1
|
Sunder T, Thangaraj PR, Kuppusamy MK. Venous thromboembolism following lung transplantation. World J Transplant 2025; 15:99241. [DOI: 10.5500/wjt.v15.i2.99241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 10/12/2024] [Accepted: 11/14/2024] [Indexed: 02/21/2025] Open
Abstract
Lung transplantation (LT) is currently a surgical therapy option for end-stage lung disease. Venous thromboembolism (VTE), which can occur after LT, is associated with significant morbidity and mortality. Because of improved outcomes, increasing numbers of patients are receiving LT as treatment. Patients on the waitlist for LT tend to be older with weakness and frailty in addition to pulmonary symptoms. These factors contribute to a heightened risk of postoperative VTE. Furthermore, patients who clinically deteriorate while on the waitlist may require extra corporeal membrane oxygenation as a bridge to LT. Bleeding and thromboembolism are common in these patients. Pulmonary embolism (PE) in a freshly transplanted lung can have significant effects leading to morbidity and mortality. PE typically leads to impairment of gas exchange and right ventricular strain. In LT, PE can affect healing of bronchial anastomosis and may even contribute to the development of chronic allograft lung dysfunction. This article discussed the incidence, clinical features and diagnosis of VTE after LT. Furthermore, the treatment modalities, complications, and outcomes of VTE were reviewed.
Collapse
Affiliation(s)
- Thirugnanasambandan Sunder
- Department of Heart Lung Transplantation and Mechanical Circulatory Support, Apollo Hospitals, Chennai 600086, Tamil Nadu, India
| | - Paul Ramesh Thangaraj
- Department of Heart Lung Transplantation and Mechanical Circulatory Support, Apollo Hospitals, Chennai 600086, Tamil Nadu, India
| | - Madhan Kumar Kuppusamy
- Department of Heart Lung Transplantation and Mechanical Circulatory Support, Apollo Hospitals, Chennai 600086, Tamil Nadu, India
| |
Collapse
|
2
|
Wu P, Zhang W, Zuo X, Liu S, Jin T, Jia J, Luo B, Wang G, Zhang Z. The hematopoietic activity of EPO is unfavorable to the treatment of bleomycin-induced pulmonary fibrosis in mice. Biochem Biophys Res Commun 2024; 739:150951. [PMID: 39547119 DOI: 10.1016/j.bbrc.2024.150951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 10/22/2024] [Accepted: 11/03/2024] [Indexed: 11/17/2024]
Abstract
The main function of erythropoietin (EPO) is to promote hematopoiesis and improve anemia. In addition, EPO also has many non-hematopoietic effects such as anti-inflammation, anti-apoptosis and anti-oxidation. To achieve the protective effects, large doses of EPO are required, so the probability of side effects increases. Previous studies have revealed that EPO can improve pulmonary fibrosis in mice, but it has not been clarified whether the hematopoiesis of EPO contributes to amelioration of pulmonary fibrosis and whether EPO improves overall mortality. Our results show that EPO decreases hydroxyproline content, α-sma and col-1 protein levels in mice with bleomycin-induced pulmonary fibrosis. However, compared with the control group, the weight loss and mortality rate of the EPO group were not improved, while the number of red blood cells (RBCs), hemoglobin (Hb), red cell width distribution-coefficient of variation (RDW-CV) and hematocrit (HCT) were significantly higher. Furthermore, we observed massive thrombosis in the lung of EPO treated lung fibrosis mice but not in control mice. Therefore, our results show that in the condition of lung fibrosis, the hematopoietic activity of exogenous EPO is not conducive to its tissue protective effect.
Collapse
Affiliation(s)
- Pengfei Wu
- Department of Pulmonary and Critical Care Medicine, Institute of Respiratory Diseases, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, China; Department of Respiratory and Critical Care Medicine, Sichuan Science City Hospital, Mianyang, Sichuan, China
| | - Wen Zhang
- Department of Pulmonary and Critical Care Medicine, Institute of Respiratory Diseases, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Xitong Zuo
- Institute of Immunology, Third Military Medical University, Chongqing, China
| | - Shengran Liu
- Institute of Immunology, Third Military Medical University, Chongqing, China
| | - Tianrong Jin
- Medical College of Chongqing University, Chongqing, China
| | - Jialin Jia
- Institute of Immunology, Third Military Medical University, Chongqing, China
| | - Bangwei Luo
- Institute of Immunology, Third Military Medical University, Chongqing, China.
| | - Guansong Wang
- Department of Pulmonary and Critical Care Medicine, Institute of Respiratory Diseases, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, China.
| | - Zhiren Zhang
- Institute of Immunology, Third Military Medical University, Chongqing, China.
| |
Collapse
|
3
|
Cenerini G, Chimera D, Pagnini M, Bazzan E, Conti M, Turato G, Celi A, Neri T. The Intricate Relationship Between Pulmonary Fibrosis and Thrombotic Pathology: A Narrative Review. Cells 2024; 13:2099. [PMID: 39768190 PMCID: PMC11674501 DOI: 10.3390/cells13242099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/16/2024] [Accepted: 12/17/2024] [Indexed: 01/11/2025] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is associated with a significantly increased risk of thrombotic events and mortality. This review explores the complex bidirectional relationship between pulmonary fibrosis and thrombosis, discussing epidemiological evidence, pathogenetic mechanisms, and therapeutic implications, with a particular focus on the emerging role of extracellular vesicles (EVs) as crucial mediators linking fibrosis and coagulation. Coagulation factors directly promote fibrosis, while fibrosis itself activates thrombotic pathways. Retrospective studies suggest the benefits of anticoagulants in IPF, but prospective trials have faced challenges. Novel anticoagulants, profibrinolytic therapies, and agents targeting protease-activated receptors (PARs) show promise in preclinical studies and early clinical trials. EVs have emerged as key players in the pathogenesis of interstitial lung diseases (ILDs), serving as vehicles for intercellular communication and contributing to both fibrosis and coagulation. EV-based approaches, such as EV modulation, engineered EVs as drug delivery vehicles, and mesenchymal stem cell-derived EVs, represent promising therapeutic strategies. Ongoing research should focus on optimizing risk-benefit profiles, identifying predictive biomarkers, evaluating combination strategies targeting thrombotic, fibrotic, and inflammatory pathways, and advancing the understanding of EVs in ILDs to develop targeted interventions.
Collapse
Affiliation(s)
- Giovanni Cenerini
- UO Pneumologia, Azienda Ospedaliero-Universitaria Pisana, 56124 Pisa, Italy; (G.C.); (D.C.)
| | - Davide Chimera
- UO Pneumologia, Azienda Ospedaliero-Universitaria Pisana, 56124 Pisa, Italy; (G.C.); (D.C.)
| | - Marta Pagnini
- Centro Dipartimentale di Biologia Cellulare Cardiorespiratoria, Dipartimento di Patologia Chirurgica, Medica, Molecolare e dell’Area Critica, Università degli Studi di Pisa, 56124 Pisa, Italy; (M.P.); (T.N.)
| | - Erica Bazzan
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova and Padova City Hospital, 35128 Padova, Italy; (E.B.); (M.C.); (G.T.)
| | - Maria Conti
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova and Padova City Hospital, 35128 Padova, Italy; (E.B.); (M.C.); (G.T.)
- Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy
| | - Graziella Turato
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova and Padova City Hospital, 35128 Padova, Italy; (E.B.); (M.C.); (G.T.)
| | - Alessandro Celi
- Centro Dipartimentale di Biologia Cellulare Cardiorespiratoria, Dipartimento di Patologia Chirurgica, Medica, Molecolare e dell’Area Critica, Università degli Studi di Pisa, 56124 Pisa, Italy; (M.P.); (T.N.)
| | - Tommaso Neri
- Centro Dipartimentale di Biologia Cellulare Cardiorespiratoria, Dipartimento di Patologia Chirurgica, Medica, Molecolare e dell’Area Critica, Università degli Studi di Pisa, 56124 Pisa, Italy; (M.P.); (T.N.)
| |
Collapse
|
4
|
Chen Y, Liang J, Li Q, Zhou J, Xu J, Xiong D, Jiang H, Ye S, Chen J. Clinical outcome of lung transplantation for chronic thromboembolic pulmonary hypertension. BMC Pulm Med 2024; 24:410. [PMID: 39187801 PMCID: PMC11346220 DOI: 10.1186/s12890-024-03213-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 08/09/2024] [Indexed: 08/28/2024] Open
Abstract
BACKGROUND Chronic thromboembolic pulmonary hypertension (CTEPH) is a type of pulmonary hypertension with a low incidence. Despite pulmonary endarterectomy(PEA) being the preferred treatment for CTEPH, for patients who failed medical therapy and who are not suitable candidates for PEA, lung transplantation (LT) is still the only effective treatment for end-stage CTEPH; however, there are currently very few reports on the efficacy of LT for CTEPH. METHODS We retrospectively analyzed the clinical data of seven patients diagnosed with CTEPH between July 2019 and July 2021. The follow-up deadline was March, 2022. RESULTS The mean age at admission was 54 ± 12 years. The average value of mean pulmonary artery pressure (mPAP) was 40 ± 5 mmHg. The mean preoperative oxygenation index(PaO2/FiO2) was 203 ± 56 mm Hg. After evaluation, one patient underwent left LT and the rest underwent bilateral LT. Three patients received intraoperative veno-venous extracorporeal membrane oxygenation (ECMO) support, and four patients received intraoperative veno-arterial ECMO support. The average postoperative mPAP was 19 ± 4 mmHg. The mean postoperative oxygenation index(PaO2/FiO2) was 388 ± 83 mmHg. There was a significant difference between the preoperative and postoperative mPAP and oxygenation index(PaO2/FiO2). All patients recovered well and were discharged 37 ± 19 days postoperatively. The mean follow-up duration was 19 ± 8 months. There was no recurrence of CTEPH. CONCLUSIONS LT is an effective treatment for end-stage CTEPH, which can improve cardiopulmonary function and quality of life and prolong survival. Patients who are unable to tolerate PEA should be considered for LT as early as possible when internal medicine failed.
Collapse
Affiliation(s)
- Yuan Chen
- Wuxi Lung Transplant Center, Department of Thoracic Surgery, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, 299 Qingyang Road, Wuxi, 214023, Jiangsu, China
| | - Jialong Liang
- Wuxi Lung Transplant Center, Department of Thoracic Surgery, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, 299 Qingyang Road, Wuxi, 214023, Jiangsu, China
| | - Qian Li
- The Taihu Rehabilitation Hospital of Jiangsu Province (The Taihu Sanatorium of Jiangsu Province), Wuxi, Jiangsu, China
| | - Jintao Zhou
- Wuxi Lung Transplant Center, Department of Thoracic Surgery, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, 299 Qingyang Road, Wuxi, 214023, Jiangsu, China
| | - Jian Xu
- Wuxi Lung Transplant Center, Department of Thoracic Surgery, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, 299 Qingyang Road, Wuxi, 214023, Jiangsu, China
| | - Dian Xiong
- Wuxi Lung Transplant Center, Department of Thoracic Surgery, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, 299 Qingyang Road, Wuxi, 214023, Jiangsu, China
| | - Huachi Jiang
- Wuxi Lung Transplant Center, Department of Thoracic Surgery, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, 299 Qingyang Road, Wuxi, 214023, Jiangsu, China
| | - Shugao Ye
- Wuxi Lung Transplant Center, Department of Thoracic Surgery, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, 299 Qingyang Road, Wuxi, 214023, Jiangsu, China.
| | - Jingyu Chen
- Wuxi Lung Transplant Center, Department of Thoracic Surgery, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, 299 Qingyang Road, Wuxi, 214023, Jiangsu, China.
| |
Collapse
|
5
|
Suarez-Castillejo C, Calvo N, Preda L, Córdova Díaz R, Toledo-Pons N, Martínez J, Pons J, Vives-Borràs M, Pericàs P, Ramón L, Iglesias A, Cànaves-Gómez L, Valera Felices JL, Morell-García D, Núñez B, Sauleda J, Sala-Llinàs E, Alonso-Fernández A. Cardiopulmonary Complications after Pulmonary Embolism in COVID-19. Int J Mol Sci 2024; 25:7270. [PMID: 39000378 PMCID: PMC11242326 DOI: 10.3390/ijms25137270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/14/2024] [Accepted: 06/30/2024] [Indexed: 07/16/2024] Open
Abstract
Although pulmonary embolism (PE) is a frequent complication in COVID-19, its consequences remain unknown. We performed pulmonary function tests, echocardiography and computed tomography pulmonary angiography and identified blood biomarkers in a cohort of consecutive hospitalized COVID-19 patients with pneumonia to describe and compare medium-term outcomes according to the presence of PE, as well as to explore their potential predictors. A total of 141 patients (56 with PE) were followed up during a median of 6 months. Post-COVID-19 radiological lung abnormalities (PCRLA) and impaired diffusing capacity for carbon monoxide (DLCOc) were found in 55.2% and 67.6% cases, respectively. A total of 7.3% had PE, and 6.7% presented an intermediate-high probability of pulmonary hypertension. No significant difference was found between PE and non-PE patients. Univariate analysis showed that age > 65, some clinical severity factors, surfactant protein-D, baseline C-reactive protein, and both peak red cell distribution width and Interleukin (IL)-10 were associated with DLCOc < 80%. A score for PCRLA prediction including age > 65, minimum lymphocyte count, and IL-1β concentration on admission was constructed with excellent overall performance. In conclusion, reduced DLCOc and PCRLA were common in COVID-19 patients after hospital discharge, but PE did not increase the risk. A PCRLA predictive score was developed, which needs further validation.
Collapse
Affiliation(s)
- Carla Suarez-Castillejo
- Servicio de Neumología, Hospital Universitario Son Espases, 07120 Palma de Mallorca, Spain
- Institut d'Investigació Sanitària Illes Balears (IdISBa), 07120 Palma de Mallorca, Spain
| | - Néstor Calvo
- Servicio de Radiodiagnóstico, Hospital Universitario Son Espases, 07120 Palma de Mallorca, Spain
| | - Luminita Preda
- Servicio de Radiodiagnóstico, Hospital Universitario Son Espases, 07120 Palma de Mallorca, Spain
| | - Rocío Córdova Díaz
- Institut d'Investigació Sanitària Illes Balears (IdISBa), 07120 Palma de Mallorca, Spain
| | - Nuria Toledo-Pons
- Servicio de Neumología, Hospital Universitario Son Espases, 07120 Palma de Mallorca, Spain
- Institut d'Investigació Sanitària Illes Balears (IdISBa), 07120 Palma de Mallorca, Spain
| | - Joaquín Martínez
- Servicio de Neumología, Hospital Universitario Son Espases, 07120 Palma de Mallorca, Spain
- Institut d'Investigació Sanitària Illes Balears (IdISBa), 07120 Palma de Mallorca, Spain
| | - Jaume Pons
- Institut d'Investigació Sanitària Illes Balears (IdISBa), 07120 Palma de Mallorca, Spain
- Servicio de Cardiología, Hospital Universitario Son Espases, 07120 Palma de Mallorca, Spain
| | - Miquel Vives-Borràs
- Institut d'Investigació Sanitària Illes Balears (IdISBa), 07120 Palma de Mallorca, Spain
- Servicio de Cardiología, Hospital Universitario Son Espases, 07120 Palma de Mallorca, Spain
- Facultad de Medicina, Universidad de las Islas Baleares, 07122 Palma, Spain
| | - Pere Pericàs
- Institut d'Investigació Sanitària Illes Balears (IdISBa), 07120 Palma de Mallorca, Spain
- Servicio de Cardiología, Hospital Universitario Son Espases, 07120 Palma de Mallorca, Spain
| | - Luisa Ramón
- Servicio de Neumología, Hospital Universitario Son Espases, 07120 Palma de Mallorca, Spain
- Institut d'Investigació Sanitària Illes Balears (IdISBa), 07120 Palma de Mallorca, Spain
| | - Amanda Iglesias
- Institut d'Investigació Sanitària Illes Balears (IdISBa), 07120 Palma de Mallorca, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Laura Cànaves-Gómez
- Institut d'Investigació Sanitària Illes Balears (IdISBa), 07120 Palma de Mallorca, Spain
| | - Jose Luis Valera Felices
- Servicio de Neumología, Hospital Universitario Son Espases, 07120 Palma de Mallorca, Spain
- Institut d'Investigació Sanitària Illes Balears (IdISBa), 07120 Palma de Mallorca, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Daniel Morell-García
- Institut d'Investigació Sanitària Illes Balears (IdISBa), 07120 Palma de Mallorca, Spain
- Servicio de Análisis Clínicos, Hospital Universitario Son Espases, 07120 Palma de Mallorca, Spain
| | - Belén Núñez
- Servicio de Neumología, Hospital Universitario Son Espases, 07120 Palma de Mallorca, Spain
- Institut d'Investigació Sanitària Illes Balears (IdISBa), 07120 Palma de Mallorca, Spain
| | - Jaume Sauleda
- Servicio de Neumología, Hospital Universitario Son Espases, 07120 Palma de Mallorca, Spain
- Institut d'Investigació Sanitària Illes Balears (IdISBa), 07120 Palma de Mallorca, Spain
- Facultad de Medicina, Universidad de las Islas Baleares, 07122 Palma, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Ernest Sala-Llinàs
- Servicio de Neumología, Hospital Universitario Son Espases, 07120 Palma de Mallorca, Spain
- Institut d'Investigació Sanitària Illes Balears (IdISBa), 07120 Palma de Mallorca, Spain
- Facultad de Medicina, Universidad de las Islas Baleares, 07122 Palma, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Alberto Alonso-Fernández
- Servicio de Neumología, Hospital Universitario Son Espases, 07120 Palma de Mallorca, Spain
- Institut d'Investigació Sanitària Illes Balears (IdISBa), 07120 Palma de Mallorca, Spain
- Facultad de Medicina, Universidad de las Islas Baleares, 07122 Palma, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
6
|
May J, Mitchell JA, Jenkins RG. Beyond epithelial damage: vascular and endothelial contributions to idiopathic pulmonary fibrosis. J Clin Invest 2023; 133:e172058. [PMID: 37712420 PMCID: PMC10503802 DOI: 10.1172/jci172058] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive scarring disease of the lung with poor survival. The incidence and mortality of IPF are rising, but treatment remains limited. Currently, two drugs can slow the scarring process but often at the expense of intolerable side effects, and without substantially changing overall survival. A better understanding of mechanisms underlying IPF is likely to lead to improved therapies. The current paradigm proposes that repetitive alveolar epithelial injury from noxious stimuli in a genetically primed individual is followed by abnormal wound healing, including aberrant activity of extracellular matrix-secreting cells, with resultant tissue fibrosis and parenchymal damage. However, this may underplay the importance of the vascular contribution to fibrogenesis. The lungs receive 100% of the cardiac output, and vascular abnormalities in IPF include (a) heterogeneous vessel formation throughout fibrotic lung, including the development of abnormal dilated vessels and anastomoses; (b) abnormal spatially distributed populations of endothelial cells (ECs); (c) dysregulation of endothelial protective pathways such as prostacyclin signaling; and (d) an increased frequency of common vascular and metabolic comorbidities. Here, we propose that vascular and EC abnormalities are both causal and consequential in the pathobiology of IPF and that fuller evaluation of dysregulated pathways may lead to effective therapies and a cure for this devastating disease.
Collapse
|
7
|
Zhu J, Zhou D, Wang J, Yang Y, Chen D, He F, Li Y. A Causal Atlas on Comorbidities in Idiopathic Pulmonary Fibrosis: A Bidirectional Mendelian Randomization Study. Chest 2023; 164:429-440. [PMID: 36870387 DOI: 10.1016/j.chest.2023.02.038] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/21/2023] [Accepted: 02/24/2023] [Indexed: 03/06/2023] Open
Abstract
BACKGROUND Idiopathic pulmonary fibrosis (IPF) is a fatal lung disease with a high burden of both pulmonary and extrapulmonary comorbidities. RESEARCH QUESTION Do these comorbidities have causal relationships with IPF? STUDY DESIGN AND METHODS We searched PubMed to pinpoint possible IPF-related comorbid conditions. Bidirectional Mendelian randomization (MR) was performed using summary statistics from the largest genome-wide association studies for these diseases to date in a two-sample setting. Findings were verified using multiple MR approaches under different model assumptions, replication datasets for IPF, and secondary phenotypes. RESULTS A total of 22 comorbidities with genetic data available were included. Bidirectional MR analyses showed convincing evidence for two comorbidities and suggestive evidence for four comorbidities. Gastroesophageal reflux disease, VTE, and hypothyroidism were associated causally with an increased risk of IPF, whereas COPD was associated causally with a decreased risk of IPF. For the reverse direction, IPF showed causal associations with a higher risk of lung cancer, but a reduced risk of hypertension. Follow-up analyses of pulmonary function parameters and BP measures supported the causal effect of COPD on IPF and the causal effect of IPF on hypertension. INTERPRETATION The present study suggested the causal associations between IPF and certain comorbidities from a genetic perspective. Further research is needed to understand the mechanisms of these associations.
Collapse
Affiliation(s)
- Jiahao Zhu
- Department of Epidemiology and Health Statistics, School of Public Health, Hangzhou Medical College, Hangzhou, China
| | - Dan Zhou
- School of Public Health and the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN
| | - Jing Wang
- Department of Epidemiology and Health Statistics, School of Public Health, Hangzhou Medical College, Hangzhou, China
| | - Ye Yang
- Department of Epidemiology and Health Statistics, School of Public Health, Hangzhou Medical College, Hangzhou, China
| | - Dingwan Chen
- Research Center on Primary Health of Zhejiang Province, School of Public Health, Hangzhou Medical College, Hangzhou, China
| | - Fan He
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Yingjun Li
- Department of Epidemiology and Health Statistics, School of Public Health, Hangzhou Medical College, Hangzhou, China.
| |
Collapse
|
8
|
Zheng Z, Peng F, Zhou Y. Pulmonary fibrosis: A short- or long-term sequelae of severe COVID-19? CHINESE MEDICAL JOURNAL PULMONARY AND CRITICAL CARE MEDICINE 2023; 1:77-83. [PMID: 37388822 PMCID: PMC9988550 DOI: 10.1016/j.pccm.2022.12.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 10/21/2022] [Accepted: 12/04/2022] [Indexed: 07/01/2023]
Abstract
The pandemic of coronavirus disease 2019 (COVID‑19), caused by a novel severe acute respiratory syndrome (SARS) coronavirus 2 (SARS-CoV-2), has caused an enormous impact on the global healthcare. SARS-CoV-2 infection primarily targets the respiratory system. Although most individuals testing positive for SARS-CoV-2 present mild or no upper respiratory tract symptoms, patients with severe COVID-19 can rapidly progress to acute respiratory distress syndrome (ARDS). ARDS-related pulmonary fibrosis is a recognized sequelae of COVID-19. Whether post-COVID-19 lung fibrosis is resolvable, persistent, or even becomes progressive as seen in human idiopathic pulmonary fibrosis (IPF) is currently not known and remains a matter of debate. With the emergence of effective vaccines and treatments against COVID-19, it is now important to build our understanding of the long-term sequela of SARS-CoV-2 infection, to identify COVID-19 survivors who are at risk of developing chronic pulmonary fibrosis, and to develop effective anti-fibrotic therapies. The current review aims to summarize the pathogenesis of COVID-19 in the respiratory system and highlights ARDS-related lung fibrosis in severe COVID-19 and the potential mechanisms. It envisions the long-term fibrotic lung complication in COVID-19 survivors, in particular in the aged population. The early identification of patients at risk of developing chronic lung fibrosis and the development of anti-fibrotic therapies are discussed.
Collapse
Affiliation(s)
- Zhen Zheng
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Fei Peng
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Department of Respiratory Medicine, The Second Xiangya Hospital, Central-South University, Changsha, Hunan 410011, China
| | - Yong Zhou
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
9
|
Sun H, Liu M, Yang X, Xi L, Xu W, Deng M, Ren Y, Xie W, Dai H, Wang C. Incidence and risk factors of venous thrombotic events in patients with interstitial lung disease during hospitalization. Thromb J 2023; 21:17. [PMID: 36765371 PMCID: PMC9912624 DOI: 10.1186/s12959-023-00458-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 01/27/2023] [Indexed: 02/12/2023] Open
Abstract
BACKGROUND Studies on the incidence of venous thromboembolism (VTE) events in patients with interstitial lung disease (ILD) are limited and the results are inconsistent. The aim of this research was to investigate the incidence and risk factors of VTE in ILD during hospitalization. MATERIALS AND METHODS In this retrospective, cross-sectional, observational study, a total of 5009 patients diagnosed with ILD from January 2016 to March 2022 in our hospital were retrospectively included. In ILD patients, VTE including pulmonary thromboembolism (PTE) and deep vein thrombosis (DVT) were screened from the electronic medical record system. Diagnosis of PTE and DVT were performed by CT pulmonary angiography (CTPA), CTV or ultrasound. And then the incidence and risk factors of VTE in different types of ILD were assessed. RESULTS Among 5009 patients with ILD, VTE was detected in 129 (2.6%) patients, including 15(0.3%) patients with both PTE and DVT, 34 (0.7%) patients with PTE and 80 (1.6%) patients with DVT. 85.1% of patients with APE were in the intermediate-low risk group. The incidence of VTE in Anti-Neutrophil Cytoplasmic Antibodies -associated vasculitis related ILD (ANCA-AV-ILD), hypersensitivity pneumonitis and idiopathic pulmonary fibrosis (IPF) respectively was 7.9% and 3.6% and 3.5%. In patients with connective tissue disease-associated ILD (CTD-ILD), the incidence of VTE, DVT, PTE, combined PTE and DVT respectively was 3.0%, 2.3%, 0.4% and 0.3%. Among the various risk factors, different ILD categories, age ≥ 80 years (OR 4.178, 95% CI 2.097-8.321, P < 0.001), respiratory failure (OR 2.382, 95% CI 1.533-3.702, P < 0.001) and varicose veins (OR 3.718, 95% CI 1.066-12.964, P = 0.039) were independent risk factors of VTE. The incidence of VTE in patients with ILD increased with the length of time in hospital from 2.2% (< 7 days) to 6.4% (> 21 days). CONCLUSION The incidence of VTE during hospitalization in ILD patients was 2.6%, with a 1.6% incidence of DVT, higher than the 0.7% incidence of PTE. Advanced age, ILD categories, respiratory failure and varicose veins as independent risk factors for the development of VTE should be closely monitored.
Collapse
Affiliation(s)
- Haishuang Sun
- grid.430605.40000 0004 1758 4110Department of Respiratory Medicine, The First Hospital of Jilin University, Changchun, 130021 China ,National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, 100029 Beijing, China ,grid.506261.60000 0001 0706 7839Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730 China
| | - Min Liu
- Department of Radiology, China-Japan Friendship Hospital, Beijing, 100029, China.
| | - Xiaoyan Yang
- National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, 100029 Beijing, China
| | - Linfeng Xi
- National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, 100029 Beijing, China
| | - Wenqing Xu
- grid.415954.80000 0004 1771 3349Department of Radiology, China-Japan Friendship Hospital, Beijing, 100029 China
| | - Mei Deng
- grid.506261.60000 0001 0706 7839Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730 China ,grid.415954.80000 0004 1771 3349Department of Radiology, China-Japan Friendship Hospital, Beijing, 100029 China
| | - Yanhong Ren
- National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, 100029 Beijing, China
| | - Wanmu Xie
- grid.415954.80000 0004 1771 3349Department of Radiology, China-Japan Friendship Hospital, Beijing, 100029 China
| | - Huaping Dai
- National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, 100029, Beijing, China. .,Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| | - Chen Wang
- Department of Respiratory Medicine, The First Hospital of Jilin University, Changchun, 130021, China. .,National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, 100029, Beijing, China. .,Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| |
Collapse
|
10
|
Lee JH, Lee HH, Park HJ, Kim S, Kim YJ, Lee JS, Kim HC. Venous thromboembolism in patients with idiopathic pulmonary fibrosis, based on nationwide claim data. Ther Adv Respir Dis 2023; 17:17534666231155772. [PMID: 36846942 PMCID: PMC9972056 DOI: 10.1177/17534666231155772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 01/23/2023] [Indexed: 03/01/2023] Open
Abstract
BACKGROUND Idiopathic pulmonary fibrosis (IPF) is a known risk factor for venous thromboembolism (VTE). However, it is currently unknown which factors are associated with an increase of VTE in patients with IPF. OBJECTIVES We estimated the incidence of VTE in patients with IPF and identified clinical characteristics related to VTE in patients with IPF. DESIGN AND METHODS De-identified nationwide health claim data from 2011 to 2019 was collected from the Korean Health Insurance Review and Assessment database. Patients with IPF were selected if they had made at least one claim per year under the J84.1 [International Classification of Diseases and Related Health Problems, 10th Revision (ICD-10)] and V236 codes of rare intractable diseases. We defined the presence of VTE as at least one claim of pulmonary embolism and deep vein thrombosis ICD-10 codes. RESULTS The incidence rate per 1000 person-years of VTE was 7.08 (6.44-7.77). Peak incidence rates were noted in the 50-59 years old male and 70-79 years old female groups. Ischemic heart disease, ischemic stroke, and malignancy were associated with VTE in patients with IPF, with an adjusted hazard ratio (aHR) of 1.25 (1.01-1.55), 1.36 (1.04-1.79), and 1.53 (1.17-2.01). The risk for VTE was increased in patients diagnosed with malignancy after IPF diagnosis (aHR = 3.18, 2.47-4.11), especially lung cancer [hazard ratio (HR) = 3.78, 2.90-4.96]. Accompanied VTE was related to more utilization of medical resources. CONCLUSION Ischemic heart disease, ischemic stroke, and malignancy, especially lung cancer, were related to higher HR for VTE in IPF.
Collapse
Affiliation(s)
- Jang Ho Lee
- Department of Pulmonology and Critical Care
Medicine, Asan Medical Center, University of Ulsan College of Medicine,
Seoul, Republic of Korea
| | - Hoon Hee Lee
- Department of Internal Medicine, Yeosu Jeil
Hospital, Yeosu, Republic of Korea
| | - Hyung Jun Park
- Department of Pulmonology and Critical Care
Medicine, Asan Medical Center, University of Ulsan College of Medicine,
Seoul, Republic of Korea
| | - Seonok Kim
- Department of Clinical Epidemiology and
Biostatistics, Asan Medical Centre, University of Ulsan College of Medicine,
Seoul, Republic of Korea
| | - Ye-Jee Kim
- Department of Clinical Epidemiology and
Biostatistics, Asan Medical Centre, University of Ulsan College of Medicine,
Seoul, Republic of Korea
| | - Jae Seung Lee
- Department of Pulmonology and Critical Care
Medicine, Asan Medical Center, University of Ulsan College of Medicine,
Seoul, Republic of Korea
| | - Ho Cheol Kim
- Department of Pulmonology and Critical Care
Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88
Olympic-ro 43-gil, Songpa-gu, Seoul 05505, Republic of Korea
| |
Collapse
|
11
|
Shakil F, Snijder J, Salvatore MM. Why is UIP peripheral? Expert Rev Respir Med 2022; 16:907-915. [PMID: 36066423 DOI: 10.1080/17476348.2022.2119131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION The radiology pattern associated with IPF is called UIP. It is unique because unlike any other form of fibrosis it is peripheral in its distribution. We investigated the peripheral nature of UIP and why it was a key feature of IPF the deadliest of the ILDS. AREAS COVERED It is not enough to say that UIP is peripheral but instead as scientists we must ask ourselves why it is peripheral. This review dives into the published hypothesis that includes vascular insult, tensile forces, microaspiration, and inflammation and looks at the pros and cons for each argument, and ultimately comes to its own conclusion. PubMed searches using the below keywords were used to identify papers that described pathogenesis of IPF with regard to a particular theory. EXPERT OPINION In this paper, we will review four ideas that support why UIP is peripheral and propose the most likely explanation given what is currently known about the pathophysiology of IPF.
Collapse
Affiliation(s)
- Faariah Shakil
- Department of Radiology, Columbia University Irving Medical Center, New York, USA
| | - Juan Snijder
- Department of Radiology, Columbia University Irving Medical Center, New York, USA
| | - Mary M Salvatore
- Department of Radiology, Columbia University Irving Medical Center, New York, USA
| |
Collapse
|
12
|
Lai J, Feng S, Xu S, Liu X. Effects of oral anticoagulant therapy in patients with pulmonary diseases. Front Cardiovasc Med 2022; 9:987652. [PMID: 36035947 PMCID: PMC9399807 DOI: 10.3389/fcvm.2022.987652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 07/26/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundTo evaluate the effect of oral anticoagulants (OACs) therapy, including vitamin K antagonist (VKA) and direct oral anticoagulants (DOAC) in patients with pulmonary diseases.MethodsLiterature from PubMed, MEDLINE, and Cochrane Library were screened until June 2022. Studies assessing OACs for pulmonary hypertension (PH), pulmonary embolism (PE), pulmonary fibrosis (PF), or chronic obstructive pulmonary disease (COPD) were evaluated for inclusion.ResultsOur study indicated that in patients with PH, PE, and COPD, OACs could significantly reduce the mortality risk, and the effects of VKA and DOACs without statistical difference in reducing the risk of recurrent embolism events. In patients with sclerosis-associated pulmonary arterial hypertension (SSc-PAH) or idiopathic pulmonary fibrosis (IPF), vitamin K antagonist (warfarin) significantly increased the mortality risk, while DOACs were not. As for the safety outcome of OACs, existing studies indicate that compared with patients treated with warfarin, the users of DOAC have a lower risk of major bleeding, while there is no statistical significance between them in non-major bleeding events. In current guidelines, the anticoagulation regimen for patients with pulmonary disease has not been defined. The results of our study confirm that DOACs (apixaban, rivaroxaban, dabigatran, and edoxaban) are superior to VKAs in the efficacy and safety outcomes of patients with pulmonary disease.ConclusionsOral anticoagulant therapy brings benefits to patients with PH, PE, or COPD, while the anticoagulation regimen for patients with SSc-PAH or IPF requires serious consideration. Compared with VKA, DOAC is a non-inferior option for anticoagulation in pulmonary disease treatment. Further studies are still needed to provide more reliable evidence about the safety outcome of pulmonary disease anticoagulation.
Collapse
Affiliation(s)
- Jiying Lai
- Department of Critical Care Medicine, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Shenghui Feng
- Queen Mary School, Medical Department, Nanchang University, Nanchang, China
| | - Shuo Xu
- Department of Respiratory and Critical Care Medicine, The Ganzhou People's Hospital, The Affiliated Ganzhou Hospital of Nanchang University, Ganzhou, China
- Shuo Xu
| | - Xin Liu
- Department of Critical Care Medicine, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- *Correspondence: Xin Liu
| |
Collapse
|
13
|
Alsilmi R. The Prevalence of Pulmonary Embolism in Patients With Interstitial Lung Disease: A Cross-Sectional Retrospective Study. Cureus 2022; 14:e23063. [PMID: 35308192 PMCID: PMC8920788 DOI: 10.7759/cureus.23063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/11/2022] [Indexed: 12/03/2022] Open
Abstract
Objective: Interstitial lung disease (ILD) can be complicated by comorbidities, particularly pulmonary embolism (PE). We aimed to assess the prevalence of PE in ILD patients. Methods: Our study is a cross-sectional retrospective study conducted on ILD cases diagnosed between January 1, 2010, and June 30, 2021. Out of the total ILD cases (n = 153), we enrolled for analysis only those who underwent a computed tomography pulmonary angiography (CTPA) (n = 48). We recorded the number of patients who had a PE event on CTPA, gender, age at PE and ILD diagnoses, a chronology of PE with ILD diagnosis, PE characteristics, PE therapy, type of ILD, radiographic progression of ILD, presence of pulmonary hypertension, and mortality. Results: Seven patients out of 48, had PE (14.6%). The mean age at the time of PE diagnosis was 70 ± 9.73 years. No statistical difference existed between the PE and non-PE groups regarding gender predominance or the age at ILD diagnosis. All of the identified PE events (n = 7) were segmental (100%), one was saddle PE (14.3%) and one was recurrent (14.3%). No PE events were diagnosed prior to ILD diagnosis, three patients (42.9%) had a simultaneous diagnosis of PE and ILD, and four patients (57.1%) were diagnosed with a PE after ILD diagnosis by a mean time of eight months. No difference in ILD radiographic progression, pulmonary hypertension, or mortality between the two groups was found. Conclusion: PE is not uncommon in ILD and needs to be ruled out, especially in patients with worsening respiratory status.
Collapse
|
14
|
Charokopos A, Moua T, Ryu JH, Smischney NJ. Acute exacerbation of interstitial lung disease in the intensive care unit. World J Crit Care Med 2022; 11:22-32. [PMID: 35433309 PMCID: PMC8788209 DOI: 10.5492/wjccm.v11.i1.22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 08/04/2021] [Accepted: 11/15/2021] [Indexed: 02/06/2023] Open
Abstract
Acute exacerbations of interstitial lung disease (AE-ILD) represent an acute, frequent and often highly morbid event in the disease course of ILD patients. Admission in the intensive care unit (ICU) is very common and the need for mechanical ventilation arises early. While non-invasive ventilation has shown promise in staving off intubation in selected patients, it is unclear whether mechanical ventilation can alter the exacerbation course unless it is a bridge to lung transplantation. Risk stratification using clinical and radiographic findings, and early palliative care involvement, are important in ICU care. In this review, we discuss many of the pathophysiological aspects of AE-ILD and raise the hypothesis that ventilation strategies used in acute respiratory distress syndrome might be implemented in AE-ILD. We present possible decision-making and management algorithms that can be used by the intensivist when caring for these patients.
Collapse
Affiliation(s)
- Antonios Charokopos
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Mayo Clinic, Rochester, MN 55905, United States
| | - Teng Moua
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Mayo Clinic, Rochester, MN 55905, United States
| | - Jay H Ryu
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Mayo Clinic, Rochester, MN 55905, United States
| | - Nathan J Smischney
- Department of Anesthesiology and Perioperative Medicine, Division of Critical Care Medicine, Mayo Clinic, Rochester, MN 55905, United States
| |
Collapse
|
15
|
Scendoni R, Gattari D, Cingolani M. COVID-19 Pulmonary Pathology, Ventilator-Induced Lung Injury (VILI), or Sepsis-Induced Acute Respiratory Distress Syndrome (ARDS)? Healthcare Considerations Arising From an Autopsy Case and Miny-Review. CLINICAL PATHOLOGY (THOUSAND OAKS, VENTURA COUNTY, CALIF.) 2022; 15:2632010X221083223. [PMID: 35284825 PMCID: PMC8905213 DOI: 10.1177/2632010x221083223] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 01/30/2022] [Indexed: 01/20/2023]
Abstract
Acute respiratory distress syndrome (ARDS) caused by coronavirus disease (COVID-19) is a serious complication that requires early recognition. Autopsy reports or biopsies of the lungs in patients with COVID-19 revealed diffuse alveolar damage (DAD) at different stages; the fibrotic phase is usually associated with long-standing severe disease. Care management of hospitalized patients is not easy, given that the risk of incurring a ventilator-induced lung injury (VILI) is high. Additionally, if the patient develops nosocomial infections, sepsis-induced ARDS should be considered in the study of the pathophysiological processes. We present an autopsy case of a hospitalized patient whose death was linked to COVID-19 infection, with the histopathological pattern of advanced pulmonary fibrosis. After prolonged use of non-invasive and invasive ventilation, the patient developed polymicrobial superinfection oh the lungs. After analyzing the individual’s clinical history and pulmonary anatomopathological findings, we consider healthcare issues that should lead to an improvement in diagnosis and to more adequate standards of care management among health professionals.
Collapse
Affiliation(s)
- Roberto Scendoni
- Department of Law, Institute of Legal Medicine, University of Macerata, Macerata, Italy
| | - Diego Gattari
- Anesthesia and Resuscitation Unit, ASUR Marche AV3, Macerata, Italy
| | - Mariano Cingolani
- Department of Law, Institute of Legal Medicine, University of Macerata, Macerata, Italy
| |
Collapse
|
16
|
Sobiecka M, Szturmowicz M, Lewandowska K, Kowalik A, Łyżwa E, Zimna K, Barańska I, Jakubowska L, Kuś J, Langfort R, Tomkowski W. Chronic hypersensitivity pneumonitis is associated with an increased risk of venous thromboembolism: a retrospective cohort study. BMC Pulm Med 2021; 21:416. [PMID: 34920701 PMCID: PMC8684138 DOI: 10.1186/s12890-021-01794-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 12/14/2021] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Idiopathic pulmonary fibrosis (IPF) and chronic hypersensitivity pneumonitis share commonalities in pathogenesis shifting haemostasis balance towards the procoagulant and antifibrinolytic activity. Several studies have suggested an increased risk of venous thromboembolism in IPF. The association between venous thromboembolism and chronic hypersensitivity pneumonitis has not been studied yet.
Methods
A retrospective cohort study of IPF and chronic hypersensitivity pneumonitis patients diagnosed in single tertiary referral center between 2005 and 2018 was conducted. The incidence of symptomatic venous thromboembolism was evaluated. Risk factors for venous thromboembolism and survival among those with and without venous thromboembolism were assessed.
Results
A total of 411 (259 IPF and 152 chronic hypersensitivity) patients were included (mean age 66.7 ± 8.4 vs 51.0 ± 13.3 years, respectively). There were 12 (4.6%) incident cases of venous thromboembolism in IPF and 5 (3.3%) in chronic hypersensitivity pneumonitis cohort. The relative risk (RR) of venous thromboembolism in chronic hypersensitivity pneumonitis was not significantly different to that found in patients with IPF (7.1 vs 11.8/1000 person-years, RR 1.661 95% CI 0.545–6.019, respectively).
The treatment with systemic steroids (OR 5.38; 95% CI 1.65–18.8, p = 0.006) and GAP stage 3 (OR 7.85; 95% CI 1.49–34.9; p = 0.037) were significant risk factors for venous thromboembolism in IPF. Arterial hypertension and pulmonary hypertension significantly increased risk of venous thromboembolism in chronic hypersensitivity pneumonitis. There were no significant differences in survival between patients with and without venous thromboembolism.
Conclusions
The patients with chronic hypersensitivity pneumonitis have a marked increase in the risk of venous thromboembolism, similar to the patients with IPF. Venous thromboembolism does not affect the survival of patients with IPF and chronic hypersensitivity pneumonitis.
Collapse
|
17
|
Warfarin Use Is Associated with Increased Mortality at One Year in Patients with Idiopathic Pulmonary Fibrosis. Pulm Med 2021; 2021:3432362. [PMID: 34868680 PMCID: PMC8639231 DOI: 10.1155/2021/3432362] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 11/09/2021] [Accepted: 11/09/2021] [Indexed: 11/21/2022] Open
Abstract
Objectives We studied the safety and efficacy of warfarin compared to direct acting oral anticoagulant use in patients with IPF. Methods We conducted a retrospective cohort study of all patients with IPF who were prescribed warfarin or direct acting oral anticoagulants (DOACs) for cardiac or thromboembolic indications and followed at our institute for their care. Univariate tests and multivariable logistic regression analyses were used for assessing association of variables with outcomes. Results A total of 73 patients were included in the study with 28 and 45 patients in the warfarin and DOAC groups, respectively. Univariable analysis revealed a significant difference in mortality in one year between warfarin and DOAC groups (7/28 vs. 3/45, p value 0.027). Significantly more patients in the warfarin group suffered an exacerbation that required hospitalization within one year (9/28 vs. 5/45, p value 0.026). Multivariate logistic regression analysis showed that anticoagulation with warfarin was independently associated with mortality at one-year follow-up (OR: 77.4, 95% CI: 5.94–409.3, p value: 0.007). Conclusion In our study of patients with IPF requiring anticoagulants, we noted statistically significant higher mortality with warfarin anticoagulation when compared to DOAC use. Further larger prospective studies are needed to confirm these findings.
Collapse
|
18
|
Zhang WT, Wang XJ, Xue CM, Ji XY, Pan L, Weng WL, Li QY, Hua GD, Zhu BC. The Effect of Cardiovascular Medications on Disease-Related Outcomes in Idiopathic Pulmonary Fibrosis: A Systematic Review and Meta-Analysis. Front Pharmacol 2021; 12:771804. [PMID: 34858190 PMCID: PMC8632524 DOI: 10.3389/fphar.2021.771804] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 10/11/2021] [Indexed: 12/20/2022] Open
Abstract
Background: Multiple studies have revealed that idiopathic pulmonary fibrosis (IPF) patients are more at risk for cardiovascular diseases and that many IPF patients receive cardiovascular medications like statins, angiotensin-converting enzyme inhibitor (ACEI), angiotensin receptor blocker (ARB), and anticoagulants. Existing studies have reported divergent findings on the link between cardiovascular medications and fibrotic disease processes. The aim of this study is to synthesize the evidence on the efficacy of cardiovascular medications in IPF. Methods: We searched studies reporting the effect of cardiovascular medications on IPF in the PubMed, Embase, Web of Science, Cochrane Library, and two Chinese databases (China National Knowledge Infrastructure database and China Wanfang database). We calculated survival data, forced vital capacity (FVC) decline, and IPF-related mortality to assess the efficacy of cardiovascular medications in IPF. We also estimated statistical heterogeneity by using I2 and Cochran Q tests, and publication bias was evaluated by risk of bias tools ROBINS-I. Results: A total of 12 studies were included in the analysis. The included studies had moderate-to-serious risk of bias. Statin use was associated with a reduction in mortality (hazard ratio (HR), 0.89; 95% CI 0.83-0.97). Meta-analysis did not demonstrate any significant relationship between statin use and the FVC decline (HR, 0.86; 95% CI 0.73-1.02), ACEI/ARB use, and survival data (HR, 0.92; 95% CI 0.73-1.15) as well as anticoagulant use and survival data (HR, 1.16; 95% CI 0.62-2.19). Conclusion: Our study suggested that there is a consistent relationship between statin therapy and survival data in IPF population. However, there is currently insufficient evidence to conclude the effect of ACEI, ARB, and anticoagulant therapy on IPF population especially to the disease-related outcomes in IPF.
Collapse
Affiliation(s)
- Wan-Tong Zhang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xu-Jie Wang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Chun-Miao Xue
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Xin-Yu Ji
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Lin Pan
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Wei-Liang Weng
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China.,National Clinical Research Center for Chinese Medicine Cardiology, Beijing, China
| | - Qiu-Yan Li
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China.,National Clinical Research Center for Chinese Medicine Cardiology, Beijing, China
| | - Guo-Dong Hua
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Bao-Chen Zhu
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
19
|
Guo T, Long Y, Shen Q, Guo W, Duan W, Ouyang X, Peng H. Clinical profiles of SS-ILD compared with SS-NILD in a Chinese population: a retrospective analysis of 735 patients. Ann Med 2021; 53:1340-1348. [PMID: 34402690 PMCID: PMC8382016 DOI: 10.1080/07853890.2021.1965205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 08/02/2021] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Interstitial lung disease (ILD) is a serious complication in patients with Sjögren's syndrome (SS). Most studies on primary SS (pSS) with ILD are limited in sample size, and studies on secondary SS (sSS) with ILD are rare. This study aimed to elucidate both primary and secondary SS-associated ILD (SS-ILD) based on a large cohort. METHODS The medical records of hospitalized patients diagnosed with SS at the Second Xiangya Hospital of Central South University from January 2010 to May 2020 were retrospectively reviewed. Clinical manifestations, medical history, biological results and imaging data were collected. RESULTS Of the 735 SS patients enrolled in this study, 563 (76.6%) were diagnosed with pSS, 172 (23.4%) were diagnosed with sSS. Additionally, 316 (43.0%) were diagnosed with SS-ILD. No significant difference was found between the pSS and sSS groups concerning the incidence of ILD (p = .718). Factors associated with SS-ILD were older age (p < .001), male sex (p = .032), female sex at menopause (p = .002), Raynaud's phenomenon (p < .001), low levels of albumin (p = .010) and respiratory symptoms (p < .001). The SS-ILD group showed higher counts of platelets (p < .001). The three most frequent high-resolution CT (HRCT) findings of SS-ILD were irregular linear opacities (42.7%), grid shadows (30.7%) and pleural thickening (28.5%). NSIP (56.3%) was the most frequent HRCT pattern. Compared with pSS patients with ILD (pSS-ILD) patients, sSS patients with ILD (sSS-ILD) patients had a higher incidence of proteinuria (p < .001) and hypercreatinaemia (p = .013), a higher level of erythrocyte sedimentation rate (ESR) (p = .003), low levels of complement 3 (C3) (p = .013), lymphocytes (p = .009) and leukocytes (p = .024), and worse DLCO (%Pred) (p = .035). CONCLUSIONS ILD is a common pulmonary involvement in both pSS patients and sSS patients. Older age, male sex, female sex at menopause, Raynaud's phenomenon, low albumin levels and respiratory symptoms are risk factors associated with SS-ILD. NSIP is important HRCT feature of SS-ILD. sSS-ILD patients showed worse laboratory results and pulmonary function.KEY MESSAGEOlder age, male sex, female sex at menopause, Raynaud's phenomenon, low albumin levels and respiratory symptoms are risk factors associated with SS-ILD.SS-ILD patients show higher counts of platelets and less purpura.sSS-ILD patients have worse laboratory results and pulmonary function.
Collapse
Affiliation(s)
- Ting Guo
- Department of Respiratory and Critical Care Medicine, The Second Xiangya Hospital of Central-South University, Changsha, China
- Research Unit of Respiratory Disease, Central-South University, Changsha, China
- The Respiratory Disease Diagnosis and Treatment Center of Hunan Province, Changsha, China
| | - Yaomei Long
- Department of Respiratory and Critical Care Medicine, The Second Xiangya Hospital of Central-South University, Changsha, China
- Research Unit of Respiratory Disease, Central-South University, Changsha, China
- The Respiratory Disease Diagnosis and Treatment Center of Hunan Province, Changsha, China
| | - Qinxue Shen
- Department of Respiratory and Critical Care Medicine, The Second Xiangya Hospital of Central-South University, Changsha, China
- Research Unit of Respiratory Disease, Central-South University, Changsha, China
- The Respiratory Disease Diagnosis and Treatment Center of Hunan Province, Changsha, China
| | - Wei Guo
- Department of Respiratory and Critical Care Medicine, The Second Xiangya Hospital of Central-South University, Changsha, China
- Research Unit of Respiratory Disease, Central-South University, Changsha, China
- The Respiratory Disease Diagnosis and Treatment Center of Hunan Province, Changsha, China
| | - Wang Duan
- Department of Respiratory and Critical Care Medicine, The Second Xiangya Hospital of Central-South University, Changsha, China
- Research Unit of Respiratory Disease, Central-South University, Changsha, China
- The Respiratory Disease Diagnosis and Treatment Center of Hunan Province, Changsha, China
| | - Xiaoli Ouyang
- Department of Respiratory and Critical Care Medicine, The Second Xiangya Hospital of Central-South University, Changsha, China
- Research Unit of Respiratory Disease, Central-South University, Changsha, China
- The Respiratory Disease Diagnosis and Treatment Center of Hunan Province, Changsha, China
| | - Hong Peng
- Department of Respiratory and Critical Care Medicine, The Second Xiangya Hospital of Central-South University, Changsha, China
- Research Unit of Respiratory Disease, Central-South University, Changsha, China
- The Respiratory Disease Diagnosis and Treatment Center of Hunan Province, Changsha, China
| |
Collapse
|
20
|
Risk of recurrent venous thromboembolism and bleeding in patients with interstitial lung disease: a cohort study. J Thromb Thrombolysis 2021; 53:67-73. [PMID: 34232453 DOI: 10.1007/s11239-021-02518-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/24/2021] [Indexed: 10/20/2022]
Abstract
Interstitial lung disease (ILD) encompasses various parenchymal lung disorders, which has the potential to increase the risk of venous thromboembolism (VTE). To evaluate, in patients with ILD and VTE, the risk of recurrent VTE during follow-up after stopping anticoagulation. This was a cohort of patients with a first VTE recruited between 1997 and 2015. The primary outcome was adjudicated fatal or nonfatal recurrent VTE after stopping anticoagulation. Main secondary outcomes were major or clinically relevant non-major bleeding under anticoagulation. Among 4314 patients with VTE, 50 had ILD diagnosed before VTE. Of these, anticoagulation was stopped in 30 patients after a median duration of 180 days and continued indefinitely in 20 patients. During a median follow-up of 27.8 months after anticoagulation discontinuation, recurrent VTE occurred in 15 on 30 patients (annual incidence of 19.2 events per 100-person-years [95%CI 12.0-29.3], case-fatality rate of 6.7% [95%CI 1.21-29.8]). The risk of recurrence was threefold higher when VTE was unprovoked and case-fatality rate of recurrence was increased by 3 when VTE index was PE. During the anticoagulant period, (median duration of 8.6 months), 6 patients had a major or clinically relevant bleeding (annual incidence of 7.3 events per 100-person-years [95%CI 3.4-15.1], case-fatality rate of 16.7% [95%CI 3.0-56.4]). In patients with ILD, the risk of recurrent VTE after stopping anticoagulation and the risk of bleeding under anticoagulation were very high. Our results suggest that anticoagulation should not be prolonged beyond 3-6 months of anticoagulation in most of cases.
Collapse
|
21
|
Post-COVID-19 Pulmonary Fibrosis: Novel Sequelae of the Current Pandemic. J Clin Med 2021; 10:jcm10112452. [PMID: 34205928 PMCID: PMC8199255 DOI: 10.3390/jcm10112452] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/21/2021] [Accepted: 05/27/2021] [Indexed: 12/15/2022] Open
Abstract
Since the initial identification of the novel coronavirus SARS-CoV-2 in December 2019, the COVID-19 pandemic has become a leading cause of morbidity and mortality worldwide. As effective vaccines and treatments begin to emerge, it will become increasingly important to identify and proactively manage the long-term respiratory complications of severe disease. The patterns of imaging abnormalities coupled with data from prior coronavirus outbreaks suggest that patients with severe COVID-19 pneumonia are likely at an increased risk of progression to interstitial lung disease (ILD) and chronic pulmonary vascular disease. In this paper, we briefly review the definition, classification, and underlying pathophysiology of interstitial lung disease (ILD). We then review the current literature on the proposed mechanisms of lung injury in severe COVID-19 infection, and outline potential viral- and immune-mediated processes implicated in the development of post-COVID-19 pulmonary fibrosis (PCPF). Finally, we address patient-specific and iatrogenic risk factors that could lead to PCPF and discuss strategies for reducing risk of pulmonary complications/sequelae.
Collapse
|
22
|
Abuserewa ST, Duff R, Becker G. Treatment of Idiopathic Pulmonary Fibrosis. Cureus 2021; 13:e15360. [PMID: 34239792 PMCID: PMC8245298 DOI: 10.7759/cureus.15360] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/31/2021] [Indexed: 12/03/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive, fibrosing interstitial pneumonia of unknown cause, occurring in adults and limited to the lungs. In the past, treatment was aimed at minimizing inflammation and slowing the progression of inflammation to fibrosis. However, the underlying lesion in IPF may be more fibrotic than inflammatory, explaining why few patients respond to anti-inflammatory therapies and the prognosis remains poor. In this review of literature, we will be focusing on main lines of treatment including current medications, supportive care, lung transplantation evaluation, and potential future strategies of treatment.
Collapse
Affiliation(s)
- Sherif T Abuserewa
- Internal Medicine, Grand Strand Regional Medical Center, Myrtle Beach, USA
| | - Richard Duff
- Department of Pulmonary and Critical Care Medicine, Grand Strand Medical Center, Myrtle Beach, USA
| | - Gregory Becker
- Department of Pulmonary and Critical Care Medicine, Grand Strand Medical Center, Myrtle Beach, USA
| |
Collapse
|
23
|
Venous Thromboembolic Disease in Chronic Inflammatory Lung Diseases: Knowns and Unknowns. J Clin Med 2021; 10:jcm10102061. [PMID: 34064992 PMCID: PMC8151562 DOI: 10.3390/jcm10102061] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 05/05/2021] [Accepted: 05/07/2021] [Indexed: 12/13/2022] Open
Abstract
Persistent inflammation within the respiratory tract underlies the pathogenesis of numerous chronic pulmonary diseases. There is evidence supporting that chronic lung diseases are associated with a higher risk of venous thromboembolism (VTE). However, the relationship between lung diseases and/or lung function with VTE is unclear. Understanding the role of chronic lung inflammation as a predisposing factor for VTE may help determine the optimal management and aid in the development of future preventative strategies. We aimed to provide an overview of the relationship between the most common chronic inflammatory lung diseases and VTE. Asthma, chronic obstructive pulmonary disease, interstitial lung diseases, or tuberculosis increase the VTE risk, especially pulmonary embolism (PE), compared to the general population. However, high suspicion is needed to diagnose a thrombotic event early as the clinical presentation inevitably overlaps with respiratory disorders. PE risk increases with disease severity and exacerbations. Hence, hospitalized patients should be considered for thromboprophylaxis administration. Conversely, all VTE patients should be asked for lung comorbidities before determining anticoagulant therapy duration, as those patients are at increased risk of recurrent PE episodes rather than DVT. Further research is needed to understand the underlying pathophysiology of in-situ thrombosis in those patients.
Collapse
|
24
|
King CS, Freiheit E, Brown AW, Shlobin OA, Aryal S, Ahmad K, Khangoora V, Flaherty KR, Venuto D, Nathan SD. Association Between Anticoagulation and Survival in Interstitial Lung Disease: An Analysis of the Pulmonary Fibrosis Foundation Patient Registry. Chest 2020; 159:1507-1516. [PMID: 33075376 DOI: 10.1016/j.chest.2020.10.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 09/22/2020] [Accepted: 10/11/2020] [Indexed: 10/23/2022] Open
Abstract
BACKGROUND Aberrations in the coagulation system have been implicated in the pathogenesis of interstitial lung disease (ILD). Anticoagulants have been proposed as a potential therapy in ILD; however, a randomized controlled trial examining warfarin as a treatment for IPF was terminated early due to increased death rates. This has led some to speculate that warfarin specifically may be harmful in ILD, and use of direct oral anticoagulants (DOACs) could result in superior outcomes. RESEARCH QUESTION The goal of this study was to delineate the relationship between anticoagulation and outcomes in patients with ILD through an analysis of the Pulmonary Fibrosis Foundation Patient Registry. STUDY DESIGN AND METHODS An analysis of all patients in the Pulmonary Fibrosis Foundation Patient Registry was performed. Patients were stratified into three groups: no anticoagulation, DOAC use, or warfarin use. Survival was analyzed by using both Kaplan-Meier curves and Cox proportional hazards models. RESULTS Of 1,911 patients included in the analysis, 174 (9.1%) were given anticoagulants; 93 (4.9%) received DOACs, and 81 (4.2%) received warfarin. There was a twofold increased risk of death or transplant for patients receiving DOACS; for warfarin, the risk was over two and half times greater. DOACs were not associated with an increased risk of mortality following adjustment for confounding variables. However, even after adjustment, patients given the anticoagulant warfarin remained at increased risk of mortality. In patients with IPF, warfarin was associated with reduced transplant-free survival, but DOACs were not. There was no statistically significant difference in survival between those receiving warfarin and those receiving a DOAC. INTERPRETATION The need for anticoagulation is associated with an increased risk for death or transplant in patients with ILD, in both the IPF and non-IPF population. Further research is required to determine if warfarin and DOACs present varying safety profiles in patients with ILD.
Collapse
Affiliation(s)
- Christopher S King
- Advanced Lung Disease and Transplant Clinic, Inova Fairfax Hospital, Falls Church, VA.
| | - Elizabeth Freiheit
- Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, MI
| | - A Whitney Brown
- Advanced Lung Disease and Transplant Clinic, Inova Fairfax Hospital, Falls Church, VA
| | - Oksana A Shlobin
- Advanced Lung Disease and Transplant Clinic, Inova Fairfax Hospital, Falls Church, VA
| | - Shambhu Aryal
- Advanced Lung Disease and Transplant Clinic, Inova Fairfax Hospital, Falls Church, VA
| | - Kareem Ahmad
- Advanced Lung Disease and Transplant Clinic, Inova Fairfax Hospital, Falls Church, VA
| | - Vikramjit Khangoora
- Advanced Lung Disease and Transplant Clinic, Inova Fairfax Hospital, Falls Church, VA
| | - Kevin R Flaherty
- Division of Pulmonary & Critical Care Medicine, University of Michigan, Ann Arbor, MI
| | - Drew Venuto
- Advanced Lung Disease and Transplant Clinic, Inova Fairfax Hospital, Falls Church, VA
| | - Steven D Nathan
- Advanced Lung Disease and Transplant Clinic, Inova Fairfax Hospital, Falls Church, VA
| |
Collapse
|
25
|
Systemic thromboemboli in patients with Covid-19 may result from paradoxical embolization. Thromb Res 2020; 196:206-208. [PMID: 32906012 PMCID: PMC7462541 DOI: 10.1016/j.thromres.2020.08.045] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 08/07/2020] [Accepted: 08/31/2020] [Indexed: 12/31/2022]
Abstract
There is increasing evidence that Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection causes an unusual pneumonia and a pro-coagulant state that significantly increases the risk of arterial and venous thromboembolism. We hypothesize that, in select patients, some complications of COVID-19 may be due to right-to-left (RTL) shunt. Shunt may be intra-pulmonary, or extra-pulmonary, and can cause paradoxical embolization, hypoxia and platypnoea orthodeoxia. Saline microbubble contrast echocardiography is a minimally invasive, inexpensive, bedside test that can detect, quantify, and define the anatomical substrate of intra-pulmonary and intra-cardiac shunts. The prevalence of patent foramen ovale (PFO) in the general population is high (20–30%) but is even higher in patients who have a stroke (50%). Thus, the striking absence of data on patients with PFO who develop COVID-19 suggests that this is being under-diagnosed. This may be because physicians and sonographers currently feel that screening for shunt is unnecessary. This could be an unintended consequence of guidance from several specialist societies to defer procedures to close PFO until after the pandemic. This may be counterproductive. Patients with shunt may be at particularly high risk of complications from COVID-19 and interventions to minimise RTL shunt could prevent paradoxical embolization and improve hypoxia in select high risk patients with COVID-19. There is significant variation in the neurological sequelae of Coronavirus 2019 (COVID-19). Patent foramen ovale (PFO) is present in 25-30% of the general population. Inter-atrial defects may account for some of the heterogeneity of COVID-19 Echocardiography with microbubble contrast should be used to screen for shunt in patients with COVID-19 Closure of PFO may prevent paradoxical embolism and improve hypoxia in select high risk patients with COVID-19
Collapse
|
26
|
New Insights into the Implication of Mitochondrial Dysfunction in Tissue, Peripheral Blood Mononuclear Cells, and Platelets during Lung Diseases. J Clin Med 2020; 9:jcm9051253. [PMID: 32357474 PMCID: PMC7287602 DOI: 10.3390/jcm9051253] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 04/16/2020] [Accepted: 04/20/2020] [Indexed: 12/13/2022] Open
Abstract
Lung diseases such as chronic obstructive pulmonary disease, asthma, pulmonary arterial hypertension, or idiopathic pulmonary fibrosis are major causes of morbidity and mortality. Complex, their physiopathology is multifactorial and includes lung mitochondrial dysfunction and enhanced reactive oxygen species (ROS) release, which deserves increased attention. Further, and importantly, circulating blood cells (peripheral blood mononuclear cells-(PBMCs) and platelets) likely participate in these systemic diseases. This review presents the data published so far and shows that circulating blood cells mitochondrial oxidative capacity are likely to be reduced in chronic obstructive pulmonary disease (COPD), but enhanced in asthma and pulmonary arterial hypertension in a context of increased oxidative stress. Besides such PBMCs or platelets bioenergetics modifications, mitochondrial DNA (mtDNA) changes have also been observed in patients. These new insights open exciting challenges to determine their role as biomarkers or potential guide to a new therapeutic approach in lung diseases.
Collapse
|
27
|
Hoyer N, Thomsen LH, Wille MMW, Wilcke T, Dirksen A, Pedersen JH, Saghir Z, Ashraf H, Shaker SB. Increased respiratory morbidity in individuals with interstitial lung abnormalities. BMC Pulm Med 2020; 20:67. [PMID: 32188453 PMCID: PMC7081690 DOI: 10.1186/s12890-020-1107-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Accepted: 03/03/2020] [Indexed: 01/26/2023] Open
Abstract
Background Interstitial lung abnormalities (ILA) are common in participants of lung cancer screening trials and broad population-based cohorts. They are associated with increased mortality, but less is known about disease specific morbidity and healthcare utilisation in individuals with ILA. Methods We included all participants from the screening arm of the Danish Lung Cancer Screening Trial with available baseline CT scan data (n = 1990) in this cohort study. The baseline scan was scored for the presence of ILA and patients were followed for up to 12 years. Data about all hospital admissions, primary healthcare visits and medicine prescriptions were collected from the Danish National Health Registries and used to determine the participants’ disease specific morbidity and healthcare utilisation using Cox proportional hazards models. Results The 332 (16.7%) participants with ILA were more likely to be diagnosed with one of several respiratory diseases, including interstitial lung disease (HR: 4.9, 95% CI: 1.8–13.3, p = 0.008), COPD (HR: 1.7, 95% CI: 1.2–2.3, p = 0.01), pneumonia (HR: 2.0, 95% CI: 1.4–2.7, p < 0.001), lung cancer (HR: 2.7, 95% CI: 1.8–4.0, p < 0.001) and respiratory failure (HR: 1.8, 95% CI: 1.1–3.0, p = 0.03) compared with participants without ILA. These findings were confirmed by increased hospital admission rates with these diagnoses and more frequent prescriptions for inhalation medicine and antibiotics in participants with ILA. Conclusions Individuals with ILA are more likely to receive a diagnosis and treatment for several respiratory diseases, including interstitial lung disease, COPD, pneumonia, lung cancer and respiratory failure during long-term follow-up.
Collapse
Affiliation(s)
- Nils Hoyer
- Department of Respiratory Medicine, Herlev and Gentofte Hospital, Kildegårdsvej 28, 2900 Hellerup, Copenhagen, Denmark.
| | - Laura H Thomsen
- Department of Respiratory Medicine, Amager and Hvidovre Hospital, Copenhagen, Denmark
| | | | - Torgny Wilcke
- Department of Respiratory Medicine, Herlev and Gentofte Hospital, Kildegårdsvej 28, 2900 Hellerup, Copenhagen, Denmark
| | - Asger Dirksen
- Department of Respiratory Medicine, Herlev and Gentofte Hospital, Kildegårdsvej 28, 2900 Hellerup, Copenhagen, Denmark
| | - Jesper H Pedersen
- Department of Cardiothoracic Surgery RT, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Zaigham Saghir
- Department of Respiratory Medicine, Herlev and Gentofte Hospital, Kildegårdsvej 28, 2900 Hellerup, Copenhagen, Denmark
| | - Haseem Ashraf
- Department of Radiology, Akershus University Hospital, Loerenskog, Norway.,Division of Medicine and Laboratory Sciences, University of Oslo, Oslo, Norway
| | - Saher B Shaker
- Department of Respiratory Medicine, Herlev and Gentofte Hospital, Kildegårdsvej 28, 2900 Hellerup, Copenhagen, Denmark
| |
Collapse
|
28
|
Ricci F, Pugliese L, Cavallo AU, Forcina M, De Stasio V, Presicce M, Di Tosto F, Di Donna C, Spiritigliozzi L, Rogliani P, Floris R, Chiocchi M. Highlights of high-resolution computed tomography imaging in evaluation of complications and co-morbidities in idiopathic pulmonary fibrosis. Acta Radiol 2020; 61:204-218. [PMID: 31237771 DOI: 10.1177/0284185119857435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) represents a condition included in the heterogeneous group of interstitial lung diseases without known causes. The recent ATS/ERS/JRS/ALAT guidelines and the white paper published by the Fleischner Society have well-defined diagnosis and management of idiopathic pulmonary fibrosis. Idiopathic pulmonary fibrosis management is complex because it is also influenced by several co-morbidities and complications. The new frontier in idiopathic pulmonary fibrosis is represented by the effort to understand the complex mechanism of the pathogenesis and progression of disease in order to predict several consequences and co-morbidities. In our review, we tried to distinguish co-morbidities from complications of idiopathic pulmonary fibrosis. In each complication, we have reviewed the existing literature and we have emphasized the complex pathobiological pathway which links the progression of idiopathic pulmonary fibrosis to the development of the complication itself. For every co-morbidity, we tried to identify share common risk factors which explain the coexistence of idiopathic pulmonary fibrosis with its co-morbidities. We then analyzed high-resolution computed tomography (CT) aspects of co-morbidities and complications of idiopathic pulmonary fibrosis that the radiologist should be aware of. In this review, we focused on the role of high-resolution CT imaging in the evaluation of co-morbidities and complications in idiopathic pulmonary fibrosis because their early diagnosis and treatment could change the prognosis in patients with idiopathic pulmonary fibrosis. We have also pointed out that in some cases the final combined quantitative CT tools and conventional visual CT score would allow to get an accurate analysis and quantification of disease progression, co-morbidities, and complications of idiopathic pulmonary fibrosis in order to improve staging systems in idiopathic pulmonary fibrosis.
Collapse
Affiliation(s)
- Francesca Ricci
- Department of Biomedicine and Prevention Division of Diagnostic Imaging, University of Rome "Tor Vergata," Rome, Italy
| | - Luca Pugliese
- Department of Biomedicine and Prevention Division of Diagnostic Imaging, University of Rome "Tor Vergata," Rome, Italy
| | - Armando Ugo Cavallo
- Department of Biomedicine and Prevention Division of Diagnostic Imaging, University of Rome "Tor Vergata," Rome, Italy
| | - Marco Forcina
- Department of Biomedicine and Prevention Division of Diagnostic Imaging, University of Rome "Tor Vergata," Rome, Italy
| | - Vincenzo De Stasio
- Department of Biomedicine and Prevention Division of Diagnostic Imaging, University of Rome "Tor Vergata," Rome, Italy
| | - Matteo Presicce
- Department of Biomedicine and Prevention Division of Diagnostic Imaging, University of Rome "Tor Vergata," Rome, Italy
| | - Federica Di Tosto
- Department of Biomedicine and Prevention Division of Diagnostic Imaging, University of Rome "Tor Vergata," Rome, Italy
| | - Carlo Di Donna
- Department of Biomedicine and Prevention Division of Diagnostic Imaging, University of Rome "Tor Vergata," Rome, Italy
| | - Luigi Spiritigliozzi
- Department of Biomedicine and Prevention Division of Diagnostic Imaging, University of Rome "Tor Vergata," Rome, Italy
| | - Paola Rogliani
- Respiratory Medicine. Department of Systems Medicine, University of Rome "Tor Vergata," Rome, Italy
| | - Roberto Floris
- Department of Biomedicine and Prevention Division of Diagnostic Imaging, University of Rome "Tor Vergata," Rome, Italy
| | - Marcello Chiocchi
- Department of Biomedicine and Prevention Division of Diagnostic Imaging, University of Rome "Tor Vergata," Rome, Italy
| |
Collapse
|
29
|
Current advances in idiopathic pulmonary fibrosis: the pathogenesis, therapeutic strategies and candidate molecules. Future Med Chem 2019; 11:2595-2620. [PMID: 31633402 DOI: 10.4155/fmc-2019-0111] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a type of chronic, progressive lung disease with unknown cause, which is characterized by increasing dyspnea and destruction of lung function with a high mortality rate. Evolving evidence demonstrated that the pathogenesis of IPF involved multiple signaling pathways such as inflammation, oxidative stress and fibrosis. However, drug discovery to prevent or revert IPF has been insufficient to cope with the development. Drug discovery targeting multiple links should be considered. In this review, we will brief the pathogenesis of IPF and discuss several small chemical entities toward the pathogenesis for IPF studied in animal models and clinical trials. The field of novel anti-IPF agents and the future directions for the prevention and treatment of IPF are detailed thoroughly discussed.
Collapse
|
30
|
Caminati A, Lonati C, Cassandro R, Elia D, Pelosi G, Torre O, Zompatori M, Uslenghi E, Harari S. Comorbidities in idiopathic pulmonary fibrosis: an underestimated issue. Eur Respir Rev 2019; 28:28/153/190044. [PMID: 31578211 DOI: 10.1183/16000617.0044-2019] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 08/16/2019] [Indexed: 12/25/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive and fibrosing lung disease with a poor prognosis. Between 60% and 70% of IPF patients die of IPF; the remaining causes of death may be due to comorbidities occurring in this ageing population. Interest in the role played by comorbidities in IPF has increased in the past few years. The optimal clinical management of IPF is multifaceted and not only involves antifibrotic treatment, but also vaccinations, oxygen supplementation, evaluation of nutritional status as well as psychological support and patient education. Symptom management, pulmonary rehabilitation, palliative care and treatment of comorbidities represent further areas of clinical intervention. This review analyses the major comorbidities observed in IPF, focusing on those that have the greatest impact on mortality and quality of life (QoL). The identification and treatment of comorbidities may help to improve patients' health-related QoL (i.e. sleep apnoea and depression), while some comorbidities (i.e. lung cancer, cardiovascular diseases and pulmonary hypertension) influence survival. It has been outlined that gathering comorbidities data improves the prediction of survival beyond the clinical and physiological parameters of IPF.
Collapse
Affiliation(s)
- Antonella Caminati
- UO di Pneumologia e Terapia Semi-Intensiva Respiratoria - Servizio di Fisiopatologia Respiratoria ed Emodinamica Polmonare, Ospedale San Giuseppe - MultiMedica IRCCS, Milan, Italy
| | - Chiara Lonati
- UO di Medicina Generale, Ospedale San Giuseppe - MultiMedica IRCCS, Milan, Italy
| | - Roberto Cassandro
- UO di Pneumologia e Terapia Semi-Intensiva Respiratoria - Servizio di Fisiopatologia Respiratoria ed Emodinamica Polmonare, Ospedale San Giuseppe - MultiMedica IRCCS, Milan, Italy
| | - Davide Elia
- UO di Pneumologia e Terapia Semi-Intensiva Respiratoria - Servizio di Fisiopatologia Respiratoria ed Emodinamica Polmonare, Ospedale San Giuseppe - MultiMedica IRCCS, Milan, Italy
| | - Giuseppe Pelosi
- Dipartimento di Oncologia ed Onco-ematologia, Università degli Studi di Milano, Milan, Italy.,Servizio Interaziendale di Anatomia Patologica, Polo Scientifico e Tecnologico, MultiMedica IRCCS, Milan, Italy
| | - Olga Torre
- UO di Pneumologia e Terapia Semi-Intensiva Respiratoria - Servizio di Fisiopatologia Respiratoria ed Emodinamica Polmonare, Ospedale San Giuseppe - MultiMedica IRCCS, Milan, Italy
| | - Maurizio Zompatori
- Dipartimento di Diagnostica per Immagini e UO di Radiologia, MultiMedica IRCCS, Milan, Italy.,Dipartimento Universitario DIMES, Università di Bologna, Bologna, Italy
| | - Elisabetta Uslenghi
- Dipartimento di Diagnostica per Immagini e UO di Radiologia, MultiMedica IRCCS, Milan, Italy
| | - Sergio Harari
- UO di Pneumologia e Terapia Semi-Intensiva Respiratoria - Servizio di Fisiopatologia Respiratoria ed Emodinamica Polmonare, Ospedale San Giuseppe - MultiMedica IRCCS, Milan, Italy.,UO di Medicina Generale, Ospedale San Giuseppe - MultiMedica IRCCS, Milan, Italy
| |
Collapse
|
31
|
Forbess LJ, Rossides M, Weisman MH, Simard JF. New-onset non-infectious pulmonary manifestations among patients with systemic lupus erythematosus in Sweden. Arthritis Res Ther 2019; 21:48. [PMID: 30728079 PMCID: PMC6366020 DOI: 10.1186/s13075-018-1804-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 12/21/2018] [Indexed: 12/17/2022] Open
Abstract
Objective The objective was to estimate the incidence of lung disease among patients with systemic lupus erythematosus (SLE). Methods Using Swedish register data, we identified patients with SLE and pulmonary diagnoses from the National Patient Register through ICD codes. We matched patients with SLE with individuals from the general population. Patients with SLE with a history of pulmonary disease were excluded. Incidence rates (IR) and 95% confidence intervals (CI) were calculated overall and by type of pulmonary disease for incident (2003–2013) and prevalent SLE separately. Hazard ratios (HR) and 95% CI of the association between SLE and pulmonary disease were estimated using adjusted Cox regression models. Sensitivity analyses using a semi-automated approach to quantitative probabilistic bias analysis accounted for potential bias due to unmeasured confounding by smoking. Results There were 3209 incident and 6908 prevalent cases of SLE identified. The IRs for pulmonary disease were similar in prevalent and incident SLE (∼14 cases per 1000 person-years). Patients with incident SLE had a nearly sixfold higher rate of pulmonary disease compared to the non-SLE population (HR 5.8 (95% CI 4.8–7.0)). Incident and prevalent SLE was associated with an increased rate of interstitial lung disease (HR 19.0 (95% CI 10.7–34.0) and 14.3 (95% CI 10.8–18.8), respectively). Bias due to unmeasured confounding by smoking was unlikely to explain our findings. Conclusion Lung disease is relatively common in patients with SLE compared to the general population. Clinicians caring for patients with SLE should have heightened suspicion of lung disease, including interstitial lung disease, even early within the disease course or at the time of diagnosis of SLE. Electronic supplementary material The online version of this article (10.1186/s13075-018-1804-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lindsy J Forbess
- Division of Rheumatology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Marios Rossides
- Division of Clinical Epidemiology, Department of Medicine Solna, Karolinska Institutet, Stanford School of Medicine, Stockholm, Sweden
| | - Michael H Weisman
- Division of Rheumatology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Julia F Simard
- Division of Clinical Epidemiology, Department of Medicine Solna, Karolinska Institutet, Stanford School of Medicine, Stockholm, Sweden. .,Division of Epidemiology, Department of Health Research and Policy, Stanford School of Medicine, Stanford, CA, USA. .,Division of Immunology and Rheumatology, Department of Medicine, Stanford, CA, USA.
| |
Collapse
|
32
|
van Cleemput J, Sonaglioni A, Wuyts WA, Bengus M, Stauffer JL, Harari S. Idiopathic Pulmonary Fibrosis for Cardiologists: Differential Diagnosis, Cardiovascular Comorbidities, and Patient Management. Adv Ther 2019; 36:298-317. [PMID: 30554332 PMCID: PMC6824347 DOI: 10.1007/s12325-018-0857-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Indexed: 02/06/2023]
Abstract
The presence of rare comorbidities in patients with cardiovascular disease (CVD) presents a diagnostic challenge to cardiologists. In evaluating these patients, cardiologists are faced with a unique opportunity to shorten diagnosis times and direct patients towards correct treatment pathways. Idiopathic pulmonary fibrosis (IPF), a type of interstitial lung disease (ILD), is an example of a rare disease where patients frequently demonstrate comorbid CVD. Both CVD and IPF most commonly affect a similar patient demographic: men over the age of 60 years with a history of smoking. Moreover, IPF and heart failure (HF) share a number of symptoms. As a result, patients with IPF can be misdiagnosed with HF and vice versa. This article aims to increase awareness of IPF among cardiologists, providing an overview for cardiologists on the differential diagnosis of IPF from HF, and describing the signs and symptoms that would warrant referral to a pulmonologist with expertise in ILD. Once patients with IPF have received a diagnosis, cardiologists can have an important role in managing patients who are candidates for a lung transplant or those who develop pulmonary hypertension (PH). Group 3 PH is one of the most common cardiovascular complications diagnosed in patients with IPF, its prevalence varying between reports but most often cited as between 30% and 50%. This review summarizes the current knowledge on Group 3 PH in IPF, discusses data from clinical trials assessing treatments for Group 1 PH in patients with IPF, and highlights that treatment guidelines recommend against these therapies in IPF. Finally, this article provides the cardiologist with an overview on the use of the two approved treatments for IPF, the antifibrotics pirfenidone and nintedanib, in patients with IPF and CVD comorbidities. Conversely, the impact of treatments for CVD comorbidities on patients with IPF is also discussed.Funding: F. Hoffmann-La Roche, Ltd.Plain Language Summary: Plain language summary available for this article.
Collapse
Affiliation(s)
| | - Andrea Sonaglioni
- U.O. di Cardiologia, Ospedale San Giuseppe - MultiMedica IRCCS, Milan, Italy
| | - Wim A Wuyts
- Department of Respiratory Medicine, Unit for Interstitial Lung Diseases, University Hospitals Leuven, Leuven, Belgium
| | | | | | - Sergio Harari
- U.O. di Pneumologia e Terapia Semi-Intensiva Respiratoria - Servizio di Fisiopatologia Respiratoria ed Emodinamica Polmonare, Ospedale San Giuseppe - MultiMedica IRCCS, Milan, Italy
| |
Collapse
|
33
|
Faverio P, De Giacomi F, Bonaiti G, Stainer A, Sardella L, Pellegrino G, Sferrazza Papa GF, Bini F, Bodini BD, Carone M, Annoni S, Messinesi G, Pesci A. Management of Chronic Respiratory Failure in Interstitial Lung Diseases: Overview and Clinical Insights. Int J Med Sci 2019; 16:967-980. [PMID: 31341410 PMCID: PMC6643124 DOI: 10.7150/ijms.32752] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 05/05/2019] [Indexed: 01/11/2023] Open
Abstract
Interstitial lung diseases (ILDs) may be complicated by chronic respiratory failure (CRF), especially in the advanced stages. Aim of this narrative review is to evaluate the current evidence in management of CRF in ILDs. Many physiological mechanisms underlie CRF in ILDs, including lung restriction, ventilation/perfusion mismatch, impaired diffusion capacity and pulmonary vascular damage. Intermittent exertional hypoxemia is often the initial sign of CRF, evolving, as ILD progresses, into continuous hypoxemia. In the majority of the cases, the development of CRF is secondary to the worsening of the underlying disease; however, associated comorbidities may also play a role. When managing CRF in ILDs, the need for pulmonary rehabilitation, the referral to lung transplant centers and palliative care should be assessed and, if necessary, promptly offered. Long-term oxygen therapy is commonly prescribed in case of resting or exertional hypoxemia with the purpose to decrease dyspnea and improve exercise tolerance. High-Flow Nasal Cannula oxygen therapy may be used as an alternative to conventional oxygen therapy for ILD patients with severe hypoxemia requiring both high flows and high oxygen concentrations. Non-Invasive Ventilation may be used in the chronic setting for palliation of end-stage ILD patients, although the evidence to support this application is very limited.
Collapse
Affiliation(s)
- Paola Faverio
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy; Respiratory Unit, San Gerardo Hospital, ASST di Monza, Monza, Italy
| | - Federica De Giacomi
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy; Respiratory Unit, San Gerardo Hospital, ASST di Monza, Monza, Italy
| | - Giulia Bonaiti
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy; Respiratory Unit, San Gerardo Hospital, ASST di Monza, Monza, Italy
| | - Anna Stainer
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy; Respiratory Unit, San Gerardo Hospital, ASST di Monza, Monza, Italy
| | - Luca Sardella
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy; Respiratory Unit, San Gerardo Hospital, ASST di Monza, Monza, Italy
| | - Giulia Pellegrino
- Casa di Cura del Policlinico, Dipartimento di Scienze Neuroriabilitative, Milan, Italy
| | | | - Francesco Bini
- UOC Pulmonology, Department of Internal Medicine, Ospedale ASST-Rhodense, Garbagnate Milanese, Italy
| | - Bruno Dino Bodini
- Pulmonology Unit, Ospedale Maggiore della Carità, University of Piemonte Orientale, Novara, Italy
| | - Mauro Carone
- UOC Pulmonology and Pulmonary Rehabilitation, Istituti Clinici Scientifici Maugeri, IRCCS di Cassano Murge (BA), Italy
| | - Sara Annoni
- Physical therapy and Rehabilitation Unit, San Gerardo Hospital, ASST di Monza, Monza, Italy
| | - Grazia Messinesi
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy; Respiratory Unit, San Gerardo Hospital, ASST di Monza, Monza, Italy
| | - Alberto Pesci
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy; Respiratory Unit, San Gerardo Hospital, ASST di Monza, Monza, Italy
| |
Collapse
|
34
|
|
35
|
Ribeiro Neto ML, Budev M, Culver DA, Lane CR, Gomes M, Wang XF, Rocha PN, Olman MA. Venous Thromboembolism After Adult Lung Transplantation: A Frequent Event Associated With Lower Survival. Transplantation 2018; 102:681-687. [PMID: 29019812 DOI: 10.1097/tp.0000000000001977] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND The incidence of venous thromboembolism (VTE) after lung transplantation (LTX) varies significantly across studies. Two studies have suggested that these thrombotic events are associated with a lower posttransplant survival. Herein, we sought to determine the incidence, predictors, and impact of VTE on survival after LTX at a quaternary referral center. METHODS This was a large cohort study of LTX recipients. Key outcome parameters were time to VTE after transplant and survival. Deep vein thrombosis (DVT) diagnosis required a positive ultrasound. Pulmonary embolism diagnosis required either a positive chest computed tomography angiogram or a high-probability ventilation/perfusion scan. RESULTS The overall incidence of VTE among 701 LTX recipients was 43.8%, of which 97.7% were DVT episodes, of which 71.3% were in the upper extremities. Predictors of VTE were prior history of DVT (hazard ratio [HR], 2.82; 95% confidence interval [CI], 1.49-5.37), days in intensive care (HR, 1.01; 95% CI, 1.01-1.02), and the use of extracorporeal membrane oxygenation (HR, 2.22; 95% CI, 1.43-3.45). Importantly, VTE predicted a lower posttransplant survival (HR, 1.70; 95% CI, 1.28-2.26), when occurring within or after the first 30 days. The location of the DVT, either upper extremity or below the knee, also predicted a poor survival. CONCLUSIONS VTE was frequent in LTX recipients and predicted a poor survival even when located in the upper extremities or below the knee. These data suggest that aggressive VTE screening/treatment protocols be implemented in post-LTX population.
Collapse
Affiliation(s)
- Manuel L Ribeiro Neto
- Respiratory Institute, Cleveland Clinic, Cleveland, OH.,Health Sciences Postgraduate Program, Federal University of Bahia, Ondina, Salvador, Bahia, Brazil
| | - Marie Budev
- Respiratory Institute, Cleveland Clinic, Cleveland, OH
| | - Daniel A Culver
- Respiratory Institute, Cleveland Clinic, Cleveland, OH.,Lerner Research Institute, Cleveland Clinic, Cleveland, OH
| | | | - Marcelo Gomes
- Heart and Vascular Institute, Cleveland Clinic, Cleveland, OH
| | - Xiao-Feng Wang
- Department of Quantitative Health Sciences, Cleveland Clinic, Cleveland, OH
| | - Paulo Novis Rocha
- Health Sciences Postgraduate Program, Federal University of Bahia, Ondina, Salvador, Bahia, Brazil
| | - Mitchell A Olman
- Respiratory Institute, Cleveland Clinic, Cleveland, OH.,Lerner Research Institute, Cleveland Clinic, Cleveland, OH
| |
Collapse
|
36
|
Torrisi SE, Vancheri A, Pavone M, Sambataro G, Palmucci S, Vancheri C. Comorbidities of IPF: How do they impact on prognosis. Pulm Pharmacol Ther 2018; 53:6-11. [PMID: 30193867 DOI: 10.1016/j.pupt.2018.09.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Accepted: 09/03/2018] [Indexed: 02/04/2023]
Abstract
Idiopathic Pulmonary Fibrosis (IPF) is a severe parenchymal lung disease characterized by an intense deposition of collagen in the interstitial spaces. The introduction of anti-fibrotic drugs increased patients' life expectancy highlighting the role of comorbidities in patients' management and prognosis. IPF is frequently associated with other diseases mainly because of its onset during middle age and sometimes because of the presence of common pathogenic pathways such as in the case of lung cancer. Comorbidities may differently influence prognosis of IPF patients. However, except for major impacting ones as LC, PH and cardiovascular diseases, data exploring their impact on prognosis are still few and sometimes conflicting highlighting the need of new large and targeted studies. In this review we discuss the current knowledge on the most common comorbidities associated with IPF (cardiovascular diseases, pulmonary hypertension, lung cancer, emphysema, gastro-oesophageal reflux and depression), focusing on their prognostic role.
Collapse
Affiliation(s)
- Sebastiano Emanuele Torrisi
- Regional Referral Centre for Rare Lung Diseases, A.O.U. Policlinico-Vittorio Emanuele, University of Catania, Catania, Italy
| | - Ada Vancheri
- Regional Referral Centre for Rare Lung Diseases, A.O.U. Policlinico-Vittorio Emanuele, University of Catania, Catania, Italy
| | - Mauro Pavone
- Regional Referral Centre for Rare Lung Diseases, A.O.U. Policlinico-Vittorio Emanuele, University of Catania, Catania, Italy
| | - Gianluca Sambataro
- Regional Referral Centre for Rare Lung Diseases, A.O.U. Policlinico-Vittorio Emanuele, University of Catania, Catania, Italy
| | - Stefano Palmucci
- Radiology I Unit, Department of Medical Surgical Sciences and Advanced Technologies, University Hospital "Policlinico-Vittorio Emanuele", Catania, Italy
| | - Carlo Vancheri
- Regional Referral Centre for Rare Lung Diseases, A.O.U. Policlinico-Vittorio Emanuele, University of Catania, Catania, Italy.
| |
Collapse
|
37
|
Comorbidities, Complications and Non-Pharmacologic Treatment in Idiopathic Pulmonary Fibrosis. Med Sci (Basel) 2018; 6:medsci6030059. [PMID: 30042369 PMCID: PMC6164236 DOI: 10.3390/medsci6030059] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 07/11/2018] [Accepted: 07/17/2018] [Indexed: 12/31/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive and fatal disease. The treatment is challenging and nowadays a comprehensive approach based not only in pharmacological strategies is necessary. Identification and control of comorbidities, non-pharmacological treatment, prevention and management of exacerbations as well as other areas of care (social, psychological) are fundamental for a holistic management of IPF. Gastroesophageal reflux, pulmonary hypertension, obstructive sleep apnea, combined with emphysema, lung cancer and cardiovascular involvement are the main comorbidities associated with IPF. Non-pharmacological treatment includes the use of oxygen in patients with rest or nocturnal hypoxemia and other support therapies such as non-invasive ventilation or even a high-flow nasal cannula to improve dyspnea. In some patients, lung transplant should be considered as this enhances survival. Pulmonary rehabilitation can add benefits in outcomes such control of dyspnea, exercise capacity distance and, overall, improve the quality of life; therefore it should be considered in patients with IPF. Also, multidisciplinary palliative care programs could help with symptom control and psychological support, with the aim of maintaining quality of life during the whole process of the disease. This review intends to provide clear information to help those involved in IPF follow up to improve patients’ daily care.
Collapse
|
38
|
De Brouwer B, Piscaer I, Von Der Thusen JH, Grutters JC, Schutgens RE, Wouters EF, Janssen R. Should vitamin K be supplemented instead of antagonised in patients with idiopathic pulmonary fibrosis? Expert Rev Respir Med 2018; 12:169-175. [PMID: 29303380 DOI: 10.1080/17476348.2018.1424544] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
INTRODUCTION There is an ongoing need for additional interventions in idiopathic pulmonary fibrosis (IPF) as antifibrotic drugs currently available only inhibit and do not stall disease progression. Vitamin K is a co-factor for the activation of coagulation factors. However, it is also required to activate proteins with functions outside of the coagulation cascade, such as matrix Gla protein (MGP), a defender against soft tissue calcification. Vitamin K antagonists are anticoagulants that are, for unknown reasons, associated with increased mortality in IPF. Areas covered: We advance the hypothesis that modulation of vitamin K-dependent MGP activation in IPF patients by either vitamin K antagonism or administration may result in acceleration and deceleration of fibrosis progression, respectively. Furthermore, shortfall in vitamin K could be suspected in IPF based on the high prevalence of certain co-morbidities, such as vascular calcification and lung cancer. Expert commentary: We hypothesize that vitamin K status is reduced in IPF patients. This, in combination with studies suggesting that vitamin K may play a role in lung fibrosis pathogenesis, would provide a rationale for conducting a clinical trial assessing the potential mitigating effects of vitamin K administration on progression of lung fibrosis, prevention of co-morbidities and mortality in IPF.
Collapse
Affiliation(s)
- Bart De Brouwer
- a Department of Pulmonary Medicine , Canisius-Wilhelmina Hospital , Nijmegen , The Netherlands
| | - Ianthe Piscaer
- b Department of Respiratory Medicine , Maastricht University Medical Centre , Maastricht , The Netherlands
| | - Jan H Von Der Thusen
- c Department of Pathology , Erasmus Medical Centre , Rotterdam , The Netherlands
| | - Jan C Grutters
- d Department of Pulmonology , ILD Centre of Excellence , Nieuwegein , The Netherlands
| | - Roger Eg Schutgens
- e Van Creveldkliniek , University Medical Centre Utrecht , Utrecht , The Netherlands
| | - Emiel Fm Wouters
- b Department of Respiratory Medicine , Maastricht University Medical Centre , Maastricht , The Netherlands
| | - Rob Janssen
- a Department of Pulmonary Medicine , Canisius-Wilhelmina Hospital , Nijmegen , The Netherlands
| |
Collapse
|
39
|
Oldham JM, Collard HR. Comorbid Conditions in Idiopathic Pulmonary Fibrosis: Recognition and Management. Front Med (Lausanne) 2017; 4:123. [PMID: 28824912 PMCID: PMC5539138 DOI: 10.3389/fmed.2017.00123] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 07/14/2017] [Indexed: 01/13/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF), a fibrosing interstitial pneumonia of unknown etiology, primarily affects older adults and leads to a progressive decline in lung function and quality of life. With a median survival of 3-5 years, IPF is the most common and deadly of the idiopathic interstitial pneumonias. Despite the poor survivorship, there exists substantial variation in disease progression, making accurate prognostication difficult. Lung transplantation remains the sole curative intervention in IPF, but two anti-fibrotic therapies were recently shown to slow pulmonary function decline and are now approved for the treatment of IPF in many countries around the world. While the approval of these therapies represents an important first step in combatting of this devastating disease, a comprehensive approach to diagnosing and treating patients with IPF remains critically important. Included in this comprehensive assessment is the recognition and appropriate management of comorbid conditions. Though IPF is characterized by single organ involvement, many comorbid conditions occur within other organ systems. Common cardiovascular processes include coronary artery disease and pulmonary hypertension (PH), while gastroesophageal reflux and hiatal hernia are the most commonly encountered gastrointestinal disorders. Hematologic abnormalities appear to place patients with IPF at increased risk of venous thromboembolism, while diabetes mellitus (DM) and hypothyroidism are prevalent metabolic disorders. Several pulmonary comorbidities have also been linked to IPF, and include emphysema, lung cancer, and obstructive sleep apnea. While the treatment of some comorbid conditions, such as CAD, DM, and hypothyroidism is recommended irrespective of IPF, the benefit of treating others, such as gastroesophageal reflux and PH, remains unclear. In this review, we highlight common comorbid conditions encountered in IPF, discuss disease-specific diagnostic modalities, and review the current state of treatment data for several key comorbidities.
Collapse
Affiliation(s)
- Justin M Oldham
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, University of California at Davis, Davis, CA, United States
| | - Harold R Collard
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, University of California at San Francisco, San Francisco, CA, United States
| |
Collapse
|
40
|
King CS, Nathan SD. Idiopathic pulmonary fibrosis: effects and optimal management of comorbidities. THE LANCET RESPIRATORY MEDICINE 2017; 5:72-84. [DOI: 10.1016/s2213-2600(16)30222-3] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 07/07/2016] [Accepted: 07/15/2016] [Indexed: 12/30/2022]
|
41
|
Park SH. Pulmonary embolism is more prevalent than deep vein thrombosis in cases of chronic obstructive pulmonary disease and interstitial lung diseases. SPRINGERPLUS 2016; 5:1777. [PMID: 27795919 PMCID: PMC5061682 DOI: 10.1186/s40064-016-3475-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 10/05/2016] [Indexed: 11/10/2022]
Abstract
BACKGROUND Chronic lung diseases may have an influence on pulmonary vessel walls as well as on pulmonary haemodynamics. However, there is limited data on the occurrence of pulmonary embolism (PE) and deep vein thrombosis (DVT) in patients with chronic lung diseases, which have the potential to contribute to the development of pulmonary vascular abnormalities. We aimed to explore the prevalence of PE and DVT in patients with COPD and ILD. METHODS We evaluated the venous thromboembolism prevalence associated with COPD and ILD using Korean Health Insurance Review and Assessment Service (HIRA) data from January 2011 to December 2011. This database (HIRA-NPS-2011-0001) was created using random sampling of outpatients; 1,375,842 sample cases were collected, and 670,258 (age ≥40) cases were evaluated. Patients with COPD, ILDs, or CTD were identified using the International Classification of Disease-10 diagnostic codes. RESULTS The PE prevalence rates per 100,000 persons for the study population with COPD, ILD, CTD, and the general population were 1185, 1746, 412, and 113, respectively, while the DVT prevalence for each group was 637, 582, 563, and 138, respectively. CONCLUSIONS PE prevalence was significantly higher than that of DVT in patients with COPD or ILDs, while the prevalence of PE was lower than that for DVT in the general population or in patients with CTD.
Collapse
Affiliation(s)
- Sun Hyo Park
- Department of Internal Medicine, Keimyung University Dongsan Medical Center, 56 Dalseong-ro, Jung-gu, Daegu, 41931 Republic of Korea
| |
Collapse
|
42
|
Kreuter M, Wijsenbeek MS, Vasakova M, Spagnolo P, Kolb M, Costabel U, Weycker D, Kirchgaessler KU, Maher TM. Unfavourable effects of medically indicated oral anticoagulants on survival in idiopathic pulmonary fibrosis. Eur Respir J 2016; 47:1776-84. [PMID: 27103382 DOI: 10.1183/13993003.02087-2015] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 01/25/2016] [Indexed: 11/05/2022]
Abstract
Procoagulant and antifibrinolytic activity has been associated with idiopathic pulmonary fibrosis (IPF); however, investigation of anticoagulant therapy in IPF has suggested deleterious effects. This post hoc analysis evaluated the effect of medically indicated anticoagulation on mortality and other clinical outcomes in IPF.Patients randomised to placebo (n=624) from three controlled trials in IPF were analysed by oral anticoagulant use. End-points included all-cause and IPF-related mortality, disease progression, hospitalisation, and adverse events, over 1 year.At baseline, 32 (5.1%) patients randomised to placebo were prescribed anticoagulants for non-IPF indications, 29 (90.6%) of whom received warfarin. Unadjusted analyses demonstrated significantly higher all-cause and IPF-related mortality at 1 year in baseline anticoagulant users versus nonusers (15.6% versus 6.3%, p=0.039 and 15.6% versus 3.9%, p=0.002, respectively). In multivariate analyses, baseline use of anticoagulants was an independent predictor of IPF-related mortality (hazard ratio 4.7, p=0.034), but not other end-points. Rates of bleeding and cardiac events did not differ significantly between groups. In an exploratory analysis, anticoagulant use at any time during the study was an independent predictor of all end-points.This post hoc analysis suggests that anticoagulants used for non-IPF indications may have unfavourable effects in IPF patients. Future studies are needed to explore this relationship further.
Collapse
Affiliation(s)
- Michael Kreuter
- Center for Interstitial and Rare Lung Diseases, Pneumology and Respiratory Critical Care Medicine, Thoraxklinik, University of Heidelberg, and Translational Lung Research Center Heidelberg (TLRCH), Heidelberg, Germany; Member of the German Center for Lung Research (DZL), Germany
| | - Marlies S Wijsenbeek
- Dept of Pulmonary Medicine, Erasmus Medical Center, University Hospital Rotterdam, Rotterdam, The Netherlands
| | - Martina Vasakova
- Dept of Respiratory Medicine, Thomayer Hospital, Prague, Czech Republic
| | - Paolo Spagnolo
- Medical University Clinic, Canton Hospital Baselland and University of Basel, Liestal, Switzerland
| | - Martin Kolb
- Firestone Institute for Respiratory Health, Dept of Medicine, Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| | - Ulrich Costabel
- Interstitial and Rare Lung Disease Unit, Ruhrlandklinik, University Hospital, University of Duisburg-Essen, Essen, Germany
| | | | | | - Toby M Maher
- National Institute for Health Research Biomedical Research Unit, Royal Brompton Hospital and Fibrosis Research Group, National Heart and Lung Institute, Imperial College, London, UK
| |
Collapse
|
43
|
Margaritopoulos GA, Antoniou KM. Can Warfarin Be Used in the Treatment of Pulmonary Embolism in Idiopathic Pulmonary Fibrosis? Am J Respir Crit Care Med 2016; 193:810-1. [DOI: 10.1164/rccm.201511-2267le] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
44
|
Ntolios P, Papanas N, Nena E, Boglou P, Koulelidis A, Tzouvelekis A, Xanthoudaki M, Tsigalou C, Froudarakis ME, Bouros D, Mikhailidis DP, Steiropoulos P. Mean Platelet Volume as a Surrogate Marker for Platelet Activation in Patients With Idiopathic Pulmonary Fibrosis. Clin Appl Thromb Hemost 2015; 22:346-50. [PMID: 26659450 DOI: 10.1177/1076029615618023] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Idiopathic pulmonary fibrosis (IPF) is associated with a prothrombotic state. AIM To study mean platelet volume (MPV) and Platelet Distribution Width (PDW) as markers of platelet activation and their potential association with lung function in patients with recently diagnosed IPF. MATERIALS AND METHODS This study included 56 patients with IPF (age 64.9±7.4 years) and 79 controls (age 64.2 ± 5.9 years). RESULTS An inverse relation was demonstrated between platelet count and MPV in the control group but not among patients with IPF. Platelet count was significantly lower in patients with IPF compared with controls (230 ± 60 vs 256 ± 75 × 10(3)/μL, P = .038). Conversely, MPV was higher in patients versus controls (10.3 ± 1.2 vs 9.8 ± 1.2 fl, P = .024), while there was no difference between the groups in PDW. Respiratory function was, as expected, significantly impaired in patients with IPF versus controls in terms of forced expiratory volume in first second (FEV1; 67.2 ± 23.1 vs 102.6 ± 15.9% of predicted value, P < .001), forced vital capacity (FVC; 65.3 ± 21 vs 95.2 ± 16.1% of predicted value, P < .001), FEV1/FVC (83.1 ± 15 vs 87.5 ± 6.4%, P = .041) and partial pressure of oxygen in arterial blood (PaO2; 67.1 ± 10.3 vs 81.5 ± 15.2 mm Hg, P < .001). No significant correlation was seen between MPV and FVC (r = -.1497, P = .275), MPV and lung diffusion capacity for carbon monoxide (r = .035, P = .798) and total lung capacity (r = .032, P = .820). CONCLUSIONS Patients with IPF exhibit higher MPV values and lower platelet count. Further studies are needed to assess the clinical implications of these findings.
Collapse
Affiliation(s)
- P Ntolios
- Department of Pneumonology, Medical School, Democritus University of Thrace, Alexandroupolis, Greece
| | - N Papanas
- Second Department of Internal Medicine, Medical School, Democritus University of Thrace, Alexandroupolis, Greece
| | - E Nena
- Laboratory of Hygiene and Environmental Protection, Medical School, Democritus University of Thrace, Alexandroupolis, Greece
| | - P Boglou
- Department of Pneumonology, Medical School, Democritus University of Thrace, Alexandroupolis, Greece
| | - A Koulelidis
- Department of Pneumonology, Medical School, Democritus University of Thrace, Alexandroupolis, Greece
| | - A Tzouvelekis
- Department of Pneumonology, Medical School, Democritus University of Thrace, Alexandroupolis, Greece
| | - M Xanthoudaki
- Department of Pneumonology, Medical School, Democritus University of Thrace, Alexandroupolis, Greece
| | - C Tsigalou
- Hematology Laboratory, University Hospital of Alexandroupolis, Greece
| | - M E Froudarakis
- Department of Pneumonology, Medical School, Democritus University of Thrace, Alexandroupolis, Greece
| | - D Bouros
- Department of Pneumonology, Medical School, Democritus University of Thrace, Alexandroupolis, Greece
| | - D P Mikhailidis
- Department of Clinical Biochemistry (Vascular Disease Prevention Clinics), Royal Free Hospital campus, University College London Medical School, University College London, London, United Kingdom
| | - P Steiropoulos
- Department of Pneumonology, Medical School, Democritus University of Thrace, Alexandroupolis, Greece
| |
Collapse
|
45
|
Vedel-Krogh S, Nielsen SF, Nordestgaard BG. Statin Use Is Associated with Reduced Mortality in Patients with Interstitial Lung Disease. PLoS One 2015; 10:e0140571. [PMID: 26473476 PMCID: PMC4608706 DOI: 10.1371/journal.pone.0140571] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 09/26/2015] [Indexed: 12/15/2022] Open
Abstract
Introduction We hypothesized that statin use begun before the diagnosis of interstitial lung disease is associated with reduced mortality. Methods We studied all patients diagnosed with interstitial lung disease in the entire Danish population from 1995 through 2009, comparing statin use versus no statin use in a nested 1:2 matched study. Results The cumulative survival as a function of follow-up time from the date of diagnosis of interstitial lung disease (n = 1,786+3,572) and idiopathic lung fibrosis (n = 261+522) was higher for statin users versus never users (log-rank: P = 7·10−9 and P = 0.05). The median survival time in patients with interstitial lung disease was 3.3 years in statin users and 2.1 years in never users. Corresponding values in patients with idiopathic lung fibrosis were 3.4 versus 2.4 years. After multivariable adjustment, the hazard ratio for all-cause mortality for statin users versus never users was 0.73 (95% confidence interval, 0.68 to 0.79) in patients with interstitial lung disease and 0.76 (0.62 to 0.93) in patients with idiopathic lung fibrosis. Results were robust in all sensitivity analyses. Conclusion Among patients with interstitial lung disease statin use was associated with reduced all-cause mortality.
Collapse
Affiliation(s)
- Signe Vedel-Krogh
- Department of Clinical Biochemistry, Herlev and Gentofte Hospitals, Copenhagen University Hospital, Herlev, Denmark
| | - Sune F. Nielsen
- Department of Clinical Biochemistry, Herlev and Gentofte Hospitals, Copenhagen University Hospital, Herlev, Denmark
| | - Børge G. Nordestgaard
- Department of Clinical Biochemistry, Herlev and Gentofte Hospitals, Copenhagen University Hospital, Herlev, Denmark
- * E-mail:
| |
Collapse
|
46
|
Abstract
Major risk factors for idiopathic pulmonary fibrosis (IPF) include older age and a history of smoking, which predispose to several pulmonary and extra-pulmonary diseases. IPF can be associated with additional comorbidities through other mechanisms as either a cause or a consequence of these diseases. We review the literature regarding the management of common pulmonary and extra-pulmonary comorbidities, including chronic obstructive pulmonary disease, lung cancer, pulmonary hypertension, venous thromboembolism, sleep-disordered breathing, gastroesophageal reflux disease, coronary artery disease, depression and anxiety, and deconditioning. Recent studies have provided some guidance on the management of these diseases in IPF; however, most treatment recommendations are extrapolated from studies of non-IPF patients. Additional studies are required to more accurately determine the clinical features of these comorbidities in patients with IPF and to evaluate conventional treatments and management strategies that are beneficial in non-IPF populations.
Collapse
Affiliation(s)
- Blair G Fulton
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Christopher J Ryerson
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada ; Centre for Heart Lung Innovation, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
47
|
Crooks MG, Hart SP. Coagulation and anticoagulation in idiopathic pulmonary fibrosis. Eur Respir Rev 2015; 24:392-9. [DOI: 10.1183/16000617.00008414] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is an incurable, progressive interstitial lung disease with a prognosis that is worse than that of many cancers. Epidemiological studies have demonstrated a link between IPF and thrombotic vascular events. Coagulation and fibrinolytic systems play central roles in wound healing and repair, processes hypothesised to be abnormal within the IPF lung. Animal models of pulmonary fibrosis have demonstrated an imbalance between thrombosis and fibrinolysis within the alveolar compartment, a finding that is also observed in IPF patients. A systemic prothrombotic state also occurs in IPF and is associated with increased mortality, but trials of anticoagulation in IPF have provided conflicting results. Differences in methodology, intervention and study populations may contribute to the inconsistent trial outcomes. The new oral anticoagulants have properties that may prove advantageous in targeting both thrombotic risk and progression of lung fibrosis.
Collapse
|
48
|
Farghaly S, El-Abdin AZ. Pulmonary fibrosis as a risk factor for thromboembolic disease. THE EGYPTIAN JOURNAL OF BRONCHOLOGY 2015. [DOI: 10.4103/1687-8426.158056] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
49
|
Raghu G, Rochwerg B, Zhang Y, Garcia CAC, Azuma A, Behr J, Brozek JL, Collard HR, Cunningham W, Homma S, Johkoh T, Martinez FJ, Myers J, Protzko SL, Richeldi L, Rind D, Selman M, Theodore A, Wells AU, Hoogsteden H, Schünemann HJ. An Official ATS/ERS/JRS/ALAT Clinical Practice Guideline: Treatment of Idiopathic Pulmonary Fibrosis. An Update of the 2011 Clinical Practice Guideline. Am J Respir Crit Care Med 2015; 192:e3-19. [DOI: 10.1164/rccm.201506-1063st] [Citation(s) in RCA: 1242] [Impact Index Per Article: 124.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
|
50
|
Spagnolo P, Sverzellati N, Rossi G, Cavazza A, Tzouvelekis A, Crestani B, Vancheri C. Idiopathic pulmonary fibrosis: an update. Ann Med 2015; 47:15-27. [PMID: 25613170 DOI: 10.3109/07853890.2014.982165] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is the most common and lethal form of idiopathic interstitial pneumonia. The disease, which occurs primarily in middle-aged and older adults, is thought to arise following an aberrant reparative response to alveolar epithelial cell injury characterized by secretion of excessive amounts of extracellular matrix components, resulting in scarring of the lung, architectural distortion, and irreversible loss of function. A complex interplay between environmental and host factors is thought to contribute to the development of the disease, although the cause of IPF remains elusive and its pathogenesis incompletely understood. Over the last decade, disease definition and diagnostic criteria have evolved significantly, and this has facilitated the design of a number of high-quality clinical trials evaluating novel therapeutic agents for IPF. This massive effort of the medical and industry community has led to the identification of two compounds (pirfenidone and nintedanib) able to reduce functional decline and disease progression. These promising results notwithstanding, IPF remains a major cause of morbidity and mortality and a largely unmet medical need. A real cure for this devastating disease has yet to emerge and will likely consist of a combination of drugs targeting the plethora of pathways potentially involved in disease pathogenesis.
Collapse
Affiliation(s)
- Paolo Spagnolo
- Medical University Clinic, Canton Hospital Baselland, and University of Basel , Switzerland
| | | | | | | | | | | | | |
Collapse
|