1
|
Lin B, Gong J, Keenan K, Lin F, Lin YC, Mésinèle J, Calmel C, Mohand Oumoussa B, Boëlle PY, Guillot L, Corvol H, Waters V, Sun L, Strug LJ. Genome-wide association study of susceptibility to Pseudomonas aeruginosa infection in cystic fibrosis. Eur Respir J 2024; 64:2400062. [PMID: 39117430 DOI: 10.1183/13993003.00062-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 07/10/2024] [Indexed: 08/10/2024]
Abstract
BACKGROUND Pseudomonas aeruginosa is a common pathogen that contributes to progressive lung disease in cystic fibrosis (CF). Genetic factors other than CF-causing CFTR (CF transmembrane conductance regulator) variations contribute ∼85% of the variation in chronic P. aeruginosa infection age in CF according to twin studies, but the susceptibility loci remain unknown. Our objective is to advance understanding of the genetic basis of host susceptibility to P. aeruginosa infection. MATERIALS AND METHODS We conducted a genome-wide association study of chronic P. aeruginosa infection age in 1037 Canadians with CF. We subsequently assessed the genetic correlation between chronic P. aeruginosa infection age and lung function through polygenic risk score (PRS) analysis and inferred their causal relationship through bidirectional Mendelian randomisation analysis. RESULTS Two novel genome-wide significant loci with lead single nucleotide polymorphisms (SNPs) rs62369766 (chr5p12; p=1.98×10-8) and rs927553 (chr13q12.12; p=1.91×10-8) were associated with chronic P. aeruginosa infection age. The rs62369766 locus was validated using an independent French cohort (n=501). Furthermore, the PRS constructed from CF lung function-associated SNPs was significantly associated with chronic P. aeruginosa infection age (p=0.002). Finally, our analysis presented evidence for a causal effect of lung function on chronic P. aeruginosa infection age (β=0.782 years, p=4.24×10-4). In the reverse direction, we observed a moderate effect (β=0.002, p=0.012). CONCLUSIONS We identified two novel loci that are associated with chronic P. aeruginosa infection age in individuals with CF. Additionally, we provided evidence of common genetic contributors and a potential causal relationship between P. aeruginosa infection susceptibility and lung function in CF. Therapeutics targeting these genetic factors may delay the onset of chronic infections, which account for significant remaining morbidity in CF.
Collapse
Affiliation(s)
- Boxi Lin
- Biostatistics Division, Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Jiafen Gong
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Katherine Keenan
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Fan Lin
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Yu-Chung Lin
- Biostatistics Division, Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Julie Mésinèle
- Sorbonne Université, Inserm U938, Centre de Recherche Saint-Antoine (CRSA), Paris, France
- Inovarion, Paris, France
| | - Claire Calmel
- Sorbonne Université, Inserm U938, Centre de Recherche Saint-Antoine (CRSA), Paris, France
| | - Badreddine Mohand Oumoussa
- Sorbonne Université, Inserm, UMS Production et Analyse des données en Sciences de la vie et en Santé (PASS), Plateforme Post-génomique de la Pitié-Salpêtrière, Paris, France
| | - Pierre-Yves Boëlle
- Sorbonne Université, Inserm, Institut Pierre Louis d'Epidémiologie et de Santé Publique (iPLESP), AP-HP, Hôpital Saint-Antoine, Paris, France
| | - Loïc Guillot
- Sorbonne Université, Inserm U938, Centre de Recherche Saint-Antoine (CRSA), Paris, France
| | - Harriet Corvol
- Sorbonne Université, Inserm U938, Centre de Recherche Saint-Antoine (CRSA), Paris, France
- Sorbonne Université, AP-HP, Hôpital Trousseau, Service de Pneumologie Pédiatrique, Paris, France
| | - Valerie Waters
- Division of Infectious Diseases, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
- Translational Medicine Research Program, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Lei Sun
- Biostatistics Division, Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
- Department of Statistical Sciences, University of Toronto, Toronto, ON, Canada
| | - Lisa J Strug
- Biostatistics Division, Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Statistical Sciences, University of Toronto, Toronto, ON, Canada
- Department of Computer Science, University of Toronto, Toronto, ON, Canada
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON, Canada
| |
Collapse
|
2
|
Daccò V, Rosazza C, Mariani A, Rizza C, Ingianni N, Nazzari E, Terlizzi V, Blasi FA, Alicandro G. Effectiveness and safety of elexacaftor/tezacaftor/ivacaftor treatment in children aged 6-11 years with cystic fibrosis in a real-world setting. Pediatr Pulmonol 2024; 59:2792-2799. [PMID: 38869349 DOI: 10.1002/ppul.27125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 05/24/2024] [Accepted: 06/01/2024] [Indexed: 06/14/2024]
Abstract
BACKGROUND Elexacaftor-tezacaftor-ivacaftor (ETI) is a highly effective cystic fibrosis (CF) transmembrane conductance regulator (CFTR) modulating therapy for people with CF and at least one F508del variant. However, there is limited data about the safety and efficacy of this therapy in pediatric populations and in real-world settings. This study aimed at evaluating the effectiveness, tolerability, and safety of ETI in children with CF. METHODS This was a prospective observational study including all children aged 6-11 years who initiated ETI therapy between October 2022 and March 2023 at the Pediatric CF Center of Milan (Italy). Study outcomes included changes in sweat chloride concentration, FEV1, LCI2.5, body mass index (BMI), tolerance, and safety. Mean changes in study outcomes from baseline through 24 weeks were estimated using mixed-effects regression models. RESULTS The study included 34 children with CF (median age: 8.3 years). At Week 12, we observed an average decrease in LCI2.5 of 2.3 units (95% confidence interval [CI]: -3.1; -1.5). At Week 24, sweat chloride concentration decreased by 63 mEq/L (95% CI: -69; -58), FEV1 increased by 8.8 percentage point (95% CI: 3.7; 13.9) and BMI increased by 0.15 standard deviation scores (95% CI: 0.04; 0.25). Skin rashes appeared in 6 patients which spontaneously resolved within a few days. One month after treatment initiation, one patient experienced an elevation in liver function test results, which subsequently decreased during follow-up visits without necessitating discontinuation of therapy. CONCLUSIONS Our data indicate that ETI therapy is well tolerated by children with CF and is effective in improving signs of lung function abnormalities from early childhood.
Collapse
Affiliation(s)
- Valeria Daccò
- Pediatric Department, Cystic Fibrosis Pediatric Center, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Chiara Rosazza
- Pediatric Department, Cystic Fibrosis Pediatric Center, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Alessandra Mariani
- Pediatric Department, Cystic Fibrosis Pediatric Center, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Carmela Rizza
- Pediatric Department, Cystic Fibrosis Pediatric Center, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Nicolò Ingianni
- Pediatric Department, Cystic Fibrosis Pediatric Center, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Erica Nazzari
- Pediatric Department, Cystic Fibrosis Pediatric Center, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Vito Terlizzi
- Department of Pediatric Medicine, Meyer Children's Hospital IRCCS, Cystic Fibrosis Regional Reference Center, Florence, Italy
| | - Francesco Arturo Blasi
- Medical Department, Respiratory Unit and Cystic Fibrosis Adult Center, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Gianfranco Alicandro
- Pediatric Department, Cystic Fibrosis Pediatric Center, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| |
Collapse
|
3
|
Bdaiwi AS, Svoboda AM, Murdock KE, Hendricks A, Hossain MM, Kramer EL, Brewington JJ, Willmering MM, Woods JC, Walkup LL, Cleveland ZI. Quantifying abnormal alveolar microstructure in cystic fibrosis lung disease via hyperpolarized 129Xe diffusion MRI. J Cyst Fibros 2024; 23:926-935. [PMID: 38997823 PMCID: PMC11410525 DOI: 10.1016/j.jcf.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/05/2024] [Accepted: 07/01/2024] [Indexed: 07/14/2024]
Abstract
RATIONALE Cystic Fibrosis (CF) progresses through recurrent infection and inflammation, causing permanent lung function loss and airway remodeling. CT scans reveal abnormally low-density lung parenchyma in CF, but its microstructural nature remains insufficiently explored due to clinical CT limitations. To this end, diffusion-weighted 129Xe MRI is a non-invasive and validated measure of lung microstructure. In this work, we investigate microstructural changes in people with CF (pwCF) relative to age-matched, healthy subjects using comprehensive imaging and analysis involving pulmonary-function tests (PFTs), and 129Xe MRI. METHODS 38 healthy subjects (age 6-40; 17.2 ± 9.5 years) and 39 pwCF (age 6-40; 15.6 ± 8.0 years) underwent 129Xe-diffusion MRI and PFTs. The distribution of diffusion measurements (i.e., apparent diffusion coefficients (ADC) and morphometric parameters) was assessed via linear binning (LB). The resulting volume percentages of bins were compared between controls and pwCF. Mean ADC and morphometric parameters were also correlated with PFTs. RESULTS Mean whole-lung ADC correlated significantly with age (P < 0.001) for both controls and CF, and with PFTs (P < 0.05) specifically for pwCF. Although there was no significant difference in mean ADC between controls and pwCF (P = 0.334), age-adjusted LB indicated significant voxel-level diffusion (i.e., ADC and morphometric parameters) differences in pwCF compared to controls (P < 0.05). CONCLUSIONS 129Xe diffusion MRI revealed microstructural abnormalities in CF lung disease. Smaller microstructural size may reflect compression from overall higher lung density due to interstitial inflammation, fibrosis, or other pathological changes. While elevated microstructural size may indicate emphysema-like remodeling due to chronic inflammation and infection.
Collapse
Affiliation(s)
- Abdullah S Bdaiwi
- Center for Pulmonary Imaging Research, Division of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, United States; Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH 45221, United States
| | - Alexandra M Svoboda
- Center for Pulmonary Imaging Research, Division of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, United States; College of Medicine, University of Cincinnati, Cincinnati, OH 45221, United States
| | - Kyle E Murdock
- Imaging Research Center, Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, United States
| | - Alexandra Hendricks
- Center for Pulmonary Imaging Research, Division of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, United States; Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH 45221, United States
| | - Md M Hossain
- Division of Biostatistics and Epidemiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, United States; Department of Pediatrics, University of Cincinnati, Cincinnati, OH, United States
| | - Elizabeth L Kramer
- Center for Pulmonary Imaging Research, Division of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, United States; Department of Pediatrics, University of Cincinnati, Cincinnati, OH, United States
| | - John J Brewington
- Center for Pulmonary Imaging Research, Division of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, United States; Department of Pediatrics, University of Cincinnati, Cincinnati, OH, United States
| | - Matthew M Willmering
- Center for Pulmonary Imaging Research, Division of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, United States
| | - Jason C Woods
- Center for Pulmonary Imaging Research, Division of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, United States; Imaging Research Center, Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, United States; Department of Pediatrics, University of Cincinnati, Cincinnati, OH, United States; Department of Physics, University of Cincinnati, Cincinnati, United States
| | - Laura L Walkup
- Center for Pulmonary Imaging Research, Division of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, United States; Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH 45221, United States; Imaging Research Center, Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, United States; Department of Pediatrics, University of Cincinnati, Cincinnati, OH, United States
| | - Zackary I Cleveland
- Center for Pulmonary Imaging Research, Division of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, United States; Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH 45221, United States; Imaging Research Center, Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, United States; Department of Pediatrics, University of Cincinnati, Cincinnati, OH, United States.
| |
Collapse
|
4
|
Dobra R, Carroll S, Davies JC, Dowdall F, Duff A, Elderton A, Georgiopoulos AM, Massey-Chase R, McNally P, Puckey M, Madge S. Exploring the complexity of cystic fibrosis (CF) and psychosocial wellbeing in the 2020s: Current and future challenges. Paediatr Respir Rev 2024:S1526-0542(24)00058-7. [PMID: 39261143 DOI: 10.1016/j.prrv.2024.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 08/15/2024] [Indexed: 09/13/2024]
Abstract
Cystic fibrosis (CF) is traditionally associated with considerable and progressive multisystem pathology, onerous treatment burden, complex psychosocial challenges, and reduced life-expectancy [1-9].This decade has seen transformative change in management for many, but not all, people with CF. The most notable change comes from Cystic Fibrosis Transmembrane Receptor (CFTR) modulators, which bring significant benefits for people who are eligible for, and able to access, them [10]. However alongside, or perhaps because of, this exciting progress, the past few years have also brought important novel challenges to the psychosocial wellbeing of people with CF. This article, written as a collaboration between CF psychologists, social workers, physicians and nurses aims to provide an accessible overview of the novel psychosocial challenges now faced by children, their families, and adults with CF, and to invite consideration of their changing psychosocial requirements to inform future holistic care. Themes include geopolitical stressors such as the pandemic and its wake, a growing divide between those able or unable to access CFTR modulators, potential rapid changes in life expectancy secondary to these drugs and the inevitable associated challenges this brings; evolving body image, mental health side effects of CFTR modulators, the challenges of adherence in apparently well children and young adults, as well as the diagnostic conundrum and associated anxiety of the cystic fibrosis screen positive inconclusive diagnosis (CFSPID) label. It also highlights some unmet research and service delivery needs in the area.
Collapse
Affiliation(s)
- Rebecca Dobra
- National Heart and Lung Institute, Imperial College London, UK.
| | | | - Jane C Davies
- National Heart and Lung Institute, Imperial College London, UK
| | - Fiona Dowdall
- Manchester Adult Cystic Fibrosis Centre, Manchester, UK
| | - Alistair Duff
- Department of Paediatric Psychology, Leeds Children's Hospital, Leeds, UK
| | | | | | | | | | - Michèle Puckey
- Department of Paediatric Psychology, Royal Brompton & Harefield NHS Foundation Trust London, UK
| | - Susan Madge
- Department of Adult Cystic Fibrosis, Royal Brompton & Harefield NHS Foundation Trust London, UK
| |
Collapse
|
5
|
Mall MA, Burgel PR, Castellani C, Davies JC, Salathe M, Taylor-Cousar JL. Cystic fibrosis. Nat Rev Dis Primers 2024; 10:53. [PMID: 39117676 DOI: 10.1038/s41572-024-00538-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/09/2024] [Indexed: 08/10/2024]
Abstract
Cystic fibrosis is a rare genetic disease caused by mutations in CFTR, the gene encoding cystic fibrosis transmembrane conductance regulator (CFTR). The discovery of CFTR in 1989 has enabled the unravelling of disease mechanisms and, more recently, the development of CFTR-directed therapeutics that target the underlying molecular defect. The CFTR protein functions as an ion channel that is crucial for correct ion and fluid transport across epithelial cells lining the airways and other organs. Consequently, CFTR dysfunction causes a complex multi-organ disease but, to date, most of the morbidity and mortality in people with cystic fibrosis is due to muco-obstructive lung disease. Cystic fibrosis care has long been limited to treating symptoms using nutritional support, airway clearance techniques and antibiotics to suppress airway infection. The widespread implementation of newborn screening for cystic fibrosis and the introduction of a highly effective triple combination CFTR modulator therapy that has unprecedented clinical benefits in up to 90% of genetically eligible people with cystic fibrosis has fundamentally changed the therapeutic landscape and improved prognosis. However, people with cystic fibrosis who are not eligible based on their CFTR genotype or who live in countries where they do not have access to this breakthrough therapy remain with a high unmet medical need.
Collapse
Affiliation(s)
- Marcus A Mall
- Department of Paediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität, Berlin, Germany.
- German Centre for Lung Research (DZL), Associated Partner Site Berlin, Berlin, Germany.
- German Center for Child and Adolescent Health (DZKJ), Partner Site Berlin, Berlin, Germany.
| | - Pierre-Régis Burgel
- Université Paris Cité and Institut Cochin, Inserm U1016, Paris, France
- Department of Respiratory Medicine and National Reference Center for Cystic Fibrosis, Cochin Hospital, Assistance Publique Hôpitaux de Paris (AP-HP), Paris, France
| | - Carlo Castellani
- IRCCS Istituto Giannina Gaslini, Cystic Fibrosis Center, Genoa, Italy
| | - Jane C Davies
- National Heart & Lung Institute, Imperial College London, London, UK
- St Thomas' NHS Trust, London, UK
- Royal Brompton Hospital, Part of Guy's & St Thomas' Trust, London, UK
| | - Matthias Salathe
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, MO, USA
| | - Jennifer L Taylor-Cousar
- Division of Pulmonary, Critical Care and Sleep Medicine, National Jewish Health, Denver, CO, USA
- Division of Pulmonary Sciences and Critical Care Medicine, Anschutz Medical Campus, University of Colorado, Aurora, CO, USA
- Division of Paediatric Pulmonary Medicine, National Jewish Health, Denver, CO, USA
| |
Collapse
|
6
|
Konstan MW, Polineni D, Chmiel JF, Bilodeau L, Middleton PG, Matouk E, Houle JM, Pislariu R, Colin P, Kianicka I, Potvin D, Radzioch D, Kotsimbos T, Zuckerman JB, Nasr SZ, Liou TG, Lands LC. Efficacy and safety of LAU-7b in a Phase 2 trial in adults with cystic fibrosis. J Cyst Fibros 2024:S1569-1993(24)00789-6. [PMID: 38987119 DOI: 10.1016/j.jcf.2024.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 06/04/2024] [Accepted: 07/01/2024] [Indexed: 07/12/2024]
Abstract
BACKGROUND Lung inflammation is associated with tissue damage in cystic fibrosis (CF). LAU-7b, a novel oral drug candidate, was shown to control inflammation and stabilize CFTR protein in the epithelial membrane during inflammatory stress in preclinical models of CF. METHODS A double-blind, randomized, placebo-controlled Phase 2 study was conducted to evaluate efficacy and safety of LAU-7b in adults with CF. LAU-7b or placebo was administered over 24 weeks as six 21-day treatment cycles each separated by 7 days. The primary efficacy endpoint was the absolute change from baseline in percent predicted forced expiratory volume in 1 second (ppFEV1) at 24 weeks. RESULTS A total of 166 subjects received at least one dose of study drug (Intent-To-Treat population, ITT), of which 122 received ≥5 treatment cycles (Per-Protocol population, PP). Both treatment arms showed a mean lung function loss at 24 weeks of 1.18 ppFEV1 points with LAU-7b and 1.95 ppFEV1 with placebo, a 0.77 ppFEV1 (40 s) difference, p=0.345, and a 0.95 ppFEV1 (49 %) difference in the same direction in PP population, p=0.263. Primary analysis of mean ppFEV1 through 24 weeks showed differences of 1.01 and 1.23 ppFEV1, in the ITT (65 % less loss, p=0.067) and PP populations (78 % less loss, reaching statistical significance p=0.049), respectively. LAU-7b had an acceptable safety profile. CONCLUSION Although the study did not meet its primary efficacy endpoint in the ITT population, LAU-7b was generally well tolerated and showed evidence of preservation of lung function to support further development.
Collapse
Affiliation(s)
- Michael W Konstan
- Case Western Reserve University School of Medicine and Rainbow Babies and Children's Hospital, OH, USA
| | | | - James F Chmiel
- Indiana University School of Medicine and Riley Hospital for Children at IU Health, IN, USA
| | - Lara Bilodeau
- Institut Universitaire de Cardiologie et de Pneumologie de Québec-Université Laval, QC, Canada
| | - Peter G Middleton
- CITRICA, Department of Respiratory & Sleep Medicine, Westmead Hospital and Clinical School University of Sydney, NSW, Australia
| | - Elias Matouk
- Research Institute of the McGill University Health Centre, QC, Canada
| | | | | | | | | | | | - Danuta Radzioch
- Research Institute of the McGill University Health Centre, QC, Canada
| | | | | | - Samya Z Nasr
- University of Michigan Health System, Ann Arbor, MI, USA
| | | | - Larry C Lands
- Research Institute of the McGill University Health Centre, QC, Canada.
| |
Collapse
|
7
|
Mall MA, Davies JC, Donaldson SH, Jain R, Chalmers JD, Shteinberg M. Neutrophil serine proteases in cystic fibrosis: role in disease pathogenesis and rationale as a therapeutic target. Eur Respir Rev 2024; 33:240001. [PMID: 39293854 PMCID: PMC11409056 DOI: 10.1183/16000617.0001-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 07/09/2024] [Indexed: 09/20/2024] Open
Abstract
Chronic airway inflammation is a central feature in the pathogenesis of bronchiectasis (BE), which can be caused by cystic fibrosis (CFBE; hereafter referred to as CF lung disease) and non-CF-related conditions (NCFBE). Inflammation in both CF lung disease and NCFBE is predominantly driven by neutrophils, which release proinflammatory cytokines and granule proteins, including neutrophil serine proteases (NSPs). NSPs include neutrophil elastase, proteinase 3 and cathepsin G. An imbalance between NSPs and their antiproteases has been observed in people with CF lung disease and people with NCFBE. While the role of the protease/antiprotease imbalance is well established in both CF lung disease and NCFBE, effective therapies targeting NSPs are lacking. In recent years, the introduction of CF transmembrane conductance regulator (CFTR) modulator therapy has immensely improved outcomes in many people with CF (pwCF). Despite this, evidence suggests that airway inflammation persists, even in pwCF treated with CFTR modulator therapy. In this review, we summarise current data on neutrophilic inflammation in CF lung disease to assess whether neutrophilic inflammation and high, uncontrolled NSP levels play similar roles in CF lung disease and in NCFBE. We discuss similarities between the neutrophilic inflammatory profiles of people with CF lung disease and NCFBE, potentially supporting a similar therapeutic approach. Additionally, we present evidence suggesting that neutrophilic inflammation persists in pwCF treated with CFTR modulator therapy, at levels similar to those in people with NCFBE. Collectively, these findings highlight the ongoing need for new treatment strategies targeting neutrophilic inflammation in CF lung disease.
Collapse
Affiliation(s)
- Marcus A Mall
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine and Cystic Fibrosis Center, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Center for Lung Research (DZL), associated partner site, Berlin, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Jane C Davies
- National Heart and Lung Institute, Imperial College London, London, UK
- Royal Brompton Hospital, Guy's and St. Thomas' NHS Foundation Trust, London, UK
| | - Scott H Donaldson
- Department of Medicine, Division of Pulmonary Diseases and Critical Care Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Raksha Jain
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | | | - Michal Shteinberg
- Lady Davis Carmel Medical Center, Haifa, Israel
- The B. Rappaport Faculty of Medicine, Technion Institute of Technology, Haifa, Israel
| |
Collapse
|
8
|
Rehman T, Pezzulo AA, Thurman AL, Zemans RL, Welsh MJ. Epithelial responses to CFTR modulators are improved by inflammatory cytokines and impaired by antiinflammatory drugs. JCI Insight 2024; 9:e181836. [PMID: 38888974 PMCID: PMC11383177 DOI: 10.1172/jci.insight.181836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 06/12/2024] [Indexed: 06/20/2024] Open
Abstract
Cystic fibrosis (CF) is a genetic disorder that disrupts CF transmembrane conductance regulator (CFTR) anion channels and impairs airway host defenses. Airway inflammation is ubiquitous in CF, and suppressing it has generally been considered to improve outcomes. However, the role of inflammation in people taking CFTR modulators, small-molecule drugs that restore CFTR function, is not well understood. We previously showed that inflammation enhances the efficacy of CFTR modulators. To further elucidate this relationship, we treated human ΔF508-CF epithelia with TNF-α and IL-17, two inflammatory cytokines that are elevated in CF airways. TNF-α+IL-17 enhanced CFTR modulator-evoked anion secretion through mechanisms that raise intracellular Cl- (Na+/K+/2Cl- cotransport) and HCO3- (carbonic anhydrases and Na+/HCO3- cotransport). This enhancement required p38 MAPK signaling. Importantly, CFTR modulators did not affect CF airway surface liquid viscosity under control conditions but prevented the rise in viscosity in epithelia treated with TNF-α+IL-17. Finally, antiinflammatory drugs limited CFTR modulator responses in TNF-α+IL-17-treated epithelia. These results provide critical insights into mechanisms by which inflammation increases responses to CFTR modulators. They also suggest an equipoise between potential benefits and limitations of suppressing inflammation in people taking modulators, call into question current treatment approaches, and highlight a need for additional studies.
Collapse
Affiliation(s)
- Tayyab Rehman
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
- Department of Internal Medicine, Pappajohn Biomedical Institute, University of Iowa, Iowa City, Iowa, USA
| | - Alejandro A Pezzulo
- Department of Internal Medicine, Pappajohn Biomedical Institute, University of Iowa, Iowa City, Iowa, USA
| | - Andrew L Thurman
- Department of Internal Medicine, Pappajohn Biomedical Institute, University of Iowa, Iowa City, Iowa, USA
| | - Rachel L Zemans
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Michael J Welsh
- Department of Internal Medicine, Pappajohn Biomedical Institute, University of Iowa, Iowa City, Iowa, USA
- Howard Hughes Medical Institute, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
9
|
Loske J, Völler M, Lukassen S, Stahl M, Thürmann L, Seegebarth A, Röhmel J, Wisniewski S, Messingschlager M, Lorenz S, Klages S, Eils R, Lehmann I, Mall MA, Graeber SY, Trump S. Pharmacological Improvement of Cystic Fibrosis Transmembrane Conductance Regulator Function Rescues Airway Epithelial Homeostasis and Host Defense in Children with Cystic Fibrosis. Am J Respir Crit Care Med 2024; 209:1338-1350. [PMID: 38259174 PMCID: PMC11146576 DOI: 10.1164/rccm.202310-1836oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 01/19/2024] [Indexed: 01/24/2024] Open
Abstract
Rationale: Pharmacological improvement of cystic fibrosis transmembrane conductance regulator (CFTR) function with elexacaftor/tezacaftor/ivacaftor (ETI) provides unprecedented improvements in lung function and other clinical outcomes in patients with cystic fibrosis (CF). However, ETI effects on impaired mucosal homeostasis and host defense at the molecular and cellular levels in the airways of patients with CF remain unknown. Objectives: To investigate effects of ETI on the transcriptome of nasal epithelial and immune cells from children with CF at the single-cell level. Methods: Nasal swabs from 13 children with CF and at least one F508del allele aged 6 to 11 years were collected at baseline and 3 months after initiation of ETI, subjected to single-cell RNA sequencing, and compared with swabs from 12 age-matched healthy children. Measurements and Main Results: Proportions of CFTR-positive cells were decreased in epithelial basal, club, and goblet cells, but not in ionocytes, from children with CF at baseline and were restored by ETI therapy to nearly healthy levels. Single-cell transcriptomics revealed an impaired IFN signaling and reduced expression of major histocompatibility complex classes I and II encoding genes in epithelial cells of children with CF at baseline, which was partially restored by ETI. In addition, ETI therapy markedly reduced the inflammatory phenotype of immune cells, particularly of neutrophils and macrophages. Conclusions: Pharmacological improvement of CFTR function improves innate mucosal immunity and reduces immune cell inflammatory responses in the upper airways of children with CF at the single-cell level, highlighting the potential to restore epithelial homeostasis and host defense in CF airways by early initiation of ETI therapy.
Collapse
Affiliation(s)
- Jennifer Loske
- Center of Digital Health, Molecular Epidemiology Unit, Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Berlin, Germany
- Department of Biology and
| | - Mirjam Völler
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Sören Lukassen
- Center of Digital Health, Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Mirjam Stahl
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Berlin, Germany
- German Center for Lung Research, Associated Partner Site, Berlin, Germany
| | - Loreen Thürmann
- Center of Digital Health, Molecular Epidemiology Unit, Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Anke Seegebarth
- Center of Digital Health, Molecular Epidemiology Unit, Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Jobst Röhmel
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Berlin, Germany
- German Center for Lung Research, Associated Partner Site, Berlin, Germany
| | - Sebastian Wisniewski
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Marey Messingschlager
- Center of Digital Health, Molecular Epidemiology Unit, Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Berlin, Germany
- Department of Biology and
| | - Stephan Lorenz
- Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Sven Klages
- Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Roland Eils
- Department of Mathematics and Computer Science, Freie Universität Berlin, Berlin, Germany
- Center of Digital Health, Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Berlin, Germany
- German Center for Lung Research, Associated Partner Site, Berlin, Germany
- Health Data Science Unit, BioQuant, Medical Faculty, University of Heidelberg, Heidelberg, Germany
| | - Irina Lehmann
- Center of Digital Health, Molecular Epidemiology Unit, Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Berlin, Germany
- German Center for Lung Research, Associated Partner Site, Berlin, Germany
| | - Marcus A. Mall
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Berlin, Germany
- German Center for Lung Research, Associated Partner Site, Berlin, Germany
| | - Simon Y. Graeber
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Berlin, Germany
- German Center for Lung Research, Associated Partner Site, Berlin, Germany
| | - Saskia Trump
- Center of Digital Health, Molecular Epidemiology Unit, Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
10
|
Terlizzi V, Farrell PM. Update on advances in cystic fibrosis towards a cure and implications for primary care clinicians. Curr Probl Pediatr Adolesc Health Care 2024; 54:101637. [PMID: 38811287 DOI: 10.1016/j.cppeds.2024.101637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
During the past quarter century, the diagnosis and treatment of cystic fibrosis (CF) have been transformed by molecular sciences that initiated a new era with discovery of the cystic fibrosis transmembrane conductance regulator (CFTR) gene. The knowledge gained from that breakthrough has had dramatic clinical impact. Although once a diagnostic dilemma with long delays, preventable deaths, and irreversible pathology, CF can now be routinely diagnosed shortly after birth through newborn screening programs. This strategy of pre-symptomatic identification has eliminated the common diagnostic "odyssey" that was a failure of the healthcare delivery system causing psychologically traumatic experiences for parents. Therapeutic advances of many kinds have culminated in CFTR modulator treatment that can reduce the effects of or even correct the molecular defect in the chloride channel -the basic cause of CF. This astonishing advance has transformed CF care as described fully herein. Despite this impressive progress, there are challenges and controversies in the delivery of care. Issues include how best to achieve high sensitivity newborn screening with acceptable specificity; what course of action is appropriate for children who are identified through the unavoidable incidental findings of screening tests (CFSPID/CRMS cases and heterozygote carriers); how best to ensure genetic counseling; when to initiate the very expensive but life-saving CFTR modulator drugs; how to identify new CFTR modulator drugs for patients with non-responsive CFTR variants; how to adjust other therapeutic modalities; and how to best partner with primary care clinicians. Progress always brings new challenges, and this has been evident worldwide for CF. Consequently, this article summarizes the major advances of recent years along with controversies and describes their implications with an international perspective.
Collapse
Affiliation(s)
- Vito Terlizzi
- Department of Pediatric Medicine, Meyer Children's Hospital IRCCS, Cystic Fibrosis Regional Reference Center, Viale Gaetano Pieraccini 24, Florence, Italy
| | - Philip M Farrell
- Departments of Pediatrics and Population Health Sciences, University of Wisconsin School of Medicine and Public Health, Clinical Sciences Center (K4/948), 600 Highland Avenue, Madison, WI 53792, USA.
| |
Collapse
|
11
|
Jain K, Wainwright CE, Smyth AR. Bronchoscopy-guided antimicrobial therapy for cystic fibrosis. Cochrane Database Syst Rev 2024; 5:CD009530. [PMID: 38700027 PMCID: PMC11066959 DOI: 10.1002/14651858.cd009530.pub5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
BACKGROUND Early diagnosis and treatment of lower respiratory tract infections is the mainstay of management of lung disease in cystic fibrosis (CF). When sputum samples are unavailable, diagnosis relies mainly on cultures from oropharyngeal specimens; however, there are concerns about whether this approach is sensitive enough to identify lower respiratory organisms. Bronchoscopy and related procedures such as bronchoalveolar lavage (BAL) are invasive but allow the collection of lower respiratory specimens from non-sputum producers. Cultures of bronchoscopic specimens provide a higher yield of organisms compared to those from oropharyngeal specimens. Regular use of bronchoscopy and related procedures may increase the accuracy of diagnosis of lower respiratory tract infections and improve the selection of antimicrobials, which may lead to clinical benefits. This is an update of a previous review that was first published in 2013 and was updated in 2016 and in 2018. OBJECTIVES To evaluate the use of bronchoscopy-guided (also known as bronchoscopy-directed) antimicrobial therapy in the management of lung infection in adults and children with cystic fibrosis. SEARCH METHODS We searched the Cochrane Cystic Fibrosis Trials Register, compiled from electronic database searches and handsearching of journals and conference abstract books. We also searched three registries of ongoing studies and the reference lists of relevant articles and reviews. The date of the most recent searches was 1 November 2023. SELECTION CRITERIA We included randomised controlled studies involving people of any age with CF that compared the outcomes of antimicrobial therapies guided by the results of bronchoscopy (and related procedures) versus those guided by any other type of sampling (e.g. cultures from sputum, throat swab and cough swab). DATA COLLECTION AND ANALYSIS Two review authors independently selected studies, assessed their risk of bias and extracted data. We contacted study investigators for further information when required. We assessed the certainty of the evidence using the GRADE criteria. MAIN RESULTS We included two studies in this updated review. One study enrolled 170 infants under six months of age who had been diagnosed with CF through newborn screening. Participants were followed until they were five years old, and data were available for 157 children. The study compared outcomes for pulmonary exacerbations following treatment directed by BAL versus standard treatment based on clinical features and oropharyngeal cultures. The second study enrolled 30 children with CF aged between five and 18 years and randomised participants to receive treatment based on microbiological results of BAL triggered by an increase in lung clearance index (LCI) of at least one unit above baseline or to receive standard treatment based on microbiological results of oropharyngeal samples collected when participants were symptomatic. We judged both studies to have a low risk of bias across most domains, although the risk of bias for allocation concealment and selective reporting was unclear in the smaller study. In the larger study, the statistical power to detect a significant difference in the prevalence of Pseudomonas aeruginosa was low because Pseudomonas aeruginosa isolation in BAL samples at five years of age in both groups were much lower than the expected rate that was used for the power calculation. We graded the certainty of evidence for the key outcomes as low, other than for high-resolution computed tomography scoring and cost-of-care analysis, which we graded as moderate certainty. Both studies reported similar outcomes, but meta-analysis was not possible due to different ways of measuring the outcomes and different indications for the use of BAL. Whether antimicrobial therapy is directed by the use of BAL or standard care may make little or no difference in lung function z scores after two years (n = 29) as measured by the change from baseline in LCI and forced expiratory volume in one second (FEV1) (low-certainty evidence). At five years, the larger study found little or no difference between groups in absolute FEV1 z score or forced vital capacity (FVC) (low-certainty evidence). BAL-directed therapy probably makes little or no difference to any measure of chest scores assessed by computed tomography (CT) scan at either two or five years (different measures used in the two studies; moderate-certainty evidence). BAL-directed therapy may make little or no difference in nutritional parameters or in the number of positive isolates of P aeruginosa per participant per year, but may lead to more hospitalisations per year (1 study, 157 participants; low-certainty evidence). There is probably no difference in average cost of care per participant (either for hospitalisations or total costs) at five years between BAL-directed therapy and standard care (1 study, 157 participants; moderate-certainty evidence). We found no difference in health-related quality of life between BAL-directed therapy and standard care at either two or five years, and the larger study found no difference in the number of isolates of Pseudomonas aeruginosa per child per year. The eradication rate following one or two courses of eradication treatment and the number of pulmonary exacerbations were comparable in the two groups. Mild adverse events, when reported, were generally well tolerated. The most common adverse event reported was transient worsening of cough after 29% of procedures. Significant clinical deterioration was documented during or within 24 hours of BAL in 4.8% of procedures. AUTHORS' CONCLUSIONS This review, limited to two well-designed randomised controlled studies, shows no evidence to support the routine use of BAL for the diagnosis and management of pulmonary infection in preschool children with CF compared to the standard practice of providing treatment based on results of oropharyngeal culture and clinical symptoms. No evidence is available for adults.
Collapse
Affiliation(s)
- Kamini Jain
- Leicester Children's Hospital, University Hospitals of Leicester NHS Trust, Leicester, UK
| | - Claire E Wainwright
- Department of Respiratory Medicine, Royal Children's Hospital, Brisbane, Australia
| | - Alan R Smyth
- Division of Child Health, Obstetrics & Gynaecology, School of Medicine, University of Nottingham, Nottingham, UK
| |
Collapse
|
12
|
Frayman KB, Macowan M, Caparros-Martin J, Ranganathan SC, Marsland BJ. The longitudinal microbial and metabolic landscape of infant cystic fibrosis: the gut-lung axis. Eur Respir J 2024; 63:2302290. [PMID: 38485151 DOI: 10.1183/13993003.02290-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 02/29/2024] [Indexed: 05/12/2024]
Abstract
BACKGROUND AND AIM In cystic fibrosis, gastrointestinal dysfunction and lower airway infection occur early and are independently associated with poorer outcomes in childhood. This study aimed to define the relationship between the microbiota at each niche during the first 2 years of life, its association with growth and airway inflammation, and explanatory features in the metabolome. MATERIALS AND METHODS 67 bronchoalveolar lavage fluid (BALF), 62 plasma and 105 stool samples were collected from 39 infants with cystic fibrosis between 0 and 24 months who were treated with prophylactic antibiotics. 16S rRNA amplicon and shotgun metagenomic sequencing were performed on BALF and stool samples, respectively; metabolomic analyses were performed on all sample types. Sequencing data from healthy age-matched infants were used as controls. RESULTS Bacterial diversity increased over the first 2 years in both BALF and stool, and microbial maturation was delayed in comparison to healthy controls from the RESONANCE cohort. Correlations between their respective abundance in both sites suggest stool may serve as a noninvasive alternative for detecting BALF Pseudomonas and Veillonella. Multisite metabolomic analyses revealed age- and growth-related changes, associations with neutrophilic airway inflammation, and a set of core systemic metabolites. BALF Pseudomonas abundance was correlated with altered stool microbiome composition and systemic metabolite alterations, highlighting a complex gut-plasma-lung interplay and new targets with therapeutic potential. CONCLUSION Exploration of the gut-lung microbiome and metabolome reveals diverse multisite interactions in cystic fibrosis that emerge in early life. Gut-lung metabolomic links with airway inflammation and Pseudomonas abundance warrant further investigation for clinical utility, particularly in non-expectorating patients.
Collapse
Affiliation(s)
- Katherine B Frayman
- Respiratory Diseases Group, Murdoch Children's Research Institute, Melbourne, Australia
- Department of Respiratory and Sleep Medicine, Royal Children's Hospital, Melbourne, Australia
- K.B. Frayman and M. Macowan are joint first authors
| | - Matthew Macowan
- Department of Immunology and Pathology, Monash University, Melbourne, Australia
- K.B. Frayman and M. Macowan are joint first authors
| | | | - Sarath C Ranganathan
- Respiratory Diseases Group, Murdoch Children's Research Institute, Melbourne, Australia
- Department of Respiratory and Sleep Medicine, Royal Children's Hospital, Melbourne, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Australia
- S.C. Ranganathan and B.J. Marsland are joint last authors
| | - Benjamin J Marsland
- Department of Immunology and Pathology, Monash University, Melbourne, Australia
- S.C. Ranganathan and B.J. Marsland are joint last authors
| |
Collapse
|
13
|
Horati H, Margaroli C, Chandler JD, Kilgore MB, Manai B, Andrinopoulou ER, Peng L, Guglani L, Tiddens HAMW, Caudri D, Scholte BJ, Tirouvanziam R, Janssens HM. Key inflammatory markers in bronchoalveolar lavage predict bronchiectasis progression in young children with CF. J Cyst Fibros 2024; 23:450-456. [PMID: 38246828 DOI: 10.1016/j.jcf.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 01/02/2024] [Accepted: 01/05/2024] [Indexed: 01/23/2024]
Abstract
INTRODUCTION Inflammation appears early in cystic fibrosis (CF) pathogenesis, with specific elevated inflammatory markers in bronchoalveolar lavage fluid (BALF) correlating with structural lung disease. Our aim was to identify markers of airway inflammation able to predict bronchiectasis progression over two years with high sensitivity and specificity. METHODS Children with CF with two chest computed tomography (CT) scans and bronchoscopies at a two-year interval were included (n= 10 at 1 and 3 years and n= 27 at 3 and 5 years). Chest CTs were scored for increase in bronchiectasis (Δ%Bx), using the PRAGMA-CF score. BALF collected with the first CT scan were analyzed for neutrophil% (n= 36), myeloperoxidase (MPO) (n= 25), neutrophil elastase (NE) (n= 26), and with a protein array for inflammatory and fibrotic markers (n= 26). RESULTS MPO, neutrophil%, and inducible T-cell costimulator ligand (ICOSLG), but not clinical characteristics, correlated significantly with Δ%Bx. Evaluation of neutrophil%, NE, MPO, interleukin-8 (IL-8), ICOSLG, and hepatocyte growth factor (HGF), for predicting an increase of > 0.5% of Δ%Bx in two years, showed that IL-8 had the best sensitivity (82%) and specificity (73%). Neutrophil%, ICOSLG and HGF had sensitivities of 85, 82, and 82% and specificities of 59, 67 and 60%, respectively. The odds ratio for risk of >0.5% Δ%Bx was higher for IL-8 (12.4) than for neutrophil%, ICOSLG, and HGF (5.9, 5.3, and 6.7, respectively). Sensitivity and specificity were lower for NE and MPO). CONCLUSIONS High levels of IL-8, neutrophil%, ICOSGL and HGF in BALF may be good predictors for progression of bronchiectasis in young children with CF.
Collapse
Affiliation(s)
- Hamed Horati
- Department of Pediatrics, Division of Respiratory Medicine and Allergology, Erasmus MC-Sophia Children's Hospital, University Hospital Rotterdam, I-BALL program, office Sp3456 Dr. Molewaterplein 40, 3015 GD Rotterdam, Postal address: Box 2060, Rotterdam 3000 CB, The Netherlands
| | - Camilla Margaroli
- Department of Pediatrics, Emory University School of Medicine & Center for CF and Airways Disease Research, Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Joshua D Chandler
- Department of Pediatrics, Emory University School of Medicine & Center for CF and Airways Disease Research, Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Matthew B Kilgore
- Department of Pediatrics, Emory University School of Medicine & Center for CF and Airways Disease Research, Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Badies Manai
- Department of Pediatrics, Division of Respiratory Medicine and Allergology, Erasmus MC-Sophia Children's Hospital, University Hospital Rotterdam, I-BALL program, office Sp3456 Dr. Molewaterplein 40, 3015 GD Rotterdam, Postal address: Box 2060, Rotterdam 3000 CB, The Netherlands
| | - Eleni-Rosalina Andrinopoulou
- Department of Biostatistics and Bioinformatics, Erasmus MC, University Hospital Rotterdam, Rotterdam, The Netherlands
| | - Limin Peng
- Department of Biostatistics and Bioinformatics, Emory University School of Public Health, Atlanta, GA, USA
| | - Lokesh Guglani
- Department of Pediatrics, Emory University School of Medicine & Center for CF and Airways Disease Research, Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Harm A M W Tiddens
- Department of Pediatrics, Division of Respiratory Medicine and Allergology, Erasmus MC-Sophia Children's Hospital, University Hospital Rotterdam, I-BALL program, office Sp3456 Dr. Molewaterplein 40, 3015 GD Rotterdam, Postal address: Box 2060, Rotterdam 3000 CB, The Netherlands; Department of radiology, Erasmus MC, University Hospital Rotterdam, Rotterdam, The Netherlands; Thirona, Nijmegen, The Netherlands
| | - Daan Caudri
- Department of Pediatrics, Division of Respiratory Medicine and Allergology, Erasmus MC-Sophia Children's Hospital, University Hospital Rotterdam, I-BALL program, office Sp3456 Dr. Molewaterplein 40, 3015 GD Rotterdam, Postal address: Box 2060, Rotterdam 3000 CB, The Netherlands
| | - Bob J Scholte
- Department of Pediatrics, Division of Respiratory Medicine and Allergology, Erasmus MC-Sophia Children's Hospital, University Hospital Rotterdam, I-BALL program, office Sp3456 Dr. Molewaterplein 40, 3015 GD Rotterdam, Postal address: Box 2060, Rotterdam 3000 CB, The Netherlands; Department of Cell Biology, Erasmus MC, University Hospital Rotterdam, Rotterdam, The Netherlands
| | - Rabindra Tirouvanziam
- Department of Pediatrics, Emory University School of Medicine & Center for CF and Airways Disease Research, Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Hettie M Janssens
- Department of Pediatrics, Division of Respiratory Medicine and Allergology, Erasmus MC-Sophia Children's Hospital, University Hospital Rotterdam, I-BALL program, office Sp3456 Dr. Molewaterplein 40, 3015 GD Rotterdam, Postal address: Box 2060, Rotterdam 3000 CB, The Netherlands.
| |
Collapse
|
14
|
Blake TL, Sly PD, Andersen I, Wainwright CE, Reid DW, Bell SC, Smith BR, Kettle AJ, Dickerhof N. Changes in urinary glutathione sulfonamide (GSA) levels between admission and discharge of patients with cystic fibrosis. J Cyst Fibros 2024:S1569-1993(24)00054-7. [PMID: 38658253 DOI: 10.1016/j.jcf.2024.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 04/10/2024] [Accepted: 04/17/2024] [Indexed: 04/26/2024]
Abstract
There is an urgent need to develop sensitive, non-invasive biomarkers that can track airway inflammatory activity for patients with cystic fibrosis (CF). Urinary glutathione sulfonamide (GSA) levels correlate well with GSA levels in BAL samples and other markers of neutrophilic inflammation, suggesting that this biomarker may be suitable for tracking disease activity in this population. We recruited 102 children (median 11.5 years-old) and 64 adults (median 32.5 years-old) who were admitted to hospital for management of an acute pulmonary exacerbation and/or eradication of infectious agents such as Pseudomonas aeruginosa or Staphylococcus aureus. Our aim was to explore how urinary GSA levels changed across admission timepoints. Urine samples were collected at admission and discharge, and GSA measured by liquid chromatography with mass spectrometry. Paired admission-discharge results were compared using Wilcoxon signed-rank test. Paired admission-discharge samples were available for 53 children and 60 adults. A statistically significant difference was observed between admission-discharge for children and adults. Spearman's correlation analysis identified a correlation between urinary GSA levels and sex and S. aureus infection for children only. Our preliminary findings suggest that urinary GSA is responsive to the resolution of an acute pulmonary exacerbation and therefore warrants further studies in this population.
Collapse
Affiliation(s)
- Tamara L Blake
- Children's Health and Environment Program, Child Health Research Centre, University of Queensland, 62 Graham St, South Brisbane, Australia, 4101.
| | - Peter D Sly
- Children's Health and Environment Program, Child Health Research Centre, University of Queensland, 62 Graham St, South Brisbane, Australia, 4101
| | - Isabella Andersen
- Children's Health and Environment Program, Child Health Research Centre, University of Queensland, 62 Graham St, South Brisbane, Australia, 4101
| | - Claire E Wainwright
- Department of Respiratory and Sleep Medicine, Queensland Children's Hospital, 501 Stanley St, South Brisbane, Australia, 4101
| | - David W Reid
- Department of Thoracic Medicine, The Prince Charles Hospital, Staib Rd, Chermside, Australia, 4032
| | - Scott C Bell
- Department of Thoracic Medicine, The Prince Charles Hospital, Staib Rd, Chermside, Australia, 4032; Translational Research Institute, 37 Kent St, Woolloongabba, Australia, 4102
| | - Briana R Smith
- Mātai Hāora - Centre for Redox Biology, Department of Pathology and Biomedical Science, University of Otago Christchurch, New Zealand, 8140
| | - Anthony J Kettle
- Mātai Hāora - Centre for Redox Biology, Department of Pathology and Biomedical Science, University of Otago Christchurch, New Zealand, 8140
| | - Nina Dickerhof
- Mātai Hāora - Centre for Redox Biology, Department of Pathology and Biomedical Science, University of Otago Christchurch, New Zealand, 8140
| |
Collapse
|
15
|
Cai W, Li M, Xu Y, Li M, Wang J, Zuo Y, Cao J. The effect of respiratory muscle training on children and adolescents with cystic fibrosis: a systematic review and meta-analysis. BMC Pediatr 2024; 24:252. [PMID: 38622583 PMCID: PMC11017573 DOI: 10.1186/s12887-024-04726-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 03/27/2024] [Indexed: 04/17/2024] Open
Abstract
BACKGROUND Cystic fibrosis is a chronic genetic disease that can affect the function of the respiratory system. Previous reviews of the effects of respiratory muscle training in people with cystic fibrosis are uncertain and do not consider the effect of age on disease progression. This systematic review aims to determine the effectiveness of respiratory muscle training in the clinical outcomes of children and adolescents with cystic fibrosis. METHODS Up to July 2023, electronic databases and clinical trial registries were searched. Controlled clinical trials comparing respiratory muscle training with sham intervention or no intervention in children and adolescents with cystic fibrosis. The primary outcomes were respiratory muscle strength, respiratory muscle endurance, lung function, and cough. Secondary outcomes included exercise capacity, quality of life and adverse events. Two review authors independently extracted data and assessed study quality using the Cochrane Risk of Bias Tool 2. The certainty of the evidence was assessed according to the GRADE approach. Meta-analyses where possible; otherwise, take a qualitative approach. RESULTS Six studies with a total of 151 participants met the inclusion criteria for this review. Two of the six included studies were published in abstract form only, limiting the available information. Four studies were parallel studies and two were cross-over designs. There were significant differences in the methods and quality of the methodology included in the studies. The pooled data showed no difference in respiratory muscle strength, lung function, and exercise capacity between the treatment and control groups. However, subgroup analyses suggest that inspiratory muscle training is beneficial in increasing maximal inspiratory pressure, and qualitative analyses suggest that respiratory muscle training may benefit respiratory muscle endurance without any adverse effects. CONCLUSIONS This systematic review and meta-analysis indicate that although the level of evidence indicating the benefits of respiratory muscle training is low, its clinical significance suggests that we further study the methodological quality to determine the effectiveness of training. TRIAL REGISTRATION The protocol for this review was recorded in the International Prospective Register of Systematic Reviews (PROSPERO) under registration number CRD42023441829.
Collapse
Affiliation(s)
- WenQian Cai
- School of Pediatrics, Nanjing Medical University, Jiangsu Province, China
- Department of Nursing, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Meng Li
- Department of Rehabilitation Medicine, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Yi Xu
- Department of Rehabilitation Medicine, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Mei Li
- Department of Nursing, Children's Hospital of Nanjing Medical University, Nanjing, China.
| | - JiaNan Wang
- School of Pediatrics, Nanjing Medical University, Jiangsu Province, China
- Department of Nursing, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - YaHui Zuo
- School of Pediatrics, Nanjing Medical University, Jiangsu Province, China
- Department of Nursing, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - JinJin Cao
- Department of Gastroenterology, Children's Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
16
|
Terlizzi V. Elexacaftor/Tezacaftor/Ivacaftor therapy in cystic fibrosis children previously CFSPID: Is it over-medicalization? J Cyst Fibros 2024; 23:366-367. [PMID: 37838487 DOI: 10.1016/j.jcf.2023.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/04/2023] [Accepted: 10/09/2023] [Indexed: 10/16/2023]
Affiliation(s)
- V Terlizzi
- Department of Pediatric Medicine, Meyer Children's Hospital IRCCS, Cystic Fibrosis Regional Reference Center, Florence, Italy.
| |
Collapse
|
17
|
Gaudin C, Ghinnagow R, Lemaire F, Villeret B, Sermet-Gaudelus I, Sallenave JM. Abnormal functional lymphoid tolerance and enhanced myeloid exocytosis are characteristics of resting and stimulated PBMCs in cystic fibrosis patients. Front Immunol 2024; 15:1360716. [PMID: 38469306 PMCID: PMC10925672 DOI: 10.3389/fimmu.2024.1360716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 01/30/2024] [Indexed: 03/13/2024] Open
Abstract
Introduction Cystic Fibrosis (CF) is the commonest genetically inherited disease (1 in 4,500 newborns) and 70% of people with CF (pwCF) harbour the F508Del mutation, resulting in misfolding and incorrect addressing of the channel CFTR to the epithelial membrane and subsequent dysregulation of fluid homeostasis. Although studies have underscored the importance and over-activation of myeloid cells, and in particular neutrophils in the lungs of people with CF (pwCF), relatively less emphasis has been put on the potential immunological bias in CF blood cells, at homeostasis or following stimulation/infection. Methods Here, we revisited, in an exhaustive fashion, in pwCF with mild disease (median age of 15, median % FEV1 predicted = 87), whether their PBMCs, unprimed or primed with a 'non specific' stimulus (PMA+ionomycin mix) and a 'specific' one (live P.a =PAO1 strain), were differentially activated, compared to healthy controls (HC) PBMCs. Results 1) we analysed the lymphocytic and myeloid populations present in CF and Control PBMCs (T cells, NKT, Tgd, ILCs) and their production of the signature cytokines IFN-g, IL-13, IL-17, IL-22. 2) By q-PCR, ELISA and Luminex analysis we showed that CF PBMCs have increased background cytokines and mediators production and a partial functional tolerance phenotype, when restimulated. 3) we showed that CF PBMCs low-density neutrophils release higher levels of granule components (S100A8/A9, lactoferrin, MMP-3, MMP-7, MMP-8, MMP-9, NE), demonstrating enhanced exocytosis of potentially harmful mediators. Discussion In conclusion, we demonstrated that functional lymphoid tolerance and enhanced myeloid protease activity are key features of cystic fibrosis PBMCs.
Collapse
Affiliation(s)
- Clémence Gaudin
- Laboratoire d’Excellence Inflamex, Institut National de la Santé et de la Recherche Medicale, Physiopathologie et Épidémiologie des Maladies Respiratoires, Université Paris-Cité, Paris, France
| | - Reem Ghinnagow
- Laboratoire d’Excellence Inflamex, Institut National de la Santé et de la Recherche Medicale, Physiopathologie et Épidémiologie des Maladies Respiratoires, Université Paris-Cité, Paris, France
| | - Flora Lemaire
- Laboratoire d’Excellence Inflamex, Institut National de la Santé et de la Recherche Medicale, Physiopathologie et Épidémiologie des Maladies Respiratoires, Université Paris-Cité, Paris, France
| | - Bérengère Villeret
- Laboratoire d’Excellence Inflamex, Institut National de la Santé et de la Recherche Medicale, Physiopathologie et Épidémiologie des Maladies Respiratoires, Université Paris-Cité, Paris, France
| | - Isabelle Sermet-Gaudelus
- INSERM, CNRS, Institut Necker Enfants Malades, Paris, France
- Université Paris-Cité, Paris, France
- ERN-LUNG CF Network, Frankfurt, Germany
- Centre de Ressources et de Compétence de la Mucoviscidose Pédiatrique, Hôpital Mignot, Paris, France
| | - Jean-Michel Sallenave
- Laboratoire d’Excellence Inflamex, Institut National de la Santé et de la Recherche Medicale, Physiopathologie et Épidémiologie des Maladies Respiratoires, Université Paris-Cité, Paris, France
| |
Collapse
|
18
|
Kay FU, Madhuranthakam AJ. MR Perfusion Imaging of the Lung. Magn Reson Imaging Clin N Am 2024; 32:111-123. [PMID: 38007274 DOI: 10.1016/j.mric.2023.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2023]
Abstract
Lung perfusion assessment is critical for diagnosing and monitoring a variety of respiratory conditions. MRI perfusion provides a radiation-free technique, making it an ideal choice for longitudinal imaging in younger populations. This review focuses on the techniques and applications of MRI perfusion, including contrast-enhanced (CE) MRI and non-CE methods such as arterial spin labeling (ASL), fourier decomposition (FD), and hyperpolarized 129-Xenon (129-Xe) MRI. ASL leverages endogenous water protons as tracers for a non-invasive measure of lung perfusion, while FD offers simultaneous measurements of lung perfusion and ventilation, enabling the generation of ventilation/perfusion mapsHyperpolarized 129-Xe MRI emerges as a novel tool for assessing regional gas exchange in the lungs. Despite the promise of MRI perfusion techniques, challenges persist, including competition with other imaging techniques and the need for additional validation and standardization. In conditions such as cystic fibrosis and lung cancer, MRI has displayed encouraging results, whereas in diseases like chronic obstructive pulmonary disease, further validation remains necessary. In conclusion, while MRI perfusion techniques hold immense potential for a comprehensive, non-invasive assessment of lung function and perfusion, their broader clinical adoption hinges on technological advancements, collaborative research, and rigorous validation.
Collapse
Affiliation(s)
- Fernando U Kay
- Department of Radiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA.
| | - Ananth J Madhuranthakam
- Department of Radiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA; Advanced Imaging Research Center, University of Texas Southwestern Medical Center, North Campus 2201 Inwood Road, Dallas, TX 75390-8568, USA
| |
Collapse
|
19
|
Baldwin K, Barker EM, Carayannopoulos M, Farrell PM, Zanni R, Scanlin TF. Severe lung disease in children with cystic fibrosis missed in newborn screening. Pediatr Pulmonol 2024; 59:163-168. [PMID: 37888495 DOI: 10.1002/ppul.26734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 09/12/2023] [Accepted: 10/13/2023] [Indexed: 10/28/2023]
Abstract
BACKGROUND Cystic fibrosis (CF) is now routinely diagnosed through newborn screening (NBS), but the tests employed in the USA have been evolving for two decades as missed cases become recognized and lab methods improve in association with more knowledge about CF genetics. New Jersey was among the first states to implement CF NBS in 2001 when it introduced the original two-tiered method that combined measurements of immunoreactive trypsinogen (IRT) with detection of the principal pathogenic variant (F508del) in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. OBJECTIVE With continuation of the IRT/DNA (F508del) algorithm for two decades and identification of screening false negative children, we decided to examine the condition of some missed cases with special attention to their respiratory status. METHODS To strengthen the arguments for quality improvement in New Jersey's CF NBS program, we reviewed and evaluated false negative cases to determine the potential extent of preventable patient suffering as a consequence of delayed diagnoses. RESULTS Five children with CF who had false negative screening results were studied in detail. In each case there was a different cause of the negative screening results. They all had clinically significant/severe lung disease, ranging from chronic cough with CF pathogens on respiratory culture at a young age to respiratory failure. CONCLUSION This case series highlights the consequences of false negative screening results, which served as the impetus to upgrade New Jersey's CF NBS algorithm. Implemented changes include lowering the IRT cutoff to 70 ng/mL and expanding to a 139 variant CFTR panel. In 2023, a floating IRT cutoff is anticipated to be implemented.
Collapse
Affiliation(s)
- Kathrine Baldwin
- Department of Pediatrics, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA
| | - Erin McElroy Barker
- Cystic Fibrosis Center, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA
| | - Mary Carayannopoulos
- Department of Pathology & Laboratory Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA
| | - Philip M Farrell
- Department of Pediatrics and Department of Population Health Sciences, University of Wisconsin Madison, Clinical Sciences Center, Madison, Wisconsin, USA
| | - Robert Zanni
- Unterberg Children's Hospital, Monmouth Medical Center, Long Branch, New Jersey, USA
| | - Thomas F Scanlin
- Department of Pediatrics, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA
| |
Collapse
|
20
|
Huang L, Lai HJ, Song J, Zhao Z, Lu Q, Murali SG, Brown DM, Worthey EA, Farrell PM. Impact of intrinsic and extrinsic risk factors on early-onset lung disease in cystic fibrosis. Pediatr Pulmonol 2023; 58:3071-3082. [PMID: 37539852 PMCID: PMC10592256 DOI: 10.1002/ppul.26625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/27/2023] [Accepted: 07/21/2023] [Indexed: 08/05/2023]
Abstract
BACKGROUND Although respiratory pathology is known to develop in young children with cystic fibrosis (CF), the determinants of early-onset lung disease have not been elucidated. OBJECTIVE We aimed to determine the impact of potential intrinsic and extrinsic risk factors during the first 3 years of life, testing the hypothesis that both contribute significantly to early-onset CF lung disease. DESIGN We studied 104 infants born during 2012-2017, diagnosed through newborn screening by age 3 months, and evaluated comprehensively to 36 months of age. Lung disease manifestations were quantified with a new scoring system known as CFELD for Cystic Fibrosis Early-onset Lung Disease. The variants in the cystic fibrosis transmembrane conductance regulator (CFTR) gene were determined and categorized. Whole genome sequencing was performed on each subject and the data transformed to polygenic risk scores (PRS) that aggregate variants associated with lung function. Extrinsic factors included socioeconomic status (SES) indicators and environmental experiences such as exposures to smoking, pets, and daycare. RESULTS We found by univariate analysis that CFTR genotype and genetic modifiers aggregated by the PRS method were significantly associated with early-onset CF lung disease. Ordinal logistic regression analysis demonstrated that high and stable SES (maternal education ≥community college, stable 2-parent home, and not receiving Medicaid) and better growth (weight-for-age and height-for-age z-scores) reduced risks, while exposure to smoking and daycare ≥20 h/week increased the risk of CFELD severity. CONCLUSIONS Extrinsic, modifiable determinants are influential early and potentially as important as the intrinsic risk factors in the onset of CF lung disease.
Collapse
Affiliation(s)
- Leslie Huang
- Department of Pediatrics, University of Wisconsin – Madison, Madison, Wisconsin, USA
| | - HuiChuan J. Lai
- Department of Pediatrics, University of Wisconsin – Madison, Madison, Wisconsin, USA
- Department of Nutritional Sciences, University of Wisconsin – Madison, Madison, Wisconsin, USA
- Department of Population Health Sciences, University of Wisconsin – Madison, Madison, Wisconsin, USA
| | - Jie Song
- Department of Statistics, University of Wisconsin – Madison, Madison, Wisconsin, USA
| | - Zijie Zhao
- Department of Statistics, University of Wisconsin – Madison, Madison, Wisconsin, USA
| | - Qiongshi Lu
- Department of Statistics, University of Wisconsin – Madison, Madison, Wisconsin, USA
- Department of Biostatistics and Medical Informatics, University of Wisconsin – Madison, Madison, Wisconsin, USA
| | - Sangita G. Murali
- Department of Nutritional Sciences, University of Wisconsin – Madison, Madison, Wisconsin, USA
| | - Donna M. Brown
- Departments of Pediatrics and Genetics, Center for Computational Genomics and Data Science at the UAB Marnix E. Heersink School of Medicine, Birmingham, AL, USA
| | - Elizabeth A. Worthey
- Departments of Pediatrics and Genetics, Center for Computational Genomics and Data Science at the UAB Marnix E. Heersink School of Medicine, Birmingham, AL, USA
| | - Philip M. Farrell
- Department of Pediatrics, University of Wisconsin – Madison, Madison, Wisconsin, USA
- Department of Population Health Sciences, University of Wisconsin – Madison, Madison, Wisconsin, USA
| |
Collapse
|
21
|
Şişmanlar Eyuboglu T, Aslan AT, Asfuroglu P, Kunt N, Ersoy A, Kose M, Unal G, Pekcan S. Neutrophil lymphocyte ratio, mean platelet volume, and immunoreactive trypsinogen as early inflammatory biomarkers for cystic fibrosis in infancy: A retrospective cohort study. Pediatr Pulmonol 2023; 58:3106-3112. [PMID: 37530491 DOI: 10.1002/ppul.26628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/27/2023] [Accepted: 07/24/2023] [Indexed: 08/03/2023]
Abstract
BACKGROUND Airway inflammation starts in early life in cystic fibrosis (CF) and limited, objective markers are available to help identify infants with increased inflammation. We aimed to investigate neutrophil, lymphocyte ratio (NLR), mean platelet volume (MPV) and immunoreactive trypsinogen (IRT) to be a possible inflammatory biomarker for CF in infancy. METHODS This was a retrospective cohort study in three centers. Between January 2015 and December 2022, children with CF newborn screening (NBS) positivity and diagnosed as CF were included in the study. Correlation analysis were performed with NLR, MPV, IRT and follow-up parameters such as z-scores, modified Shwachman-Kulczycki score (mSKS) at the first, second, third and sixth ages and pulmonary function test (PFT) at the sixth age. RESULTS A total of 92 children with CF included in the study and 47.8% of them were female. There were no correlations between NLR, MPV and weight and height z-scores for all ages (p > 0.05), a negative correlation was found between MPV and body mass indexes (BMI) z-score at the age of 6 (r = -0.443, p = 0.038). No correlation was found between NLR, MPV and PFT parameters and mSKS at all ages (p > 0.05). There was a negative correlation between first IRT and BMI z-score at 6 years of age (r = -0.381, p = 0.046) and negative correlations between second IRT and weight and BMI z-score at the age of 6 (r = -0.462, p = 0.010; r = -0.437, p = 0.016, respectively). CONCLUSION Higher MPV and IRT levels during NBS period are associated with worse nutritional outcome which may reflect chronic inflammation. Children with higher MPV and IRT should be followed up closely in terms of chronic inflammation and nutritional status.
Collapse
Affiliation(s)
| | - Ayse Tana Aslan
- Department of Pediatric Pulmonology, Gazi University Faculty of Medicine, Ankara, Turkey
| | - Pelin Asfuroglu
- Department of Pediatric Pulmonology, Gazi University Faculty of Medicine, Ankara, Turkey
| | - Nursima Kunt
- Department of Pediatrics, Gazi University Faculty of Medicine, Ankara, Turkey
| | - Ali Ersoy
- Department of Pediatric Pulmonology, Erciyes University Faculty of Medicine, Kayseri, Turkey
| | - Mehmet Kose
- Department of Pediatric Pulmonology, Erciyes University Faculty of Medicine, Kayseri, Turkey
| | - Gokcen Unal
- Department of Pediatric Pulmonology, Necmettin Erbakan University Meram Medicine Faculty, Konya, Turkey
| | - Sevgi Pekcan
- Department of Pediatric Pulmonology, Necmettin Erbakan University Meram Medicine Faculty, Konya, Turkey
| |
Collapse
|
22
|
Ferri G, Serano M, Isopi E, Mucci M, Mattoscio D, Pecce R, Protasi F, Mall MA, Romano M, Recchiuti A. Resolvin D1 improves airway inflammation and exercise capacity in cystic fibrosis lung disease. FASEB J 2023; 37:e23233. [PMID: 37823221 DOI: 10.1096/fj.202301495r] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/15/2023] [Accepted: 09/19/2023] [Indexed: 10/13/2023]
Abstract
Mucus plugging and non-resolving inflammation are inherent features of cystic fibrosis (CF) that may lead to progressive lung disease and exercise intolerance, which are the main causes of morbidity and mortality for people with CF. Therefore, understanding the influence of mucus on basic mechanisms underlying the inflammatory response and identifying strategies to resolve mucus-driven airway inflammation and consequent morbidity in CF are of wide interest. Here, we investigated the effects of the proresolving lipid mediator resolvin (Rv) D1 on mucus-related inflammation as a proof-of-concept to alleviate the burden of lung disease and restore exercise intolerance in CF. We tested the effects of RvD1 on inflammatory responses of human organotypic airways and leukocytes to CF mucus and of humanized mice expressing the epithelial Na + channel (βENaC-Tg) having CF-like mucus obstruction, lung disease, and physical exercise intolerance. RvD1 reduced pathogenic phenotypes of CF-airway supernatant (ASN)-stimulated human neutrophils, including loss of L-selectin shedding and CD16. RNASeq analysis identified select transcripts and pathways regulated by RvD1 in ASN-stimulated CF bronchial epithelial cells that are involved in sugar metabolism, NF-κB activation and inflammation, and response to stress. In in vivo inflammation using βENaC TG mice, RvD1 reduced total leukocytes, PMN, and interstitial Siglec-MΦ when given at 6-8 weeks of age, and in older mice at 10-12 weeks of age, along with the decrease of pro-inflammatory chemokines and increase of anti-inflammatory IL-10. Furthermore, RvD1 treatment promoted the resolution of pulmonary exacerbation caused by Pseudomonas aeruginosa infection and significantly enhanced physical activity and energy expenditure associated with mucus obstruction, which was impaired in βENaC-Tg mice compared with wild-type. These results demonstrate that RvD1 can rectify features of CF and offer proof-of-concept for its therapeutic application in this and other muco-obstructive lung diseases.
Collapse
Affiliation(s)
- Giulia Ferri
- Department of Medical, Oral and Biotechnology Sciences, University of Chieti-Pescara, Chieti, Italy
| | - Matteo Serano
- Department of Medicine and Aging Sciences, University of Chieti-Pescara, Chieti, Italy
| | - Elisa Isopi
- Department of Medical, Oral and Biotechnology Sciences, University of Chieti-Pescara, Chieti, Italy
| | - Matteo Mucci
- Department of Medical, Oral and Biotechnology Sciences, University of Chieti-Pescara, Chieti, Italy
| | - Domenico Mattoscio
- Department of Medical, Oral and Biotechnology Sciences, University of Chieti-Pescara, Chieti, Italy
| | - Romina Pecce
- Department of Medical, Oral and Biotechnology Sciences, University of Chieti-Pescara, Chieti, Italy
| | - Feliciano Protasi
- Department of Medicine and Aging Sciences, University of Chieti-Pescara, Chieti, Italy
| | - Marcus A Mall
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany
- German Center for Lung Research (DZL), Associated Partner, Berlin, Germany
- Berlin Institute of Health (BIH) at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Mario Romano
- Department of Medical, Oral and Biotechnology Sciences, University of Chieti-Pescara, Chieti, Italy
| | - Antonio Recchiuti
- Department of Medical, Oral and Biotechnology Sciences, University of Chieti-Pescara, Chieti, Italy
| |
Collapse
|
23
|
Taylor-Cousar JL, Robinson PD, Shteinberg M, Downey DG. CFTR modulator therapy: transforming the landscape of clinical care in cystic fibrosis. Lancet 2023; 402:1171-1184. [PMID: 37699418 DOI: 10.1016/s0140-6736(23)01609-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/17/2023] [Accepted: 07/31/2023] [Indexed: 09/14/2023]
Abstract
Following discovery of the cystic fibrosis transmembrane conductance regulator (CFTR) gene in 1989 and subsequent elucidation of the varied CFTR protein abnormalities that result, a new era of cystic fibrosis management has emerged-one in which scientific principles translated from the bench to the bedside have enabled us to potentially treat the basic defect in the majority of children and adults with cystic fibrosis, with a resultant burgeoning adult cystic fibrosis population. However, the long-term effects of these therapies on the multiple manifestations of cystic fibrosis are still under investigation. Understanding the effects of modulators in populations excluded from clinical trials is also crucial. Furthermore, establishing appropriate disease measures to assess efficacy in the youngest potential trial participants and in those whose post-modulator lung function is in the typical range for people without chronic lung disease is essential for continued drug development. Finally, recognising that a health outcome gap has been created for some people and widened for others who are not eligible for, cannot tolerate, or do not have access to modulators is important.
Collapse
Affiliation(s)
- Jennifer L Taylor-Cousar
- Division of Pulmonary, Critical Care and Sleep Medicine, National Jewish Health, Denver, CO, USA; Division of Pediatric Pulmonary Medicine, National Jewish Health, Denver, CO, USA; Division of Pulmonary Sciences and Critical Care Medicine, Anschutz Medical Campus, University of Colorado, Aurora, CO, USA.
| | - Paul D Robinson
- Department of Respiratory Medicine, Queensland Children's Hospital, Brisbane, QLD, Australia; Children's Health and Environment Program, Child Health Research Centre, University of Queensland, Brisbane, QLD, Australia
| | - Michal Shteinberg
- Pulmonology Institute and CF Center, Carmel Medical Center, Haifa, Israel; B Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Damian G Downey
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, UK
| |
Collapse
|
24
|
Everett SS, Bomback M, Sahni R, Wapner RJ, Tolia VN, Clark RH, Lyford A, Hays T. Prevalence and Clinical Significance of Commonly Diagnosed Genetic Disorders in Preterm Infants. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.07.14.23292662. [PMID: 37503109 PMCID: PMC10370234 DOI: 10.1101/2023.07.14.23292662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Background and Objectives Preterm infants (<34 weeks' gestation) experience high rates of morbidity and mortality before hospital discharge. Genetic disorders substantially contribute to morbidity and mortality in related populations. The prevalence and clinical impact of genetic disorders is unknown in this population. We sought to determine the prevalence of commonly diagnosed genetic disorders in preterm infants, and to determine the association of disorders with morbidity and mortality. Methods This was a retrospective multicenter cohort study of infants born from 23 to 33 weeks' gestation between 2000 and 2020. Genetic disorders were abstracted from diagnoses present in electronic health records. We excluded infants transferred from or to other health care facilities prior to discharge or death when analyzing clinical outcomes. We determined the adjusted odds of pre-discharge morbidity or mortality after adjusting for known risk factors. Results Of 320,582 infants, 4196 (1.3%) had genetic disorders. Infants with trisomy 13, 18, 21, or cystic fibrosis had greater adjusted odds of severe morbidity or mortality. Of the 17,427 infants who died, 566 (3.2%) had genetic disorders. Of the 65,968 infants with a severe morbidity, 1319 (2.0%) had genetic disorders.ConclusionsGenetic disorders are prevalent in preterm infants, especially those with life-threatening morbidities. Clinicians should consider genetic testing for preterm infants with severe morbidity and maintain a higher index of suspicion for life-threatening morbidities in preterm infants with genetic disorders. Prospective genomic research is needed to clarify the prevalence of genetic disorders in this population, and the contribution of genetic disorders to preterm birth and subsequent morbidity and mortality. Article Summary Genetic disorders were found in 1.3% of preterm infants and at a higher rate (2.0%) in infants who died or developed severe morbidity. What’s Known on This Subject Previous research described the prevalence and associated short-term morbidity and mortality of trisomy 13, 18, and 21 in preterm infants. The prevalence of other commonly diagnosed genetic disorders and associated short-term morbidity and mortality in preterm infants is unknown. What This Study Adds In a multicenter, retrospective cohort of 320,582 preterm (<34 weeks' gestation) infants, we found that 1.3% had genetic disorders diagnosed through standard care. Multiple disorders were associated with increased adjusted odds of morbidities or mortality prior to hospital discharge. Contributors Statement Page Selin S. Everett conceptualized and designed the study, conducted analyses, drafted the initial manuscript, and critically reviewed and revised the manuscript.Dr. Thomas Hays conceptualized and designed the study, drafted the initial manuscript, and critically reviewed and revised the manuscript.Miles Bomback conceptualized and designed the study and critically reviewed and revised the manuscript.Drs. Veeral N. Tolia and Reese H. Clark coordinated and supervised data collection and critically reviewed and revised the manuscript.Dr. Rakesh Sahni conceptualized and designed the study and critically reviewed and revised the manuscript.Dr. Alex Lyford conducted analyses and critically reviewed and revised the manuscript. Dr. Ronald J. Wapner reviewed and critically revised the manuscript.All authors approved the final manuscript as submitted and agree to be accountable for all aspects of the work.
Collapse
|
25
|
Jaworska J, Buda N, Kwaśniewicz P, Komorowska-Piotrowska A, Sands D. Lung Ultrasound in the Evaluation of Lung Disease Severity in Children with Clinically Stable Cystic Fibrosis: A Prospective Cross-Sectional Study. J Clin Med 2023; 12:jcm12093086. [PMID: 37176526 PMCID: PMC10179222 DOI: 10.3390/jcm12093086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 04/07/2023] [Accepted: 04/13/2023] [Indexed: 05/15/2023] Open
Abstract
With the increasing longevity of cystic fibrosis (CF), there is a growing need to minimise exposure to ionising radiation in patients who undergo regular imaging tests while monitoring the course of the lung disease. This study aimed to define the role of lung ultrasounds (LUS) in the evaluation of lung disease severity in children with clinically stable CF. LUS was performed on 131 patients aged 5 weeks to 18 years (study group) and in 32 healthy children of an equivalent age range (control group). Additionally, an interobserver study was performed on 38 patients from the study group. In CF patients, the following ultrasound signs were identified: I-lines; Z-lines; single, numerous and confluent B-lines; Am-lines; small and major consolidations; pleural line abnormalities and small amounts of pleural fluid. The obtained results were evaluated against an original ultrasound score. LUS results were correlated with the results of chest X-ray (CXR) [very high], pulmonary function tests (PFTs) [high] and microbiological status [significant]. The interobserver study showed very good agreement between investigators. We conclude that LUS is a useful test in the evaluation of CF lung disease severity compared to routinely used methods. With appropriate standardisation, LUS is highly reproducible.
Collapse
Affiliation(s)
- Joanna Jaworska
- Cystic Fibrosis Department, Institute of Mother and Child, 01-211 Warsaw, Poland
| | - Natalia Buda
- Department of Internal Medicine, Connective Tissue Diseases and Geriatrics, Medical University of Gdansk, 80-214 Gdansk, Poland
| | - Piotr Kwaśniewicz
- Department of Diagnostic Imaging, Institute of Mother and Child, 01-211 Warsaw, Poland
| | | | - Dorota Sands
- Cystic Fibrosis Department, Institute of Mother and Child, 01-211 Warsaw, Poland
| |
Collapse
|
26
|
Dittrich AS, Dumke M, Kapl F, Schneider P, Wege S, Gräber S, Stahl M, Herth FJ, Naehrlich L, Mall MA, Sommerburg O. Survival-Adjusted FEV1 and BMI Percentiles for Patients with Cystic Fibrosis before the Era of Triple CFTR Modulator Therapy in Germany. Respiration 2023; 102:1. [PMID: 37062281 DOI: 10.1159/000529524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 01/18/2023] [Indexed: 04/18/2023] Open
Abstract
BACKGROUND Pulmonary disease is the major cause for morbidity and mortality in cystic fibrosis (CF). In CF, forced expiratory volume in 1 s (FEV1) referenced against a healthy population (FEV1%predicted) and body mass index (BMI) do not allow for the comparison of disease severity across age and gender. OBJECTIVES We aimed to determine updated FEV1 and BMI percentiles for patients with CF and to study their dependence on mortality attrition. METHODS Age- and height-adjusted FEV1 and BMI percentiles for CF patients aged 6-50 years were calculated from 4,947 patients of the German CF Registry for the period 2016-2019 utilizing quantile regression and a Generalized Additive Model for Location, Scale and Shape (GAMLSS). Further, survival-adjusted percentiles were estimated. RESULTS In patients with CF, FEV1 increased throughout childhood until maximal median values at 16 years in females (2.46 L) and 18 years in males (3.27 L). During adulthood, FEV1 decreased substantially. At 17 years of age, the 25th BMI percentile of patients with CF (females 18.50 and males 18.15 kg/m2) was below the 10th BMI percentile of the German reference cohort. From the age of 20 years, survival (96.3%) decreased tremendously. At 50 years of age (survival 15.0%), the 50th CF-specific FEV1 or BMI percentile among the survivors corresponded to the 92.5th percentile among the total CF birth cohort. CONCLUSIONS Continuously updated disease-specific FEV1 and BMI percentiles with correction for survival may serve as age-independent measure of disease severity in CF (accessible via https://cfpercentiles.statup.solutions).
Collapse
Affiliation(s)
- A Susanne Dittrich
- Department of Pneumology and Critical Care Medicine, Thoraxklinik at the University Hospital Heidelberg, Heidelberg, Germany,
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany,
| | | | | | - Philipp Schneider
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany
| | - Sabine Wege
- Department of Pneumology and Critical Care Medicine, Thoraxklinik at the University Hospital Heidelberg, Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany
| | - Simon Gräber
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
- German Center for Lung Research (DZL), associated partner, Berlin, Germany
| | - Mirjam Stahl
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
- German Center for Lung Research (DZL), associated partner, Berlin, Germany
| | - Felix J Herth
- Department of Pneumology and Critical Care Medicine, Thoraxklinik at the University Hospital Heidelberg, Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany
| | - Lutz Naehrlich
- Department of Pediatrics, Justus-Liebig-University, Giessen, Germany
- Mukoviszidose Institut gGmbH (MI), Bonn, Germany
| | - Marcus A Mall
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
- German Center for Lung Research (DZL), associated partner, Berlin, Germany
| | - Olaf Sommerburg
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany
- Division of Pediatric Pulmonology & Allergy and Cystic Fibrosis Center, Center for Pediatric and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| |
Collapse
|
27
|
Rehman T, Welsh MJ. Inflammation as a Regulator of the Airway Surface Liquid pH in Cystic Fibrosis. Cells 2023; 12:1104. [PMID: 37190013 PMCID: PMC10137218 DOI: 10.3390/cells12081104] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 04/05/2023] [Accepted: 04/06/2023] [Indexed: 05/17/2023] Open
Abstract
The airway surface liquid (ASL) is a thin sheet of fluid that covers the luminal aspect of the airway epithelium. The ASL is a site of several first-line host defenses, and its composition is a key factor that determines respiratory fitness. Specifically, the acid-base balance of ASL has a major influence on the vital respiratory defense processes of mucociliary clearance and antimicrobial peptide activity against inhaled pathogens. In the inherited disorder cystic fibrosis (CF), loss of cystic fibrosis transmembrane conductance regulator (CFTR) anion channel function reduces HCO3- secretion, lowers the pH of ASL (pHASL), and impairs host defenses. These abnormalities initiate a pathologic process whose hallmarks are chronic infection, inflammation, mucus obstruction, and bronchiectasis. Inflammation is particularly relevant as it develops early in CF and persists despite highly effective CFTR modulator therapy. Recent studies show that inflammation may alter HCO3- and H+ secretion across the airway epithelia and thus regulate pHASL. Moreover, inflammation may enhance the restoration of CFTR channel function in CF epithelia exposed to clinically approved modulators. This review focuses on the complex relationships between acid-base secretion, airway inflammation, pHASL regulation, and therapeutic responses to CFTR modulators. These factors have important implications for defining optimal ways of tackling CF airway inflammation in the post-modulator era.
Collapse
Affiliation(s)
- Tayyab Rehman
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Michael J. Welsh
- Departments of Internal Medicine and Molecular Physiology and Biophysics, Pappajohn Biomedical Institute, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
- Howard Hughes Medical Institute, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
28
|
Rodriguez-Piñeiro AM, Jaudas F, Klymiuk N, Bähr A, Hansson GC, Ermund A. Proteome of airway surface liquid and mucus in newborn wildtype and cystic fibrosis piglets. Respir Res 2023; 24:83. [PMID: 36927357 PMCID: PMC10022022 DOI: 10.1186/s12931-023-02381-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 03/04/2023] [Indexed: 03/18/2023] Open
Abstract
BACKGROUND The respiratory tract is protected from inhaled particles and microbes by mucociliary clearance, mediated by the mucus and the cilia creating a flow to move the mucus cephalad. Submucosal glands secrete linear MUC5B mucin polymers and because they pass through the gland duct before reaching the airway surface, bundled strands of 1000-5000 parallel molecules exit the glands. In contrast, the surface goblet cells secrete both MUC5AC and MUC5B. METHODS We used mass-spectrometry based proteomic analysis of unstimulated and carbachol stimulated newborn wild-type (WT) and cystic fibrosis transmembrane conductance regulator (CFTR) null (CF) piglet airways to study proteins in the airway surface liquid and mucus, to investigate if levels of MUC5AC and MUC5B were affected by carbachol stimulation and whether the proteins clustered according to function. RESULTS Proteins in the first four extracted fractions clustered together and the fifth fraction contained the mucus cluster, mucins and other proteins known to associate with mucins, whereas the traditional airway surface liquid proteins clustered to fraction 1-4 and were absent from the mucus fraction. Carbachol stimulation resulted in increased MUC5AC and MUC5B. CONCLUSIONS These results indicate a distinct separation between proteins in the washable surface liquid and the mucus fraction. In fractions 1-4 from newborn CF piglets an additional cluster containing acute phase proteins was observed, suggesting an early inflammatory response in CF piglets. Alternatively, increased levels of these proteins could indicate altered lung development in the CF piglets. This observation suggests that CF airway disease is present at birth and thus, treatment should commence directly after diagnosis.
Collapse
Affiliation(s)
- Ana M Rodriguez-Piñeiro
- Department of Medical Biochemistry and Cell Biology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Florian Jaudas
- Center for Innovative Animal Models, Ludwig-Maximilians-University, Munich, Germany
| | - Nikolai Klymiuk
- Center for Innovative Animal Models, Ludwig-Maximilians-University, Munich, Germany
| | - Andrea Bähr
- Center for Innovative Animal Models, Ludwig-Maximilians-University, Munich, Germany
| | - Gunnar C Hansson
- Department of Medical Biochemistry and Cell Biology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Anna Ermund
- Department of Medical Biochemistry and Cell Biology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
29
|
Li D, Han X, Habgood M, Schneider-Futschik EK. In Utero Mapping and Development Role of CFTR in Lung and Gastrointestinal Tract of Cystic Fibrosis Patients. ACS Pharmacol Transl Sci 2023; 6:355-360. [PMID: 36926454 PMCID: PMC10012249 DOI: 10.1021/acsptsci.2c00233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Indexed: 02/16/2023]
Abstract
In cystic fibrosis (CF) the ability of the CF transmembrane conductance regulator (CFTR) protein to mediate chloride and water transport is disrupted. While much progress has been made in CF research leading to effective treatments to improve CFTR function, including small molecule modulators, patients present with varying disease manifestations and responses to therapy. For many CF-affected organs, disease onset is known to occur during in utero development before treatments can be administered and progresses over time leading to irreversible damage to these organs. Thus, the role of functional CFTR protein, in particular, during early development needs to be further elucidated. Studies have detected CFTR proteins at very early gestational stages and revealed temporally and spatially variable CFTR expression patterns in fetuses, suggesting a potential role of CFTR in fetal development. However, the actual mechanisms of how defective CFTR in CF results in fetal morphogenetic abnormalities are yet to be established. This review aims to summarize fetal CFTR expression patterns specifically in the lung, pancreas, and gastrointestinal tract (GIT), as compared to adult patterns. Case studies of structural abnormalities in CF fetuses and newborns and the role of CFTR in fetal development will also be discussed.
Collapse
Affiliation(s)
| | | | - Mark Habgood
- Department of Biochemistry
and Pharmacology, School of Biomedical Sciences, Faculty of Medicine,
Dentistry and Health Sciences, The University
of Melbourne, Parkville, VIC 3010, Australia
| | - Elena K. Schneider-Futschik
- Department of Biochemistry
and Pharmacology, School of Biomedical Sciences, Faculty of Medicine,
Dentistry and Health Sciences, The University
of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|
30
|
Restoring airway epithelial homeostasis in Cystic Fibrosis. J Cyst Fibros 2023; 22 Suppl 1:S27-S31. [PMID: 36216743 DOI: 10.1016/j.jcf.2022.09.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/19/2022] [Accepted: 09/26/2022] [Indexed: 11/05/2022]
Abstract
Cystic fibrosis (CF), the most common life-threatening genetic disorder in Caucasians, is caused by recessive mutations in the Cystic Fibrosis Transmembrane Regulator (CFTR) gene encoding a chloride ion channel. Aberrant function of CFTR involves mucus- and sweat-producing epithelia affecting multiple organs, including airways and lungs. This condition facilitates the colonization of fungi, bacteria, or viruses. Recurrent antibiotic administration is commonly used to treat pathogen infections leading to the insurgence of resistant bacteria and to a chronic inflammatory state that jeopardizes airway epithelium repair. The phenotype of patients carrying CFTR mutations does not always present a strict correlation with their genotype, suggesting that the disease may occur because of multiple additive effects. Among them, the frequent microbiota dysbiosis observed in patients affected by CF, might be one cause of the discrepancy observed in their genotype-phenotype correlation. Interestingly, the abnormal polarity of the CF airway epithelium has been observed also under non-infectious and non-inflammatory conditions, suggesting that CFTR dysfunction "per se" perturbs epithelial homeostasis. New pathogen- or host-directed strategies are thus needed to counteract bacterial infections and restore epithelial homeostasis in individuals with CF. In this review, we summarized alternative cutting-edge approaches to high-efficiency modulator therapy that might be promising for these patients.
Collapse
|
31
|
Yu C, Kotsimbos T. Respiratory Infection and Inflammation in Cystic Fibrosis: A Dynamic Interplay among the Host, Microbes, and Environment for the Ages. Int J Mol Sci 2023; 24:ijms24044052. [PMID: 36835487 PMCID: PMC9966804 DOI: 10.3390/ijms24044052] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/13/2023] [Accepted: 02/14/2023] [Indexed: 02/22/2023] Open
Abstract
The interplay between airway inflammation and infection is now recognized as a major factor in the pathobiology in cystic fibrosis (CF). A proinflammatory environment is seen throughout the CF airway resulting in classic marked and enduring neutrophilic infiltrations, irreversibly damaging the lung. Although this is seen to occur early, independent of infection, respiratory microbes arising at different timepoints in life and the world environment perpetuate this hyperinflammatory state. Several selective pressures have allowed for the CF gene to persist until today despite an early mortality. Comprehensive care systems, which have been a cornerstone of therapy for the past few decades, are now revolutionized by CF transmembrane conductance regulator (CTFR) modulators. The effects of these small-molecule agents cannot be overstated and can be seen as early as in utero. For an understanding of the future, this review looks into CF studies spanning the historical and present period.
Collapse
Affiliation(s)
- Christiaan Yu
- Department of Respiratory Medicine, Alfred Health, Melbourne, VIC 3004, Australia
- Correspondence: ; Tel.: +61-3-9076-20000
| | - Tom Kotsimbos
- Department of Respiratory Medicine, Alfred Health, Melbourne, VIC 3004, Australia
- Department of Medicine, Monash University, Alfred Campus, Melbourne, VIC 3004, Australia
| |
Collapse
|
32
|
Gong T, Wang X, Li S, Zhong L, Zhu L, Luo T, Tian D. Global research status and trends of bronchiectasis in children from 2003 to 2022: A 20-year bibliometric analysis. Front Pediatr 2023; 11:1095452. [PMID: 36816374 PMCID: PMC9936077 DOI: 10.3389/fped.2023.1095452] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 01/09/2023] [Indexed: 02/05/2023] Open
Abstract
Background This study aims to analyze the research hotspots, evolution, and developing trends in pediatric bronchiectasis over the past 20 years using bibliometric analysis and visualization tools to identify potential new research directions. Methods Publications related to bronchiectasis in children were retrieved from the Web of Science Core Collection (WoSCC) database from 2003 to 2022. Knowledge maps were performed through VOSviewer1.6.18 and CiteSpace6.1 R2. Results A total of 2,133 publications were searched, while only 1,351 original articles written in English between 2003 and 2022 were incorporated. After removing duplicates, we finally included 1,350 articles published by 6,593 authors from 1,865 institutions in 80 countries/regions in 384 different academic journals with an average citation frequency of 24.91 times. The number of publications shows an extremely obvious binomial growth trend. The majority of publications originated from the United States, Australia, and England. The institutes in Australia, especially Charles Darwin University, published the most articles associated with pediatric bronchiectasis. In addition, Pediatric Pulmonology was the most published journal. In terms of authors, Chang AB was the most productive author, while Gangell CL had the highest average citation frequency. The five keywords that have appeared most frequently during the last two decades were "children," "cystic fibrosis," "bronchiectasis," "ct," and "pulmonary-function." According to keyword analysis, early diagnosis and intervention and optimal long-term pediatric-specific management were the most concerned topics for researchers. Conclusion This bibliometric analysis indicates that bronchiectasis in children has drawn increasing attention in the last two decades as its recognition continues to rise, providing scholars in the field with significant information on current topical issues and research frontiers.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Daiyin Tian
- Department of Respiratory Disease, Children’s Hospital of Chongqing Medical University, Chongqing Key Laboratory of Pediatrics, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China
| |
Collapse
|
33
|
Svedberg M, Imberg H, Gustafsson PM, Tiddens H, Davies G, Lindblad A. Longitudinal lung clearance index and association with structural lung damage in children with cystic fibrosis. Thorax 2023; 78:176-182. [PMID: 35277449 PMCID: PMC9872247 DOI: 10.1136/thoraxjnl-2021-218178] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 02/11/2022] [Indexed: 01/27/2023]
Affiliation(s)
- Marcus Svedberg
- Department of Pediatrics, Institute of Clinical Sciences, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Henrik Imberg
- Departmemt of Mathematical Science, Chalmers University of Technology, Gothenburg, Sweden
| | - Per Magnus Gustafsson
- Department of Pediatrics, Institute of Clinical Sciences, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden.,Department of Pediatrics, Central Hospital, Skoevde, Sweden
| | - Harm Tiddens
- Department of Pediatric Pulmonology and Allergology, ErasmusMC-Sophia Children's hospital, Rotterdam, Netherlands
| | - Gwyneth Davies
- UCL Great Ormond Street Institute of Child Health, UCL, London, UK.,Department of Respiratory Medicine, Great Ormond Street Hospital For Children NHS Foundation Trust, London, UK
| | - Anders Lindblad
- Department of Pediatrics, Institute of Clinical Sciences, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
34
|
Steinke E, Sommerburg O, Graeber SY, Joachim C, Labitzke C, Nissen G, Ricklefs I, Rudolf I, Kopp MV, Dittrich AM, Mall MA, Stahl M. TRACK-CF prospective cohort study: Understanding early cystic fibrosis lung disease. Front Med (Lausanne) 2023; 9:1034290. [PMID: 36687447 PMCID: PMC9853074 DOI: 10.3389/fmed.2022.1034290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 12/05/2022] [Indexed: 01/09/2023] Open
Abstract
Background Lung disease as major cause for morbidity in patients with cystic fibrosis (CF) starts early in life. Its large phenotypic heterogeneity is partially explained by the genotype but other contributing factors are not well delineated. The close relationship between mucus, inflammation and infection, drives morpho-functional alterations already early in pediatric CF disease, The TRACK-CF cohort has been established to gain insight to disease onset and progression, assessed by lung function testing and imaging to capture morpho-functional changes and to associate these with risk and protective factors, which contribute to the variation of the CF lung disease progression. Methods and design TRACK-CF is a prospective, longitudinal, observational cohort study following patients with CF from newborn screening or clinical diagnosis throughout childhood. The study protocol includes monthly telephone interviews, quarterly visits with microbiological sampling and multiple-breath washout and as well as a yearly chest magnetic resonance imaging. A parallel biobank has been set up to enable the translation from the deeply phenotyped cohort to the validation of relevant biomarkers. The main goal is to determine influencing factors by the combined analysis of clinical information and biomaterials. Primary endpoints are the lung clearance index by multiple breath washout and semi-quantitative magnetic resonance imaging scores. The frequency of pulmonary exacerbations, infection with pro-inflammatory pathogens and anthropometric data are defined as secondary endpoints. Discussion This extensive cohort includes children after diagnosis with comprehensive monitoring throughout childhood. The unique composition and the use of validated, sensitive methods with the attached biobank bears the potential to decisively advance the understanding of early CF lung disease. Ethics and trial registration The study protocol was approved by the Ethics Committees of the University of Heidelberg (approval S-211/2011) and each participating site and is registered at clinicaltrials.gov (NCT02270476).
Collapse
Affiliation(s)
- Eva Steinke
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité–Universitätsmedizin Berlin, Berlin, Germany,German Center for Lung Research (DZL), Associated Partner Site, Berlin, Germany,Berlin Institute of Health (BIH) at Charité, Berlin, Germany,*Correspondence: Eva Steinke ✉
| | - Olaf Sommerburg
- Division of Pediatric Pulmonology and Allergy and Cystic Fibrosis Center, Department of Translational Pulmonology, University of Heidelberg, Heidelberg, Germany,Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany
| | - Simon Y. Graeber
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité–Universitätsmedizin Berlin, Berlin, Germany,German Center for Lung Research (DZL), Associated Partner Site, Berlin, Germany,Berlin Institute of Health (BIH) at Charité, Berlin, Germany
| | - Cornelia Joachim
- Division of Pediatric Pulmonology and Allergy and Cystic Fibrosis Center, Department of Translational Pulmonology, University of Heidelberg, Heidelberg, Germany,Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany
| | - Christiane Labitzke
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité–Universitätsmedizin Berlin, Berlin, Germany
| | - Gyde Nissen
- Division of Pediatric Pneumology and Allergology, University of Lübeck, Lübeck, Germany,Airway Research Center North (ARCN), German Center for Lung Research (DZL), Lübeck, Germany
| | - Isabell Ricklefs
- Division of Pediatric Pneumology and Allergology, University of Lübeck, Lübeck, Germany,Airway Research Center North (ARCN), German Center for Lung Research (DZL), Lübeck, Germany
| | - Isa Rudolf
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany,Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), German Center for Lung Research (DZL), Hannover, Germany
| | - Matthias V. Kopp
- Division of Pediatric Pneumology and Allergology, University of Lübeck, Lübeck, Germany,Airway Research Center North (ARCN), German Center for Lung Research (DZL), Lübeck, Germany,Division of Respiratory Medicine, Department of Pediatrics, University Children's Hospital, Inselspital, University of Bern, Bern, Switzerland
| | - Anna-Maria Dittrich
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany,Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), German Center for Lung Research (DZL), Hannover, Germany
| | - Marcus A. Mall
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité–Universitätsmedizin Berlin, Berlin, Germany,German Center for Lung Research (DZL), Associated Partner Site, Berlin, Germany,Berlin Institute of Health (BIH) at Charité, Berlin, Germany
| | - Mirjam Stahl
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité–Universitätsmedizin Berlin, Berlin, Germany,German Center for Lung Research (DZL), Associated Partner Site, Berlin, Germany,Berlin Institute of Health (BIH) at Charité, Berlin, Germany
| |
Collapse
|
35
|
Mok LC, Garcia-Uceda A, Cooper MN, Kemner-Van De Corput M, De Bruijne M, Feyaerts N, Rosenow T, De Boeck K, Stick S, Tiddens HAWM. The effect of CFTR modulators on structural lung disease in cystic fibrosis. Front Pharmacol 2023; 14:1147348. [PMID: 37113757 PMCID: PMC10127680 DOI: 10.3389/fphar.2023.1147348] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 03/23/2023] [Indexed: 04/29/2023] Open
Abstract
Background: Newly developed quantitative chest computed tomography (CT) outcomes designed specifically to assess structural abnormalities related to cystic fibrosis (CF) lung disease are now available. CFTR modulators potentially can reduce some structural lung abnormalities. We aimed to investigate the effect of CFTR modulators on structural lung disease progression using different quantitative CT analysis methods specific for people with CF (PwCF). Methods: PwCF with a gating mutation (Ivacaftor) or two Phe508del alleles (lumacaftor-ivacaftor) provided clinical data and underwent chest CT scans. Chest CTs were performed before and after initiation of CFTR modulator treatment. Structural lung abnormalities on CT were assessed using the Perth Rotterdam Annotated Grid Morphometric Analysis for CF (PRAGMA-CF), airway-artery dimensions (AA), and CF-CT methods. Lung disease progression (0-3 years) in exposed and matched unexposed subjects was compared using analysis of covariance. To investigate the effect of treatment in early lung disease, subgroup analyses were performed on data of children and adolescents aged <18 years. Results: We included 16 modulator exposed PwCF and 25 unexposed PwCF. Median (range) age at the baseline visit was 12.55 (4.25-36.49) years and 8.34 (3.47-38.29) years, respectively. The change in PRAGMA-CF %Airway disease (-2.88 (-4.46, -1.30), p = 0.001) and %Bronchiectasis extent (-2.07 (-3.13, -1.02), p < 0.001) improved in exposed PwCF compared to unexposed. Subgroup analysis of paediatric data showed that only PRAGMA-CF %Bronchiectasis (-0.88 (-1.70, -0.07), p = 0.035) improved in exposed PwCF compared to unexposed. Conclusion: In this preliminary real-life retrospective study CFTR modulators improve several quantitative CT outcomes. A follow-up study with a large cohort and standardization of CT scanning is needed to confirm our findings.
Collapse
Affiliation(s)
- L. Clara Mok
- Faculty of Medicine and Health Sciences, The University of Western Australia, Perth, WA, Australia
- Telethon Kids Institute, The University of Western Australia, Nedlands, WA, Australia
| | - Antonio Garcia-Uceda
- Department of Radiology and Nuclear Medicine, Erasmus Medical Center, Rotterdam, Netherlands
- Department of Pediatric Pulmonology and Allergology, Erasmus Medical Center-Sophia Children’s Hospital, Rotterdam, Netherlands
| | - Matthew N. Cooper
- Telethon Kids Institute, The University of Western Australia, Nedlands, WA, Australia
| | | | - Marleen De Bruijne
- Department of Radiology and Nuclear Medicine, Erasmus Medical Center, Rotterdam, Netherlands
- Department of Computer Science, University of Copenhagen, Copenhagen, Denmark
| | - Nathalie Feyaerts
- Department of Pediatric Pulmonology, University of Leuven, Leuven, Belgium
| | - Tim Rosenow
- Faculty of Medicine and Health Sciences, The University of Western Australia, Perth, WA, Australia
- Telethon Kids Institute, The University of Western Australia, Nedlands, WA, Australia
| | - Kris De Boeck
- Department of Pediatric Pulmonology, University of Leuven, Leuven, Belgium
| | - Stephen Stick
- Faculty of Medicine and Health Sciences, The University of Western Australia, Perth, WA, Australia
- Telethon Kids Institute, The University of Western Australia, Nedlands, WA, Australia
- Department of Respiratory Medicine, Perth Children’s Hospital, Perth, WA, Australia
| | - Harm A. W. M. Tiddens
- Department of Radiology and Nuclear Medicine, Erasmus Medical Center, Rotterdam, Netherlands
- Department of Pediatric Pulmonology and Allergology, Erasmus Medical Center-Sophia Children’s Hospital, Rotterdam, Netherlands
- *Correspondence: Harm A. W. M. Tiddens,
| |
Collapse
|
36
|
Sommerburg O, Wielpütz MO. [Update on cystic fibrosis : From neonatal screening to causal treatment]. RADIOLOGIE (HEIDELBERG, GERMANY) 2022; 62:981-994. [PMID: 36278998 DOI: 10.1007/s00117-022-01076-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/07/2022] [Indexed: 06/16/2023]
Abstract
Cystic fibrosis (CF) is a multiorgan disease caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. Approximately 90% of the morbidity and mortality are caused by pulmonary involvement. The mean life expectancy of patients with CF in 2020 was more than 52 years in Germany. The introduction of neonatal screening for CF and the development of a causally acting CFTR modulator treatment have clearly improved the prognosis of these patients. As an introduction, this article describes important aspects of CF in this context in order to go into details of the CF neonatal screening which was introduced in Germany in 2016.
Collapse
Affiliation(s)
- Olaf Sommerburg
- Sektion für Pädiatrische Pneumologie, Allergologie und Mukoviszdose-Zentrum, Zentrum für Kinder- und Jugendmedizin, Klinik III, Universitätsklinikum Heidelberg, Im Neuenheimer Feld 430, 69120, Heidelberg, Deutschland.
- Translational Lung Research Center Heidelberg (TLRC), Deutsches Zentrum für Lungenforschung (DZL), Im Neuenheimer Feld 156, 69120, Heidelberg, Deutschland.
| | - Mark Oliver Wielpütz
- Translational Lung Research Center Heidelberg (TLRC), Deutsches Zentrum für Lungenforschung (DZL), Im Neuenheimer Feld 156, 69120, Heidelberg, Deutschland
- Klinik für Diagnostische und Interventionelle Radiologie, Universitätsklinikum Heidelberg, Im Neuenheimer Feld 420, 69120, Heidelberg, Deutschland
| |
Collapse
|
37
|
Sanders DB, Deschamp AR, Hatch JE, Slaven JE, Gebregziabher N, Corput MKVD, Tiddens HAWM, Rosenow T, Storch GA, Hall GL, Stick SM, Ranganathan S, Ferkol TW, Davis SD. Association between early respiratory viral infections and structural lung disease in infants with cystic fibrosis. J Cyst Fibros 2022; 21:1020-1026. [PMID: 35523715 PMCID: PMC10564322 DOI: 10.1016/j.jcf.2022.04.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 04/15/2022] [Accepted: 04/17/2022] [Indexed: 11/18/2022]
Abstract
BACKGROUND Infants with cystic fibrosis (CF) develop structural lung disease early in life, and viral infections are associated with progressive lung disease. We hypothesized that the presence of respiratory viruses would be associated with structural lung disease on computed tomography (CT) of the chest in infants with CF. METHODS Infants with CF were enrolled before 4 months of age. Multiplex PCR assays were performed on nasal swabs to detect respiratory viruses during routine visits and when symptomatic. Participants underwent CT imaging at approximately 12 months of age. Associations between Perth-Rotterdam Annotated Grid Morphometric Analysis for CF (PRAGMA-CF) CT scores and respiratory viruses and symptoms were assessed with Spearman correlation coefficients. RESULTS Sixty infants were included for analysis. Human rhinovirus was the most common virus detected, on 28% of tested nasal swabs and in 85% of participants. The median (IQR) extent of lung fields that was healthy based on PRAGMA-CF was 98.7 (0.8)%. There were no associations between PRAGMA-CF and age at first virus, or detection of any virus, including rhinovirus, respiratory syncytial virus, or parainfluenza. The extent of airway wall thickening was associated with ever having wheezed (ρ = 0.31, p = 0.02) and number of encounters with cough (ρ = 0.25, p = 0.0495). CONCLUSIONS Infants with CF had minimal structural lung disease. We did not find an association between respiratory viruses and CT abnormalities. Wheezing and frequency of cough were associated with early structural changes.
Collapse
Affiliation(s)
- Don B Sanders
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA.
| | - Ashley R Deschamp
- Department of Pediatrics, University of Nebraska Medical Center, Children's Hospital and Medical Center, Omaha, NE, USA
| | - Joseph E Hatch
- Department of Pediatrics, UNC Children's, The University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - James E Slaven
- Department of Biostatistics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Netsanet Gebregziabher
- Department of Biostatistics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Mariette Kemner-van de Corput
- Department of Paediatrics, Erasmus MC - Sophia Children's Hospital, University Medial Center Rotterdam, Netherlands; Department of Radiology and Nuclear Medicine, Erasmus MC - Sophia Children's Hospital, University Medial Center Rotterdam, Netherlands
| | - Harm A W M Tiddens
- Department of Paediatrics, Erasmus MC - Sophia Children's Hospital, University Medial Center Rotterdam, Netherlands; Department of Radiology and Nuclear Medicine, Erasmus MC - Sophia Children's Hospital, University Medial Center Rotterdam, Netherlands
| | - Tim Rosenow
- The Centre for Microscopy, Characterisation and Analysis, The University of Western Australia, Nedlands, Western Australia; Children's Lung Health, Wal-yan Respiratory Research Centre, Telethon Kids Institute and School of Physiotherapy and Exercise Science, Curtin University, Perth, Australia
| | - Gregory A Storch
- Department of Pediatrics, Washington University, St. Louis Children's Hospital, St. Louis, MO, USA
| | - Graham L Hall
- Children's Lung Health, Wal-yan Respiratory Research Centre, Telethon Kids Institute and School of Physiotherapy and Exercise Science, Curtin University, Perth, Australia
| | - Stephen M Stick
- Department of Pediatrics, University of Western Australia, Telethon Kids Institute, Perth, Australia
| | - Sarath Ranganathan
- Department of Respiratory and Sleep Medicine, Royal Children's Hospital, Parkville, Australia; Infection and Immunity, Murdoch Children's Research Institute, Parkville, Australia; Department of Paediatrics, University of Melbourne, Parkville, Australia
| | - Thomas W Ferkol
- Department of Pediatrics, Washington University, St. Louis Children's Hospital, St. Louis, MO, USA
| | - Stephanie D Davis
- Department of Pediatrics, UNC Children's, The University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| |
Collapse
|
38
|
Rehman T, Karp PH, Thurman AL, Mather SE, Jain A, Cooney AL, Sinn PL, Pezzulo AA, Duffey ME, Welsh MJ. WNK Inhibition Increases Surface Liquid pH and Host Defense in Cystic Fibrosis Airway Epithelia. Am J Respir Cell Mol Biol 2022; 67:491-502. [PMID: 35849656 PMCID: PMC9564924 DOI: 10.1165/rcmb.2022-0172oc] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 07/18/2022] [Indexed: 02/05/2023] Open
Abstract
In cystic fibrosis (CF), reduced HCO3- secretion acidifies the airway surface liquid (ASL), and the acidic pH disrupts host defenses. Thus, understanding the control of ASL pH (pHASL) in CF may help identify novel targets and facilitate therapeutic development. In diverse epithelia, the WNK (with-no-lysine [K]) kinases coordinate HCO3- and Cl- transport, but their functions in airway epithelia are poorly understood. Here, we tested the hypothesis that WNK kinases regulate CF pHASL. In primary cultures of differentiated human airway epithelia, inhibiting WNK kinases acutely increased both CF and non-CF pHASL. This response was HCO3- dependent and involved downstream SPAK/OSR1 (Ste20/SPS1-related proline-alanine-rich protein kinase/oxidative stress responsive 1 kinase). Importantly, WNK inhibition enhanced key host defenses otherwise impaired in CF. Human airway epithelia expressed two WNK isoforms in secretory cells and ionocytes, and knockdown of either WNK1 or WNK2 increased CF pHASL. WNK inhibition decreased Cl- secretion and the response to bumetanide, an NKCC1 (sodium-potassium-chloride cotransporter 1) inhibitor. Surprisingly, bumetanide alone or basolateral Cl- substitution also alkalinized CF pHASL. These data suggest that WNK kinases influence the balance between transepithelial Cl- versus HCO3- secretion. Moreover, reducing basolateral Cl- entry may increase HCO3- secretion and raise pHASL, thereby improving CF host defenses.
Collapse
Affiliation(s)
| | - Philip H. Karp
- Department of Internal Medicine and
- Howard Hughes Medical Institute, University of Iowa, Iowa City, Iowa; and
| | | | | | | | | | | | | | - Michael E. Duffey
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York
| | - Michael J. Welsh
- Department of Internal Medicine and
- Department of Molecular Physiology and Biophysics, Roy J. and Lucille A. Carver College of Medicine, and
- Howard Hughes Medical Institute, University of Iowa, Iowa City, Iowa; and
| |
Collapse
|
39
|
Huang L, Lai HJ, Antos N, Rock MJ, Asfour F, Howenstine M, Gaffin JM, Farrell PM. Defining and identifying early-onset lung disease in cystic fibrosis with cumulative clinical characteristics. Pediatr Pulmonol 2022; 57:2363-2373. [PMID: 35712759 PMCID: PMC9489630 DOI: 10.1002/ppul.26040] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/24/2022] [Accepted: 06/08/2022] [Indexed: 11/12/2022]
Abstract
BACKGROUND Because of the heterogeneity in cystic fibrosis (CF) lung disease among young children, a clinical method to identify early-onset lung disease is needed. OBJECTIVE To develop a CF early-onset lung disease (CFELD) scoring system by utilizing prospectively collected longitudinal data on manifestations in the first 3 years of life. DESIGN We studied 145 infants born during 2012-2017, diagnosed through newborn screening by age 3 months, and followed to 36 months of age. Cough severity, pulmonary exacerbations (PEx), respiratory cultures, and hospitalizations were collected at each CF center visit (every 1-2 months in infancy and quarterly thereafter). These data were used to construct the CFELD system and to classify lung disease into five categories: asymptomatic, minimal, mild, moderate, and severe. RESULTS The most frequent manifestation of CF early lung disease was MD-reported PEx episodes, PEx hospitalizations, and positive Pseudomonas aeruginosa cultures. Parent-reported cough severity was correlated with the number of respiratory hospitalizations (r = 0.48, p < 0.0001). The distribution of CFELD categories was 10% asymptomatic, 17% minimal, 29% mild, 33% moderate, and 12% severe. The moderate and severe categories occurred threefold higher in pancreatic insufficient (PI, 49%) versus sufficient subjects (16%), p < 0.0001. In addition to PI, gastrointestinal and nutrition-related hospitalizations, plasma cytokines interleukin (IL)-6 and IL-10, duration of CFTR modulator therapy, and type of health insurance were significant predictors of CFELD scores. CONCLUSION The CFELD scoring system is novel, allows systematic evaluation of lung disease prognosis early, and may aid in therapeutic decision-making particularly in the initiation of CFTR modulator therapy.
Collapse
Affiliation(s)
- Leslie Huang
- Department of Pediatrics, University of Wisconsin–Madison, Madison, Wisconsin, USA
| | - HuiChuan J. Lai
- Department of Pediatrics, University of Wisconsin–Madison, Madison, Wisconsin, USA
- Department of Nutritional Sciences, University of Wisconsin–Madison, Madison, Wisconsin, USA
- Department of Population Health Sciences, University of Wisconsin–Madison, Madison, Wisconsin, USA
| | - Nicholas Antos
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Michael J. Rock
- Department of Pediatrics, University of Wisconsin–Madison, Madison, Wisconsin, USA
| | - Fadi Asfour
- Department of Pediatrics, University of Utah, Salt Lake City, Utah, USA
| | | | - Jonathan M. Gaffin
- Department of Pediatrics, Boston Children’s Hospital, Boston, Massachusetts, USA
| | - Philip M. Farrell
- Department of Pediatrics, University of Wisconsin–Madison, Madison, Wisconsin, USA
- Department of Population Health Sciences, University of Wisconsin–Madison, Madison, Wisconsin, USA
| |
Collapse
|
40
|
Bengtson CD, Kim MD, Salathe M. Is CF airway inflammation still relevant in the era of highly effective modulators? J Cyst Fibros 2022; 21:901-903. [PMID: 36028422 DOI: 10.1016/j.jcf.2022.08.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Affiliation(s)
- Charles D Bengtson
- Department of Internal Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Michael D Kim
- Department of Internal Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Matthias Salathe
- Department of Internal Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA.
| |
Collapse
|
41
|
Stick SM, Foti A, Ware RS, Tiddens HAWM, Clements BS, Armstrong DS, Selvadurai H, Tai A, Cooper PJ, Byrnes CA, Belessis Y, Wainwright C, Jaffe A, Robinson P, Saiman L, Sly PD. The effect of azithromycin on structural lung disease in infants with cystic fibrosis (COMBAT CF): a phase 3, randomised, double-blind, placebo-controlled clinical trial. THE LANCET RESPIRATORY MEDICINE 2022; 10:776-784. [DOI: 10.1016/s2213-2600(22)00165-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 04/08/2022] [Accepted: 04/10/2022] [Indexed: 12/28/2022]
|
42
|
Going the Extra Mile: Why Clinical Research in Cystic Fibrosis Must Include Children. CHILDREN 2022; 9:children9071080. [PMID: 35884064 PMCID: PMC9323167 DOI: 10.3390/children9071080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 07/14/2022] [Indexed: 11/16/2022]
Abstract
This is an exciting time for research and novel drug development in cystic fibrosis. However, rarely has the adage, “Children are not just little adults” been more relevant. This article is divided into two main sections. In the first, we explore why it is important to involve children in research. We discuss the potential benefits of understanding a disease and its treatment in children, and we highlight that children have the same legal and ethical right to evidence-based therapy as adults. Additionally, we discuss why extrapolation from adults may be inappropriate, for example, medication pharmacokinetics may be different in children, and there may be unpredictable adverse effects. In the second part, we discuss how to involve children and their families in research. We outline the importance and the complexities of selecting appropriate outcome measures, and we discuss the role co-design may have in improving the involvement of children. We highlight the importance of appropriate staffing and resourcing, and we outline some of the common challenges and possible solutions, including practical tips on obtaining consent/assent in children and adolescents. We conclude that it is unethical to simply rely on extrapolation from adult studies because research in young children is challenging and that research should be seen as a normal part of the paediatric therapeutic journey.
Collapse
|
43
|
Harwood KH, McQuade RM, Jarnicki A, Schneider-Futschik EK. Ivacaftor Alters Macrophage and Lymphocyte Infiltration in the Lungs Following Lipopolysaccharide Exposure. ACS Pharmacol Transl Sci 2022; 5:419-428. [PMID: 35711814 DOI: 10.1021/acsptsci.2c00007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Indexed: 12/20/2022]
Abstract
Background and purpose: Cystic fibrosis (CF) is associated with a myriad of respiratory complications including increased susceptibility to lung infections and inflammation. Progressive inflammatory insults lead to airway damage and remodeling, resulting in compromised lung function. Treatment with ivacaftor significantly improves respiratory function and reduces the incidence of pulmonary exacerbations; however, its effect on lung inflammation is yet to be fully elucidated. Experimental approach: This study investigates the effects of ivacaftor on lung inflammation in a lipopolysaccharide (LPS) exposure mouse model (C57BL/6). All groups received intratracheal (IT) administration of LPS (10 μg). Prophylactic treatment involved intraperitoneal injections of ivacaftor (40 mg/kg) once a day beginning 4 days prior to LPS challenge. The therapeutic group received a single intraperitoneal ivacaftor injection (40 mg/kg) directly after LPS. Mice were culled either 24 or 72 h after LPS challenge, and serum, bronchoalveolar lavage fluid (BALF), and lung tissue samples were collected. The degree of inflammation was assessed through cell infiltration, cytokine expression, and histological analysis. Key results: Ivacaftor did not decrease the total number of immune cells within the BALF; however, prophylactic treatment did significantly reduce macrophage and lymphocyte infiltration. Prophylactic treatment exhibited a significant negative correlation between the immune cell number and ivacaftor concentrations in BALF; however, no significant changes in the cytokine expression or histological parameters were determined. Conclusions and implications: Ivacaftor possesses some inherent immunomodulatory effects within the lungs following LPS inoculation; however, further analysis of larger sample sizes is required to confirm the results.
Collapse
Affiliation(s)
- Kiera H Harwood
- Department of Pharmacology & Therapeutics, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Rachel M McQuade
- Gut-Axis Injury and Repair Laboratory, Department of Medicine Western Health, Melbourne University, Melbourne, VIC 3021, Australia.,The Florey Institute of Neuroscience and Mental Health, Parkville, VIC 3010, Australia.,Australian Institute for Musculoskeletal Science (AIMSS), Melbourne University, Melbourne, VIC 3021, Australia
| | - Andrew Jarnicki
- Lung Disease Research Laboratory, Department of Pharmacology & Therapeutics, Melbourne University, Melbourne, VIC 3021, Australia
| | - Elena K Schneider-Futschik
- Department of Pharmacology & Therapeutics, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|
44
|
Zhang Y, Gallant É, Park JD, Seyedsayamdost MR. The Small-Molecule Language of Dynamic Microbial Interactions. Annu Rev Microbiol 2022; 76:641-660. [PMID: 35679616 PMCID: PMC10171915 DOI: 10.1146/annurev-micro-042722-091052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Although microbes are routinely grown in monocultures in the laboratory, they are almost never encountered as single species in the wild. Our ability to detect and identify new microorganisms has advanced significantly in recent years, but our understanding of the mechanisms that mediate microbial interactions has lagged behind. What makes this task more challenging is that microbial alliances can be dynamic, consisting of multiple phases. The transitions between phases, and the interactions in general, are often mediated by a chemical language consisting of small molecules, also referred to as secondary metabolites or natural products. In this microbial lexicon, the molecules are like words and through their effects on recipient cells they convey meaning. The current review highlights three dynamic microbial interactions in which some of the words and their meanings have been characterized, especially those that mediate transitions in selected multiphasic associations. These systems provide insights into the principles that govern microbial symbioses and a playbook for interrogating similar associations in diverse ecological niches. Expected final online publication date for the Annual Review of Microbiology, Volume 76 is September 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Yifan Zhang
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA; ,
| | - Étienne Gallant
- Department of Chemistry, Princeton University, Princeton, New Jersey, USA; ,
| | - Jong-Duk Park
- Department of Chemistry, Princeton University, Princeton, New Jersey, USA; ,
| | - Mohammad R Seyedsayamdost
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA; , .,Department of Chemistry, Princeton University, Princeton, New Jersey, USA; ,
| |
Collapse
|
45
|
Svedberg M, Imberg H, Gustafsson P, Brink M, Caisander H, Lindblad A. Chest X-rays are less sensitive than multiple breath washout examinations when it comes to detecting early cystic fibrosis lung disease. Acta Paediatr 2022; 111:1253-1260. [PMID: 35181935 PMCID: PMC9306859 DOI: 10.1111/apa.16302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 02/15/2022] [Accepted: 02/16/2022] [Indexed: 11/30/2022]
Abstract
AIM Annual chest X-ray is recommended as routine surveillance to track cystic fibrosis (CF) lung disease. The aim of this study was to investigate the clinical utility of chest X-rays to track CF lung disease. METHODS Children at Gothenburg's CF centre who underwent chest X-rays, multiple breath washouts and chest computed tomography examinations between 1996 and 2016 were included in the study. Chest X-rays were interpreted with Northern Score (NS). We compared NS to lung clearance index (LCI) and structural lung damage measured by computed tomography using a logistic regression model. RESULTS A total of 75 children were included over a median period of 13 years (range: 3.0-18.0 years). The proportion of children with abnormal NS was significantly lower than the proportion of abnormal LCI up to the age of 4 years (p < 0.05). A normal NS and a normal LCI at age 6 years were associated with a median (10-90th percentile) total airway disease of 1.8% (0.4-4.7%) and bronchiectasis of 0.2% (0.0-1.5%). CONCLUSION Chest X-rays were less sensitive than multiple breath washout examinations to detect early CF lung disease. The combined results from both methods can be used as an indicator to perform chest computed tomography less frequently.
Collapse
Affiliation(s)
- Marcus Svedberg
- Department of Pediatrics Institute of Clinical Science at The Sahlgrenska Academy University of Gothenburg Gothenburg Sweden
- Department of Pediatrics Queen Silvia's Children Hospital Gothenburg Sweden
| | - Henrik Imberg
- Department of Mathematical Sciences Chalmers University of Technology and University of Gothenburg Gothenburg Sweden
- Statistiska Konsultgruppen Gothenburg Sweden
| | - Per Gustafsson
- Department of Pediatrics Institute of Clinical Science at The Sahlgrenska Academy University of Gothenburg Gothenburg Sweden
- Department of Pediatrics Central Hospital Skoevde Sweden
| | - Mela Brink
- Department of Pediatric Radiology Queen Silvia's Children Hospital Gothenburg Sweden
| | - Håkan Caisander
- Department of Pediatric Radiology Queen Silvia's Children Hospital Gothenburg Sweden
| | - Anders Lindblad
- Department of Pediatrics Institute of Clinical Science at The Sahlgrenska Academy University of Gothenburg Gothenburg Sweden
- Department of Pediatrics Queen Silvia's Children Hospital Gothenburg Sweden
| |
Collapse
|
46
|
Ali HA, Fouda EM, Salem MA, Abdelwahad MA, Radwan HH. Sputum neutrophil elastase and its relation to pediatric bronchiectasis severity: A cross‐sectional study. Health Sci Rep 2022; 5:e581. [PMID: 35509417 PMCID: PMC9059204 DOI: 10.1002/hsr2.581] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 02/28/2022] [Accepted: 03/01/2022] [Indexed: 11/25/2022] Open
Abstract
Background and Aims Sputum neutrophil elastase (NE) is a marker of neutrophilic airway inflammation in bronchiectasis. Yet, not much is known about its role in pediatric bronchiectasis severity. This study aimed to assess the sputum NE value as a biomarker of clinical and radiological severity in pediatric bronchiectasis. Methods This was a cross‐sectional study assessing sputum NE in a total of 50 bronchiectasis patients under the age of 18 years—30 patients with cystic fibrosis (CF) and 20 patients with non‐CF bronchiectasis were included. Bronchiectasis severity was assessed using Shwachman–Kulczycki (SK) score, CF‐ABLE score, and CF risk of disease progression score, among CF patients, and bronchiectasis severity index (BSI) and FACED criteria among non‐CF bronchiectasis patients, associations between sputum NE and bronchiectasis severity were assessed in both patient groups. Results Sputum NE was directly correlated with C‐reactive protein (r = 0.914, p < 0.001), (r = 0.786, p < 0.001), frequency of exacerbations (r = 0.852, p < 0.001) (r = 0.858, p < 0.001), exacerbations severity (r = 0.735, p = 0.002), (r = 0.907, p < 0.001), and the number of hospital admissions (r = 0.813, p < 0.001), (r = 0.612, p =0.004) in the last year among CF, and non‐CF bronchiectasis patients, respectively. Additional linear correlations were found between sputum NE, CF risk of disease progression score (p < 0.001), CF‐ABLE score (p < 0.001), and lower forced expiratory volume 1% of predicted (p = 0.017; ρ = −0.8) among CF patients. Moreover, sputum NE was positively correlated with the neutrophil count (p = 0.018), and BSI severity score (p = 0.039; ρ = 0.465) among non‐CF bronchiectasis patients. Conclusions Sputum NE may be considered a good biomarker of bronchiectasis severity in both CF and non‐CF bronchiectasis patients, as confirmed by the exacerbations rate, CF risk of disease progression, and BSI scores.
Collapse
Affiliation(s)
- Heba A. Ali
- Department of Pediatrics, Pulmonology Division, Faculty of Medicine Ain Shams University Children's Hospital Cairo Egypt
| | - Eman M. Fouda
- Department of Pediatrics, Pulmonology Division, Faculty of Medicine Ain Shams University Children's Hospital Cairo Egypt
| | - Mona A. Salem
- Department of Radiology Ain Shams University Hospital Cairo Egypt
| | | | | |
Collapse
|
47
|
Sandvik RM, Gustafsson PM, Lindblad A, Buchvald F, Olesen HV, Olsen JH, Skov M, Schmidt MN, Thellefsen MR, Robinson PD, Rubak S, Pressler T, Nielsen KG. Contemporary N 2 and SF 6 multiple breath washout in infants and toddlers with cystic fibrosis. Pediatr Pulmonol 2022; 57:945-955. [PMID: 35029068 DOI: 10.1002/ppul.25830] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 12/20/2021] [Accepted: 01/12/2022] [Indexed: 11/10/2022]
Abstract
INTRODUCTION Multiple breath washout (MBW) is used for early detection of cystic fibrosis (CF) lung disease, with SF6 MBW commonly viewed as the reference method. The use of N2 MBW in infants and toddlers has been questioned for technical and physiological reasons, but a new correction of the N2 signal has minimized the technical part. The present study aimed to assess the remaining differences and the contributing mechanisms for the differences between SF6 and N2 MBW,corrected-such as tidal volume reduction during N2 washout with pure O2 . METHOD This was a longitudinal multicenter cohort study. SF6 MBW and N2 MBW were performed prospectively at three CF centers in the same visits on 154 test occasions across 62 children with CF (mean age: 22.7 months). Offline analysis using identical algorithms to the commercially available program provided outcomes of N2,original and N2,corrected for comparison with SF6 MBW. RESULTS Mean functional residual capacity, FRCN2,corrected was 14.3% lower than FRCN2, original , and 1.0% different from FRCSF6 . Lung clearance index, LCIN2,corrected was 25.2% lower than LCIN2,original , and 7.3% higher than LCISF6 . Mean (SD) tidal volume decreased significantly during N2 MBWcorrected , compared to SF6 MBW (-13.1 ml [-30.7; 4.6], p < 0.0001, equal to -12.0% [-25.7; 1.73]), but this tidal volume reduction did not correlate to the differences between LCIN2,corrected and LCISF6 . The absolute differences in LCI increased significantly with higher LCISF6 (0.63/LCISF6 ) and (0.23/LCISF6 ), respectively, for N2,original and N2,corrected , but the relative differences were stable across disease severity for N2,corrected , but not for N2,original . CONCLUSION Only minor residual differences between FRCN2,corrected and FRCSF6 remained to show that the two methods measure gas volumes very similar in this age range. Small differences in LCI were found. Tidal volume reduction during N2 MBW did not affect differences. The corrected N2 MBW can now be used with confidence in young children with CF, although not interchangeably with SF6 .
Collapse
Affiliation(s)
- Rikke M Sandvik
- Danish Paediatric Pulmonary Service, CF Centre Copenhagen, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Per M Gustafsson
- Department of Paediatrics, Central Hospital, Skövde, Sweden.,Institute of Clinical Science, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Anders Lindblad
- Institute of Clinical Science, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Pediatrics, CF Center, Queen Silvia Children's Hospital, Gothenburg, Sweden
| | - Frederik Buchvald
- Danish Paediatric Pulmonary Service, CF Centre Copenhagen, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Hanne V Olesen
- Department of Paediatrics and Adolescent Medicine, Danish Center of Pediatric Pulmonology and Allergology, Cystic Fibrosis Centre Aarhus, Aarhus University Hospital, Aarhus, Denmark
| | - Jørgen H Olsen
- Department of Paediatrics and Adolescent Medicine, Danish Center of Pediatric Pulmonology and Allergology, Cystic Fibrosis Centre Aarhus, Aarhus University Hospital, Aarhus, Denmark
| | - Marianne Skov
- Danish Paediatric Pulmonary Service, CF Centre Copenhagen, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Marika N Schmidt
- Danish Paediatric Pulmonary Service, CF Centre Copenhagen, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Mette R Thellefsen
- Danish Paediatric Pulmonary Service, CF Centre Copenhagen, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Paul D Robinson
- Department of Respiratory Medicine, The Children's Hospital at Westmead, Sydney, New South Wales, Australia
| | - Sune Rubak
- Department of Paediatrics and Adolescent Medicine, Danish Center of Pediatric Pulmonology and Allergology, Cystic Fibrosis Centre Aarhus, Aarhus University Hospital, Aarhus, Denmark
| | - Tacjana Pressler
- Danish Paediatric Pulmonary Service, CF Centre Copenhagen, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Kim G Nielsen
- Danish Paediatric Pulmonary Service, CF Centre Copenhagen, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark.,Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
48
|
Ciet P, Bertolo S, Ros M, Casciaro R, Cipolli M, Colagrande S, Costa S, Galici V, Gramegna A, Lanza C, Lucca F, Macconi L, Majo F, Paciaroni A, Parisi GF, Rizzo F, Salamone I, Santangelo T, Scudeller L, Saba L, Tomà P, Morana G. State-of-the-art review of lung imaging in cystic fibrosis with recommendations for pulmonologists and radiologists from the "iMAging managEment of cySTic fibROsis" (MAESTRO) consortium. Eur Respir Rev 2022; 31:31/163/210173. [PMID: 35321929 DOI: 10.1183/16000617.0173-2021] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 12/20/2021] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVE Imaging represents an important noninvasive means to assess cystic fibrosis (CF) lung disease, which remains the main cause of morbidity and mortality in CF patients. While the development of new imaging techniques has revolutionised clinical practice, advances have posed diagnostic and monitoring challenges. The authors aim to summarise these challenges and make evidence-based recommendations regarding imaging assessment for both clinicians and radiologists. STUDY DESIGN A committee of 21 experts in CF from the 10 largest specialist centres in Italy was convened, including a radiologist and a pulmonologist from each centre, with the overall aim of developing clear and actionable recommendations for lung imaging in CF. An a priori threshold of at least 80% of the votes was required for acceptance of each statement of recommendation. RESULTS After a systematic review of the relevant literature, the committee convened to evaluate 167 articles. Following five RAND conferences, consensus statements were developed by an executive subcommittee. The entire consensus committee voted and approved 28 main statements. CONCLUSIONS There is a need for international guidelines regarding the appropriate timing and selection of imaging modality for patients with CF lung disease; timing and selection depends upon the clinical scenario, the patient's age, lung function and type of treatment. Despite its ubiquity, the use of the chest radiograph remains controversial. Both computed tomography and magnetic resonance imaging should be routinely used to monitor CF lung disease. Future studies should focus on imaging protocol harmonisation both for computed tomography and for magnetic resonance imaging. The introduction of artificial intelligence imaging analysis may further revolutionise clinical practice by providing fast and reliable quantitative outcomes to assess disease status. To date, there is no evidence supporting the use of lung ultrasound to monitor CF lung disease.
Collapse
Affiliation(s)
- Pierluigi Ciet
- Radiology and Nuclear Medicine Dept, Erasmus MC, Rotterdam, The Netherlands .,Pediatric Pulmonology and Allergology Dept, Erasmus MC, Sophia Children's Hospital, Rotterdam, The Netherlands.,Depts of Radiology and Medical Science, University of Cagliari, Cagliari, Italy
| | - Silvia Bertolo
- Radiology Dept, Ca'Foncello S. Maria Hospital, Treviso, Italy
| | - Mirco Ros
- Dept of Pediatrics, Ca'Foncello S. Maria Hospital, Treviso, Italy
| | - Rosaria Casciaro
- Dept of Pediatrics, IRCCS Institute "Giannina Gaslini", Cystic Fibrosis Centre, Genoa, Italy
| | - Marco Cipolli
- Regional Reference Cystic Fibrosis center, University hospital of Verona, Verona, Italy
| | - Stefano Colagrande
- Dept of Experimental and Clinical Biomedical Sciences, Radiodiagnostic Unit n. 2, University of Florence- Careggi Hospital, Florence, Italy
| | - Stefano Costa
- Dept of Pediatrics, Gaetano Martino Hospital, Messina, Italy
| | - Valeria Galici
- Cystic Fibrosis Centre, Dept of Paediatric Medicine, Anna Meyer Children's University Hospital, Florence, Italy
| | - Andrea Gramegna
- Respiratory Disease and Adult Cystic Fibrosis Centre, Internal Medicine Dept, IRCCS Ca' Granda, Milan, Italy.,Dept of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Cecilia Lanza
- Radiology Dept, University Hospital Ospedali Riuniti, Ancona, Italy
| | - Francesca Lucca
- Regional Reference Cystic Fibrosis center, University hospital of Verona, Verona, Italy
| | - Letizia Macconi
- Radiology Dept, Tuscany Reference Cystic Fibrosis Centre, Meyer Children's Hospital, Florence, Italy
| | - Fabio Majo
- Dept of Pediatrics, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | | | - Giuseppe Fabio Parisi
- Pediatric Pulmonology Unit, Dept of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Francesca Rizzo
- Radiology Dept, IRCCS Institute "Giannina Gaslini", Cystic Fibrosis Center, Genoa, Italy
| | | | - Teresa Santangelo
- Dept of Radiology, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Luigia Scudeller
- Clinical Epidemiology, IRCCS Azienda Ospedaliera Universitaria di Bologna, Bologna, Italy
| | - Luca Saba
- Depts of Radiology and Medical Science, University of Cagliari, Cagliari, Italy
| | - Paolo Tomà
- Dept of Radiology, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Giovanni Morana
- Radiology Dept, Ca'Foncello S. Maria Hospital, Treviso, Italy
| |
Collapse
|
49
|
Linnemann RW, Yadav R, Zhang C, Sarr D, Rada B, Stecenko AA. Serum anti-PAD4 autoantibodies are present in cystic fibrosis children and increase with age and lung disease severity. Autoimmunity 2022; 55:109-117. [PMID: 35199621 PMCID: PMC9996683 DOI: 10.1080/08916934.2021.2021193] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Cystic fibrosis (CF) lung disease begins early in childhood and is characterized by neutrophilic inflammation of the airways. Neutrophil extracellular traps (NETs) represent one mechanism by which neutrophils contribute to lung damage. The enzyme peptidylarginine deiminase 4 (PAD4) is required for NET formation. Our overall concept is that NET formation delivers PAD4 outside the neutrophil resulting in autoantibody generation, and this autoimmunity may be a novel mechanism contributing to CF lung disease progression. The aim of this study was to investigate clinical predictors of serum anti-PAD4 autoantibody (PAD4 Ab) levels in CF subjects with a wide range of ages from early childhood through middle age. We measured PAD4 Ab levels in sera from 104 CF subjects. PAD4 Abs were detectable among CF children as young as one year of age and elevated compared to paediatric healthy controls. PAD4 Ab levels increased significantly with age (r = 0.584, p <.001) and correlated with lower lung function (r = -0.481, n = 99, p <.001). PAD4 Abs were elevated in subjects with chronic Pseudomonas aeruginosa airways infection (p <.001), but not with other key clinical CF co-variates including sex, CFTR genotype, sweat chloride, pancreatic enzyme use, nutritional status, recent pulmonary exacerbations, Staphylococcus aureus, or CF-related diabetes. PAD4 Ab levels were also correlated with serum anti-double-stranded DNA IgA autoantibodies, which have similarly been shown to be elevated in CF subjects and associated with lung damage. In multivariable analysis, age and lung function remained correlated with PAD4 Ab levels. In summary, we describe novel findings of anti-PAD4 autoantibodies in CF that are present early in childhood, increase over time with age, and correlate with lung disease severity. Autoimmunity to antigens extruded by NETs appears to be an early event in CF lung disease, and airway autoimmunity related to NET formation is a potential mechanism of lung disease progression in CF.HighlightsSerum anti-PAD4 autoantibodies are detected in paediatric CF serum and are elevated compared to healthy paediatric controlsAnti-PAD4 autoantibodies increase with ageAnti-PAD4 autoantibodies correlate with lower lung function, Pseudomonas aeruginosa airway infection and anti-dsDNA IgA autoantibodies, but not with other key clinical CF co-variatesAge and lung function remain correlated with anti-PAD4 autoantibodies in multivariable analysis.
Collapse
Affiliation(s)
- Rachel W Linnemann
- Division of Pulmonology, Allergy/Immunology, Cystic Fibrosis and Sleep, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Ruchi Yadav
- Department of Infectious Diseases, College of Veterinary Medicine, The University of Georgia, Athens, GA, USA
| | - Chao Zhang
- Biostatistics Core, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Demba Sarr
- Department of Infectious Diseases, College of Veterinary Medicine, The University of Georgia, Athens, GA, USA
| | - Balázs Rada
- Department of Infectious Diseases, College of Veterinary Medicine, The University of Georgia, Athens, GA, USA
| | - Arlene A Stecenko
- Division of Pulmonology, Allergy/Immunology, Cystic Fibrosis and Sleep, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
50
|
Kelk D, Logan J, Andersen I, Gutierrez Cardenas D, Bell SC, Wainwright CE, Sly PD, Fantino E. Neutrophil respiratory burst activity is not exaggerated in cystic fibrosis. J Cyst Fibros 2022; 21:707-712. [PMID: 34991978 DOI: 10.1016/j.jcf.2021.12.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/28/2021] [Accepted: 12/20/2021] [Indexed: 02/04/2023]
Abstract
BACKGROUND Exaggerated neutrophil-dominated inflammation underlies progressive cystic fibrosis (CF) lung disease. Older studies reported a defective respiratory burst in CF, but more recent studies suggest neutrophil function is normal. METHODS We measured the amount and rate of reactive oxygen species (ROS) during PMA-stimulated respiratory burst activity in children [70 CF, 13 disease controls, 19 health controls] and adults [31 CF, 14 health controls] in neutrophils harvested from peripheral blood. Blood was collected from participants with CF when clinically stable (60 children, 9 adults) and on hospital admission (38 children, 24 adults) and discharge (18 children, 21 adults) for acute pulmonary exacerbations. RESULTS When clinically stable, children with CF had lower ROS production [median 318,633, 25% 136,810 - 75% 569,523 RLU] than disease controls [median 599,459, 25% 425,566 - 75% 730,527 RLU] and healthy controls [median 534,073, 25% 334,057 - 75% 738,593 RLU] (p = 0.008). The rate of ROS production was also lower (p = 0.029). In neither children nor adults with CF did ROS production increase on hospital admission for acute pulmonary exacerbation, nor fall prior to discharge. There were no associations between ROS production and high-sensitivity C-reactive protein (indicating systemic inflammation) in either children or adults with CF. CONCLUSIONS Our data do not support a role for exaggerated respiratory burst activity contributing to the exaggerated neutrophil-dominated inflammation seen with CF lung disease.
Collapse
Affiliation(s)
- Dean Kelk
- Children's Health and Environment Program, Child Health Research Centre, The University of Queensland, South Brisbane, Qld Australia
| | - Jayden Logan
- Children's Health and Environment Program, Child Health Research Centre, The University of Queensland, South Brisbane, Qld Australia; Child and Reproductive Health Research Group, Queensland University of Technology, South Brisbane, Qld Australia
| | - Isabella Andersen
- Children's Health and Environment Program, Child Health Research Centre, The University of Queensland, South Brisbane, Qld Australia
| | - Diana Gutierrez Cardenas
- Children's Health and Environment Program, Child Health Research Centre, The University of Queensland, South Brisbane, Qld Australia
| | - Scott C Bell
- Translational Research Institute, Brisbane, Qld, Australia; Department of Thoracic Medicine, The Prince Charles Hospital, Brisbane
| | - Claire E Wainwright
- Department of Respiratory and Sleep Medicine, Children's Health Queensland, South Brisbane, Qld Australia
| | - Peter D Sly
- Children's Health and Environment Program, Child Health Research Centre, The University of Queensland, South Brisbane, Qld Australia; Department of Respiratory and Sleep Medicine, Children's Health Queensland, South Brisbane, Qld Australia.
| | - Emmanuelle Fantino
- Children's Health and Environment Program, Child Health Research Centre, The University of Queensland, South Brisbane, Qld Australia
| |
Collapse
|