1
|
Kim WD, Sin DD. Granzyme B May Act as an Effector Molecule to Control the Inflammatory Process in COPD. COPD 2024; 21:1-11. [PMID: 38314671 DOI: 10.1080/15412555.2023.2299104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 12/20/2023] [Indexed: 02/06/2024]
Abstract
Chronic obstructive pulmonary disease (COPD) is caused by smoking, but only a small proportion of smokers have disease severe enough to develop COPD. COPD is not always progressive. The question then arises as to what explains the different trajectories of COPD. The role of autoimmunity and regulatory T (Treg) cells in the pathogenesis of COPD is increasingly being recognized. Nine published studies on Treg cells in the lung tissue or bronchoalveolar lavage fluid have shown that smokers with COPD have fewer Treg cells than smokers without COPD or nonsmokers. Three studies showed a positive correlation between Treg cell count and FEV1%, suggesting an important role for Treg cells in COPD progression. Treg cells can regulate immunological responses via the granzyme B (GzmB) pathway. Immunohistochemical staining for GzmB in surgically resected lungs with centrilobular emphysema showed that the relationship between the amount of GzmB+ cells and FEV1% was comparable to that between Treg cell count and FEV1% in the COPD lung, suggesting that GzmB could be a functional marker for Treg cells. The volume fraction of GzmB+ cells in the small airways, the number of alveolar GzmB+ cells, and GzmB expression measured by enzyme-linked immunosorbent assay in the lung tissue of smokers were significantly correlated with FEV1%. These results suggest that the GzmB content in lung tissue may determine the progression of COPD by acting as an effector molecule to control inflammatory process. Interventions to augment GzmB-producing immunosuppressive cells in the early stages of COPD could help prevent or delay COPD progression.
Collapse
Affiliation(s)
- Won-Dong Kim
- Department of Pulmonary and Critical Care Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Don D Sin
- Center for Heart Lung Innovation, St. Paul's Hospital, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
2
|
Eapen MS, Lu W, Dey S, Chia C, Hardikar A, Hassan MI, Bhattarai P, Gaikwad AV, Das S, Hansbro PM, Singhera GK, Hackett TL, Sohal SS. Differential expression of mast cells in the small airways and alveolar septa of current smokers and patients with small airway disease and COPD. ERJ Open Res 2024; 10:00579-2023. [PMID: 38500797 PMCID: PMC10945381 DOI: 10.1183/23120541.00579-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 01/16/2024] [Indexed: 03/20/2024] Open
Abstract
Background COPD patients suffer from dysregulated and suppressed immune functionality, determined by their loss of degranulating capacity. Here we provide crucial information on the presence of degranulated mast cells (MCs) in COPD airways and demonstrate their relationship to lung physiology and airway remodelling. Methods Small airway lung resections from non-smoking controls (NC), normal lung function smokers (NLFS), small airway disease (SAD), and mild-to-moderate COPD current smokers (COPD-CS) and ex-smokers (COPD-ES) were dual immuno-stained with MC tryptase and degranulation marker lysosome-associated membrane protein (LAMP)-1. Total MCs, degranulating MCs and non-MCs were enumerated in small airway epithelium and subepithelium, and in alveolar septa. Results In the small airway wall subepithelial areas, COPD-CS and COPD-ES patients had significantly lower MCs than the NC group (p<0.05), although the numbers were considerably higher in the small airway epithelium (p<0.01). Degranulating non-MCs were higher in SAD (p<0.05) than in COPD in the small airway subepithelium. In contrast, there were significant increases in total MCs (degranulated and non-degranulated) and degranulated non-MCs in the alveolar septum of COPD patients compared with the NC group (p<001). The lower numbers of MCs in the subepithelium correlated with lower forced expiratory volume in 1 s (FEV1)/forced vital capacity (FVC) and forced expiratory flow at 25-75% of FVC (FEF25-75%), higher smoking rates in COPD patients, and increased small airway wall thickness and extracellular matrix. The increase in MCs in the alveolar septum negatively correlated with FEF25-75%. Conclusions This study is the first to assess the differential pattern of MC, degranulating MC and non-MC populations in the small airways and alveoli of COPD patients. The spatial positioning of the MCs within the airways showed variable correlations with lung function.
Collapse
Affiliation(s)
- Mathew Suji Eapen
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, Australia
| | - Wenying Lu
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, Australia
- Launceston Respiratory and Sleep Centre, Launceston, Australia
| | - Surajit Dey
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, Australia
| | - Collin Chia
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, Australia
- Launceston Respiratory and Sleep Centre, Launceston, Australia
- Department of Respiratory Medicine, Launceston General Hospital, Launceston, Australia
| | - Ashutosh Hardikar
- Department of Cardiothoracic Surgery, Royal Hobart Hospital, Hobart, Australia
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Prem Bhattarai
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, Australia
| | - Archana Vijay Gaikwad
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, Australia
| | - Shatarupa Das
- Faculty of Science, Centre for Inflammation, Centenary Institute and University of Technology Sydney School of Life Sciences, Sydney, Australia
| | - Philip M. Hansbro
- Faculty of Science, Centre for Inflammation, Centenary Institute and University of Technology Sydney School of Life Sciences, Sydney, Australia
| | - Gurpreet Kaur Singhera
- Department of Anaesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, BC, Canada
- Centre for Heart Lung Innovation, St Paul's Hospital, Vancouver, BC, Canada
| | - Tillie-Louise Hackett
- Department of Anaesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, BC, Canada
- Centre for Heart Lung Innovation, St Paul's Hospital, Vancouver, BC, Canada
| | - Sukhwinder Singh Sohal
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, Australia
- Launceston Respiratory and Sleep Centre, Launceston, Australia
| |
Collapse
|
3
|
Nair P. Eosinophils and therapeutic responses to steroids and biologics in COPD: a complex relationship. J Bras Pneumol 2023; 49:e20230360. [PMID: 38126684 PMCID: PMC10760421 DOI: 10.36416/1806-3756/e20230360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023] Open
Affiliation(s)
- Parameswaran Nair
- . Firestone Institute for Respiratory Health, St Joseph's Healthcare & McMaster University, Hamilton (ON) Canada
| |
Collapse
|
4
|
Liu G, Haw TJ, Starkey MR, Philp AM, Pavlidis S, Nalkurthi C, Nair PM, Gomez HM, Hanish I, Hsu AC, Hortle E, Pickles S, Rojas-Quintero J, Estepar RSJ, Marshall JE, Kim RY, Collison AM, Mattes J, Idrees S, Faiz A, Hansbro NG, Fukui R, Murakami Y, Cheng HS, Tan NS, Chotirmall SH, Horvat JC, Foster PS, Oliver BG, Polverino F, Ieni A, Monaco F, Caramori G, Sohal SS, Bracke KR, Wark PA, Adcock IM, Miyake K, Sin DD, Hansbro PM. TLR7 promotes smoke-induced experimental lung damage through the activity of mast cell tryptase. Nat Commun 2023; 14:7349. [PMID: 37963864 PMCID: PMC10646046 DOI: 10.1038/s41467-023-42913-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 10/25/2023] [Indexed: 11/16/2023] Open
Abstract
Toll-like receptor 7 (TLR7) is known for eliciting immunity against single-stranded RNA viruses, and is increased in both human and cigarette smoke (CS)-induced, experimental chronic obstructive pulmonary disease (COPD). Here we show that the severity of CS-induced emphysema and COPD is reduced in TLR7-deficient mice, while inhalation of imiquimod, a TLR7-agonist, induces emphysema without CS exposure. This imiquimod-induced emphysema is reduced in mice deficient in mast cell protease-6, or when wild-type mice are treated with the mast cell stabilizer, cromolyn. Furthermore, therapeutic treatment with anti-TLR7 monoclonal antibody suppresses CS-induced emphysema, experimental COPD and accumulation of pulmonary mast cells in mice. Lastly, TLR7 mRNA is increased in pre-existing datasets from patients with COPD, while TLR7+ mast cells are increased in COPD lungs and associated with severity of COPD. Our results thus support roles for TLR7 in mediating emphysema and COPD through mast cell activity, and may implicate TLR7 as a potential therapeutic target.
Collapse
Affiliation(s)
- Gang Liu
- Centre for Inflammation, Centenary Institute, and Faculty of Science, University of Technology Sydney, Camperdown, New South Wales, Australia
| | - Tatt Jhong Haw
- Immune Healthy &/or Grow Up Well, Hunter Medical Research Institute & University of Newcastle, Callaghan, New South Wales, Australia
| | - Malcolm R Starkey
- Depatrment of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Ashleigh M Philp
- Centre for Inflammation, Centenary Institute, and Faculty of Science, University of Technology Sydney, Camperdown, New South Wales, Australia
- School of Clinical Medicine, UNSW Medicine and Health, St Vincent's Healthcare clinical campus, UNSW, Sydney, Australia
| | - Stelios Pavlidis
- The Airways Disease Section, National Heart & Lung Institute, Imperial College London, London, UK
| | - Christina Nalkurthi
- Centre for Inflammation, Centenary Institute, and Faculty of Science, University of Technology Sydney, Camperdown, New South Wales, Australia
| | - Prema M Nair
- Immune Healthy &/or Grow Up Well, Hunter Medical Research Institute & University of Newcastle, Callaghan, New South Wales, Australia
| | - Henry M Gomez
- Immune Healthy &/or Grow Up Well, Hunter Medical Research Institute & University of Newcastle, Callaghan, New South Wales, Australia
| | - Irwan Hanish
- Immune Healthy &/or Grow Up Well, Hunter Medical Research Institute & University of Newcastle, Callaghan, New South Wales, Australia
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Alan Cy Hsu
- Immune Healthy &/or Grow Up Well, Hunter Medical Research Institute & University of Newcastle, Callaghan, New South Wales, Australia
| | - Elinor Hortle
- Centre for Inflammation, Centenary Institute, and Faculty of Science, University of Technology Sydney, Camperdown, New South Wales, Australia
| | - Sophie Pickles
- Centre for Inflammation, Centenary Institute, and Faculty of Science, University of Technology Sydney, Camperdown, New South Wales, Australia
| | | | - Raul San Jose Estepar
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, USA
| | - Jacqueline E Marshall
- Centre for Inflammation, Centenary Institute, and Faculty of Science, University of Technology Sydney, Camperdown, New South Wales, Australia
| | - Richard Y Kim
- Immune Healthy &/or Grow Up Well, Hunter Medical Research Institute & University of Newcastle, Callaghan, New South Wales, Australia
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, Australia
| | - Adam M Collison
- Immune Healthy &/or Grow Up Well, Hunter Medical Research Institute & University of Newcastle, Callaghan, New South Wales, Australia
| | - Joerg Mattes
- Immune Healthy &/or Grow Up Well, Hunter Medical Research Institute & University of Newcastle, Callaghan, New South Wales, Australia
| | - Sobia Idrees
- Centre for Inflammation, Centenary Institute, and Faculty of Science, University of Technology Sydney, Camperdown, New South Wales, Australia
| | - Alen Faiz
- Centre for Inflammation, Centenary Institute, and Faculty of Science, University of Technology Sydney, Camperdown, New South Wales, Australia
| | - Nicole G Hansbro
- Centre for Inflammation, Centenary Institute, and Faculty of Science, University of Technology Sydney, Camperdown, New South Wales, Australia
| | - Ryutaro Fukui
- Division of Innate Immunity, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Shirokanedai, Minatoku, Tokyo, Japan
| | - Yusuke Murakami
- Faculty of Pharmacy, Department of Pharmaceutical Sciences, Musashino University, Nishitokyo-shi, Tokyo, Japan
| | - Hong Sheng Cheng
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Nguan Soon Tan
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Sanjay H Chotirmall
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Department of Respiratory and Critical Care Medicine, Tan Tock Seng Hospital, Singapore, Singapore
| | - Jay C Horvat
- Immune Healthy &/or Grow Up Well, Hunter Medical Research Institute & University of Newcastle, Callaghan, New South Wales, Australia
| | - Paul S Foster
- Immune Healthy &/or Grow Up Well, Hunter Medical Research Institute & University of Newcastle, Callaghan, New South Wales, Australia
| | - Brian Gg Oliver
- Woolcock Institute of Medical Research, University of Sydney & School of Life Sciences, University of Technology, Sydney, Australia
| | | | - Antonio Ieni
- Department of Human Pathology in Adult and Developmental Age "Gaetano Barresi", Section of Anatomic Pathology, Università di Messina, Messina, Italy
| | - Francesco Monaco
- Thoracic Surgery, Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali (BIOMORF), Università di Messina, Messina, Italy
| | - Gaetano Caramori
- Pneumologia, Dipartimento BIOMORF and Dipartimento di Medicina e Chirurgia, Universities of Messina and Parma, Messina, Italy
| | - Sukhwinder S Sohal
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, University of Tasmania, Launceston, Australia
| | - Ken R Bracke
- Laboratory for Translational Research in Obstructive Pulmonary Diseases, Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
| | - Peter A Wark
- Immune Healthy &/or Grow Up Well, Hunter Medical Research Institute & University of Newcastle, Callaghan, New South Wales, Australia
| | - Ian M Adcock
- School of Clinical Medicine, UNSW Medicine and Health, St Vincent's Healthcare clinical campus, UNSW, Sydney, Australia
| | - Kensuke Miyake
- Division of Innate Immunity, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Shirokanedai, Minatoku, Tokyo, Japan
| | - Don D Sin
- The University of British Columbia Centre for Heart Lung Innovation, St Paul's Hospital & Respiratory Division, Dept of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Philip M Hansbro
- Centre for Inflammation, Centenary Institute, and Faculty of Science, University of Technology Sydney, Camperdown, New South Wales, Australia.
- Immune Healthy &/or Grow Up Well, Hunter Medical Research Institute & University of Newcastle, Callaghan, New South Wales, Australia.
| |
Collapse
|
5
|
Tesfaigzi Y, Curtis JL, Petrache I, Polverino F, Kheradmand F, Adcock IM, Rennard SI. Does Chronic Obstructive Pulmonary Disease Originate from Different Cell Types? Am J Respir Cell Mol Biol 2023; 69:500-507. [PMID: 37584669 PMCID: PMC10633838 DOI: 10.1165/rcmb.2023-0175ps] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 08/16/2023] [Indexed: 08/17/2023] Open
Abstract
The onset of chronic obstructive pulmonary disease (COPD) is heterogeneous, and current approaches to define distinct disease phenotypes are lacking. In addition to clinical methodologies, subtyping COPD has also been challenged by the reliance on human lung samples from late-stage diseases. Different COPD phenotypes may be initiated from the susceptibility of different cell types to cigarette smoke, environmental pollution, and infections at early stages that ultimately converge at later stages in airway remodeling and destruction of the alveoli when the disease is diagnosed. This perspective provides discussion points on how studies to date define different cell types of the lung that can initiate COPD pathogenesis, focusing on the susceptibility of macrophages, T and B cells, mast cells, dendritic cells, endothelial cells, and airway epithelial cells. Additional cell types, including fibroblasts, smooth muscle cells, neuronal cells, and other rare cell types not covered here, may also play a role in orchestrating COPD. Here, we discuss current knowledge gaps, such as which cell types drive distinct disease phenotypes and/or stages of the disease and which cells are primarily affected by the genetic variants identified by whole genome-wide association studies. Applying new technologies that interrogate the functional role of a specific cell type or a combination of cell types as well as single-cell transcriptomics and proteomic approaches are creating new opportunities to understand and clarify the pathophysiology and thereby the clinical heterogeneity of COPD.
Collapse
Affiliation(s)
- Yohannes Tesfaigzi
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Jeffrey L. Curtis
- Medical Service, VA Ann Arbor Healthcare System, Ann Arbor, Michigan
- Division of Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, Michigan
| | - Irina Petrache
- Division of Pulmonary Critical Care and Sleep Medicine, National Jewish Health, Denver, Colorado
- University of Colorado, Denver, Colorado
| | - Francesca Polverino
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, College of Medicine, Baylor University, Houston, Texas
| | - Farrah Kheradmand
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, College of Medicine, Baylor University, Houston, Texas
| | - Ian M. Adcock
- Department of Medicine, National Heart and Lung Institute, Imperial College London, London, United Kingdom; and
| | - Stephen I. Rennard
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| |
Collapse
|
6
|
Tu J, Li W, Hansbro PM, Yan Q, Bai X, Donovan C, Kim RY, Galvao I, Das A, Yang C, Zou J, Diwan A. Smoking and tetramer tryptase accelerate intervertebral disc degeneration by inducing METTL14-mediated DIXDC1 m 6 modification. Mol Ther 2023; 31:2524-2542. [PMID: 37340635 PMCID: PMC10422004 DOI: 10.1016/j.ymthe.2023.06.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 04/24/2023] [Accepted: 06/14/2023] [Indexed: 06/22/2023] Open
Abstract
Although cigarette smoking (CS) and low back pain (LBP) are common worldwide, their correlations and the mechanisms of action remain unclear. We have shown that excessive activation of mast cells (MCs) and their proteases play key roles in CS-associated diseases, like asthma, chronic obstructive pulmonary disease (COPD), blood coagulation, and lung cancer. Previous studies have also shown that MCs and their proteases induce degenerative musculoskeletal disease. By using a custom-designed smoke-exposure mouse system, we demonstrated that CS results in intervertebral disc (IVD) degeneration and release of MC-restricted tetramer tryptases (TTs) in the IVDs. TTs were found to regulate the expression of methyltransferase 14 (METTL14) at the epigenetic level by inducing N6-methyladenosine (m6A) deposition in the 3' untranslated region (UTR) of the transcript that encodes dishevelled-axin (DIX) domain-containing 1 (DIXDC1). That reaction increases the mRNA stability and expression of Dixdc1. DIXDC1 functionally interacts with disrupted in schizophrenia 1 (DISC1) to accelerate the degeneration and senescence of nucleus pulposus (NP) cells by activating a canonical Wnt pathway. Our study demonstrates the association between CS, MC-derived TTs, and LBP. These findings raise the possibility that METTL14-medicated DIXDC1 m6A modification could serve as a potential therapeutic target to block the development of degeneration of the NP in LBP patients.
Collapse
Affiliation(s)
- Ji Tu
- Spine Labs, St. George & Sutherland Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Wentian Li
- Spine Labs, St. George & Sutherland Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Philip M Hansbro
- Faculty of Science, School of Life Sciences, Centre for Inflammation, Centenary Institute, University of Technology Sydney, Sydney, NSW, Australia; Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, University of Newcastle, Newcastle, NSW, Australia
| | - Qi Yan
- Department of Orthopedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xupeng Bai
- Center for Innovation and Translational Medicine, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, First Affiliated Hospital, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Chantal Donovan
- Faculty of Science, School of Life Sciences, Centre for Inflammation, Centenary Institute, University of Technology Sydney, Sydney, NSW, Australia; Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, University of Newcastle, Newcastle, NSW, Australia
| | - Richard Y Kim
- Faculty of Science, School of Life Sciences, Centre for Inflammation, Centenary Institute, University of Technology Sydney, Sydney, NSW, Australia; Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, University of Newcastle, Newcastle, NSW, Australia
| | - Izabela Galvao
- Faculty of Science, School of Life Sciences, Centre for Inflammation, Centenary Institute, University of Technology Sydney, Sydney, NSW, Australia; Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, University of Newcastle, Newcastle, NSW, Australia
| | - Abhirup Das
- Spine Labs, St. George & Sutherland Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Cao Yang
- Department of Orthopedic Surgery, Wuhan Union Hospital, Tongji Medical School, Huazhong University of Science and Technology, Wuhan, China.
| | - Jun Zou
- Department of Orthopedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China.
| | - Ashish Diwan
- Spine Labs, St. George & Sutherland Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia; Spine Service, Department of Orthopedic Surgery, St. George Hospital, Kogarah, NSW, Australia.
| |
Collapse
|
7
|
Rustam S, Hu Y, Mahjour SB, Rendeiro AF, Ravichandran H, Urso A, D’Ovidio F, Martinez FJ, Altorki NK, Richmond B, Polosukhin V, Kropski JA, Blackwell TS, Randell SH, Elemento O, Shaykhiev R. A Unique Cellular Organization of Human Distal Airways and Its Disarray in Chronic Obstructive Pulmonary Disease. Am J Respir Crit Care Med 2023; 207:1171-1182. [PMID: 36796082 PMCID: PMC10161760 DOI: 10.1164/rccm.202207-1384oc] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 02/15/2023] [Indexed: 02/18/2023] Open
Abstract
Rationale: Remodeling and loss of distal conducting airways, including preterminal and terminal bronchioles (pre-TBs/TBs), underlie progressive airflow limitation in chronic obstructive pulmonary disease (COPD). The cellular basis of these structural changes remains unknown. Objectives: To identify biological changes in pre-TBs/TBs in COPD at single-cell resolution and determine their cellular origin. Methods: We established a novel method of distal airway dissection and performed single-cell transcriptomic profiling of 111,412 cells isolated from different airway regions of 12 healthy lung donors and pre-TBs of 5 patients with COPD. Imaging CyTOF and immunofluorescence analysis of pre-TBs/TBs from 24 healthy lung donors and 11 subjects with COPD were performed to characterize cellular phenotypes at a tissue level. Region-specific differentiation of basal cells isolated from proximal and distal airways was studied using an air-liquid interface model. Measurements and Main Results: The atlas of cellular heterogeneity along the proximal-distal axis of the human lung was assembled and identified region-specific cellular states, including SCGB3A2+ SFTPB+ terminal airway-enriched secretory cells (TASCs) unique to distal airways. TASCs were lost in COPD pre-TBs/TBs, paralleled by loss of region-specific endothelial capillary cells, increased frequency of CD8+ T cells normally enriched in proximal airways, and augmented IFN-γ signaling. Basal cells residing in pre-TBs/TBs were identified as a cellular origin of TASCs. Regeneration of TASCs by these progenitors was suppressed by IFN-γ. Conclusions: Altered maintenance of the unique cellular organization of pre-TBs/TBs, including loss of the region-specific epithelial differentiation in these bronchioles, represents the cellular manifestation and likely the cellular basis of distal airway remodeling in COPD.
Collapse
Affiliation(s)
| | - Yang Hu
- Caryl and Israel Englander Institute for Precision Medicine, Department of Physiology and Biophysics, Weill Cornell Medical College, New York, New York
| | | | - Andre F. Rendeiro
- Caryl and Israel Englander Institute for Precision Medicine, Department of Physiology and Biophysics, Weill Cornell Medical College, New York, New York
| | - Hiranmayi Ravichandran
- Caryl and Israel Englander Institute for Precision Medicine, Department of Physiology and Biophysics, Weill Cornell Medical College, New York, New York
| | - Andreacarola Urso
- Department of Surgery, Columbia University Irving Medical Center, New York, New York
| | - Frank D’Ovidio
- Department of Surgery, Columbia University Irving Medical Center, New York, New York
| | | | - Nasser K. Altorki
- Department of Cardiothoracic Surgery, Weill Cornell Medicine, New York, New York
| | - Bradley Richmond
- Department of Veterans Affairs Medical Center, Nashville, Tennessee
- Department of Medicine, Vanderbilt University, Nashville, Tennessee; and
| | | | - Jonathan A. Kropski
- Department of Veterans Affairs Medical Center, Nashville, Tennessee
- Department of Medicine, Vanderbilt University, Nashville, Tennessee; and
| | - Timothy S. Blackwell
- Department of Veterans Affairs Medical Center, Nashville, Tennessee
- Department of Medicine, Vanderbilt University, Nashville, Tennessee; and
| | - Scott H. Randell
- Marsico Lung Institute, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Olivier Elemento
- Caryl and Israel Englander Institute for Precision Medicine, Department of Physiology and Biophysics, Weill Cornell Medical College, New York, New York
| | | |
Collapse
|
8
|
Derakhshan T, Boyce JA, Dwyer DF. Defining mast cell differentiation and heterogeneity through single-cell transcriptomics analysis. J Allergy Clin Immunol 2022; 150:739-747. [PMID: 36205448 PMCID: PMC9547083 DOI: 10.1016/j.jaci.2022.08.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/15/2022] [Accepted: 08/19/2022] [Indexed: 11/23/2022]
Abstract
Mast cells (MCs) are widely recognized as central effector cells during type 2 inflammatory reactions and thought to also play a role in innate immune responses, wound healing, and potentially cancer. Circulating progenitor cells mature to MCs in peripheral tissues, where they exhibit phenotypic and functional heterogeneity. This diversity likely originates from differences in MC development imprinted by microenvironmental signals. The advent of single-cell transcriptomics reveals MC diversity beyond differences in proteases that were classically used to identify MC phenotypes. Here, we provide an overview of the current knowledge on MC progenitor differentiation and characteristics, and MC heterogeneity seen in health versus disease, that are drastically advanced through single-cell profiling technologies. This powerful approach can provide detailed cellular maps of tissues to decipher the complex cellular functions and interactions that may lead to identifying candidate factors to target in therapies.
Collapse
Affiliation(s)
- Tahereh Derakhshan
- Jeff and Penny Vinik Center for Allergic Disease Research, Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Boston, Mass; Harvard Medical School, Boston, Mass
| | - Joshua A Boyce
- Jeff and Penny Vinik Center for Allergic Disease Research, Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Boston, Mass; Harvard Medical School, Boston, Mass
| | - Daniel F Dwyer
- Jeff and Penny Vinik Center for Allergic Disease Research, Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Boston, Mass; Harvard Medical School, Boston, Mass.
| |
Collapse
|
9
|
Torres-Atencio I, Campble A, Goodridge A, Martin M. Uncovering the Mast Cell Response to Mycobacterium tuberculosis. Front Immunol 2022; 13:886044. [PMID: 35720353 PMCID: PMC9201906 DOI: 10.3389/fimmu.2022.886044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 05/02/2022] [Indexed: 11/13/2022] Open
Abstract
The immunologic mechanisms that contribute to the response to Mycobacterium tuberculosis infection still represent a challenge in the clinical management and scientific understanding of tuberculosis disease. In this scenario, the role of the different cells involved in the host response, either in terms of innate or adaptive immunity, remains key for defeating this disease. Among this coordinated cell response, mast cells remain key for defeating tuberculosis infection and disease. Together with its effector’s molecules, membrane receptors as well as its anatomical locations, mast cells play a crucial role in the establishment and perpetuation of the inflammatory response that leads to the generation of the granuloma during tuberculosis. This review highlights the current evidences that support the notion of mast cells as key link to reinforce the advancements in tuberculosis diagnosis, disease progression, and novel therapeutic strategies. Special focus on mast cells capacity for the modulation of the inflammatory response among patients suffering multidrug resistant tuberculosis or in co-infections such as current COVID-19 pandemic.
Collapse
Affiliation(s)
- Ivonne Torres-Atencio
- Departamento de Farmacología, Facultad de Medicina, Universidad de Panamá, Panama, Panama.,Tuberculosis Biomarker Research Unit, Centro de Biología Molecular y Celular de Enfermedades (CBCME) - Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT-AIP), Ciudad Del Saber, Panama
| | - Ariadne Campble
- Tuberculosis Biomarker Research Unit, Centro de Biología Molecular y Celular de Enfermedades (CBCME) - Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT-AIP), Ciudad Del Saber, Panama
| | - Amador Goodridge
- Tuberculosis Biomarker Research Unit, Centro de Biología Molecular y Celular de Enfermedades (CBCME) - Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT-AIP), Ciudad Del Saber, Panama
| | - Margarita Martin
- Biochemistry Unit, Biomedicine Department, Faculty of Medicine, University of Barcelona, Barcelona, Spain.,Laboratory of Clinical and Experimental Respiratory Immunoallergy, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
| |
Collapse
|
10
|
Cardenas EI, Alvarado-Vazquez PA, Mendez-Enriquez E, Danielsson E, Hallgren J. Elastase- and LPS-Exposed Cpa3Cre/+ and ST2-/- Mice Develop Unimpaired Obstructive Pulmonary Disease. Front Immunol 2022; 13:830859. [PMID: 35493481 PMCID: PMC9043106 DOI: 10.3389/fimmu.2022.830859] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 03/23/2022] [Indexed: 01/21/2023] Open
Abstract
IL-33 and its receptor ST2, as well as mast cells and their mediators, have been implicated in the development of chronic obstructive pulmonary disease (COPD). However, whether mast cells and the ST2 receptor play a critical role in COPD pathophysiology remains unclear. Here, we performed repeated intranasal administrations of porcine pancreatic elastase and LPS for four weeks to study COPD-like disease in wildtype, ST2-deficient, and Cpa3Cre/+ mice, which lack mast cells and have a partial reduction in basophils. Alveolar enlargement and changes in spirometry-like parameters, e.g. increased dynamic compliance and decreased expiratory capacity, were evident one day after the final LPS challenge and worsened over time. The elastase/LPS model also induced mild COPD-like airway inflammation, which encompassed a transient increase in lung mast cell progenitors, but not in mature mast cells. While ST2-deficient and Cpa3Cre/+ mice developed reduced pulmonary function uninterruptedly, they had a defective inflammatory response. Importantly, both ST2-deficient and Cpa3Cre/+ mice had fewer alveolar macrophages, known effector cells in COPD. Elastase/LPS instillation in vivo also caused increased bronchiole contraction in precision cut lung slices challenged with methacholine ex vivo, which occurred in a mast cell-independent fashion. Taken together, our data suggest that the ST2 receptor and mast cells play a minor role in COPD pathophysiology by sustaining alveolar macrophages.
Collapse
Affiliation(s)
- Eduardo I. Cardenas
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
- Division of Lung and Airway Research, Institute of Environmental Medicine, Karolinska Institute, Stockholm, Sweden
| | | | - Erika Mendez-Enriquez
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Erik A. Danielsson
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
- Department of Surgical Sciences, Uppsala University Hospital, Uppsala, Sweden
| | - Jenny Hallgren
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
- *Correspondence: Jenny Hallgren, ; orcid.org/0000-0002-3685-5364
| |
Collapse
|
11
|
Baker JR, Donnelly LE. Leukocyte Function in COPD: Clinical Relevance and Potential for Drug Therapy. Int J Chron Obstruct Pulmon Dis 2021; 16:2227-2242. [PMID: 34354348 PMCID: PMC8331105 DOI: 10.2147/copd.s266394] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 07/19/2021] [Indexed: 11/23/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a progressive lung condition affecting 10% of the global population over 45 years. Currently, there are no disease-modifying treatments, with current therapies treating only the symptoms of the disease. COPD is an inflammatory disease, with a high infiltration of leukocytes being found within the lung of COPD patients. These leukocytes, if not kept in check, damage the lung, leading to the pathophysiology associated with the disease. In this review, we focus on the main leukocytes found within the COPD lung, describing how the release of chemokines from the damaged epithelial lining recruits these cells into the lung. Once present, these cells become active and may be driven towards a more pro-inflammatory phenotype. These cells release their own subtypes of inflammatory mediators, growth factors and proteases which can all lead to airway remodeling, mucus hypersecretion and emphysema. Finally, we describe some of the current therapies and potential new targets that could be utilized to target aberrant leukocyte function in the COPD lung. Here, we focus on old therapies such as statins and corticosteroids, but also look at the emerging field of biologics describing those which have been tested in COPD already and potential new monoclonal antibodies which are under review.
Collapse
Affiliation(s)
- Jonathan R Baker
- Airway Disease, National Heart and Lung Institute, Imperial College London, London, UK
| | - Louise E Donnelly
- Airway Disease, National Heart and Lung Institute, Imperial College London, London, UK
| |
Collapse
|
12
|
Li F, Choi J, Zou C, Newell JD, Comellas AP, Lee CH, Ko H, Barr RG, Bleecker ER, Cooper CB, Abtin F, Barjaktarevic I, Couper D, Han M, Hansel NN, Kanner RE, Paine R, Kazerooni EA, Martinez FJ, O'Neal W, Rennard SI, Smith BM, Woodruff PG, Hoffman EA, Lin CL. Latent traits of lung tissue patterns in former smokers derived by dual channel deep learning in computed tomography images. Sci Rep 2021; 11:4916. [PMID: 33649381 PMCID: PMC7921389 DOI: 10.1038/s41598-021-84547-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 02/15/2021] [Indexed: 11/30/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a heterogeneous disease and the traditional variables extracted from computed tomography (CT) images may not be sufficient to describe all the topological features of lung tissues in COPD patients. We employed an unsupervised three-dimensional (3D) convolutional autoencoder (CAE)-feature constructor (FC) deep learning network to learn from CT data and derive tissue pattern-clusters jointly. We then applied exploratory factor analysis (EFA) to discover the unobserved latent traits (factors) among pattern-clusters. CT images at total lung capacity (TLC) and residual volume (RV) of 541 former smokers and 59 healthy non-smokers from the cohort of the SubPopulations and Intermediate Outcome Measures in the COPD Study (SPIROMICS) were analyzed. TLC and RV images were registered to calculate the Jacobian (determinant) values for all the voxels in TLC images. 3D Regions of interest (ROIs) with two data channels of CT intensity and Jacobian value were randomly extracted from training images and were fed to the 3D CAE-FC model. 80 pattern-clusters and 7 factors were identified. Factor scores computed for individual subjects were able to predict spirometry-measured pulmonary functions. Two factors which correlated with various emphysema subtypes, parametric response mapping (PRM) metrics, airway variants, and airway tree to lung volume ratio were discriminants of patients across all severity stages. Our findings suggest the potential of developing factor-based surrogate markers for new COPD phenotypes.
Collapse
Affiliation(s)
- Frank Li
- Department of Biomedical Engineering, University of Iowa, Iowa City, IA, USA
- IIHR-Hydroscience and Engineering, 2406 Seamans Center for the Engineering Art and Science, University of Iowa, Iowa City, IA, 52242, USA
| | - Jiwoong Choi
- Department of Mechanical Engineering, University of Iowa, Iowa City, IA, USA
- Department of Internal Medicine, School of Medicine, University of Kansas, Kansas City, KS, USA
| | - Chunrui Zou
- IIHR-Hydroscience and Engineering, 2406 Seamans Center for the Engineering Art and Science, University of Iowa, Iowa City, IA, 52242, USA
- Department of Mechanical Engineering, University of Iowa, Iowa City, IA, USA
| | - John D Newell
- Department of Radiology, University of Iowa, Iowa City, IA, USA
| | | | - Chang Hyun Lee
- Department of Radiology, University of Iowa, Iowa City, IA, USA
- Department of Radiology, Seoul National University, Seoul, Republic of Korea
| | - Hongseok Ko
- Department of Radiology, Chungnam National University Sejong Hospital, Sejong, Republic of Korea
| | - R Graham Barr
- Mailman School of Public Health, Columbia University, New York, NY, USA
| | | | | | | | | | - David Couper
- Department of Biostatistics, University of North Carolina, Chapel Hill, NC, USA
| | - MeiLan Han
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | | | | | - Robert Paine
- School of Medicine, University of Utah, Salt Lake City, UT, USA
| | - Ella A Kazerooni
- Department of Radiology, University of Michigan, Ann Arbor, MI, USA
| | | | - Wanda O'Neal
- School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Stephen I Rennard
- Department of Internal Medicine, University of Nebraska College of Medicine, Omaha, NE, USA
| | - Benjamin M Smith
- Department of Medicine, Columbia University, New York, NY, USA
- Research Institute, McGill University Health Center, Montreal, Canada
| | | | - Eric A Hoffman
- Department of Biomedical Engineering, University of Iowa, Iowa City, IA, USA
- Department of Radiology, University of Iowa, Iowa City, IA, USA
- Department of Internal Medicine, University of Iowa, Iowa City, IA, USA
| | - Ching-Long Lin
- Department of Biomedical Engineering, University of Iowa, Iowa City, IA, USA.
- IIHR-Hydroscience and Engineering, 2406 Seamans Center for the Engineering Art and Science, University of Iowa, Iowa City, IA, 52242, USA.
- Department of Mechanical Engineering, University of Iowa, Iowa City, IA, USA.
- Department of Radiology, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
13
|
Backer V, Klein DK, Bodtger U, Romberg K, Porsbjerg C, Erjefält JS, Kristiansen K, Xu R, Silberbrandt A, Frøssing L, Hvidtfeldt M, Obling N, Jarenbäck L, Nasr A, Tufvesson E, Mori M, Winther-Jensen M, Karlsson L, Nihlén U, Veje Flintegaard T, Bjermer L. Clinical characteristics of the BREATHE cohort - a real-life study on patients with asthma and COPD. Eur Clin Respir J 2020; 7:1736934. [PMID: 32284828 PMCID: PMC7144315 DOI: 10.1080/20018525.2020.1736934] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 02/24/2020] [Indexed: 01/06/2023] Open
Abstract
Background: The BREATHE study is a cross-sectional study of real-life patients with asthma and/or COPD in Denmark and Sweden aiming to increase the knowledge across severities and combinations of obstructive airway disease. Design: Patients with suspicion of asthma and/or COPD and healthy controls were invited to participate in the study and had a standard evaluation performed consisting of questionnaires, physical examination, FeNO and lung function, mannitol provocation test, allergy test, and collection of sputum and blood samples. A subgroup of patients and healthy controls had a bronchoscopy performed with a collection of airway samples. Results: The study population consisted of 1403 patients with obstructive airway disease (859 with asthma, 271 with COPD, 126 with concurrent asthma and COPD, 147 with other), and 89 healthy controls (smokers and non-smokers). Of patients with asthma, 54% had moderate-to-severe disease and 46% had mild disease. In patients with COPD, 82% had groups A and B, whereas 18% had groups C and D classified disease. Patients with asthma more frequently had childhood asthma, atopic dermatitis, and allergic rhinitis, compared to patients with COPD, asthma + COPD and Other, whereas FeNO levels were higher in patients with asthma and asthma + COPD compared to COPD and Other (18 ppb and 16 ppb vs 12.5 ppb and 14 ppb, p < 0.001). Patients with asthma, asthma + COPD and Other had higher sputum eosinophilia (1.5%, 1.5%, 1.2% vs 0.75%, respectively, p < 0.001) but lower sputum neutrophilia (39.3, 43.5%, 40.8% vs 66.8%, p < 0.001) compared to patients with COPD. Conclusions: The BREATHE study provides a unique database and biobank with clinical information and samples from 1403 real-life patients with asthma, COPD, and overlap representing different severities of the diseases. This research platform is highly relevant for disease phenotype- and biomarker studies aiming to describe a broad spectrum of obstructive airway diseases.
Collapse
Affiliation(s)
- Vibeke Backer
- Centre for Physical Activity Research, Rigshospitalet, Copenhagen University, Copenhagen, Denmark
| | - Ditte K Klein
- Respiratory Research Unit, Department of Respiratory Medicine, Bispebjerg University Hospital, Copenhagen, Denmark
| | - Uffe Bodtger
- Department of Respiratory and Internal Medicine, Naestved Hospital, Naestved, Denmark.,Institute of Regional Health Research, University of Southern Denmark, Odense, Denmark
| | - Kerstin Romberg
- Health Care Centre, Näsets Läkargrupp, Höllviken, Sweden.,Respiratory Medicine and Allergology, Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Celeste Porsbjerg
- Respiratory Research Unit, Department of Respiratory Medicine, Bispebjerg University Hospital, Copenhagen, Denmark
| | | | - Karsten Kristiansen
- Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Ruiqi Xu
- North Europe Regional Department, BGI-Europe, Copenhagen, Denmark
| | - Alexander Silberbrandt
- Respiratory Research Unit, Department of Respiratory Medicine, Bispebjerg University Hospital, Copenhagen, Denmark
| | - Laurits Frøssing
- Respiratory Research Unit, Department of Respiratory Medicine, Bispebjerg University Hospital, Copenhagen, Denmark
| | - Morten Hvidtfeldt
- Respiratory Research Unit, Department of Respiratory Medicine, Bispebjerg University Hospital, Copenhagen, Denmark
| | - Nicolai Obling
- Department of Respiratory and Internal Medicine, Naestved Hospital, Naestved, Denmark.,Institute of Regional Health Research, University of Southern Denmark, Odense, Denmark
| | - Linnea Jarenbäck
- Respiratory Medicine and Allergology, Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Abir Nasr
- Respiratory Medicine and Allergology, Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Ellen Tufvesson
- Respiratory Medicine and Allergology, Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Michiko Mori
- Unit of Airway Inflammation, Lund University, Lund, Sweden
| | - Matilde Winther-Jensen
- Centre for Clinical Research and Prevention, Bispebjerg and Frederiksberg Hospital, Copenhagen, Denmark
| | - Lisa Karlsson
- Unit of Airway Inflammation, Lund University, Lund, Sweden
| | - Ulf Nihlén
- Respiratory Medicine and Allergology, Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Thomas Veje Flintegaard
- Respiratory Research Unit, Department of Respiratory Medicine, Bispebjerg University Hospital, Copenhagen, Denmark
| | - Leif Bjermer
- Respiratory Medicine and Allergology, Clinical Sciences Lund, Lund University, Lund, Sweden
| |
Collapse
|
14
|
Avdeev SN, Trushenko NV, Merzhoeva ZM, Ivanova MS, Kusraeva EV. [Eosinophilic inflammation in chronic obstructive pulmonary disease]. TERAPEVT ARKH 2019; 91:144-152. [PMID: 32598645 DOI: 10.26442/00403660.2019.10.000426] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Indexed: 11/22/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) is a heterogeneous disease that combines various clinical manifestations and pathophysiological mechanisms. It underlies the separation of patients with COPD by phenotypes, endotypes and a personalized therapy of this disease. The implementation of this approach is possible only with the use of appropriate biomarkers. One of the most important biomarkers of COPD is eosinophilia of blood and/or sputum, which is considered as a predictor of frequent exacerbations and the effectiveness of inhaled glucocorticosteroids in patients with COPD. The literature discusses the impact of eosinophilic inflammation on the prognosis, clinical and functional parameters in COPD, and the role of the targeted therapy in the treatment of eosinophilic COPD.
Collapse
Affiliation(s)
- S N Avdeev
- Sechenov First Moscow State Medical University (Sechenov University).,Pulmonology Scientific Research Institute
| | - N V Trushenko
- Sechenov First Moscow State Medical University (Sechenov University).,Pulmonology Scientific Research Institute
| | - Z M Merzhoeva
- Sechenov First Moscow State Medical University (Sechenov University).,Pulmonology Scientific Research Institute
| | - M S Ivanova
- Sechenov First Moscow State Medical University (Sechenov University)
| | - E V Kusraeva
- Sechenov First Moscow State Medical University (Sechenov University)
| |
Collapse
|
15
|
High-Resolution Computed Tomography (HRCT) Reflects Disease Progression in Patients with Idiopathic Pulmonary Fibrosis (IPF): Relationship with Lung Pathology. J Clin Med 2019; 8:jcm8030399. [PMID: 30909411 PMCID: PMC6463252 DOI: 10.3390/jcm8030399] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 03/12/2019] [Accepted: 03/18/2019] [Indexed: 01/16/2023] Open
Abstract
High-Resolution Computed Tomography (HRCT) plays a central role in diagnosing Idiopathic Pulmonary Fibrosis (IPF) while its role in monitoring disease progression is not clearly defined. Given the variable clinical course of the disease, we evaluated whether HRCT abnormalities predict disease behavior and correlate with functional decline in untreated IPF patients. Forty-nine patients (with HRCT1) were functionally categorized as rapid or slow progressors. Twenty-one had a second HRCT2. Thirteen patients underwent lung transplantation and pathology was quantified. HRCT Alveolar (AS) and Interstitial Scores (IS) were assessed and correlated with Forced Vital Capacity (FVC) decline between HRCT1 and HRCT2. At baseline, AS was greater in rapids than in slows, while IS was similar in the two groups. In the 21 subjects with HRCT2, IS increased over time in both slows and rapids, while AS increased only in rapids. The IS change from HRCT1 to HRCT2 normalized per month correlated with FVC decline/month in the whole population, but the change in AS did not. In the 13 patients with pathology, the number of total lymphocytes was higher in rapids than in slows and correlated with AS. Quantitative estimation of HRCTs AS and IS reflects the distinct clinical and pathological behavior of slow and rapid decliners. Furthermore, AS, which reflects the immune/inflammatory infiltrate in lung tissue, could be a useful tool to differentiate rapid from slow progressors at presentation.
Collapse
|
16
|
Wang Y, Xu J, Meng Y, Adcock IM, Yao X. Role of inflammatory cells in airway remodeling in COPD. Int J Chron Obstruct Pulmon Dis 2018; 13:3341-3348. [PMID: 30349237 PMCID: PMC6190811 DOI: 10.2147/copd.s176122] [Citation(s) in RCA: 197] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
COPD is characterized by chronic bronchitis, chronic airway obstruction, and emphysema, leading to a progressive and irreversible decline in lung function. Inflammation is central for the development of COPD. Chronic inflammation in COPD mainly involves the infiltration of neutrophils, macrophages, lymphocytes, and other inflammatory cells into the small airways. The contribution of resident airway structural cells to the inflammatory process is also important in COPD. Airway remodeling consists of detrimental changes in structural tissues and cells including airway wall thickening, epithelial metaplasia, goblet cell hypertrophy, and smooth muscle hyperplasia. Persistent airway inflammation might contribute to airway remodeling and small airway obstruction. However, the underlying mechanisms remain unclear. In this review, we will provide an overview of recent insights into the role of major immunoinflammatory cells in COPD airway remodeling.
Collapse
Affiliation(s)
- Yujie Wang
- Department of Respiratory Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China,
- Department of Respiratory Medicine, The Second Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Jiayan Xu
- Department of Respiratory Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China,
| | - Yaqi Meng
- Department of Respiratory Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China,
| | - Ian M Adcock
- Cell and Molecular Biology Group, Airways Disease Section, National Heart and Lung Institute, Imperial College London, London, UK
| | - Xin Yao
- Department of Respiratory Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China,
| |
Collapse
|
17
|
Affiliation(s)
- Jian-Min Jin
- Department of Respiratory and Critical Care Medicine, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| | - Yong-Chang Sun
- Department of Respiratory and Critical Care Medicine, Peking University Third Hospital, Beijing 100191, China
| |
Collapse
|
18
|
Proteases and Their Inhibitors in Chronic Obstructive Pulmonary Disease. J Clin Med 2018; 7:jcm7090244. [PMID: 30154365 PMCID: PMC6162857 DOI: 10.3390/jcm7090244] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 08/24/2018] [Accepted: 08/25/2018] [Indexed: 12/21/2022] Open
Abstract
In the context of respiratory disease, chronic obstructive pulmonary disease (COPD) is the leading cause of mortality worldwide. Despite much development in the area of drug development, currently there are no effective medicines available for the treatment of this disease. An imbalance in the protease: Antiprotease ratio in the COPD lung remains an important aspect of COPD pathophysiology and several studies have shown the efficacy of antiprotease therapy in both in vitro and in vivo COPD models. However more in-depth studies will be required to validate the efficacy of lead drug molecules targeting these proteases. This review discusses the current status of protease-directed drugs used for treating COPD and explores the future prospects of utilizing the potential of antiprotease-based therapeutics as a treatment for this disease.
Collapse
|
19
|
Atanasova KR, Reznikov LR. Neuropeptides in asthma, chronic obstructive pulmonary disease and cystic fibrosis. Respir Res 2018; 19:149. [PMID: 30081920 PMCID: PMC6090699 DOI: 10.1186/s12931-018-0846-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Accepted: 07/13/2018] [Indexed: 02/07/2023] Open
Abstract
The nervous system mediates key airway protective behaviors, including cough, mucus secretion, and airway smooth muscle contraction. Thus, its involvement and potential involvement in several airway diseases has become increasingly recognized. In the current review, we focus on the contribution of select neuropeptides in three distinct airway diseases: asthma, chronic obstructive pulmonary disease (COPD), and cystic fibrosis. We present data on some well-studied neuropeptides, as well as call attention to a few that have not received much consideration. Because mucus hypersecretion and mucus obstruction are common features of many airway diseases, we place special emphasis on the contribution of neuropeptides to mucus secretion. Finally, we highlight evidence implicating involvement of neuropeptides in mucus phenotypes in asthma, COPD and cystic fibrosis, as well as bring to light knowledge that is still lacking in the field.
Collapse
Affiliation(s)
- Kalina R Atanasova
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, 1333 Center Drive, PO Box 100144, Gainesville, FL, 32610, USA
| | - Leah R Reznikov
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, 1333 Center Drive, PO Box 100144, Gainesville, FL, 32610, USA.
| |
Collapse
|
20
|
Cellular and molecular mechanisms of asthma and COPD. Clin Sci (Lond) 2017; 131:1541-1558. [PMID: 28659395 DOI: 10.1042/cs20160487] [Citation(s) in RCA: 299] [Impact Index Per Article: 42.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 02/28/2017] [Accepted: 03/01/2017] [Indexed: 12/19/2022]
Abstract
Asthma and chronic obstructive pulmonary disease (COPD) both cause airway obstruction and are associated with chronic inflammation of the airways. However, the nature and sites of the inflammation differ between these diseases, resulting in different pathology, clinical manifestations and response to therapy. In this review, the inflammatory and cellular mechanisms of asthma and COPD are compared and the differences in inflammatory cells and profile of inflammatory mediators are highlighted. These differences account for the differences in clinical manifestations of asthma and COPD and their response to therapy. Although asthma and COPD are usually distinct, there are some patients who show an overlap of features, which may be explained by the coincidence of two common diseases or distinct phenotypes of each disease. It is important to better understand the underlying cellular and molecular mechanisms of asthma and COPD in order to develop new treatments in areas of unmet need, such as severe asthma, curative therapy for asthma and effective anti-inflammatory treatments for COPD.
Collapse
|
21
|
Tanabe N, Vasilescu DM, McDonough JE, Kinose D, Suzuki M, Cooper JD, Paré PD, Hogg JC. Micro-Computed Tomography Comparison of Preterminal Bronchioles in Centrilobular and Panlobular Emphysema. Am J Respir Crit Care Med 2017; 195:630-638. [PMID: 27611890 DOI: 10.1164/rccm.201602-0278oc] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
RATIONALE Very little is known about airways that are too small to be visible on thoracic multidetector computed tomography but larger than the terminal bronchioles. OBJECTIVES To examine the structure of preterminal bronchioles located one generation proximal to terminal bronchioles in centrilobular and panlobular emphysema. METHODS Preterminal bronchioles were identified by backtracking from the terminal bronchioles, and their centerlines were established along the entire length of their lumens. Multiple cross-sectional images perpendicular to the centerline were reconstructed to evaluate the bronchiolar wall and lumen, and the alveolar attachments to the outer airway walls in relation to emphysematous destruction in 28 lung samples from six patients with centrilobular emphysema, 20 lung samples from seven patients with panlobular emphysema associated with alpha-1 antitrypsin deficiency, and 47 samples from seven control (donor) lungs. MEASUREMENTS AND MAIN RESULTS The preterminal bronchiolar length, wall volume, total volume (wall + lumen), lumen circularity, and number of alveolar attachments were reduced in both centrilobular and panlobular emphysema compared with control lungs. In contrast, thickening of the wall and narrowing of the lumen were more severe and heterogeneous in centrilobular than in panlobular emphysema. The bronchiolar lumen was narrower in the middle than at both ends, and the decreased number of alveolar attachments was associated with increased wall thickness in centrilobular emphysema. CONCLUSIONS These results provide new information about small airways pathology in centrilobular and panlobular emphysema and show that these changes affect airways that are not visible with thoracic multidetector computed tomography scans but located proximal to the terminal bronchioles in chronic obstructive pulmonary disease.
Collapse
Affiliation(s)
- Naoya Tanabe
- 1 Centre for Heart and Lung Innovation, St. Paul's Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - Dragoş M Vasilescu
- 1 Centre for Heart and Lung Innovation, St. Paul's Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - John E McDonough
- 1 Centre for Heart and Lung Innovation, St. Paul's Hospital, University of British Columbia, Vancouver, British Columbia, Canada.,2 Department of Clinical and Experimental Medicine, Division of Respiratory Diseases, KU Leuven-University of Leuven, Leuven, Belgium
| | - Daisuke Kinose
- 1 Centre for Heart and Lung Innovation, St. Paul's Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - Masaru Suzuki
- 1 Centre for Heart and Lung Innovation, St. Paul's Hospital, University of British Columbia, Vancouver, British Columbia, Canada.,3 First Department of Medicine, Hokkaido University School of Medicine, Sapporo, Japan; and
| | - Joel D Cooper
- 4 Division of Thoracic Surgery, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Peter D Paré
- 1 Centre for Heart and Lung Innovation, St. Paul's Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - James C Hogg
- 1 Centre for Heart and Lung Innovation, St. Paul's Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
22
|
Dasgupta A, Kjarsgaard M, Capaldi D, Radford K, Aleman F, Boylan C, Altman LC, Wight TN, Parraga G, O'Byrne PM, Nair P. A pilot randomised clinical trial of mepolizumab in COPD with eosinophilic bronchitis. Eur Respir J 2017; 49:49/3/1602486. [DOI: 10.1183/13993003.02486-2016] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 12/20/2016] [Indexed: 11/05/2022]
|
23
|
Li H, Yang T, Ning Q, Li F, Chen T, Yao Y, Sun Z. Cigarette smoke extract-treated mast cells promote alveolar macrophage infiltration and polarization in experimental chronic obstructive pulmonary disease. Inhal Toxicol 2016; 27:822-31. [PMID: 26671198 DOI: 10.3109/08958378.2015.1116644] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
OBJECTIVE Cigarette smoking is the main cause of chronic obstructive pulmonary disease (COPD) and may modulate the immune response of exposed individuals. Mast cell function can be altered by cigarette smoking, but the role of smoking in COPD remains poorly understood. The current study aimed to explore the role of cigarette smoke extract (CSE)-treated mast cells in COPD pathogenesis. METHODS Cytokine and chemokine expression as well as degranulation of bone marrow-derived mast cells (BMMCs) were detected in cells exposed to immunoglobulin E (IgE) and various doses of CSE. Adoptive transfer of CSE-treated BMMCs into C57BL/6J mice was performed, and macrophage infiltration and polarization were evaluated by fluorescence-activated cell sorting (FACS). Furthermore, a coculture system of BMMCs and macrophages was established to examine macrophage phenotype transition. The role of protease serine member S31 (Prss31) was also investigated in the co-culture system and in COPD mice. RESULTS CSE exposure suppressed cytokine expression and degranulation in BMMCs, but promoted the expressions of chemokines and Prss31. Adoptive transfer of CSE-treated BMMCs induced macrophage infiltration and M2 polarization in the mouse lung. Moreover, CSE-treated BMMCs triggered macrophage M2 polarization via Prss31 secretion. Recombinant Prss31 was shown to activate interleukin (IL)-13/IL-13Rα/Signal transducers and activators of transcription (Stat) 6 signaling in macrophages. Additionally, a positive correlation was found between Prss31 expression and the number of M2 macrophages in COPD mice. CONCLUSION In conclusion, CSE-treated mast cells may induce macrophage infiltration and M2 polarization via Prss31 expression, and potentially contribute to COPD progression.
Collapse
Affiliation(s)
- Hong Li
- a Department of Respiratory and Critical Care Medicine , The First Affiliated Hospital of Xi'an Jiaotong University , Xi'an , China
| | - Tian Yang
- a Department of Respiratory and Critical Care Medicine , The First Affiliated Hospital of Xi'an Jiaotong University , Xi'an , China
| | - Qian Ning
- a Department of Respiratory and Critical Care Medicine , The First Affiliated Hospital of Xi'an Jiaotong University , Xi'an , China
| | - Feiyan Li
- a Department of Respiratory and Critical Care Medicine , The First Affiliated Hospital of Xi'an Jiaotong University , Xi'an , China
| | - Tianjun Chen
- a Department of Respiratory and Critical Care Medicine , The First Affiliated Hospital of Xi'an Jiaotong University , Xi'an , China
| | - Yan Yao
- a Department of Respiratory and Critical Care Medicine , The First Affiliated Hospital of Xi'an Jiaotong University , Xi'an , China
| | - Zhongmin Sun
- a Department of Respiratory and Critical Care Medicine , The First Affiliated Hospital of Xi'an Jiaotong University , Xi'an , China
| |
Collapse
|
24
|
Virk H, Arthur G, Bradding P. Mast cells and their activation in lung disease. Transl Res 2016; 174:60-76. [PMID: 26845625 DOI: 10.1016/j.trsl.2016.01.005] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 01/07/2016] [Accepted: 01/12/2016] [Indexed: 12/14/2022]
Abstract
Mast cells and their activation contribute to lung health via innate and adaptive immune responses to respiratory pathogens. They are also involved in the normal response to tissue injury. However, mast cells are involved in disease processes characterized by inflammation and remodeling of tissue structure. In these diseases mast cells are often inappropriately and chronically activated. There is evidence for activation of mast cells contributing to the pathophysiology of asthma, pulmonary fibrosis, and pulmonary hypertension. They may also play a role in chronic obstructive pulmonary disease, acute respiratory distress syndrome, and lung cancer. The diverse mechanisms through which mast cells sense and interact with the external and internal microenvironment account for their role in these diseases. Newly discovered mechanisms of redistribution and interaction between mast cells, airway structural cells, and other inflammatory cells may offer novel therapeutic targets in these disease processes.
Collapse
Affiliation(s)
- Harvinder Virk
- Department of Infection, Immunity and Inflammation, Institute of Lung Health, University of Leicester, Leicester, United Kingdom
| | - Greer Arthur
- Department of Infection, Immunity and Inflammation, Institute of Lung Health, University of Leicester, Leicester, United Kingdom
| | - Peter Bradding
- Department of Infection, Immunity and Inflammation, Institute of Lung Health, University of Leicester, Leicester, United Kingdom.
| |
Collapse
|
25
|
Arthur G, Bradding P. New Developments in Mast Cell Biology: Clinical Implications. Chest 2016; 150:680-93. [PMID: 27316557 DOI: 10.1016/j.chest.2016.06.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 04/26/2016] [Accepted: 06/03/2016] [Indexed: 12/12/2022] Open
Abstract
Mast cells (MCs) are present in connective tissue and at mucosal surfaces in all classes of vertebrates. In health, they contribute to tissue homeostasis, host defense, and tissue repair via multiple receptors regulating the release of a vast stockpile of proinflammatory mediators, proteases, and cytokines. However, these potentially protective cells are a double-edged sword. When there is a repeated or long-term stimulus, MC activation leads to tissue damage and dysfunction. Accordingly, MCs are implicated in the pathophysiologic aspects of numerous diseases covering all organs. Understanding the biology of MCs, their heterogeneity, mechanisms of activation, and signaling cascades may lead to the development of novel therapies for many diseases for which current treatments are lacking or are of poor efficacy. This review will focus on updates and developments in MC biology and their clinical implications, with a particular focus on their role in respiratory diseases.
Collapse
Affiliation(s)
- Greer Arthur
- Department of Infection, Immunity and Inflammation, Institute for Lung Health, University of Leicester, England
| | - Peter Bradding
- Department of Infection, Immunity and Inflammation, Institute for Lung Health, University of Leicester, England.
| |
Collapse
|
26
|
Baraldo S, Balestro E, Bazzan E, Tiné ME, Biondini D, Turato G, Cosio MG, Saetta M. Alpha-1 Antitrypsin Deficiency Today: New Insights in the Immunological Pathways. Respiration 2016; 91:380-5. [PMID: 27164860 DOI: 10.1159/000445692] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 03/17/2016] [Indexed: 11/19/2022] Open
Abstract
More than 50 years ago, the observation that absence of the α1 band from protein electrophoresis is associated with severe emphysema established the link between α1-antitrypsin deficiency (AATD) and lung damage. From this discovery, the classic paradigm of protease/antiprotease imbalance was derived, linking lung destruction in patients with AATD to the unopposed effect of proteases. By extension, this paradigm was also applied to patients with 'common' chronic obstructive pulmonary disease, in whom large increases in smoke-induced proteases could overwhelm the antiprotease capability of AAT. However, it has become increasingly evident that AAT has important anti-inflammatory and immunoregulatory activities which, beside its antiprotease function, may be critically involved in lung destruction. From this perspective, we will consider recent evidence, based on epidemiological, clinical and immunopathological studies, suggesting that it is time to move on from the original protease/antiprotease paradigm toward a more complex view of the condition, which embraces its immunomodulating functions. Of importance, the potent immunoregulatory, tolerogenic role of AAT may support its therapeutic use in a number of diseases other than AATD, particularly in immune-related disorders.
Collapse
Affiliation(s)
- Simonetta Baraldo
- Department of Cardiac, Thoracic and Vascular Sciences, University of Padova and Padova City Hospital, Padova, Italy
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Balestro E, Calabrese F, Turato G, Lunardi F, Bazzan E, Marulli G, Biondini D, Rossi E, Sanduzzi A, Rea F, Rigobello C, Gregori D, Baraldo S, Spagnolo P, Cosio MG, Saetta M. Immune Inflammation and Disease Progression in Idiopathic Pulmonary Fibrosis. PLoS One 2016; 11:e0154516. [PMID: 27159038 PMCID: PMC4861274 DOI: 10.1371/journal.pone.0154516] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 04/14/2016] [Indexed: 11/18/2022] Open
Abstract
The clinical course in idiopathic pulmonary fibrosis (IPF) is highly heterogeneous, with some patients having a slow progression and others an accelerated clinical and functional decline. This study aims to clinically characterize the type of progression in IPF and to investigate the pathological basis that might account for the observed differences in disease behavior. Clinical and functional data were analyzed in 73 IPF patients, followed long-time as candidates for lung transplantation. The forced vital capacity (FVC) change/year (< or ≥10% predicted) was used to define "slow" or "rapid" disease progression. Pathological abnormalities were quantified in the explanted lung of 41 out of 73 patients undergoing lung transplantation. At diagnosis, slow progressors (n = 48) showed longer duration of symptoms and lower FVC than rapid progressors (n = 25). Eleven slow and 3 rapid progressors developed an acute exacerbation (AE) during follow-up. Quantitative lung pathology showed a severe innate and adaptive inflammatory infiltrate in rapid progressors, markedly increased compared to slow progressors and similar to that observed in patients experiencing AE. The extent of inflammation was correlated with the yearly FVC decline (r = 0.52, p = 0.005). In conclusion an innate and adaptive inflammation appears to be a prominent feature in the lung of patients with IPF and could contribute to determining of the rate of disease progression.
Collapse
Affiliation(s)
- Elisabetta Balestro
- Department of Cardiac, Thoracic and Vascular Sciences, University of Padova, Padova, Italy
| | - Fiorella Calabrese
- Department of Cardiac, Thoracic and Vascular Sciences, University of Padova, Padova, Italy
| | - Graziella Turato
- Department of Cardiac, Thoracic and Vascular Sciences, University of Padova, Padova, Italy
| | - Francesca Lunardi
- Department of Cardiac, Thoracic and Vascular Sciences, University of Padova, Padova, Italy
| | - Erica Bazzan
- Department of Cardiac, Thoracic and Vascular Sciences, University of Padova, Padova, Italy
| | - Giuseppe Marulli
- Department of Cardiac, Thoracic and Vascular Sciences, University of Padova, Padova, Italy
| | - Davide Biondini
- Department of Cardiac, Thoracic and Vascular Sciences, University of Padova, Padova, Italy
| | - Emanuela Rossi
- Department of Cardiac, Thoracic and Vascular Sciences, University of Padova, Padova, Italy
| | - Alessandro Sanduzzi
- Department of Clinical Medicine and Surgery, Federico II University, Napoli, Italy
| | - Federico Rea
- Department of Cardiac, Thoracic and Vascular Sciences, University of Padova, Padova, Italy
| | - Chiara Rigobello
- Department of Cardiac, Thoracic and Vascular Sciences, University of Padova, Padova, Italy
| | - Dario Gregori
- Department of Cardiac, Thoracic and Vascular Sciences, University of Padova, Padova, Italy
| | - Simonetta Baraldo
- Department of Cardiac, Thoracic and Vascular Sciences, University of Padova, Padova, Italy
| | - Paolo Spagnolo
- Department of Cardiac, Thoracic and Vascular Sciences, University of Padova, Padova, Italy
| | - Manuel G. Cosio
- Department of Cardiac, Thoracic and Vascular Sciences, University of Padova, Padova, Italy
- Respiratory Division Meakins-Christie Laboratories, McGill University, Montreal, Canada
| | - Marina Saetta
- Department of Cardiac, Thoracic and Vascular Sciences, University of Padova, Padova, Italy
| |
Collapse
|
28
|
|
29
|
King PT. Inflammation in chronic obstructive pulmonary disease and its role in cardiovascular disease and lung cancer. Clin Transl Med 2015. [PMID: 26220864 PMCID: PMC4518022 DOI: 10.1186/s40169-015-0068-z] [Citation(s) in RCA: 173] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is characterized by lung inflammation that persists after smoking cessation. This inflammation is heterogeneous but the key inflammatory cell types involved are macrophages, neutrophils and T cells. Other lung cells may also produce inflammatory mediators, particularly the epithelial cells. The main inflammatory mediators include tumor necrosis factor alpha, interleukin-1, interleukin-6, reactive oxygen species and proteases. COPD is also associated with systemic inflammation and there is a markedly increased risk of cardiovascular disease (particularly coronary artery disease) and lung cancer in patients with COPD. There is strong associative evidence that the inflammatory cells/mediators in COPD are also relevant to the development of cardiovascular disease and lung cancer. There are a large number of potential inhibitors of inflammation in COPD that may well have beneficial effects for these comorbidities. This is a not well-understood area and there is a requirement for more definitive clinical and mechanistic studies to define the relationship between the inflammatory process of COPD and cardiovascular disease and lung cancer.
Collapse
Affiliation(s)
- Paul T King
- Monash Lung and Sleep, Monash Medical Centre, 246 Clayton Rd, Clayton, Melbourne, 3168, Australia,
| |
Collapse
|
30
|
Roos AB, Sandén C, Mori M, Bjermer L, Stampfli MR, Erjefält JS. IL-17A Is Elevated in End-Stage Chronic Obstructive Pulmonary Disease and Contributes to Cigarette Smoke–induced Lymphoid Neogenesis. Am J Respir Crit Care Med 2015; 191:1232-41. [DOI: 10.1164/rccm.201410-1861oc] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
31
|
Abstract
Chronic obstructive pulmonary disease is mainly a smoking-related disorder and affects millions of people worldwide, with a large effect on individual patients and society as a whole. Although the disease becomes clinically apparent around the age of 40-50 years, its origins can begin very early in life. Different risk factors in very early life--ie, in utero and during early childhood--drive the development of clinically apparent chronic obstructive pulmonary disease in later life. In discussions of which risk factors drive chronic obstructive pulmonary disease, it is important to realise that the disease is very heterogeneous and at present is largely diagnosed by lung function only. In this Review, we will discuss the evidence for risk factors for the various phenotypes of chronic obstructive pulmonary disease during different stages of life.
Collapse
Affiliation(s)
- Dirkje S Postma
- Department of Pulmonary Diseases, University Medical Center Groningen, University of Groningen, Groningen, Netherlands; Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, Groningen, Netherlands.
| | - Andrew Bush
- National Heart and Lung Institute, Imperial College, London, UK
| | - Maarten van den Berge
- Department of Pulmonary Diseases, University Medical Center Groningen, University of Groningen, Groningen, Netherlands; Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| |
Collapse
|
32
|
Bracke KR, Brusselle GG. Chronic Obstructive Pulmonary Disease. Mucosal Immunol 2015. [DOI: 10.1016/b978-0-12-415847-4.00097-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
33
|
Holtzman MJ, Byers DE, Alexander-Brett J, Wang X. The role of airway epithelial cells and innate immune cells in chronic respiratory disease. Nat Rev Immunol 2014; 14:686-98. [PMID: 25234144 PMCID: PMC4782595 DOI: 10.1038/nri3739] [Citation(s) in RCA: 172] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
An abnormal immune response to environmental agents is generally thought to be responsible for causing chronic respiratory diseases, such as asthma and chronic obstructive pulmonary disease (COPD). Based on studies of experimental models and human subjects, there is increasing evidence that the response of the innate immune system is crucial for the development of this type of airway disease. Airway epithelial cells and innate immune cells represent key components of the pathogenesis of chronic airway disease and are emerging targets for new therapies. In this Review, we summarize the innate immune mechanisms by which airway epithelial cells and innate immune cells regulate the development of chronic respiratory diseases. We also explain how these pathways are being targeted in the clinic to treat patients with these diseases.
Collapse
Affiliation(s)
- Michael J Holtzman
- 1] Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, Saint Louis, Missouri 63110, USA. [2] Department of Cell Biology, Washington University School of Medicine, Saint Louis, Missouri 63110, USA
| | - Derek E Byers
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, Saint Louis, Missouri 63110, USA
| | - Jennifer Alexander-Brett
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, Saint Louis, Missouri 63110, USA
| | - Xinyu Wang
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, Saint Louis, Missouri 63110, USA
| |
Collapse
|
34
|
Clinical correlations of computed tomography imaging in chronic obstructive pulmonary disease. Ann Am Thorac Soc 2014; 10 Suppl:S131-7. [PMID: 24313763 DOI: 10.1513/annalsats.201303-046aw] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Chronic obstructive pulmonary disease is a complex disease with heterogeneous presentation, progression, and structural abnormality that is currently graded solely on clinical and physiologic parameters. Thoracic computed tomography imaging holds promise for phenotyping in chronic obstructive pulmonary disease, but despite increasing availability, this methodology has yet to be incorporated into clinical guidelines or routine clinical practice. However, the unique clinical implications of emphysema and airways disease are becoming clearer. Emphysema has a strong association with more rapid disease progression and mortality. Airways disease has a strong relationship with symptoms and health status. It is hoped that future refinement of emphysema assessment allowing for quantitative subtyping will also increase our ability to define clinically meaningful subgroups, as will development of methodologies to assess airways disease and, in particular, small airways through inspiratory/expiratory image registration techniques. Most important, however, is the need for longitudinal data, in not only observational but also therapeutic settings, such that the impact of interventions on radiographically defined phenotypes can be assessed.
Collapse
|
35
|
Kosanovic D, Dahal BK, Peters DM, Seimetz M, Wygrecka M, Hoffmann K, Antel J, Reiss I, Ghofrani HA, Weissmann N, Grimminger F, Seeger W, Schermuly RT. Histological characterization of mast cell chymase in patients with pulmonary hypertension and chronic obstructive pulmonary disease. Pulm Circ 2014; 4:128-36. [PMID: 25006428 DOI: 10.1086/675642] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Accepted: 01/15/2014] [Indexed: 01/26/2023] Open
Abstract
Our previous findings demonstrated an increase in pulmonary mast cells (MCs) in idiopathic pulmonary arterial hypertension (IPAH). Also, literature suggests a potential role for MCs in chronic obstructive pulmonary disease (COPD). However, a comprehensive investigation of lungs from patients is still needed. We systematically investigated the presence/expression of MCs/MC chymase in the lungs of IPAH and COPD patients by (immuno)histochemistry and subsequent quantification. We found that total and perivascular chymase-positive MCs were significantly higher in IPAH patients than in donors. In addition, chymase-positive MCs were located in proximity to regions with prominent expression of big-endothelin-1 in the pulmonary vessels of IPAH patients. Total and perivascular MCs around resistant vessels were augmented and a significant majority of them were degranulated (activated) in COPD patients. While the total chymase-positive MC count tended to increase in COPD patients, the perivascular number was significantly enhanced in all vessel sizes analyzed. Surprisingly, MC and chymase-positive MC numbers positively correlated with better lung function in COPD. Our findings suggest that activated MCs, possibly by releasing chymase, may contribute to pulmonary vascular remodeling in IPAH. Pulmonary MCs/chymase may have compartment-specific (vascular vs. airway) functions in COPD. Future studies should elucidate the mechanisms of MC accumulation and the role of MC chymase in pathologies of these severe lung diseases.
Collapse
Affiliation(s)
- Djuro Kosanovic
- Universities of Giessen and Marburg Lung Center (UGMLC), Giessen, Germany ; These authors contributed equally to this work
| | - Bhola Kumar Dahal
- Universities of Giessen and Marburg Lung Center (UGMLC), Giessen, Germany ; These authors contributed equally to this work
| | | | - Michael Seimetz
- Universities of Giessen and Marburg Lung Center (UGMLC), Giessen, Germany
| | | | | | | | - Irwin Reiss
- Division of Neonatology, Erasmus MC-Sophia Children's Hospital, Rotterdam, Netherlands
| | | | - Norbert Weissmann
- Universities of Giessen and Marburg Lung Center (UGMLC), Giessen, Germany
| | | | - Werner Seeger
- Universities of Giessen and Marburg Lung Center (UGMLC), Giessen, Germany ; Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | | |
Collapse
|
36
|
Morton CO, Fliesser M, Dittrich M, Mueller T, Bauer R, Kneitz S, Hope W, Rogers TR, Einsele H, Loeffler J. Gene expression profiles of human dendritic cells interacting with Aspergillus fumigatus in a bilayer model of the alveolar epithelium/endothelium interface. PLoS One 2014; 9:e98279. [PMID: 24870357 PMCID: PMC4037227 DOI: 10.1371/journal.pone.0098279] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Accepted: 04/30/2014] [Indexed: 01/13/2023] Open
Abstract
The initial stages of the interaction between the host and Aspergillus fumigatus at the alveolar surface of the human lung are critical in the establishment of aspergillosis. Using an in vitro bilayer model of the alveolus, including both the epithelium (human lung adenocarcinoma epithelial cell line, A549) and endothelium (human pulmonary artery epithelial cells, HPAEC) on transwell membranes, it was possible to closely replicate the in vivo conditions. Two distinct sub-groups of dendritic cells (DC), monocyte-derived DC (moDC) and myeloid DC (mDC), were included in the model to examine immune responses to fungal infection at the alveolar surface. RNA in high quantity and quality was extracted from the cell layers on the transwell membrane to allow gene expression analysis using tailored custom-made microarrays, containing probes for 117 immune-relevant genes. This microarray data indicated minimal induction of immune gene expression in A549 alveolar epithelial cells in response to germ tubes of A. fumigatus. In contrast, the addition of DC to the system greatly increased the number of differentially expressed immune genes. moDC exhibited increased expression of genes including CLEC7A, CD209 and CCL18 in the absence of A. fumigatus compared to mDC. In the presence of A. fumigatus, both DC subgroups exhibited up-regulation of genes identified in previous studies as being associated with the exposure of DC to A. fumigatus and exhibiting chemotactic properties for neutrophils, including CXCL2, CXCL5, CCL20, and IL1B. This model closely approximated the human alveolus allowing for an analysis of the host pathogen interface that complements existing animal models of IA.
Collapse
Affiliation(s)
| | - Mirjam Fliesser
- Universität Wuerzburg, Medizinische Klinik & Poliklinik II, WÜ4i, Wuerzburg, Germany
| | - Marcus Dittrich
- Department of Bioinformatics, Biocenter, University of Wuerzburg, Wuerzburg, Germany
| | - Tobias Mueller
- Department of Bioinformatics, Biocenter, University of Wuerzburg, Wuerzburg, Germany
| | - Ruth Bauer
- Universität Wuerzburg, Medizinische Klinik & Poliklinik II, WÜ4i, Wuerzburg, Germany
| | - Susanne Kneitz
- Department of Bioinformatics, Biocenter, University of Wuerzburg, Wuerzburg, Germany
| | - William Hope
- Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, United Kingdom
| | - Thomas Richard Rogers
- Department of Clinical Microbiology, Sir Patrick Research Laboratory, Trinity College Dublin, Dublin, Ireland
| | - Hermann Einsele
- Universität Wuerzburg, Medizinische Klinik & Poliklinik II, WÜ4i, Wuerzburg, Germany
| | - Juergen Loeffler
- Universität Wuerzburg, Medizinische Klinik & Poliklinik II, WÜ4i, Wuerzburg, Germany
- * E-mail:
| |
Collapse
|
37
|
Cho MH, McDonald MLN, Zhou X, Mattheisen M, Castaldi PJ, Hersh CP, Demeo DL, Sylvia JS, Ziniti J, Laird NM, Lange C, Litonjua AA, Sparrow D, Casaburi R, Barr RG, Regan EA, Make BJ, Hokanson JE, Lutz S, Dudenkov TM, Farzadegan H, Hetmanski JB, Tal-Singer R, Lomas DA, Bakke P, Gulsvik A, Crapo JD, Silverman EK, Beaty TH. Risk loci for chronic obstructive pulmonary disease: a genome-wide association study and meta-analysis. THE LANCET. RESPIRATORY MEDICINE 2014; 2:214-25. [PMID: 24621683 PMCID: PMC4176924 DOI: 10.1016/s2213-2600(14)70002-5] [Citation(s) in RCA: 246] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
BACKGROUND The genetic risk factors for susceptibility to chronic obstructive pulmonary disease (COPD) are still largely unknown. Additional genetic variants are likely to be identified by genome-wide association studies in larger cohorts or specific subgroups. We sought to identify risk loci for moderate to severe and severe COPD with data from several cohort studies. METHODS We combined genome-wide association analysis data from participants in the COPDGene study (non-Hispanic white and African-American ethnic origin) and the ECLIPSE, NETT/NAS, and Norway GenKOLS studies (self-described white ethnic origin). We did analyses comparing control individuals with individuals with moderate to severe COPD and with a subset of individuals with severe COPD. Single nucleotide polymorphisms yielding a p value of less than 5 × 10(-7) in the meta-analysis at loci not previously described were genotyped in individuals from the family-based ICGN study. We combined results in a joint meta-analysis (threshold for significance p<5 × 10(-8)). FINDINGS Analysis of 6633 individuals with moderate to severe COPD and 5704 control individuals confirmed association at three known loci: CHRNA3 (p=6·38 × 10(-14)), FAM13A (p=1·12 × 10(-14)), and HHIP (p=1·57 × 10(-12)). We also showed significant evidence of association at a novel locus near RIN3 (p=5·25 × 10(-9)). In the overall meta-analysis (ie, including data from 2859 ICGN participants), the association with RIN3 remained significant (p=5·4 × 10(-9)). 3497 individuals were included in our analysis of severe COPD. The effect estimates for the loci near HHIP and CHRNA3 were significantly stronger in severe disease than in moderate to severe disease (p<0·01). We also identified associations at two additional loci: MMP12 (overall joint meta-analysis p=2·6 × 10(-9)) and TGFB2 (overall joint meta-analysis p=8·3 × 10(-9)). INTERPRETATION We have confirmed associations with COPD at three known loci and identified three new genome-wide significant associations. Genetic variants other than in α-1 antitrypsin increase the risk of COPD. FUNDING US National Heart, Lung, and Blood Institute; the Alpha-1 Foundation; the COPD Foundation through contributions from AstraZeneca, Boehringer Ingelheim, Novartis, and Sepracor; GlaxoSmithKline; Centers for Medicare and Medicaid Services; Agency for Healthcare Research and Quality; and US Department of Veterans Affairs.
Collapse
Affiliation(s)
- Michael H Cho
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA, USA; Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA, USA.
| | - Merry-Lynn N McDonald
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Xiaobo Zhou
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA, USA; Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Manuel Mattheisen
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA, USA; Harvard School of Public Health, Boston, MA, USA
| | - Peter J Castaldi
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Craig P Hersh
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA, USA; Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Dawn L Demeo
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA, USA; Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Jody S Sylvia
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - John Ziniti
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Nan M Laird
- Harvard School of Public Health, Boston, MA, USA
| | | | - Augusto A Litonjua
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA, USA; Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - David Sparrow
- School of Public Health and School of Medicine, Boston University, Boston, MA, USA; Veterans Administration Boston Healthcare System, Boston, MA, USA
| | - Richard Casaburi
- Los Angeles Biomedical Research Institute at Harbor UCLA Medical Center, Torrance, CA, USA
| | - R Graham Barr
- Department of Medicine, College of Physicians and Surgeons, Mailman School of Public Health, Columbia University, New York, NY, USA; Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Elizabeth A Regan
- National Jewish Health, Denver, CO, USA; Department of Epidemiology, Colorado School of Public Health, University of Colorado Denver, Aurora, CO, USA
| | | | - John E Hokanson
- Department of Epidemiology, Colorado School of Public Health, University of Colorado Denver, Aurora, CO, USA
| | - Sharon Lutz
- Department of Bioinformatics and Statistics, Colorado School of Public Health, University of Colorado Denver, Aurora, CO, USA
| | - Tanda Murray Dudenkov
- Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Homayoon Farzadegan
- Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Jacqueline B Hetmanski
- Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Ruth Tal-Singer
- GlaxoSmithKline Research and Development, King Of Prussia, PA, USA
| | | | - Per Bakke
- Department of Clinical Science, University of Bergen, Bergen, Norway; Department of Thoracic Medicine, Haukeland University Hospital, Bergen, Norway
| | - Amund Gulsvik
- Department of Clinical Science, University of Bergen, Bergen, Norway; Department of Thoracic Medicine, Haukeland University Hospital, Bergen, Norway
| | | | - Edwin K Silverman
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA, USA; Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Terri H Beaty
- Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
38
|
Sohal SS, Ward C, Danial W, Wood-Baker R, Walters EH. Recent advances in understanding inflammation and remodeling in the airways in chronic obstructive pulmonary disease. Expert Rev Respir Med 2014; 7:275-88. [PMID: 23734649 DOI: 10.1586/ers.13.26] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The authors have reviewed the current literature on airway inflammation and remodeling in smoking-related chronic obstructive pulmonary disease (COPD). Detailed data on airway remodeling in COPD are especially sparse and how these changes lead to decline in lung function is not well understood. Small airway fibrosis and obliteration are likely to be the main contributors to physiological airway dysfunction and occur earlier than any subsequent development of emphysema. One potential mechanism contributing to small airway fibrosis/obliteration and change in extracellular matrix is epithelial-mesenchymal transition. When associated with angiogenesis (so-called epithelial-mesenchymal transition type 3) it may well also be the link with the development of cancer, which is closely associated with COPD, predominantly in large airways. The authors have focused on our recent publications in these areas. Further investigations teasing out these mechanisms will help improve our understanding of key airway disease processes in COPD, which may have major therapeutic implications.
Collapse
Affiliation(s)
- Sukhwinder Singh Sohal
- National Health and Medical Research Council Centre of Research Excellence for Chronic Respiratory Disease, School of Medicine, University of Tasmania, 17 Liverpool Street, Private Bag 23, Hobart, Tasmania 7000, Australia
| | | | | | | | | |
Collapse
|
39
|
Sverzellati N, Lynch DA, Pistolesi M, Kauczor HU, Grenier PA, Wilson C, Crapo JD. PHYSIOLOGIC AND QUANTITATIVE COMPUTED TOMOGRAPHY DIFFERENCES BETWEEN CENTRILOBULAR AND PANLOBULAR EMPHYSEMA IN COPD. CHRONIC OBSTRUCTIVE PULMONARY DISEASES-JOURNAL OF THE COPD FOUNDATION 2014; 1:125-132. [PMID: 26029738 DOI: 10.15326/jcopdf.1.1.2014.0114] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
BACKGROUND The purpose was to define the differences between centrilobular (CLE) and panlobular emphysema (PLE) phenotypes in cigarette smokers with COPD by a combined qualitative-quantitative computed tomography (CT) analysis. METHODS Chest CT scans of 116 cigarette smokers were visually scored by 22 chest radiologists and 29 pulmonologists in a single setting for the predominant emphysema phenotype (e.g. CLE or PLE) and automatically quantified for emphysema{% low attenuation area (LAA) ≤ -950 HU - %LAAinsp-950, gas trapping extent and bronchial metrics{wall area % for segmental (%WAsegm) and subsegmental (%WAsubsegm) bronchi}. These quantitative CT indexes were compared and related to FEV1, FEV1/FVC, and smoking history as stratified for emphysema phenotype. RESULTS Although more frequent than CLE in GOLD stages 3 and 4 (p = 0.01), PLE was also scored in 38.2% of combined GOLD stages 1 and 2. PLE was positively associated with %LAAinsp-950 (OR = 1.18, 95% CI: 1.12 to 1.27, β coefficient = 0.17, p = <0.0001) and negatively associated with pack-years of smoking (OR = 0.97, 95% CI: 0.95 to 0.99, β coefficient = -0.02, p = 0.03). Both %WAsegm and %WAsubsegm were more strongly associated with FEV1% (R2 = 0.6 for both measures, p< 0.001) in CLE as compared to PLE (R2= 0.15, p = 0.02; R2 = 0.26, p< 0.001). CONCLUSIONS PLE likely represents a more advanced phase of emphysema, which may also occur in earlier COPD stages and show different interplay with airway disease as compared to CLE.
Collapse
Affiliation(s)
- Nicola Sverzellati
- Department of Surgery, Section of Diagnostic Imaging, University of Parma, Parma, Italy
| | - David A Lynch
- Division of Radiology, National Jewish Health, Denver, USA
| | - Massimo Pistolesi
- Section of Respiratory Medicine, Department of Internal Medicine, University of Florence, Italy
| | - Hans-Ulrich Kauczor
- Diagnostic and Interventional Radiology, University Clinic Heidelberg, Germany
| | - P A Grenier
- Service de Radiologie Polyvalente, Diagnostique and Interventionelle, Hospital Pitie-Salpetriere, Paris, France
| | - C Wilson
- Division of Biostatistics and Bioinformatics, National Jewisj Health, Denver, Denver, USA
| | - J D Crapo
- Division of Pulmonary, Critical Care and Sleep Medicine, National Jewish Health, Denver, USA
| |
Collapse
|
40
|
Abstract
Asthma and COPD are both heterogeneous lung diseases including many different phenotypes. The classical asthma and COPD phenotypes are easy to discern because they reflect extremes of a phenotypical spectrum. Thus asthma in childhood and COPD in smokers have their own phenotypic expression with underlying pathophysiological mechanisms that differ importantly. In older adults, asthma and COPD are more difficult to differentiate and there exists a bronchodilator response in most but not all patients with asthma and persistent airway obstruction in most but not all patients with COPD where even up to 50% have been reported to have some bronchodilator response as assessed with FEV1. Airway obstruction is generated in the large and small airways both in asthma and COPD, and this small airway obstruction is located more proximally in asthma, yet is found more distally in severe and older individuals with asthma, comparable to COPD. Though the underlying inflammation and remodelling processes in asthma and COPD are different in their extreme phenotypes, there are overlap phenotypes with eosinophilic inflammation even in stable COPD and neutrophilic inflammation in longstanding and severe asthma.
Collapse
|
41
|
Han MK, Criner GJ. Update in chronic obstructive pulmonary disease 2012. Am J Respir Crit Care Med 2013; 188:29-34. [PMID: 23815721 DOI: 10.1164/rccm.201302-0319up] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Meilan K Han
- Division of Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, MI, USA
| | | |
Collapse
|
42
|
Abstract
PURPOSE OF REVIEW Chronic obstructive pulmonary disease (COPD) is defined by airflow obstruction and is associated with an exaggerated inflammatory response to noxious stimuli, such as cigarette smoke. Inflammation and recruitment of immune cells drives the underlying pathophysiology; however, the roles of immune cells in the pathogenesis of COPD are evolving and this review will discuss the latest advancements in this field. RECENT FINDINGS Leukocytes including macrophages, neutrophils and lymphocytes are increased in the airways of COPD patients. Despite the presence of increased innate immune cells, COPD airways are often colonized with bacteria suggesting an underlying defect. Macrophages from COPD patients have reduced phagocytic ability which may drive the persistence of inflammation. Differing macrophage phenotypes have been associated with disease suggesting that the surrounding pulmonary environment in COPD may generate a specific phenotype that is permanently pro-inflammatory. COPD neutrophils are also aberrant with increased survival and motility, but lack direction which could lead to more widespread destruction during migration. Finally, an element of autoimmunity, driven by Th17 cells, and alterations in the ratios of lymphocyte subsets may also be involved in disease progression. SUMMARY COPD pathogenesis is complex with contributions from both the innate and adaptive immune systems, and the interaction of these cells with their environment mediates inflammation.
Collapse
|
43
|
Vanfleteren LEGW, Kocks JWH, Stone IS, Breyer-Kohansal R, Greulich T, Lacedonia D, Buhl R, Fabbri LM, Pavord ID, Barnes N, Wouters EFM, Agusti A. Moving from the Oslerian paradigm to the post-genomic era: are asthma and COPD outdated terms? Thorax 2013; 69:72-9. [PMID: 23794191 DOI: 10.1136/thoraxjnl-2013-203602] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
In the majority of cases, asthma and chronic obstructive pulmonary disease (COPD) are two clearly distinct disease entities. However, in some patients there may be significant overlap between the two conditions. This constitutes an important area of concern because these patients are generally excluded from randomised controlled trials (mostly because of smoking history in the case of asthma or because of significant bronchodilator reversibility in the case of COPD). As a result, their pathobiology, prognosis and response to therapy are largely unknown. This may lead to suboptimal management and can limit the development of more personalised therapeutic options. Emerging genetic and molecular information coupled with new bioinformatics capabilities provide novel information that can pave the way towards a new taxonomy of airway diseases. In this paper we question the current value of the terms 'asthma' and 'COPD' as still useful diagnostic labels; discuss the scientific and clinical progress made over the past few years towards unravelling the complexity of airway diseases, from the definition of clinical phenotypes and endotypes to a better understanding of cellular and molecular networks as key pathogenic elements of human diseases (so-called systems medicine); and summarise a number of ongoing studies with the potential to move the field towards a new taxonomy of airways diseases and, hopefully, a more personalised approach to medicine, in which the focus will shift from the current goal of treating diseases as best as possible to the so-called P4 medicine, a new type of medicine that is predictive, preventive, personalised and participatory.
Collapse
Affiliation(s)
- Lowie E G W Vanfleteren
- Program Development, CIRO+, A Centre of Expertise in Chronic Organ Failure, , Horn, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Bronchodilator reversibility in chronic obstructive pulmonary disease: use and limitations. THE LANCET RESPIRATORY MEDICINE 2013; 1:564-73. [PMID: 24461617 DOI: 10.1016/s2213-2600(13)70086-9] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The change in forced expiratory volume in 1 s (FEV1) after administration of a short-acting bronchodilator has been widely used to identify patients with chronic obstructive pulmonary disease (COPD) who have a potentially different disease course and response to treatment. Despite the apparent simplicity of the test, it is difficult to interpret or rely on. Test performance is affected by the day of testing, the severity of baseline lung-function impairment, and the number of drugs given to test. Recent data suggest that the response to bronchodilators is not enhanced in patients with COPD and does not predict clinical outcomes. In this Review we will discuss the insight that studies of bronchodilator reversibility have provided into the nature of the COPD, and how the abnormal physiology seen in patients with this disorder can be interpreted.
Collapse
|
45
|
Beckett EL, Stevens RL, Jarnicki AG, Kim RY, Hanish I, Hansbro NG, Deane A, Keely S, Horvat JC, Yang M, Oliver BG, van Rooijen N, Inman MD, Adachi R, Soberman RJ, Hamadi S, Wark PA, Foster PS, Hansbro PM. A new short-term mouse model of chronic obstructive pulmonary disease identifies a role for mast cell tryptase in pathogenesis. J Allergy Clin Immunol 2013; 131:752-62. [PMID: 23380220 PMCID: PMC4060894 DOI: 10.1016/j.jaci.2012.11.053] [Citation(s) in RCA: 189] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Revised: 11/26/2012] [Accepted: 11/27/2012] [Indexed: 01/13/2023]
Abstract
BACKGROUND Cigarette smoke-induced chronic obstructive pulmonary disease (COPD) is a life-threatening inflammatory disorder of the lung. The development of effective therapies for COPD has been hampered by the lack of an animal model that mimics the human disease in a short timeframe. OBJECTIVES We sought to create an early-onset mouse model of cigarette smoke-induced COPD that develops the hallmark features of the human condition in a short time-frame. We also sought to use this model to better understand pathogenesis and the roles of macrophages and mast cells (MCs) in patients with COPD. METHODS Tightly controlled amounts of cigarette smoke were delivered to the airways of mice, and the development of the pathologic features of COPD was assessed. The roles of macrophages and MC tryptase in pathogenesis were evaluated by using depletion and in vitro studies and MC protease 6-deficient mice. RESULTS After just 8 weeks of smoke exposure, wild-type mice had chronic inflammation, mucus hypersecretion, airway remodeling, emphysema, and reduced lung function. These characteristic features of COPD were glucocorticoid resistant and did not spontaneously resolve. Systemic effects on skeletal muscle and the heart and increased susceptibility to respiratory tract infections also were observed. Macrophages and tryptase-expressing MCs were required for the development of COPD. Recombinant MC tryptase induced proinflammatory responses from cultured macrophages. CONCLUSION A short-term mouse model of cigarette smoke-induced COPD was developed in which the characteristic features of the disease were induced more rapidly than in existing models. The model can be used to better understand COPD pathogenesis, and we show a requirement for macrophages and tryptase-expressing MCs.
Collapse
Affiliation(s)
- Emma L Beckett
- Priority Research Centre for Asthma and Respiratory Disease and Hunter Medical Research Institute, University of Newcastle, Newcastle, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Martin C, Frija J, Burgel PR. Dysfunctional lung anatomy and small airways degeneration in COPD. Int J Chron Obstruct Pulmon Dis 2013; 8:7-13. [PMID: 23319856 PMCID: PMC3540907 DOI: 10.2147/copd.s28290] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is characterized by incompletely reversible airflow obstruction. Direct measurement of airways resistance using invasive techniques has revealed that the site of obstruction is located in the small conducting airways, ie, bronchioles with a diameter < 2 mm. Anatomical changes in these airways include structural abnormalities of the conducting airways (eg, peribronchiolar fibrosis, mucus plugging) and loss of alveolar attachments due to emphysema, which result in destabilization of these airways related to reduced elastic recoil. The relative contribution of structural abnormalities in small conducting airways and emphysema has been a matter of much debate. The present article reviews anatomical changes and inflammatory mechanisms in small conducting airways and in the adjacent lung parenchyma, with a special focus on recent anatomical and imaging data suggesting that the initial event takes place in the small conducting airways and results in a dramatic reduction in the number of airways, together with a reduction in the cross-sectional area of remaining airways. Implications of these findings for the development of novel therapies are briefly discussed.
Collapse
Affiliation(s)
- Clémence Martin
- Department of Respiratory Medicine, Cochin Hospital, AP-HP and Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | | | | |
Collapse
|