roma Tre, Rome, Italy
- IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Livia Leoni
- Department of Science, University Roma Tre, Rome, Italy
| | - Patrick T Harrison
- Department of Physiology, Bioscience Institute, University College Cork, Cork, Ireland
| | - Sharon J Peacock
- Department of Medicine, University of Cambridge, Cambridge, UK
- Cambridge University Hospitals Trust, Cambridge, UK
| | - Nicholas R Thomson
- Wellcome Sanger Institute, Hinxton, UK
- London School of Hygiene and Tropical Medicine, London, UK
| | - Jeff Gauthier
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec City, Québec, Canada
| | - Jo L Fothergill
- Department of Clinical Infection, Microbiology and Immunology, University of Liverpool, Liverpool, UK
| | - Roger C Levesque
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec City, Québec, Canada
| | - Julian Parkhill
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - R Andres Floto
- Victor Phillip Dahdaleh Heart & Lung Research Institute, University of Cambridge, Cambridge, UK
- University of Cambridge Molecular Immunity Unit, MRC Laboratory of Molecular Biology, Cambridge, UK
- Cambridge Centre for AI in Medicine, University of Cambridge, Cambridge, UK
- Cambridge Centre for Lung Infection, Royal Papworth Hospital, Cambridge, UK
- Department of Medicine, University of Cambridge, Cambridge, UK
- Cambridge University Hospitals Trust, Cambridge, UK
| |
Collapse
|
5
|
Eklöf J, Alispahic IA, Armbruster K, Lapperre TS, Browatzki A, Overgaard RH, Harboe ZB, Janner J, Moberg M, Ulrik CS, Andreassen HF, Weinreich UM, Kjærgaard JL, Villadsen J, Fenlev CS, Jensen TT, Christensen CW, Bangsborg J, Ostergaard C, Ghathian KSA, Jordan A, Klausen TW, Nielsen TL, Wilcke T, Seersholm N, Sivapalan P, Jensen JUS. Systemic antibiotics for Pseudomonas aeruginosa infection in outpatients with non-hospitalised exacerbations of pre-existing lung diseases: a randomised clinical trial. Respir Res 2024; 25:236. [PMID: 38844921 PMCID: PMC11157704 DOI: 10.1186/s12931-024-02860-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 05/29/2024] [Indexed: 06/09/2024] Open
Abstract
BACKGROUND The effect of dual systemic antibiotic therapy against Pseudomonas aeruginosa in patients with pre-existing lung disease is unknown. To assess whether dual systemic antibiotics against P. aeruginosa in outpatients with COPD, non-cystic fibrosis (non-CF) bronchiectasis, or asthma can improve outcomes. METHODS Multicenter, randomised, open-label trial conducted at seven respiratory outpatient clinics in Denmark. Outpatients with COPD, non-CF bronchiectasis, or asthma with a current P. aeruginosa-positive lower respiratory tract culture (clinical routine samples obtained based on symptoms of exacerbation not requiring hospitalisation), regardless of prior P. aeruginosa-status, no current need for hospitalisation, and at least two moderate or one hospitalisation-requiring exacerbation within the last year were eligible. Patients were assigned 1:1 to 14 days of dual systemic anti-pseudomonal antibiotics or no antibiotic treatment. Primary outcome was time to prednisolone or antibiotic-requiring exacerbation or death from day 20 to day 365. RESULTS The trial was stopped prematurely based in lack of recruitment during the COVID-19 pandemic, this decision was endorsed by the Data and Safety Monitoring Board. Forty-nine outpatients were included in the study. There was a reduction in risk of the primary outcome in the antibiotic group compared to the control group (HR 0.51 (95%CI 0.27-0.96), p = 0.037). The incidence of admissions with exacerbation within one year was 1.1 (95%CI 0.6-1.7) in the dual antibiotic group vs. 2.9 (95%CI 1.3-4.5) in the control group, p = 0.037. CONCLUSIONS Use of dual systemic antibiotics for 14 days against P. aeruginosa in outpatients with chronic lung diseases and no judged need for hospitalisation, improved clinical outcomes markedly. The main limitation was the premature closure of the trial. TRIAL REGISTRATION ClinicalTrials.gov, NCT03262142, registration date 2017-08-25.
Collapse
Affiliation(s)
- Josefin Eklöf
- Department of Internal Medicine, Herlev Gentofte University Hospital, Section of Respiratory Medicine, Copenhagen University Hospital, Herlev Gentofte, Hellerup, Denmark.
| | - Imane Achir Alispahic
- Department of Internal Medicine, Herlev Gentofte University Hospital, Section of Respiratory Medicine, Copenhagen University Hospital, Herlev Gentofte, Hellerup, Denmark
| | - Karin Armbruster
- Department of Internal Medicine, Herlev Gentofte University Hospital, Section of Respiratory Medicine, Copenhagen University Hospital, Herlev Gentofte, Hellerup, Denmark
| | - Therese Sophie Lapperre
- Department of Respiratory Medicine and Infectious Diseases, Copenhagen University Hospital, Bispebjerg Frederiksberg, Denmark
- Department of Respiratory Medicine, Antwerp University Hospital, Antwerp, Belgium
- Laboratory of Experimental Medicine and Pediatrics, University of Antwerp, Antwerp, Belgium
| | - Andrea Browatzki
- Department of Respiratory Medicine and Infectious Diseases, Copenhagen University Hospital, North Zealand, Denmark
| | - Rikke Holmen Overgaard
- Department of Respiratory Medicine and Infectious Diseases, Copenhagen University Hospital, North Zealand, Denmark
| | - Zitta Barrella Harboe
- Department of Respiratory Medicine and Infectious Diseases, Copenhagen University Hospital, North Zealand, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Julie Janner
- Department of Respiratory Medicine, Copenhagen University Hospital, Hvidovre, Denmark
| | - Mia Moberg
- Department of Respiratory Medicine, Copenhagen University Hospital, Hvidovre, Denmark
| | | | - Helle Frost Andreassen
- Department of Respiratory Medicine and Infectious Diseases, Copenhagen University Hospital, Bispebjerg Frederiksberg, Denmark
| | - Ulla Møller Weinreich
- Department of Respiratory Medicine, Aalborg University Hospital and Department of Clinical Medicine, Aalborg, Denmark
| | - Jakob Lyngby Kjærgaard
- Department of Internal Medicine, Herlev Gentofte University Hospital, Section of Respiratory Medicine, Copenhagen University Hospital, Herlev Gentofte, Hellerup, Denmark
| | - Jenny Villadsen
- Department of Internal Medicine, Herlev Gentofte University Hospital, Section of Respiratory Medicine, Copenhagen University Hospital, Herlev Gentofte, Hellerup, Denmark
| | - Camilla Sund Fenlev
- Laboratory of Experimental Medicine and Pediatrics, University of Antwerp, Antwerp, Belgium
| | | | | | - Jette Bangsborg
- Department of Clinical Microbiology, Copenhagen University Hospital, Herlev, Denmark
| | - Christian Ostergaard
- Department of Clinical Microbiology, Copenhagen University Hospital, Hvidovre, Denmark
| | | | - Alexander Jordan
- Department of Internal Medicine, Herlev Gentofte University Hospital, Section of Respiratory Medicine, Copenhagen University Hospital, Herlev Gentofte, Hellerup, Denmark
| | - Tobias Wirenfeldt Klausen
- Department of Internal Medicine, Herlev Gentofte University Hospital, Section of Respiratory Medicine, Copenhagen University Hospital, Herlev Gentofte, Hellerup, Denmark
| | - Thyge Lynghøj Nielsen
- Department of Respiratory Medicine and Infectious Diseases, Copenhagen University Hospital, North Zealand, Denmark
| | - Torgny Wilcke
- Department of Internal Medicine, Herlev Gentofte University Hospital, Section of Respiratory Medicine, Copenhagen University Hospital, Herlev Gentofte, Hellerup, Denmark
| | - Niels Seersholm
- Department of Internal Medicine, Herlev Gentofte University Hospital, Section of Respiratory Medicine, Copenhagen University Hospital, Herlev Gentofte, Hellerup, Denmark
| | - Pradeesh Sivapalan
- Department of Internal Medicine, Herlev Gentofte University Hospital, Section of Respiratory Medicine, Copenhagen University Hospital, Herlev Gentofte, Hellerup, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Jens-Ulrik Stæhr Jensen
- Department of Internal Medicine, Herlev Gentofte University Hospital, Section of Respiratory Medicine, Copenhagen University Hospital, Herlev Gentofte, Hellerup, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
6
|
Dichtl S, Posch W, Wilflingseder D. The breathtaking world of human respiratory in vitro models: Investigating lung diseases and infections in 3D models, organoids, and lung-on-chip. Eur J Immunol 2024; 54:e2250356. [PMID: 38361030 DOI: 10.1002/eji.202250356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 12/13/2023] [Accepted: 12/15/2023] [Indexed: 02/17/2024]
Abstract
The COVID-19 pandemic illustrated an urgent need for sophisticated, human tissue models to rapidly test and develop effective treatment options against this newly emerging severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Thus, in particular, the last 3 years faced an extensive boost in respiratory and pulmonary model development. Nowadays, 3D models, organoids and lung-on-chip, respiratory models in perfusion, or precision-cut lung slices are used to study complex research questions in human primary cells. These models provide physiologically relevant systems for studying SARS-CoV-2 and, of course, other respiratory pathogens, but they are, too, suited for studying lung pathologies, such as CF, chronic obstructive pulmonary disease, or asthma, in more detail in terms of viral infection. With these models, the cornerstone has been laid for further advancing the organs by, for example, inclusion of several immune cell types or humoral immune components, combination with other organs in microfluidic organ-on-chip devices, standardization and harmonization of the devices for reliable and reproducible drug and vaccine testing in high throughput.
Collapse
Affiliation(s)
- Stefanie Dichtl
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Wilfried Posch
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Doris Wilflingseder
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
7
|
Paróczai D, Burian K, Bikov A. Bacterial Vaccinations in Patients with Chronic Obstructive Pulmonary Disease. Vaccines (Basel) 2024; 12:213. [PMID: 38400196 PMCID: PMC10893474 DOI: 10.3390/vaccines12020213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/14/2024] [Accepted: 02/16/2024] [Indexed: 02/25/2024] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a frequent, often progressive, chronic disease of the lungs. Patients with COPD often have impaired immunity; therefore, they are prone to chest infections, such as pneumonia or bronchitis. Acute exacerbations of COPD are major events that accelerate disease progression, contributing to its symptoms' burden, morbidity, and mortality. Both pneumonia and acute exacerbations in COPD are caused by bacteria against which there are effective vaccinations. Although the number of randomised controlled studies on bacterial vaccinations in COPD is limited, national and international guidelines endorse specific vaccinations in patients with COPD. This review will summarise the different types of vaccinations that prevent pneumonia and COPD exacerbations. We also discuss the results of early phase studies. We will mainly focus on Streptococcus pneumoniae, as this bacterium was predominantly investigated in COPD. However, we also review studies investigating vaccinations against Haemophilus influenzae, Moraxella catarrhalis, and Bordetella pertussis.
Collapse
Affiliation(s)
- Dóra Paróczai
- Department of Medical Microbiology, University of Szeged, H-6720 Szeged, Hungary; (D.P.); (K.B.)
- Albert Szent-Györgyi Health Center, Department of Pulmonology, University of Szeged, H-6720 Szeged, Hungary
| | - Katalin Burian
- Department of Medical Microbiology, University of Szeged, H-6720 Szeged, Hungary; (D.P.); (K.B.)
| | - Andras Bikov
- Manchester University NHS Foundation Trust, Wythenshawe Hospital, Manchester M23 9LT, UK
- Division of Immunology, Immunity to Infection and Respiratory Medicine, University of Manchester, Manchester M13 9PL, UK
| |
Collapse
|
8
|
Simanek KA, Schumacher ML, Mallery CP, Shen S, Li L, Paczkowski JE. Quorum-sensing synthase mutations re-calibrate autoinducer concentrations in clinical isolates of Pseudomonas aeruginosa to enhance pathogenesis. Nat Commun 2023; 14:7986. [PMID: 38042853 PMCID: PMC10693556 DOI: 10.1038/s41467-023-43702-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 11/17/2023] [Indexed: 12/04/2023] Open
Abstract
Quorum sensing is a mechanism of bacterial communication that controls virulence gene expression. Pseudomonas aeruginosa regulates virulence via two synthase/transcription factor receptor pairs: LasI/R and RhlI/R. LasR is considered the master transcriptional regulator of quorum sensing, as it upregulates rhlI/R. However, clinical isolates often have inactivating mutations in lasR, while maintaining Rhl-dependent signaling. We sought to understand how quorum sensing progresses in isolates with lasR mutations, specifically via activation of RhlR. We find that clinical isolates with lasR inactivating mutations often harbor concurrent mutations in rhlI. Using ultra-high-performance liquid chromatography coupled with high-resolution mass spectrometry, we discover that strains lacking lasR overproduce the RhlI-synthesized autoinducer and that RhlI variants re-calibrate autoinducer concentrations to wild-type levels, restoring virulent phenotypes. These findings provide a mechanism for the plasticity of quorum sensing progression in an acute infection niche.
Collapse
Affiliation(s)
- Kayla A Simanek
- Department of Biomedical Sciences, University at Albany, School of Public Health, Albany, New York, 12201, USA
| | - Megan L Schumacher
- Department of Biomedical Sciences, University at Albany, School of Public Health, Albany, New York, 12201, USA
| | - Caleb P Mallery
- Department of Biomedical Sciences, University at Albany, School of Public Health, Albany, New York, 12201, USA
| | - Stella Shen
- Division of Genetics, Wadsworth Center, New York State Department of Health, Albany, New York, 12208, USA
| | - Lingyun Li
- Division of Environmental Health Sciences, Wadsworth Center, New York State Department of Health, Albany, New York, 12208, USA
| | - Jon E Paczkowski
- Department of Biomedical Sciences, University at Albany, School of Public Health, Albany, New York, 12201, USA.
- Division of Genetics, Wadsworth Center, New York State Department of Health, Albany, New York, 12208, USA.
| |
Collapse
|
9
|
Vasiljevs S, Gupta A, Baines D. Effect of glucose on growth and co-culture of Staphylococcus aureus and Pseudomonas aeruginosa in artificial sputum medium. Heliyon 2023; 9:e21469. [PMID: 37908712 PMCID: PMC10613906 DOI: 10.1016/j.heliyon.2023.e21469] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 10/05/2023] [Accepted: 10/21/2023] [Indexed: 11/02/2023] Open
Abstract
People with cystic fibrosis-related diabetes (CFRD) suffer from chronic infections with Staphylococcus aureus and/or Pseudomonas aeruginosa. In people with CFRD, the concentration of glucose in the airway surface liquid (ASL) was shown to be elevated from 0.4 to 4 mM. The effect of glucose on bacterial growth/interactions in ASL is not well understood and here we studied the relationship between these lung pathogens in artificial sputum medium (ASM), an environment similar to ASL in vivo. S. aureus exhibited more rapid adaptation to growth in ASM than P. aeruginosa. Supplementation of ASM with glucose significantly increased the growth of S. aureus (p < 0.01, n = 5) and P. aeruginosa (p < 0.001, n = 3). ASM conditioned by the presence of S. aureus promoted growth of P. aeruginosa with less lag time compared with non-conditioned ASM, or conditioned medium that had been heated to 121 °C. Stable co-culture of S. aureus and P. aeruginosa could be established in a 50:50 mix of ASM and S. aureus-conditioned supernatant. These data indicate that glucose, in a nutrient depleted environment, can promote the growth of S. aureus and P. aeruginosa. In addition, heat labile factors present in S. aureus pre-conditioned ASM promoted the growth of P. aeruginosa. We suggest that the use of ASM allows investigation of the effects of nutrients such as glucose on common lung pathogens. ASM could be further used to understand the relationship between S. aureus and P. aeruginosa in a co-culture scenario. Our model of stable co-culture could be extrapolated to include other common lung pathogens and could be used to better understand disease progression in vitro.
Collapse
Affiliation(s)
- Stanislavs Vasiljevs
- Institute for Infection and Immunity, St George's University of London, Cranmer Terrace, Tooting, London, SW17 0RE, UK
| | - Arya Gupta
- School of Health, Leeds Beckett University, Leeds, LS1 3HE, UK
| | - Deborah Baines
- Institute for Infection and Immunity, St George's University of London, Cranmer Terrace, Tooting, London, SW17 0RE, UK
| |
Collapse
|
10
|
Wijit K, Sonthisombat P, Diewsurin J. A score to predict Pseudomonas aeruginosa infection in older patients with community-acquired pneumonia. BMC Infect Dis 2023; 23:700. [PMID: 37858082 PMCID: PMC10585923 DOI: 10.1186/s12879-023-08688-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 10/09/2023] [Indexed: 10/21/2023] Open
Abstract
BACKGROUND In Thailand, the incidence of community-acquired pseudomonal pneumonia among 60- to 65-year-olds ranges from 10.90% to 15.51%, with a mortality rate of up to 19.00%. Antipseudomonal agents should be selected as an empirical treatment for elderly patients at high risk for developing this infection. The purpose of this study was to identify risk factors and develop a risk predictor for Pseudomonas aeruginosa infection in older adults with community-acquired pneumonia (CAP). METHODS A retrospective data collection from an electronic database involved the elderly hospitalized patients with P. aeruginosa- and non-P. aeruginosa-causing CAP, admitted between January 1, 2016, and June 30, 2021. Risk factors for P. aeruginosa infection were analysed using logistic regression, and the instrument was developed by scoring each risk factor based on the beta coefficient and evaluating discrimination and calibration using the area under the receiver operating characteristic curve (AuROC) and observed versus predicted probability (E/O) ratio. RESULTS The inclusion criteria were met by 81 and 104 elderly patients diagnosed with CAP caused by P. aeruginosa and non-P. aeruginosa, respectively. Nasogastric (NG) tube feeding (odd ratios; OR = 40.68), bronchiectasis (B) (OR = 4.13), immunocompromised condition (I) (OR = 3.76), and other chronic respiratory illnesses (r) such as atelectasis, pulmonary fibrosis, and lung bleb (OR = 2.61) were the specific risk factors for infection with P. aeruginosa. The "60-B-r-I-NG" risk score was named after the 4 abbreviated risk variables and found to have good predicative capability (AuROC = 0.77) and accuracy comparable to or near true P. aeruginosa infection (E/O = 1). People who scored at least two should receive empirically antipseudomonal medication. CONCLUSIONS NG tube feeding before admission, bronchiectasis, immunocompromisation, atelectasis, pulmonary fibrosis and lung bleb were risk factors for pseudomonal CAP in the elderly. The 60-B-r-I-NG was developed for predicting P. aeruginosa infection with a high degree of accuracy, equal to or comparable to the existing P. aeruginosa infection. Antipseudomonal agents may be started in patients who are at least 60 years old and have a score of at least 2 in order to lower mortality and promote the appropriate use of these medications.
Collapse
Affiliation(s)
- Kingkarn Wijit
- The College of Pharmacotherapy of Thailand, Nonthaburi, Thailand
- Department of Pharmacy Practice, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok, Thailand
| | - Paveena Sonthisombat
- Department of Pharmacy Practice, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok, Thailand
| | - Jaruwan Diewsurin
- Department of Medicine, Buddhachinaraj Hospital, Phitsanulok, Thailand
| |
Collapse
|
11
|
Singh G, Acharya S, Shukla S, Jain D. Muco-Obstructive Lung Disease: A Systematic Review. Cureus 2023; 15:e46866. [PMID: 37954759 PMCID: PMC10637992 DOI: 10.7759/cureus.46866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 10/11/2023] [Indexed: 11/14/2023] Open
Abstract
Muco-obstructive lung disease is a new classification under the diseases of respiratory tract. A lot of discussion is still going on regarding this new group of diseases. It is characterised by obstruction of the respiratory tract with a thick mucin layer. Usually in normal individuals, the mucus is swept out of the respiratory system while coughing in the form of sputum or phlegm, but if the consistency of the mucus is thick, or the amount is heavy or there is a certain defect in the ciliary function of the respiratory tract, the mucus is not cleared and it gets accumulated in the lungs alveoli, therefore blocking it. The mucus trapped in the distal airways cannot be cleared by coughing therefore forming a layer in the alveoli and bronchioles. Long-standing condition causes inflammation and infection. This new group of diseases specifically includes chronic obstructive pulmonary disease (COPD), cystic fibrosis (CF), primary ciliary dyskinesia (PCD) and non-cystic fibrosis bronchiectasis (NCFB). Asthma, although an obstructive disease of the lung, is not particularly included under muco-obstructive lung disease. The major symptoms with which these diseases present are sputum production, chronic cough and acute exacerbations of the condition. The mucus adheres to the lung parenchyma causing airway obstruction and hyperinflation. In this article, we will see how muco-obstructive lung diseases affect the normal physiology of the respiratory system and how is it different from other obstructive and restrictive lung diseases. We will individually look into all the four conditions that come under the category of muco-obstructive lung diseases.
Collapse
Affiliation(s)
- Garima Singh
- Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Sourya Acharya
- Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Samarth Shukla
- Pathology, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Dhriti Jain
- Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| |
Collapse
|
12
|
Bajire SK, Prabhu A, Bhandary YP, Irfan KM, Shastry RP. 7-Ethoxycoumarin rescued Caenorhabditis elegans from infection of COPD derived clinical isolate Pseudomonas aeruginosa through virulence and biofilm inhibition via targeting Rhl and Pqs quorum sensing systems. World J Microbiol Biotechnol 2023; 39:208. [PMID: 37231227 DOI: 10.1007/s11274-023-03655-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 05/18/2023] [Indexed: 05/27/2023]
Abstract
Pseudomonas aeruginosa is an ambidextrous Gram-negative contagium with density convoluted network defined quorum sensing, which enables the persistent survival within the host environment, contributing to various lung related diseases including Chronic Obstructive Pulmonary Disease (COPD). It is clear that P. aeruginosa is a powerful, exquisite pathogen that has adopted a variety of virulence properties through quorum sensing (QS) regulated phenomenon and that it dominates both in the development and exacerbations of COPD. Interestingly, 7-Ethoxycoumarin (7-EC), a compound that adequately mimics QS signaling molecule of P. aeruginosa, was introduced as part of the process of developing novel ways to treat the severe exacerbations. The results showed that, introduction of 7-EC significantly decreased exopolysaccharide-mediated biofilm development of strains isolated from COPD sputum, as evidenced by SEM analysis. Furthermore, 7-EC was able to modulate a variety of virulence factors and motility without subjecting planktonic cells to any selection pressure. Bacterial invasion assay revealed the potential activity of the 7-EC in preventing the active entry to A549 cells without causing any damage to the cells and found functionally active in protecting the C. elegans from P. aeruginosa infection and being non-toxic to the worms. Docking analysis was further proved that 7-EC to be the potential anti-QS compound competing specifically with Rhl and Pqs Systems. Therefore, 7-EC in the utilisation against the P. aeruginosa based infections, may open an avenue for the futuristic mechanistic study in chronic respiratory diseases and a initiator for the development of non-antibiotic based antibacterial therapy.
Collapse
Affiliation(s)
- Sukesh Kumar Bajire
- Division of Microbiology and Biotechnology, Yenepoya Research Centre, Yenepoya (Deemed to be University), University Road, Deralakatte, Mangaluru, 575018, India
| | - Ashwini Prabhu
- Yenepoya Research Centre, Yenepoya (Deemed to be University), University Road, Deralakatte, Mangaluru, 575018, India
| | - Yashodhar P Bhandary
- Yenepoya Research Centre, Yenepoya (Deemed to be University), University Road, Deralakatte, Mangaluru, 575018, India
| | - K M Irfan
- Department of Pulmonary Medicine, Yenepoya Medical College Hospital, Deralakatte, Mangaluru, 575018, India
| | - Rajesh P Shastry
- Division of Microbiology and Biotechnology, Yenepoya Research Centre, Yenepoya (Deemed to be University), University Road, Deralakatte, Mangaluru, 575018, India.
| |
Collapse
|
13
|
Alsayed AR, Abu-Samak MS, Alkhatib M. Asthma-COPD Overlap in Clinical Practice (ACO_CP 2023): Toward Precision Medicine. J Pers Med 2023; 13:677. [PMID: 37109063 PMCID: PMC10146260 DOI: 10.3390/jpm13040677] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/07/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Asthma and COPD have characteristic symptoms, yet patients with both are prevalent. Despite this, there is currently no globally accepted definition for the overlap between asthma and COPD, commonly referred to as asthma-COPD overlap (ACO). Generally, ACO is not considered a distinct disease or symptom from either clinical or mechanistic perspectives. However, identifying patients who present with both conditions is crucial for guiding clinical therapy. Similar to asthma and COPD, ACO patients are heterogeneous and presumably have multiple underlying disease processes. The variability of ACO patients led to the establishment of multiple definitions describing the condition's essential clinical, physiological, and molecular characteristics. ACO comprises numerous phenotypes, which affects the optimal medication choice and can serve as a predictor of disease prognosis. Various phenotypes of ACO have been suggested based on host factors including but not limited to demographics, symptoms, spirometric findings, smoking history, and underlying airway inflammation. This review provides a comprehensive clinical guide for ACO patients to be used in clinical practice based on the available limited data. Future longitudinal studies must evaluate the stability of ACO phenotypes over time and explore their predictive powers to facilitate a more precise and effective management approach.
Collapse
Affiliation(s)
- Ahmad R Alsayed
- Department of Clinical Pharmacy and Therapeutics, Faculty of Pharmacy, Applied Science Private University, Amman 11937, Jordan
| | - Mahmoud S Abu-Samak
- Department of Clinical Pharmacy and Therapeutics, Faculty of Pharmacy, Applied Science Private University, Amman 11937, Jordan
| | - Mohammad Alkhatib
- Department of Experimental Medicine, University of Rome "Tor Vergata", 00133 Roma, Italy
| |
Collapse
|
14
|
Alsayed AR, Abed A, Jarrar YB, Alshammari F, Alshammari B, Basheti IA, Zihlif M. Alteration of the Respiratory Microbiome in Hospitalized Patients with Asthma-COPD Overlap during and after an Exacerbation. J Clin Med 2023; 12:2118. [PMID: 36983122 PMCID: PMC10051973 DOI: 10.3390/jcm12062118] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/02/2023] [Accepted: 03/05/2023] [Indexed: 03/30/2023] Open
Abstract
The immediate aim of this study was to comparatively examine the bacterial respiratory microbiome of patients in a stable state and during an exacerbation of asthma-COPD (chronic obstructive pulmonary disease) overlap (ACO). This prospective observational study took place in Jordan between 1 September 2021 and 30 April 2022. Sputum samples from patients with recognized ACO were acquired within 48 h of the exacerbation onset and again at 3 weeks following the exacerbation. The next-generation sequencing Illumina MiSeq was employed and uncovered significantly high bacterial diversity in the sputa. The results showed a significant decrease in the taxonomic richness in the sputum samples collected during the exacerbation episodes compared with those collected from patients in a stable state (p = 0.008), with an increase in the taxonomic evenness (p < 0.005). This change in the composition of the airway bacterial community suggests that the replacement of a significant portion of the airway microbiome with certain microorganisms may play a role in the decrease in microbial diversity observed during an ACO exacerbation. Greater knowledge of this link could allow for a more focused administration of antibiotics, especially during exacerbations, improving clinical efficacy and patient outcomes.
Collapse
Affiliation(s)
- Ahmad R. Alsayed
- Department of Clinical Pharmacy and Therapeutics, Faculty of Pharmacy, Applied Science Private University, Amman 11931-166, Jordan
| | - Anas Abed
- Pharmacological and Diagnostic Research Centre, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman 11931-166, Jordan
| | - Yazun Bashir Jarrar
- Department of Basic Medical Sciences, Faculty of Medicine, Al-Balqa Applied University, Al-Salt 19117, Jordan
| | - Farhan Alshammari
- Department of Pharmaceutics, College of Pharmacy, University of Hail, Hail 2440, Saudi Arabia
| | - Bushra Alshammari
- Department of Medical Surgical Nursing, College of Nursing, University of Hail, Hail 2440, Saudi Arabia
| | - Iman A. Basheti
- Faculty of Pharmacy, Sydney University, Sydney, NSW 2006, Australia
| | - Malek Zihlif
- Department of Pharmacology, School of Medicine, The University of Jordan, Amman 11942, Jordan
| |
Collapse
|
15
|
Karthik Y, Kalyani MI. Occurrence of Streptomyces tauricus in mangrove soil of Mangalore region in Dakshina Kannada as a source for antimicrobial peptide. J Basic Microbiol 2023; 63:389-403. [PMID: 35876342 DOI: 10.1002/jobm.202200108] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 06/09/2022] [Accepted: 07/10/2022] [Indexed: 11/09/2022]
Abstract
Microbial resistance and deprivation of the effective drugs have become the foremost problem that propels to seek out for advanced approach. This concept initiated a need to search for more effective antimicrobial compounds from reliable sources. The Streptomyces is grouped under phylum Actinobacteria and are considered prolific producers of antibiotics, around 70% of presently available antibiotics are contributed by Streptomyces alone. In this study, Mangroves of the Mangalore Coast offered a unique source for screening Actinomyces group of microorganisms. We investigated on the four soil samples collected from Mangrove swamps of Mangalore, Karnataka, India. Based on their culture traits, the 18 distinct Actinomyces isolates were analyzed through a series of morphological and biochemical tests on starch casein nitrate (SCN) media. Culture biomasses were subjected for intracellular protein extraction through acetone precipitation method; the extracted proteins from each Actinomyces isolate were examined for antimicrobial activity against test organisms. The isolate ANTB-YKMU4 showed potential antimicrobial activity against significant number of test organisms; Bacillus cereus, Proteus vulgaris, Staphylococcus aureus, Salmonella typhimurium, and Pseudomonas aeruginosa. The isolate ANTB-YKMU4 through 16 s rRNA gene sequence analysis was identified as Streptomyces tauricus strain with GenBank accession no. MW785875.1. The S. tauricus further cultivated for efficient biomass growth on SCN media for subsequent protein extraction and purification by a series of Electrophoretic and chromatographic techniques. Thus, by intracellular extractions from S. tauricus resulted in the identification of peptide with a molecular weight of 266 Da that was characterized by LC-MS.
Collapse
Affiliation(s)
- Yalpi Karthik
- Department of Studies and Research in Microbiology, Mangalore University, Jnana Kaveri Campus, Chikka Aluvara, Kodagu, Karnataka, India
| | - Manjula Ishwara Kalyani
- Department of Studies and Research in Microbiology, Mangalore University, Jnana Kaveri Campus, Chikka Aluvara, Kodagu, Karnataka, India
| |
Collapse
|
16
|
The COPD-Associated Polymorphism Impairs the CFTR Function to Suppress Excessive IL-8 Production upon Environmental Pathogen Exposure. Int J Mol Sci 2023; 24:ijms24032305. [PMID: 36768629 PMCID: PMC9916815 DOI: 10.3390/ijms24032305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/17/2023] [Accepted: 01/21/2023] [Indexed: 01/26/2023] Open
Abstract
COPD is a lifestyle-related disease resulting from irreversible damage to respiratory tissues mostly due to chronic exposure to environmental pollutants, including cigarette smoke. Environmental pathogens and pollutants induce the acquired dysfunction of the CFTR Cl- channel, which is invoked in COPD. Despite the increased incidence of CFTR polymorphism R75Q or M470V in COPD patients, the mechanism of how the CFTR variant affects COPD pathogenesis remains unclear. Here, we investigated the impact of CFTR polymorphisms (R75Q, M470V) on the CFTR function in airway epithelial cell models. While wild-type (WT) CFTR suppressed the proinflammatory cytokine production induced by COPD-related pathogens including pyocyanin (PYO), R75Q- or M470V-CFTR failed. Mechanistically, the R75Q- or M470V-CFTR fractional PM activity (FPMA) was significantly lower than WT-CFTR in the presence of PYO. Notably, the CF drug Trikafta corrected the PM expression of R75Q- or M470V-CFTR even upon PYO exposure and consequently suppressed the excessive IL-8 production. These results suggest that R75Q or M470V polymorphism impairs the CFTR function to suppress the excessive proinflammatory response to environmental pathogens associated with COPD. Moreover, Trikafta may be useful to prevent the COPD pathogenesis associated with acquired CFTR dysfunction.
Collapse
|
17
|
Kayongo A, Robertson NM, Siddharthan T, Ntayi ML, Ndawula JC, Sande OJ, Bagaya BS, Kirenga B, Mayanja-Kizza H, Joloba ML, Forslund SK. Airway microbiome-immune crosstalk in chronic obstructive pulmonary disease. Front Immunol 2023; 13:1085551. [PMID: 36741369 PMCID: PMC9890194 DOI: 10.3389/fimmu.2022.1085551] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 12/28/2022] [Indexed: 01/19/2023] Open
Abstract
Chronic Obstructive Pulmonary Disease (COPD) has significantly contributed to global mortality, with three million deaths reported annually. This impact is expected to increase over the next 40 years, with approximately 5 million people predicted to succumb to COPD-related deaths annually. Immune mechanisms driving disease progression have not been fully elucidated. Airway microbiota have been implicated. However, it is still unclear how changes in the airway microbiome drive persistent immune activation and consequent lung damage. Mechanisms mediating microbiome-immune crosstalk in the airways remain unclear. In this review, we examine how dysbiosis mediates airway inflammation in COPD. We give a detailed account of how airway commensal bacteria interact with the mucosal innate and adaptive immune system to regulate immune responses in healthy or diseased airways. Immune-phenotyping airway microbiota could advance COPD immunotherapeutics and identify key open questions that future research must address to further such translation.
Collapse
Affiliation(s)
- Alex Kayongo
- Makerere University Lung Institute, Makerere University College of Health Sciences, Kampala, Uganda,Department of Medicine, College of Health Sciences, Makerere University, Kampala, Uganda,Department of Immunology and Molecular Biology, College of Health Sciences, Makerere University, Kampala, Uganda,Department of Medicine, Center for Emerging Pathogens, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, NJ, United States
| | | | - Trishul Siddharthan
- Division of Pulmonary Medicine, School of Medicine, University of Miami, Miami, FL, United States
| | - Moses Levi Ntayi
- Makerere University Lung Institute, Makerere University College of Health Sciences, Kampala, Uganda,Department of Medicine, College of Health Sciences, Makerere University, Kampala, Uganda,Department of Immunology and Molecular Biology, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Josephine Caren Ndawula
- Makerere University Lung Institute, Makerere University College of Health Sciences, Kampala, Uganda
| | - Obondo J. Sande
- Department of Immunology and Molecular Biology, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Bernard S. Bagaya
- Department of Immunology and Molecular Biology, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Bruce Kirenga
- Makerere University Lung Institute, Makerere University College of Health Sciences, Kampala, Uganda
| | - Harriet Mayanja-Kizza
- Department of Medicine, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Moses L. Joloba
- Department of Immunology and Molecular Biology, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Sofia K. Forslund
- Experimental and Clinical Research Center, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany,Experimental and Clinical Research Center, a cooperation of Charité - Universitatsmedizin Berlin and Max Delbrück Center for Molecular Medicine, Berlin, Germany,Charité-Universitatsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany,DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany,Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany,*Correspondence: Sofia K. Forslund,
| |
Collapse
|
18
|
Closing the Loop on the Vicious Circle in Chronic Obstructive Pulmonary Disease. Ann Am Thorac Soc 2022; 19:1803-1805. [PMID: 36318080 PMCID: PMC9667802 DOI: 10.1513/annalsats.202208-697ed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
19
|
FHUSPA2/10 is a bactericidal monoclonal antibody targeting multiple repeated sequences of Moraxella catarrhalis UspA2. Vaccine 2022; 40:6520-6527. [PMID: 36202640 DOI: 10.1016/j.vaccine.2022.09.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/13/2022] [Accepted: 09/15/2022] [Indexed: 12/05/2022]
Abstract
Moraxella catarrhalis is an important and common respiratory pathogen that can cause Otitis Media, Community Acquired Pneumonia, and has been associated with an increased risk of exacerbations in chronic obstructive pulmonary disease in adults, leading to morbidity and mortality. Its ubiquitous surface protein A2 (UspA2) has been shown to interact with host structures and extracellular matrix proteins, suggesting a role at an early stage of infection and a contribution to bacterial serum resistance. The UspA proteins are homo-trimeric autotransporters that appear as a lollipop-shaped structure in electron micrographs. They are composed of an N-terminal head with adhesive properties, followed by a stalk, which ends by an amphipathic helix and a C-terminal membrane domain. The three family members UspA1, UspA2 and UspA2H, present different amino acid signatures both at the head and membrane-spanning regions. By combining electron microscopy, hydrogen deuterium exchange mass spectrometry and protein modeling, we identified a shared and repeated epitope recognized by FHUSPA2/10, a potent cross-bactericidal monoclonal antibody raised by UspA2 and deduced key amino acids involved in the binding. The finding strengthens the potential of UspA2 to be incorporated in a vaccine formulation against M. catarrhalis.
Collapse
|
20
|
Yun M, Park SH, Kang DH, Kim JW, Kim JD, Ryu S, Lee J, Jeong HM, Hwang HR, Song KS. Inhibition of Pseudomonas aeruginosa LPS-Induced airway inflammation by RIPK3 in human airway. J Cell Mol Med 2022; 26:5506-5516. [PMID: 36226560 DOI: 10.1111/jcmm.17579] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 06/23/2022] [Accepted: 06/28/2022] [Indexed: 11/30/2022] Open
Abstract
Although the physiological function of receptor-interacting protein kinase (RIPK) 3 has emerged as a critical mediator of programmed necrosis/necroptosis, the intracellular role it plays as an attenuator in human lungs and human bronchial epithelia remains unclear. Here, we show that the expression of RIPK3 dramatically decreased in the inflamed tissues of human lungs, and moved from the nucleus to the cytoplasm. The overexpression of RIPK3 dramatically increased F-actin formation and decreased the expression of genes for pro-inflammatory cytokines (IL-6 and IL-1β), but not siRNA-RIPK3. Interestingly, whereas RIPK3 was bound to histone 1b without LPS stimulation, the interaction between them was disrupted after 15 min of LPS treatment. Histone methylation could not maintain the binding of RIPK3 and activated movement towards the cytoplasm. In the cytoplasm, overexpressed RIPK3 continuously attenuated pro-inflammatory cytokine gene expression by inhibiting NF-κB activation, preventing the progression of inflammation during Pseudomonas aeruginosa infection. Our data indicated that RIPK3 is critical for the regulation of the LPS-induced inflammatory microenvironment. Therefore, we suggest that RIPK3 is a potential therapeutic candidate for bacterial infection-induced pulmonary inflammation.
Collapse
Affiliation(s)
- Minsu Yun
- Department of Anesthesiology and Pain Medicine, Kosin University College of Medicine, Busan, South Korea
| | - Sun-Hee Park
- Department of Medical Science, Kosin University College of Medicine, Busan, South Korea
| | - Dong Hee Kang
- Department of Anesthesiology and Pain Medicine, Kosin University College of Medicine, Busan, South Korea
| | - Ji Wook Kim
- Department of Anesthesiology and Pain Medicine, Kosin University College of Medicine, Busan, South Korea
| | - Ju Deok Kim
- Department of Anesthesiology and Pain Medicine, Kosin University College of Medicine, Busan, South Korea
| | - Siejeong Ryu
- Department of Anesthesiology and Pain Medicine, Kosin University College of Medicine, Busan, South Korea
| | - Jeongyeob Lee
- Department of Anesthesiology and Pain Medicine, Kosin University College of Medicine, Busan, South Korea
| | - Hye Min Jeong
- Department of Medical Science, Kosin University College of Medicine, Busan, South Korea
| | - Hye Ran Hwang
- Department of Medical Science, Kosin University College of Medicine, Busan, South Korea
| | - Kyoung Seob Song
- Department of Medical Science, Kosin University College of Medicine, Busan, South Korea
| |
Collapse
|
21
|
Hill DB, Button B, Rubinstein M, Boucher RC. Physiology and pathophysiology of human airway mucus. Physiol Rev 2022; 102:1757-1836. [PMID: 35001665 PMCID: PMC9665957 DOI: 10.1152/physrev.00004.2021] [Citation(s) in RCA: 90] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 12/13/2021] [Accepted: 12/19/2021] [Indexed: 01/27/2023] Open
Abstract
The mucus clearance system is the dominant mechanical host defense system of the human lung. Mucus is cleared from the lung by cilia and airflow, including both two-phase gas-liquid pumping and cough-dependent mechanisms, and mucus transport rates are heavily dependent on mucus concentration. Importantly, mucus transport rates are accurately predicted by the gel-on-brush model of the mucociliary apparatus from the relative osmotic moduli of the mucus and periciliary-glycocalyceal (PCL-G) layers. The fluid available to hydrate mucus is generated by transepithelial fluid transport. Feedback interactions between mucus concentrations and cilia beating, via purinergic signaling, coordinate Na+ absorptive vs Cl- secretory rates to maintain mucus hydration in health. In disease, mucus becomes hyperconcentrated (dehydrated). Multiple mechanisms derange the ion transport pathways that normally hydrate mucus in muco-obstructive lung diseases, e.g., cystic fibrosis (CF), chronic obstructive pulmonary disease (COPD), non-CF bronchiectasis (NCFB), and primary ciliary dyskinesia (PCD). A key step in muco-obstructive disease pathogenesis is the osmotic compression of the mucus layer onto the airway surface with the formation of adherent mucus plaques and plugs, particularly in distal airways. Mucus plaques create locally hypoxic conditions and produce airflow obstruction, inflammation, infection, and, ultimately, airway wall damage. Therapies to clear adherent mucus with hydrating and mucolytic agents are rational, and strategies to develop these agents are reviewed.
Collapse
Affiliation(s)
- David B Hill
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Joint Department of Biomedical Engineering, The University of North Carolina and North Carolina State University, Chapel Hill, North Carolina
| | - Brian Button
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Michael Rubinstein
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Department of Mechanical Engineering and Materials Science, Biomedical Engineering, Physics, and Chemistry, Duke University, Durham, North Carolina
| | - Richard C Boucher
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
22
|
Resistance Is Not Futile: The Role of Quorum Sensing Plasticity in Pseudomonas aeruginosa Infections and Its Link to Intrinsic Mechanisms of Antibiotic Resistance. Microorganisms 2022; 10:microorganisms10061247. [PMID: 35744765 PMCID: PMC9228389 DOI: 10.3390/microorganisms10061247] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/06/2022] [Accepted: 06/09/2022] [Indexed: 01/01/2023] Open
Abstract
Bacteria use a cell-cell communication process called quorum sensing (QS) to orchestrate collective behaviors. QS relies on the group-wide detection of extracellular signal molecules called autoinducers (AI). Quorum sensing is required for virulence and biofilm formation in the human pathogen Pseudomonas aeruginosa. In P. aeruginosa, LasR and RhlR are homologous LuxR-type soluble transcription factor receptors that bind their cognate AIs and activate the expression of genes encoding functions required for virulence and biofilm formation. While some bacterial signal transduction pathways follow a linear circuit, as phosphoryl groups are passed from one carrier protein to another ultimately resulting in up- or down-regulation of target genes, the QS system in P. aeruginosa is a dense network of receptors and regulators with interconnecting regulatory systems and outputs. Once activated, it is not understood how LasR and RhlR establish their signaling hierarchy, nor is it clear how these pathway connections are regulated, resulting in chronic infection. Here, we reviewed the mechanisms of QS progression as it relates to bacterial pathogenesis and antimicrobial resistance and tolerance.
Collapse
|
23
|
Love ME, Proud D. Respiratory Viral and Bacterial Exacerbations of COPD—The Role of the Airway Epithelium. Cells 2022; 11:cells11091416. [PMID: 35563722 PMCID: PMC9099594 DOI: 10.3390/cells11091416] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/13/2022] [Accepted: 04/19/2022] [Indexed: 12/14/2022] Open
Abstract
COPD is a leading cause of death worldwide, with acute exacerbations being a major contributor to disease morbidity and mortality. Indeed, exacerbations are associated with loss of lung function, and exacerbation frequency predicts poor prognosis. Respiratory infections are important triggers of acute exacerbations of COPD. This review examines the role of bacterial and viral infections, along with co-infections, in the pathogenesis of COPD exacerbations. Because the airway epithelium is the initial site of exposure both to cigarette smoke (or other pollutants) and to inhaled pathogens, we will focus on the role of airway epithelial cell responses in regulating the pathophysiology of exacerbations of COPD. This will include an examination of the interactions of cigarette smoke alone, and in combination with viral and bacterial exposures in modulating epithelial function and inflammatory and host defense pathways in the airways during COPD. Finally, we will briefly examine current and potential medication approaches to treat acute exacerbations of COPD triggered by respiratory infections.
Collapse
|
24
|
Mindt BC, DiGiandomenico A. Microbiome Modulation as a Novel Strategy to Treat and Prevent Respiratory Infections. Antibiotics (Basel) 2022; 11:antibiotics11040474. [PMID: 35453224 PMCID: PMC9029693 DOI: 10.3390/antibiotics11040474] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/26/2022] [Accepted: 03/28/2022] [Indexed: 02/06/2023] Open
Abstract
Acute and chronic lower airway disease still represent a major cause of morbidity and mortality on a global scale. With the steady rise of multidrug-resistant respiratory pathogens, such as Pseudomonas aeruginosa and Klebsiella pneumoniae, we are rapidly approaching the advent of a post-antibiotic era. In addition, potentially detrimental novel variants of respiratory viruses continuously emerge with the most prominent recent example being severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). To this end, alternative preventive and therapeutic intervention strategies will be critical to combat airway infections in the future. Chronic respiratory diseases are associated with alterations in the lung and gut microbiome, which is thought to contribute to disease progression and increased susceptibility to infection with respiratory pathogens. In this review we will focus on how modulating and harnessing the microbiome may pose a novel strategy to prevent and treat pulmonary infections as well as chronic respiratory disease.
Collapse
|
25
|
Martinez-Garcia MA, Miravitlles M. The Impact of Chronic Bronchial Infection in COPD: A Proposal for Management. Int J Chron Obstruct Pulmon Dis 2022; 17:621-630. [PMID: 35355582 PMCID: PMC8958724 DOI: 10.2147/copd.s357491] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 03/12/2022] [Indexed: 11/23/2022] Open
Abstract
Up to 50% of patients with chronic obstructive pulmonary disease (COPD) in stable state may carry potentially pathogenic microorganisms (PPMs) in their airways. The presence of PPMs has been associated with increased symptoms, increased risk and severity of exacerbations, a faster decline in lung function and impairment in quality of life. Although some clinical trials have demonstrated a reduction in exacerbations in patients chronically treated with systemic antibiotics, particularly macrolides, the selection of patients was based on the previous frequency of exacerbations and not on the presence of PPMs in their airways. Therefore, unlike in bronchiectasis, there is a lack of evidence-based recommendations for assessment and treatment of the presence of PPMs in either single or repeated isolations in COPD. In this article, we propose that chronic bronchial infection (CBI) in COPD be defined as the isolation of the same PPM in at least three sputum samples separated by more than one month; we review the impact of CBI on the natural course of COPD and suggest a course of action in patients with a single isolation of a PPM or suspected CBI. Antibiotic treatment in stable COPD should be recommended based on four main criteria: a) the presence of comorbid bronchiectasis, b) the demonstration of a single or multiple isolation of the same PPM, c) the clinical impact of CBI on the patients, and d) the type of PPM, either Pseudomonas aeruginosa or non-pseudomonal PPM. These recommendations are derived from evidence generated in patients with bronchiectasis and, until new evidence specifically obtained in COPD is available, they may help in the management of these challenging patients with COPD. Existing evidence suggests that inhaled therapy is insufficient to manage patients with moderate-to-severe COPD, frequent exacerbations, and CBI. New studies must be conducted in this particularly demanding population.
Collapse
Affiliation(s)
- Miguel Angel Martinez-Garcia
- Pneumology Department, Hospital Universitario y Politécnico La Fe, Valencia, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| | - Marc Miravitlles
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
- Pneumology Department, Hospital Universitari Vall d´Hebron, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Barcelona Hospital Campus, Barcelona, Spain
| |
Collapse
|
26
|
Ding F, Han L, Fu Q, Fan X, Tang R, Lv C, Xue Y, Tian X, Zhang M. IL-17 Aggravates Pseudomonas aeruginosa Airway Infection in Acute Exacerbations of Chronic Obstructive Pulmonary Disease. Front Immunol 2022; 12:811803. [PMID: 35095906 PMCID: PMC8792752 DOI: 10.3389/fimmu.2021.811803] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 12/22/2021] [Indexed: 01/02/2023] Open
Abstract
Pseudomonas aeruginosa airway infection increases risks of exacerbations and mortality in chronic obstructive pulmonary disease (COPD). We aimed to elucidate the role of IL-17 in the pathogenesis. We examined the expression and influences of IL-23/IL-17A in patients with stable COPD (n = 33) or acute COPD exacerbations with P. aeruginosa infection (n = 34). A mouse model of COPD (C57BL/6) was used to investigate the role of IL-17A in host inflammatory responses against P. aeruginosa infection through the application of IL-17A–neutralizing antibody or recombinant IL-17A. We found that P. aeruginosa infection increased IL-23/17A signaling in lungs of both COPD patients and COPD mouse models. When COPD mouse models were treated with neutralizing antibody targeting IL-17A, P. aeruginosa induced a significantly less polymorphonuclear leukocyte infiltration and less bacterial burden in their lungs compared to those of untreated counterparts. The lung function was also improved by neutralizing antibody. Furthermore, IL-17A-signaling blockade significantly reduced the expression of pro-inflammatory cytokine IL-1β, IL-18, TNF-α, CXCL1, CXCL15 and MMP-9, and increased the expression of anti-inflammatory cytokine IL-10 and IL-1Ra. The application of mouse recombinant IL-17A exacerbated P. aeruginosa-mediated inflammatory responses and pulmonary dysfunction in COPD mouse models. A cytokine protein array revealed that the expression of retinol binding protein 4 (RBP4) was down-regulated by IL-17A, and exogenous RBP4-recombinant protein resulted in a decrease in the severity of P. aeruginosa-induced airway dysfunction. Concurrent application of IL-17A-neutralizing antibody and ciprofloxacin attenuated airway inflammation and ventilation after inoculation of P. aeruginosa in COPD mouse models. Our results revealed that IL-17 plays a detrimental role in the pathogenesis of P. aeruginosa airway infection during acute exacerbations of COPD. Targeting IL-17A is a potential therapeutic strategy in controlling the outcomes of P. aeruginosa infection in COPD patients.
Collapse
Affiliation(s)
- Fengming Ding
- Department of Respiratory and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lei Han
- Department of Respiratory and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qiang Fu
- Department of Respiratory and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xinxin Fan
- Department of Tuberculosis, Fuzhou Pulmonary Hospital of Fujian Province, Fuzhou, China
| | - Rong Tang
- Department of Clinical Laboratory, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chengjian Lv
- Department of Respiratory and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yishu Xue
- Department of Respiratory and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xue Tian
- Department of Respiratory and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Min Zhang
- Department of Respiratory and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
27
|
Persistence and genetic adaptation of Pseudomonas aeruginosa in patients with chronic obstructive pulmonary disease. Clin Microbiol Infect 2022; 28:990-995. [DOI: 10.1016/j.cmi.2022.01.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 01/18/2022] [Accepted: 01/20/2022] [Indexed: 12/26/2022]
|
28
|
Muggeo A, Perotin JM, Brisebarre A, Dury S, Dormoy V, Launois C, Ancel J, Mulette P, de Champs C, Deslée G, Guillard T. Extended Bacteria Culture-Based Clustering Identifies a Phenotype Associating Increased Cough and Enterobacterales in Stable Chronic Obstructive Pulmonary Disease. Front Microbiol 2022; 12:781797. [PMID: 34970242 PMCID: PMC8712763 DOI: 10.3389/fmicb.2021.781797] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 11/11/2021] [Indexed: 11/13/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a chronic inflammatory lung disease characterized by airflow limitation. This chronic respiratory disease represents the third leading cause of death worldwide. Alteration of the airway microbiota has been reported to be associated with exacerbation frequency in COPD, but its role on the symptoms in patients at stable state is still incompletely described. This study aimed to determine whether bacteria isolated in sputum can be associated with the clinical features of COPD patients within stable state. Our study highlights, for the first time, that altered microbiota with Enterobacterales is associated with pejorative clinical symptoms in stable COPD patients. The airway microbiota of 38 patients was analyzed using an extended culture approach and mass spectrometry identification. Cluster analysis by principal coordinate analysis of the bacterial communities showed that the patients could be classified into three distinct clusters in our cohort. The clusters showed no differences in proportions of the phylum, but one of them was associated with a high prevalence of Enterobacterales (71.4% in cluster 1 vs. 0% in cluster 3), loss of microbiota diversity, and higher bacterial load (107 vs. 105 CFU/ml, respectively) and characterized by predominant cough and impact on mental health. These novel findings, supported by further studies, could lead to modifying the processing of COPD sputum in the everyday practice of clinical microbiology laboratories.
Collapse
Affiliation(s)
- Anaëlle Muggeo
- Inserm UMR-S 1250 Pulmonary pathologies and cellular plasticity (P3Cell), Reims-Champagne-Ardenne University, SFR CAP Santé, Reims, France.,Laboratory of Bacteriology-Virology-Hospital Hygiene-Parasitology-Mycology, Reims University Hospital, Reims, France
| | - Jeanne-Marie Perotin
- Inserm UMR-S 1250 Pulmonary pathologies and cellular plasticity (P3Cell), Reims-Champagne-Ardenne University, SFR CAP Santé, Reims, France.,Department of Respiratory Diseases, Reims University Hospital, Reims, France
| | - Audrey Brisebarre
- Inserm UMR-S 1250 Pulmonary pathologies and cellular plasticity (P3Cell), Reims-Champagne-Ardenne University, SFR CAP Santé, Reims, France
| | - Sandra Dury
- Department of Respiratory Diseases, Reims University Hospital, Reims, France
| | - Valérian Dormoy
- Inserm UMR-S 1250 Pulmonary pathologies and cellular plasticity (P3Cell), Reims-Champagne-Ardenne University, SFR CAP Santé, Reims, France
| | - Claire Launois
- Department of Respiratory Diseases, Reims University Hospital, Reims, France
| | - Julien Ancel
- Inserm UMR-S 1250 Pulmonary pathologies and cellular plasticity (P3Cell), Reims-Champagne-Ardenne University, SFR CAP Santé, Reims, France.,Department of Respiratory Diseases, Reims University Hospital, Reims, France
| | - Pauline Mulette
- Inserm UMR-S 1250 Pulmonary pathologies and cellular plasticity (P3Cell), Reims-Champagne-Ardenne University, SFR CAP Santé, Reims, France.,Department of Respiratory Diseases, Reims University Hospital, Reims, France
| | - Christophe de Champs
- Inserm UMR-S 1250 Pulmonary pathologies and cellular plasticity (P3Cell), Reims-Champagne-Ardenne University, SFR CAP Santé, Reims, France.,Laboratory of Bacteriology-Virology-Hospital Hygiene-Parasitology-Mycology, Reims University Hospital, Reims, France
| | - Gaëtan Deslée
- Inserm UMR-S 1250 Pulmonary pathologies and cellular plasticity (P3Cell), Reims-Champagne-Ardenne University, SFR CAP Santé, Reims, France.,Department of Respiratory Diseases, Reims University Hospital, Reims, France
| | - Thomas Guillard
- Inserm UMR-S 1250 Pulmonary pathologies and cellular plasticity (P3Cell), Reims-Champagne-Ardenne University, SFR CAP Santé, Reims, France.,Laboratory of Bacteriology-Virology-Hospital Hygiene-Parasitology-Mycology, Reims University Hospital, Reims, France
| |
Collapse
|
29
|
Kunadharaju R, Rudraraju A, Sethi S. Pseudomonas aeruginosa Colonization and COPD: The Chicken or the Egg? Arch Bronconeumol 2021; 58:539-541. [DOI: 10.1016/j.arbres.2021.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 12/03/2021] [Indexed: 11/30/2022]
|
30
|
Definitive and Indeterminate Pseudomonas aeruginosa Infection in Adults with Community-acquired Pneumonia: A Prospective Observational Study. Ann Am Thorac Soc 2021; 18:1475-1481. [PMID: 33565942 PMCID: PMC8489873 DOI: 10.1513/annalsats.201906-459oc] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Rationale: Pneumonia due to Pseudomonas aeruginosa (PA) is associated with high mortality and requires antipseudomonal treatment. Because PA can colonize the respiratory tract, the diagnosis of pathogenic PA involvement is challenging. Objectives: To determine the prevalence of definitive and indeterminate PA infection in community-acquired pneumonia, to describe the clinical and microbiological profiles, and to estimate the burden of unnecessary antipseudomonal drug prescriptions. Methods: We prospectively enrolled 2,701 patients with community-acquired pneumonia. Using stringent criteria for diagnosing PA pneumonia, we generated the following three groups: 1) definitive PA, 2) indeterminate PA, and 3) non-PA pneumonia. Results: The prevalence of definitive PA pneumonia was 0.9% (n = 25), and that of indeterminate PA pneumonia was 4.9% (n = 131). Considerable clinical differences were observed among the groups. Patients with definitive PA pneumonia were more likely to have a history of tuberculosis and chronic obstructive pulmonary disease/bronchiectasis and had a higher 30-day mortality (28%) than patients with non-PA pneumonia. Patients with indeterminate PA pneumonia were more likely to have comorbidities than patients with non-PA pneumonia. More than half of the patients with indeterminate PA and 25% of the patients with non-PA pneumonia were treated with an antipseudomonal drug. No patients with definitive PA pneumonia had multidrug resistance. Conclusions: In this population, the prevalence of community-acquired pneumonia due to PA was low. The clinical features and 30-day mortality rates of patients with indeterminate PA pneumonia were different from those of patients with definitive PA pneumonia. Most of the prescribed antipseudomonal drugs for patients with community-acquired pneumonia were potentially unnecessary.
Collapse
|
31
|
Håkansson KEJ, Fjaellegaard K, Browatzki A, Dönmez Sin M, Ulrik CS. Inhaled Corticosteroid Therapy in Bronchiectasis is Associated with All-Cause Mortality: A Prospective Cohort Study. Int J Chron Obstruct Pulmon Dis 2021; 16:2119-2127. [PMID: 34295156 PMCID: PMC8291380 DOI: 10.2147/copd.s311236] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 06/01/2021] [Indexed: 12/13/2022] Open
Abstract
Background and Objective Prescribing inhaled corticosteroids (ICS) for bronchiectasis (BE) in the absence of obstructive lung disease is controversial. Studies investigating ICS therapy and impact on morbidity and mortality in BE are sparse. Methods This study comprises all patients with BE managed at respiratory outpatient clinics at two university hospitals in the Capital Region of Denmark 2014-2015. Baseline data were obtained from patient medical records, and patients were followed until April 2020. Results Out of 264 patients, 122 (46%) were prescribed ICS with no demographic differences between users/non-users of ICS. Among patients prescribed ICS, 21% did not have a concomitant diagnosis of asthma or COPD. Patients prescribed ICS had lower lung function (median FEV1 65.2 vs 80.9%pred, p<0.001) and a higher symptom burden in terms of cough (p 0.028), sputum production (p <0.001) and dyspnea (p <0.001). Pseudomonas-positive sputum cultures were more common in ICS-treated patients (6.5 vs 20%, p 0.010), as were previous severe exacerbations (41% vs 21%, p <0.001). In terms of mortality, high-dose ICS use was associated with increased mortality in multivariable Cox regression adjusted for age, sex, FEV1 and concomitant asthma/COPD (HR 4.93 [95% CI 1.73-14.0], p 0.003). Conclusion In this cohort, close to one out of five patients with BE were prescribed ICS despite having no concomitant diagnosis of asthma or COPD. Overall, ICS treatment was associated with higher morbidity and mortality, though causation is difficult to establish.
Collapse
Affiliation(s)
- Kjell E J Håkansson
- Department of Respiratory Medicine, Copenhagen University Hospital - Hvidovre, Hvidovre, Denmark
| | - Katrine Fjaellegaard
- Department of Respiratory Medicine, Zealand University Hospital Næstved, Næstved, Denmark
- Institute of Regional Health Research, University Southern Denmark, Odense, Denmark
| | - Andrea Browatzki
- Department of Respiratory Medicine, North Zealand Hospital, Hillerød, Denmark
| | - Melda Dönmez Sin
- Department of Respiratory Medicine, Copenhagen University Hospital - Hvidovre, Hvidovre, Denmark
| | - Charlotte Suppli Ulrik
- Department of Respiratory Medicine, Copenhagen University Hospital - Hvidovre, Hvidovre, Denmark
- Institute of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
32
|
Hadda V, Suri TM, Pahuja S, El-Khatib M, Ciobanu LD, Cabrita B, Karim HMR, Barjaktarevic I, Crimi C, Garuti G, Mittal S, Tiwari P, Madan K, Mohan A, Karakurt Z, Esquinas A. Secretion management in patients with ineffective airway clearance with non-invasive mechanical ventilation use: Expert guidance for clinical practice. Monaldi Arch Chest Dis 2021; 91. [PMID: 34121373 DOI: 10.4081/monaldi.2021.1499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Accepted: 04/17/2021] [Indexed: 11/23/2022] Open
Abstract
Non-invasive ventilation (NIV) is a mainstay of management of chronic respiratory failure in many disorders which are known to cause abnormal airway secretion clearance. Currently, there is no guidance regarding either the secretion handling during NIV use or the role of NIV in secretion management in these patients. The aim of this document was to provide an overview of the various techniques available in the management of respiratory secretions and their use in conjunction with NIV. Literature search was performed using the keywords, "(secretion OR secretions) AND (noninvasive ventilation OR NIV)" on PubMed and EMBASE. The search yielded 1681 and 509 titles from PubMed and EMBASE, respectively. After screening, 19 articles were included in this review. Suggestions of the expert panel were formulated by mutual consensus after reviewing the relevant literature. The draft of the expert panel's suggestions was circulated among all authors via electronic mail for comments. Any conflicts were resolved by mutual discussion to achieve agreement. The final document was approved by all. This document by the International Network for Airway Secretions Management in NIV describes various airway secretion clearance techniques. It provides the expert panel's suggestions for the use of these techniques in conjunction with NIV for patients with muco-obstructive and neuromuscular disorders.
Collapse
Affiliation(s)
- Vijay Hadda
- Department of Pulmonary, Critical Care and Sleep Medicine, All India Institute Of Medical Sciences, New Delhi.
| | - Tejas Menon Suri
- Department of Pulmonary, Critical Care and Sleep Medicine, All India Institute Of Medical Sciences, New Delhi.
| | - Sourabh Pahuja
- Department of Pulmonary, Critical Care and Sleep Medicine, All India Institute Of Medical Sciences, New Delhi.
| | - Mohamad El-Khatib
- Department of Respiratory Therapy, American University of Beirut Medical Center, Beirut.
| | - Laura D Ciobanu
- Department of Internal Medicine, University of Medicine and Pharmacy "Grigore T. Popa", Iasi.
| | - Bruno Cabrita
- Pulmonology Department, Hospital Pedro Hispano, Matosinhos.
| | - Habib Md Reazaul Karim
- Department of Anaesthesiology and Critical Care, All India Institute of Medical Sciences, Raipur.
| | - Igor Barjaktarevic
- Division of Pulmonary and Critical Care, David Geffen School of Medicine at University of California, Los Angeles, CA.
| | - Claudia Crimi
- Respiratory Medicine Unit, A.O.U. "Policlinico-Vittorio Emanuele", Catania.
| | | | - Saurabh Mittal
- Department of Pulmonary, Critical Care and Sleep Medicine, All India Institute Of Medical Sciences, New Delhi.
| | - Pawan Tiwari
- Department of Pulmonary, Critical Care and Sleep Medicine, All India Institute Of Medical Sciences, New Delhi.
| | - Karan Madan
- All India Institute of Medical Sciences, New Delhi.
| | - Anant Mohan
- Department of Pulmonary, Critical Care and Sleep Medicine, All India Institute Of Medical Sciences, New Delhi.
| | - Zuhal Karakurt
- Respiratory Intensive Care Unit, Sureyyapasa Chest Diseases and Surgery Hospital, Istanbul.
| | | |
Collapse
|
33
|
Ding L, Wang J, Cai S, Smyth H, Cui Z. Pulmonary biofilm-based chronic infections and inhaled treatment strategies. Int J Pharm 2021; 604:120768. [PMID: 34089796 DOI: 10.1016/j.ijpharm.2021.120768] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/20/2021] [Accepted: 05/31/2021] [Indexed: 12/12/2022]
Abstract
Certain pulmonary diseases, such as cystic fibrosis (CF), non-CF bronchiectasis, chronic obstructive pulmonary disease, and ventilator-associated pneumonia, are usually accompanied by respiratory tract infections due to the physiological alteration of the lung immunological defenses. Recurrent infections may lead to chronic infection through the formation of biofilms. Chronic biofilm-based infections are challenging to treat using antimicrobial agents. Therefore, effective ways to eradicate biofilms and thus relieve respiratory tract infection require the development of efficacious agents for biofilm destruction, the design of delivery carriers with biofilm-targeting and/or penetrating abilities for these agents, and the direct delivery of them into the lung. This review provides an in-depth description of biofilm-based infections caused by pulmonary diseases and focuses on current existing agents that are administered by inhalation into the lung to treat biofilm, which include i) inhalable antimicrobial agents and their combinations, ii) non-antimicrobial adjuvants such as matrix-targeting enzymes, mannitol, glutathione, cyclosporin A, and iii) liposomal formulations of anti-biofilm agents. Finally, novel agents that have shown promise against pulmonary biofilms as well as traditional and new devices for pulmonary delivery of anti-biofilm agents into the lung are also discussed.
Collapse
Affiliation(s)
- Li Ding
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA
| | - Jieliang Wang
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA
| | - Shihao Cai
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA
| | - Hugh Smyth
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA.
| | - Zhengrong Cui
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
34
|
Cocotl-Yañez M, Soto-Aceves MP, González-Valdez A, Servín-González L, Soberón-Chávez G. Virulence factors regulation by the quorum-sensing and Rsm systems in the marine strain Pseudomonas aeruginosa ID4365, a natural mutant in lasR. FEMS Microbiol Lett 2021; 367:5851744. [PMID: 32501479 DOI: 10.1093/femsle/fnaa092] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 06/03/2020] [Indexed: 12/27/2022] Open
Abstract
Pseudomonas aeruginosa is an opportunistic human pathogen that is able to produce several virulence factors such as pyocyanin, rhamnolipids and elastase. In the clinical reference strain PAO1, synthesis of these virulence factors is regulated transcriptionally by quorum sensing (QS) and post-transcriptionally by the Rsm system. Herein, we investigated the role of these systems in the control of the pyocyanin, rhamnolipids and elastase production in the marine strain ID4365. We found that this strain carries a nonsense mutation in lasR that makes it a natural mutant in the Las QS system. However, its QS response is still functional with the Rhl system activating virulence factors synthesis. We found that the Rsm system affects virulence factors production, since overexpression of RsmA reduces pyocyanin production whereas RsmY overexpression increases its synthesis. Unexpectedly, and in contrast to the type strain PAO1, inactivation of rsmA increases pyocyanin but reduces elastase and rhamnolipids production by a reduction of RhlR levels. Thus, QS and Rsm systems are involved in regulating virulence factors production, but this regulation is different to the PAO1 strain even though their genomes are highly conserved. It is likely that these differences are related to the different ecological niches in which these strains lived.
Collapse
Affiliation(s)
- Miguel Cocotl-Yañez
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México. Av. Universidad 3000, Cd. Universitaria, C.P. 04510, Coyoacán, Ciudad de México, México
| | - Martín Paolo Soto-Aceves
- Departamento de Biología molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Apdo Postal 70228, C.P. 04510, Ciudad de México, México
| | - Abigail González-Valdez
- Departamento de Biología molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Apdo Postal 70228, C.P. 04510, Ciudad de México, México
| | - Luis Servín-González
- Departamento de Biología molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Apdo Postal 70228, C.P. 04510, Ciudad de México, México
| | - Gloria Soberón-Chávez
- Departamento de Biología molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Apdo Postal 70228, C.P. 04510, Ciudad de México, México
| |
Collapse
|
35
|
Martínez-García MÁ, Faner R, Oscullo G, de la Rosa-Carrillo D, Soler-Cataluña JJ, Ballester M, Muriel A, Agusti A. Risk Factors and Relation with Mortality of a New Acquisition and Persistence of Pseudomonas aeruginosa in COPD Patients. COPD 2021; 18:333-340. [PMID: 33941014 DOI: 10.1080/15412555.2021.1884214] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The isolation of Pseudomonas aeruginosa (PA) in patients with chronic obstructive pulmonary disease (COPD) is associated with increased mortality. Yet, factors associated with first PA sputum isolation, and PA persistence have not been investigated before. The objective of the present study was to investigate risk factors for new acquisition and persistence of PA infection and their relationship with all-cause mortality in patients with COPD. Post-hoc analysis of prospectively collected cohort of 170 COPD patients (GOLD II-IV) who were free of previous PA isolation and followed up every 3-6 months for 85 [50.25-110.25] months. PA was isolated for the first time in 41 patients (24.1%) after 36 [12-60] months of follow-up. Risk factor for first PA isolation were high cumulative smoking exposure, severe airflow limitation, previous severe exacerbations, high fibrinogen levels and previous isolation of Haemophilus Influenzae. PA was isolated again one or more times during follow-up in 58.5% of these patients. This was significantly associated with the presence of CT bronchiectasis and persistence of severe exacerbations, whereas the use of inhaled antibiotic treatment after the first PA isolation (at the discretion of the attending physician) reduced PA persistence. During follow-up, 79 patients (46.4%) died. A single PA isolation did not increase mortality, but PA persistence did (HR 3.06 [1.8-5.2], p = 0.001). We conclude that PA occurs frequently in clinically stable COPD patients, risk factors for a first PA isolation and PA persistence are different, and the latter (but not the former) is associated with increased all-cause mortality.
Collapse
Affiliation(s)
| | - Rosa Faner
- Centro de Investigación Biomedica en Red (CIBERES), Instituto de Salud Carlos III, Madrid, Spain.,Institut d'investigacions biomediques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
| | - Grace Oscullo
- Respiratory Department, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | | | | | - Marta Ballester
- Pneumology Unit, Hospital General de Requena, Valencia, Spain6
| | - Alfonso Muriel
- Biostatistic Unit, Hospital Ramón y Cajal, Madrid, Spain
| | - Alvar Agusti
- Centro de Investigación Biomedica en Red (CIBERES), Instituto de Salud Carlos III, Madrid, Spain.,Institut d'investigacions biomediques August Pi I Sunyer (IDIBAPS), Barcelona, Spain.,Respiratory Institute, Hospital Clinic, University of Barcelona, IDIBAPS, Barcelona, Spain
| |
Collapse
|
36
|
Theprungsirikul J, Skopelja-Gardner S, Burns AS, Wierzbicki RM, Rigby WFC. Bactericidal/Permeability-Increasing Protein Preeminently Mediates Clearance of Pseudomonas aeruginosa In Vivo via CD18-Dependent Phagocytosis. Front Immunol 2021; 12:659523. [PMID: 33981306 PMCID: PMC8107240 DOI: 10.3389/fimmu.2021.659523] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 04/07/2021] [Indexed: 12/30/2022] Open
Abstract
Chronic Pseudomonas aeruginosa infection mysteriously occurs in the airways of patients with cystic fibrosis (CF), bronchiectasis (BE), and chronic obstructive pulmonary disease (COPD) in the absence of neutrophil dysfunction or neutropenia and is strongly associated with autoimmunity to bactericidal permeability-increasing protein (BPI). Here, we define a critical role for BPI in in vivo immunity against P. aeruginosa. Wild type and BPI-deficient (Bpi-/-) mice were infected with P. aeruginosa, and bacterial clearance, cell infiltrates, cytokine production, and in vivo phagocytosis were quantified. Bpi-/- mice exhibited a decreased ability to clear P. aeruginosa in vivo in concert with increased neutrophil counts and cytokine release. Bpi-/- neutrophils displayed decreased phagocytosis that was corrected by exogenous BPI in vitro. Exogenous BPI also enhanced clearance of P. aeruginosa in Bpi-/- mice in vivo by increasing P. aeruginosa uptake by neutrophils in a CD18-dependent manner. These data indicate that BPI plays an essential role in innate immunity against P. aeruginosa through its opsonic activity and suggest that perturbations in BPI levels or function may contribute to chronic lung infection with P. aeruginosa.
Collapse
Affiliation(s)
- Jomkuan Theprungsirikul
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH, United States
| | - Sladjana Skopelja-Gardner
- Division of Rheumatology, Department of Medicine, Geisel School of Medicine at Dartmouth, Lebanon, NH, United States
| | - Ashley S. Burns
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH, United States
| | - Rachel M. Wierzbicki
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH, United States
| | - William F. C. Rigby
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH, United States
- Division of Rheumatology, Department of Medicine, Geisel School of Medicine at Dartmouth, Lebanon, NH, United States
| |
Collapse
|
37
|
Knowles A, Campbell S, Cross N, Stafford P. Bacterial Manipulation of the Integrated Stress Response: A New Perspective on Infection. Front Microbiol 2021; 12:645161. [PMID: 33967983 PMCID: PMC8100032 DOI: 10.3389/fmicb.2021.645161] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 02/16/2021] [Indexed: 11/13/2022] Open
Abstract
Host immune activation forms a vital line of defence against bacterial pathogenicity. However, just as hosts have evolved immune responses, bacteria have developed means to escape, hijack and subvert these responses to promote survival. In recent years, a highly conserved group of signalling cascades within the host, collectively termed the integrated stress response (ISR), have become increasingly implicated in immune activation during bacterial infection. Activation of the ISR leads to a complex web of cellular reprogramming, which ultimately results in the paradoxical outcomes of either cellular homeostasis or cell death. Therefore, any pathogen with means to manipulate this pathway could induce a range of cellular outcomes and benefit from favourable conditions for long-term survival and replication. This review aims to outline what is currently known about bacterial manipulation of the ISR and present key hypotheses highlighting areas for future research.
Collapse
Affiliation(s)
- Alex Knowles
- Biomolecular Sciences Research Centre, Department of Biosciences and Chemistry, Faculty of Health and Wellbeing, Sheffield Hallam University, Sheffield, United Kingdom
| | - Susan Campbell
- Biomolecular Sciences Research Centre, Department of Biosciences and Chemistry, Faculty of Health and Wellbeing, Sheffield Hallam University, Sheffield, United Kingdom
| | - Neil Cross
- Biomolecular Sciences Research Centre, Department of Biosciences and Chemistry, Faculty of Health and Wellbeing, Sheffield Hallam University, Sheffield, United Kingdom
| | - Prachi Stafford
- Biomolecular Sciences Research Centre, Department of Biosciences and Chemistry, Faculty of Health and Wellbeing, Sheffield Hallam University, Sheffield, United Kingdom
| |
Collapse
|
38
|
Dietl B, Henares D, Boix-Palop L, Muñoz-Almagro C, Garau J, Calbo E. Related Factors to Streptococcus pneumoniae Invasive Infection and Clinical Manifestations: The Potential Role of Nasopharyngeal Microbiome. Front Med (Lausanne) 2021; 8:650271. [PMID: 33996857 PMCID: PMC8117960 DOI: 10.3389/fmed.2021.650271] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 03/22/2021] [Indexed: 12/15/2022] Open
Abstract
Infections of the lower respiratory tract, such as pneumonia, are one of the leading causes of death worldwide. Streptococcus pneumoniae might colonize the upper respiratory tract and is the main aetiological agent of community-acquired pneumonia (CAP). In the last decades, several factors related to the host, the microorganism and the antibiotic therapy have been investigated to identify risk factors associated with the development of invasive pneumococcal disease (IPD). Nevertheless, these factors themselves do not explain the risk of developing disease or its severity. Recently, some studies have focused on the importance of nasopharyngeal (NP) microbiome and its relation to respiratory health. This review presents existing evidence of the potential role of NP microbiome in the development of IPD.
Collapse
Affiliation(s)
- Beatriz Dietl
- Infectious Diseases Unit, Hospital Universitari Mútua Terrassa, Terrassa, Spain.,Department of Medicine, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Desirée Henares
- Institut de Recerca Sant Joan de Déu, Hospital Sant Joan de Déu, Barcelona, Spain.,Center for Epidemiology and Public Health, CIBERESP, Instituto de Salud Carlos III, Madrid, Spain
| | - Lucía Boix-Palop
- Infectious Diseases Unit, Hospital Universitari Mútua Terrassa, Terrassa, Spain.,Department of Medicine, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Carmen Muñoz-Almagro
- Department of Medicine, Universitat Internacional de Catalunya, Barcelona, Spain.,Institut de Recerca Sant Joan de Déu, Hospital Sant Joan de Déu, Barcelona, Spain.,Center for Epidemiology and Public Health, CIBERESP, Instituto de Salud Carlos III, Madrid, Spain
| | - Javier Garau
- Internal Medicine Department, Clínica Rotger, Palma de Mallorca, Spain
| | - Esther Calbo
- Infectious Diseases Unit, Hospital Universitari Mútua Terrassa, Terrassa, Spain.,Department of Medicine, Universitat Internacional de Catalunya, Barcelona, Spain
| |
Collapse
|
39
|
De la Rosa Carrillo D, Martínez-García MÁ, Barreiro E, Tabernero Huguet E, Costa Sola R, García-Clemente MM, Celorrio Jiménez N, Rodríguez Pons L, Calero Acuña C, Rodríguez Hermosa JL, Golpe R, Dacal Quintas R, Sánchez-Cuéllar S, Torres Arroyo I, Blanco Aparicio M, Almadana Pacheco V, Miravitlles M. Effectiveness and Safety of Inhaled Antibiotics in Patients With Chronic Obstructive Pulmonary Disease. A Multicentre Observational Study. Arch Bronconeumol 2021; 58:11-21. [PMID: 33849721 DOI: 10.1016/j.arbres.2021.03.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 03/08/2021] [Accepted: 03/09/2021] [Indexed: 01/11/2023]
Abstract
BACKGROUND We aimed to describe the effectiveness and safety of inhaled antibiotics in chronic obstructive pulmonary disease (COPD) patients, as well as the patient profile in which they are usually prescribed and the patient groups that can most benefit from this treatment. METHODS Multicentre retrospective observational cohort study in COPD patients who had received ≥1 dose of inhaled antibiotics in the last 5 years. Clinical data from the two years prior to and subsequent to the start of the treatment were compared. PRIMARY OUTCOME COPD exacerbations. SECONDARY OUTCOMES side effects, symptomatology (sputum purulence, dyspnoea), microbiological profile and pathogen eradication. RESULTS Of 693 COPD patients analyzed (aged 74.1; 86.3% men; mean FEV1=43.7%), 71.7% had bronchiectasis and 46.6% presented chronic bronchial infection (CBI) by Pseudomonas aeruginosa (PA). After 1 year of treatment with inhaled antibiotics, there was a significant decrease in the number of exacerbations (-33.3%; P<.001), hospital admissions (-33.3%; P<.001) and hospitalization days (-26.2%; P=.003). We found no difference in effectiveness between patients with or without associated bronchiectasis. Positive patient outcomes were more pronounced in PA-eradicated patients. We found a significant reduction in daily expectoration (-33.1%; P=.024), mucopurulent/purulent sputum (-53.9%; P<.001), isolation of any potentially pathogenic microorganisms (PPM) (-16.7%; P<.001), CBI by any PPM (-37.4%; P<.001) and CBI by PA (-49.8%; P<.001). CBI by any PPM and ≥three previous exacerbations were associated with a better treatment response. 25.4% of patients presented non-severe side-effects, the most frequent of these being bronchospasm (10.5%), dyspnoea (8.8%) and cough (1.7%). CONCLUSIONS In COPD patients with multiple exacerbations and/or CBI by any PPM (especially PA), inhaled antibiotics appear to be an effective and safe treatment, regardless of the presence of bronchiectasis.
Collapse
Affiliation(s)
- David De la Rosa Carrillo
- Pneumology Service, Hospital de la Santa Creu i Sant Pau, C. Sant Quintí 89, 08041, Barcelona, Spain.
| | - Miguel-Ángel Martínez-García
- Pneumology Service, Hospital Universitario y Politécnico La Fe, Av. de Fernando Abril Martorell 106, 46026, Valencia, Spain
| | - Esther Barreiro
- Pulmonology Department, Hospital del MAR-IMIM, CEXS (UPF), CIBERES, Passeig Marítim de la Barceloneta 25-29, 08003, Barcelona, Spain
| | - Eva Tabernero Huguet
- Pneumology Service, Hospital de Cruces, Cruces Plaza, s/n, 48903, Barakaldo, Bizkaia, Spain
| | - Roser Costa Sola
- Pneumology Service, Hospital Mutua de Terrassa, Plaça del Doctor Robert 5, 08221, Terrassa, Barcelona, Spain
| | | | - Nuria Celorrio Jiménez
- Pneumology Service, Hospital de Viladecans, Av. de Gavà 38, 08840, Viladecans, Barcelona, Spain
| | - Laura Rodríguez Pons
- Pneumology Service, Hospital Universitario Germans Trias i Pujol, Carretera de Canyet, s/n, 08916, Badalona, Barcelona, Spain
| | - Carmen Calero Acuña
- Pneumology Service, Hospital Universitario Virgen del Rocio, Av. Manuel Siurot, s/n, 41013, Sevilla, Spain
| | - Juan Luís Rodríguez Hermosa
- Pneumology Service, Hospital Clínico San Carlos, School of Medicine, Universidad Complutense de Madrid, Calle del Profesor Martín Lagos, s/n, 28040, Madrid, Spain
| | - Rafael Golpe
- Pneumology Service, Hospital Universitario Lucus Augusti, Rúa Dr. Ulises Romero 1, 27003, Lugo, Spain
| | - Raquel Dacal Quintas
- Pneumology Service, Complexo Hospitalario Universitario de Ourense, Calle Ramon Puga Noguerol 54, 32005, Ourense, Spain
| | - Silvia Sánchez-Cuéllar
- Pneumology Service, Hospital Universitario Infanta Leonor, Av. Gran Vía del Este 80, 28031, Madrid, Spain
| | - Irene Torres Arroyo
- Pneumology Service, Hospital Fundación Alcorcón, Calle Budapest 1, 28922, Alcorcón, Madrid, Spain
| | - Marina Blanco Aparicio
- Pneumology Service, Complexo Hospitalario Universitario A Coruña, Xubias de Arriba 84, 15006, A Coruña, Spain
| | - Virginia Almadana Pacheco
- Pneumology Service, Hospital Universitario Virgen de la Macarena, Calle Dr. Fedriani 3, 41009, Sevilla, Spain
| | - Marc Miravitlles
- Pneumology Service, Hospital Universitari Vall d'Hebron, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Barcelona Hospital Campus, CIBER de Enfermedades Respiratorios (CIBERES), Passeig de la Vall d'Hebron 119, 08035, Barcelona, Spain
| | | | | |
Collapse
|
40
|
Fu P, Ramchandran R, Sudhadevi T, Kumar PPK, Krishnan Y, Liu Y, Zhao Y, Parinandi NL, Harijith A, Sadoshima J, Natarajan V. NOX4 Mediates Pseudomonas aeruginosa-Induced Nuclear Reactive Oxygen Species Generation and Chromatin Remodeling in Lung Epithelium. Antioxidants (Basel) 2021; 10:477. [PMID: 33802941 PMCID: PMC8002602 DOI: 10.3390/antiox10030477] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/10/2021] [Accepted: 03/11/2021] [Indexed: 01/07/2023] Open
Abstract
Pseudomonas aeruginosa (PA) infection increases reactive oxygen species (ROS), and earlier, we have shown a role for NADPH oxidase-derived ROS in PA-mediated lung inflammation and injury. Here, we show a role for the lung epithelial cell (LEpC) NOX4 in PA-mediated chromatin remodeling and lung inflammation. Intratracheal administration of PA to Nox4flox/flox mice for 24 h caused lung inflammatory injury; however, epithelial cell-deleted Nox4 mice exhibited reduced lung inflammatory injury, oxidative stress, secretion of pro-inflammatory cytokines, and decreased histone acetylation. In LEpCs, NOX4 was localized both in the cytoplasmic and nuclear fractions, and PA stimulation increased the nuclear NOX4 expression and ROS production. Downregulation or inhibition of NOX4 and PKC δ attenuated the PA-induced nuclear ROS. PA-induced histone acetylation was attenuated by Nox4-specific siRNA, unlike Nox2. PA stimulation increased HDAC1/2 oxidation and reduced HDAC1/2 activity. The PA-induced oxidation of HDAC2 was attenuated by N-acetyl-L-cysteine and siRNA specific for Pkc δ, Sphk2, and Nox4. PA stimulated RAC1 activation in the nucleus and enhanced the association between HDAC2 and RAC1, p-PKC δ, and NOX4 in LEpCs. Our results revealed a critical role for the alveolar epithelial NOX4 in mediating PA-induced lung inflammatory injury via nuclear ROS generation, HDAC1/2 oxidation, and chromatin remodeling.
Collapse
Affiliation(s)
- Panfeng Fu
- Departments of Pharmacology & Regenerative Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA; (P.F.); (R.R.); (P.P.K.K.); (Y.K.); (Y.L.)
| | - Ramaswamy Ramchandran
- Departments of Pharmacology & Regenerative Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA; (P.F.); (R.R.); (P.P.K.K.); (Y.K.); (Y.L.)
| | - Tara Sudhadevi
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH 44106, USA; (T.S.); (A.H.)
| | - Prasanth P. K. Kumar
- Departments of Pharmacology & Regenerative Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA; (P.F.); (R.R.); (P.P.K.K.); (Y.K.); (Y.L.)
| | - Yashaswin Krishnan
- Departments of Pharmacology & Regenerative Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA; (P.F.); (R.R.); (P.P.K.K.); (Y.K.); (Y.L.)
| | - Yuru Liu
- Departments of Pharmacology & Regenerative Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA; (P.F.); (R.R.); (P.P.K.K.); (Y.K.); (Y.L.)
| | - Yutong Zhao
- Department of Physiology and Cell Biology, Ohio State University, Columbus, OH 43210, USA;
- Department of Internal Medicine, Ohio State University, Columbus, OH 43210, USA;
| | | | - Anantha Harijith
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH 44106, USA; (T.S.); (A.H.)
| | - Junichi Sadoshima
- Department of Cell Biology & Molecular Medicine, Rutgers New Jersey Medical School, Newark, NJ 07103, USA;
| | - Viswanathan Natarajan
- Departments of Pharmacology & Regenerative Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA; (P.F.); (R.R.); (P.P.K.K.); (Y.K.); (Y.L.)
- Department of Medicine, University of Illinois, Room 3137 COMRB Building 909, South Wolcott Avenue, Chicago, IL 60612, USA
| |
Collapse
|
41
|
Huang Z, Kłodzińska SN, Wan F, Nielsen HM. Nanoparticle-mediated pulmonary drug delivery: state of the art towards efficient treatment of recalcitrant respiratory tract bacterial infections. Drug Deliv Transl Res 2021; 11:1634-1654. [PMID: 33694082 PMCID: PMC7945609 DOI: 10.1007/s13346-021-00954-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/01/2021] [Indexed: 12/16/2022]
Abstract
Recalcitrant respiratory tract infections caused by bacteria have emerged as one of the greatest health challenges worldwide. Aerosolized antimicrobial therapy is becoming increasingly attractive to combat such infections, as it allows targeted delivery of high drug concentrations to the infected organ while limiting systemic exposure. However, successful aerosolized antimicrobial therapy is still challenged by the diverse biological barriers in infected lungs. Nanoparticle-mediated pulmonary drug delivery is gaining increasing attention as a means to overcome the biological barriers and accomplish site-specific drug delivery by controlling release of the loaded drug(s) at the target site. With the aim to summarize emerging efforts in combating respiratory tract infections by using nanoparticle-mediated pulmonary delivery strategies, this review provides a brief introduction to the bacterial infection-related pulmonary diseases and the biological barriers for effective treatment of recalcitrant respiratory tract infections. This is followed by a summary of recent advances in design of inhalable nanoparticle-based drug delivery systems that overcome the biological barriers and increase drug bioavailability. Finally, challenges for the translation from exploratory laboratory research to clinical application are also discussed and potential solutions proposed.
Collapse
Affiliation(s)
- Zheng Huang
- Center for Biopharmaceuticals and Biobarriers in Drug Delivery, Department of Pharmacy, University of Copenhagen, Universitetsparken 2, DK-2100, Copenhagen Ø, Denmark
| | - Sylvia Natalie Kłodzińska
- Center for Biopharmaceuticals and Biobarriers in Drug Delivery, Department of Pharmacy, University of Copenhagen, Universitetsparken 2, DK-2100, Copenhagen Ø, Denmark
| | - Feng Wan
- Center for Biopharmaceuticals and Biobarriers in Drug Delivery, Department of Pharmacy, University of Copenhagen, Universitetsparken 2, DK-2100, Copenhagen Ø, Denmark.
| | - Hanne Mørck Nielsen
- Center for Biopharmaceuticals and Biobarriers in Drug Delivery, Department of Pharmacy, University of Copenhagen, Universitetsparken 2, DK-2100, Copenhagen Ø, Denmark.
| |
Collapse
|
42
|
Margalit A, Carolan JC, Kavanagh K. Bacterial Interactions with Aspergillus fumigatus in the Immunocompromised Lung. Microorganisms 2021; 9:microorganisms9020435. [PMID: 33669831 PMCID: PMC7923216 DOI: 10.3390/microorganisms9020435] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/18/2021] [Accepted: 02/18/2021] [Indexed: 12/13/2022] Open
Abstract
The immunocompromised airways are susceptible to infections caused by a range of pathogens which increases the opportunity for polymicrobial interactions to occur. Pseudomonas aeruginosa and Staphylococcus aureus are the predominant causes of pulmonary infection for individuals with respiratory disorders such as cystic fibrosis (CF). The spore-forming fungus Aspergillus fumigatus, is most frequently isolated with P. aeruginosa, and co-infection results in poor outcomes for patients. It is therefore clinically important to understand how these pathogens interact with each other and how such interactions may contribute to disease progression so that appropriate therapeutic strategies may be developed. Despite its persistence in the airways throughout the life of a patient, A. fumigatus rarely becomes the dominant pathogen. In vitro interaction studies have revealed remarkable insights into the molecular mechanisms that drive agonistic and antagonistic interactions that occur between A. fumigatus and pulmonary bacterial pathogens such as P. aeruginosa. Crucially, these studies demonstrate that although bacteria may predominate in a competitive environment, A. fumigatus has the capacity to persist and contribute to disease.
Collapse
Affiliation(s)
| | | | - Kevin Kavanagh
- Correspondence: ; Tel.: +353-1-708-3859; Fax: +353-1-708-3845
| |
Collapse
|
43
|
Cigana C, Castandet J, Sprynski N, Melessike M, Beyria L, Ranucci S, Alcalá-Franco B, Rossi A, Bragonzi A, Zalacain M, Everett M. Pseudomonas aeruginosa Elastase Contributes to the Establishment of Chronic Lung Colonization and Modulates the Immune Response in a Murine Model. Front Microbiol 2021; 11:620819. [PMID: 33510733 PMCID: PMC7836092 DOI: 10.3389/fmicb.2020.620819] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 12/14/2020] [Indexed: 12/12/2022] Open
Abstract
Chronic infection by Pseudomonas aeruginosa in cystic fibrosis (CF) patients is a major contributor to progressive lung damage and is poorly treated by available antibiotic therapy. An alternative approach to the development of additional antibiotic treatments is to identify complementary therapies which target bacterial virulence factors necessary for the establishment and/or maintenance of the chronic infection. The P. aeruginosa elastase (LasB) has been suggested as an attractive anti-virulence target due to its extracellular location, its harmful degradative effects on host tissues and the immune system, and the potential to inhibit its activity using small molecule inhibitors. However, while the relevance of LasB in acute P. aeruginosa infection has been demonstrated, it is still unclear whether this elastase might also play a role in the early phase of chronic lung colonization. By analyzing clinical P. aeruginosa clonal isolates from a CF patient, we found that the isolate RP45, collected in the early phase of persistence, produces large amounts of active LasB, while its clonal variant RP73, collected after years of colonization, does not produce it. When a mouse model of persistent pneumonia was used, deletion of the lasB gene in RP45 resulted in a significant reduction in mean bacterial numbers and incidence of chronic lung colonization at Day 7 post-challenge compared to those mice infected with wild-type (wt) RP45. Furthermore, deletion of lasB in strain RP45 also resulted in an increase in immunomodulators associated with innate and adaptive immune responses in infected animals. In contrast, deletion of the lasB gene in RP73 did not affect the establishment of chronic infection. Overall, these results indicate that LasB contributes to the adaptation of P. aeruginosa to a persistent lifestyle. In addition, these findings support pharmacological inhibition of LasB as a potentially useful therapeutic intervention for P. aeruginosa-infected CF patients prior to the establishment of a chronic infection.
Collapse
Affiliation(s)
- Cristina Cigana
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | | | | - Medede Melessike
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | | - Serena Ranucci
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Nurix Therapeutics, San Francisco, CA, United States
| | - Beatriz Alcalá-Franco
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Alice Rossi
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Alessandra Bragonzi
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | | | |
Collapse
|
44
|
Chien J, Hwang JH, Nilaad S, Masso-Silva JA, Jeong Ahn S, McEachern EK, Moshensky A, Byun MK, Crotty Alexander LE. Cigarette Smoke Exposure Promotes Virulence of Pseudomonas aeruginosa and Induces Resistance to Neutrophil Killing. Infect Immun 2020; 88:e00527-20. [PMID: 32868344 PMCID: PMC7573448 DOI: 10.1128/iai.00527-20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 08/28/2020] [Indexed: 01/19/2023] Open
Abstract
It is widely known that cigarette smoke damages host defenses and increases susceptibility to bacterial infections. Pseudomonas aeruginosa, a Gram-negative bacterium that commonly colonizes the airways of smokers and patients with chronic lung disease, can cause pneumonia and sepsis and can trigger exacerbations of lung diseases. Pseudomonas aeruginosa colonizing airways is consistently exposed to inhaled cigarette smoke. Here, we investigated whether cigarette smoke alters the ability of this clinically significant microbe to bypass host defenses and cause invasive disease. We found that cigarette smoke extract (CSE) exposure enhances resistance to human neutrophil killing, but this increase in pathogenicity was not due to resistance to neutrophil extracellular traps. Instead, Pseudomonas aeruginosa exposed to CSE (CSE-PSA) had increased resistance to oxidative stress, which correlated with increased expression of tpx, a gene essential for defense against oxidative stress. In addition, exposure to CSE induced enhanced biofilm formation and resistance to the antibiotic levofloxacin. Finally, CSE-PSA had increased virulence in a model of pneumonia, with 0% of mice infected with CSE-PSA alive at day 6, while 28% of controls survived. Altogether, these data show that cigarette smoke alters the phenotype of P. aeruginosa, increasing virulence and making it less susceptible to killing by neutrophils and more capable of causing invasive disease. These findings provide further explanation of the refractory nature of respiratory illnesses in smokers and highlight cigarette smoking as a potential driver of virulence in this important airway pathogen.
Collapse
Affiliation(s)
- Jason Chien
- Pulmonary and Critical Care Section, VA San Diego Healthcare System, La Jolla, California, USA
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California San Diego, La Jolla, California, USA
| | - John H Hwang
- Pulmonary and Critical Care Section, VA San Diego Healthcare System, La Jolla, California, USA
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California San Diego, La Jolla, California, USA
| | - Sedtavut Nilaad
- Pulmonary and Critical Care Section, VA San Diego Healthcare System, La Jolla, California, USA
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California San Diego, La Jolla, California, USA
| | - Jorge A Masso-Silva
- Pulmonary and Critical Care Section, VA San Diego Healthcare System, La Jolla, California, USA
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California San Diego, La Jolla, California, USA
| | - Sae Jeong Ahn
- Pulmonary and Critical Care Section, VA San Diego Healthcare System, La Jolla, California, USA
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California San Diego, La Jolla, California, USA
| | - Elisa K McEachern
- Pulmonary and Critical Care Section, VA San Diego Healthcare System, La Jolla, California, USA
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California San Diego, La Jolla, California, USA
| | - Alexander Moshensky
- Pulmonary and Critical Care Section, VA San Diego Healthcare System, La Jolla, California, USA
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California San Diego, La Jolla, California, USA
| | - Min-Kwang Byun
- Pulmonary and Critical Care Section, VA San Diego Healthcare System, La Jolla, California, USA
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California San Diego, La Jolla, California, USA
- Division of Pulmonology, Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Laura E Crotty Alexander
- Pulmonary and Critical Care Section, VA San Diego Healthcare System, La Jolla, California, USA
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
45
|
Consensus document on the diagnosis and treatment of chronic bronchial infection in chronic obstructive pulmonary disease. ACTA ACUST UNITED AC 2020. [DOI: 10.1016/j.arbr.2020.08.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
46
|
de la Rosa Carrillo D, López-Campos JL, Alcázar Navarrete B, Calle Rubio M, Cantón Moreno R, García-Rivero JL, Máiz Carro L, Olveira Fuster C, Martínez-García MÁ. Consensus Document on the Diagnosis and Treatment of Chronic Bronchial Infection in Chronic Obstructive Pulmonary Disease. Arch Bronconeumol 2020; 56:651-664. [PMID: 32540279 DOI: 10.1016/j.arbres.2020.04.023] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 03/22/2020] [Accepted: 04/01/2020] [Indexed: 02/07/2023]
Abstract
Although the chronic presence of microorganisms in the airways of patients with stable chronic obstructive pulmonary disease (COPD) confers a poor outcome, no recommendations have been established in disease management guidelines on how to diagnose and treat these cases. In order to guide professionals, the Spanish Society of Pulmonology and Thoracic Surgery (SEPAR) has prepared a document which aims to answer questions on the clinical management of COPD patients in whom microorganisms are occasionally or habitually isolated. Since the available scientific evidence is too heterogeneous to use in the creation of a clinical practice guideline, we have drawn up a document based on existing scientific literature and clinical experience, addressing the definition of different clinical situations and their diagnosis and management. The text was drawn up by consensus and approved by a large group of respiratory medicine experts with extensive clinical and scientific experience in the field, and has been endorsed by the SEPAR Scientific Committee.
Collapse
Affiliation(s)
| | - José Luís López-Campos
- Servicio de Neumología, Unidad Médico-Quirúrgica de Enfermedades Respiratorias, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío, Universidad de Sevilla, Sevilla, España; Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, España
| | - Bernardino Alcázar Navarrete
- Servicio de Neumología, Hospital Regional Universitario de Málaga. Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga, Málaga, España
| | - Myriam Calle Rubio
- Servicio de Neumología, Hospital de Alta Resolución de Loja, Loja, Granada, España
| | - Rafael Cantón Moreno
- Servicio de Neumología, Unidad de Infección Bronquial Crónica, Fibrosis Quística y Bronquiectasias, Hospital Universitario Ramón y Cajal, Madrid, España
| | - Juan Luis García-Rivero
- Servicio de Neumología, Hospital Clínico San Carlos. Departamento de Medicina, Facultad de Medicina, UCM, Madrid, España
| | - Luís Máiz Carro
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal. Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, España
| | | | | |
Collapse
|
47
|
Carpenter J, Kesimer M. Membrane-bound mucins of the airway mucosal surfaces are densely decorated with keratan sulfate: revisiting their role in the Lung's innate defense. Glycobiology 2020; 31:436-443. [PMID: 33083824 DOI: 10.1093/glycob/cwaa089] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/24/2020] [Accepted: 09/08/2020] [Indexed: 12/13/2022] Open
Abstract
Understanding the basic elements of the airway mucosal surfaces and how they form a functional barrier is essential in understanding disease initiation, progression, pathogenesis and ultimately treating chronic lung diseases. Using primary airway epithelial cell cultures, atomic force microscopy (AFM), multiangle light scattering and quartz crystal micro balance with dissipation monitoring techniques, here we report that the membrane bound mucins (MBMs) found in the periciliary layer (PCL) of the airway surface are densely decorated with keratan sulfate (KS). AFM and immunoblotting show that the KS sidechains can be removed enzymatically with keratanase II (KII) treatment, and the antibody accessibility for B2729 (MUC1), MUCH4 (MUC4) and OC125 (MUC16) was substantially enhanced. Light scattering analysis confirmed that KII treatment removed ~40% of the mass from the mucin fractions. Surface binding experiments indicated that MBMs were able to pack into a tighter conformation following KS removal, suggesting that negatively charged KS sidechains play a role in mucin-mucin repulsion and contribute to "space filling" in the PCL. We also observed that soluble filtrate from the common airway pathogen Pseudomonas aeruginosa is capable of stripping KS from MBMs. Altogether, our findings indicate that KS glycosylation of MBMs may play an important role in the integrity of the airway mucosal barrier and its compromise in disease.
Collapse
Affiliation(s)
- Jerome Carpenter
- Department of Pathology and Laboratory Medicine, Cystic Fibrosis/Pulmonary Research and Treatment Center, Marsico Lung Institute, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Mehmet Kesimer
- Department of Pathology and Laboratory Medicine, Cystic Fibrosis/Pulmonary Research and Treatment Center, Marsico Lung Institute, University of North Carolina, Chapel Hill, NC 27599, USA
| |
Collapse
|
48
|
Abstract
During chronic lung infections, Pseudomonas aeruginosa grows in highly antibiotic-tolerant communities called biofilms that are difficult for the host to clear. We have developed models for studying P. aeruginosa biofilm dispersal in environments that replicate key features of the airway. We found that mechanisms of biofilm dispersal in these models may employ alternative or additional signaling mechanisms, highlighting the importance of the growth environment in dispersal events. We have adapted the models to accommodate apical fluid flow, bacterial clinical isolates, antibiotics, and primary human airway epithelial cells, all of which are relevant to understanding bacterial behaviors in the context of human disease. We also examined dispersal agents in combination with commonly used antipseudomonal antibiotics and saw improved clearance when nitrite was combined with the antibiotic aztreonam. Pseudomonas aeruginosa grows in highly antibiotic-tolerant biofilms during chronic airway infections. Dispersal of bacteria from biofilms may restore antibiotic susceptibility or improve host clearance. We describe models to study biofilm dispersal in the nutritionally complex environment of the human airway. P. aeruginosa was cocultured in the apical surface of airway epithelial cells (AECs) in a perfusion chamber. Dispersal, triggered by sodium nitrite, a nitric oxide (NO) donor, was tracked by live cell microscopy. Next, a static model was developed in which biofilms were grown on polarized AECs without flow. We observed that NO-triggered biofilm dispersal was an energy-dependent process. From the existing literature, NO-mediated biofilm dispersal is regulated by DipA, NbdA, RbdA, and MucR. Interestingly, altered signaling pathways appear to be used in this model, as deletion of these genes failed to block NO-induced biofilm dispersal. Similar results were observed using biofilms grown in an abiotic model on glass with iron-supplemented cell culture medium. In cystic fibrosis, airway mucus contributes to the growth environment, and a wide range of bacterial phenotypes are observed; therefore, we tested biofilm dispersal in a panel of late cystic fibrosis clinical isolates cocultured in the mucus overlying primary human AECs. Finally, we examined dispersal in combination with the clinically used antibiotics ciprofloxacin, aztreonam and tobramycin. In summary, we have validated models to study biofilm dispersal in environments that recapitulate key features of the airway and identified combinations of currently used antibiotics that may enhance the therapeutic effect of biofilm dispersal. IMPORTANCE During chronic lung infections, Pseudomonas aeruginosa grows in highly antibiotic-tolerant communities called biofilms that are difficult for the host to clear. We have developed models for studying P. aeruginosa biofilm dispersal in environments that replicate key features of the airway. We found that mechanisms of biofilm dispersal in these models may employ alternative or additional signaling mechanisms, highlighting the importance of the growth environment in dispersal events. We have adapted the models to accommodate apical fluid flow, bacterial clinical isolates, antibiotics, and primary human airway epithelial cells, all of which are relevant to understanding bacterial behaviors in the context of human disease. We also examined dispersal agents in combination with commonly used antipseudomonal antibiotics and saw improved clearance when nitrite was combined with the antibiotic aztreonam.
Collapse
|
49
|
Risk Factors of Multidrug-Resistant Bacteria in Lower Respiratory Tract Infections: A Systematic Review and Meta-Analysis. CANADIAN JOURNAL OF INFECTIOUS DISEASES & MEDICAL MICROBIOLOGY 2020; 2020:7268519. [PMID: 32670442 PMCID: PMC7345606 DOI: 10.1155/2020/7268519] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/13/2020] [Accepted: 05/26/2020] [Indexed: 12/13/2022]
Abstract
Background Multidrug-resistant (MDR) bacteria are the main cause of lower respiratory tract infections (LRTIs) with high mortality. The purpose of this study is to identify the risk factors associated with MDR by performing a systematic review and meta-analysis. Methods PubMed, EMBASE (via Ovid), and Cochrane Library were systematically searched for studies on the risk factors for MDR bacteria in LRTIs as of November 30, 2019. Literature screening, data abstraction, and quality assessment of the eligible studies were performed independently by two researchers. Results A total of 3,607 articles were retrieved, of which 21 articles representing 20 cohort studies published in English were included after title/abstract and full-text screening. Among the 21 articles involving 7,650 patients and 1,360 MDR organisms, ten reported the risk factors for MDR Gram-positive bacteria (GPB) and Gram-negative bacteria (GNB), ten for MDR GNB, and one for MDR GPB. The meta-analysis results suggested that prior antibiotic treatment, inappropriate antibiotic therapy, chronic lung disease, chronic liver disease and cerebral disease, prior MDR and PA infection/colonization, recent hospitalization, longer hospitalization stay, endotracheal tracheostomy and mechanical ventilation, tube feeding, nursing home residence, and higher disease severity score were independent risk factors for MDR bacteria. Conclusions This review identified fourteen clinical factors that might increase the risk of MDR bacteria in patients with LRTIs. Clinicians could take into account these factors when selecting antibiotics for patients and determine whether coverage for MDR bacteria is required. More well-designed studies are needed to confirm the various risk factors for MDR bacteria in the future.
Collapse
|
50
|
Ramsey KA, Chen ACH, Radicioni G, Lourie R, Martin M, Broomfield A, Sheng YH, Hasnain SZ, Radford-Smith G, Simms LA, Burr L, Thornton DJ, Bowler SD, Livengood S, Ceppe A, Knowles MR, Noone PG, Donaldson SH, Hill DB, Ehre C, Button B, Alexis NE, Kesimer M, Boucher RC, McGuckin MA. Airway Mucus Hyperconcentration in Non-Cystic Fibrosis Bronchiectasis. Am J Respir Crit Care Med 2020; 201:661-670. [PMID: 31765597 DOI: 10.1164/rccm.201906-1219oc] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Rationale: Non-cystic fibrosis bronchiectasis is characterized by airway mucus accumulation and sputum production, but the role of mucus concentration in the pathogenesis of these abnormalities has not been characterized.Objectives: This study was designed to: 1) measure mucus concentration and biophysical properties of bronchiectasis mucus; 2) identify the secreted mucins contained in bronchiectasis mucus; 3) relate mucus properties to airway epithelial mucin RNA/protein expression; and 4) explore relationships between mucus hyperconcentration and disease severity.Methods: Sputum samples were collected from subjects with bronchiectasis, with and without chronic erythromycin administration, and healthy control subjects. Sputum percent solid concentrations, total and individual mucin concentrations, osmotic pressures, rheological properties, and inflammatory mediators were measured. Intracellular mucins were measured in endobronchial biopsies by immunohistochemistry and gene expression. MUC5B (mucin 5B) polymorphisms were identified by quantitative PCR. In a replication bronchiectasis cohort, spontaneously expectorated and hypertonic saline-induced sputa were collected, and mucus/mucin concentrations were measured.Measurements and Main Results: Bronchiectasis sputum exhibited increased percent solids, total and individual (MUC5B and MUC5AC) mucin concentrations, osmotic pressure, and elastic and viscous moduli compared with healthy sputum. Within subjects with bronchiectasis, sputum percent solids correlated inversely with FEV1 and positively with bronchiectasis extent, as measured by high-resolution computed tomography, and inflammatory mediators. No difference was detected in MUC5B rs35705950 SNP allele frequency between bronchiectasis and healthy individuals. Hypertonic saline inhalation acutely reduced non-cystic fibrosis bronchiectasis mucus concentration by 5%.Conclusions: Hyperconcentrated airway mucus is characteristic of subjects with bronchiectasis, likely contributes to disease pathophysiology, and may be a target for pharmacotherapy.
Collapse
Affiliation(s)
- Kathryn A Ramsey
- Marsico Lung Institute.,Department of Pediatrics, Pediatric Respiratory Medicine, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Alice C H Chen
- Inflammatory Disease Biology and Therapeutics Group, Mater Research Institute, Translational Research Institute, and.,School of Medicine, University of Queensland, Brisbane, Queensland, Australia
| | | | - Rohan Lourie
- Inflammatory Disease Biology and Therapeutics Group, Mater Research Institute, Translational Research Institute, and.,Department of Anatomical Pathology, Mater Misericordiae Limited, South Brisbane, Queensland, Australia
| | - Megan Martin
- Department of Respiratory Medicine, Mater Adult Hospital, South Brisbane, Queensland, Australia
| | - Amy Broomfield
- Department of Anatomical Pathology, Mater Misericordiae Limited, South Brisbane, Queensland, Australia
| | - Yong H Sheng
- Inflammatory Disease Biology and Therapeutics Group, Mater Research Institute, Translational Research Institute, and
| | - Sumaira Z Hasnain
- Inflammatory Disease Biology and Therapeutics Group, Mater Research Institute, Translational Research Institute, and
| | - Graham Radford-Smith
- Inflammatory Bowel Diseases Research Laboratory, Royal Brisbane and Women's Hospital, Herston, Queensland, Australia
| | - Lisa A Simms
- Inflammatory Bowel Diseases Research Laboratory, Queensland Institute of Medical Research, Brisbane, Queensland, Australia
| | - Lucy Burr
- Inflammatory Disease Biology and Therapeutics Group, Mater Research Institute, Translational Research Institute, and.,Department of Respiratory Medicine, Mater Adult Hospital, South Brisbane, Queensland, Australia
| | - David J Thornton
- Wellcome Trust Centre for Cell-Matrix Research, Lydia Becker Institute for Immunology and Inflammation, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom; and
| | - Simon D Bowler
- Department of Respiratory Medicine, Mater Adult Hospital, South Brisbane, Queensland, Australia
| | | | | | | | | | | | - David B Hill
- Marsico Lung Institute.,Department of Physics and Astronomy, and
| | | | | | - Neil E Alexis
- Center for Environmental Medicine, Asthma and Lung Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | | | | | - Michael A McGuckin
- Inflammatory Disease Biology and Therapeutics Group, Mater Research Institute, Translational Research Institute, and.,Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|