1
|
Marimoutou M, Patel V, Kim JH, Schaible N, Alvarez J, Hughes J, Obermok M, Rodríguez CI, Kallarakal T, Suki B, Amin K, Krishnan R, Behrsing HP. The Fibrotic Phenotype of Human Precision-Cut Lung Slices Is Maintained after Cryopreservation. TOXICS 2024; 12:637. [PMID: 39330565 PMCID: PMC11436228 DOI: 10.3390/toxics12090637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/21/2024] [Accepted: 08/27/2024] [Indexed: 09/28/2024]
Abstract
Human precision-cut lung slices (hPCLS) prepared from fibrotic lungs recapitulate the pathophysiological hallmarks of fibrosis. These hallmark features can also be induced by treating non-fibrotic hPCLS with a fibrotic cocktail (FC). As a result, the fibrotic and fibrosis-induced hPCLS are rapidly emerging as preferred models for disease modeling and drug discovery. However, current hPCLS models are limited by tissue viability in culture, as they are usually only viable for one week after harvesting. Here, we demonstrate that the fibrotic hPCLS can be cryopreserved, stored for months, and then thawed on demand without loss of hPCLS viability or protein content for 14 days post-thawing. Cryopreservation also preserves the pro-fibrotic potential of non-fibrotic hPCLS. Specifically, when we treated the thawed non-fibrotic hPCLS with an FC, we observed significant pro-fibrotic cytokine secretion and elevated tissue stiffness. These pro-fibrotic changes were inhibited by the small-molecule tyrosine kinase inhibitor, Nintedanib. Taken together, our work indicates that a feasible solution to prolong the pre-clinical utility of fibrotic and fibrosis-induced hPCLS is cryopreservation. We anticipate that cryopreserved hPCLS will serve as an advantageous predictive model for the evaluation of pro-fibrotic pathways during acute and chronic toxicity testing.
Collapse
Affiliation(s)
- Méry Marimoutou
- Institute for In Vitro Sciences, Inc., Gaithersburg, MD 20878, USA
| | - Vivek Patel
- Institute for In Vitro Sciences, Inc., Gaithersburg, MD 20878, USA
| | - Jae Hun Kim
- Mechanobiologix, LLC, Newton, MA 02464, USA
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - Niccole Schaible
- Center for Vascular Biology Research, Department of Emergency Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| | - Jose Alvarez
- Institute for In Vitro Sciences, Inc., Gaithersburg, MD 20878, USA
| | - Joseph Hughes
- Institute for In Vitro Sciences, Inc., Gaithersburg, MD 20878, USA
| | - McKenzie Obermok
- Institute for In Vitro Sciences, Inc., Gaithersburg, MD 20878, USA
| | | | | | - Béla Suki
- Mechanobiologix, LLC, Newton, MA 02464, USA
- Center for Vascular Biology Research, Department of Emergency Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| | - Khalid Amin
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Ramaswamy Krishnan
- Mechanobiologix, LLC, Newton, MA 02464, USA
- Center for Vascular Biology Research, Department of Emergency Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| | | |
Collapse
|
2
|
Atia L, Fredberg JJ. A life off the beaten track in biomechanics: Imperfect elasticity, cytoskeletal glassiness, and epithelial unjamming. BIOPHYSICS REVIEWS 2023; 4:041304. [PMID: 38156333 PMCID: PMC10751956 DOI: 10.1063/5.0179719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 11/17/2023] [Indexed: 12/30/2023]
Abstract
Textbook descriptions of elasticity, viscosity, and viscoelasticity fail to account for certain mechanical behaviors that typify soft living matter. Here, we consider three examples. First, strong empirical evidence suggests that within lung parenchymal tissues, the frictional stresses expressed at the microscale are fundamentally not of viscous origin. Second, the cytoskeleton (CSK) of the airway smooth muscle cell, as well as that of all eukaryotic cells, is more solid-like than fluid-like, yet its elastic modulus is softer than the softest of soft rubbers by a factor of 104-105. Moreover, the eukaryotic CSK expresses power law rheology, innate malleability, and fluidization when sheared. For these reasons, taken together, the CSK of the living eukaryotic cell is reminiscent of the class of materials called soft glasses, thus likening it to inert materials such as clays, pastes slurries, emulsions, and foams. Third, the cellular collective comprising a confluent epithelial layer can become solid-like and jammed, fluid-like and unjammed, or something in between. Esoteric though each may seem, these discoveries are consequential insofar as they impact our understanding of bronchospasm and wound healing as well as cancer cell invasion and embryonic development. Moreover, there are reasons to suspect that certain of these phenomena first arose in the early protist as a result of evolutionary pressures exerted by the primordial microenvironment. We have hypothesized, further, that each then became passed down virtually unchanged to the present day as a conserved core process. These topics are addressed here not only because they are interesting but also because they track the journey of one laboratory along a path less traveled by.
Collapse
Affiliation(s)
- Lior Atia
- Ben Gurion University of the Negev, Beer Sheva, Israel
| | | |
Collapse
|
3
|
Yasuda Y, Wang L, Chitano P, Seow CY. Critical roles of airway smooth muscle in mediating deep-inspiration-induced bronchodilation: a big stretch? Respir Res 2023; 24:250. [PMID: 37853472 PMCID: PMC10585885 DOI: 10.1186/s12931-023-02538-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 09/14/2023] [Indexed: 10/20/2023] Open
Abstract
BACKGROUND Deep inspiration (DI) has been shown to induce bronchodilation and bronchoprotection in bronchochallenged healthy subjects, but not in asthmatics. Strain-induced relaxation of airway smooth muscle (ASM) is considered one of the factors responsible for these effects. Other factors include the release or redistribution of pulmonary surfactant, alteration in mucus plugs, and changes in airway heterogeneity. MAIN BODY The present review is focused on the DI effect on ASM function, based on recent findings from ex vivo sheep lung experiments showing a large change in airway diameter during a DI. The amount of stretch on the airways, when applied to isolated airway rings in vitro, caused a substantial decrease in ASM contractility that takes many minutes to recover. When challenged with a bronchoconstrictor, the increase in pulmonary resistance in the ex vivo ovine lungs is mostly due to the increase in airway resistance. CONCLUSIONS Although non-ASM related factors cannot be excluded, the large strain on the airways associated with a DI substantially reduces ASM contractility and thus can account for most of the bronchodilatory and bronchoprotective effects of DI.
Collapse
Affiliation(s)
- Yuto Yasuda
- Centre for Heart Lung Innovation, St. Paul's Hospital, Providence Health Care, University of British Columbia, 1081 Burrard Street, Vancouver, BC, V6Z 1Y6, Canada.
| | - Lu Wang
- Centre for Heart Lung Innovation, St. Paul's Hospital, Providence Health Care, University of British Columbia, 1081 Burrard Street, Vancouver, BC, V6Z 1Y6, Canada
| | - Pasquale Chitano
- Centre for Heart Lung Innovation, St. Paul's Hospital, Providence Health Care, University of British Columbia, 1081 Burrard Street, Vancouver, BC, V6Z 1Y6, Canada
| | - Chun Y Seow
- Centre for Heart Lung Innovation, St. Paul's Hospital, Providence Health Care, University of British Columbia, 1081 Burrard Street, Vancouver, BC, V6Z 1Y6, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
4
|
Kim JH, Schaible N, Hall JK, Bartolák-Suki E, Deng Y, Herrmann J, Sonnenberg A, Behrsing HP, Lutchen KR, Krishnan R, Suki B. Multiscale stiffness of human emphysematous precision cut lung slices. SCIENCE ADVANCES 2023; 9:eadf2535. [PMID: 37205750 PMCID: PMC10198632 DOI: 10.1126/sciadv.adf2535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 04/14/2023] [Indexed: 05/21/2023]
Abstract
Emphysema is a debilitating disease that remodels the lung leading to reduced tissue stiffness. Thus, understanding emphysema progression requires assessing lung stiffness at both the tissue and alveolar scales. Here, we introduce an approach to determine multiscale tissue stiffness and apply it to precision-cut lung slices (PCLS). First, we established a framework for measuring stiffness of thin, disk-like samples. We then designed a device to verify this concept and validated its measuring capabilities using known samples. Next, we compared healthy and emphysematous human PCLS and found that the latter was 50% softer. Through computational network modeling, we discovered that this reduced macroscopic tissue stiffness was due to both microscopic septal wall remodeling and structural deterioration. Lastly, through protein expression profiling, we identified a wide spectrum of enzymes that can drive septal wall remodeling, which, together with mechanical forces, lead to rupture and structural deterioration of the emphysematous lung parenchyma.
Collapse
Affiliation(s)
- Jae Hun Kim
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
- Mechanobiologix, LLC, Newton, MA, USA
| | - Niccole Schaible
- Mechanobiologix, LLC, Newton, MA, USA
- Center for Vascular Biology Research, Department of Emergency Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Joseph K. Hall
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | | | - Yuqing Deng
- Department of Mechanical Engineering, Boston University, Boston, MA, USA
| | - Jacob Herrmann
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
- University of Iowa, Iowa City, IA, USA
| | - Adam Sonnenberg
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | | | - Kenneth R. Lutchen
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Ramaswamy Krishnan
- Mechanobiologix, LLC, Newton, MA, USA
- Center for Vascular Biology Research, Department of Emergency Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Béla Suki
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
- Mechanobiologix, LLC, Newton, MA, USA
| |
Collapse
|
5
|
Henry C, Boucher M, Boulay MÈ, Côté A, Boulet LP, Bossé Y. The cumulative effect of methacholine on large and small airways when deep inspirations are avoided. Respirology 2023; 28:226-235. [PMID: 36210352 DOI: 10.1111/resp.14387] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 09/20/2022] [Indexed: 01/04/2023]
Abstract
BACKGROUND AND OBJECTIVE The effect of serial incremental concentrations of methacholine is only slightly cumulative when assessed by spirometry. This limited cumulative effect may be attributed to the bronchodilator effect of deep inspirations that are required between concentrations to measure lung function. Using oscillometry, the response to methacholine can be measured without deep inspirations. Conveniently, oscillometry can also dissociate the contribution of large versus small airways. Herein, oscillometry was used to assess the cumulative effect of methacholine in the absence of deep inspirations on large and small airways. METHODS Healthy and asthmatic volunteers underwent a multiple-concentration methacholine challenge on visit 1 and a single-concentration challenge on visit 2 using the highest concentration of visit 1. The maximal response was compared between visits to assess the cumulative effect of methacholine. The lung volume was also measured after the final concentration to assess hyperinflation. RESULTS In both healthy and asthmatic subjects, increases in resistance at 19 Hz (Rrs19 ), reflecting large airway narrowing, did not differ between the multiple- and the single-concentration challenge. However, increases in resistance at 5 Hz (Rrs5 ) minus Rrs19 , reflecting small airway narrowing, were 117 and 270% greater in the multiple- than the single-concentration challenge in healthy (p = 0.006) and asthmatic (p < 0.0001) subjects, respectively. Hyperinflation occurred with both challenges and was greater in the multiple- than the single-concentration challenge in both groups. CONCLUSION Without deep inspirations, the effect of methacholine is cumulative on small airways but not on large airways. Lung hyperinflation and derecruitment may partially explain these different responses.
Collapse
Affiliation(s)
- Cyndi Henry
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, Québec, Canada
| | - Magali Boucher
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, Québec, Canada
| | - Marie-Ève Boulay
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, Québec, Canada
| | - Andréanne Côté
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, Québec, Canada
| | | | - Ynuk Bossé
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, Québec, Canada
| |
Collapse
|
6
|
Rosmark O, Ibáñez-Fonseca A, Thorsson J, Dellgren G, Hallgren O, Larsson Callerfelt AK, Elowsson L, Westergren-Thorsson G. A tunable physiomimetic stretch system evaluated with precision cut lung slices and recellularized human lung scaffolds. Front Bioeng Biotechnol 2022; 10:995460. [PMID: 36263353 PMCID: PMC9574011 DOI: 10.3389/fbioe.2022.995460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 09/13/2022] [Indexed: 11/13/2022] Open
Abstract
Breathing exposes lung cells to continual mechanical stimuli, which is part of the microenvironmental signals directing cellular functions together with the extracellular matrix (ECM). Therefore, developing systems that incorporate both stimuli is urgent to fully understand cell behavior. This study aims to introduce a novel in vitro culture methodology combining a cyclic stretch that simulates in vivo breathing with 3D cell culture platforms in the form of decellularized lung slices (DLS) and precision cut lung slices (PCLS). To this end, we have constructed a device that mimics the amplitudes and frequencies of distensions seen in the breathing human lung. For its validation, we cultured H441 lung epithelial cells in human DLS exposed to 16 stretch cycles per minute with a 10% stretch amplitude. Cell viability (resazurin reduction), proliferation (Ki-67) and YAP1 activation were evaluated at 24 and 96 h by immunohistochemistry, while the expression of SFTPB, COL3A1, COL4A3 and LAMA5 was evaluated by qPCR. Cyclic stretch induced an increase in SFTPB expression after 24 h without a concomitant increase in the stretch responsive gene YAP1. Moreover, the ECM milieu lowered the expression of the basement membrane protein genes COL4A3 and LAMA5 compared to tissue culture plastic control cultures, but no effect was observed by the mechanical stimuli. The device also confirmed good compatibility with PCLS culture, showing preserved morphology and metabolism in rat PCLS after 72 h of mechanical stretch. Thus, we present a novel device and methodology for the easy assembling and study of lung tissue slice cultures subjected to physiomimetic mechanical stimuli, which shows promise for future studies of cell and tissue function in a lung ECM milieu with physiological or pathological mechanical stimuli.
Collapse
Affiliation(s)
- Oskar Rosmark
- Lung Biology, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Arturo Ibáñez-Fonseca
- Lung Biology, Department of Experimental Medical Science, Lund University, Lund, Sweden
- *Correspondence: Arturo Ibáñez-Fonseca,
| | - Johan Thorsson
- Lung Biology, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Göran Dellgren
- Transplant Institute and Department of Cardiothoracic Surgery, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Oskar Hallgren
- Division of Thoracic Surgery, Department of Clinical Sciences, Lund University, Lund, Sweden
| | | | - Linda Elowsson
- Lung Biology, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | | |
Collapse
|
7
|
Torchio R, Gobbi A, Gulotta C, Antonelli A, Dellacà RL, Pellegrino GM, Pellegrino R, Brusasco V. Role of hyperpnea in the relaxant effect of inspired CO 2 on methacholine-induced bronchoconstriction. J Appl Physiol (1985) 2022; 132:1137-1144. [PMID: 35358399 DOI: 10.1152/japplphysiol.00763.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Inhaling carbon dioxide (CO2) in humans is known to cause inconsistent effects on airway function. These could be due to direct effects of CO2 on airway smooth muscle or to changes in minute ventilation (e). To address this issue, we examined the responses of the respiratory system to inhaled methacholine in healthy and mild asthmatics while breathing air or gas mixtures containing 2% or 4% CO2. Respiratory mechanics were measured by a forced oscillation technique at 5 Hz during tidal breathing. At baseline, respiratory resistance (R5) was significantly higher in asthmatics (2.53±0.38 cm H2O•L-1•s) than healthy subjects (2.11±0.42 cm H2O•L-1•s) (p=0.008) with room air. Similar values were observed with CO2 2% or 4% in the two groups. e, tidal volume (VT), and breathing frequency (BF) significantly increased with CO2-containing mixtures (p<0.001) with insignificant differences between groups. After methacholine, the increase in R5 and the decrease in respiratory reactance (X5) were significantly attenuated up to about 50% with CO2-containing mixtures instead of room air in both asthmatic (p<0.001) and controls (p<0.001). Mediation analysis showed that the attenuation of methacholine-induced changes in respiratory mechanics by CO2 was due to the increase in e (p=0.006 for R5 and p=0.014 for X5) independently of the increase in VT or BF, rather than a direct effect of CO2. These findings suggest that the increased stretching of airway smooth muscle by the CO2-induced increase in e is a mechanism through which hypercapnia can attenuate bronchoconstrictor responses in healthy and mild asthmatic subjects.
Collapse
Affiliation(s)
- Roberto Torchio
- Pneumologia-Fisiopatologia Respiratoria, Universitaria S. Luigi, VENARIA REALE, Italy
| | - Alessandro Gobbi
- TBM Lab, Dipartimento di Bioingegneria, Politecnico di Milano, Milano, Italy.,Restech Srl, Milano, Italy
| | - Carlo Gulotta
- Pneumologia-Fisiopatologia Respiratoria, Universitaria S. Luigi, VENARIA REALE, Italy
| | - Andrea Antonelli
- Allergologia e Fisiopatologia Respiratoria, ASO S. Croce e Carle, Cuneo, Italy
| | - Raffaele L Dellacà
- TBM Lab, Dipartimento di Bioingegneria, Politecnico di Milano, Milano, Italy
| | - Giulia Michela Pellegrino
- Respiratory Unit, ASST Santi Paolo eCarlo, Dipartimento Scienze della Salute, Università degli Studi di Milano, Milan, Italy.,Casa di Cura del Policlinico, Dipartimento di Scienze Neuroriabilitative, Milan, Italy
| | | | - Vito Brusasco
- Centro Polifunzionale di Scienze Motorie, Dipartimento di Medicina Sperimentale, Università di Genova, Genova, Italy
| |
Collapse
|
8
|
Qin L, Meng F, He H, Yang YB, Wang G, Tang YD, Sun M, Zhang W, Cai X, Wang S. A Virulent Trueperella pyogenes Isolate, Which Causes Severe Bronchoconstriction in Porcine Precision-Cut Lung Slices. Front Vet Sci 2022; 8:824349. [PMID: 35174243 PMCID: PMC8841747 DOI: 10.3389/fvets.2021.824349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 12/23/2021] [Indexed: 12/02/2022] Open
Abstract
Trueperella pyogenes causes disease in cattle, sheep, goats and swine, and is involved occasionally in human disease worldwide. Most reports implicating T. pyogenes have been associated with clinical cases, whereas no report has focused on pathogenicity of T. pyogenes in mouse models or precision-cut lung slice (PCLS) cultures from swine. Here, we isolated and identified a virulent, β-hemolytic, multidrug-resistant T. pyogenes strain named 20121, which harbors the virulence marker genes fimA, fimE, nanH, nanP and plo. It was found to be highly resistant to erythromycin, azithromycin and medemycin. Strain 20121 was pathogenic in mouse infection models, displaying pulmonary congestion and inflammatory cell infiltration, partial degeneration in epithelial cells of the tracheal and bronchiolar mucosa, a small amount of inflammatory cell infiltration in the submucosa, and bacteria (>104 CFU/g) in the lung. Importantly, we used T. pyogenes 20121 to infect porcine precision-cut lung slices (PCLS) cultures for the first time, where it caused severe bronchoconstriction. Furthermore, dexamethasone showed its ability to relieve bronchoconstriction in PCLS caused by T. pyogenes 20121, highlighting dexamethasone may assist antibiotic treatment for clinical T. pyogenes infection. This is the first report of T. pyogenes used to infect and cause bronchoconstriction in porcine PCLS. Our results suggest that porcine PCLS cultures as a valuable 3D organ model for the study of T. pyogenes infection and treatment in vitro.
Collapse
Affiliation(s)
- Lei Qin
- National Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Fandan Meng
- National Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Haijuan He
- Institute of Animal Husbandry, Heilongjiang Academy of Agriculture Sciences, Harbin, China
| | - Yong-Bo Yang
- National Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Gang Wang
- National Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yan-Dong Tang
- National Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Mingxia Sun
- National Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Wenlong Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Xuehui Cai
- National Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
- *Correspondence: Xuehui Cai
| | - Shujie Wang
- National Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
- Shujie Wang
| |
Collapse
|
9
|
Nguyen TM, van der Merwe J, Elowsson Rendin L, Larsson-Callerfelt AK, Deprest J, Westergren-Thorsson G, Toelen J. Stretch increases alveolar type 1 cell number in fetal lungs through ROCK-Yap/Taz pathway. Am J Physiol Lung Cell Mol Physiol 2021; 321:L814-L826. [PMID: 34431413 DOI: 10.1152/ajplung.00484.2020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Accurate fluid pressure in the fetal lung is critical for its development, especially at the beginning of the saccular stage when alveolar epithelial type 1 (AT1) and type 2 (AT2) cells differentiate from the epithelial progenitors. Despite our growing understanding of the role of physical forces in lung development, the molecular mechanisms that regulate the transduction of mechanical stretch to alveolar differentiation remain elusive. To simulate lung distension, we optimized both an ex vivo model with precision cut lung slices and an in vivo model of fetal tracheal occlusion. Increased mechanical tension showed to improve alveolar maturation and differentiation toward AT1. By manipulating ROCK pathway, we demonstrate that stretch-induced Yap/Taz activation promotes alveolar differentiation toward AT1 phenotype via ROCK activity. Our findings show that balanced ROCK-Yap/Taz signaling is essential to regulate AT1 differentiation in response to mechanical stretching of the fetal lung, which might be helpful in improving lung development and regeneration.
Collapse
Affiliation(s)
- Tram Mai Nguyen
- Division Organ Systems, Department of Development and Regeneration, KU Leuven, Leuven, Belgium.,School of Biotechnology, International University, Vietnam National University, Ho Chi Minh City, Vietnam
| | - Johannes van der Merwe
- Division Organ Systems, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Linda Elowsson Rendin
- Lung Biology, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | | | - Jan Deprest
- Division Organ Systems, Department of Development and Regeneration, KU Leuven, Leuven, Belgium.,Division Woman and Child, Department of Obstetrics and Gynaecology, University Hospitals Leuven, Leuven, Belgium.,Institute for Women's Health, University College London, London, United Kingdom
| | | | - Jaan Toelen
- Division Organ Systems, Department of Development and Regeneration, KU Leuven, Leuven, Belgium.,Division Woman and Child, Department of Paediatrics, University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
10
|
Dong SJ, Wang L, Chitano P, Coxson HO, Paré PD, Seow CY. Airway diameter at different transpulmonary pressures in ex vivo sheep lungs: Implications for deep-inspiration-induced bronchodilation and bronchoprotection. Am J Physiol Lung Cell Mol Physiol 2021; 321:L663-L674. [PMID: 34287071 DOI: 10.1152/ajplung.00208.2021] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Deep inspiration (DI)-induced bronchodilation is the first line of defense against bronchoconstriction in healthy subjects. A hallmark of asthma is the lack of this beneficial effect of DI. The mechanism underlying the bronchodilatory effect of DI is not clear. Understanding the mechanism will help us unravel the mystery of asthma pathophysiology. It has been postulated that straining airway smooth muscle (ASM) during a DI could lead to bronchodilation and bronchoprotection. The hypothesis is currently under debate, and a central question is whether ASM is sufficiently stretched during a DI for its contractility to be compromised. Besides bronchoconstriction, another contributor to lung resistance is airway heterogeneity. The present study examines changes in airway diameter and heterogeneity at different lung volumes. Freshly explanted sheep lungs were used in plethysmographic measurements of lung resistance and elastance at different lung volumes while the airway dimensions were measured by computed tomography (CT). The change in airway diameter informed by CT measurements was applied to isolated airway ring preparations to determine the strain-induced loss of ASM contractility. We found that changing the transpulmonary pressure from 5 to 30 cmH2O led to a 51%-increase in lung volume, accompanied by a 46%-increase in the airway diameter with no change in airway heterogeneity. When comparable airway strains measured in the whole lung were applied to isolated airway rings in either relaxed or contracted state, a significant loss of ASM contractility was observed, suggesting that DI-induced bronchodilation and bronchoprotection can result from strain-induced loss of ASM contractility.
Collapse
Affiliation(s)
- Shou-Jin Dong
- The UBC Centre for Heart Lung Innovation, St. Paul's Hospital, Vancouver, BC, Canada.,Respiratory Department, Chengdu First People's Hospital, Chengdu, China
| | - Lu Wang
- The UBC Centre for Heart Lung Innovation, St. Paul's Hospital, Vancouver, BC, Canada
| | - Pasquale Chitano
- The UBC Centre for Heart Lung Innovation, St. Paul's Hospital, Vancouver, BC, Canada
| | - Harvey O Coxson
- The UBC Centre for Heart Lung Innovation, St. Paul's Hospital, Vancouver, BC, Canada
| | - Peter D Paré
- The UBC Centre for Heart Lung Innovation, St. Paul's Hospital, Vancouver, BC, Canada.,Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Chun Y Seow
- The UBC Centre for Heart Lung Innovation, St. Paul's Hospital, Vancouver, BC, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
11
|
Veerati PC, Mitchel JA, Reid AT, Knight DA, Bartlett NW, Park JA, Grainge CL. Airway mechanical compression: its role in asthma pathogenesis and progression. Eur Respir Rev 2020; 29:190123. [PMID: 32759373 PMCID: PMC8008491 DOI: 10.1183/16000617.0123-2019] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 01/30/2020] [Indexed: 12/22/2022] Open
Abstract
The lung is a mechanically active organ, but uncontrolled or excessive mechanical forces disrupt normal lung function and can contribute to the development of disease. In asthma, bronchoconstriction leads to airway narrowing and airway wall buckling. A growing body of evidence suggests that pathological mechanical forces induced by airway buckling alone can perpetuate disease processes in asthma. Here, we review the data obtained from a variety of experimental models, including in vitro, ex vivo and in vivo approaches, which have been used to study the impact of mechanical forces in asthma pathogenesis. We review the evidence showing that mechanical compression alters the biological and biophysical properties of the airway epithelium, including activation of the epidermal growth factor receptor pathway, overproduction of asthma-associated mediators, goblet cell hyperplasia, and a phase transition of epithelium from a static jammed phase to a mobile unjammed phase. We also define questions regarding the impact of mechanical forces on the pathology of asthma, with a focus on known triggers of asthma exacerbations such as viral infection.
Collapse
Affiliation(s)
- Punnam Chander Veerati
- School of Medicine and Public Health, University of Newcastle, Callaghan, Australia
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, University of Newcastle, New Lambton Heights, Australia
| | - Jennifer A Mitchel
- Molecular and Integrative Physiological Sciences Program, Dept of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Andrew T Reid
- School of Medicine and Public Health, University of Newcastle, Callaghan, Australia
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, University of Newcastle, New Lambton Heights, Australia
| | - Darryl A Knight
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, University of Newcastle, New Lambton Heights, Australia
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, Australia
- Dept of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, Canada
- Research and Academic Affairs, Providence Health Care Research Institute, Vancouver, Canada
| | - Nathan W Bartlett
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, University of Newcastle, New Lambton Heights, Australia
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, Australia
| | - Jin-Ah Park
- Molecular and Integrative Physiological Sciences Program, Dept of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Chris L Grainge
- School of Medicine and Public Health, University of Newcastle, Callaghan, Australia
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, University of Newcastle, New Lambton Heights, Australia
- Dept of Respiratory and Sleep Medicine, John Hunter Hospital, Newcastle, Australia
| |
Collapse
|
12
|
Karim HMR, Esquinas AM, Ziatabar S, Insalaco G, Skoczyński S, Šarc I, Ferini-Strambi L, Özyiğit LP, Hernández-Gilsoul T, Singha SK, Ciobanu L, Gutiérrez JLS, Szkulmowski Z, Piervincenzi E, Aguiar M, El-Khatib MF, Corcione N, Kaya AG, Çiledağ A, Kaya A, Valli G, Pierucci P, Resta O, Steiropoulos P, De Marco F, Caldeira V, Mina BA. Continuous Positive Airway Pressure (CPAP) in Non-Apneic Asthma: A Clinical Review of Current Evidence. Turk Thorac J 2020; 21:274-279. [PMID: 32687789 DOI: 10.5152/turkthoracj.2019.19049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 06/10/2019] [Indexed: 11/22/2022]
Abstract
The use of continuous positive airway pressure (CPAP) in asthma has been a point of debate over the past several years. Various studies, including those on animals and humans have attempted to understand the role and pathophysiology of CPAP in patients with either well controlled or poorly controlled asthma. The aim of this manuscript is to review the currently available literature on the physiologic and clinical effects of CPAP in animal models of asthma and on humans with stable asthma.
Collapse
Affiliation(s)
| | - Antonio M Esquinas
- Department of Intensive Care Unit, Hospital General University Morales Meseguer, Murcia, Spain
| | - Sally Ziatabar
- Department of Internal Medicine, Northwell Health - Lenox Hill Hospital, New York, USA
| | - Giuseppe Insalaco
- Institute of Biomedicine and Molecular Immunology, Italian National Research Council, Palermo, Italy
| | - Szymon Skoczyński
- Department of Pulmonology, Medical University of Silesia, Katowice, Poland
| | - Irena Šarc
- Department for Noninvasive Ventilation, University Clinic of Respiratory and Allergic Diseases, Golnik, Slovenia
| | | | - Leyla Pur Özyiğit
- Department of Respiratory Medicine, Allergy and Immunology, Koç University Hospital, İstanbul, Turkey
| | | | - Subrata Kumar Singha
- Department of Anesthesiology and Critical Care, All India Institute of Medical Sciences, Raipur, India
| | - Laura Ciobanu
- Department of Internal Medicine and Pulmonology, Clinical Hospital of Rehabilitation Lasi, Lasi, Romania
| | - José Luis Sandoval Gutiérrez
- Department of Pulmonary and Critical Care, Instituto Nacional de Enfermedades Respiratorias, México City, Mexico
| | - Zbigniew Szkulmowski
- Department of Anesthesia and Intensive Care Unit, University Hospital No 1 In Bydgoszcz Collegium Medicum in Bydgoszcz University Nicolaus Copernicus in Torun, Bydgoszcz, Poland
| | - Edoardo Piervincenzi
- Department of Anesthesia and Intensive Carei, Sapienza University of Rome, Rome, Italy
| | - Margarida Aguiar
- Department of Pulmonology, Hospital Beatriz Angelo, Lisbon, Portugal
| | - Mohamad F El-Khatib
- Department of Anesthesiology, American University of Beirut, Beirut, Lebanon
| | - Nadia Corcione
- Department of Anesthesia, Critical Care and Emergency Medicine, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Aslıhan Gürün Kaya
- Department of Chest Diseases, Ankara University School of Medicine, Ankara, Turkey
| | - Aydın Çiledağ
- Department of Chest Diseases, Ankara University School of Medicine, Ankara, Turkey
| | - Akın Kaya
- Department of Chest Diseases, Ankara University School of Medicine, Ankara, Turkey
| | - Gabriele Valli
- Department of Emergency Medicine, Azienda Ospedaliera San Giovanni Addolorata, Rome, Italy
| | - Paola Pierucci
- Department of Cardiothoracic, Respiratory and Sleep Medicine, Policlinico University Hospital, Bari, Italy
| | - Onofrio Resta
- Department of Cardiothoracic, Respiratory and Sleep Medicine, Policlinico University Hospital, Bari, Italy
| | | | | | - Vania Caldeira
- Department of Pulmonology, Hospital de Santa Marta-Centro Hospital, Lisboa, Portugal
| | - Bushra A Mina
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Northwell Health - Lenox Hill Hospital, New York, USA
| |
Collapse
|
13
|
Mondoñedo JR, Bartolák-Suki E, Bou Jawde S, Nelson K, Cao K, Sonnenberg A, Obrochta WP, Imsirovic J, Ram-Mohan S, Krishnan R, Suki B. A High-Throughput System for Cyclic Stretching of Precision-Cut Lung Slices During Acute Cigarette Smoke Extract Exposure. Front Physiol 2020; 11:566. [PMID: 32655401 PMCID: PMC7326018 DOI: 10.3389/fphys.2020.00566] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 05/07/2020] [Indexed: 12/31/2022] Open
Abstract
Rationale Precision-cut lung slices (PCLSs) are a valuable tool in studying tissue responses to an acute exposure; however, cyclic stretching may be necessary to recapitulate physiologic, tidal breathing conditions. Objectives To develop a multi-well stretcher and characterize the PCLS response following acute exposure to cigarette smoke extract (CSE). Methods A 12-well stretching device was designed, built, and calibrated. PCLS were obtained from male Sprague-Dawley rats (N = 10) and assigned to one of three groups: 0% (unstretched), 5% peak-to-peak amplitude (low-stretch), and 5% peak-to-peak amplitude superimposed on 10% static stretch (high-stretch). Lung slices were cyclically stretched for 12 h with or without CSE in the media. Levels of Interleukin-1β (IL-1β), matrix metalloproteinase (MMP)-1 and its tissue inhibitor (TIMP1), and membrane type-MMP (MT1-MMP) were assessed via western blot from tissue homogenate. Results The stretcher system produced nearly identical normal Lagrangian strains (Exx and Eyy, p > 0.999) with negligible shear strain (Exy < 0.0005) and low intra-well variability 0.127 ± 0.073%. CSE dose response curve was well characterized by a four-parameter logistic model (R2 = 0.893), yielding an IC50 value of 0.018 cig/mL. Cyclic stretching for 12 h did not decrease PCLS viability. Two-way ANOVA detected a significant interaction between CSE and stretch pattern for IL-1β (p = 0.017), MMP-1, TIMP1, and MT1-MMP (p < 0.001). Conclusion This platform is capable of high-throughput testing of an acute exposure under tightly-regulated, cyclic stretching conditions. We conclude that the acute mechano-inflammatory response to CSE exhibits complex, stretch-dependence in the PCLS.
Collapse
Affiliation(s)
- Jarred R Mondoñedo
- Department of Biomedical Engineering, College of Engineering, Boston University, Boston, MA, United States.,Boston University School of Medicine, Boston, MA, United States
| | - Elizabeth Bartolák-Suki
- Department of Biomedical Engineering, College of Engineering, Boston University, Boston, MA, United States
| | - Samer Bou Jawde
- Department of Biomedical Engineering, College of Engineering, Boston University, Boston, MA, United States
| | - Kara Nelson
- Department of Biomedical Engineering, College of Engineering, Boston University, Boston, MA, United States
| | - Kun Cao
- Department of Biomedical Engineering, College of Engineering, Boston University, Boston, MA, United States
| | - Adam Sonnenberg
- Department of Systems Engineering, College of Engineering, Boston University, Boston, MA, United States
| | - Walter Patrick Obrochta
- Department of Biomedical Engineering, College of Engineering, Boston University, Boston, MA, United States
| | - Jasmin Imsirovic
- Department of Biomedical Engineering, College of Engineering, Boston University, Boston, MA, United States
| | - Sumati Ram-Mohan
- Department of Emergency Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Ramaswamy Krishnan
- Department of Emergency Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Béla Suki
- Department of Biomedical Engineering, College of Engineering, Boston University, Boston, MA, United States
| |
Collapse
|
14
|
Preserving Airway Smooth Muscle Contraction in Precision-Cut Lung Slices. Sci Rep 2020; 10:6480. [PMID: 32296115 PMCID: PMC7160136 DOI: 10.1038/s41598-020-63225-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 03/21/2020] [Indexed: 12/13/2022] Open
Abstract
Precision-cut lung slices (PCLS) are ideal for measuring small airway contraction. However, these measurements are currently limited to acute exposure scenarios that typically last a few minutes to a few hours. Using an insulin-supplemented culture medium, we prolong the small airway contractility in mouse PCLS for up to two weeks. Compared to conventional culture medium, insulin-supplemented culture medium provides no additional benefit in preserving cellular viability or airway structure. However, it protects the airway smooth muscle (ASM) against a loss of smooth muscle myosin heavy chain (SMMHC) expression. We elucidate the significance of this new culture medium for chronic disease modeling of IL-13-induced airway hyper-responsiveness.
Collapse
|
15
|
Gazzola M, Khadangi F, Clisson M, Beaudoin J, Clavel MA, Bossé Y. Airway smooth muscle adapting in dynamic conditions is refractory to the bronchodilator effect of a deep inspiration. Am J Physiol Lung Cell Mol Physiol 2020; 318:L452-L458. [PMID: 31913645 DOI: 10.1152/ajplung.00270.2019] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Airway smooth muscle (ASM) is continuously strained during breathing at tidal volume. Whether this tidal strain influences the magnitude of the bronchodilator response to a deep inspiration (DI) is not clearly defined. The present in vitro study examines the effect of tidal strain on the bronchodilator effect of DIs. ASM strips from sheep tracheas were mounted in organ baths and then subjected to stretches (30% strain), simulating DIs at varying time intervals. In between simulated DIs, the strips were either held at a fixed length (isometric) or oscillated continuously by 6% (length oscillations) to simulate tidal strain. The contractile state of the strips was also controlled by adding either methacholine or isoproterenol to activate or relax ASM, respectively. Although the time-dependent gain in force caused by methacholine was attenuated by length oscillations, part of the acquired force in the oscillating condition was preserved postsimulated DIs, which was not the case in the isometric condition. Consequently, the bronchodilator effect of simulated DIs (i.e., the decline in force postsimulated versus presimulated DIs) was attenuated in oscillating versus isometric conditions. These findings suggest that an ASM operating in a dynamic environment acquired adaptations that make it refractory to the decline in contractility inflicted by a larger strain simulating a DI.
Collapse
Affiliation(s)
- Morgan Gazzola
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Laval University, Quebec City, Quebec, Canada
| | - Fatemeh Khadangi
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Laval University, Quebec City, Quebec, Canada
| | - Marine Clisson
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Laval University, Quebec City, Quebec, Canada
| | - Jonathan Beaudoin
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Laval University, Quebec City, Quebec, Canada
| | - Marie-Annick Clavel
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Laval University, Quebec City, Quebec, Canada
| | - Ynuk Bossé
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Laval University, Quebec City, Quebec, Canada
| |
Collapse
|
16
|
Ram-Mohan S, Bai Y, Schaible N, Ehrlicher AJ, Cook DP, Suki B, Stoltz DA, Solway J, Ai X, Krishnan R. Tissue traction microscopy to quantify muscle contraction within precision-cut lung slices. Am J Physiol Lung Cell Mol Physiol 2019; 318:L323-L330. [PMID: 31774304 DOI: 10.1152/ajplung.00297.2019] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
In asthma, acute bronchospasm is driven by contractile forces of airway smooth muscle (ASM). These forces can be imaged in the cultured ASM cell or assessed in the muscle strip and the tracheal/bronchial ring, but in each case, the ASM is studied in isolation from the native airway milieu. Here, we introduce a novel platform called tissue traction microscopy (TTM) to measure ASM contractile force within porcine and human precision-cut lung slices (PCLS). Compared with the conventional measurements of lumen area changes in PCLS, TTM measurements of ASM force changes are 1) more sensitive to bronchoconstrictor stimuli, 2) less variable across airways, and 3) provide spatial information. Notably, within every human airway, TTM measurements revealed local regions of high ASM contraction that we call "stress hotspots". As an acute response to cyclic stretch, these hotspots promptly decreased but eventually recovered in magnitude, spatial location, and orientation, consistent with local ASM fluidization and resolidification. By enabling direct and precise measurements of ASM force, TTM should accelerate preclinical studies of airway reactivity.
Collapse
Affiliation(s)
- Sumati Ram-Mohan
- Center for Vascular Biology Research, Department of Emergency Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Yan Bai
- Pulmonary and Critical Care Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Niccole Schaible
- Center for Vascular Biology Research, Department of Emergency Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Allen J Ehrlicher
- Department of Bioengineering, McGill University, Montreal, Quebec, Canada
| | - Daniel P Cook
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa
| | - Bela Suki
- Biomedical Engineering Department, Boston University, Boston, Massachusetts
| | - David A Stoltz
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa
| | - Julian Solway
- Department of Medicine, University of Chicago, Chicago, Illinois
| | - Xingbin Ai
- Pulmonary and Critical Care Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Ramaswamy Krishnan
- Center for Vascular Biology Research, Department of Emergency Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| |
Collapse
|
17
|
Marozkina N, Bosch J, Cotton C, Smith L, Seckler J, Zaman K, Rehman S, Periasamy A, Gaston H, Altawallbeh G, Davis M, Jones DR, Schilz R, Randell SH, Gaston B. Cyclic compression increases F508 Del CFTR expression in ciliated human airway epithelium. Am J Physiol Lung Cell Mol Physiol 2019; 317:L247-L258. [PMID: 31116581 DOI: 10.1152/ajplung.00020.2019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The mechanisms by which transepithelial pressure changes observed during exercise and airway clearance can benefit lung health are challenging to study. Here, we have studied 117 mature, fully ciliated airway epithelial cell filters grown at air-liquid interface grown from 10 cystic fibrosis (CF) and 19 control subjects. These were exposed to cyclic increases in apical air pressure of 15 cmH2O for varying times. We measured the effect on proteins relevant to lung health, with a focus on the CF transmembrane regulator (CFTR). Immunoflourescence and immunoblot data were concordant in demonstrating that air pressure increased F508Del CFTR expression and maturation. This effect was in part dependent on the presence of cilia, on Ca2+ influx, and on formation of nitrogen oxides. These data provide a mechanosensory mechanism by which changes in luminal air pressure, like those observed during exercise and airway clearance, can affect epithelial protein expression and benefit patients with diseases of the airways.
Collapse
Affiliation(s)
- Nadzeya Marozkina
- Pediatric Pulmonology Division, Department of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Jürgen Bosch
- Pediatric Pulmonology Division, Department of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Calvin Cotton
- Pediatric Pulmonology Division, Department of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Laura Smith
- Pediatric Pulmonology Division, Department of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - James Seckler
- Pediatric Pulmonology Division, Department of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Khalequz Zaman
- Pediatric Pulmonology Division, Department of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Shagufta Rehman
- W. M. Keck Center for Cellular Imaging, Department of Biology, University of Virginia, Charlottesville, Virginia
| | - Ammasi Periasamy
- W. M. Keck Center for Cellular Imaging, Department of Biology, University of Virginia, Charlottesville, Virginia
| | | | - Ghaith Altawallbeh
- Pediatric Pulmonology Division, Department of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Michael Davis
- Department of Pediatrics, Division of Pulmonary Medicine, Children's Hospital of Richmond at Virginia Commonwealth University, Richmond, Virginia
| | - David R Jones
- Thoracic Surgery Service, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Robert Schilz
- Pulmonology and Critical Care Medicine University Hospitals, Cleveland, Ohio
| | - Scott H Randell
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, North Carolina
| | - Benjamin Gaston
- Pediatric Pulmonology Division, Department of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, Ohio.,Pediatric Pulmonology Division, Rainbow Babies and Children's Hospital, Cleveland, Ohio
| |
Collapse
|
18
|
Kilic O, Yoon A, Shah SR, Yong HM, Ruiz-Valls A, Chang H, Panettieri RA, Liggett SB, Quiñones-Hinojosa A, An SS, Levchenko A. A microphysiological model of the bronchial airways reveals the interplay of mechanical and biochemical signals in bronchospasm. Nat Biomed Eng 2019; 3:532-544. [PMID: 31150010 PMCID: PMC6653686 DOI: 10.1038/s41551-019-0366-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 02/07/2019] [Indexed: 01/08/2023]
Abstract
In asthma, airway smooth muscle (ASM) contraction and the subsequent decrease in airflow involve a poorly understood set of mechanical and biochemical events. Organ-level and molecular-scale models of the airway are frequently based on purely mechanical or biochemical considerations and do not account for physiological mechanochemical couplings. Here, we present a microphysiological model of the airway that allows for the quantitative analysis of the interactions between mechanical and biochemical signals triggered by compressive stress on epithelial cells. We show that a mechanical stimulus mimicking a bronchospastic challenge triggers the marked contraction and delayed relaxation of ASM, and that this is mediated by the discordant expression of cyclooxygenase genes in epithelial cells and regulated by the mechanosensor and transcriptional co-activator YAP (Yes-associated protein). A mathematical model of the intercellular feedback interactions recapitulates aspects of obstructive disease of the airways, including pathognomonic features of severe, difficult-to-treat asthma. The microphysiological model could be used to investigate the mechanisms of asthma pathogenesis and to develop therapeutic strategies that disrupt the positive feedback loop that leads to persistent airway constriction.
Collapse
Affiliation(s)
- Onur Kilic
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA. .,Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.
| | - Arum Yoon
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Sagar R Shah
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Hwan Mee Yong
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Alejandro Ruiz-Valls
- Department of Neurosurgery, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Hao Chang
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Reynold A Panettieri
- Institute for Translational Medicine and Science, Rutgers University, New Brunswick, NJ, USA
| | - Stephen B Liggett
- Department of Medical Engineering, University of South Florida, Tampa, FL, USA.,Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | | | - Steven S An
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA. .,Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA. .,Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA. .,Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea.
| | - Andre Levchenko
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA. .,Department of Biomedical Engineering, Yale University, New Haven, CT, USA. .,Yale Systems Biology Institute, Yale University, West Haven, CT, USA.
| |
Collapse
|
19
|
Winkler T. Airway Transmural Pressures in an Airway Tree During Bronchoconstriction in Asthma. ACTA ACUST UNITED AC 2019; 2:0110051-110056. [PMID: 32328574 DOI: 10.1115/1.4042478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 12/20/2018] [Indexed: 11/08/2022]
Abstract
Airway transmural pressure in healthy homogeneous lungs with dilated airways is approximately equal to the difference between intraluminal and pleural pressure. However, bronchoconstriction causes airway narrowing, parenchymal distortion, dynamic hyperinflation, and the emergence of ventilation defects (VDefs) affecting transmural pressure. This study aimed to investigate the changes in transmural pressure caused by bronchoconstriction in a bronchial tree. Transmural pressures before and during bronchoconstriction were estimated using an integrative computational model of bronchoconstriction. Briefly, this model incorporates a 12-generation symmetric bronchial tree, and the Anafi and Wilson model for the individual airways of the tree. Bronchoconstriction lead to the emergence of VDefs and a relative increase in peak transmural pressures of up to 84% compared to baseline. The highest increase in peak transmural pressure occurred in a central airway outside of VDefs, and the lowest increase was 27% in an airway within VDefs illustrating the heterogeneity in peak transmural pressures within a bronchial tree. Mechanisms contributing to the increase in peak transmural pressures include increased regional ventilation and dynamic hyperinflation both leading to increased alveolar pressures compared to baseline. Pressure differences between intraluminal and alveolar pressure increased driven by the increased airway resistance and its contribution to total transmural pressure reached up to 24%. In conclusion, peak transmural pressure in lungs with VDefs during bronchoconstriction can be substantially increased compared to dilated airways in healthy homogeneous lungs and is highly heterogeneous. Further insights will depend on the experimental studies taking these conditions into account.
Collapse
Affiliation(s)
- Tilo Winkler
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, MA 02114 e-mail:
| |
Collapse
|
20
|
Bossé Y. The Strain on Airway Smooth Muscle During a Deep Inspiration to Total Lung Capacity. JOURNAL OF ENGINEERING AND SCIENCE IN MEDICAL DIAGNOSTICS AND THERAPY 2019; 2:0108021-1080221. [PMID: 32328568 PMCID: PMC7164505 DOI: 10.1115/1.4042309] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 11/06/2018] [Indexed: 02/05/2023]
Abstract
The deep inspiration (DI) maneuver entices a great deal of interest because of its ability to temporarily ease the flow of air into the lungs. This salutary effect of a DI is proposed to be mediated, at least partially, by momentarily increasing the operating length of airway smooth muscle (ASM). Concerningly, this premise is largely derived from a growing body of in vitro studies investigating the effect of stretching ASM by different magnitudes on its contractility. The relevance of these in vitro findings remains uncertain, as the real range of strains ASM undergoes in vivo during a DI is somewhat elusive. In order to understand the regulation of ASM contractility by a DI and to infer on its putative contribution to the bronchodilator effect of a DI, it is imperative that in vitro studies incorporate levels of strains that are physiologically relevant. This review summarizes the methods that may be used in vivo in humans to estimate the strain experienced by ASM during a DI from functional residual capacity (FRC) to total lung capacity (TLC). The strengths and limitations of each method, as well as the potential confounders, are also discussed. A rough estimated range of ASM strains is provided for the purpose of guiding future in vitro studies that aim at quantifying the regulatory effect of DI on ASM contractility. However, it is emphasized that, owing to the many limitations and confounders, more studies will be needed to reach conclusive statements.
Collapse
Affiliation(s)
- Ynuk Bossé
- Université Laval, Faculty of Medicine, Department of Medicine, IUCPQ, M2694, Pavillon Mallet, Chemin Sainte-Foy, Québec, QC G1V 4G5, Canada e-mail:
| |
Collapse
|
21
|
O'Sullivan MJ, Lan B. The Aftermath of Bronchoconstriction. ACTA ACUST UNITED AC 2019; 2:0108031-108036. [PMID: 32328569 DOI: 10.1115/1.4042318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 10/30/2018] [Indexed: 11/08/2022]
Abstract
Asthma is characterized by chronic airway inflammation, airway remodeling, and excessive constriction of the airway. Detailed investigation exploring inflammation and the role of immune cells has revealed a variety of possible mechanisms by which chronic inflammation drives asthma development. However, the underlying mechanisms of asthma pathogenesis still remain poorly understood. New evidence now suggests that mechanical stimuli that arise during bronchoconstriction may play a critical role in asthma development. In this article, we review the mechanical effect of bronchoconstriction and how these mechanical stresses contribute to airway remodeling independent of inflammation.
Collapse
Affiliation(s)
- Michael J O'Sullivan
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, 665 Huntington Avenue, 1-G07, Boston, MA 02115
| | - Bo Lan
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, 665 Huntington Avenue, 1-G07, Boston, MA 02115 e-mail:
| |
Collapse
|
22
|
Lehavi A, Golomb N, Leiba R, Katz Y(S, Raz A. One-minute heart rate variability - an adjunct for airway obstruction identification. Physiol Rep 2019; 7:e13948. [PMID: 30632302 PMCID: PMC6328920 DOI: 10.14814/phy2.13948] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Revised: 11/12/2018] [Accepted: 11/15/2018] [Indexed: 11/24/2022] Open
Abstract
Heart rate variability (HRV) reflects cardiac and autonomic nervous system activity. It is usually measured over a relatively prolonged period and presented using multiple parameters. Here, we studied rapid HRV changes during airway obstruction using a short (1 min) sampling window. Forty healthy volunteers underwent a trial of obstructed breathing. Heart rate was recorded during three consecutive sets comprised of 1-min control followed by 1 min of obstructed breathing, with 1 min of rest between sets. Time and frequency domain analysis were used to compare HRV during control versus obstructed breathing. Compared with control, HRV intensely increased during obstructed breathing: R-R intervals (time between consecutive R waves) standard deviation increased from 65 to 108 msec (P < 0.0001), root mean square of successive R-R interval from 61 to 82 msec (P = 0.001), number of pairs of successive R-R intervals that differ by more than 50 msec (NN50) from 16.5 to 25.3 events (P < 0.0001), and proportion of NN50 divided by total number of R-R intervals from 26.6 to 35.1% (P = 0.001). Low frequency power increased by more than fourfold (P < 0.0001), allowing 90% sensitivity and 75% specificity for identifying airway obstruction (ROC area 0.88, P < 0.0001). We observed a rapid intense increase in HRV during obstructed breathing, significant enough to detect during a short 1-min sampling window. These findings suggest that HRV may be useful for rapid detection of airway obstruction, especially in situations where end-tidal CO2 monitoring is not optimal, such as during partial airway obstruction.
Collapse
Affiliation(s)
- Amit Lehavi
- Department of AnesthesiologyRambam Health Care Campusthe Ruth and Bruce Rappaport Faculty of MedicineTechnion – Israel Institute of TechnologyHaifaIsrael
| | - Neta Golomb
- Department of AnesthesiologyRambam Health Care Campusthe Ruth and Bruce Rappaport Faculty of MedicineTechnion – Israel Institute of TechnologyHaifaIsrael
| | - Ronit Leiba
- Department of EpidemiologyRambam Health Care Campusthe Ruth and Bruce Rappaport Faculty of MedicineTechnion – Israel Institute of TechnologyHaifaIsrael
| | - Yeshayahu (Shai) Katz
- Department of AnesthesiologyRambam Health Care Campusthe Ruth and Bruce Rappaport Faculty of MedicineTechnion – Israel Institute of TechnologyHaifaIsrael
| | - Aeyal Raz
- Department of AnesthesiologyRambam Health Care Campusthe Ruth and Bruce Rappaport Faculty of MedicineTechnion – Israel Institute of TechnologyHaifaIsrael
- Department of AnesthesiologyUniversity of WisconsinMadisonWisconsin
| |
Collapse
|
23
|
Osorio-Valencia JS, Wongviriyawong C, Winkler T, Kelly VJ, Harris RS, Venegas JG. Elevation in lung volume and preventing catastrophic airway closure in asthmatics during bronchoconstriction. PLoS One 2018; 13:e0208337. [PMID: 30566496 PMCID: PMC6300269 DOI: 10.1371/journal.pone.0208337] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 11/15/2018] [Indexed: 01/17/2023] Open
Abstract
Background Asthma exacerbations cause lung hyperinflation, elevation in load to inspiratory muscles, and decreased breathing capacity that, in severe cases, may lead to inspiratory muscle fatigue and respiratory failure. Hyperinflation has been attributed to a passive mechanical origin; a respiratory system time-constant too long for full exhalation. However, because the increase in volume is also concurrent with activation of inspiratory muscles during exhalation it is unclear whether hyperinflation in broncho-constriction is a passive phenomenon or is actively controlled to avoid airway closure. Methods Using CT scanning, we measured the distensibility of individual segmental airways relative to that of their surrounding parenchyma in seven subjects with asthma and nine healthy controls. With this data we tested whether the elevation of lung volume measured after methacholine (MCh) provocation was associated with airway narrowing, or to the volume required to preventing airway closure. We also tested whether the reduction in FVC post-MCh could be attributed to gas trapped behind closed segmental airways. Findings The changes in lung volume by MCh in subjects with and without asthma were inversely associated with their reduction in average airway lumen. This finding would be inconsistent with hyperinflation by passive elevation of airway resistance. In contrast, the change in volume of each subject was associated with the lung volume estimated to cause the closure of the least stable segmental airway of his/her lungs. In addition, the measured drop in FVC post MCh was associated with the estimated volume of gas trapped behind closed segmental airways at RV. Conclusions Our data supports the concept that hyperinflation caused by MCh-induced bronchoconstriction is the result of an actively controlled process where parenchymal distending forces on airways are increased to counteract their closure. To our knowledge, this is the first imaging-based study that associates inter-subject differences in whole lung behavior with the interdependence between individual airways and their surrounding parenchyma.
Collapse
Affiliation(s)
- Juan S. Osorio-Valencia
- Department of Computer Science, Graduate Program in Biomedical Computing, Technical University of Munich, Munich, Germany
- Department of Anesthesia and Critical Care, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail: (JSO); (JGV)
| | - Chanikarn Wongviriyawong
- Department of Anesthesia and Critical Care, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Tilo Winkler
- Department of Anesthesia and Critical Care, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Vanessa J. Kelly
- Department of Medicine, Pulmonary and Critical Care Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Robert S. Harris
- Department of Medicine, Pulmonary and Critical Care Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Jose G. Venegas
- Department of Anesthesia and Critical Care, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail: (JSO); (JGV)
| |
Collapse
|
24
|
Mailhot-Larouche S, Bossé Y. Interval between simulated deep inspirations on the dynamics of airway smooth muscle contraction in guinea pig bronchi. Respir Physiol Neurobiol 2018; 259:136-142. [PMID: 30217723 DOI: 10.1016/j.resp.2018.09.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 09/06/2018] [Accepted: 09/10/2018] [Indexed: 11/26/2022]
Abstract
A certain amount of time is required to achieve a maximal contraction from airway smooth muscle (ASM) and stretches of substantial magnitude, such as the ones imparted by deep inspirations (DIs), interfere with contraction. The duration of ASM contraction without interference may thus affect its shortening, its mechanical response to DIs and the overall toll it exerts on the respiratory system. In this study, the effect of changing the interval between DIs on the dynamics of ASM was examined in vitro. Isolated bronchi derived from guinea pigs were held isotonically and stimulated to both contract and relax, in a randomized order, in response to 10-5 M of methacholine and 10-6 M of isoproterenol, respectively. Interference to ASM was inflicted after 2, 5, 10 and 30 min in a randomized order, by imposing a stretch that simulated a DI. The shortening before the stretch, the stiffness before and during the stretch, the post-stretch elongation of ASM and the ensuing re-shortening were measured. These experiments were also performed in the presence of simulated tidal breathing achieved through force fluctuations. The results demonstrate that, with or without force fluctuations, increasing the interval between simulated DIs increased shortening and post-stretch elongation, but not stiffness and re-shortening. These time-dependent effects were not observed when ASM was held in the relaxed state. These findings may help understand to which extent ASM shortening and the regulatory effect of DI are affected by changing the interval between DIs. The potential consequences of these findings on airway narrowing are also discussed.
Collapse
|
25
|
Lutchen KR, Paré PD, Seow CY. Hyperresponsiveness: Relating the Intact Airway to the Whole Lung. Physiology (Bethesda) 2018; 32:322-331. [PMID: 28615315 DOI: 10.1152/physiol.00008.2017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 05/10/2017] [Accepted: 05/10/2017] [Indexed: 11/22/2022] Open
Abstract
We relate changes of the airway wall to the response of the intact airway and the whole lung. We address how mechanical conditions and specific structural changes for an airway contribute to hyperresponsiveness resistant to deep inspiration. This review conveys that the origins of hyperresponsiveness do not devolve into an abnormality at single structural level but require examination of the complex interplay of all the parts.
Collapse
Affiliation(s)
- Kenneth R Lutchen
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts
| | - Peter D Paré
- Department of Medicine, Respiratory Division, University of British Columbia, Vancouver, British Columbia, Canada.,Centre for Heart Lung Innovation-St. Paul's Hospital, University of British Columbia, Vancouver, British Columbia, Canada; and
| | - Chun Y Seow
- Centre for Heart Lung Innovation-St. Paul's Hospital, University of British Columbia, Vancouver, British Columbia, Canada; and.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
26
|
Lan B, Krishnan R, Park CY, Watanabe RA, Panganiban R, Butler JP, Lu Q, Cole WC, Fredberg JJ. Transient stretch induces cytoskeletal fluidization through the severing action of cofilin. Am J Physiol Lung Cell Mol Physiol 2018; 314:L799-L807. [PMID: 29345194 DOI: 10.1152/ajplung.00326.2017] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
With every deep inspiration (DI) or sigh, the airway wall stretches, as do the airway smooth muscle cells in the airway wall. In response, the airway smooth muscle cell undergoes rapid stretch-induced cytoskeletal fluidization. As a molecular mechanism underlying the cytoskeletal fluidization response, we demonstrate a key role for the actin-severing protein cofilin. Using primary human airway smooth muscle cells, we simulated a DI by imposing a transient stretch of physiological magnitude and duration. We used traction microscopy to measure the resulting changes in contractile forces. After a transient stretch, cofilin-knockdown cells exhibited a 29 ± 5% decrease in contractile force compared with prestretch conditions. By contrast, control cells exhibited a 67 ± 6% decrease ( P < 0.05, knockdown vs. control). Consistent with these contractile force changes with transient stretch, actin filaments in cofilin-knockdown cells remained largely intact, whereas actin filaments in control cells were rapidly disrupted. Furthermore, in cofilin-knockdown cells, contractile force at baseline was higher and rate of remodeling poststretch was slower than in control cells. Additionally, the severing action of cofilin was restricted to the release phase of the transient stretch. We conclude that the actin-severing activity of cofilin is an important factor in stretch-induced cytoskeletal fluidization and may account for an appreciable part of the bronchodilatory effects of a DI.
Collapse
Affiliation(s)
- Bo Lan
- Department of Environmental Health, Harvard T. H. Chan School of Public Health , Boston, Massachusetts.,Smooth Muscle Research Group and Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Alberta, Canada
| | - Ramaswamy Krishnan
- Center for Vascular Biology Research, Department of Emergency Medicine, Beth Israel Deaconess Medical Center , Boston, Massachusetts
| | - Chan Yong Park
- Department of Environmental Health, Harvard T. H. Chan School of Public Health , Boston, Massachusetts
| | - Rodrigo A Watanabe
- Department of Environmental Health, Harvard T. H. Chan School of Public Health , Boston, Massachusetts
| | - Ronald Panganiban
- Department of Environmental Health, Harvard T. H. Chan School of Public Health , Boston, Massachusetts
| | - James P Butler
- Department of Environmental Health, Harvard T. H. Chan School of Public Health , Boston, Massachusetts.,Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital and Harvard Medical School , Boston, Massachusetts
| | - Quan Lu
- Department of Environmental Health, Harvard T. H. Chan School of Public Health , Boston, Massachusetts
| | - William C Cole
- Smooth Muscle Research Group and Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Alberta, Canada
| | - Jeffrey J Fredberg
- Department of Environmental Health, Harvard T. H. Chan School of Public Health , Boston, Massachusetts
| |
Collapse
|
27
|
You JY, Shu C, Gong CH, Liu S, Fu Z. [Readmission of children with bronchopulmonary dysplasia in the first 2 years of life: a clinical analysis of 121 cases]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2017; 19:1056-1060. [PMID: 29046200 PMCID: PMC7389285 DOI: 10.7499/j.issn.1008-8830.2017.10.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 07/03/2017] [Indexed: 06/07/2023]
Abstract
OBJECTIVE To investigate the clinical features of readmitted children with bronchopulmonary dysplasia (BPD) in the first 2 years of life. METHODS A retrospective analysis was performed for the clinical data of 242 children with BPD who were readmitted due to recurrent lower respiratory tract infection (LRTI) in the first 2 years of life. RESULTS Among all the 242 children with BPD, 115(47.5%) had wheezing, and the children aged 1-2 years had a significantly higher incidence rate of wheezing than those aged less than 1 year (P<0.05). Chest imaging was performed for 193 children, among whom 31 (16.1%) had hyperlucent areas. Pulmonary function examination showed that the BPD children had significantly lower TV/kg, TPEF/TE, VPEF/VE, TEF50 and TEF75, and significantly higher respiratory rate than the controls without respiratory disease (P<0.05). Bronchoscopy was performed for 28 children, among whom 21 (75%) had airway dysplasia. All the 242 children used inhaled corticosteroids (ICS) and experienced no treatment-related adverse reactions. Six children were given intravenous infusion of human umbilical cord blood mesenchymal stem cells (hUCB-MSCs) and experienced no infusion-related events or adverse reactions, among whom one child successfully stopped oxygen therapy. CONCLUSIONS The incidence rate of wheezing increases with the increase in age in children with BPD who are readmitted due to LRTI. Pulmonary function examination shows small airway obstruction, reduced expiratory flow rate in case of low lung capacity, and increased respiratory rate, and most children have airway dysplasia. ICS can be used to inhibit inflammatory response in the acute stage. Infusion of hUCB-MSCs is safe and feasible and may bring some benefits to the recovery from BPD.
Collapse
Affiliation(s)
- Jing-Yi You
- Department of Respiratory Diseases, Children's Hospital of Chongqing Medical University/Ministry of Education Key Laboratory of Child Development and Disorders/China International Science and Technology Cooperation Base of Child Development and Critical Disorders/Chongqing Engineering Research Center of Stem Cell Therapy, Chongqing 400014, China.
| | | | | | | | | |
Collapse
|
28
|
Mailhot-Larouche S, Lortie K, Marsolais D, Flamand N, Bossé Y. An in vitro study examining the duration between deep inspirations on the rate of renarrowing. Respir Physiol Neurobiol 2017; 243:13-19. [PMID: 28487171 DOI: 10.1016/j.resp.2017.04.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 04/07/2017] [Accepted: 04/29/2017] [Indexed: 12/12/2022]
Abstract
The factors altering the bronchodilatory response to a deep inspiration (DI) in asthma are important to decipher. In this in vitro study, we investigated the effect of changing the duration between DIs on the rate of force recovery post-DI in guinea pig bronchi. The airway smooth muscle (ASM) within the main bronchi were submitted to length oscillation that simulated tidal breathing in different contractile states during 2, 5, 10 or 30min prior to a larger length excursion that simulated a DI. The contractile states of ASM were determined by adding either methacholine or isoproterenol. Irrespective of the contractile state, the duration between DIs neither affected the measured force during length oscillation nor the bronchodilator effect of DI. Contrastingly, the rate of force recovery post-DI in contracted state increased as the duration between DIs decreased. Similar results were obtained with contracted parenchymal strips. These findings suggest that changing the duration between DIs may alter the rate of ASM force recovery post-DI and thereby affect the rate of renarrowing and the duration of the respiratory relief afforded by DI.
Collapse
Affiliation(s)
- Samuel Mailhot-Larouche
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, Canada
| | - Katherine Lortie
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, Canada
| | - David Marsolais
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, Canada
| | - Nicolas Flamand
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, Canada
| | - Ynuk Bossé
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, Canada.
| |
Collapse
|
29
|
Rosner SR, Pascoe CD, Blankman E, Jensen CC, Krishnan R, James AL, Elliot JG, Green FH, Liu JC, Seow CY, Park JA, Beckerle MC, Paré PD, Fredberg JJ, Smith MA. The actin regulator zyxin reinforces airway smooth muscle and accumulates in airways of fatal asthmatics. PLoS One 2017; 12:e0171728. [PMID: 28278518 PMCID: PMC5344679 DOI: 10.1371/journal.pone.0171728] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 01/24/2017] [Indexed: 01/21/2023] Open
Abstract
Bronchospasm induced in non-asthmatic human subjects can be easily reversed by a deep inspiration (DI) whereas bronchospasm that occurs spontaneously in asthmatic subjects cannot. This physiological effect of a DI has been attributed to the manner in which a DI causes airway smooth muscle (ASM) cells to stretch, but underlying molecular mechanisms-and their failure in asthma-remain obscure. Using cells and tissues from wild type and zyxin-/- mice we report responses to a transient stretch of physiologic magnitude and duration. At the level of the cytoskeleton, zyxin facilitated repair at sites of stress fiber fragmentation. At the level of the isolated ASM cell, zyxin facilitated recovery of contractile force. Finally, at the level of the small airway embedded with a precision cut lung slice, zyxin slowed airway dilation. Thus, at each level zyxin stabilized ASM structure and contractile properties at current muscle length. Furthermore, when we examined tissue samples from humans who died as the result of an asthma attack, we found increased accumulation of zyxin compared with non-asthmatics and asthmatics who died of other causes. Together, these data suggest a biophysical role for zyxin in fatal asthma.
Collapse
Affiliation(s)
- Sonia R. Rosner
- Department of Environmental Health, Harvard School of Public Health, Boston, Massachusetts, United States of America
| | - Christopher D. Pascoe
- University of British Columbia Center for Heart Lung Innovation, St Paul Hospital, Vancouver, British Columbia, Canada
| | - Elizabeth Blankman
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, United States of America
| | - Christopher C. Jensen
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, United States of America
| | - Ramaswamy Krishnan
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
| | - Alan L. James
- Department of Pulmonary Physiology and Sleep Medicine, West Australian Sleep Disorders Research Institute, Sir Charles Gairdner Hospital, Nedlands, West Australia, Australia
- School of Medicine and Pharmacology, University of Western Australia, Perth, Western Australia, Australia
| | - John G. Elliot
- Department of Pulmonary Physiology and Sleep Medicine, West Australian Sleep Disorders Research Institute, Sir Charles Gairdner Hospital, Nedlands, West Australia, Australia
| | - Francis H. Green
- Department of Pathology and Laboratory Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Jeffrey C. Liu
- University of British Columbia Center for Heart Lung Innovation, St Paul Hospital, Vancouver, British Columbia, Canada
| | - Chun Y. Seow
- University of British Columbia Center for Heart Lung Innovation, St Paul Hospital, Vancouver, British Columbia, Canada
| | - Jin-Ah Park
- Department of Environmental Health, Harvard School of Public Health, Boston, Massachusetts, United States of America
| | - Mary C. Beckerle
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, United States of America
- Department of Biology, University of Utah, Salt Lake City, Utah, United States of America
| | - Peter D. Paré
- University of British Columbia Center for Heart Lung Innovation, St Paul Hospital, Vancouver, British Columbia, Canada
| | - Jeffrey J. Fredberg
- Department of Environmental Health, Harvard School of Public Health, Boston, Massachusetts, United States of America
| | - Mark A. Smith
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, United States of America
- Department of Biology, University of Utah, Salt Lake City, Utah, United States of America
- * E-mail:
| |
Collapse
|
30
|
Wong WD, Wang L, Paré PD, Seow CY. Bronchodilatory effect of deep inspiration in freshly isolated sheep lungs. Am J Physiol Lung Cell Mol Physiol 2016; 312:L178-L185. [PMID: 27913423 DOI: 10.1152/ajplung.00321.2016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 11/28/2016] [Accepted: 12/01/2016] [Indexed: 11/22/2022] Open
Abstract
Taking a big breath is known to reverse bronchoconstriction induced by bronchochallenge in healthy subjects; this bronchodilatory effect of deep inspiration (DI) is diminished in asthmatics. The mechanism underlying the DI effect is not clear. Observations from experiments using isolated airway smooth muscle (ASM) preparations and airway segments suggest that straining of ASM due to DI could lead to bronchodilation, possibly due to strain-induced reduction in ASM contractility. However, factors external to the lung cannot be excluded as potential causes for the DI effect. Neural reflex initiated by stretch receptors in the lung are known to inhibit the broncho-motor tone and enhance vasodilatation; the former directly reduces airway resistance, and the latter facilitates removal of contractile agonists through the bronchial circulation. If the DI effect is solely mediated by factors extrinsic to the lung, the DI effect would be absent in isolated, nonperfused lungs. Here we examined the DI effect in freshly isolated, nonperfused sheep lungs. We found that imposition of DI on isolated lungs resulted in significant bronchodilation, that this DI effect was present only after the lungs were challenged with a contractile agonist (acetylcholine or histamine), and that the effect was independent of the difference in lung volume observed pre- and post-DI. We conclude that a significant portion of the bronchodilatory DI effect stems from factors internal to the lung related to the activation of ASM.
Collapse
Affiliation(s)
- William D Wong
- The Centre for Heart Lung Innovation, University of British Columbia, Vancouver, British Columbia, Canada
| | - Lu Wang
- Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada.,The Centre for Heart Lung Innovation, University of British Columbia, Vancouver, British Columbia, Canada
| | - Peter D Paré
- Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada.,The Centre for Heart Lung Innovation, University of British Columbia, Vancouver, British Columbia, Canada
| | - Chun Y Seow
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada; and .,The Centre for Heart Lung Innovation, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
31
|
Le Guen M, Grassin-Delyle S, Naline E, Buenestado A, Brollo M, Longchampt E, Kleinmann P, Devillier P, Faisy C. The impact of low-frequency, low-force cyclic stretching of human bronchi on airway responsiveness. Respir Res 2016; 17:151. [PMID: 27842540 PMCID: PMC5109770 DOI: 10.1186/s12931-016-0464-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 11/01/2016] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND In vivo, the airways are constantly subjected to oscillatory strain (due to tidal breathing during spontaneous respiration) and (in the event of mechanical ventilation) positive pressure. This exposure is especially problematic for the cartilage-free bronchial tree. The effects of cyclic stretching (other than high-force stretching) have not been extensively characterized. Hence, the objective of the present study was to investigate the functional and transcriptional response of human bronchi to repetitive mechanical stress caused by low-frequency, low-force cyclic stretching. METHODS After preparation and equilibration in an organ bath, human bronchial rings from 66 thoracic surgery patients were stretched in 1-min cycles of elongation and relaxation over a 60-min period. For each segment, the maximal tension corresponded to 80% of the reference contraction (the response to 3 mM acetylcholine). The impact of cyclic stretching (relative to non-stretched controls) was examined by performing functional assessments (epithelium removal and incubation with sodium channel agonists/antagonists or inhibitors of intracellular pathways), biochemical assays of the organ bath fluid (for detecting the release of pro-inflammatory cytokines), and RT-PCR assays of RNA isolated from tissue samples. RESULTS The application of low-force cyclic stretching to human bronchial rings for 60 min resulted in an immediate, significant increase in bronchial basal tone, relative to non-cyclic stretching (4.24 ± 0.16 g vs. 3.28 ± 0.12 g, respectively; p < 0.001). This cyclic stimulus also increased the affinity for acetylcholine (-log EC50: 5.67 ± 0.07 vs. 5.32 ± 0.07, respectively; p p < 0.001). Removal of airway epithelium and pretreatment with the Rho-kinase inhibitor Y27632 and inward-rectifier K+ or L-type Ca2+ channel inhibitors significantly modified the basal tone response. Exposure to L-NAME had opposing effects in all cases. Pro-inflammatory pathways were not involved in the response; cyclic stretching up-regulated the early mRNA expression of MMP9 only, and was not associated with changes in organ bath levels of pro-inflammatory mediators. CONCLUSION Low-frequency, low-force cyclic stretching of whole human bronchi induced a myogenic response rather than activation of the pro-inflammatory signaling pathways mediated by mechanotransduction.
Collapse
Affiliation(s)
- Morgan Le Guen
- Laboratory of Research in Respiratory Pharmacology - UPRES EA220, Université Versailles - Saint-Quentin, 11 rue Guillaume Lenoir, F-92150, Suresnes, France. .,Department of Anesthesiology, Hôpital Foch, Université Versailles - Saint-Quentin, Suresnes, France.
| | - Stanislas Grassin-Delyle
- Laboratory of Research in Respiratory Pharmacology - UPRES EA220, Université Versailles - Saint-Quentin, 11 rue Guillaume Lenoir, F-92150, Suresnes, France
| | - Emmanuel Naline
- Laboratory of Research in Respiratory Pharmacology - UPRES EA220, Université Versailles - Saint-Quentin, 11 rue Guillaume Lenoir, F-92150, Suresnes, France
| | - Amparo Buenestado
- Laboratory of Research in Respiratory Pharmacology - UPRES EA220, Université Versailles - Saint-Quentin, 11 rue Guillaume Lenoir, F-92150, Suresnes, France
| | - Marion Brollo
- Laboratory of Research in Respiratory Pharmacology - UPRES EA220, Université Versailles - Saint-Quentin, 11 rue Guillaume Lenoir, F-92150, Suresnes, France
| | | | - Philippe Kleinmann
- Department of Thoracic Surgery, Centre Médico-Chirurgical du Val d'Or, Saint-Cloud, France
| | - Philippe Devillier
- Laboratory of Research in Respiratory Pharmacology - UPRES EA220, Université Versailles - Saint-Quentin, 11 rue Guillaume Lenoir, F-92150, Suresnes, France
| | - Christophe Faisy
- Laboratory of Research in Respiratory Pharmacology - UPRES EA220, Université Versailles - Saint-Quentin, 11 rue Guillaume Lenoir, F-92150, Suresnes, France
| |
Collapse
|
32
|
Lilburn DML, Tatler AL, Six JS, Lesbats C, Habgood A, Porte J, Hughes-Riley T, Shaw DE, Jenkins G, Meersmann T. Investigating lung responses with functional hyperpolarized xenon-129 MRI in an ex vivo rat model of asthma. Magn Reson Med 2016; 76:1224-35. [PMID: 26507239 PMCID: PMC5026173 DOI: 10.1002/mrm.26003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 08/26/2015] [Accepted: 09/08/2015] [Indexed: 01/08/2023]
Abstract
PURPOSE Asthma is a disease of increasing worldwide importance that calls for new investigative methods. Ex vivo lung tissue is being increasingly used to study functional respiratory parameters independent of confounding systemic considerations but also to reduce animal numbers and associated research costs. In this work, a straightforward laboratory method is advanced to probe dynamic changes in gas inhalation patterns by using an ex vivo small animal ovalbumin (OVA) model of human asthma. METHODS Hyperpolarized (hp) (129) Xe was actively inhaled by the excised lungs exposed to a constant pressure differential that mimicked negative pleural cavity pressure. The method enabled hp (129) Xe MRI of airway responsiveness to intravenous methacholine (MCh) and airway challenge reversal through salbutamol. RESULTS Significant differences were demonstrated between control and OVA challenged animals on global lung hp (129) Xe gas inhalation with P < 0.05 at MCh dosages above 460 μg. Spatial mapping of the regional hp gas distribution revealed an approximately three-fold increase in heterogeneity for the asthma model organs. CONCLUSION The experimental results from this proof of concept work suggest that the ex vivo hp noble gas imaging arrangement and the applied image analysis methodology may be useful as an adjunct to current diagnostic techniques. Magn Reson Med 76:1224-1235, 2016. © 2015 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
Collapse
Affiliation(s)
- David M L Lilburn
- Sir Peter Mansfield Imaging Centre, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Amanda L Tatler
- Division of Respiratory Medicine, Nottingham University Hospitals, City Campus, University of Nottingham, Nottingham, United Kingdom
| | - Joseph S Six
- Sir Peter Mansfield Imaging Centre, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Clémentine Lesbats
- Sir Peter Mansfield Imaging Centre, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Anthony Habgood
- Division of Respiratory Medicine, Nottingham University Hospitals, City Campus, University of Nottingham, Nottingham, United Kingdom
| | - Joanne Porte
- Division of Respiratory Medicine, Nottingham University Hospitals, City Campus, University of Nottingham, Nottingham, United Kingdom
| | - Theodore Hughes-Riley
- Sir Peter Mansfield Imaging Centre, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Dominick E Shaw
- Division of Respiratory Medicine, Nottingham University Hospitals, City Campus, University of Nottingham, Nottingham, United Kingdom
| | - Gisli Jenkins
- Division of Respiratory Medicine, Nottingham University Hospitals, City Campus, University of Nottingham, Nottingham, United Kingdom
| | - Thomas Meersmann
- Sir Peter Mansfield Imaging Centre, School of Medicine, University of Nottingham, Nottingham, United Kingdom.
| |
Collapse
|
33
|
Hiorns JE, Bidan CM, Jensen OE, Gosens R, Kistemaker LEM, Fredberg JJ, Butler JP, Krishnan R, Brook BS. Airway and Parenchymal Strains during Bronchoconstriction in the Precision Cut Lung Slice. Front Physiol 2016; 7:309. [PMID: 27559314 PMCID: PMC4989902 DOI: 10.3389/fphys.2016.00309] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 07/07/2016] [Indexed: 01/25/2023] Open
Abstract
The precision-cut lung slice (PCLS) is a powerful tool for studying airway reactivity, but biomechanical measurements to date have largely focused on changes in airway caliber. Here we describe an image processing tool that reveals the associated spatio-temporal changes in airway and parenchymal strains. Displacements of sub-regions within the PCLS are tracked in phase-contrast movies acquired after addition of contractile and relaxing drugs. From displacement maps, strains are determined across the entire PCLS or along user-specified directions. In a representative mouse PCLS challenged with 10(-4)M methacholine, as lumen area decreased, compressive circumferential strains were highest in the 50 μm closest to the airway lumen while expansive radial strains were highest in the region 50-100 μm from the lumen. However, at any given distance from the airway the strain distribution varied substantially in the vicinity of neighboring small airways and blood vessels. Upon challenge with the relaxant agonist chloroquine, although most strains disappeared, residual positive strains remained a long time after addition of chloroquine, predominantly in the radial direction. Taken together, these findings establish strain mapping as a new tool to elucidate local dynamic mechanical events within the constricting airway and its supporting parenchyma.
Collapse
Affiliation(s)
- Jonathan E Hiorns
- School of Mathematical Sciences, University of Nottingham Nottingham, UK
| | - Cécile M Bidan
- Laboratoire Interdisciplinaire de Physique, Centre National de la Recherche Scientifique, Université Grenoble AlpesGrenoble, France; Department of Molecular Pharmacology, University of GroningenGroningen, Netherlands; Department of Emergency Medicine, Beth Israel Deaconess Medical Center, Harvard Medical SchoolBoston, MA, USA
| | - Oliver E Jensen
- School of Mathematics, University of Manchester Manchester, UK
| | - Reinoud Gosens
- Department of Molecular Pharmacology, University of Groningen Groningen, Netherlands
| | - Loes E M Kistemaker
- Department of Molecular Pharmacology, University of Groningen Groningen, Netherlands
| | - Jeffrey J Fredberg
- Department of Environmental Health, Harvard School of Public Health Boston, MA, USA
| | - Jim P Butler
- Department of Environmental Health, Harvard School of Public Health Boston, MA, USA
| | - Ramaswamy Krishnan
- Department of Emergency Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School Boston, MA, USA
| | - Bindi S Brook
- School of Mathematical Sciences, University of Nottingham Nottingham, UK
| |
Collapse
|
34
|
Nadkarni NA, Rajakumar A, Mokhashi N, Burke SD, Rana S, Salahuddin S, Dang Q, Thadhani R, Krishnan R, Stossel TP, Karumanchi SA. Gelsolin is an endogenous inhibitor of syncytiotrophoblast extracellular vesicle shedding in pregnancy. Pregnancy Hypertens 2016; 6:333-339. [PMID: 27939478 DOI: 10.1016/j.preghy.2016.07.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2016] [Revised: 07/06/2016] [Accepted: 07/06/2016] [Indexed: 10/21/2022]
Abstract
BACKGROUND Preeclampsia, a pregnancy-specific inflammatory disorder, is characterized by high levels of anti-angiogenic protein, soluble fms-like tyrosine kinase 1 (sFlt1), in the maternal circulation. sFlt1 producing molecular machinery is present in syncytiotrophoblast extracellular vesicles that are released by the placenta into maternal plasma during normal pregnancy, a process greatly accelerated in preeclampsia. We hypothesized that syncytiotrophoblast extracellular vesicles exposes cytoplasmic actin to plasma resulting in depletion of plasma gelsolin (pGSN), an abundant plasma protein that scavenges circulating actin and other pro-inflammatory mediators. OBJECTIVE To test whether pGSN levels would be lower in preeclampsia and to assess whether recombinant human plasma gelsolin (rhpGSN) may promote placental health by decreasing shedding of syncytiotrophoblast extracellular vesicles. METHODS We tested pGSN levels in third trimester plasma samples from women with preeclampsia and non-hypertensive pregnancies. We then assessed whether rhpGSN may act as a negative regulator of syncytial shedding in placental explant culture and dynamic mechanical stretch studies. RESULTS pGSN levels fall in late pregnancy and decline further in preeclampsia patients. Recombinant human pGSN (rhpGSN) at 100μg/ml limits spontaneous syncytiotrophoblast vesicle release and sFlt1 protein dissemination by normal placental explants. Higher rhpGSN doses (500μg/ml) also limit syncytiotrophoblast vesicle and sFlt1 dissemination from preeclamptic placental explants. rhpGSN also mitigates syncytiotrophoblast vesicle during dynamic mechanical stretch. CONCLUSIONS 1) pGSN, an anti-inflammatory factor of maternal origin is reduced in preeclampsia and may contribute to disease progression and 2) exogenous rhpGSN supplementation can limit the dissemination of toxic syncytiotrophoblast vesicle that characterizes the disease state.
Collapse
Affiliation(s)
- Neil A Nadkarni
- Department of Neurology, McGaw Northwestern Memorial Hospital, Chicago, IL, United States; Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Augustine Rajakumar
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States; Department of Obstetrics and Gynecology, Emory University School of Medicine, Atlanta, GA, United States
| | - Nikita Mokhashi
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Suzanne D Burke
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States; Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Sarosh Rana
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States; Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology University of Chicago, Chicago, IL, United States; Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, Beth Israel Medical Center, Harvard Medical School, Boston, MA, United States
| | - Saira Salahuddin
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States; Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States; Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, Beth Israel Medical Center, Harvard Medical School, Boston, MA, United States
| | - Quynh Dang
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States; Department of Emergency Medicine, Beth Israel Medical Center, Harvard Medical School, Boston, MA, United States
| | - Ravi Thadhani
- Nephrology Division, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Ramaswamy Krishnan
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States; Department of Emergency Medicine, Beth Israel Medical Center, Harvard Medical School, Boston, MA, United States
| | - Thomas P Stossel
- Hematology Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - S Ananth Karumanchi
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States; Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States; Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, Beth Israel Medical Center, Harvard Medical School, Boston, MA, United States.
| |
Collapse
|
35
|
Ansell TK, Mitchell HW, McFawn PK, Noble PB. TNF and IL-1β exposure increases airway narrowing but does not alter the bronchodilatory response to deep inspiration in airway segments. Respirology 2016; 21:1041-8. [PMID: 27199075 DOI: 10.1111/resp.12800] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 01/27/2016] [Accepted: 02/15/2016] [Indexed: 01/04/2023]
Abstract
BACKGROUND AND OBJECTIVE While chronic inflammation of the airway wall and the failure of deep inspiration (DI) to produce bronchodilation are both common to asthma, whether pro-inflammatory cytokines modulate the airway smooth muscle response to strain during DI is unknown. The primary aim of the study was to determine how an inflammatory environment (simulated by the use of pro-inflammatory cytokines) alters the bronchodilatory response to DI. METHODS We used whole porcine bronchial segments in vitro that were cultured in medium containing tumour necrosis factor and interleukin-1β for 2 days. A custom-built servo-controlled syringe pump and pressure transducer was used to measure airway narrowing and to simulate tidal breathing with intermittent DI manoeuvres. RESULTS Culture with tumour necrosis factor and interleukin-1β increased airway narrowing to acetylcholine but did not affect the bronchodilatory response to DI. CONCLUSION The failure of DI to produce bronchodilation in patients with asthma may not necessarily involve a direct effect of pro-inflammatory cytokines on airway tissue. A relationship between inflammation and airway hyper-responsiveness is supported, however, regulated by separate disease processes than those which attenuate or abolish the bronchodilatory response to DI in patients with asthma.
Collapse
Affiliation(s)
- Thomas K Ansell
- School of Veterinary and Life Sciences, Murdoch University, Murdoch.,School of Anatomy, Physiology and Human Biology, University of Western Australia, Crawley, Western Australia, Australia
| | - Howard W Mitchell
- School of Anatomy, Physiology and Human Biology, University of Western Australia, Crawley, Western Australia, Australia
| | - Peter K McFawn
- School of Anatomy, Physiology and Human Biology, University of Western Australia, Crawley, Western Australia, Australia
| | - Peter B Noble
- School of Anatomy, Physiology and Human Biology, University of Western Australia, Crawley, Western Australia, Australia.,Centre for Neonatal Research and Education, School of Paediatrics and Child Health, University of Western Australia, Crawley, Western Australia, Australia
| |
Collapse
|
36
|
Hiorns JE, Jensen OE, Brook BS. Nonlinear compliance modulates dynamic bronchoconstriction in a multiscale airway model. Biophys J 2016; 107:3030-3042. [PMID: 25517167 PMCID: PMC4269780 DOI: 10.1016/j.bpj.2014.10.067] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Revised: 10/28/2014] [Accepted: 10/29/2014] [Indexed: 02/02/2023] Open
Abstract
The role of breathing and deep inspirations (DI) in modulating airway hyperresponsiveness remains poorly understood. In particular, DIs are potent bronchodilators of constricted airways in nonasthmatic subjects but not in asthmatic subjects. Additionally, length fluctuations (mimicking DIs) have been shown to reduce mean contractile force when applied to airway smooth muscle (ASM) cells and tissue strips. However, these observations are not recapitulated on application of transmural pressure (PTM) oscillations (that mimic tidal breathing and DIs) in isolated intact airways. To shed light on this paradox, we have developed a biomechanical model of the intact airway, accounting for strain-stiffening due to collagen recruitment (a large component of the extracellular matrix (ECM)), and dynamic actomyosin-driven force generation by ASM cells. In agreement with intact airway studies, our model shows that PTM fluctuations at particular mean transmural pressures can lead to only limited bronchodilation. However, our model predicts that moving the airway to a more compliant point on the static pressure-radius relationship (which may involve reducing mean PTM), before applying pressure fluctuations, can generate greater bronchodilation. This difference arises from competition between passive strain-stiffening of ECM and force generation by ASM yielding a highly nonlinear relationship between effective airway stiffness and PTM, which is modified by the presence of contractile agonist. Effectively, the airway at its most compliant may allow for greater strain to be transmitted to subcellular contractile machinery. The model predictions lead us to hypothesize that the maximum possible bronchodilation of an airway depends on its static compliance at the PTM about which the fluctuations are applied. We suggest the design of additional experimental protocols to test this hypothesis.
Collapse
Affiliation(s)
- Jonathan E Hiorns
- School of Mathematical Sciences, University of Nottingham, University Park, Nottingham, United Kingdom
| | - Oliver E Jensen
- School of Mathematics, University of Manchester, Manchester, United Kingdom
| | - Bindi S Brook
- School of Mathematical Sciences, University of Nottingham, University Park, Nottingham, United Kingdom.
| |
Collapse
|
37
|
Hiorns JE, Jensen OE, Brook BS. Static and dynamic stress heterogeneity in a multiscale model of the asthmatic airway wall. J Appl Physiol (1985) 2016; 121:233-47. [PMID: 27197860 DOI: 10.1152/japplphysiol.00715.2015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 05/15/2016] [Indexed: 12/13/2022] Open
Abstract
Airway hyperresponsiveness (AHR) is a key characteristic of asthma that remains poorly understood. Tidal breathing and deep inspiration ordinarily cause rapid relaxation of airway smooth muscle (ASM) (as demonstrated via application of length fluctuations to tissue strips) and are therefore implicated in modulation of AHR, but in some cases (such as application of transmural pressure oscillations to isolated intact airways) this mechanism fails. Here we use a multiscale biomechanical model for intact airways that incorporates strain stiffening due to collagen recruitment and dynamic force generation by ASM cells to show that the geometry of the airway, together with interplay between dynamic active and passive forces, gives rise to large stress and compliance heterogeneities across the airway wall that are absent in tissue strips. We show further that these stress heterogeneities result in auxotonic loading conditions that are currently not replicated in tissue-strip experiments; stresses in the strip are similar to hoop stress only at the outer airway wall and are under- or overestimates of stresses at the lumen. Taken together these results suggest that a previously underappreciated factor, stress heterogeneities within the airway wall and consequent ASM cellular response to this micromechanical environment, could contribute to AHR and should be explored further both theoretically and experimentally.
Collapse
Affiliation(s)
- J E Hiorns
- School of Mathematical Sciences, University of Nottingham, Nottingham, United Kingdom; and
| | - O E Jensen
- School of Mathematics, University of Manchester, Manchester, United Kingdom
| | - B S Brook
- School of Mathematical Sciences, University of Nottingham, Nottingham, United Kingdom; and
| |
Collapse
|
38
|
Czövek D, Shackleton C, Hantos Z, Taylor K, Kumar A, Chacko A, Ware RS, Makan G, Radics B, Gingl Z, Sly PD. Tidal changes in respiratory resistance are sensitive indicators of airway obstruction in children. Thorax 2016; 71:907-15. [PMID: 27178219 DOI: 10.1136/thoraxjnl-2015-208182] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 04/17/2016] [Indexed: 11/04/2022]
Abstract
RATIONALE Individual assessment of airway obstruction in preschool-age children requires sensitive and specific lung function methods with low demand of cooperation. Although the forced oscillation technique (FOT) is feasible in young children, conventional measurements of respiratory impedance (Zrs) have limited diagnostic power in individuals. OBJECTIVE To find descriptors of within-breath Zrs that are sensitive indicators of airway obstruction during tidal breathing in children. METHODS Zrs was measured with (i) a standard multifrequency FOT (4-26 Hz) to assess the mean values of resistance and reactance for whole breaths and (ii) a 10 Hz signal to track the within-breath changes. Various Zrs measures obtained in healthy children (n=75) and those with acute wheeze (n=31) were investigated with receiver operator characteristic (ROC) analysis. The cut-off values obtained for airway obstruction were then tested in children with recurrent wheeze (n=20) before and after administration of salbutamol. RESULTS The largest area under the ROC curve (0.95) was observed for the tidal changes of resistance between the zero-flow values (ΔR). The ΔR cut-off value of 1.42 hPa s/L detected airway obstruction with sensitivity of 92% and specificity of 89% in children with acute wheeze and distinguished children with recurrent wheeze (16/20 above the cut-off value) from healthy children (22/23 below the cut-off value). Furthermore, ΔR significantly decreased after salbutamol in wheezy children but remained unchanged in healthy children. CONCLUSIONS New lung function measure ΔR is able to detect airway obstruction with high sensitivity and specificity and is suitable for use in lung function testing in young children.
Collapse
Affiliation(s)
- Dorottya Czövek
- Children's Lung, Environment and Asthma Research Team, University of Queensland, Brisbane, Queensland, Australia Child Health Research Centre, University of Queensland, Brisbane, Queensland, Australia
| | - Claire Shackleton
- Children's Lung, Environment and Asthma Research Team, University of Queensland, Brisbane, Queensland, Australia Child Health Research Centre, University of Queensland, Brisbane, Queensland, Australia
| | - Zoltán Hantos
- Children's Lung, Environment and Asthma Research Team, University of Queensland, Brisbane, Queensland, Australia Child Health Research Centre, University of Queensland, Brisbane, Queensland, Australia Department of Medical Physics and Informatics, University of Szeged, Szeged, Hungary Department of Pulmonology, University of Szeged, Szeged, Hungary
| | - Kate Taylor
- Children's Lung, Environment and Asthma Research Team, University of Queensland, Brisbane, Queensland, Australia
| | - Anushma Kumar
- Children's Lung, Environment and Asthma Research Team, University of Queensland, Brisbane, Queensland, Australia
| | - Archana Chacko
- Children's Lung, Environment and Asthma Research Team, University of Queensland, Brisbane, Queensland, Australia
| | - Robert S Ware
- Child Health Research Centre, University of Queensland, Brisbane, Queensland, Australia
| | - Gergely Makan
- Department of Technical Informatics, University of Szeged, Szeged, Hungary
| | - Bence Radics
- Department of Pulmonology, University of Szeged, Szeged, Hungary
| | - Zoltán Gingl
- Department of Technical Informatics, University of Szeged, Szeged, Hungary
| | - Peter D Sly
- Children's Lung, Environment and Asthma Research Team, University of Queensland, Brisbane, Queensland, Australia Child Health Research Centre, University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
39
|
Klansky A, Irvin C, Morrison-Taylor A, Ahlstrand S, Labrie D, Haverkamp HC. No effect of elevated operating lung volumes on airway function during variable workrate exercise in asthmatic humans. J Appl Physiol (1985) 2016; 121:89-100. [PMID: 27150833 DOI: 10.1152/japplphysiol.00538.2015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 05/02/2016] [Indexed: 11/22/2022] Open
Abstract
In asthmatic adults, airway caliber fluctuates during variable intensity exercise such that bronchodilation (BD) occurs with increased workrate whereas bronchoconstriction (BC) occurs with decreased workrate. We hypothesized that increased lung mechanical stretch would prevent BC during such variable workrate exercise. Ten asthmatic and ten nonasthmatic subjects completed two exercise trials on a cycle ergometer. Both trials included a 28-min exercise bout consisting of alternating four min periods at workloads equal to 40 % (Low) and 70% (High) peak power output. During one trial, subjects breathed spontaneously throughout exercise (SVT), such that tidal volume (VT) and end-inspiratory lung volume (EILV) were increased by 0.5 and 0.6 liters during the high compared with the low workload in nonasthmatic and asthmatic subjects, respectively. During the second trial (MVT), VT and EILV were maintained constant when transitioning from the high to the low workload. Forced exhalations from total lung capacity were performed during each exercise workload. In asthmatic subjects, forced expiratory volume 1.0 s (FEV1.0) increased and decreased with the increases and decreases in workrate during both SVT (Low, 3.3 ± 0.3 liters; High, 3.6 ± 0.2 liters; P < 0.05) and MVT (Low, 3.3 ± 0.3 liters; High, 3.5 ± 0.2 liters; P < 0.05). Thus increased lung stretch during MVT did not prevent decreases in airway caliber when workload was reduced. We conclude that neural factors controlling airway smooth muscle (ASM) contractile activity during whole body exercise are more robust determinants of airway caliber than the ability of lung stretch to alter ASM actin-myosin binding and contraction.
Collapse
Affiliation(s)
- Andrew Klansky
- Johnson State College, Department of Environmental and Health Sciences, Johnson, Vermont; and
| | - Charlie Irvin
- University of Vermont, Vermont Lung Center, Burlington, Vermont
| | - Adriane Morrison-Taylor
- Johnson State College, Department of Environmental and Health Sciences, Johnson, Vermont; and
| | - Sarah Ahlstrand
- Johnson State College, Department of Environmental and Health Sciences, Johnson, Vermont; and
| | - Danielle Labrie
- Johnson State College, Department of Environmental and Health Sciences, Johnson, Vermont; and
| | | |
Collapse
|
40
|
Smooth muscle in human bronchi is disposed to resist airway distension. Respir Physiol Neurobiol 2016; 229:51-8. [PMID: 27095271 DOI: 10.1016/j.resp.2016.04.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 04/11/2016] [Accepted: 04/14/2016] [Indexed: 11/21/2022]
Abstract
Studying airway smooth muscle (ASM) in conditions that emulate the in vivo environment within which the bronchi normally operate may provide important clues regarding its elusive physiological function. The present study examines the effect of lengthening and shortening of ASM on tension development in human bronchial segments. ASM from each bronchial segment was set at a length approximating in situ length (Linsitu). Bronchial tension was then measured during a slow cyclical strain (0.004Hz, from 0.7Linsitu to 1.3Linsitu) in the relaxed state and at graded levels of activation by methacholine. In all cases, tension was greater at longer ASM lengths, and greater during lengthening than shortening. The threshold of methacholine concentration that was required for ASM to account for bronchial tension across the entire range of ASM lengths tested was on average smaller by 2.8 logs during lengthening than during shortening. The length-dependency of ASM tension, together with this lower threshold of methacholine concentration during lengthening versus shortening, suggest that ASM has a greater ability to resist airway dilation during lung inflation than to narrow the airways during lung deflation. More than serving to narrow the airway, as has long been thought, these data suggest that the main function of ASM contraction is to limit airway wall distension during lung inflation.
Collapse
|
41
|
Abstract
Airway hyperresponsiveness (AHR) is a defining characteristic of asthma that refers to the capacity of the airways to undergo exaggerated narrowing in response to stimuli that do not result in comparable degrees of airway narrowing in healthy subjects. Airway smooth muscle (ASM) contraction mediates airway narrowing, but it remains uncertain as to whether the smooth muscle is intrinsically altered in asthmatic subjects or is responding abnormally as a result of the milieu in which it sits. ASM in the trachea or major bronchi does not differ in its contractile characteristics in asthmatics, but the more pertinent peripheral airways await complete exploration. The mass of ASM is increased in many but not all asthmatics and therefore cannot be a unifying hypothesis for AHR, although when increased in mass it may contribute to AHR. The inability of a deep breath to reverse or prevent bronchial narrowing in asthma may reflect an intrinsic difference in the mechanisms that lead to softening of contracted ASM when subjected to stretch. Cytokines such as interleukin-13 and tumor necrosis factor-α promote a more contractile ASM phenotype. The composition and increased stiffness of the matrix in which ASM is embedded promotes a more proliferative and pro-inflammatory ASM phenotype, but the expected dedifferentiation and loss of contractility have not been shown. Airway epithelium may drive ASM proliferation and/or molecular remodeling in ways that may lead to AHR. In conclusion, AHR is likely multifactorial in origin, reflecting the plasticity of ASM properties in the inflammatory environment of the asthmatic airway.
Collapse
Affiliation(s)
- Anne-Marie Lauzon
- Meakins-Christie Laboratories, McGill University Health Center Research Institute, Montreal, QC, Canada; Department of Medicine, McGill University, Montreal, QC, Canada
| | - James G Martin
- Meakins-Christie Laboratories, McGill University Health Center Research Institute, Montreal, QC, Canada; Department of Medicine, McGill University, Montreal, QC, Canada
| |
Collapse
|
42
|
Li M, de Graaf IAM, Groothuis GMM. Precision-cut intestinal slices: alternative model for drug transport, metabolism, and toxicology research. Expert Opin Drug Metab Toxicol 2016; 12:175-90. [DOI: 10.1517/17425255.2016.1125882] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Ming Li
- Pharmacokinetics, Toxicology & Targeting, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, The Netherlands
| | - Inge A. M. de Graaf
- Pharmacokinetics, Toxicology & Targeting, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, The Netherlands
| | - Geny M. M. Groothuis
- Pharmacokinetics, Toxicology & Targeting, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
43
|
Bidan CM, Veldsink AC, Meurs H, Gosens R. Airway and Extracellular Matrix Mechanics in COPD. Front Physiol 2015; 6:346. [PMID: 26696894 PMCID: PMC4667091 DOI: 10.3389/fphys.2015.00346] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 11/06/2015] [Indexed: 12/28/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is one of the most common lung diseases worldwide, and is characterized by airflow obstruction that is not fully reversible with treatment. Even though airflow obstruction is caused by airway smooth muscle contraction, the extent of airway narrowing depends on a range of other structural and functional determinants that impact on active and passive tissue mechanics. Cells and extracellular matrix in the airway and parenchymal compartments respond both passively and actively to the mechanical stimulation induced by smooth muscle contraction. In this review, we summarize the factors that regulate airway narrowing and provide insight into the relative contributions of different constituents of the extracellular matrix and their biomechanical impact on airway obstruction. We then review the changes in extracellular matrix composition in the airway and parenchymal compartments at different stages of COPD, and finally discuss how these changes impact airway narrowing and the development of airway hyperresponsiveness. Finally, we position these data in the context of therapeutic research focused on defective tissue repair. As a conclusion, we propose that future works should primarily target mild or early COPD, prior to the widespread structural changes in the alveolar compartment that are more characteristic of severe COPD.
Collapse
Affiliation(s)
- Cécile M Bidan
- Department of Molecular Pharmacology, University of Groningen Groningen, Netherlands ; Groningen Research Institute for Asthma and COPD, University of Groningen Netherlands ; Laboratoire Interdisciplinaire de Physique (LIPhy), Université Grenoble Alpes Grenoble, France ; Centre National de la Recherche Scientifique, LIPhy Grenoble, France
| | - Annemiek C Veldsink
- Department of Molecular Pharmacology, University of Groningen Groningen, Netherlands ; Groningen Research Institute for Asthma and COPD, University of Groningen Netherlands
| | - Herman Meurs
- Department of Molecular Pharmacology, University of Groningen Groningen, Netherlands ; Groningen Research Institute for Asthma and COPD, University of Groningen Netherlands
| | - Reinoud Gosens
- Department of Molecular Pharmacology, University of Groningen Groningen, Netherlands ; Groningen Research Institute for Asthma and COPD, University of Groningen Netherlands
| |
Collapse
|
44
|
Krishnan R, Park JA, Seow CY, Lee PVS, Stewart AG. Cellular Biomechanics in Drug Screening and Evaluation: Mechanopharmacology. Trends Pharmacol Sci 2015; 37:87-100. [PMID: 26651416 DOI: 10.1016/j.tips.2015.10.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 10/12/2015] [Accepted: 10/23/2015] [Indexed: 12/14/2022]
Abstract
The study of mechanobiology is now widespread. The impact of cell and tissue mechanics on cellular responses is well appreciated. However, knowledge of the impact of cell and tissue mechanics on pharmacological responsiveness, and its application to drug screening and mechanistic investigations, have been very limited in scope. We emphasize the need for a heightened awareness of the important bidirectional influence of drugs and biomechanics in all living systems. We propose that the term 'mechanopharmacology' be applied to approaches that employ in vitro systems, biomechanically appropriate to the relevant (patho)physiology, to identify new drugs and drug targets. This article describes the models and techniques that are being developed to transform drug screening and evaluation, ranging from a 2D environment to the dynamic 3D environment of the target expressed in the disease of interest.
Collapse
Affiliation(s)
- Ramaswamy Krishnan
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Jin-Ah Park
- Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Chun Y Seow
- Center for Heart Lung Innovation, St Pauls Hospital, University of British Columbia, Vancouver, Canada
| | - Peter V-S Lee
- Department of Mechanical Engineering, University of Melbourne, Melbourne, Australia
| | - Alastair G Stewart
- Lung Health Research Centre, Department of Pharmacology and Therapeutics, University of Melbourne, Melbourne, Australia.
| |
Collapse
|
45
|
Ansell TK, Noble PB, Mitchell HW, McFawn PK. Pharmacological bronchodilation is partially mediated by reduced airway wall stiffness. Br J Pharmacol 2015; 171:4376-84. [PMID: 24846164 DOI: 10.1111/bph.12781] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Revised: 03/31/2014] [Accepted: 04/25/2014] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND AND PURPOSE In asthmatic patients, airflow limitation is at least partly reversed by administration of pharmacological bronchodilators, typically β2 -adrenoceptor agonists. In addition to receptor-mediated bronchodilation, the dynamic mechanical environment of the lung itself can reverse bronchoconstriction. We have now explored the possibility that bronchodilators exert a synergistic effect with oscillatory loads by virtue of reducing airway wall stiffness, and therefore, enhancing the bronchodilatory response to breathing manoeuvres. EXPERIMENTAL APPROACH Whole porcine bronchial segments in vitro were contracted to carbachol and relaxed to the non-specific β-adrenoceptor agonist, isoprenaline, under static conditions or during simulated breathing manoeuvres. KEY RESULTS The bronchodilatory response to isoprenaline was greater during breathing manoeuvres compared with the response under static conditions. As the bronchodilatory response to breathing manoeuvres is dependent upon airway smooth muscle (ASM) strain, and therefore, airway wall stiffness, our findings are likely to be explained by the effect of isoprenaline on reducing airway wall stiffness, which increased ASM strain, producing greater bronchodilation. CONCLUSIONS AND IMPLICATIONS A contribution of reduced airway stiffness and increased ASM strain to the bronchodilator action of isoprenaline is shown, suggesting that oscillatory loads act synergistically with pharmacologically mediated bronchodilation. The implications for the treatment of asthma are that reducing airway wall stiffness represents a potential target for novel pharmacological agents.
Collapse
Affiliation(s)
- T K Ansell
- School of Anatomy, Physiology and Human Biology, University of Western Australia, Crawley, WA, Australia
| | | | | | | |
Collapse
|
46
|
Noble PB, McFawn PK, Mitchell HW, Ansell TK, Bates JHT, Seow CY, Brusasco V, Pellegrino R, Skloot G, Togias A, Scichilone N. Commentaries on Viewpoint: Airway smooth muscle and airway hyperresponsiveness in human asthma: have we chased the wrong horse? J Appl Physiol (1985) 2015; 116:1116-8. [PMID: 24736833 DOI: 10.1152/japplphysiol.00025.2014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Peter B Noble
- School of Anatomy, Physiology and Human Biology The University of Western Australia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Harvey BC, Parameswaran H, Lutchen KR. Can breathing-like pressure oscillations reverse or prevent narrowing of small intact airways? J Appl Physiol (1985) 2015; 119:47-54. [PMID: 25953836 DOI: 10.1152/japplphysiol.01100.2014] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 05/01/2015] [Indexed: 01/20/2023] Open
Abstract
Periodic length fluctuations of airway smooth muscle during breathing are thought to modulate airway responsiveness in vivo. Recent animal and human intact airway studies have shown that pressure fluctuations simulating breathing can only marginally reverse airway narrowing and are ineffective at protecting against future narrowing. However, these previous studies were performed on relatively large (>5 mm diameter) airways, which are inherently stiffer than smaller airways for which a preponderance of airway constriction in asthma likely occurs. The goal of this study was to determine the effectiveness of breathing-like transmural pressure oscillations to reverse induced narrowing and/or protect against future narrowing of smaller, more compliant intact airways. We constricted smaller (luminal diameter = 2.92 ± 0.29 mm) intact airway segments twice with ACh (10(-6) M), once while applying tidal-like pressure oscillations (5-15 cmH2O) before, during, and after inducing constriction (Pre + Post) and again while only imposing the tidal-like pressure oscillation after induced constriction (Post Only). Smaller airways were 128% more compliant than previously studied larger airways. This increased compliance translated into 196% more strain and 76% greater recovery (41 vs. 23%) because of tidal-like pressure oscillations. Larger pressure oscillations (5-25 cmH2O) caused more recovery (77.5 ± 16.5%). However, pressure oscillations applied before and during constriction resulted in the same steady-state diameter as when pressure oscillations were only applied after constriction. These data show that reduced straining of the airways before a challenge likely does not contribute to the emergence of airway hyperreactivity observed in asthma but may serve to sustain a given level of constriction.
Collapse
Affiliation(s)
- Brian C Harvey
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts
| | | | - Kenneth R Lutchen
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts
| |
Collapse
|
48
|
Meng F, Mambetsariev I, Tian Y, Beckham Y, Meliton A, Leff A, Gardel ML, Allen MJ, Birukov KG, Birukova AA. Attenuation of lipopolysaccharide-induced lung vascular stiffening by lipoxin reduces lung inflammation. Am J Respir Cell Mol Biol 2015; 52:152-61. [PMID: 24992633 DOI: 10.1165/rcmb.2013-0468oc] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Reversible changes in lung microstructure accompany lung inflammation, although alterations in tissue micromechanics and their impact on inflammation remain unknown. This study investigated changes in extracellular matrix (ECM) remodeling and tissue stiffness in a model of LPS-induced inflammation and examined the role of lipoxin analog 15-epi-lipoxin A4 (eLXA4) in the reduction of stiffness-dependent exacerbation of the inflammatory process. Atomic force microscopy measurements of live lung slices were used to directly measure local tissue stiffness changes induced by intratracheal injection of LPS. Effects of LPS on ECM properties and inflammatory response were evaluated in an animal model of LPS-induced lung injury, live lung tissue slices, and pulmonary endothelial cell (EC) culture. In vivo, LPS increased perivascular stiffness in lung slices monitored by atomic force microscopy and stimulated expression of ECM proteins fibronectin, collagen I, and ECM crosslinker enzyme, lysyl oxidase. Increased stiffness and ECM remodeling escalated LPS-induced VCAM1 and ICAM1 expression and IL-8 production by lung ECs. Stiffness-dependent exacerbation of inflammatory signaling was confirmed in pulmonary ECs grown on substrates with high and low stiffness. eLXA4 inhibited LPS-increased stiffness in lung cross sections, attenuated stiffness-dependent enhancement of EC inflammatory activation, and restored lung compliance in vivo. This study shows that increased local vascular stiffness exacerbates lung inflammation. Attenuation of local stiffening of lung vasculature represents a novel mechanism of lipoxin antiinflammatory action.
Collapse
Affiliation(s)
- Fanyong Meng
- 1 Lung Injury Center, Section of Pulmonary and Critical Care Medicine, Department of Medicine, and
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Takahara N, Ito S, Furuya K, Naruse K, Aso H, Kondo M, Sokabe M, Hasegawa Y. Real-time imaging of ATP release induced by mechanical stretch in human airway smooth muscle cells. Am J Respir Cell Mol Biol 2015; 51:772-82. [PMID: 24885163 DOI: 10.1165/rcmb.2014-0008oc] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Airway smooth muscle (ASM) cells within the airway walls are continually exposed to mechanical stimuli, and exhibit various functions in response to these mechanical stresses. ATP acts as an extracellular mediator in the airway. Moreover, extracellular ATP is considered to play an important role in the pathophysiology of asthma and chronic obstructive pulmonary disease. However, it is not known whether ASM cells are cellular sources of ATP secretion in the airway. We therefore investigated whether mechanical stretch induces ATP release from ASM cells. Mechanical stretch was applied to primary human ASM cells cultured on a silicone chamber coated with type I collagen using a stretching apparatus. Concentrations of ATP in cell culture supernatants measured by luciferin-luciferase bioluminescence were significantly elevated by cyclic stretch (12 and 20% strain). We further visualized the stretch-induced ATP release from the cells in real time using a luminescence imaging system, while acquiring differential interference contrast cell images with infrared optics. Immediately after a single uniaxial stretch for 1 second, strong ATP signals were produced by a certain population of cells and spread to surrounding spaces. The cyclic stretch-induced ATP release was significantly reduced by inhibitors of Ca(2+)-dependent vesicular exocytosis, 1,2-bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid tetraacetoxymethyl ester, monensin, N-ethylmaleimide, and bafilomycin. In contrast, the stretch-induced ATP release was not inhibited by a hemichannel blocker, carbenoxolone, or blockade of transient receptor potential vanilloid 4 by short interfering RNA transfection or ruthenium red. These findings reveal a novel property of ASM cells: mechanically induced ATP release may be a cellular source of ATP in the airway.
Collapse
|
50
|
Golnabi AH, Harris RS, Venegas JG, Winkler T. Deep inspiration and the emergence of ventilation defects during bronchoconstriction: a computational study. PLoS One 2014; 9:e112443. [PMID: 25402457 PMCID: PMC4234366 DOI: 10.1371/journal.pone.0112443] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Accepted: 10/15/2014] [Indexed: 11/18/2022] Open
Abstract
Deep inspirations (DIs) have a dilatory effect on airway smooth muscle (ASM) that helps to prevent or reduce more severe bronchoconstriction in healthy individuals. However, this bronchodilation appears to fail in some asthmatic patients or under certain conditions, and the reason is unclear. Additionally, quantitative effects of the frequency and magnitude of DIs on bronchodilation are not well understood. In the present study, we used a computational model of bronchoconstriction to study the effects of DI volumes, time intervals between intermittent DIs, relative speed of ASM constriction, and ASM activation on bronchoconstriction and the emergence of ventilation defects (VDefs). Our results showed a synergistic effect between the volume of DIs and the time intervals between them on bronchoconstriction and VDefs. There was a domain of conditions with sufficiently large volumes of DIs and short time intervals between them to prevent VDefs. Among conditions without VDefs, larger volumes of DIs resulted in greater airway dilation. Similarly, the time interval between DIs, during which the activated ASM re-constricts, affected the amplitude of periodic changes in airway radii. Both the relative speed of ASM constriction and ASM activation affected what volume of DIs and what time interval between them could prevent the emergence of VDefs. In conclusion, quantitative characteristics of DIs, such as their volume and time interval between them, affect bronchoconstriction and may contribute to difficulties in asthma. Better understanding of the quantitative aspects of DIs may result in novel or improved therapeutic approaches.
Collapse
Affiliation(s)
- Amir H. Golnabi
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - R. Scott Harris
- Department of Medicine, Pulmonary and Critical Care Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Jose G. Venegas
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Tilo Winkler
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|