1
|
Yaacoub S, Boudaka A, AlKhatib A, Pintus G, Sahebkar A, Kobeissy F, Eid AH. The pharmaco-epigenetics of hypertension: a focus on microRNA. Mol Cell Biochem 2024; 479:3255-3271. [PMID: 38424404 PMCID: PMC11511726 DOI: 10.1007/s11010-024-04947-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 01/20/2024] [Indexed: 03/02/2024]
Abstract
Hypertension is a major harbinger of cardiovascular morbidity and mortality. It predisposes to higher rates of myocardial infarction, chronic kidney failure, stroke, and heart failure than most other risk factors. By 2025, the prevalence of hypertension is projected to reach 1.5 billion people. The pathophysiology of this disease is multifaceted, as it involves nitric oxide and endothelin dysregulation, reactive oxygen species, vascular smooth muscle proliferation, and vessel wall calcification, among others. With the advent of new biomolecular techniques, various studies have elucidated a gaping hole in the etiology and mechanisms of hypertension. Indeed, epigenetics, DNA methylation, histone modification, and microRNA-mediated translational silencing appear to play crucial roles in altering the molecular phenotype into a hypertensive profile. Here, we critically review the experimentally determined associations between microRNA (miRNA) molecules and hypertension pharmacotherapy. Particular attention is given to the epigenetic mechanisms underlying the physiological responses to antihypertensive drugs like candesartan, and other relevant drugs like clopidogrel, aspirin, and statins among others. Furthermore, how miRNA affects the pharmaco-epigenetics of hypertension is especially highlighted.
Collapse
Affiliation(s)
- Serge Yaacoub
- Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Ammar Boudaka
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Ali AlKhatib
- Department of Nutrition and Food Sciences, Lebanese International University, Beirut, Lebanon
| | - Gianfranco Pintus
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro, 07100, Sassari, Italy
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Firas Kobeissy
- Department of Neurobiology, Center for Neurotrauma, Multiomics and Biomarkers (CNMB), Morehouse School of Medicine, Neuroscience Institute, Atlanta, GA, USA
| | - Ali H Eid
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar.
| |
Collapse
|
2
|
Liang X, Zhou J, Wang H, Zhang Z, Yin M, Zhu Y, Li L, Chen C, Wei M, Hu M, Zhao C, Yao J, Li G, Dinh-Xuan AT, Xiao J, Bei Y. miR-30d Attenuates Pulmonary Arterial Hypertension via Targeting MTDH and PDE5A and Modulates the Beneficial Effect of Sildenafil. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2407712. [PMID: 39206778 DOI: 10.1002/advs.202407712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/07/2024] [Indexed: 09/04/2024]
Abstract
Pulmonary arterial hypertension (PAH) is associated with aberrant pulmonary vascular smooth muscle cell (PASMC) function and vascular remodeling. MiR-30d plays an important role in the pathogenesis of several cardiovascular disorders. However, the function of miR-30d in PAH progression remained unknown. Our study shows that circulating miR-30d level is significantly reduced in the plasma from PAH patients. In miR-30d transgenic (TG) rats, overexpressing miR-30d attenuates monocrotaline (MCT)-induced pulmonary hypertension (PH) and pulmonary vascular remodeling. Increasing miR-30d also inhibits platelet-derived growth factor-bb (PDGF-bb)-induced proliferation and migration of human PASMC. Metadherin (MTDH) and phosphodiesterase 5A (PDE5A) are identified as direct target genes of miR-30d. Meanwhile, nuclear respiratory factor 1 (NRF1) acts as a positive upstream regulator of miR-30d. Using miR-30d knockout (KO) rats treated with sildenafil, a PDE5A inhibitor that is used in clinical PAH therapies, it is further found that suppressing miR-30d partially attenuates the beneficial effect of sildenafil against MCT-induced PH and vascular remodeling. The present study shows a protective effect of miR-30d against PAH and pulmonary vascular remodeling through targeting MTDH and PDE5A and reveals that miR-30d modulates the beneficial effect of sildenafil in treating PAH. MiR-30d should be a prospective target to treat PAH and pulmonary vascular remodeling.
Collapse
Affiliation(s)
- Xuchun Liang
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong) and School of Life Science, Shanghai University, Nantong, 226011, China
- Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education), Shanghai University, Shanghai, 200444, China
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Jingwen Zhou
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong) and School of Life Science, Shanghai University, Nantong, 226011, China
- Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education), Shanghai University, Shanghai, 200444, China
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Hongyun Wang
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong) and School of Life Science, Shanghai University, Nantong, 226011, China
- Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education), Shanghai University, Shanghai, 200444, China
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Ziyi Zhang
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong) and School of Life Science, Shanghai University, Nantong, 226011, China
- Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education), Shanghai University, Shanghai, 200444, China
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Mingming Yin
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong) and School of Life Science, Shanghai University, Nantong, 226011, China
- Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education), Shanghai University, Shanghai, 200444, China
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Yujiao Zhu
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong) and School of Life Science, Shanghai University, Nantong, 226011, China
- Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education), Shanghai University, Shanghai, 200444, China
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Lin Li
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong) and School of Life Science, Shanghai University, Nantong, 226011, China
- Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education), Shanghai University, Shanghai, 200444, China
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Chen Chen
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong) and School of Life Science, Shanghai University, Nantong, 226011, China
- Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education), Shanghai University, Shanghai, 200444, China
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Meng Wei
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong) and School of Life Science, Shanghai University, Nantong, 226011, China
- Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education), Shanghai University, Shanghai, 200444, China
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Meiyu Hu
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong) and School of Life Science, Shanghai University, Nantong, 226011, China
- Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education), Shanghai University, Shanghai, 200444, China
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Cuimei Zhao
- Department of Cardiology, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
| | - Jianhua Yao
- Department of Cardiology, Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200090, China
- Department of Cardiology, Shigatse People's Hospital, Tibet, 857000, China
| | - Guoping Li
- Cardiovascular Division of the Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Anh-Tuan Dinh-Xuan
- Lung Function & Respiratory Physiology Units, Department of Respiratory Physiology and Sleep Medicine, Cochin & George Pompidou Hospitals, Assistance Publique-Hôpitaux de Paris (APHP) Centre, University Paris Cité, Paris, 75014, France
| | - Junjie Xiao
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong) and School of Life Science, Shanghai University, Nantong, 226011, China
- Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education), Shanghai University, Shanghai, 200444, China
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Yihua Bei
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong) and School of Life Science, Shanghai University, Nantong, 226011, China
- Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education), Shanghai University, Shanghai, 200444, China
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai, 200444, China
| |
Collapse
|
3
|
Mahajan A, Kumar A, Chen L, Dhillon NK. LncRNA-536 and RNA Binding Protein RBM25 Interactions in Pulmonary Arterial Hypertension. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.27.610011. [PMID: 39253448 PMCID: PMC11383286 DOI: 10.1101/2024.08.27.610011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
OBJECTIVE Hyperproliferation of pulmonary artery smooth muscle cells (PASMCs) is one of the essential features of the maladaptive inward remodeling of the pulmonary arteries in pulmonary arterial hypertension (PAH). In this study, we define the mechanistic association between long-noncoding RNA: ENST00000495536 (Lnc-536) and anti-proliferative HOXB13 in mediating smooth muscle hyperplasia. METHODS Antisense oligonucleotide-based GapmeRs or plasmid overexpressing lnc-536 were used to evaluate the role of lnc-536 in mediating hyperproliferation of PDGF-treated or idiopathic PAH (IPAH) PASMCs. Further, we pulled down lnc536 to identify the proteins directly interacting with lnc536. The in-vivo role of lnc-536 was determined in Sugen-hypoxia and HIV-transgenic pulmonary hypertensive rats. RESULTS Increased levels of lnc-536 in PDGF-treated or IPAH PASMCs promote hyperproliferative phenotype by downregulating the HOXB13 expression. Knockdown of lnc-536 in-vivo prevented increased RVSP, Fulton Index, and pulmonary vascular remodeling in Sugen-Hypoxia rats. The lncRNA-536 pull-down assay demonstrated the interactions of RNA binding protein: RBM25 with SFPQ, a transcriptional regulator that has a binding motif on HOXB13 exon Further, The RNA-IP experiment using the SFPQ antibody showed direct interaction of RBM25 with SFPQ and knockdown of RBM25 resulted in increased interactions of SFPQ and HOXB13 mRNA while attenuating PASMC proliferation. Finally, we examined the role of lnc-536 and HOXB13 axis in the PASMCs exposed to the dual hit of HIV and a stimulant: cocaine as well. CONCLUSION lnc-536 acts as a decoy for RBM25, which in turn sequesters SFPQ, leading to the decrease in HOXB13 expression and hyperproliferation of smooth muscle cells associated with PAH development.
Collapse
Affiliation(s)
- Aatish Mahajan
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS
| | - Ashok Kumar
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS
| | - Ling Chen
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS
| | - Navneet K Dhillon
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS
| |
Collapse
|
4
|
Kang K, Xiang J, Zhang X, Xie Y, Zhou M, Zeng L, Zhuang J, Kuang J, Lin Y, Hu B, Xiong Q, Yin Q, Su Q, Liao X, Wang J, Niu Y, Liu C, Tian J, Gou D. N6-methyladenosine modification of KLF2 may contribute to endothelial-to-mesenchymal transition in pulmonary hypertension. Cell Mol Biol Lett 2024; 29:69. [PMID: 38741032 PMCID: PMC11089701 DOI: 10.1186/s11658-024-00590-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 05/06/2024] [Indexed: 05/16/2024] Open
Abstract
BACKGROUND Pulmonary hypertension (PH) is a progressive disease characterized by pulmonary vascular remodeling. Increasing evidence indicates that endothelial-to-mesenchymal transition (EndMT) in pulmonary artery endothelial cells (PAECs) is a pivotal trigger initiating this remodeling. However, the regulatory mechanisms underlying EndMT in PH are still not fully understood. METHODS Cytokine-induced hPAECs were assessed using RNA methylation quantification, qRT-PCR, and western blotting to determine the involvement of N6-methyladenosine (m6A) methylation in EndMT. Lentivirus-mediated silencing, overexpression, tube formation, and wound healing assays were utilized to investigate the function of METTL3 in EndMT. Endothelial-specific gene knockout, hemodynamic measurement, and immunostaining were performed to explore the roles of METTL3 in pulmonary vascular remodeling and PH. RNA-seq, RNA Immunoprecipitation-based qPCR, mRNA stability assay, m6A mutation, and dual-luciferase assays were employed to elucidate the mechanisms of RNA methylation in EndMT. RESULTS The global levels of m6A and METTL3 expression were found to decrease in TNF-α- and TGF-β1-induced EndMT in human PAECs (hPAECs). METTL3 inhibition led to reduced endothelial markers (CD31 and VE-cadherin) and increased mesenchymal markers (SM22 and N-cadherin) as well as EndMT-related transcription factors (Snail, Zeb1, Zeb2, and Slug). The endothelial-specific knockout of Mettl3 promoted EndMT and exacerbated pulmonary vascular remodeling and hypoxia-induced PH (HPH) in mice. Mechanistically, METTL3-mediated m6A modification of kruppel-like factor 2 (KLF2) plays a crucial role in the EndMT process. KLF2 overexpression increased CD31 and VE-cadherin levels while decreasing SM22, N-cadherin, and EndMT-related transcription factors, thereby mitigating EndMT in PH. Mutations in the m6A site of KLF2 mRNA compromise KLF2 expression, subsequently diminishing its protective effect against EndMT. Furthermore, KLF2 modulates SM22 expression through direct binding to its promoter. CONCLUSIONS Our findings unveil a novel METTL3/KLF2 pathway critical for protecting hPAECs against EndMT, highlighting a promising avenue for therapeutic investigation in PH.
Collapse
Affiliation(s)
- Kang Kang
- Department of Biochemistry and Molecular Biology, Shenzhen University Medical School, Shenzhen, 518060, Guangdong, People's Republic of China
| | - Jingjing Xiang
- Department of Biochemistry and Molecular Biology, Shenzhen University Medical School, Shenzhen, 518060, Guangdong, People's Republic of China
| | - Xingshi Zhang
- Department of Biochemistry and Molecular Biology, Shenzhen University Medical School, Shenzhen, 518060, Guangdong, People's Republic of China
| | - Yuting Xie
- Department of Biochemistry and Molecular Biology, Shenzhen University Medical School, Shenzhen, 518060, Guangdong, People's Republic of China
| | - Mengting Zhou
- Department of Biochemistry and Molecular Biology, Shenzhen University Medical School, Shenzhen, 518060, Guangdong, People's Republic of China
| | - Le Zeng
- Shenzhen Key Laboratory of Microbial Genetic Engineering, Vascular Disease Research Center, College of Life Sciences and Oceanography, Guangdong Provincial Key Laboratory of Regional Immunity and Disease, Carson International Cancer Center, School of Medicine, Shenzhen University, Shenzhen, 518060, China
| | - Junhao Zhuang
- Department of Biochemistry and Molecular Biology, Shenzhen University Medical School, Shenzhen, 518060, Guangdong, People's Republic of China
| | - Jiahao Kuang
- Department of Biochemistry and Molecular Biology, Shenzhen University Medical School, Shenzhen, 518060, Guangdong, People's Republic of China
| | - Yuanyuan Lin
- Department of Biochemistry and Molecular Biology, Shenzhen University Medical School, Shenzhen, 518060, Guangdong, People's Republic of China
| | - Bozhe Hu
- Department of Biochemistry and Molecular Biology, Shenzhen University Medical School, Shenzhen, 518060, Guangdong, People's Republic of China
| | - Qianmin Xiong
- Department of Biochemistry and Molecular Biology, Shenzhen University Medical School, Shenzhen, 518060, Guangdong, People's Republic of China
| | - Qing Yin
- Department of Biochemistry and Molecular Biology, Shenzhen University Medical School, Shenzhen, 518060, Guangdong, People's Republic of China
| | - Qiang Su
- Shenzhen Key Laboratory of Microbial Genetic Engineering, Vascular Disease Research Center, College of Life Sciences and Oceanography, Guangdong Provincial Key Laboratory of Regional Immunity and Disease, Carson International Cancer Center, School of Medicine, Shenzhen University, Shenzhen, 518060, China
| | - Xiaoyun Liao
- Shenzhen Key Laboratory of Microbial Genetic Engineering, Vascular Disease Research Center, College of Life Sciences and Oceanography, Guangdong Provincial Key Laboratory of Regional Immunity and Disease, Carson International Cancer Center, School of Medicine, Shenzhen University, Shenzhen, 518060, China
| | - Jun Wang
- Shenzhen Key Laboratory of Microbial Genetic Engineering, Vascular Disease Research Center, College of Life Sciences and Oceanography, Guangdong Provincial Key Laboratory of Regional Immunity and Disease, Carson International Cancer Center, School of Medicine, Shenzhen University, Shenzhen, 518060, China
| | - Yanqin Niu
- Shenzhen Key Laboratory of Microbial Genetic Engineering, Vascular Disease Research Center, College of Life Sciences and Oceanography, Guangdong Provincial Key Laboratory of Regional Immunity and Disease, Carson International Cancer Center, School of Medicine, Shenzhen University, Shenzhen, 518060, China
| | - Cuilian Liu
- Shenzhen Key Laboratory of Microbial Genetic Engineering, Vascular Disease Research Center, College of Life Sciences and Oceanography, Guangdong Provincial Key Laboratory of Regional Immunity and Disease, Carson International Cancer Center, School of Medicine, Shenzhen University, Shenzhen, 518060, China
| | - Jinglin Tian
- Shenzhen Key Laboratory of Microbial Genetic Engineering, Vascular Disease Research Center, College of Life Sciences and Oceanography, Guangdong Provincial Key Laboratory of Regional Immunity and Disease, Carson International Cancer Center, School of Medicine, Shenzhen University, Shenzhen, 518060, China
| | - Deming Gou
- Shenzhen Key Laboratory of Microbial Genetic Engineering, Vascular Disease Research Center, College of Life Sciences and Oceanography, Guangdong Provincial Key Laboratory of Regional Immunity and Disease, Carson International Cancer Center, School of Medicine, Shenzhen University, Shenzhen, 518060, China.
| |
Collapse
|
5
|
Dignam JP, Sharma S, Stasinopoulos I, MacLean MR. Pulmonary arterial hypertension: Sex matters. Br J Pharmacol 2024; 181:938-966. [PMID: 37939796 DOI: 10.1111/bph.16277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 10/10/2023] [Accepted: 10/11/2023] [Indexed: 11/10/2023] Open
Abstract
Pulmonary arterial hypertension (PAH) is a complex disease of multifactorial origin. While registries have demonstrated that women are more susceptible to the disease, females with PAH have superior right ventricle (RV) function and a better prognosis than their male counterparts, a phenomenon referred to as the 'estrogen paradox'. Numerous pre-clinical studies have investigated the involvement of sex hormones in PAH pathobiology, often with conflicting results. However, recent advances suggest that abnormal estrogen synthesis, metabolism and signalling underpin the sexual dimorphism of this disease. Other sex hormones, such as progesterone, testosterone and dehydroepiandrosterone may also play a role. Several non-hormonal factor including sex chromosomes and epigenetics have also been implicated. Though the underlying pathophysiological mechanisms are complex, several compounds that modulate sex hormones levels and signalling are under investigation in PAH patients. Further elucidation of the estrogen paradox will set the stage for the identification of additional therapeutic targets for this disease.
Collapse
Affiliation(s)
- Joshua P Dignam
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, Scotland, UK
| | - Smriti Sharma
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, Scotland, UK
| | - Ioannis Stasinopoulos
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, Scotland, UK
- Mass Spectrometry Core, Edinburgh Clinical Research Facility, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, Scotland, UK
| | - Margaret R MacLean
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, Scotland, UK
| |
Collapse
|
6
|
He YZG, Wang YX, Ma JS, Li RN, Wang J, Lian TY, Zhou YP, Yang HP, Sun K, Jing ZC. MicroRNAs and their regulators: Potential therapeutic targets in pulmonary arterial hypertension. Vascul Pharmacol 2023; 153:107216. [PMID: 37699495 DOI: 10.1016/j.vph.2023.107216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 08/26/2023] [Accepted: 09/03/2023] [Indexed: 09/14/2023]
Abstract
Pulmonary arterial hypertension (PAH) is a complex and progressive disease characterized by pulmonary arterial remodeling. Despite that current combination therapy has shown improvement in morbidity and mortality, a better deciphering of the underlying pathological mechanisms and novel therapeutic targets is urgently needed to combat PAH. MicroRNA, the critical element in post-transcription mechanisms, mediates cellular functions mainly by tuning downstream target gene expression. Meanwhile, upstream regulators can regulate miRNAs in synthesis, transcription, and function. In vivo and in vitro studies have suggested that miRNAs and their regulators are involved in PAH. However, the miRNA-related regulatory mechanisms governing pulmonary vascular remodeling and right ventricular dysfunction remain elusive. Hence, this review summarized the controversial roles of miRNAs in PAH pathogenesis, focused on different miRNA-upstream regulators, including transcription factors, regulatory networks, and environmental stimuli, and finally proposed the prospects and challenges for the therapeutic application of miRNAs and their regulators in PAH treatment.
Collapse
Affiliation(s)
- Yang-Zhi-Ge He
- Center for bioinformatics, National Infrastructures for Translational Medicine, Institute of Clinical Medicine & Chinese Academy of Medical Sciences and Peking Union Medical College Hospital, Beijing 100730, China
| | - Yi-Xuan Wang
- Laboratory Department of Qingzhou People's Hospital, Qingzhou 262500, Shandong, China
| | - Jing-Si Ma
- Department of School of Pharmacy, Henan University, Kaifeng 475100, Henan, China
| | - Ruo-Nan Li
- Department of School of Pharmacy, Henan University, Kaifeng 475100, Henan, China
| | - Jia Wang
- Department of Medical Laboratory, Weifang Medical University, Weifang 261053, Shandong, China
| | - Tian-Yu Lian
- Medical Science Research Center, State Key Laboratory of Complex, Severe and Rare Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College Hospital, Beijing 100730, China
| | - Yu-Ping Zhou
- Department of Cardiology, State Key Laboratory of Complex, Severe and Rare Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Peking Union Medical College Hospital, Beijing 100730, China
| | - Hao-Pu Yang
- Tsinghua University School of Medicine, Beijing 100084, China
| | - Kai Sun
- Medical Science Research Center, State Key Laboratory of Complex, Severe and Rare Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College Hospital, Beijing 100730, China.
| | - Zhi-Cheng Jing
- Department of Cardiology, State Key Laboratory of Complex, Severe and Rare Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Peking Union Medical College Hospital, Beijing 100730, China.
| |
Collapse
|
7
|
Carvalho A, Ji Z, Zhang R, Zuo W, Qu Y, Chen X, Tao Z, Ji J, Yao Y, Ma G. Inhibition of miR-195-3p protects against cardiac dysfunction and fibrosis after myocardial infarction. Int J Cardiol 2023; 387:131128. [PMID: 37356730 DOI: 10.1016/j.ijcard.2023.131128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 06/13/2023] [Accepted: 06/19/2023] [Indexed: 06/27/2023]
Abstract
Cardiac fibrosis following myocardial infarction is a major risk factor for heart failure. Recent evidence suggests that miR-195-3p is up-regulated in fibrotic diseases, including kidney and liver fibrosis. However, its function and underlying mechanisms in cardiac fibrosis after MI remain unknown. To investigate the role of miR-195-3p in MI-induced cardiac fibrosis, we established acute MI models by ligating adult C57B/L6 mice LAD coronary artery while sham-operated mice were used as controls. In vivo inhibition of miR-195-3p was conducted by intramyocardial injection of AAV9-anti-miR-195-3p. In vitro overexpression and inhibition of miR-195-3p were performed by transfecting cultured Cardiac Fibroblasts (CFs) with synthetic miRNA mimic and inhibitor. Our results showed that MI induced the expression of miR-195-3p and that inhibition of miR-195-3p reduced myofibroblast differentiation and collagen deposition and protected cardiac function. In vitro stimulation of CFs with TGF-β1 resulted in a significant increase in miR-195-3p expression. Inhibition of miR-195-3p attenuated the TGF-β1-induced expression of ECM proteins, migration, and proliferation. PTEN expression was significantly reduced in the hearts of MI mice, in activated CFs, and in CFs transfected with miR-195-3p mimic. Inhibition of miR-195-3p markedly restored PTEN expression in MI mice and TGF-β1-treated CFs. In conclusion, this study highlights the crucial role of miR-195-3p in promoting cardiac fibrosis and dysfunction after MI. Inhibiting miR-195-3p could be a promising therapeutic strategy for preventing cardiac fibrosis and preserving cardiac function after MI. Additionally, the study sheds light on the mechanisms underlying the effects of miR-195-3p on fibrosis, including its regulation of PTEN/AKT pathway.
Collapse
Affiliation(s)
- Abdlay Carvalho
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Dingjiaqiao No. 87, Nanjing 210009, Jiangsu, China
| | - Zhenjun Ji
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Dingjiaqiao No. 87, Nanjing 210009, Jiangsu, China
| | - Rui Zhang
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Dingjiaqiao No. 87, Nanjing 210009, Jiangsu, China
| | - Wenjie Zuo
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Dingjiaqiao No. 87, Nanjing 210009, Jiangsu, China
| | - Yangyang Qu
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Dingjiaqiao No. 87, Nanjing 210009, Jiangsu, China
| | - Xi Chen
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Dingjiaqiao No. 87, Nanjing 210009, Jiangsu, China
| | - Zaixiao Tao
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Dingjiaqiao No. 87, Nanjing 210009, Jiangsu, China
| | - Jingjing Ji
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Dingjiaqiao No. 87, Nanjing 210009, Jiangsu, China
| | - Yuyu Yao
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Dingjiaqiao No. 87, Nanjing 210009, Jiangsu, China
| | - Genshan Ma
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Dingjiaqiao No. 87, Nanjing 210009, Jiangsu, China.
| |
Collapse
|
8
|
Dave J, Jagana V, Janostiak R, Bisserier M. Unraveling the epigenetic landscape of pulmonary arterial hypertension: implications for personalized medicine development. J Transl Med 2023; 21:477. [PMID: 37461108 DOI: 10.1186/s12967-023-04339-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 07/10/2023] [Indexed: 07/20/2023] Open
Abstract
Pulmonary arterial hypertension (PAH) is a multifactorial disease associated with the remodeling of pulmonary blood vessels. If left unaddressed, PAH can lead to right heart failure and even death. Multiple biological processes, such as smooth muscle proliferation, endothelial dysfunction, inflammation, and resistance to apoptosis, are associated with PAH. Increasing evidence suggests that epigenetic factors play an important role in PAH by regulating the chromatin structure and altering the expression of critical genes. For example, aberrant DNA methylation and histone modifications such as histone acetylation and methylation have been observed in patients with PAH and are linked to vascular remodeling and pulmonary vascular dysfunction. In this review article, we provide a comprehensive overview of the role of key epigenetic targets in PAH pathogenesis, including DNA methyltransferase (DNMT), ten-eleven translocation enzymes (TET), switch-independent 3A (SIN3A), enhancer of zeste homolog 2 (EZH2), histone deacetylase (HDAC), and bromodomain-containing protein 4 (BRD4). Finally, we discuss the potential of multi-omics integration to better understand the molecular signature and profile of PAH patients and how this approach can help identify personalized treatment approaches.
Collapse
Affiliation(s)
- Jaydev Dave
- Department of Cell Biology and Anatomy, New York Medical College, 15 Dana Road, BSB 131A, Valhalla, NY, 10595, USA
- Department of Physiology, New York Medical College, 15 Dana Road, BSB 131A, Valhalla, NY, 10595, USA
| | - Vineeta Jagana
- Department of Cell Biology and Anatomy, New York Medical College, 15 Dana Road, BSB 131A, Valhalla, NY, 10595, USA
- Department of Physiology, New York Medical College, 15 Dana Road, BSB 131A, Valhalla, NY, 10595, USA
| | - Radoslav Janostiak
- First Faculty of Medicine, BIOCEV, Charles University, Vestec, 25250, Czech Republic
| | - Malik Bisserier
- Department of Cell Biology and Anatomy, New York Medical College, 15 Dana Road, BSB 131A, Valhalla, NY, 10595, USA.
- Department of Physiology, New York Medical College, 15 Dana Road, BSB 131A, Valhalla, NY, 10595, USA.
| |
Collapse
|
9
|
Jandl K, Radic N, Zeder K, Kovacs G, Kwapiszewska G. Pulmonary vascular fibrosis in pulmonary hypertension - The role of the extracellular matrix as a therapeutic target. Pharmacol Ther 2023; 247:108438. [PMID: 37210005 DOI: 10.1016/j.pharmthera.2023.108438] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/03/2023] [Accepted: 05/15/2023] [Indexed: 05/22/2023]
Abstract
Pulmonary hypertension (PH) is a condition characterized by changes in the extracellular matrix (ECM) deposition and vascular remodeling of distal pulmonary arteries. These changes result in increased vessel wall thickness and lumen occlusion, leading to a loss of elasticity and vessel stiffening. Clinically, the mechanobiology of the pulmonary vasculature is becoming increasingly recognized for its prognostic and diagnostic value in PH. Specifically, the increased vascular fibrosis and stiffening resulting from ECM accumulation and crosslinking may be a promising target for the development of anti- or reverse-remodeling therapies. Indeed, there is a huge potential in therapeutic interference with mechano-associated pathways in vascular fibrosis and stiffening. The most direct approach is aiming to restore extracellular matrix homeostasis, by interference with its production, deposition, modification and turnover. Besides structural cells, immune cells contribute to the level of ECM maturation and degradation by direct cell-cell contact or the release of mediators and proteases, thereby opening a huge avenue to target vascular fibrosis via immunomodulation approaches. Indirectly, intracellular pathways associated with altered mechanobiology, ECM production, and fibrosis, offer a third option for therapeutic intervention. In PH, a vicious cycle of persistent activation of mechanosensing pathways such as YAP/TAZ initiates and perpetuates vascular stiffening, and is linked to key pathways disturbed in PH, such as TGF-beta/BMPR2/STAT. Together, this complexity of the regulation of vascular fibrosis and stiffening in PH allows the exploration of numerous potential therapeutic interventions. This review discusses connections and turning points of several of these interventions in detail.
Collapse
Affiliation(s)
- Katharina Jandl
- Division of Pharmacology, Otto Loewi Research Center, Medical University Graz, Graz, Austria; Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Graz, Austria.
| | - Nemanja Radic
- Division of Physiology, Otto Loewi Research Center, Medical University Graz, Graz, Austria
| | - Katarina Zeder
- Division of Pulmonology, Department of Internal Medicine, Medical University of Graz, Graz, Austria; Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Gabor Kovacs
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Graz, Austria; Division of Pulmonology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Grazyna Kwapiszewska
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Graz, Austria; Division of Physiology, Otto Loewi Research Center, Medical University Graz, Graz, Austria; Institute for Lung Health, Member of the German Lung Center (DZL), Giessen, Germany
| |
Collapse
|
10
|
Fetal pulmonary hypertension: dysregulated microRNA-34c-Notch1 axis contributes to impaired angiogenesis in an ovine model. Pediatr Res 2023; 93:551-558. [PMID: 35717485 PMCID: PMC9759620 DOI: 10.1038/s41390-022-02151-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 05/17/2022] [Accepted: 05/26/2022] [Indexed: 11/09/2022]
Abstract
BACKGROUND Persistent pulmonary hypertension of the newborn (PPHN) occurs when pulmonary vascular resistance (PVR) fails to decrease at birth. Decreased angiogenesis in the lung contributes to the persistence of high PVR at birth. MicroRNAs (miRNAs) regulate gene expression through transcript binding and degradation. They were implicated in dysregulated angiogenesis in cancer and cardiovascular disease. METHODS We investigated whether altered miRNA levels contribute to impaired angiogenesis in PPHN. We used a fetal lamb model of PPHN induced by prenatal ductus arteriosus constriction and sham ligation as controls. We performed RNA sequencing of pulmonary artery endothelial cells (PAECs) isolated from control and PPHN lambs. RESULTS We observed a differentially expressed miRNA profile in PPHN for organ development, cell-cell signaling, and cardiovascular function. MiR-34c was upregulated in PPHN PAECs compared to controls. Exogenous miR34c mimics decreased angiogenesis by control PAEC and anti-miR34c improved angiogenesis of PPHN PAEC in vitro. Notch1, a predicted target for miR-34c by bioinformatics, was decreased in PPHN PAECs, along with Notch1 downstream targets, Hey1 and Hes1. Exogenous miR-34c decreased Notch1 expression in control PAECs and anti-miR-34c restored Notch1 and Hes1 expression in PPHN PAECs. CONCLUSION We conclude that increased miR-34c in PPHN contributes to impaired angiogenesis by decreasing Notch1 expression in PAECs. IMPACT Adds a novel mechanism for the regulation of angiogenesis in persistent pulmonary hypertension of the newborn. Identifies non-coding RNAs that are involved in the altered angiogenesis in PPHN and thus the potential for future studies to identify links between known pathways regulating angiogenesis. Provides preliminary data to conduct studies targeting miR34c expression in vivo in animal models of pulmonary hypertension to identify the mechanistic role of miR34c in angiogenesis in the lung vasculature.
Collapse
|
11
|
Han Y, Zhu Y, Youngblood HA, Almuntashiri S, Jones TW, Wang X, Liu Y, Somanath PR, Zhang D. Nebulization of extracellular vesicles: A promising small RNA delivery approach for lung diseases. J Control Release 2022; 352:556-569. [PMID: 36341934 DOI: 10.1016/j.jconrel.2022.10.052] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 10/13/2022] [Accepted: 10/25/2022] [Indexed: 11/06/2022]
Abstract
Small extracellular vesicles (sEVs) are a group of cell-secreted nanovesicles with a diameter up to 200 nm. A growing number of studies have indicated that sEVs can reflect the pathogenesis of human diseases and mediate intercellular communications. Recently, sEV research has drastically increased due to their drug delivery property. However, a comprehensive method of delivering exogenous small RNAs-loaded sEVs through nebulization has not been reported. The methodology is complicated by uncertainty regarding the integrity of sEVs after nebulization, the delivery efficiency of aerosolized sEVs, their deposition in the lungs/cells, etc. This study demonstrates that sEVs can be delivered to murine lungs through a vibrating mesh nebulizer (VMN). In vivo sEV tracking indicated that inhaled sEVs were distributed exclusively in the lung and localized primarily in lung macrophages and airway epithelial cells. Additionally, sEVs loaded with small RNAs were successfully delivered into the lungs. The administration of siMyd88-loaded sEVs through inhalation reduced lipopolysaccharide (LPS)-induced lung injury in mice, supporting an application of this nebulization methodology to deliver functional small RNAs. Collectively, our study proposes a novel method of sEVs-mediated small RNA delivery into the murine lung through nebulization and presents a potential sEV-based therapeutic strategy for human lung diseases.
Collapse
Affiliation(s)
- Yohan Han
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia and Charlie Norwood VA Medical Center, Augusta, GA 30912, United States
| | - Yin Zhu
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia and Charlie Norwood VA Medical Center, Augusta, GA 30912, United States
| | - Hannah A Youngblood
- Department of Cellular Biology and Anatomy, Augusta University, Augusta, GA 30912, United States
| | - Sultan Almuntashiri
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia and Charlie Norwood VA Medical Center, Augusta, GA 30912, United States
| | - Timothy W Jones
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia and Charlie Norwood VA Medical Center, Augusta, GA 30912, United States
| | - Xiaoyun Wang
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia and Charlie Norwood VA Medical Center, Augusta, GA 30912, United States
| | - Yutao Liu
- Department of Cellular Biology and Anatomy, Augusta University, Augusta, GA 30912, United States
| | - Payaningal R Somanath
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia and Charlie Norwood VA Medical Center, Augusta, GA 30912, United States; Vascular Biology Center, Augusta University, Augusta, GA 30912, United States
| | - Duo Zhang
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia and Charlie Norwood VA Medical Center, Augusta, GA 30912, United States; Vascular Biology Center, Augusta University, Augusta, GA 30912, United States; Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States.
| |
Collapse
|
12
|
Rogula S, Pomirski B, Czyżak N, Eyileten C, Postuła M, Szarpak Ł, Filipiak KJ, Kurzyna M, Jaguszewski M, Mazurek T, Grabowski M, Gąsecka A. Biomarker-based approach to determine etiology and severity of pulmonary hypertension: Focus on microRNA. Front Cardiovasc Med 2022; 9:980718. [PMID: 36277769 PMCID: PMC9582157 DOI: 10.3389/fcvm.2022.980718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 09/12/2022] [Indexed: 11/25/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is characterized by remodeling of the pulmonary arteries, and defined by elevated pulmonary arterial pressure, measured during right heart catheterization. There are three main challenges to the diagnostic and therapeutic process of patients with PAH. First, it is difficult to differentiate particular PAH etiology. Second, invasive diagnostic is required to precisely determine the severity of PAH, and thus to qualify patients for an appropriate treatment. Third, the results of treatment of PAH are unpredictable and remain unsatisfactory. MicroRNAs (miRNAs) are small non-coding RNAs that regulate post transcriptional gene-expression. Their role as a prognostic, and diagnostic biomarkers in many different diseases have been studied in recent years. MiRNAs are promising novel biomarkers in PAH due to their activity in various molecular pathways and processes underlying PAH. Lack of biomarkers to differentiate between particular PAH etiology and evaluate the severity of PAH, as well as paucity of therapeutic targets in PAH open a new field for the possibility to use miRNAs in these applications. In our article, we discuss the potential of miRNAs use as diagnostic tools, prognostic biomarkers and therapeutic targets in PAH.
Collapse
Affiliation(s)
- Sylwester Rogula
- 1st Chair and Department of Cardiology, Medical University of Warsaw, Warsaw, Poland,*Correspondence: Sylwester Rogula,
| | - Bartosz Pomirski
- 1st Chair and Department of Cardiology, Medical University of Warsaw, Warsaw, Poland
| | - Norbert Czyżak
- 1st Chair and Department of Cardiology, Medical University of Warsaw, Warsaw, Poland
| | - Ceren Eyileten
- Department of Experimental and Clinical Pharmacology, Centre for Preclinical Research and Technology, Medical University of Warsaw, Warsaw, Poland,Genomics Core Facility, Center of New Technologies (CeNT), University of Warsaw, Warsaw, Poland
| | - Marek Postuła
- Department of Experimental and Clinical Pharmacology, Centre for Preclinical Research and Technology, Medical University of Warsaw, Warsaw, Poland
| | - Łukasz Szarpak
- Department of Outcomes Research, Maria Skłodowska-Curie Medical Academy in Warsaw, Warsaw, Poland
| | - Krzysztof J. Filipiak
- Institute of Clinical Sciences, Maria Skłodowska-Curie Medical Academy in Warsaw, Warsaw, Poland
| | - Marcin Kurzyna
- Department of Pulmonary Circulation, Thromboembolic Diseases and Cardiology, Centre of Postgraduate Medical Education, European Health Centre Otwock, Otwock, Poland
| | - Miłosz Jaguszewski
- 1st Department of Cardiology, Medical University of Gdańsk, Gdańsk, Poland
| | - Tomasz Mazurek
- 1st Chair and Department of Cardiology, Medical University of Warsaw, Warsaw, Poland
| | - Marcin Grabowski
- 1st Chair and Department of Cardiology, Medical University of Warsaw, Warsaw, Poland
| | - Aleksandra Gąsecka
- 1st Chair and Department of Cardiology, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
13
|
Differential expression of aqueous humor microRNAs in central retinal vein occlusion and its association with matrix metalloproteinases: a pilot study. Sci Rep 2022; 12:16429. [PMID: 36180575 PMCID: PMC9525721 DOI: 10.1038/s41598-022-20834-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 09/19/2022] [Indexed: 11/16/2022] Open
Abstract
The aim of this study is to investigate the differential expression of microRNAs (miRNAs) in the aqueous humor (AH) of patients with central retinal vein occlusion (CRVO), and their association with AH matrix metalloproteinase (MMP) activity. Eighteen subjects, including 10 treatment naïve patients with CRVO and 8 control subjects, scheduled for intravitreal injection and cataract surgery, respectively, were included. AH samples were collected at the beginning of the procedure. A microarray composed of 84 miRNAs was performed to identify differentially expressed miRNAs in CRVO AH, which were further analyzed using bioinformatic tools to identify directly related cytokines/proteins. Eight miRNAs (hsa-mir-16-5p, hsa-mir-142-3p, hsa-mir-19a-3p, hsa-mir-144-3p, hsa-mir-195-5p, hsa-mir-17-5p, hsa-mir-93-5p, and hsa-mir-20a-5p) were significantly downregulated in the CRVO group. Bioinformatic analysis revealed a direct relationship among downregulated miRNAs, CRVO, and the following proteins: MMP-2, MMP-9, tumor necrosis factor, transforming growth factor beta-1, caspase-3, interleukin-6, interferon gamma, and interleukin-1-beta. Activities of MMP-2 and -9 in AH were detected using gelatin zymography, showing significant increase in the CRVO group compared to the control group (p < 0.01). This pilot study first revealed that MMP-2 and -9 were directly related to downregulated miRNAs and showed significant increase in activity in AH of patients with CRVO. Therefore, the relevant miRNAs and MMPs in AH could serve as potential biomarkers or therapeutic targets for CRVO.
Collapse
|
14
|
Circulating Microparticles Are Differentially Increased in Lowlanders and Highlanders with High Altitude Induced Pulmonary Hypertension during the Cold Season. Cells 2022; 11:cells11192932. [PMID: 36230894 PMCID: PMC9563667 DOI: 10.3390/cells11192932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/12/2022] [Accepted: 09/15/2022] [Indexed: 11/16/2022] Open
Abstract
The role of microparticles (MPs) and cold in high altitude pulmonary hypertension (HAPH) remains unexplored. We investigated the impact of long-term cold exposure on the pulmonary circulation in lowlanders and high-altitude natives and the role of MPs. Pulmonary hemodynamics were evaluated using Doppler echocardiography at the end of the colder and warmer seasons. We further examined the miRNA content of MPs isolated from the study participants and studied their effects on human pulmonary artery smooth muscle (hPASMCs) and endothelial cells (hPAECs). Long-term exposure to cold environment was associated with an enhanced pulmonary artery pressure in highlanders. Plasma levels of CD62E-positive and CD68-positive MPs increased in response to cold in lowlanders and HAPH highlanders. The miRNA-210 expression contained in MPs differentially changed in response to cold in lowlanders and highlanders. MPs isolated from lowlanders and highlanders increased proliferation and reduced apoptosis of hPASMCs. Further, MPs isolated from warm-exposed HAPH highlanders and cold-exposed highlanders exerted the most pronounced effects on VEGF expression in hPAECs. We demonstrated that prolonged exposure to cold is associated with elevated pulmonary artery pressures, which are most pronounced in high-altitude residents. Further, the numbers of circulating MPs are differentially increased in lowlanders and HAPH highlanders during the colder season.
Collapse
|
15
|
Molecular Pathways in Pulmonary Arterial Hypertension. Int J Mol Sci 2022; 23:ijms231710001. [PMID: 36077398 PMCID: PMC9456336 DOI: 10.3390/ijms231710001] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/20/2022] [Accepted: 08/23/2022] [Indexed: 11/16/2022] Open
Abstract
Pulmonary arterial hypertension is a multifactorial, chronic disease process that leads to pulmonary arterial endothelial dysfunction and smooth muscular hypertrophy, resulting in impaired pliability and hemodynamics of the pulmonary vascular system, and consequent right ventricular dysfunction. Existing treatments target limited pathways with only modest improvement in disease morbidity, and little or no improvement in mortality. Ongoing research has focused on the molecular basis of pulmonary arterial hypertension and is going to be important in the discovery of new treatments and genetic pathways involved. This review focuses on the molecular pathogenesis of pulmonary arterial hypertension.
Collapse
|
16
|
Selle J, Dinger K, Jentgen V, Zanetti D, Will J, Georgomanolis T, Vohlen C, Wilke R, Kojonazarov B, Klymenko O, Mohr J, V Koningsbruggen-Rietschel S, Rhodes CJ, Ulrich A, Hirani D, Nestler T, Odenthal M, Mahabir E, Nayakanti S, Dabral S, Wunderlich T, Priest J, Seeger W, Dötsch J, Pullamsetti SS, Alejandre Alcazar MA. Maternal and perinatal obesity induce bronchial obstruction and pulmonary hypertension via IL-6-FoxO1-axis in later life. Nat Commun 2022; 13:4352. [PMID: 35896539 PMCID: PMC9329333 DOI: 10.1038/s41467-022-31655-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 06/22/2022] [Indexed: 02/06/2023] Open
Abstract
Obesity is a pre-disposing condition for chronic obstructive pulmonary disease, asthma, and pulmonary arterial hypertension. Accumulating evidence suggests that metabolic influences during development can determine chronic lung diseases (CLD). We demonstrate that maternal obesity causes early metabolic disorder in the offspring. Here, interleukin-6 induced bronchial and microvascular smooth muscle cell (SMC) hyperproliferation and increased airway and pulmonary vascular resistance. The key anti-proliferative transcription factor FoxO1 was inactivated via nuclear exclusion. These findings were confirmed using primary SMC treated with interleukin-6 and pharmacological FoxO1 inhibition as well as genetic FoxO1 ablation and constitutive activation. In vivo, we reproduced the structural and functional alterations in offspring of obese dams via the SMC-specific ablation of FoxO1. The reconstitution of FoxO1 using IL-6-deficient mice and pharmacological treatment did not protect against metabolic disorder but prevented SMC hyperproliferation. In human observational studies, childhood obesity was associated with reduced forced expiratory volume in 1 s/forced vital capacity ratio Z-score (used as proxy for lung function) and asthma. We conclude that the interleukin-6-FoxO1 pathway in SMC is a molecular mechanism by which perinatal obesity programs the bronchial and vascular structure and function, thereby driving CLD development. Thus, FoxO1 reconstitution provides a potential therapeutic option for preventing this metabolic programming of CLD.
Collapse
Affiliation(s)
- Jaco Selle
- Faculty of Medicine and University Hospital Cologne, Translational Experimental Pediatrics-Experimental Pulmonology, Department of Pediatric and Adolescent Medicine, University of Cologne, Cologne, Germany
| | - Katharina Dinger
- Faculty of Medicine and University Hospital Cologne, Translational Experimental Pediatrics-Experimental Pulmonology, Department of Pediatric and Adolescent Medicine, University of Cologne, Cologne, Germany
- Faculty of Medicine and University Hospital Cologne, Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Vanessa Jentgen
- Faculty of Medicine and University Hospital Cologne, Translational Experimental Pediatrics-Experimental Pulmonology, Department of Pediatric and Adolescent Medicine, University of Cologne, Cologne, Germany
| | - Daniela Zanetti
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA
| | - Johannes Will
- Faculty of Medicine and University Hospital Cologne, Translational Experimental Pediatrics-Experimental Pulmonology, Department of Pediatric and Adolescent Medicine, University of Cologne, Cologne, Germany
| | - Theodoros Georgomanolis
- Faculty of Medicine and University Hospital Cologne, Cologne Center for Genomics (CCG), University of Cologne, Cologne, Germany
| | - Christina Vohlen
- Faculty of Medicine and University Hospital Cologne, Translational Experimental Pediatrics-Experimental Pulmonology, Department of Pediatric and Adolescent Medicine, University of Cologne, Cologne, Germany
- Faculty of Medicine and University Hospital Cologne, Department of Pediatric and Adolescent Medicine, University of Cologne, Cologne, Germany
- Institute for Lung Health (ILH), University of Giessen and Marburg Lung Centre (UGMLC), Member of the German Centre for Lung Research (DZL), Gießen, Germany
| | - Rebecca Wilke
- Faculty of Medicine and University Hospital Cologne, Translational Experimental Pediatrics-Experimental Pulmonology, Department of Pediatric and Adolescent Medicine, University of Cologne, Cologne, Germany
| | - Baktybek Kojonazarov
- Institute for Lung Health (ILH), University of Giessen and Marburg Lung Centre (UGMLC), Member of the German Centre for Lung Research (DZL), Gießen, Germany
| | - Oleksiy Klymenko
- Institute for Lung Health (ILH), University of Giessen and Marburg Lung Centre (UGMLC), Member of the German Centre for Lung Research (DZL), Gießen, Germany
| | - Jasmine Mohr
- Faculty of Medicine and University Hospital Cologne, Translational Experimental Pediatrics-Experimental Pulmonology, Department of Pediatric and Adolescent Medicine, University of Cologne, Cologne, Germany
| | - Silke V Koningsbruggen-Rietschel
- Faculty of Medicine and University Hospital Cologne, Pediatric Pulmonology, Department of Pediatric and Adolescent Medicine, University of Cologne, Cologne, Germany
| | - Christopher J Rhodes
- National Heart and Lung Institute, Hammersmith Campus, Imperial College London, London, UK
| | - Anna Ulrich
- National Heart and Lung Institute, Hammersmith Campus, Imperial College London, London, UK
| | - Dharmesh Hirani
- Faculty of Medicine and University Hospital Cologne, Translational Experimental Pediatrics-Experimental Pulmonology, Department of Pediatric and Adolescent Medicine, University of Cologne, Cologne, Germany
- Faculty of Medicine and University Hospital Cologne, Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
- Institute for Lung Health (ILH), University of Giessen and Marburg Lung Centre (UGMLC), Member of the German Centre for Lung Research (DZL), Gießen, Germany
| | - Tim Nestler
- Faculty of Medicine and University Hospital Cologne, Institute of Pathology, University of Cologne, Cologne, Germany
| | - Margarete Odenthal
- Faculty of Medicine and University Hospital Cologne, Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
- Faculty of Medicine and University Hospital Cologne, Institute of Pathology, University of Cologne, Cologne, Germany
| | - Esther Mahabir
- Faculty of Medicine and University Hospital Cologne, Comparative Medicine, Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Sreenath Nayakanti
- Department of Lung Development and Remodeling, Max-Planck-Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Bad Nauheim, Germany
| | - Swati Dabral
- Department of Lung Development and Remodeling, Max-Planck-Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Bad Nauheim, Germany
| | - Thomas Wunderlich
- Faculty of Medicine and University Hospital Cologne, Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
- Max-Planck-Institute for Metabolism Research, Cologne, Germany
- Faculty of Medicine and University Hospital Cologne, Cologne Excellence Cluster for Stress Responses in Ageing-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - James Priest
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Werner Seeger
- Institute for Lung Health (ILH), University of Giessen and Marburg Lung Centre (UGMLC), Member of the German Centre for Lung Research (DZL), Gießen, Germany
- Department of Lung Development and Remodeling, Max-Planck-Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Bad Nauheim, Germany
- Department of Internal Medicine, German Center for Lung Research (DZL), Cardio-Pulmonary Institute (CPI), Justus Liebig University, Giessen, Germany
| | - Jörg Dötsch
- Faculty of Medicine and University Hospital Cologne, Department of Pediatric and Adolescent Medicine, University of Cologne, Cologne, Germany
| | - Soni S Pullamsetti
- Institute for Lung Health (ILH), University of Giessen and Marburg Lung Centre (UGMLC), Member of the German Centre for Lung Research (DZL), Gießen, Germany
- Department of Lung Development and Remodeling, Max-Planck-Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Bad Nauheim, Germany
- Department of Internal Medicine, German Center for Lung Research (DZL), Cardio-Pulmonary Institute (CPI), Justus Liebig University, Giessen, Germany
| | - Miguel A Alejandre Alcazar
- Faculty of Medicine and University Hospital Cologne, Translational Experimental Pediatrics-Experimental Pulmonology, Department of Pediatric and Adolescent Medicine, University of Cologne, Cologne, Germany.
- Faculty of Medicine and University Hospital Cologne, Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.
- Institute for Lung Health (ILH), University of Giessen and Marburg Lung Centre (UGMLC), Member of the German Centre for Lung Research (DZL), Gießen, Germany.
- Faculty of Medicine and University Hospital Cologne, Cologne Excellence Cluster for Stress Responses in Ageing-Associated Diseases (CECAD), University of Cologne, Cologne, Germany.
- Department of Internal Medicine, German Center for Lung Research (DZL), Cardio-Pulmonary Institute (CPI), Justus Liebig University, Giessen, Germany.
| |
Collapse
|
17
|
Azhdari MH, Goodarzi N, Doroudian M, MacLoughlin R. Molecular Insight into the Therapeutic Effects of Stem Cell-Derived Exosomes in Respiratory Diseases and the Potential for Pulmonary Delivery. Int J Mol Sci 2022; 23:ijms23116273. [PMID: 35682948 PMCID: PMC9181737 DOI: 10.3390/ijms23116273] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 05/31/2022] [Accepted: 06/01/2022] [Indexed: 02/07/2023] Open
Abstract
Respiratory diseases are the cause of millions of deaths annually around the world. Despite the recent growth of our understanding of underlying mechanisms contributing to the pathogenesis of lung diseases, most therapeutic approaches are still limited to symptomatic treatments and therapies that only delay disease progression. Several clinical and preclinical studies have suggested stem cell (SC) therapy as a promising approach for treating various lung diseases. However, challenges such as the potential tumorigenicity, the low survival rate of the SCs in the recipient body, and difficulties in cell culturing and storage have limited the applicability of SC therapy. SC-derived extracellular vesicles (SC-EVs), particularly SC-derived exosomes (SC-Exos), exhibit most therapeutic properties of stem cells without their potential drawbacks. Similar to SCs, SC-Exos exhibit immunomodulatory, anti-inflammatory, and antifibrotic properties with the potential to be employed in the treatment of various inflammatory and chronic respiratory diseases. Furthermore, recent studies have demonstrated that the microRNA (miRNA) content of SC-Exos may play a crucial role in the therapeutic potential of these exosomes. Several studies have investigated the administration of SC-Exos via the pulmonary route, and techniques for SCs and SC-Exos delivery to the lungs by intratracheal instillation or inhalation have been developed. Here, we review the literature discussing the therapeutic effects of SC-Exos against respiratory diseases and advances in the pulmonary route of delivery of these exosomes to the damaged tissues.
Collapse
Affiliation(s)
- Mohammad H. Azhdari
- Department of Cell and Molecular Sciences, Faculty of Biological Sciences, Kharazmi University, Tehran 15719-14911, Iran; (M.H.A.); (N.G.)
| | - Nima Goodarzi
- Department of Cell and Molecular Sciences, Faculty of Biological Sciences, Kharazmi University, Tehran 15719-14911, Iran; (M.H.A.); (N.G.)
| | - Mohammad Doroudian
- Department of Cell and Molecular Sciences, Faculty of Biological Sciences, Kharazmi University, Tehran 15719-14911, Iran; (M.H.A.); (N.G.)
- Correspondence: author: (M.D.); (R.M.)
| | - Ronan MacLoughlin
- Research and Development, Science and Emerging Technologies, Aerogen Limited, IDA Business Park, H91 HE94 Galway, Ireland
- School of Pharmacy, Royal College of Surgeons, D02 YN77 Dublin, Ireland
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, D02 PN40 Dublin, Ireland
- Correspondence: author: (M.D.); (R.M.)
| |
Collapse
|
18
|
Abstract
Pulmonary hypertension (PH) because of chronic lung disease is categorized as Group 3 PH in the most recent classification system. Prevalence of these diseases is increasing over time, creating a growing need for effective therapeutic options. Recent approval of the first pulmonary arterial hypertension therapy for the treatment of Group 3 PH related to interstitial lung disease represents an encouraging advancement. This review focuses on molecular mechanisms contributing to pulmonary vasculopathy in chronic hypoxia, the pathology and epidemiology of Group 3 PH, the right ventricular dysfunction observed in this population and clinical trial data that inform the use of pulmonary vasodilators in Group 3 PH.
Collapse
Affiliation(s)
- Navneet Singh
- Division of Pulmonary, Critical Care and Sleep Medicine (N.S., C.E.V.), Brown University, Providence, RI
| | - Peter Dorfmüller
- Department of Pathology, Universities of Giessen and Marburg Lung Center (UGMLC), Justus-Liebig University, Germany (P.D.).,German Center for Lung Research (DZL), Giessen, Germany (P.D.)
| | - Oksana A Shlobin
- Advanced Lung Disease and Transplant Program, Inova Fairfax Hospital, Falls Church, VA (O.A.S.)
| | - Corey E Ventetuolo
- Division of Pulmonary, Critical Care and Sleep Medicine (N.S., C.E.V.), Brown University, Providence, RI.,Department of Health Services, Policy and Practice (C.E.V.), Brown University, Providence, RI
| |
Collapse
|
19
|
MicroRNAs in Pulmonary Hypertension, from Pathogenesis to Diagnosis and Treatment. Biomolecules 2022; 12:biom12040496. [PMID: 35454085 PMCID: PMC9031307 DOI: 10.3390/biom12040496] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/12/2022] [Accepted: 03/14/2022] [Indexed: 02/04/2023] Open
Abstract
Pulmonary hypertension (PH) is a fatal and untreatable disease, ultimately leading to right heart failure and eventually death. microRNAs are small, non-coding endogenous RNA molecules that can regulate gene expression and influence various biological processes. Changes in microRNA expression levels contribute to various cardiovascular disorders, and microRNAs have been shown to play a critical role in PH pathogenesis. In recent years, numerous studies have explored the role of microRNAs in PH, focusing on the expression profiles of microRNAs and their signaling pathways in pulmonary artery smooth muscle cells (PASMCs) or pulmonary artery endothelial cells (PAECs), PH models, and PH patients. Moreover, certain microRNAs, such as miR-150 and miR-26a, have been identified as good candidates of diagnosis biomarkers for PH. However, there are still several challenges for microRNAs as biomarkers, including difficulty in normalization, specificity in PH, and a lack of longitudinal and big sample-sized studies. Furthermore, microRNA target drugs are potential therapeutic agents for PH treatment, which have been demonstrated in PH models and in humans. Nonetheless, synthetic microRNA mimics or antagonists are susceptible to several common defects, such as low drug efficacy, inefficient drug delivery, potential toxicity and especially, off-target effects. Therefore, finding clinically safe and effective microRNA drugs remains a great challenge, and further breakthrough is urgently needed.
Collapse
|
20
|
Gierhardt M, Pak O, Sydykov A, Kraut S, Schäffer J, Garcia C, Veith C, Zeidan EM, Brosien M, Quanz K, Esfandiary A, Saraji A, Hadzic S, Kojonazarov B, Wilhelm J, Ghofrani HA, Schermuly RT, Seeger W, Grimminger F, Herden C, Schulz R, Weissmann N, Heger J, Sommer N. Genetic deletion of p66shc and/or cyclophilin D results in decreased pulmonary vascular tone. Cardiovasc Res 2022; 118:305-315. [PMID: 33119054 PMCID: PMC8752355 DOI: 10.1093/cvr/cvaa310] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Accepted: 10/15/2020] [Indexed: 11/13/2022] Open
Abstract
AIMS The pulmonary vascular tone and hypoxia-induced alterations of the pulmonary vasculature may be regulated by the mitochondrial membrane permeability transition pore (mPTP) that controls mitochondrial calcium load and apoptosis. We thus investigated, if the mitochondrial proteins p66shc and cyclophilin D (CypD) that regulate mPTP opening affect the pulmonary vascular tone. METHODS AND RESULTS Mice deficient for p66shc (p66shc-/-), CypD (CypD-/-), or both proteins (p66shc/CypD-/-) exhibited decreased pulmonary vascular resistance (PVR) compared to wild-type mice determined in isolated lungs and in vivo. In contrast, systemic arterial pressure was only lower in CypD-/- mice. As cardiac function and pulmonary vascular remodelling did not differ between genotypes, we determined alterations of vascular contractility in isolated lungs and calcium handling in pulmonary arterial smooth muscle cells (PASMC) as underlying reason for decreased PVR. Potassium chloride (KCl)-induced pulmonary vasoconstriction and KCl-induced cytosolic calcium increase determined by Fura-2 were attenuated in all gene-deficient mice. In contrast, KCl-induced mitochondrial calcium increase determined by the genetically encoded Mito-Car-GECO and calcium retention capacity were increased only in CypD-/- and p66shc/CypD-/- mitochondria indicating that decreased mPTP opening affected KCl-induced intracellular calcium peaks in these cells. All mouse strains showed a similar pulmonary vascular response to chronic hypoxia, while acute hypoxic pulmonary vasoconstriction was decreased in gene-deficient mice indicating that CypD and p66shc regulate vascular contractility but not remodelling. CONCLUSIONS We conclude that p66shc specifically regulates the pulmonary vascular tone, while CypD also affects systemic pressure. However, only CypD acts via regulation of mPTP opening and mitochondrial calcium regulation.
Collapse
MESH Headings
- Animals
- Arterial Pressure
- Calcium/metabolism
- Calcium Signaling
- Cell Proliferation
- Cells, Cultured
- Peptidyl-Prolyl Isomerase F/deficiency
- Peptidyl-Prolyl Isomerase F/genetics
- Disease Models, Animal
- Gene Deletion
- Hypertension, Pulmonary/enzymology
- Hypertension, Pulmonary/etiology
- Hypertension, Pulmonary/genetics
- Hypertension, Pulmonary/physiopathology
- Hypoxia/complications
- Mice, Inbred C57BL
- Mice, Knockout
- Mitochondria/enzymology
- Mitochondria/genetics
- Mitochondrial Permeability Transition Pore/metabolism
- Pulmonary Artery/enzymology
- Pulmonary Artery/physiopathology
- Src Homology 2 Domain-Containing, Transforming Protein 1/deficiency
- Src Homology 2 Domain-Containing, Transforming Protein 1/genetics
- Vascular Remodeling
- Vascular Resistance
- Vasoconstriction
- Mice
Collapse
Affiliation(s)
- Mareike Gierhardt
- Excellence Cluster Cardio Pulmonary Institute (CPI), University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig University, Giessen, Germany
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA) - CONICET - Partner Institute of the Max Planck Society, Buenos Aires, Argentina
- Department of Lung Development and Remodeling, Max Planck Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Member of the Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany
| | - Oleg Pak
- Excellence Cluster Cardio Pulmonary Institute (CPI), University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig University, Giessen, Germany
| | - Akylbek Sydykov
- Excellence Cluster Cardio Pulmonary Institute (CPI), University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig University, Giessen, Germany
| | - Simone Kraut
- Excellence Cluster Cardio Pulmonary Institute (CPI), University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig University, Giessen, Germany
| | - Julia Schäffer
- Excellence Cluster Cardio Pulmonary Institute (CPI), University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig University, Giessen, Germany
| | - Claudia Garcia
- Excellence Cluster Cardio Pulmonary Institute (CPI), University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig University, Giessen, Germany
| | - Christine Veith
- Excellence Cluster Cardio Pulmonary Institute (CPI), University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig University, Giessen, Germany
| | - Esraa M Zeidan
- Excellence Cluster Cardio Pulmonary Institute (CPI), University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig University, Giessen, Germany
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Minia University, El-Minia, Egypt
| | - Monika Brosien
- Excellence Cluster Cardio Pulmonary Institute (CPI), University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig University, Giessen, Germany
| | - Karin Quanz
- Excellence Cluster Cardio Pulmonary Institute (CPI), University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig University, Giessen, Germany
| | - Azadeh Esfandiary
- Excellence Cluster Cardio Pulmonary Institute (CPI), University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig University, Giessen, Germany
| | - Alireza Saraji
- Excellence Cluster Cardio Pulmonary Institute (CPI), University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig University, Giessen, Germany
| | - Stefan Hadzic
- Excellence Cluster Cardio Pulmonary Institute (CPI), University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig University, Giessen, Germany
| | - Baktybek Kojonazarov
- Excellence Cluster Cardio Pulmonary Institute (CPI), University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig University, Giessen, Germany
- Institute for Lung Health (ILH), Giessen, Germany
| | - Jochen Wilhelm
- Excellence Cluster Cardio Pulmonary Institute (CPI), University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig University, Giessen, Germany
- Institute for Lung Health (ILH), Giessen, Germany
| | - Hossein A Ghofrani
- Excellence Cluster Cardio Pulmonary Institute (CPI), University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig University, Giessen, Germany
- Department of Medicine, Imperial College London, Du Cane Road, Hammersmith Campus, London, W12 0NN, UK
| | - Ralph T Schermuly
- Excellence Cluster Cardio Pulmonary Institute (CPI), University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig University, Giessen, Germany
| | - Werner Seeger
- Excellence Cluster Cardio Pulmonary Institute (CPI), University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig University, Giessen, Germany
- Department of Lung Development and Remodeling, Max Planck Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Member of the Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany
| | - Friedrich Grimminger
- Excellence Cluster Cardio Pulmonary Institute (CPI), University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig University, Giessen, Germany
| | - Christiane Herden
- Institute of Veterinary Pathology, Justus-Liebig University, Giessen, Germany
| | - Rainer Schulz
- Institute of Physiology, Justus-Liebig University, Giessen, Germany
| | - Norbert Weissmann
- Excellence Cluster Cardio Pulmonary Institute (CPI), University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig University, Giessen, Germany
| | - Jacqueline Heger
- Institute of Physiology, Justus-Liebig University, Giessen, Germany
| | - Natascha Sommer
- Excellence Cluster Cardio Pulmonary Institute (CPI), University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig University, Giessen, Germany
| |
Collapse
|
21
|
Zhong Y, Zhang Z, Chen X. Inhibition of miR-21 improves pulmonary vascular responses in bronchopulmonary dysplasia by targeting the DDAH1/ADMA/NO pathway. Open Med (Wars) 2022; 17:1949-1964. [PMID: 36561848 PMCID: PMC9743197 DOI: 10.1515/med-2022-0584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 09/07/2022] [Accepted: 10/02/2022] [Indexed: 12/14/2022] Open
Abstract
miR-21 has been confirmed to be overexpressed in neonatal rat lungs with hyperoxia-mediated bronchopulmonary dysplasia (BPD). The specific function of miR-21 in BPD is still unclear. We established the hyperoxia-induced BPD rat model in vivo and the hyperoxia-induced pulmonary microvascular endothelial cells (PMVECs) model in vitro. Transwell assay was utilized to detect the migratory capability of PMVECs. Tube formation assay was utilized to measure angiogenesis ability. ELISA was utilized to test nitric oxide (NO) production and the intracellular and extracellular Asymmetric Dimethylarginine (ADMA) concentration. Furthermore, the interaction between miR-21 and dimethylarginine dimethylaminohydrolase 1 (DDAH1) was evaluated using luciferase reporter assay. We found that miR-21 expression in PMVECs was increased by hyperoxia stimulation. Inhibition of miR-21 improved the migratory and angiogenic activities of PMVECs and overexpression of miR-21 exerted the opposite effects. Furthermore, knockdown of miR-21 increased NO production and decreased intracellular and extracellular ADMA concentration in hyperoxia-treated PMVECs. Next we proved that miR-21 could bind to DDAH1 and negatively regulate its expression. Rescues assays showed that DDAH1 knockdown reversed the effects of miR-21 depletion on hyperoxia-mediated PMVEC functions, NO production, and ADMA concentration. Importantly, miR-21 downregulation restored alveolarization and vascular density in BPD rats. This study demonstrates that inhibition of miR-21 improves pulmonary vascular responses in BPD by targeting the DDAH1/ADMA/NO pathway.
Collapse
Affiliation(s)
- Ying Zhong
- Department of Child Health Care, The First Affiliated Hospital of Nanjing Medical University, 368 Jiangdong North Road, Nanjing 210036, Jiangsu, China
| | - Zhiqun Zhang
- Department of Neonatology, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou 310000, Zhejiang, China
| | - Xiaoqing Chen
- Department of Pediatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210036, Jiangsu, China
| |
Collapse
|
22
|
Yildiz MT, Tutar L, Giritlioğlu NI, Bayram B, Tutar Y. MicroRNAs and Heat Shock Proteins in Breast Cancer Biology. Methods Mol Biol 2022; 2257:293-310. [PMID: 34432285 DOI: 10.1007/978-1-0716-1170-8_15] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Breast cancer has five major immune types; luminal A, luminal B, HER2, Basal-like, and normal-like. Cells produce a family of protein called heat shock proteins (Hsps) in response to exposure to thermal and other proteotoxic stresses play essential roles in cancer metabolism and this large family shows a diverse set of Hsp involvement in different breast cancer immune types. Recently, Hsp members categorized according to their immune type roles. Hsp family consists of several subtypes formed by molecular weight; Hsp70, Hsp90, Hsp100, Hsp40, Hsp60, and small molecule Hsps. Cancer cells employ Hsps as survival factors since most of these proteins prevent apoptosis. Several studies monitored Hsp roles in breast cancer cells and reported Hsp27 involvement in drug resistance, Hsp70 in tumor cell transformation-progression, and interaction with p53. Furthermore, the association of Hsp90 with steroid receptors and signaling proteins in patients with breast cancer directed research to focus on Hsp-based treatments. miRNAs are known to play key roles in all types of cancer that are upregulated or downregulated in cancer which respectively referred to as oncogenes (oncomirs) or tumor suppressors. Expression profiles of miRNAs may be used to classify, diagnose, and predict different cancer types. It is clear that miRNAs play regulatory roles in gene expression and this work reveals miRNA correlation to Hsp depending on specific breast cancer immune types. Deregulation of specific Hsp genes in breast cancer subtypes allows for identification of new targets for drug design and cancer treatment. Here, we performed miRNA network analysis by recruiting Hsp genes detected in breast cancer subtypes and reviewed some of the miRNAs related to aforementioned Hsp genes.
Collapse
Affiliation(s)
- Mehmet Taha Yildiz
- Division of Molecular Medicine, Hamidiye Institute of Health Sciences, University of Health Sciences, Istanbul, Turkey
| | - Lütfi Tutar
- Department of Molecular Biology and Genetics, Faculty of Art and Sciences, Kırşehir Ahi Evran University, Kırşehir, Turkey
| | - Nazlı Irmak Giritlioğlu
- Department of Molecular Medicine, Hamidiye Institute of Health Sciences, University of Health Sciences, Istanbul, Turkey
| | - Banu Bayram
- Department of Nutrition and Dietetics, Hamidiye Faculty of Health Sciences, University of Health Sciences, Istanbul, Turkey
| | - Yusuf Tutar
- Division of Molecular Medicine, Hamidiye Institute of Health Sciences, University of Health Sciences, Istanbul, Turkey. .,Division of Biochemistry, Department of Basic Pharmaceutical Sciences, Hamidiye Faculty of Pharmacy, University of Health Sciences, Istanbul, Turkey.
| |
Collapse
|
23
|
PPARγ increases HUWE1 to attenuate NF-κB/p65 and sickle cell disease with pulmonary hypertension. Blood Adv 2021; 5:399-413. [PMID: 33496741 DOI: 10.1182/bloodadvances.2020002754] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 12/07/2020] [Indexed: 12/17/2022] Open
Abstract
Sickle cell disease (SCD)-associated pulmonary hypertension (PH) causes significant morbidity and mortality. Here, we defined the role of endothelial specific peroxisome proliferator-activated receptor γ (PPARγ) function and novel PPARγ/HUWE1/miR-98 signaling pathways in the pathogenesis of SCD-PH. PH and right ventricular hypertrophy (RVH) were increased in chimeric Townes humanized sickle cell (SS) mice with endothelial-targeted PPARγ knockout (SSePPARγKO) compared with chimeric littermate control (SSLitCon). Lung levels of PPARγ, HUWE1, and miR-98 were reduced in SSePPARγKO mice compared with SSLitCon mice, whereas SSePPARγKO lungs were characterized by increased levels of p65, ET-1, and VCAM1. Collectively, these findings indicate that loss of endothelial PPARγ is sufficient to increase ET-1 and VCAM1 that contribute to endothelial dysfunction and SCD-PH pathogenesis. Levels of HUWE1 and miR-98 were decreased, and p65 levels were increased in the lungs of SS mice in vivo and in hemin-treated human pulmonary artery endothelial cells (HPAECs) in vitro. Although silencing of p65 does not regulate HUWE1 levels, the loss of HUWE1 increased p65 levels in HPAECs. Overexpression of PPARγ attenuated hemin-induced reductions of HUWE1 and miR-98 and increases in p65 and endothelial dysfunction. Similarly, PPARγ activation attenuated baseline PH and RVH and increased HUWE1 and miR-98 in SS lungs. In vitro, hemin treatment reduced PPARγ, HUWE1, and miR-98 levels and increased p65 expression, HPAEC monocyte adhesion, and proliferation. These derangements were attenuated by pharmacological PPARγ activation. Targeting these signaling pathways can favorably modulate a spectrum of pathobiological responses in SCD-PH pathogenesis, highlighting novel therapeutic targets in SCD pulmonary vascular dysfunction and PH.
Collapse
|
24
|
Li H, Yang Z, Gao F, Zhang Y, Meng W, Rong S. MicroRNA-17 as a potential diagnostic biomarker in pulmonary arterial hypertension. J Int Med Res 2021; 48:300060520920430. [PMID: 32600075 PMCID: PMC7328490 DOI: 10.1177/0300060520920430] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Objective This study aimed to detect circulating microRNA (miR)-17 and miR-20a levels in patients with pulmonary arterial hypertension (PAH), and to investigate whether circulating miR-17 levels are associated with PAH. Methods Thirty-five PAH patients and 20 healthy controls were enrolled in the study. Circulating miR-17 and miR-20a levels were measured using real-time PCR analysis. Results miR-17 levels were significantly increased in PAH patients compared with healthy controls. They were also higher in PAH patients at World Health Organization functional class (WHO FC) III–IV than WHO FC I–II PAH patients. There was no significant difference in miR-20a levels between PAH patients and controls. miR-17 had a high area under the corresponding receiver operating characteristic curve. Further, we found that circulating miR-17 levels correlated with the 6-minute walk distance, mean pulmonary artery pressure, and mean right atrial pressure in PAH patients. Conclusion Circulating miR-17 levels may be associated with human PAH. Therefore, miR-17 could be used as a diagnostic index and prognostic factor for PAH patients.
Collapse
Affiliation(s)
- Haiwen Li
- Department of Cardiology, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, P. R. China
| | - Zhiming Yang
- Department of Cardiology, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, P. R. China
| | - Fen Gao
- Department of Cardiology, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, P. R. China
| | - Yueying Zhang
- Department of Cardiology, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, P. R. China
| | - Weihao Meng
- Department of Cardiology, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, P. R. China
| | - Shuling Rong
- Department of Cardiology, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, P. R. China
| |
Collapse
|
25
|
Zhang S, Liu J, Zheng K, Chen L, Sun Y, Yao Z, Sun Y, Lin Y, Lin K, Yuan L. Exosomal miR-211 contributes to pulmonary hypertension via attenuating CaMK1/PPAR-γaxis. Vascul Pharmacol 2021; 136:106820. [PMID: 33238205 DOI: 10.1016/j.vph.2020.106820] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 09/30/2020] [Accepted: 11/17/2020] [Indexed: 12/11/2022]
Abstract
AIM Exsomes play a significant role in increasing pathophysiological processes by delivering their content. Recently, a variety of studies have showed exosomal microRNAs (miRNAs) are involved in pulmonary hypertension (PH) notably. In this study, we found that exosomal miR-211 was overexpressed in hypoxia-induced PH rats but its intrinsic regulation was unclear. Therefore, our aim was to reveal the underlying mechanism which overexpressed exosomal miR-211 targeted in the development of PH. METHODS 18 male SD rats were randomly divided into normoxia and hypoxia group, housed in normal or hypoxic chamber for 3 weeks respectively. Then, mean pulmonary arterial pressure (mPAP), pulmonary vascular resistance(PVR), right ventricular hypertrophy index(RV/(LV + S)), the percentage of medial wall area (WA%) and the percentage of medial wall thickness (WT%) were measured. Expression of miR-211 in exosomes was detected by qRT-PCR. Expression of Ca2+/calmodulin-dependent kinase1(CaMK1)and peroxisome proliferator-activated receptors-γ(PPAR-γ)in lung tissue were detected by Western blot(WB); After miR-211 overexpressed exosomes were injected to rats through caudal vein, mPAP, PVR, RV/(LV + S), WA% and WT% were also measured. Sequentially, hypoxia rats were injected with lentivirus riched in miR-211 inhibitor via tail vein, and PH-related indicators were measured. In vitro, after miR-211 was positively or negatively regulated in pulmonary arterial smooth muscle cell (PASMC) by plasmid transfection, proliferation of PASMC was detected by CCK8, as well as the expression of CaMK1 and PPAR- γ. Further, the relationship between CaMK1 and miR-211 was verified by Dual-Luciferase assay. And the regulatory relationship of CaMK1/PPAR- γ aixs was demonstrated in PASMC. RESULTS Evident increases of mPAP, PVR, RVHI, WT% and WA% were observed with hypoxia administration. And the concentration of plasma exosomes in hypoxia rats was increased and positively correlated with the above indexes. miR-211 in exosomes of PH was upregulated while the expression of CaMK1 and PPAR-γ decreased in lung tissues. Further, injection of exosomes overexpressed with miR-211 demonstrated that exosomal miR-211 aggravated PH while inhibition of miR-211 attenuated PH in rats. In vitro, overexpression of miR-211 promoted the proliferation of PASMC and inhibited expression of CaMK1 and PPAR-γ in PASMC. And Dual-luciferase assay demonstrated that CaMK1 was a downstream gene of miR-211. Plasmid transfection experiments indicated that CaMK1 can promote PPAR-γ expression. CONCLUSION Exosomal miR-211 promoted PH via inhibiting CaMK1/PPAR-γ axis, promoting PASMC proliferation in rats.
Collapse
Affiliation(s)
- Shuhao Zhang
- School of First Clinical Medicine, Wenzhou Medical University, Wenzhou, PR China
| | - Jiantao Liu
- School of Second Clinical Medicine, Wenzhou Medical University, Wenzhou, PR China
| | - Kaidi Zheng
- Department of Biochemistry, Basic Medical Science School, Wenzhou Medical University, Wenzhou, PR China
| | - Luowei Chen
- School of First Clinical Medicine, Wenzhou Medical University, Wenzhou, PR China
| | - Yupeng Sun
- School of First Clinical Medicine, Wenzhou Medical University, Wenzhou, PR China
| | - Zhengze Yao
- School of First Clinical Medicine, Wenzhou Medical University, Wenzhou, PR China
| | - Yiruo Sun
- School of Second Clinical Medicine, Wenzhou Medical University, Wenzhou, PR China
| | - Yufan Lin
- School of First Clinical Medicine, Wenzhou Medical University, Wenzhou, PR China
| | - Kexin Lin
- School of Second Clinical Medicine, Wenzhou Medical University, Wenzhou, PR China
| | - Linbo Yuan
- Department of Physiology, Basic Medical Science School, Wenzhou Medical University, Wenzhou, PR China.
| |
Collapse
|
26
|
Dannewitz Prosseda S, Ali MK, Spiekerkoetter E. Novel Advances in Modifying BMPR2 Signaling in PAH. Genes (Basel) 2020; 12:genes12010008. [PMID: 33374819 PMCID: PMC7824173 DOI: 10.3390/genes12010008] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/19/2020] [Accepted: 12/21/2020] [Indexed: 12/31/2022] Open
Abstract
Pulmonary Arterial Hypertension (PAH) is a disease of the pulmonary arteries, that is characterized by progressive narrowing of the pulmonary arterial lumen and increased pulmonary vascular resistance, ultimately leading to right ventricular dysfunction, heart failure and premature death. Current treatments mainly target pulmonary vasodilation and leave the progressive vascular remodeling unchecked resulting in persistent high morbidity and mortality in PAH even with treatment. Therefore, novel therapeutic strategies are urgently needed. Loss of function mutations of the Bone Morphogenetic Protein Receptor 2 (BMPR2) are the most common genetic factor in hereditary forms of PAH, suggesting that the BMPR2 pathway is fundamentally important in the pathogenesis. Dysfunctional BMPR2 signaling recapitulates the cellular abnormalities in PAH as well as the pathobiology in experimental pulmonary hypertension (PH). Approaches to restore BMPR2 signaling by increasing the expression of BMPR2 or its downstream signaling targets are currently actively explored as novel ways to prevent and improve experimental PH as well as PAH in patients. Here, we summarize existing as well as novel potential treatment strategies for PAH that activate the BMPR2 receptor pharmaceutically or genetically, increase the receptor availability at the cell surface, or reconstitute downstream BMPR2 signaling.
Collapse
Affiliation(s)
- Svenja Dannewitz Prosseda
- Division Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Stanford University, Stanford, CA 94305, USA; (S.D.P.); (M.K.A.)
- Vera Moulton Wall Center for Pulmonary Vascular Diseases, Stanford, CA 94305, USA
- Institute for Experimental and Clinical Pharmacology and Toxicology, Albert-Ludwigs University Freiburg, 79104 Freiburg, Germany
| | - Md Khadem Ali
- Division Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Stanford University, Stanford, CA 94305, USA; (S.D.P.); (M.K.A.)
- Vera Moulton Wall Center for Pulmonary Vascular Diseases, Stanford, CA 94305, USA
| | - Edda Spiekerkoetter
- Division Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Stanford University, Stanford, CA 94305, USA; (S.D.P.); (M.K.A.)
- Vera Moulton Wall Center for Pulmonary Vascular Diseases, Stanford, CA 94305, USA
- Correspondence:
| |
Collapse
|
27
|
Epigenetic Targets for Oligonucleotide Therapies of Pulmonary Arterial Hypertension. Int J Mol Sci 2020; 21:ijms21239222. [PMID: 33287230 PMCID: PMC7731052 DOI: 10.3390/ijms21239222] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 11/29/2020] [Accepted: 11/30/2020] [Indexed: 01/13/2023] Open
Abstract
Arterial wall remodeling underlies increased pulmonary vascular resistance and right heart failure in pulmonary arterial hypertension (PAH). None of the established vasodilator drug therapies for PAH prevents or reverse established arterial wall thickening, stiffening, and hypercontractility. Therefore, new approaches are needed to achieve long-acting prevention and reversal of occlusive pulmonary vascular remodeling. Several promising new drug classes are emerging from a better understanding of pulmonary vascular gene expression programs. In this review, potential epigenetic targets for small molecules and oligonucleotides will be described. Most are in preclinical studies aimed at modifying the growth of vascular wall cells in vitro or normalizing vascular remodeling in PAH animal models. Initial success with lung-directed delivery of oligonucleotides targeting microRNAs suggests other epigenetic mechanisms might also be suitable drug targets. Those targets include DNA methylation, proteins of the chromatin remodeling machinery, and long noncoding RNAs, all of which act as epigenetic regulators of vascular wall structure and function. The progress in testing small molecules and oligonucleotide-based drugs in PAH models is summarized.
Collapse
|
28
|
Swietlik EM, Prapa M, Martin JM, Pandya D, Auckland K, Morrell NW, Gräf S. 'There and Back Again'-Forward Genetics and Reverse Phenotyping in Pulmonary Arterial Hypertension. Genes (Basel) 2020; 11:E1408. [PMID: 33256119 PMCID: PMC7760524 DOI: 10.3390/genes11121408] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/17/2020] [Accepted: 11/23/2020] [Indexed: 02/07/2023] Open
Abstract
Although the invention of right heart catheterisation in the 1950s enabled accurate clinical diagnosis of pulmonary arterial hypertension (PAH), it was not until 2000 when the landmark discovery of the causative role of bone morphogenetic protein receptor type II (BMPR2) mutations shed new light on the pathogenesis of PAH. Since then several genes have been discovered, which now account for around 25% of cases with the clinical diagnosis of idiopathic PAH. Despite the ongoing efforts, in the majority of patients the cause of the disease remains elusive, a phenomenon often referred to as "missing heritability". In this review, we discuss research approaches to uncover the genetic architecture of PAH starting with forward phenotyping, which in a research setting should focus on stable intermediate phenotypes, forward and reverse genetics, and finally reverse phenotyping. We then discuss potential sources of "missing heritability" and how functional genomics and multi-omics methods are employed to tackle this problem.
Collapse
Affiliation(s)
- Emilia M. Swietlik
- Department of Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK; (E.M.S.); (M.P.); (J.M.M.); (D.P.); (K.A.); (N.W.M.)
- Royal Papworth Hospital NHS Foundation Trust, Cambridge CB2 0AY, UK
- Addenbrooke’s Hospital NHS Foundation Trust, Cambridge CB2 0QQ, UK
| | - Matina Prapa
- Department of Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK; (E.M.S.); (M.P.); (J.M.M.); (D.P.); (K.A.); (N.W.M.)
- Addenbrooke’s Hospital NHS Foundation Trust, Cambridge CB2 0QQ, UK
| | - Jennifer M. Martin
- Department of Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK; (E.M.S.); (M.P.); (J.M.M.); (D.P.); (K.A.); (N.W.M.)
| | - Divya Pandya
- Department of Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK; (E.M.S.); (M.P.); (J.M.M.); (D.P.); (K.A.); (N.W.M.)
| | - Kathryn Auckland
- Department of Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK; (E.M.S.); (M.P.); (J.M.M.); (D.P.); (K.A.); (N.W.M.)
| | - Nicholas W. Morrell
- Department of Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK; (E.M.S.); (M.P.); (J.M.M.); (D.P.); (K.A.); (N.W.M.)
- Royal Papworth Hospital NHS Foundation Trust, Cambridge CB2 0AY, UK
- Addenbrooke’s Hospital NHS Foundation Trust, Cambridge CB2 0QQ, UK
- NIHR BioResource for Translational Research, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK
| | - Stefan Gräf
- Department of Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK; (E.M.S.); (M.P.); (J.M.M.); (D.P.); (K.A.); (N.W.M.)
- NIHR BioResource for Translational Research, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0PT, UK
| |
Collapse
|
29
|
Santos-Ferreira CA, Abreu MT, Marques CI, Gonçalves LM, Baptista R, Girão HM. Micro-RNA Analysis in Pulmonary Arterial Hypertension: Current Knowledge and Challenges. ACTA ACUST UNITED AC 2020; 5:1149-1162. [PMID: 33294743 PMCID: PMC7691282 DOI: 10.1016/j.jacbts.2020.07.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/23/2020] [Accepted: 07/24/2020] [Indexed: 01/18/2023]
Abstract
The role of miRNAs in PAH is fast expanding, and it is increasingly difficult to identify which molecules have the highest translational potential. This review discusses the challenges in miRNA analysis and interpretation in PAH and highlights 4 promising miRNAs in this field. Additional pre-clinical studies and clinical trials are urgently needed to bring miRNAs from the bench to the bedside soon.
Pulmonary arterial hypertension (PAH) is a rare, chronic disease of the pulmonary vasculature that is associated with poor outcomes. Its pathogenesis is multifactorial and includes micro-RNA (miRNA) deregulation. The understanding of the role of miRNAs in PAH is expanding quickly, and it is increasingly difficult to identify which miRNAs have the highest translational potential. This review summarizes the current knowledge of miRNA expression in PAH, discusses the challenges in miRNA analysis and interpretation, and highlights 4 promising miRNAs in this field (miR-29, miR-124, miR-140, and miR-204).
Collapse
Key Words
- BMPR2, bone morphogenetic protein receptor type 2
- EPC, endothelial progenitor cell
- HIF, hypoxia-inducible factor
- HPAH, hereditary pulmonary arterial hypertension
- MCT, monocrotaline
- PAAF, pulmonary arterial adventitial fibroblast
- PAEC, pulmonary artery endothelial cell
- PAH, pulmonary arterial hypertension
- PASMC, pulmonary artery smooth muscle cells
- PH, pulmonary hypertension
- RV, right ventricle
- SU/Hx/Nx, association of Sugen 5416 with chronic hypoxia followed by normoxia
- WHO, World Health Organization
- animal model
- lncRNA, long noncoding RNA
- mRNA, messenger RNA
- miRNA, micro-RNA
- micro-RNA
- microarray
- ncRNAs, noncoding RNAs
- pulmonary arterial hypertension
Collapse
Affiliation(s)
- Cátia A Santos-Ferreira
- Cardiology Department, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal.,Clinical Academic Centre of Coimbra, Coimbra, Portugal
| | - Mónica T Abreu
- University of Coimbra, Coimbra Institute for Clinical and Biomedical Research, Faculty of Medicine, Coimbra, Portugal.,University of Coimbra, Center for Innovative Biomedicine and Biotechnology, Coimbra, Portugal.,Clinical Academic Centre of Coimbra, Coimbra, Portugal
| | - Carla I Marques
- University of Coimbra, Coimbra Institute for Clinical and Biomedical Research, Faculty of Medicine, Coimbra, Portugal.,University of Coimbra, Center for Innovative Biomedicine and Biotechnology, Coimbra, Portugal.,Clinical Academic Centre of Coimbra, Coimbra, Portugal
| | - Lino M Gonçalves
- Cardiology Department, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal.,University of Coimbra, Coimbra Institute for Clinical and Biomedical Research, Faculty of Medicine, Coimbra, Portugal.,University of Coimbra, Center for Innovative Biomedicine and Biotechnology, Coimbra, Portugal.,Clinical Academic Centre of Coimbra, Coimbra, Portugal
| | - Rui Baptista
- Cardiology Department, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal.,University of Coimbra, Coimbra Institute for Clinical and Biomedical Research, Faculty of Medicine, Coimbra, Portugal.,University of Coimbra, Center for Innovative Biomedicine and Biotechnology, Coimbra, Portugal.,Clinical Academic Centre of Coimbra, Coimbra, Portugal.,Cardiology Department, Centro Hospitalar Entre Douro e Vouga, Santa Maria de Feira, Portugal
| | - Henrique M Girão
- University of Coimbra, Coimbra Institute for Clinical and Biomedical Research, Faculty of Medicine, Coimbra, Portugal.,University of Coimbra, Center for Innovative Biomedicine and Biotechnology, Coimbra, Portugal.,Clinical Academic Centre of Coimbra, Coimbra, Portugal
| |
Collapse
|
30
|
Dong K, He X, Su H, Fulton DJR, Zhou J. Genomic analysis of circular RNAs in heart. BMC Med Genomics 2020; 13:167. [PMID: 33160353 PMCID: PMC7648966 DOI: 10.1186/s12920-020-00817-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 10/28/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Heart failure is a leading cause of human morbidity and mortality. Circular RNAs (circRNAs) are a newly discovered class of RNA that have been found to have important physiological and pathological roles. In the current study, we de novo analyzed existing whole transcriptome data from 5 normal and 5 dilated cardiomyopathy (DCM) human heart samples and compared the results with circRNAs that have been previously reported in human, mouse and rat hearts. RESULTS Our analysis identifies a list of cardiac circRNAs that are reliably detected in multiple studies. We have also defined the top 30 most abundant circRNAs in healthy human hearts which include some with previously unrecognized cardiac roles such as circHIPK3_11 and circTULP4_1. We further found that many circRNAs are dysregulated in DCM, particularly transcripts originating from DCM-related gene loci, such as TTN and RYR2. In addition, we predict the potential of cardiac circRNAs to sponge miRNAs that have reported roles in heart disease. We found that circALMS1_6 has the highest potential to bind miR-133, a microRNA that can regulate cardiac remodeling. Interestingly, we detected a novel class of circRNAs, referred to as read-though (rt)-circRNAs which are produced from exons of two different neighboring genes. Specifically, rt-circRNAs from SCAF8 and TIAM2 were observed to be dysregulated in DCM and these rt-circRNAs have the potential to sponge multiple heart disease-related miRNAs. CONCLUSIONS In summary, this study provides a valuable resource for exploring the function of circRNAs in human heart disease and establishes a functional paradigm for identifying novel circRNAs in other tissues.
Collapse
Affiliation(s)
- Kunzhe Dong
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, 1459 Laney Walker Blvd, Augusta, GA, 30912, USA
| | - Xiangqin He
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, 1459 Laney Walker Blvd, Augusta, GA, 30912, USA
| | - Huabo Su
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, 1459 Laney Walker Blvd, Augusta, GA, 30912, USA.,Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - David J R Fulton
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, 1459 Laney Walker Blvd, Augusta, GA, 30912, USA.,Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Jiliang Zhou
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, 1459 Laney Walker Blvd, Augusta, GA, 30912, USA.
| |
Collapse
|
31
|
Wang J, Hu L, Huang H, Yu Y, Wang J, Yu Y, Li K, Li Y, Tian T, Chen F. CAR (CARSKNKDC) Peptide Modified ReNcell-Derived Extracellular Vesicles as a Novel Therapeutic Agent for Targeted Pulmonary Hypertension Therapy. Hypertension 2020; 76:1147-1160. [DOI: 10.1161/hypertensionaha.120.15554] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In recent years, mesenchymal stem cells (MSCs)–derived extracellular vesicles (EVs) are emerging as a potential therapeutic agent for pulmonary hypertension (PH). However, the full realization of MSCs-derived EVs therapy has been hampered by the absence of standardization in MSCs culture and the challenges of industrial scale-up. The study was to exploit an alternative replacement for MSCs using currently commercialized stem cell lines for effective targeted PH therapy. ReNcell VM—a human neural stem cell line—has been utilized here as a reliable and easily adoptable source of EVs. We first demonstrated that ReNcell-derived EVs (ReNcell-EVs) pretreatment effectively prevented Su/Hx (SU5416/hypoxia)-induced PH in mice. Then for targeted therapy, we conjugated ReNcell-EVs with CAR (CARSKNKDC) peptide (CAR-EVs)—a peptide identified to specifically target hypertensive pulmonary arteries, by bio-orthogonal chemistry. Intravenous administration of CAR-EVs selectively targeted hypertensive pulmonary artery lesions especially pulmonary artery smooth muscle cells. Moreover, compared with unmodified ReNcell-EVs, CAR-EVs treatment significantly improved therapeutic effect in reversing Su/Hx-induced PH in mice. Mechanistically, ReNcell-EVs inhibited hypoxia-induced proliferation, migration, and phenotype switch of pulmonary artery smooth muscle cells, at least in part, via the delivery of its endogenous highly expressed miRNAs, let-7b-5p, miR-92b-3p, and miR-100-5p. In addition, we also found that ReNcell-EVs inhibited hypoxia-induced cell apoptosis and endothelial-mesenchymal transition in human microvascular endothelial cells. Taken together, our results provide an alternative to MSCs-derived EVs–based PH therapy via using ReNcell as a reliable source of EVs. Particularly, our CAR-conjugated EVs may serve as a novel drug carrier that enhances the specificity and efficiency of drug delivery for effective PH-targeted therapy.
Collapse
Affiliation(s)
- Jie Wang
- From the Department of Forensic Medicine (Jie Wang, L.H., H.H., Yanfang Yu, Youjia Yu, K.L., Y.L., F.C.), Nanjing Medical University, Jiangsu, China
| | - Li Hu
- From the Department of Forensic Medicine (Jie Wang, L.H., H.H., Yanfang Yu, Youjia Yu, K.L., Y.L., F.C.), Nanjing Medical University, Jiangsu, China
| | - Huijie Huang
- From the Department of Forensic Medicine (Jie Wang, L.H., H.H., Yanfang Yu, Youjia Yu, K.L., Y.L., F.C.), Nanjing Medical University, Jiangsu, China
| | - Yanfang Yu
- From the Department of Forensic Medicine (Jie Wang, L.H., H.H., Yanfang Yu, Youjia Yu, K.L., Y.L., F.C.), Nanjing Medical University, Jiangsu, China
| | - Jingshen Wang
- Department of Neurobiology, Key Laboratory of Human Functional Genomics of Jiangsu (Jingshen Wang, T.T.), Nanjing Medical University, Jiangsu, China
| | - Youjia Yu
- From the Department of Forensic Medicine (Jie Wang, L.H., H.H., Yanfang Yu, Youjia Yu, K.L., Y.L., F.C.), Nanjing Medical University, Jiangsu, China
| | - Kai Li
- From the Department of Forensic Medicine (Jie Wang, L.H., H.H., Yanfang Yu, Youjia Yu, K.L., Y.L., F.C.), Nanjing Medical University, Jiangsu, China
| | - Yan Li
- From the Department of Forensic Medicine (Jie Wang, L.H., H.H., Yanfang Yu, Youjia Yu, K.L., Y.L., F.C.), Nanjing Medical University, Jiangsu, China
| | - Tian Tian
- Department of Neurobiology, Key Laboratory of Human Functional Genomics of Jiangsu (Jingshen Wang, T.T.), Nanjing Medical University, Jiangsu, China
| | - Feng Chen
- From the Department of Forensic Medicine (Jie Wang, L.H., H.H., Yanfang Yu, Youjia Yu, K.L., Y.L., F.C.), Nanjing Medical University, Jiangsu, China
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine (F.C.), Nanjing Medical University, Jiangsu, China
| |
Collapse
|
32
|
Mehta M, Satija S, Paudel KR, Malyla V, Kannaujiya VK, Chellappan DK, Bebawy M, Hansbro PM, Wich PR, Dua K. Targeting respiratory diseases using miRNA inhibitor based nanotherapeutics: Current status and future perspectives. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2020; 31:102303. [PMID: 32980549 DOI: 10.1016/j.nano.2020.102303] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/10/2020] [Accepted: 09/11/2020] [Indexed: 12/24/2022]
Abstract
MicroRNAs (miRNAs) play a fundamental role in the developmental and physiological processes that occur in both animals and plants. AntagomiRs are synthetic antagonists of miRNA, which prevent the target mRNA from suppression. Therapeutic approaches that modulate miRNAs have immense potential in the treatment of chronic respiratory disorders. However, the successful delivery of miRNAs/antagomiRs to the lungs remains a major challenge in clinical applications. A range of materials, namely, polymer nanoparticles, lipid nanocapsules and inorganic nanoparticles, has shown promising results for intracellular delivery of miRNA in chronic respiratory disorders. This review discusses the current understanding of miRNA biology, the biological roles of antagomiRs in chronic respiratory disease and the recent advances in the therapeutic utilization of antagomiRs as disease biomarkers. Furthermore our review provides a common platform to debate on the nature of antagomiRs and also addresses the viewpoint on the new generation of delivery systems that target antagomiRs in respiratory diseases.
Collapse
Affiliation(s)
- Meenu Mehta
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW, Australia; Centre for Inflammation, Centenary Institute, Sydney, NSW, Australia
| | - Saurabh Satija
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW, Australia; School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Keshav R Paudel
- Centre for Inflammation, Centenary Institute, Sydney, NSW, Australia; School of Life Sciences, University of Technology Sydney, Ultimo, NSW, Australia
| | - Vamshikrishna Malyla
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW, Australia; Centre for Inflammation, Centenary Institute, Sydney, NSW, Australia
| | | | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil, Kuala Lumpur, Malaysia
| | - Mary Bebawy
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW, Australia
| | - Philip M Hansbro
- Centre for Inflammation, Centenary Institute, Sydney, NSW, Australia; School of Life Sciences, University of Technology Sydney, Ultimo, NSW, Australia
| | - Peter R Wich
- School of Chemical Engineering, University of New South Wales, Sydney, NSW, Australia; Centre for Nanomedicine, University of New South Wales, Sydney, NSW, Australia
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW, Australia; Centre for Inflammation, Centenary Institute, Sydney, NSW, Australia; Priority Research Centre for Healthy Lungs, University of Newcastle & Hunter Medical Research Institute, New Lambton Heights, Newcastle, NSW, Australia; School of Pharmaceutical Sciences, Shoolini University, Solan, Himachal Pradesh, India.
| |
Collapse
|
33
|
MiRNAs, lncRNAs, and circular RNAs as mediators in hypertension-related vascular smooth muscle cell dysfunction. Hypertens Res 2020; 44:129-146. [DOI: 10.1038/s41440-020-00553-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/20/2020] [Accepted: 07/14/2020] [Indexed: 12/13/2022]
|
34
|
Miao R, Dong X, Gong J, Wang Y, Guo X, Li Y, Liu M, Wan J, Li J, Yang S, Wang W, Kuang T, Zhong J, Zhai Z, Yang Y. hsa-miR-106b-5p participates in the development of chronic thromboembolic pulmonary hypertension via targeting matrix metalloproteinase 2. Pulm Circ 2020; 10:2045894020928300. [PMID: 32699607 PMCID: PMC7357097 DOI: 10.1177/2045894020928300] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 04/29/2019] [Indexed: 02/05/2023] Open
Abstract
Background Chronic thromboembolic pulmonary hypertension (CTEPH) is characterized by elevated pressure in pulmonary arteries. This study was performed to explore the critical miRNAs and genes affecting the pathogenesis of CTEPH. Methods GSE56914 dataset (10 CTEPH whole blood samples and 10 control samples) was downloaded from the Gene Expression Omnibus database. Using limma package, the differentially expressed miRNAs (DE-miRNAs) were acquired. After miRNA-target pairs were obtained using miRWalk2.0 tool, a miRNA-target regulatory network was built by Cytoscape software. Using DAVID tool, significantly enriched pathways involving the target genes were identified. Moreover, the protein–protein interaction network and transcription factor-target regulatory network were built by the Cytoscape software. Additionally, quantitative real-time PCR (qRT-PCR) experiments and luciferase assay were conducted to validate miRNA/gene expression and miRNA–target regulatory relationship, respectively. Results There were 25 DE-miRNAs (8 up-regulated and 17 down-regulated) between CTEPH and control groups. The target genes of has-let-7b-3p, has-miR-17-5p, has-miR-3202, has-miR-106b-5p, and has-miR-665 were enriched in multiple pathways such as “Insulin secretion”. qRT-PCR analysis confirmed upregulation of hsa-miR-3202, hsa-miR-665, and matrix metalloproteinase 2 (MMP2) as well as downregulation of hsa-let-7b-3p, hsa-miR-17-5p, and hsa-miR-106b-5p. Luciferase assay indicated that MMP2 was negatively mediated by hsa-miR-106b-5p. Conclusions These miRNAs and genes were associated with the pathogenesis of CTEPH. Besides, hsa-miR-106b-5p was involved in the development of CTEPH via targeting MMP2.
Collapse
Affiliation(s)
- Ran Miao
- Medical Research Center, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China.,Key Laboratory of Respiratory and Pulmonary Circulation Disorders, Institute of Respiratory Medicine, Beijing, China
| | - Xingbei Dong
- West China School of Medicine/West China Hospital, Sichuan University, Chengdu, China
| | - Juanni Gong
- Key Laboratory of Respiratory and Pulmonary Circulation Disorders, Institute of Respiratory Medicine, Beijing, China.,Department of Respiratory and Critical Care Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Ying Wang
- Department of Pathology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Xiaojuan Guo
- Department of Radiology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Yidan Li
- Department of Echocardiography, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Min Liu
- Department of Radiology, China-Japan Friendship Hospital, Beijing, China
| | - Jun Wan
- Key Laboratory of Respiratory and Pulmonary Circulation Disorders, Institute of Respiratory Medicine, Beijing, China.,Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Jifeng Li
- Key Laboratory of Respiratory and Pulmonary Circulation Disorders, Institute of Respiratory Medicine, Beijing, China.,Department of Respiratory and Critical Care Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Suqiao Yang
- Key Laboratory of Respiratory and Pulmonary Circulation Disorders, Institute of Respiratory Medicine, Beijing, China.,Department of Respiratory and Critical Care Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Wang Wang
- Department of Physiology and Pathophysiology, Capital Medical University, Beijing, China
| | - Tuguang Kuang
- Key Laboratory of Respiratory and Pulmonary Circulation Disorders, Institute of Respiratory Medicine, Beijing, China.,Department of Respiratory and Critical Care Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Jiuchang Zhong
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Zhenguo Zhai
- Key Laboratory of Respiratory and Pulmonary Circulation Disorders, Institute of Respiratory Medicine, Beijing, China.,Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Yuanhua Yang
- Key Laboratory of Respiratory and Pulmonary Circulation Disorders, Institute of Respiratory Medicine, Beijing, China.,Department of Respiratory and Critical Care Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
35
|
Zhang Y, Xu CB. The roles of endothelin and its receptors in cigarette smoke-associated pulmonary hypertension with chronic lung disease. Pathol Res Pract 2020; 216:153083. [PMID: 32825951 DOI: 10.1016/j.prp.2020.153083] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 06/03/2020] [Accepted: 06/22/2020] [Indexed: 01/23/2023]
Abstract
Chronic exposure to cigarette smoke is the major risk factor for the development of pulmonary hypertension (PH) with chronic lung disease (i.e. PH group III). The pathogenesis of smoke-associated PH group III in chronic obstructive pulmonary disease (COPD) involves cigarette smoke exposure-induced damage to lung tissue and dysfunction of pulmonary system with increased synthesis and release of endothelin-1 (ET-1), hypoxia, inflammation, pulmonary vascular remodeling. Many studies have demonstrated that cigarette smoke exposure induces activation of mitogen-activated protein kinase (MAPK) signal pathway that leads to up-regulation of ET-1 and its receptors with the receptor-mediated enhanced contraction, proliferation of pulmonary vascular smooth muscle cells, pulmonary vascular remodeling, elevated pulmonary arterial pressure and finally PH group III. This mini-review article aims to summarize the current state of understanding on the roles of cigarette smoke-induced up-regulation of ET-1 and its receptors in the development of PH group III. Understanding the underlying molecular mechanisms that cigarette smoke exposure leads to PH group III may provide a novel strategy for the treatment.
Collapse
Affiliation(s)
- Yaping Zhang
- Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Institute of Basic and Translational Medicine, Xi'an Medical University, Shaanxi, Xi'an, China
| | - Cang-Bao Xu
- Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Institute of Basic and Translational Medicine, Xi'an Medical University, Shaanxi, Xi'an, China.
| |
Collapse
|
36
|
Piersigilli F, Syed M, Lam TT, Dotta A, Massoud M, Vernocchi P, Quagliariello A, Putignani L, Auriti C, Salvatori G, Bagolan P, Bhandari V. An omic approach to congenital diaphragmatic hernia: a pilot study of genomic, microRNA, and metabolomic profiling. J Perinatol 2020; 40:952-961. [PMID: 32080334 DOI: 10.1038/s41372-020-0623-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 01/20/2020] [Accepted: 02/06/2020] [Indexed: 11/09/2022]
Abstract
INTRODUCTION The omic approach can help identify a signature that can be potentially used as biomarkers in babies with congenital diaphragmatic hernia (CDH). OBJECTIVES To find a specific microRNA (miR) and metabolic fingerprint of the tracheal aspirates (TA) of CDH patients. We conducted a genetic analysis from blood samples. METHODS TA samples collected in the first 48 h of life in patients with CDH, compared with age-matched controls. Metabolomics done by a mass spectroscopy-based assay. Genomics done using chromosomal microarray analysis. RESULTS CDH (n = 17) and 16 control neonates enrolled. miR-16, miR-17, miR-18, miR-19b, and miR-20a had an increased expression, while miR-19a had a twofold decreased expression in CDH patients, compared with age-matched control patients. Specific metabolites separated neonates with CDH from controls. A genetic mutation found in a small subset of patients. CONCLUSIONS Specific patterns of metabolites and miR expression can be discerned in TA samples in infants with CDH.
Collapse
Affiliation(s)
- Fiammetta Piersigilli
- Division of Perinatal Medicine, Yale Child Health Research Center, Department of Pediatrics, Yale University School of Medicine, New Haven, CT, USA.,Division of Medical and Surgical Neonatology, Bambino Gesù Children's Hospital, Rome, Italy
| | - Mansoor Syed
- Division of Perinatal Medicine, Yale Child Health Research Center, Department of Pediatrics, Yale University School of Medicine, New Haven, CT, USA.,Section of Neonatal-Perinatal Medicine, Department of Pediatrics, St. Christopher's Hospital for Children, Drexel University College of Medicine, 160 East Erie Avenue, Philadelphia, PA, 19134, USA
| | - TuKiet T Lam
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT, USA.,Keck MS & Proteomics Resource, WM Keck Foundation Biotechnology Resource Laboratory, New Haven, CT, USA
| | - Andrea Dotta
- Division of Medical and Surgical Neonatology, Bambino Gesù Children's Hospital, Rome, Italy
| | - Michela Massoud
- Division of Medical and Surgical Neonatology, Bambino Gesù Children's Hospital, Rome, Italy
| | - Pamela Vernocchi
- Unit of Human Microbiome, Genetic and Rare Diseases Area, Bambino Gesù Children's Hospital, Rome, Italy
| | - Andrea Quagliariello
- Unit of Human Microbiome, Genetic and Rare Diseases Area, Bambino Gesù Children's Hospital, Rome, Italy
| | - Lorenza Putignani
- Unit of Human Microbiome, Genetic and Rare Diseases Area, Bambino Gesù Children's Hospital, Rome, Italy.,Unit of Parasitology, Department of Laboratory and Immunological, Diagnostics Bambino Gesù Children's Hospital, Rome, Italy
| | - Cinzia Auriti
- Division of Medical and Surgical Neonatology, Bambino Gesù Children's Hospital, Rome, Italy
| | - Guglielmo Salvatori
- Division of Medical and Surgical Neonatology, Bambino Gesù Children's Hospital, Rome, Italy
| | - Pietro Bagolan
- Division of Medical and Surgical Neonatology, Bambino Gesù Children's Hospital, Rome, Italy
| | - Vineet Bhandari
- Division of Perinatal Medicine, Yale Child Health Research Center, Department of Pediatrics, Yale University School of Medicine, New Haven, CT, USA. .,Section of Neonatal-Perinatal Medicine, Department of Pediatrics, St. Christopher's Hospital for Children, Drexel University College of Medicine, 160 East Erie Avenue, Philadelphia, PA, 19134, USA. .,Division of Neonatology, Department of Pediatrics, The Children's Regional Hospital at Cooper, Cooper Medical School of Rowan University, One Cooper Plaza, Camden, NJ, 08103, USA.
| |
Collapse
|
37
|
Carregal-Romero S, Fadón L, Berra E, Ruíz-Cabello J. MicroRNA Nanotherapeutics for Lung Targeting. Insights into Pulmonary Hypertension. Int J Mol Sci 2020; 21:ijms21093253. [PMID: 32375361 PMCID: PMC7246754 DOI: 10.3390/ijms21093253] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 04/26/2020] [Accepted: 04/30/2020] [Indexed: 02/07/2023] Open
Abstract
In this review, the potential future role of microRNA-based therapies and their specific application in lung diseases is reported with special attention to pulmonary hypertension. Current limitations of these therapies will be pointed out in order to address the challenges that they need to face to reach clinical applications. In this context, the encapsulation of microRNA-based therapies in nanovectors has shown improvements as compared to chemically modified microRNAs toward enhanced stability, efficacy, reduced side effects, and local administration. All these concepts will contextualize in this review the recent achievements and expectations reported for the treatment of pulmonary hypertension.
Collapse
Affiliation(s)
- Susana Carregal-Romero
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramón 182, 20014 San Sebastián, Spain; (S.C.-R.); (L.F.)
- CIBER de Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain
| | - Lucía Fadón
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramón 182, 20014 San Sebastián, Spain; (S.C.-R.); (L.F.)
| | - Edurne Berra
- Center for Cooperative Research in Bioscience (CIC bioGUNE), Buiding 800, Science and Technology Park of Bizkaia, 48160 Derio, Spain;
| | - Jesús Ruíz-Cabello
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramón 182, 20014 San Sebastián, Spain; (S.C.-R.); (L.F.)
- CIBER de Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain
- Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain
- Departamento de Química en Ciencias Farmacéuticas, Universidad Complutense de Madrid, 28040 Madrid, Spain
- Correspondence:
| |
Collapse
|
38
|
Dasgupta A, Wu D, Tian L, Xiong PY, Dunham-Snary KJ, Chen KH, Alizadeh E, Motamed M, Potus F, Hindmarch CCT, Archer SL. Mitochondria in the Pulmonary Vasculature in Health and Disease: Oxygen-Sensing, Metabolism, and Dynamics. Compr Physiol 2020; 10:713-765. [PMID: 32163206 DOI: 10.1002/cphy.c190027] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In lung vascular cells, mitochondria serve a canonical metabolic role, governing energy homeostasis. In addition, mitochondria exist in dynamic networks, which serve noncanonical functions, including regulation of redox signaling, cell cycle, apoptosis, and mitochondrial quality control. Mitochondria in pulmonary artery smooth muscle cells (PASMC) are oxygen sensors and initiate hypoxic pulmonary vasoconstriction. Acquired dysfunction of mitochondrial metabolism and dynamics contribute to a cancer-like phenotype in pulmonary arterial hypertension (PAH). Acquired mitochondrial abnormalities, such as increased pyruvate dehydrogenase kinase (PDK) and pyruvate kinase muscle isoform 2 (PKM2) expression, which increase uncoupled glycolysis (the Warburg phenomenon), are implicated in PAH. Warburg metabolism sustains energy homeostasis by the inhibition of oxidative metabolism that reduces mitochondrial apoptosis, allowing unchecked cell accumulation. Warburg metabolism is initiated by the induction of a pseudohypoxic state, in which DNA methyltransferase (DNMT)-mediated changes in redox signaling cause normoxic activation of HIF-1α and increase PDK expression. Furthermore, mitochondrial division is coordinated with nuclear division through a process called mitotic fission. Increased mitotic fission in PAH, driven by increased fission and reduced fusion favors rapid cell cycle progression and apoptosis resistance. Downregulation of the mitochondrial calcium uniporter complex (MCUC) occurs in PAH and is one potential unifying mechanism linking Warburg metabolism and mitochondrial fission. Mitochondrial metabolic and dynamic disorders combine to promote the hyperproliferative, apoptosis-resistant, phenotype in PAH PASMC, endothelial cells, and fibroblasts. Understanding the molecular mechanism regulating mitochondrial metabolism and dynamics has permitted identification of new biomarkers, nuclear and CT imaging modalities, and new therapeutic targets for PAH. © 2020 American Physiological Society. Compr Physiol 10:713-765, 2020.
Collapse
Affiliation(s)
- Asish Dasgupta
- Department of Medicine, Queen's University, Kingston, Ontario, Canada
| | - Danchen Wu
- Department of Medicine, Queen's University, Kingston, Ontario, Canada
| | - Lian Tian
- Department of Medicine, Queen's University, Kingston, Ontario, Canada
| | - Ping Yu Xiong
- Department of Medicine, Queen's University, Kingston, Ontario, Canada
| | | | - Kuang-Hueih Chen
- Department of Medicine, Queen's University, Kingston, Ontario, Canada
| | - Elahe Alizadeh
- Department of Medicine, Queen's Cardiopulmonary Unit (QCPU), Translational Institute of Medicine (TIME), Queen's University, Kingston, Ontario, Canada
| | - Mehras Motamed
- Department of Medicine, Queen's University, Kingston, Ontario, Canada
| | - François Potus
- Department of Medicine, Queen's University, Kingston, Ontario, Canada
| | - Charles C T Hindmarch
- Department of Medicine, Queen's Cardiopulmonary Unit (QCPU), Translational Institute of Medicine (TIME), Queen's University, Kingston, Ontario, Canada
| | - Stephen L Archer
- Department of Medicine, Queen's University, Kingston, Ontario, Canada.,Kingston Health Sciences Centre, Kingston, Ontario, Canada.,Providence Care Hospital, Kingston, Ontario, Canada
| |
Collapse
|
39
|
Chowdhury B, Luu AZ, Luu VZ, Kabir MG, Pan Y, Teoh H, Quan A, Sabongui S, Al-Omran M, Bhatt DL, Mazer CD, Connelly KA, Verma S, Hess DA. The SGLT2 inhibitor empagliflozin reduces mortality and prevents progression in experimental pulmonary hypertension. Biochem Biophys Res Commun 2020; 524:50-56. [PMID: 31980166 DOI: 10.1016/j.bbrc.2020.01.015] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 01/01/2020] [Indexed: 12/21/2022]
Abstract
Pulmonary arterial hypertension (PAH) is a rare, but progressive and devastating vascular disease with few treatment options to prevent the advancement to right ventricular dysfunction hypertrophy and failure. Empagliflozin, a sodium-glucose cotransporter 2 (SGLT2) inhibitor, enhances urinary glucose excretion as well as reduces cardiovascular events and mortality in individuals with type 2 diabetes. While empagliflozin has been reported to lower systemic hypertension due to increased diuresis, the effect of empagliflozin on PAH is unknown. We used monocrotaline (MCT)-treated Sprague-Dawley rats to determine if empagliflozin alters PAH-associated outcomes. Compared to vehicle control, daily empagliflozin administration significantly improved survival in rats with severe MCT-induced PAH. Hemodynamic assessments showed that empagliflozin treatment significantly reduced mean pulmonary artery pressure, right ventricular systolic pressure, and increased pulmonary acceleration time. Empagliflozin treatment resulted in reduced right ventricular hypertrophy and fibrosis. Histological and molecular assessments of lung vasculature revealed significantly reduced medial wall thickening and decreased muscularization of pulmonary arterioles after empagliflozin treatment compared to vehicle-treated rats. In summary, SGLT2 inhibition with empagliflozin lowered mortality, reduced right ventricle systolic pressure, and attenuated maladaptive pulmonary remodeling in MCT-induced PAH. Clinical studies evaluating the efficacy of SGLT-2 inhibition should be considered for patients with PAH.
Collapse
Affiliation(s)
- Biswajit Chowdhury
- Division of Cardiac Surgery, St. Michael's Hospital, Toronto, ON, Canada
| | - Albert Z Luu
- Division of Cardiac Surgery, St. Michael's Hospital, Toronto, ON, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Vincent Z Luu
- Division of Cardiac Surgery, St. Michael's Hospital, Toronto, ON, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - M Golam Kabir
- Division of Cardiology, St. Michael's Hospital, Toronto, ON, Canada
| | - Yi Pan
- Division of Cardiac Surgery, St. Michael's Hospital, Toronto, ON, Canada
| | - Hwee Teoh
- Division of Cardiac Surgery, St. Michael's Hospital, Toronto, ON, Canada; Division of Endocrinology and Metabolism, St. Michael's Hospital, Toronto, ON, Canada
| | - Adrian Quan
- Division of Cardiac Surgery, St. Michael's Hospital, Toronto, ON, Canada
| | - Sandra Sabongui
- Division of Cardiac Surgery, St. Michael's Hospital, Toronto, ON, Canada
| | - Mohammed Al-Omran
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada; Division of Vascular Surgery, St. Michael's Hospital, Toronto, ON, Canada; Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - Deepak L Bhatt
- Brigham and Women's Hospital Heart and Vascular Center, Harvard Medical School, Boston, MA, USA
| | - C David Mazer
- Department of Anesthesia, St. Michael's Hospital, Toronto, ON, Canada; Department of Anesthesia, University of Toronto, Toronto, ON, Canada; Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Kim A Connelly
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada; Department of Physiology, University of Toronto, Toronto, ON, Canada; Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - Subodh Verma
- Division of Cardiac Surgery, St. Michael's Hospital, Toronto, ON, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada; Department of Surgery, University of Toronto, Toronto, ON, Canada.
| | - David A Hess
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada; Division of Vascular Surgery, St. Michael's Hospital, Toronto, ON, Canada; Molecular Medicine Research Laboratories, Robarts Research Institute, London, ON, Canada; Department of Physiology and Pharmacology, Western University, London, ON, Canada
| |
Collapse
|
40
|
Bisserier M, Janostiak R, Lezoualc’h F, Hadri L. Targeting epigenetic mechanisms as an emerging therapeutic strategy in pulmonary hypertension disease. VASCULAR BIOLOGY (BRISTOL, ENGLAND) 2020; 2:R17-R34. [PMID: 32161845 PMCID: PMC7065685 DOI: 10.1530/vb-19-0030] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 12/17/2019] [Indexed: 12/12/2022]
Abstract
Pulmonary arterial hypertension (PAH) is a multifactorial cardiopulmonary disease characterized by an elevation of pulmonary artery pressure (PAP) and pulmonary vascular resistance (PVR), which can lead to right ventricular (RV) failure, multi-organ dysfunction, and ultimately to premature death. Despite the advances in molecular biology, the mechanisms underlying pulmonary hypertension (PH) remain unclear. Nowadays, there is no curative treatment for treating PH. Therefore, it is crucial to identify novel, specific therapeutic targets and to offer more effective treatments against the progression of PH. Increasing amounts of evidence suggest that epigenetic modification may play a critical role in the pathogenesis of PAH. In the presented paper, we provide an overview of the epigenetic mechanisms specifically, DNA methylation, histone acetylation, histone methylation, and ncRNAs. As the recent identification of new pharmacological drugs targeting these epigenetic mechanisms has opened new therapeutic avenues, we also discuss the importance of epigenetic-based therapies in the context of PH.
Collapse
Affiliation(s)
- Malik Bisserier
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Radoslav Janostiak
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Frank Lezoualc’h
- Inserm, UMR-1048, Institut des Maladies Métaboliques et Cardiovasculaires, University of Toulouse, Toulouse Cedex 4, France
| | - Lahouaria Hadri
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
41
|
Qi W, Boliang W, Xiaoxi T, Guoqiang F, Jianbo X, Gang W. Cardamonin protects against doxorubicin-induced cardiotoxicity in mice by restraining oxidative stress and inflammation associated with Nrf2 signaling. Biomed Pharmacother 2019; 122:109547. [PMID: 31918264 DOI: 10.1016/j.biopha.2019.109547] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 09/27/2019] [Accepted: 10/08/2019] [Indexed: 12/22/2022] Open
Abstract
The clinical application of doxorubicin (DOX) for cancer treatment is limited due to its cardiotoxicity. However, the basic pathophysiological molecular mechanisms underlying DOX-induced cardiomyopathy have not yet been completely clarified, and the disease-specific therapeutic strategies are lacking. The aim of the present study was to investigate the potential cardioprotective effect of cardamonin (CAR), a flavone found in Alpinia plant, on DOX-induced cardiotoxicity in a mouse model. At first, in DOX-treated mouse cardiomyocytes, CAR showed significantly cytoprotective effects through elevating nuclear factor erythroid-2 related factor 2 (Nrf2) signaling, and reducing the degradation of Nrf2. This process then improved the anti-oxidant system, as evidenced by the up-regulated expression levels of haem oxygenase-1 (HO1), NAD(P)H:quinone oxidoreductase 1 (NQO1), glutamate-cysteine ligase modifier subunit (GCLM), superoxide dismutase (SOD), glutathione (GSH) and catalase (CAT). In contrast, DOX-induced increases in malondialdehyde (MDA) and reactive oxygen species (ROS) were highly inhibited by CAR treatments. Additionally, DOX-induced apoptosis and inflammatory response in cardiomyocytes were diminished by CAR through reducing the Caspase-3 and nuclear factor-κB (NF-κB) signaling pathways, respectively. Then, in the DOX-induced animal model with cardiotoxicity, we confirmed that through improving Nrf2 signaling, CAR markedly suppressed oxidative stress, apoptosis and inflammatory response in hearts of mice, improving cardiac function eventually. Together, our findings demonstrated that CAR activated Nrf2-related cytoprotective system, and protected the heart from oxidative damage, apoptosis and inflammatory injury, suggesting that CAR might be a potential therapeutic strategy in the prevention of DOX-associated myocardiopathy.
Collapse
Affiliation(s)
- Wang Qi
- Emergency Department of the Second Affiliated Hospital of Air Force Medical University, Xi'an, 710000, China
| | - Wang Boliang
- Department of Critical Care Medicine, The Second Affiliated Hospital of Xi 'an Jiaotong University, Xi'an, 710000, China
| | - Tian Xiaoxi
- Emergency Department of the Second Affiliated Hospital of Air Force Medical University, Xi'an, 710000, China
| | - Fu Guoqiang
- Emergency Department of the Second Affiliated Hospital of Air Force Medical University, Xi'an, 710000, China
| | - Xiao Jianbo
- Emergency Department of the Second Affiliated Hospital of Air Force Medical University, Xi'an, 710000, China
| | - Wang Gang
- Department of Critical Care Medicine, The Second Affiliated Hospital of Xi 'an Jiaotong University, Xi'an, 710000, China.
| |
Collapse
|
42
|
Otálora-Otálora BA, Florez M, López-Kleine L, Canas Arboleda A, Grajales Urrego DM, Rojas A. Joint Transcriptomic Analysis of Lung Cancer and Other Lung Diseases. Front Genet 2019; 10:1260. [PMID: 31867044 PMCID: PMC6908522 DOI: 10.3389/fgene.2019.01260] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 11/14/2019] [Indexed: 12/09/2022] Open
Abstract
Background: Epidemiological and clinical evidence points cancer comorbidity with pulmonary chronic disease. The acquisition of some hallmarks of cancer by cells affected with lung pathologies as a cell adaptive mechanism to a shear stress, suggests that could be associated with the establishment of tumoral processes. Objective: To propose a bioinformatic pipeline for the identification of all deregulated genes and the transcriptional regulators (TFs) that are coexpressed during lung cancer establishment, and therefore could be important for the acquisition of the hallmarks of cancer. Methods: Ten microarray datasets (six of lung cancer, four of lung diseases) comparing normal and diseases-related lung tissue were selected to identify hub differentiated expressed genes (DEGs) in common between lung pathologies and lung cancer, along with transcriptional regulators through the utilization of specialized libraries from R language. DAVID bioinformatics tool for gene enrichment analyses was used to identify genes with experimental evidence associated to tumoral processes and signaling pathways. Coexpression networks of DEGs and TFs in lung cancer establishment were created with Coexnet library, and a survival analysis of the main hub genes was made. Results: Two hundred ten DEGs were identified in common between lung cancer and other lung diseases related to the acquisition of tumoral characteristics, which are coexpressed in a lung cancer network with TFs, suggesting that could be related to the establishment of the tumoral pathology in lung. The comparison of the coexpression networks of lung cancer and other lung diseases allowed the identification of common connectivity patterns (CCPs) with DEGs and TFs correlated to important tumoral processes and signaling pathways, that haven´t been studied to experimentally validate their role in the early stages of lung cancer. Some of the TFs identified showed a correlation between its expression levels and the survival of lung cancer patients. Conclusion: Our findings indicate that lung diseases share genes with lung cancer which are coexpressed in lung cancer, and might be able to explain the epidemiological observations that point to direct and inverse comorbid associations between some chronic lung diseases and lung cancer and represent a complex transcriptomic scenario.
Collapse
Affiliation(s)
| | - Mauro Florez
- Departamento de Estadística, Grupo de Investigación en Bioinformática y Biología de sistemas – GiBBS, Facultad de Ciencias, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Liliana López-Kleine
- Departamento de Estadística, Grupo de Investigación en Bioinformática y Biología de sistemas – GiBBS, Facultad de Ciencias, Universidad Nacional de Colombia, Bogotá, Colombia
| | | | | | - Adriana Rojas
- Instituto de Genética Humana, Facultad de Medicina, Pontificia Universidad Javeriana, Bogotá, Colombia
| |
Collapse
|
43
|
Bonnet S, Boucherat O, Paulin R, Wu D, Hindmarch CCT, Archer SL, Song R, Moore JB, Provencher S, Zhang L, Uchida S. Clinical value of non-coding RNAs in cardiovascular, pulmonary, and muscle diseases. Am J Physiol Cell Physiol 2019; 318:C1-C28. [PMID: 31483703 DOI: 10.1152/ajpcell.00078.2019] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Although a majority of the mammalian genome is transcribed to RNA, mounting evidence indicates that only a minor proportion of these transcriptional products are actually translated into proteins. Since the discovery of the first non-coding RNA (ncRNA) in the 1980s, the field has gone on to recognize ncRNAs as important molecular regulators of RNA activity and protein function, knowledge of which has stimulated the expansion of a scientific field that quests to understand the role of ncRNAs in cellular physiology, tissue homeostasis, and human disease. Although our knowledge of these molecules has significantly improved over the years, we have limited understanding of their precise functions, protein interacting partners, and tissue-specific activities. Adding to this complexity, it remains unknown exactly how many ncRNAs there are in existence. The increased use of high-throughput transcriptomics techniques has rapidly expanded the list of ncRNAs, which now includes classical ncRNAs (e.g., ribosomal RNAs and transfer RNAs), microRNAs, and long ncRNAs. In addition, splicing by-products of protein-coding genes and ncRNAs, so-called circular RNAs, are now being investigated. Because there is substantial heterogeneity in the functions of ncRNAs, we have summarized the present state of knowledge regarding the functions of ncRNAs in heart, lungs, and skeletal muscle. This review highlights the pathophysiologic relevance of these ncRNAs in the context of human cardiovascular, pulmonary, and muscle diseases.
Collapse
Affiliation(s)
- Sébastien Bonnet
- Pulmonary Hypertension and Vascular Biology Research Group, Institut Universitaire de Cardiologie et de Pneumologie de Québec, Department of Medicine, Université Laval, Quebec City, Quebec, Canada.,Department of Medicine, Université Laval, Quebec City, Quebec, Canada
| | - Olivier Boucherat
- Pulmonary Hypertension and Vascular Biology Research Group, Institut Universitaire de Cardiologie et de Pneumologie de Québec, Department of Medicine, Université Laval, Quebec City, Quebec, Canada.,Department of Medicine, Université Laval, Quebec City, Quebec, Canada
| | - Roxane Paulin
- Pulmonary Hypertension and Vascular Biology Research Group, Institut Universitaire de Cardiologie et de Pneumologie de Québec, Department of Medicine, Université Laval, Quebec City, Quebec, Canada.,Department of Medicine, Université Laval, Quebec City, Quebec, Canada
| | - Danchen Wu
- Department of Medicine, Queen's University, Kingston, Ontario, Canada
| | - Charles C T Hindmarch
- Queen's Cardiopulmonary Unit, Translational Institute of Medicine, Department of Medicine, Queen's University, Kingston, Ontario, Canada
| | - Stephen L Archer
- Department of Medicine, Queen's University, Kingston, Ontario, Canada
| | - Rui Song
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| | - Joseph B Moore
- Diabetes and Obesity Center, University of Louisville, Louisville, Kentucky.,The Christina Lee Brown Envirome Institute, Department of Medicine, University of Louisville, Louisville, Kentucky
| | - Steeve Provencher
- Pulmonary Hypertension and Vascular Biology Research Group, Institut Universitaire de Cardiologie et de Pneumologie de Québec, Department of Medicine, Université Laval, Quebec City, Quebec, Canada.,Department of Medicine, Université Laval, Quebec City, Quebec, Canada
| | - Lubo Zhang
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| | - Shizuka Uchida
- Diabetes and Obesity Center, University of Louisville, Louisville, Kentucky.,The Christina Lee Brown Envirome Institute, Department of Medicine, University of Louisville, Louisville, Kentucky.,Cardiovascular Innovation Institute, University of Louisville, Louisville, Kentucky
| |
Collapse
|
44
|
Murdaca G, Tonacci A, Negrini S, Greco M, Borro M, Puppo F, Gangemi S. Effects of AntagomiRs on Different Lung Diseases in Human, Cellular, and Animal Models. Int J Mol Sci 2019; 20:ijms20163938. [PMID: 31412612 PMCID: PMC6719072 DOI: 10.3390/ijms20163938] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 07/14/2019] [Accepted: 07/30/2019] [Indexed: 12/22/2022] Open
Abstract
INTRODUCTION MiRNAs have been shown to play a crucial role among lung cancer, pulmonary fibrosis, tuberculosis (TBC) infection, and bronchial hypersensitivity, thus including chronic obstructive pulmonary disease (COPD) and asthma. The oncogenic effect of several miRNAs has been recently ruled out. In order to act on miRNAs turnover, antagomiRs have been developed. MATERIALS AND METHODS The systematic review was conducted under the PRISMA guidelines (registration number is: CRD42019134173). The PubMed database was searched between 1 January 2000 and 30 April 2019 under the following search strategy: (((antagomiR) OR (mirna antagonists) OR (mirna antagonist)) AND ((lung[MeSH Terms]) OR ("lung diseases"[MeSH Terms]))). We included original articles, published in English, whereas exclusion criteria included reviews, meta-analyses, single case reports, and studies published in a language other than English. RESULTS AND CONCLUSIONS A total of 68 articles matching the inclusion criteria were retrieved. Overall, the use of antagomiR was seen to be efficient in downregulating the specific miRNA they are conceived for. The usefulness of antagomiRs was demonstrated in humans, animal models, and cell lines. To our best knowledge, this is the first article to encompass evidence regarding miRNAs and their respective antagomiRs in the lung, in order to provide readers a comprehensive review upon major lung disorders.
Collapse
Affiliation(s)
- Giuseppe Murdaca
- Clinical Immunology Unit, Department of Internal Medicine, University of Genoa and Ospedale Policlinico San Martino, 16132 Genoa, Italy.
| | - Alessandro Tonacci
- Clinical Physiology Institute, National Research Council of Italy (IFC-CNR), 56124 Pisa, Italy
| | - Simone Negrini
- Clinical Immunology Unit, Department of Internal Medicine, University of Genoa and Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Monica Greco
- Clinical Immunology Unit, Department of Internal Medicine, University of Genoa and Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Matteo Borro
- Clinical Immunology Unit, Department of Internal Medicine, University of Genoa and Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Francesco Puppo
- Clinical Immunology Unit, Department of Internal Medicine, University of Genoa and Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Sebastiano Gangemi
- School and Operative Unit of Allergy and Clinical Immunology, Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy
| |
Collapse
|
45
|
Hypoxia Promotes Vascular Smooth Muscle Cell Proliferation through microRNA-Mediated Suppression of Cyclin-Dependent Kinase Inhibitors. Cells 2019; 8:cells8080802. [PMID: 31370272 PMCID: PMC6721514 DOI: 10.3390/cells8080802] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 07/29/2019] [Accepted: 07/29/2019] [Indexed: 01/22/2023] Open
Abstract
Regulation of vascular smooth muscle cell (VSMC) proliferation is essential to maintain vascular homeostasis. Hypoxia induces abnormal proliferation of VSMCs and causes vascular proliferative disorders, such as pulmonary hypertension and atherosclerosis. As several cyclin/cyclin-dependent kinase (CDK) complexes and CDK inhibitors (CKIs) control cell proliferation, in this study, we investigated CKIs involved in the hypoxia-induced proliferation process of human primary pulmonary artery smooth muscle cells to understand the underlying molecular mechanism. We demonstrated that p15, p16, and p21 are downregulated in pulmonary artery smooth muscle cells when exposed to hypoxia. In addition, we identified novel hypoxia-induced microRNAs (hypoxamiRs) including miR-497, miR-1268a, and miR-665 that are upregulated under hypoxia and post-transcriptionally regulate p15, p16, and p21 genes, respectively, by directly targeting their 3'UTRs. These miRNAs promoted the proliferation of VSMCs, and their inhibition decreased VSMC proliferation even in hypoxic conditions. Overall, this study revealed that miRNA-mediated regulatory mechanism of CKIs is essential for hypoxia-induced proliferation of VSMCs. These findings provide insights for a better understanding of the pathogenesis of vascular proliferative disorders.
Collapse
|
46
|
Affiliation(s)
- Amela Jusic
- From the Department of Biology, Faculty of Natural Sciences and Mathematics, University of Tuzla, Bosnia and Herzegovina (A.J.)
| | - Yvan Devaux
- Cardiovascular Research Unit, Luxembourg Institute of Health (Y.D.)
| | | |
Collapse
|
47
|
Guler E, Narin N, Pamukcu O, Taheri S, Tufan E, Guler Y, Tuncay A, Baykan A. Can microsomal RNA be a biomarker in pulmonary hypertension secondary to bronchopulmonary dysplasia? J Matern Fetal Neonatal Med 2019; 34:1401-1406. [PMID: 31248305 DOI: 10.1080/14767058.2019.1638107] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
AIMS In long-term follow-up, pulmonary hypertension (PHT) may develop in these patients with bronchopulmonary dysplasia (BPD). Microsomal RNAs (miRNAs) are a class of noncoding single-strand RNAs. It was shown that miRNA dysregulation contributes to PHT. Up until now, miRNA levels have not been studied in BPD to detect PHT. The main aim of this study is: miRNAs play role in PHT etiopathogenesis in BPD. They can be used as a feasible biomarker for early detection and follow-up of PHT in children with BPD. METHODS The study included infants who were admitted to the Neonatology Clinic. In all subjects, transthoracic echocardiography was performed by the same pediatric cardiologist. Expression of 25 miRNAs was studied from peripheral blood samples at the time of diagnosis. RESULTS Patients were categorized according to whether they have PHT and BPD. Group 1 included 21 infants who had both BPD and PHT. Group 2 had 17 infants who were diagnosed as BPD but had no PHT. Group 3 was a control group and had 21 infants who did not have BPD and PHT. Significant differences in the expression of 19 of 25 miRNAs were detected. Fifteen of these were in group 1. CONCLUSIONS Pulmonary hypertension is a disorder developing due to environmental and genetic reasons, in which the underlying mechanism is not fully understood. The genes controlled by miRNAs found to be related to PH in our study may have a role in PHT. In the future, it could be possible to establish novel approaches that may contribute to early diagnosis and treatment of PHT by focusing target genes of miRNA found to be related in this study.
Collapse
Affiliation(s)
- Esra Guler
- Department of Pediatric Cardiology, Erciyes Üniversitesi, Talas, Turkey
| | - Nazmi Narin
- Department of Pediatric Cardiology, Erciyes Üniversitesi, Talas, Turkey
| | - Ozge Pamukcu
- Department of Pediatric Cardiology, Erciyes Üniversitesi, Talas, Turkey
| | - Serpil Taheri
- Department of Medical Biology, Erciyes Üniversitesi, Talas, Turkey
| | - Esra Tufan
- Department of Medical Biology, Erciyes Üniversitesi, Talas, Turkey
| | - Yunus Guler
- Department of Pediatric Cardiology, Erciyes Üniversitesi, Talas, Turkey
| | - Aydin Tuncay
- Department of Cardiovascular Surgery, Erciyes Üniversitesi, Talas, Turkey
| | - Ali Baykan
- Department of Pediatric Cardiology, Erciyes Üniversitesi, Talas, Turkey
| |
Collapse
|
48
|
Weiss A, Neubauer MC, Yerabolu D, Kojonazarov B, Schlueter BC, Neubert L, Jonigk D, Baal N, Ruppert C, Dorfmuller P, Pullamsetti SS, Weissmann N, Ghofrani HA, Grimminger F, Seeger W, Schermuly RT. Targeting cyclin-dependent kinases for the treatment of pulmonary arterial hypertension. Nat Commun 2019; 10:2204. [PMID: 31101827 PMCID: PMC6525202 DOI: 10.1038/s41467-019-10135-x] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 04/15/2019] [Indexed: 12/21/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a devastating disease with poor prognosis and limited therapeutic options. We screened for pathways that may be responsible for the abnormal phenotype of pulmonary arterial smooth muscle cells (PASMCs), a major contributor of PAH pathobiology, and identified cyclin-dependent kinases (CDKs) as overactivated kinases in specimens derived from patients with idiopathic PAH. This increased CDK activity is confirmed at the level of mRNA and protein expression in human and experimental PAH, respectively. Specific CDK inhibition by dinaciclib and palbociclib decreases PASMC proliferation via cell cycle arrest and interference with the downstream CDK-Rb (retinoblastoma protein)-E2F signaling pathway. In two experimental models of PAH (i.e., monocrotaline and Su5416/hypoxia treated rats) palbociclib reverses the elevated right ventricular systolic pressure, reduces right heart hypertrophy, restores the cardiac index, and reduces pulmonary vascular remodeling. These results demonstrate that inhibition of CDKs by palbociclib may be a therapeutic strategy in PAH. Cells of the pulmonary vasculature show a hyperproliferative phenotype in pulmonary arterial hypertension (PAH), thus contributing to the disease pathogenesis. Here the authors show that cyclin-dependent kinases are overactivated in PAH, and that their pharmacological inhibition attenuates the disease in two independent rodent models
Collapse
Affiliation(s)
- Astrid Weiss
- Justus-Liebig-University Giessen (JLU), Aulweg 130, Giessen, 35392, Germany.,Universities of Giessen and Marburg Lung Center (UGMLC), Giessen, Germany.,Cardio-Pulmonary Institute (CPI), EXC 2026, Project ID: 390649896, Giessen, Germany.,Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Moritz Christian Neubauer
- Justus-Liebig-University Giessen (JLU), Aulweg 130, Giessen, 35392, Germany.,Universities of Giessen and Marburg Lung Center (UGMLC), Giessen, Germany.,Cardio-Pulmonary Institute (CPI), EXC 2026, Project ID: 390649896, Giessen, Germany.,Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Dinesh Yerabolu
- Justus-Liebig-University Giessen (JLU), Aulweg 130, Giessen, 35392, Germany.,Universities of Giessen and Marburg Lung Center (UGMLC), Giessen, Germany.,Cardio-Pulmonary Institute (CPI), EXC 2026, Project ID: 390649896, Giessen, Germany.,Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Baktybek Kojonazarov
- Justus-Liebig-University Giessen (JLU), Aulweg 130, Giessen, 35392, Germany.,Universities of Giessen and Marburg Lung Center (UGMLC), Giessen, Germany.,Cardio-Pulmonary Institute (CPI), EXC 2026, Project ID: 390649896, Giessen, Germany.,Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Beate Christiane Schlueter
- Justus-Liebig-University Giessen (JLU), Aulweg 130, Giessen, 35392, Germany.,Universities of Giessen and Marburg Lung Center (UGMLC), Giessen, Germany.,Cardio-Pulmonary Institute (CPI), EXC 2026, Project ID: 390649896, Giessen, Germany.,Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Lavinia Neubert
- Member of the German Center for Lung Research (DZL), Giessen, Germany.,Institute of Pathology, Hannover Medical School (MHH), Carl-Neuberg-Strasse 1, Hannover, 30625, Germany
| | - Danny Jonigk
- Member of the German Center for Lung Research (DZL), Giessen, Germany.,Institute of Pathology, Hannover Medical School (MHH), Carl-Neuberg-Strasse 1, Hannover, 30625, Germany
| | - Nelli Baal
- Justus-Liebig-University Giessen (JLU), Aulweg 130, Giessen, 35392, Germany.,Universities of Giessen and Marburg Lung Center (UGMLC), Giessen, Germany.,Member of the German Center for Lung Research (DZL), Giessen, Germany.,Institute for Clinical Immunology and Transfusion Medicine, University Hospital Giessen and Marburg (UKGM), Aulweg 128, Giessen, 35392, Germany
| | - Clemens Ruppert
- Justus-Liebig-University Giessen (JLU), Aulweg 130, Giessen, 35392, Germany.,Universities of Giessen and Marburg Lung Center (UGMLC), Giessen, Germany.,Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Peter Dorfmuller
- Member of the German Center for Lung Research (DZL), Giessen, Germany.,Department of Pathology, University Hospital of Giessen and Marburg (UKGM), Langhansstrasse 10, Giessen, 35392, Germany
| | - Soni Savai Pullamsetti
- Universities of Giessen and Marburg Lung Center (UGMLC), Giessen, Germany.,Cardio-Pulmonary Institute (CPI), EXC 2026, Project ID: 390649896, Giessen, Germany.,Member of the German Center for Lung Research (DZL), Giessen, Germany.,Max Planck Institute (MPI) for Heart and Lung Research, Parkstrasse 1, Bad Nauheim, 61231, Germany
| | - Norbert Weissmann
- Justus-Liebig-University Giessen (JLU), Aulweg 130, Giessen, 35392, Germany.,Universities of Giessen and Marburg Lung Center (UGMLC), Giessen, Germany.,Cardio-Pulmonary Institute (CPI), EXC 2026, Project ID: 390649896, Giessen, Germany.,Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Hossein-Ardeschir Ghofrani
- Justus-Liebig-University Giessen (JLU), Aulweg 130, Giessen, 35392, Germany.,Universities of Giessen and Marburg Lung Center (UGMLC), Giessen, Germany.,Cardio-Pulmonary Institute (CPI), EXC 2026, Project ID: 390649896, Giessen, Germany.,Member of the German Center for Lung Research (DZL), Giessen, Germany.,Department of Medicine, Imperial College London, London, UK
| | - Friedrich Grimminger
- Justus-Liebig-University Giessen (JLU), Aulweg 130, Giessen, 35392, Germany.,Universities of Giessen and Marburg Lung Center (UGMLC), Giessen, Germany.,Cardio-Pulmonary Institute (CPI), EXC 2026, Project ID: 390649896, Giessen, Germany.,Member of the German Center for Lung Research (DZL), Giessen, Germany.,University Hospital Giessen and Marburg (UKGM), Giessen, Germany
| | - Werner Seeger
- Justus-Liebig-University Giessen (JLU), Aulweg 130, Giessen, 35392, Germany.,Universities of Giessen and Marburg Lung Center (UGMLC), Giessen, Germany.,Cardio-Pulmonary Institute (CPI), EXC 2026, Project ID: 390649896, Giessen, Germany.,Member of the German Center for Lung Research (DZL), Giessen, Germany.,Max Planck Institute (MPI) for Heart and Lung Research, Parkstrasse 1, Bad Nauheim, 61231, Germany.,University Hospital Giessen and Marburg (UKGM), Giessen, Germany
| | - Ralph Theo Schermuly
- Justus-Liebig-University Giessen (JLU), Aulweg 130, Giessen, 35392, Germany. .,Universities of Giessen and Marburg Lung Center (UGMLC), Giessen, Germany. .,Cardio-Pulmonary Institute (CPI), EXC 2026, Project ID: 390649896, Giessen, Germany. .,Member of the German Center for Lung Research (DZL), Giessen, Germany.
| |
Collapse
|
49
|
Fu J, Bai P, Chen Y, Yu T, Li F. Inhibition of miR-495 Improves Both Vascular Remodeling and Angiogenesis in Pulmonary Hypertension. J Vasc Res 2019; 56:97-106. [PMID: 31030195 DOI: 10.1159/000500024] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 03/29/2019] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND AND AIMS Pulmonary hypertension (PH) is a chronic progressing vascular disease characterized by pulmonary arteriole remodeling and loss of pulmonary microvasculature. The aim of this study was to investigate a potential role for the miR-495 in PH pathogenesis and to explore its therapeutic potential in PH. METHODS Male C57BL/6J mice were injected with SU5416 weekly during 3 weeks of exposure to 10% oxygen to cause PH. We first tested the effects of adeno-associated virus 9 (AAV9) delivery which was specifically designed to block miR-495 in the lungs of the PH model. Then, the biological function of miR-495 was analyzed in cultured pulmonary arterial endothelial cells (PAECs) under hypoxic condition. RESULTS The inhibition of miR-495 improves hemodynamics and vascular remodeling in PH. At the same time, these effects were associated with increases in angiogenic transcription factor VEZF1 and marked upregulation of other angiogenic genes such as Angpt-1 and IGF1. In vitro, cultured mouse PAECs were transfected with miR-495 inhibitor or miR-495 mimics. Both the flow cytometry results and CCK8 assay showed that miR-495 inhibitor increased the percentage of cells in the G2/M+S phase, and the wound healing assays indicated that the migration capacity of PAECs transfected with miR-495 inhibitor was increased compared to the inhibitor-NC cells. CONCLUSIONS Our results indicate that AAV9-TuD-miR-495 delivery improves hemodynamic and pulmonary vascular structural changes in PH mice.
Collapse
Affiliation(s)
- Jie Fu
- Department of Cardiology, Shanghai Children's Medical Center Affiliated with Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Peiyuan Bai
- Department of Cardiology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yiwei Chen
- Department of Cardiology, Shanghai Children's Medical Center Affiliated with Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Tingting Yu
- Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Fen Li
- Department of Cardiology, Shanghai Children's Medical Center Affiliated with Shanghai Jiaotong University School of Medicine, Shanghai, China, .,Shanghai Pediatric Congenital Heart Disease Institute, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, China,
| |
Collapse
|
50
|
Musri MM, Coll-Bonfill N, Maron BA, Peinado VI, Wang RS, Altirriba J, Blanco I, Oldham WM, Tura-Ceide O, García-Lucio J, de la Cruz-Thea B, Meister G, Loscalzo J, Barberà JA. MicroRNA Dysregulation in Pulmonary Arteries from Chronic Obstructive Pulmonary Disease. Relationships with Vascular Remodeling. Am J Respir Cell Mol Biol 2019; 59:490-499. [PMID: 29757677 DOI: 10.1165/rcmb.2017-0040oc] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Pulmonary vascular remodeling is an angiogenic-related process involving changes in smooth muscle cell (SMC) homeostasis, which is frequently observed in chronic obstructive pulmonary disease (COPD). MicroRNAs (miRNAs) are small, noncoding RNAs that regulate mRNA expression levels of many genes, leading to the manifestation of cell identity and specific cellular phenotypes. Here, we evaluate the miRNA expression profiles of pulmonary arteries (PAs) of patients with COPD and its relationship with the regulation of SMC phenotypic change. miRNA expression profiles from PAs of 12 patients with COPD, 9 smokers with normal lung function (SK), and 7 nonsmokers (NS) were analyzed using TaqMan Low-Density Arrays. In patients with COPD, expression levels of miR-98, miR-139-5p, miR-146b-5p, and miR-451 were upregulated, as compared with NS. In contrast, miR-197, miR-204, miR-485-3p, and miR-627 were downregulated. miRNA-197 expression correlated with both airflow obstruction and PA intimal enlargement. In an in vitro model of SMC differentiation, miR-197 expression was associated with an SMC contractile phenotype. miR-197 inhibition blocked the acquisition of contractile markers in SMCs and promoted a proliferative/migratory phenotype measured by both cell cycle analysis and wound-healing assay. Using luciferase assays, Western blot, and quantitative PCR, we confirmed that miR-197 targets the transcription factor E2F1. In PAs from patients with COPD, levels of E2F1 were increased as compared with NS. In PAs of patients with COPD, remodeling of the vessel wall is associated with downregulation of miR-197, which regulates SMC phenotype. The effect of miR-197 on PAs might be mediated, at least in part, by the key proproliferative factor, E2F1.
Collapse
Affiliation(s)
- Melina M Musri
- 1 Department of Pulmonary Medicine, Hospital Clínic, Institut d'Investigacions Biomèdiques Agustí Pi i Sunyer, University of Barcelona, Barcelona, Spain.,2 Instituto de Investigación Médica Mercedes y Martín Ferreyra, Consejo Nacional de Investigaciones Científicas y Técnicas (INIMEC-CONICET), Universidad Nacional de Córdoba, Cátedra de Genética, Departamento de Fisiología, Facultad de Ciencias Exactas Físicas y Naturales (FCEFyN), Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Núria Coll-Bonfill
- 1 Department of Pulmonary Medicine, Hospital Clínic, Institut d'Investigacions Biomèdiques Agustí Pi i Sunyer, University of Barcelona, Barcelona, Spain.,3 Biomedical Research Networking Center for Respiratory Diseases, Madrid, Spain
| | - Bradley A Maron
- 4 Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts
| | - Víctor I Peinado
- 1 Department of Pulmonary Medicine, Hospital Clínic, Institut d'Investigacions Biomèdiques Agustí Pi i Sunyer, University of Barcelona, Barcelona, Spain.,3 Biomedical Research Networking Center for Respiratory Diseases, Madrid, Spain
| | - Rui-Sheng Wang
- 4 Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts
| | - Jordi Altirriba
- 5 Laboratory of Metabolism, Department of Internal Medicine Specialties, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Isabel Blanco
- 1 Department of Pulmonary Medicine, Hospital Clínic, Institut d'Investigacions Biomèdiques Agustí Pi i Sunyer, University of Barcelona, Barcelona, Spain.,3 Biomedical Research Networking Center for Respiratory Diseases, Madrid, Spain
| | - William M Oldham
- 6 Pulmonary and Critical Care Medicine Division, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts; and
| | - Olga Tura-Ceide
- 1 Department of Pulmonary Medicine, Hospital Clínic, Institut d'Investigacions Biomèdiques Agustí Pi i Sunyer, University of Barcelona, Barcelona, Spain.,3 Biomedical Research Networking Center for Respiratory Diseases, Madrid, Spain
| | - Jessica García-Lucio
- 1 Department of Pulmonary Medicine, Hospital Clínic, Institut d'Investigacions Biomèdiques Agustí Pi i Sunyer, University of Barcelona, Barcelona, Spain
| | - Benjamin de la Cruz-Thea
- 2 Instituto de Investigación Médica Mercedes y Martín Ferreyra, Consejo Nacional de Investigaciones Científicas y Técnicas (INIMEC-CONICET), Universidad Nacional de Córdoba, Cátedra de Genética, Departamento de Fisiología, Facultad de Ciencias Exactas Físicas y Naturales (FCEFyN), Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Gunter Meister
- 7 Biochemistry Center Regensburg, Laboratory for RNA Biology, University of Regensburg, Regensburg, Germany
| | - Joseph Loscalzo
- 4 Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts
| | - Joan A Barberà
- 1 Department of Pulmonary Medicine, Hospital Clínic, Institut d'Investigacions Biomèdiques Agustí Pi i Sunyer, University of Barcelona, Barcelona, Spain.,3 Biomedical Research Networking Center for Respiratory Diseases, Madrid, Spain
| |
Collapse
|