1
|
Mullen MP, Ivy DD, Varghese NP, Winant AJ, Cortes-Santiago N, Vargas SO, Porres D, Maschietto N, Critser PJ, Hirsch R, Avitabile CM, Hopper RK, Frank BS, Coleman RD, Agrawal PB, Madden JA, Roberts AE, Collins SL, Raj JU, Austin ED, Chung WK, Abman SH. SOX17-Associated Pulmonary Hypertension in Children: A Distinct Developmental and Clinical Syndrome. J Pediatr 2024; 278:114422. [PMID: 39603521 DOI: 10.1016/j.jpeds.2024.114422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 11/19/2024] [Accepted: 11/23/2024] [Indexed: 11/29/2024]
Abstract
OBJECTIVE To characterize clinical, hemodynamic, imaging, and pathologic findings in children with pulmonary arterial hypertension (PAH) and variants in SRY-box transcription factor 17 (SOX17), a novel risk gene linked to heritable and congenital heart disease-associated PAH. STUDY DESIGN We assembled a multi-institutional cohort of children with PAH and SOX17 variants enrolled in the Pediatric Pulmonary Hypertension Network (PPHNet) and other registries. Subjects were identified through exome and PAH gene panel sequencing. Data were collected from registries and retrospective chart review. RESULTS We identified 13 children (8 female, 5 male) aged 1.6-16 years at diagnosis with SOX17 variants and PAH. Seven patients had atrial septal defects and 2 had patent ductus arteriosus. At diagnostic cardiac catheterization, patients had severely elevated mean pulmonary artery (PA) pressure (mean 78, range 47-124 mmHg) and markedly elevated indexed pulmonary vascular resistance (mean 25.9, range 4.9-55 WU∗m2). No patients responded to acute vasodilator testing. Catheter and computed tomography angiography imaging demonstrated atypical PA anatomy including severely dilated main pulmonary arteries, lack of tapering in third and fourth order pulmonary arteries, tortuous 'corkscrewing' pulmonary arteries, and abnormal capillary 'blush.' Several children had PA stenoses and 2 had systemic arterial abnormalities. Histologic examination of explanted lungs from 3 patients disclosed plexiform arteriopathy and extensive aneurysmal dilation of alveolar septal capillaries. CONCLUSIONS SOX17-associated PAH is a distinctive genetic syndrome characterized by early onset severe PAH, extensive pulmonary vascular abnormalities, and high prevalence of congenital heart disease with intracardiac and interarterial shunts, suggesting a role for SOX17 in pulmonary vascular development.
Collapse
Affiliation(s)
- Mary P Mullen
- Department of Cardiology, Boston Children's Hospital, Boston, MA; Department of Pediatrics, Harvard Medical School, Boston, MA.
| | - D Dunbar Ivy
- Section of Cardiology, Department of Pediatrics, University of Colorado Denver Anschutz Medical Center and Children's Hospital Colorado, Aurora, CO
| | - Nidhy P Varghese
- Division of Pulmonology, Department of Pediatrics, Texas Children's Hospital, Baylor College of Medicine, Houston, TX
| | - Abbey J Winant
- Department of Radiology, Boston Children's Hospital, Harvard Medical School, Boston, MA
| | - Nahir Cortes-Santiago
- Department of Pathology and Immunology, Texas Children's Hospital, Baylor College of Medicine, Houston, TX
| | - Sara O Vargas
- Department of Pathology, Boston Children's Hospital, Harvard Medical School, Boston, MA
| | - Diego Porres
- Department of Cardiology, Boston Children's Hospital, Boston, MA; Department of Pediatrics, Harvard Medical School, Boston, MA
| | - Nicola Maschietto
- Department of Cardiology, Boston Children's Hospital, Boston, MA; Department of Pediatrics, Harvard Medical School, Boston, MA
| | - Paul J Critser
- The Heart Institute, Cincinnati Children's Hospital, Cincinnati, OH; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Russel Hirsch
- The Heart Institute, Cincinnati Children's Hospital, Cincinnati, OH; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Catherine M Avitabile
- Division of Cardiology, Children's Hospital of Philadelphia, Philadelphia, MA; Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Rachel K Hopper
- Division of Cardiology, Department of Pediatrics, Stanford University School of Medicine, Palo Alto, CA
| | - Benjamin S Frank
- Section of Cardiology, Department of Pediatrics, University of Colorado Denver Anschutz Medical Center and Children's Hospital Colorado, Aurora, CO
| | - Ryan D Coleman
- Division of Critical Care Medicine, Department of Pediatrics, Texas Children's Hospital and Baylor College of Medicine, Houston, TX
| | - Pankaj B Agrawal
- The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA; Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA; Division of Neonatology, Department of Pediatrics, University of Miami Miller School of Medicine, Miami, FL
| | - Jill A Madden
- The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA; Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA
| | - Amy E Roberts
- Department of Cardiology, Boston Children's Hospital, Boston, MA; Department of Pediatrics, Harvard Medical School, Boston, MA; Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA
| | - Shane L Collins
- Department of Cardiology, Boston Children's Hospital, Boston, MA
| | - J Usha Raj
- Department of Pediatrics, University of Illinois at Chicago, Chicago, IL
| | - Eric D Austin
- Division of Allergy, Immunology and Pulmonary Medicine, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN
| | - Wendy K Chung
- Department of Pediatrics, Harvard Medical School, Boston, MA; Department of Pediatrics, Boston Children's Hospital, Boston, MA
| | - Steven H Abman
- Pediatric Heart Lung Center and Section of Pulmonary Medicine, Department of Pediatrics, University of Colorado Anschutz School of Medicine and Children's Hospital Colorado, Aurora, CO
| |
Collapse
|
2
|
Lyne T, Camporota L, Montgomery H. Contribution of intrapulmonary shunt to the pathogenesis of profound hypoxaemia in viral infection: a mechanistic discussion with an illustrative case. J Intensive Care Soc 2024; 25:427-431. [PMID: 39524067 PMCID: PMC11549710 DOI: 10.1177/17511437241267745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024] Open
Abstract
Background The formation of anastomoses between the pulmonary arteries and pulmonary veins, or the pulmonary and the bronchial circulation, is part of normal foetal lung development. They persist in approximately 30% of adults at rest, and open in almost all adults during exertion. Blood flowing through these anastomoses bypasses the alveolar surface and increases in such shunting can thus cause hypoxaemia. This is now known to contribute to the pathogenesis of hypoxaemia in COVID-19 disease. We here provide evidence to support a similar role in influenza A infection. Illustrative case presentation We describe a case of influenza A infection associated with severe hypoxaemia, poorly responsive to supplemental oxygen and which worsened following the application of continuous positive airway pressure (CPAP), despite the presence of a normal physical examination, chest radiograph and echocardiogram. This combination suggests a significant intrapulmonary (extra-alveolar) shunt as a cause of the severe hypoxaemia. The shunt fraction was estimated to be approximately 57%. Discussion and conclusion Intrapulmonary vascular shunts can contribute substantially to hypoxaemia in viral infection. Seeking to understand the pathogenesis of observed hypoxaemia can help guide respiratory therapy. Mechanistic research may suggest novel therapeutic targets which could assist in avoiding intubation and mechanical ventilatory support.
Collapse
Affiliation(s)
- Tom Lyne
- Whittington Hospital Intensive Care Unit, Department of Intensive Care, London, UK
| | - Luigi Camporota
- Department of Adult Critical Care, Guy’s and St Thomas’ NHS Foundation Trust, London, UK
- Centre for Human and Applied Physiological Sciences, King’s College London, London, UK
| | - Hugh Montgomery
- Whittington Hospital Intensive Care Unit, Department of Intensive Care, London, UK
- Department of Medicine, University College London, London, UK
| |
Collapse
|
3
|
Kurn O, Patterson C, Cannon J, Sheares K, Taboada Buasso D, Yousuf A, Bunclark K. Recurrence of pulmonary arterial hypertension 32 months after bilateral lung transplant. J Heart Lung Transplant 2024:S1053-2498(24)01888-6. [PMID: 39374746 DOI: 10.1016/j.healun.2024.09.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 09/19/2024] [Accepted: 09/25/2024] [Indexed: 10/09/2024] Open
|
4
|
Guignabert C, Aman J, Bonnet S, Dorfmüller P, Olschewski AJ, Pullamsetti S, Rabinovitch M, Schermuly RT, Humbert M, Stenmark KR. Pathology and pathobiology of pulmonary hypertension: current insights and future directions. Eur Respir J 2024; 64:2401095. [PMID: 39209474 PMCID: PMC11533988 DOI: 10.1183/13993003.01095-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 06/08/2024] [Indexed: 09/04/2024]
Abstract
In recent years, major advances have been made in the understanding of the cellular and molecular mechanisms driving pulmonary vascular remodelling in various forms of pulmonary hypertension, including pulmonary arterial hypertension, pulmonary hypertension associated with left heart disease, pulmonary hypertension associated with chronic lung disease and hypoxia, and chronic thromboembolic pulmonary hypertension. However, the survival rates for these different forms of pulmonary hypertension remain unsatisfactory, underscoring the crucial need to more effectively translate innovative scientific knowledge into healthcare interventions. In these proceedings of the 7th World Symposium on Pulmonary Hypertension, we delve into recent developments in the field of pathology and pathophysiology, prioritising them while questioning their relevance to different subsets of pulmonary hypertension. In addition, we explore how the latest omics and other technological advances can help us better and more rapidly understand the myriad basic mechanisms contributing to the initiation and progression of pulmonary vascular remodelling. Finally, we discuss strategies aimed at improving patient care, optimising drug development, and providing essential support to advance research in this field.
Collapse
Affiliation(s)
- Christophe Guignabert
- Université Paris-Saclay, Hypertension Pulmonaire: Physiopathology and Innovation Thérapeutique, HPPIT, Faculté de Médecine, Le Kremlin-Bicêtre, France
- INSERM UMR_S 999, HPPIT, Le Kremlin-Bicêtre, France
| | - Jurjan Aman
- Department of Pulmonary Medicine, Amsterdam UMC, VU University Medical Center, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| | - Sébastien Bonnet
- Pulmonary Hypertension research group, Centre de Recherche de l'Institut de Cardiologie et de Pneumologie de Québec, Quebec City, QC, Canada
- Department of Medicine, Université Laval, Quebec City, QC, Canada
| | - Peter Dorfmüller
- Department of Pathology, University Hospital Giessen/Marburg, Giessen, Germany
| | - Andrea J Olschewski
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
- Department of Anaesthesiology and Intensive Care Medicine, Medical University of Graz, Graz, Austria
| | - Soni Pullamsetti
- Max Planck Institute for Heart and Lung Research Bad Nauheim, Bad Nauheim, Germany
- Department of Internal Medicine, German Center for Lung Research (DZL) Cardio-Pulmonary Institute (CPI)
- Universities of Giessen and Marburg Lung Centre, Member of the German Center for Lung Research (DZL), Justus-Liebig University Giessen, Giessen, Germany
| | - Marlene Rabinovitch
- BASE Initiative, Betty Irene Moore Children's Heart Center, Lucile Packard Children's Hospital, Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, USA
- Vera Moulton Wall Center for Pulmonary Vascular Diseases, Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Cardiovascular Institute, Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Ralph T Schermuly
- Department of Internal Medicine, German Center for Lung Research (DZL) Cardio-Pulmonary Institute (CPI)
| | - Marc Humbert
- Université Paris-Saclay, Hypertension Pulmonaire: Physiopathology and Innovation Thérapeutique, HPPIT, Faculté de Médecine, Le Kremlin-Bicêtre, France
- INSERM UMR_S 999, HPPIT, Le Kremlin-Bicêtre, France
- Department of Respiratory and Intensive Care Medicine, Assistance Publique Hôpitaux de Paris, Hôpital Bicêtre, ERN-LUNG, Le Kremlin-Bicêtre, France
| | - Kurt R Stenmark
- Developmental Lung Biology and Cardiovascular Pulmonary Research Laboratories, University of Colorado, Denver, CO, USA
| |
Collapse
|
5
|
Jeremiasen I, Peruzzi N, Lampei E, Meyer S, Akyürek LM, Gebre‐Medhin E, Mutgan C, Dorfmüller P, Neubert L, Jonigk D, Galambos C, Tran‐Lundmark K. Synchrotron-Based Phase-Contrast Micro-CT Combined With Histology to Decipher Differences Between Hereditary and Sporadic Pediatric Pulmonary Veno-Occlusive Disease. Pulm Circ 2024; 14:e70024. [PMID: 39678731 PMCID: PMC11638014 DOI: 10.1002/pul2.70024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 11/19/2024] [Accepted: 11/23/2024] [Indexed: 12/17/2024] Open
Abstract
Pulmonary veno-occlusive disease (PVOD) is a lethal variant of pulmonary hypertension. The degree of pulmonary arterial involvement varies. Here, we compare two PVOD patients who were transplanted at 8 years of age, whereof one is a homozygous EIF2AK4 mutation carrier. Tissue was imaged with synchrotron-based micro-CT and the results were compared with clinical data and sectioned tissue was analyzed with histology, immunohistochemistry, immunofluorescence, and in situ hybridization. Chest CT of the noncarrier exhibited scattered poorly defined ground-glass opacities and marked septal lines, whereas the mutation carrier showed numerous nodular centrilobular ground-glass opacities and sparse septal lines. The noncarrier developed pulmonary edema with vasodilators and 3D imaging combined with histology showed severe obstruction of interlobular septal veins and medial hypertrophy of pulmonary arteries, but no arterial or arteriolar intimal fibrosis. In contrast, the mutation carrier exhibited only mild intimal fibrosis in interlobular septal veins but severe arterial and arteriolar remodeling, including intimal fibrosis, tortuous course of arterioles, muscularization extending to the alveolar duct level and multiple vascular lumens within the same pulmonary arterial adventitia. Both patients had focally thickened alveolar septa with areas of pulmonary capillary hemangiomatosis (PCH) which colocalized with increased capillary muscularization, tenascin C expression, and deposition, as well as with matrix metalloproteinase-9 (MMP9)/CD45 positive cells. In conclusion, synchrotron-based phase-contrast micro-CT is valuable for understanding vascular remodeling. Significant differences were observed between heritable and sporadic PVOD, which may influence management strategies.
Collapse
Affiliation(s)
- Ida Jeremiasen
- Department of Experimental Medical Science and Wallenberg Center for Molecular MedicineLund UniversityLundSweden
- The Pediatric Heart CenterSkåne University HospitalLundSweden
| | - Niccolò Peruzzi
- Department of Experimental Medical Science and Wallenberg Center for Molecular MedicineLund UniversityLundSweden
| | - Elna Lampei
- Department of Experimental Medical Science and Wallenberg Center for Molecular MedicineLund UniversityLundSweden
- The Pediatric Heart CenterSkåne University HospitalLundSweden
| | - Sofie Meyer
- Department of Diagnostic RadiologySkåne University HospitalLundSweden
| | - Levent M. Akyürek
- Department of Clinical Pathology and CytologySahlgrenska Academy HospitalGöteborgSweden
| | - Erik Gebre‐Medhin
- Department of Experimental Medical Science and Wallenberg Center for Molecular MedicineLund UniversityLundSweden
| | - Ceren Mutgan
- Ludwig Boltzmann Institute for Lung Vascular ResearchGrazAustria
| | - Peter Dorfmüller
- Institute for Lung Health (ILH)Universities of Giessen and Marburg Lung CenterGiessenGermany
| | - Lavinia Neubert
- Institute of Pathology, Hannover Medical SchoolHannoverGermany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH)HannoverGermany
| | - Danny Jonigk
- Institute of Pathology, Hannover Medical SchoolHannoverGermany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH)HannoverGermany
- Institute for PathologyRWTH Aachen UniversityAachenGermany
| | - Csaba Galambos
- Department of Pathology and PediatricsUniversity of Colorado School of Medicine and Children's Hospital ColoradoAuroraColoradoUSA
| | - Karin Tran‐Lundmark
- Department of Experimental Medical Science and Wallenberg Center for Molecular MedicineLund UniversityLundSweden
- The Pediatric Heart CenterSkåne University HospitalLundSweden
| |
Collapse
|
6
|
Gerasimovskaya E, Patil RS, Davies A, Maloney ME, Simon L, Mohamed B, Cherian-Shaw M, Verin AD. Extracellular purines in lung endothelial permeability and pulmonary diseases. Front Physiol 2024; 15:1450673. [PMID: 39234309 PMCID: PMC11372795 DOI: 10.3389/fphys.2024.1450673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 08/05/2024] [Indexed: 09/06/2024] Open
Abstract
The purinergic signaling system is an evolutionarily conserved and critical regulatory circuit that maintains homeostatic balance across various organ systems and cell types by providing compensatory responses to diverse pathologies. Despite cardiovascular diseases taking a leading position in human morbidity and mortality worldwide, pulmonary diseases represent significant health concerns as well. The endothelium of both pulmonary and systemic circulation (bronchial vessels) plays a pivotal role in maintaining lung tissue homeostasis by providing an active barrier and modulating adhesion and infiltration of inflammatory cells. However, investigations into purinergic regulation of lung endothelium have remained limited, despite widespread recognition of the role of extracellular nucleotides and adenosine in hypoxic, inflammatory, and immune responses within the pulmonary microenvironment. In this review, we provide an overview of the basic aspects of purinergic signaling in vascular endothelium and highlight recent studies focusing on pulmonary microvascular endothelial cells and endothelial cells from the pulmonary artery vasa vasorum. Through this compilation of research findings, we aim to shed light on the emerging insights into the purinergic modulation of pulmonary endothelial function and its implications for lung health and disease.
Collapse
Affiliation(s)
| | - Rahul S Patil
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Adrian Davies
- Department of Internal Medicine, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - McKenzie E Maloney
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, United States
- Office of Academic Affairs, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Liselle Simon
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Basmah Mohamed
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Mary Cherian-Shaw
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Alexander D Verin
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, United States
- Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA, United States
| |
Collapse
|
7
|
Ackermann M, Werlein C, Plucinski E, Leypold S, Kühnel MP, Verleden SE, Khalil HA, Länger F, Welte T, Mentzer SJ, Jonigk DD. The role of vasculature and angiogenesis in respiratory diseases. Angiogenesis 2024; 27:293-310. [PMID: 38580869 PMCID: PMC11303512 DOI: 10.1007/s10456-024-09910-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 02/11/2024] [Indexed: 04/07/2024]
Abstract
In European countries, nearly 10% of all hospital admissions are related to respiratory diseases, mainly chronic life-threatening diseases such as COPD, pulmonary hypertension, IPF or lung cancer. The contribution of blood vessels and angiogenesis to lung regeneration, remodeling and disease progression has been increasingly appreciated. The vascular supply of the lung shows the peculiarity of dual perfusion of the pulmonary circulation (vasa publica), which maintains a functional blood-gas barrier, and the bronchial circulation (vasa privata), which reveals a profiled capacity for angiogenesis (namely intussusceptive and sprouting angiogenesis) and alveolar-vascular remodeling by the recruitment of endothelial precursor cells. The aim of this review is to outline the importance of vascular remodeling and angiogenesis in a variety of non-neoplastic and neoplastic acute and chronic respiratory diseases such as lung infection, COPD, lung fibrosis, pulmonary hypertension and lung cancer.
Collapse
Affiliation(s)
- Maximilian Ackermann
- Institute of Pathology, University Clinics of RWTH University, Aachen, Germany.
- Institute of Pathology and Molecular Pathology, Helios University Clinic Wuppertal, University of Witten/Herdecke, Witten, Germany.
- Institute of Anatomy, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany.
| | | | - Edith Plucinski
- Institute of Pathology, Hannover Medical School, Hannover, Germany
| | - Sophie Leypold
- Institute of Pathology, University Clinics of RWTH University, Aachen, Germany
| | - Mark P Kühnel
- Institute of Pathology, University Clinics of RWTH University, Aachen, Germany
- Member of the German Center for Lung Research (DZL), Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Hannover, Germany
| | - Stijn E Verleden
- Antwerp Surgical Training, Anatomy and Research Centre (ASTARC), University of Antwerp, Antwerp, Belgium
| | - Hassan A Khalil
- Division of Thoracic and Cardiac Surgery, Department of Surgery, Brigham and Women's Hospital, Boston, USA
- Laboratory of Adaptive and Regenerative Biology, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Florian Länger
- Institute of Pathology, University Clinics of RWTH University, Aachen, Germany
| | - Tobias Welte
- Member of the German Center for Lung Research (DZL), Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Hannover, Germany
- Department of Respiratory Medicine, Hannover Medical School, Hannover, Germany
| | - Steven J Mentzer
- Division of Thoracic and Cardiac Surgery, Department of Surgery, Brigham and Women's Hospital, Boston, USA
- Laboratory of Adaptive and Regenerative Biology, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Danny D Jonigk
- Institute of Pathology, University Clinics of RWTH University, Aachen, Germany
- Member of the German Center for Lung Research (DZL), Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Hannover, Germany
| |
Collapse
|
8
|
Bahi M, Li C, Wang G, Korman BD. Systemic Sclerosis-Associated Pulmonary Arterial Hypertension: From Bedside to Bench and Back Again. Int J Mol Sci 2024; 25:4728. [PMID: 38731946 PMCID: PMC11084945 DOI: 10.3390/ijms25094728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/02/2024] [Accepted: 04/11/2024] [Indexed: 05/13/2024] Open
Abstract
Systemic sclerosis (SSc) is a heterogeneous disease characterized by autoimmunity, vasculopathy, and fibrosis which affects the skin and internal organs. One key aspect of SSc vasculopathy is pulmonary arterial hypertension (SSc-PAH) which represents a leading cause of morbidity and mortality in patients with SSc. The pathogenesis of pulmonary hypertension is complex, with multiple vascular cell types, inflammation, and intracellular signaling pathways contributing to vascular pathology and remodeling. In this review, we focus on shared molecular features of pulmonary hypertension and those which make SSc-PAH a unique entity. We highlight advances in the understanding of the clinical and translational science pertinent to this disease. We first review clinical presentations and phenotypes, pathology, and novel biomarkers, and then highlight relevant animal models, key cellular and molecular pathways in pathogenesis, and explore emerging treatment strategies in SSc-PAH.
Collapse
Affiliation(s)
| | | | | | - Benjamin D. Korman
- Division of Allergy, Immunology, and Rheumatology, University of Rochester Medical Center, 601 Elmwood Ave, Box 695, Rochester, NY 14642, USA; (M.B.)
| |
Collapse
|
9
|
Correale M, Chirivì F, Bevere EML, Tricarico L, D’Alto M, Badagliacca R, Brunetti ND, Vizza CD, Ghio S. Endothelial Function in Pulmonary Arterial Hypertension: From Bench to Bedside. J Clin Med 2024; 13:2444. [PMID: 38673717 PMCID: PMC11051060 DOI: 10.3390/jcm13082444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/09/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024] Open
Abstract
Pulmonary arterial hypertension is a complex pathology whose etiology is still not completely well clarified. The pathogenesis of pulmonary arterial hypertension involves different molecular mechanisms, with endothelial dysfunction playing a central role in disease progression. Both individual genetic predispositions and environmental factors seem to contribute to its onset. To further understand the complex relationship between endothelial and pulmonary hypertension and try to contribute to the development of future therapies, we report a comprehensive and updated review on endothelial function in pulmonary arterial hypertension.
Collapse
Affiliation(s)
- Michele Correale
- Cardiothoracic Department, Policlinico Riuniti University Hospital, 71100 Foggia, Italy;
| | - Francesco Chirivì
- Department of Medical and Surgical Sciences, University of Foggia, 71100 Foggia, Italy; (F.C.); (E.M.L.B.); (N.D.B.)
| | - Ester Maria Lucia Bevere
- Department of Medical and Surgical Sciences, University of Foggia, 71100 Foggia, Italy; (F.C.); (E.M.L.B.); (N.D.B.)
| | - Lucia Tricarico
- Cardiothoracic Department, Policlinico Riuniti University Hospital, 71100 Foggia, Italy;
| | - Michele D’Alto
- Department of Cardiology, A.O.R.N. dei Colli, Monaldi Hospital, University of Campania L. ‘Vanvitelli’, 80133 Naples, Italy;
| | - Roberto Badagliacca
- Department of Clinical, Anesthesiological and Cardiovascular Sciences, I School of Medicine, Sapienza University of Rome, 00185 Rome, Italy; (R.B.); (C.D.V.)
| | - Natale D. Brunetti
- Department of Medical and Surgical Sciences, University of Foggia, 71100 Foggia, Italy; (F.C.); (E.M.L.B.); (N.D.B.)
| | - Carmine Dario Vizza
- Department of Clinical, Anesthesiological and Cardiovascular Sciences, I School of Medicine, Sapienza University of Rome, 00185 Rome, Italy; (R.B.); (C.D.V.)
| | - Stefano Ghio
- Division of Cardiology, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy;
| |
Collapse
|
10
|
A X, Huayu M, Li Z, Su S. In vivo pharmacokinetic study of vanillic acid in monocrotaline-induced pulmonary arterial hypertension rats and its tissue distribution. Biomed Chromatogr 2024; 38:e5793. [PMID: 38037526 DOI: 10.1002/bmc.5793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 11/02/2023] [Accepted: 11/08/2023] [Indexed: 12/02/2023]
Abstract
Vanillic acid (VA) is a bioactive chemical present in many food plants and fruits. It has been shown to have a protective effect on pulmonary tissues in monocrotaline-induced pulmonary arterial hypertension, as well as an intervention effect on right ventricular remodeling. The purpose of this study was to develop and test a reliable method for assessing VA utilizing ultra-performance liquid chromatography-high resolution mass spectrometry using caffeic acid as the internal standard. Across diverse substrates, the correlation coefficient for VA ranged from 0.9992 to 0.9995. The method's intraday precision was <13.53% (RSD), and its accuracy (RE) ranged from -9.88 to 4.35%. The precision across days was <13.69% (RSD), while the accuracy ranged from 2.16 to 10.94% (RE). The extraction recoveries ranged from 80.30 to 118.81%, with a lower limit of quantification of 20 ng/mL. The approach was successfully applied to pharmacokinetic and tissue distribution studies of VA in rat plasma after gavage administration, and the pharmacokinetic parameters of VA in the plasma of the monocrotaline-induced pulmonary arterial hypertension were significantly different from those of the control group.
Collapse
Affiliation(s)
- Xuxia A
- Medical College of Qinghai University, Xining, China
- Xining Customs Technical Center, Key Laboratory of Food Safety Research in Qinghai Province, Xining, Qinghai, China
| | - Meiduo Huayu
- Research Center for High Altitude Medicine, Key Laboratory for High Altitude Medicine (Ministry of Education), Laboratory for High Altitude Medicine of Qinghai Province, Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province (Qinghai-Utah Joint Research Key Lab for High Altitude Medicine), Qinghai University, Xining, Qinghai, China
| | - Zhanqiang Li
- Medical College of Qinghai University, Xining, China
- Research Center for High Altitude Medicine, Key Laboratory for High Altitude Medicine (Ministry of Education), Laboratory for High Altitude Medicine of Qinghai Province, Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province (Qinghai-Utah Joint Research Key Lab for High Altitude Medicine), Qinghai University, Xining, Qinghai, China
| | - Shanshan Su
- Xining Customs Technical Center, Key Laboratory of Food Safety Research in Qinghai Province, Xining, Qinghai, China
| |
Collapse
|
11
|
Doughty ES, Norvik C, Levin A, Bodmer J, Tran-Lundmark K, Abman SH, Galambos C. Long-Term Effect of TBX4 Germline Mutation on Pulmonary Clinico-Histopathologic Phenotype. Pediatr Dev Pathol 2024; 27:83-89. [PMID: 37801629 DOI: 10.1177/10935266231199933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/08/2023]
Abstract
Tbx4 protein, expressed in mesenchyme of the developing lung, contributes to airway branching and distal lung growth. An association between pediatric onset of pulmonary arterial hypertension (PAH) and genetic variations coding for the T-box transcription factor 4 gene (TBX4) has been increasingly recognized. Tbx4-related PAH onset has a bimodal age distribution, including severe to lethal PAH in newborns and later onset PAH. We present an autopsy study of a 24-year-old male with a heterozygous TBX4 variant, who developed pulmonary arterial hypertension at age 12 years. This unique case highlights the complex pulmonary histopathology leading to lethal cardiopulmonary failure in the setting of TBX4 mutation.
Collapse
Affiliation(s)
- Elizabeth S Doughty
- Department of Pathology and Laboratory Medicine, The University of Colorado Hospital, Aurora, CO, USA
| | - Christian Norvik
- Department of Experimental Medical Science, Lund University, Lund, Sweden
- Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden
| | - Alice Levin
- Department of Pathology and Laboratory Medicine, Children's Hospital Colorado, Aurora, CO, USA
| | - Jenna Bodmer
- Department of Pathology and Laboratory Medicine, The University of Colorado Hospital, Aurora, CO, USA
- Department of Pathology and Laboratory Medicine, Children's Hospital Colorado, Aurora, CO, USA
| | - Karin Tran-Lundmark
- Department of Experimental Medical Science, Lund University, Lund, Sweden
- Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden
| | - Steven H Abman
- Pediatric Heart Lung Center, Children's Hospital Colorado, Aurora, CO, USA
| | - Csaba Galambos
- Department of Pathology and Laboratory Medicine, The University of Colorado Hospital, Aurora, CO, USA
- Department of Pathology and Laboratory Medicine, Children's Hospital Colorado, Aurora, CO, USA
- Pediatric Heart Lung Center, Children's Hospital Colorado, Aurora, CO, USA
| |
Collapse
|
12
|
Condliffe R, Durrington C, Hameed A, Lewis RA, Venkateswaran R, Gopalan D, Dorfmüller P. Clinical-radiological-pathological correlation in pulmonary arterial hypertension. Eur Respir Rev 2023; 32:230138. [PMID: 38123231 PMCID: PMC10731450 DOI: 10.1183/16000617.0138-2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 08/21/2023] [Indexed: 12/23/2023] Open
Abstract
Pulmonary hypertension (PH) is defined by the presence of a mean pulmonary arterial pressure >20 mmHg. Current guidelines describe five groups of PH with shared pathophysiological and clinical features. In this paper, the first of a series covering all five PH classification groups, the clinical, radiological and pathological features of pulmonary arterial hypertension (PAH) will be reviewed. PAH may develop in the presence of associated medical conditions or a family history, following exposure to certain medications or drugs, or may be idiopathic in nature. Although all forms of PAH share common histopathological features, the presence of certain pulmonary arterial abnormalities, such as plexiform lesions, and extent of co-existing pulmonary venous involvement differs between the different subgroups. Radiological investigations are key to diagnosing the correct form of PH and a systematic approach to interpretation, especially of computed tomography, is essential.
Collapse
Affiliation(s)
- Robin Condliffe
- Sheffield Pulmonary Vascular Disease Unit, Royal Hallamshire Hospital, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
- Department of Infection, Immunity and Cardiovascular Disease, Medical School, University of Sheffield, Sheffield, UK
- National Institute for Health and Care Research Sheffield Biomedical Research Centre, Sheffield, UK
- These authors contributed equally to this work
| | - Charlotte Durrington
- Sheffield Pulmonary Vascular Disease Unit, Royal Hallamshire Hospital, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
- Department of Infection, Immunity and Cardiovascular Disease, Medical School, University of Sheffield, Sheffield, UK
| | - Abdul Hameed
- Sheffield Pulmonary Vascular Disease Unit, Royal Hallamshire Hospital, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
- Department of Infection, Immunity and Cardiovascular Disease, Medical School, University of Sheffield, Sheffield, UK
| | - Robert A Lewis
- Department of Respiratory Medicine, Middlemore Hospital, Auckland, New Zealand
| | - Rajamiyer Venkateswaran
- Department of Heart and Lung Transplantation, Manchester University NHS Foundation Trust, Manchester, UK
| | - Deepa Gopalan
- Department of Radiology, Imperial College Healthcare NHS Trust, London, UK
- These authors contributed equally to this work
| | - Peter Dorfmüller
- Department of Pathology, University Hospital of Giessen and Marburg, Giessen, Germany
- Institute for Lung Health, Giessen, Germany
- These authors contributed equally to this work
| |
Collapse
|
13
|
Liu C, Wan N, Wei L, Rong W, Zhu W, Xie M, Zhang Y, Liu Z, Jing Q, Lyu A. Therapeutic potential and protective role of GRK6 overexpression in pulmonary arterial hypertension. Vascul Pharmacol 2023; 153:107233. [PMID: 37742818 DOI: 10.1016/j.vph.2023.107233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 09/17/2023] [Accepted: 09/20/2023] [Indexed: 09/26/2023]
Abstract
Abnormal proliferation of pulmonary arterial smooth muscle cells (PASMCs) is a key mechanism in the development of pulmonary arterial hypertension (PAH). Signal transducer and activator of transcription 3 (STAT3) signalling plays a critical role in modulating PASMC proliferation, and G-protein-coupled receptor kinase 6 (GRK6) regulates the STAT3 pathway. However, the mechanism underlying the relationship between GRK6 and PAH remains unclear. In this study, we aimed to investigate the role of GRK6 in PAH and determine its potential as a therapeutic target. We utilised hypoxia- and SU5416-induced PAH mouse models and a monocrotaline-induced PAH rat model to analyse the involvement of GRK6. We conducted gain- and loss-of-function experiments using mouse PASMCs. Modulation of GRK6 expression was achieved via a lentiviral vector in vitro and an adeno-associated virus serotype 1 encoding GRK6 in vivo. GRK6 was significantly downregulated in the lung tissues of PAH mice and rats, predominantly in PASMCs. Knockout of GRK6 exacerbated PAH, while both therapeutic and prophylactic overexpression of GRK6 alleviated PAH, as evidenced by a reduction in right ventricular systolic pressure, right ventricular wall to left ventricular wall plus ventricular septum ratio, pulmonary vascular media thickness, and pulmonary vascular muscularisation. Mechanistically, GRK6 overexpression attenuated hypoxia-induced PASMC proliferation and STAT3 phosphorylation. Conversely, knockdown of GRK6 promoted hypoxia-induced proliferation, which was mitigated by a STAT3 inhibitor. Our findings highlight the potential protective and beneficial roles of GRK6 in PAH; we propose a lung-targeted GRK6 gene therapy utilizing adeno-associated virus serotype 1 as a potential treatment approach for patients with PAH.
Collapse
Affiliation(s)
- Chenchen Liu
- Department of Cardiology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 197 Ruijiner Rd, Shanghai 200025, China
| | - Naifu Wan
- Department of Cardiology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 197 Ruijiner Rd, Shanghai 200025, China
| | - Lijiang Wei
- Department of Cardiology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 197 Ruijiner Rd, Shanghai 200025, China
| | - Wuwei Rong
- Department of Cardiology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 197 Ruijiner Rd, Shanghai 200025, China
| | - Wentong Zhu
- Department of Cardiology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 197 Ruijiner Rd, Shanghai 200025, China
| | - Meifeng Xie
- CAS Key Laboratory of Tissue Microenvironment and Tumour, Shanghai Institute of Nutrition and Health, Innovation Centre for Intervention of Chronic Disease and Promotion of Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, China
| | - Yanling Zhang
- CAS Key Laboratory of Tissue Microenvironment and Tumour, Shanghai Institute of Nutrition and Health, Innovation Centre for Intervention of Chronic Disease and Promotion of Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, China
| | - Zhihua Liu
- CAS Key Laboratory of Tissue Microenvironment and Tumour, Shanghai Institute of Nutrition and Health, Innovation Centre for Intervention of Chronic Disease and Promotion of Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, China
| | - Qing Jing
- CAS Key Laboratory of Tissue Microenvironment and Tumour, Shanghai Institute of Nutrition and Health, Innovation Centre for Intervention of Chronic Disease and Promotion of Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, China.
| | - Ankang Lyu
- Department of Cardiology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 197 Ruijiner Rd, Shanghai 200025, China.
| |
Collapse
|
14
|
Tielemans B, Wagenaar A, Belge C, Delcroix M, Quarck R. Pulmonary arterial hypertension drugs can partially restore altered angiogenic capacities in bmpr2-silenced human lung microvascular endothelial cells. Pulm Circ 2023; 13:e12293. [PMID: 37790139 PMCID: PMC10543474 DOI: 10.1002/pul2.12293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/31/2023] [Accepted: 09/17/2023] [Indexed: 10/05/2023] Open
Abstract
Mutations in the bone morphogenetic protein receptor type 2 (bmpr2) gene and signaling pathway impairment are observed in heritable and idiopathic pulmonary arterial hypertension (PAH). In PAH, endothelial dysfunction is currently handled by drugs targeting the endothelin-1 (ET-1), nitric oxide (NO), and prostacyclin (PGI2) pathways. The role of angiogenesis in the disease process and the effect of PAH therapies on dysregulated angiogenesis remain inconclusive. We aim to investigate in vitro whether (i) bmpr2 silencing can impair angiogenic capacity of human lung microvascular endothelial cells (HLMVECs) and (ii) PAH therapies can restore them. The effects of macitentan (ET-1), tadalafil (NO), and selexipag (PGI2), on BMPRII pathway activation, endothelial barrier function, and angiogenesis were investigated in bmpr2-silenced HLMVECs. Stable bmpr2 silencing resulted in impaired migration and tube formation in vitro capacity. Inhibition of ET-1 pathway was able to partially restore tube formation in bmpr2-silenced HLMVECs, whereas none of the therapies was able to restore endothelial barrier function, no deleterious effects were observed. Our findings highlight the potential role of BMPRII signaling pathway in driving pulmonary endothelial cell angiogenesis. In addition, PAH drugs display limited effects on endothelial function when BMPRII is impaired, suggesting that innovative therapeutic strategies targeting BMPRII signaling are needed to better rescue endothelial dysfunction in PAH.
Collapse
Affiliation(s)
- Birger Tielemans
- Laboratory of Respiratory Diseases & Thoracic Surgery (BREATHE), Department of Chronic Diseases & Metabolism (CHROMETA) & Biomedical MRI, Department of Imaging and PathologyUniversity of LeuvenLeuvenBelgium
| | - Allard Wagenaar
- Laboratory of Respiratory Diseases & Thoracic Surgery (BREATHE), Department of Chronic Diseases & Metabolism (CHROMETA)University of LeuvenLeuvenBelgium
| | - Catharina Belge
- Laboratory of Respiratory Diseases & Thoracic Surgery (BREATHE), Department of Chronic Diseases & Metabolism (CHROMETA) & Clinical Department of Respiratory Diseases, University HospitalsUniversity of LeuvenLeuvenBelgium
| | - Marion Delcroix
- Laboratory of Respiratory Diseases & Thoracic Surgery (BREATHE), Department of Chronic Diseases & Metabolism (CHROMETA) & Clinical Department of Respiratory Diseases, University HospitalsUniversity of LeuvenLeuvenBelgium
| | - Rozenn Quarck
- Laboratory of Respiratory Diseases & Thoracic Surgery (BREATHE), Department of Chronic Diseases & Metabolism (CHROMETA) & Clinical Department of Respiratory Diseases, University HospitalsUniversity of LeuvenLeuvenBelgium
| |
Collapse
|
15
|
Furmaga-Rokou O, Michailidis A, Dimou G, Kosmolaptsis P, Zlika S, Giankoulof C, Petsatodis E, Galanis S. A case report of life-threatening hemothorax after percutaneous lung biopsy successfully managed with embolization. Radiol Case Rep 2023; 18:2939-2942. [PMID: 37383180 PMCID: PMC10293580 DOI: 10.1016/j.radcr.2023.05.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 05/07/2023] [Indexed: 06/30/2023] Open
Abstract
CT-guided lung biopsy is a widely used procedure for tissue identification. The complications are divided into minor and major with the latter being described as low rate. Hemothorax is reported at a rate of 0.092% and predominantly results from the injury of intercostals or internal mammary arteries. We present the case of 81-year old woman with a right upper lobe mass referred for a CT-guided biopsy. Four hours after the procedure, rapid deterioration of patient's status was observed. A massive hemothorax was reported due to the transection of an intratumoral pulmonary branch. The following management involved successful emergent embolization of the injured branch of the pulmonary artery using a combination of coils and gel foam. One of the theories possibly explaining this extremely rare complication involves the possibility of underlying pulmonary hypertension.
Collapse
|
16
|
Burns N, Nijmeh H, Lapel M, Riddle S, Yegutkin GG, Stenmark KR, Gerasimovskaya E. Isolation of vasa vasorum endothelial cells from pulmonary artery adventitia: Implementation to vascular biology research. Microvasc Res 2023; 147:104479. [PMID: 36690271 DOI: 10.1016/j.mvr.2023.104479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 01/06/2023] [Accepted: 01/17/2023] [Indexed: 01/22/2023]
Abstract
Isolated endothelial cells are valuable in vitro model for vascular research. At present, investigation of disease-relevant changes in vascular endothelium at the molecular level requires established endothelial cell cultures, preserving vascular bed-specific phenotypic characteristics. Vasa vasorum (VV) form a microvascular network around large blood vessels, in both the pulmonary and systemic circulations, that are critically important for maintaining the integrity and oxygen supply of the vascular wall. However, despite the pathophysiological significance of the VV, methods for the isolation and culture of vasa vasorum endothelial cells (VVEC) have not yet been reported. In our prior studies, we demonstrated the presence of hypoxia-induced angiogenic expansion of the VV in the pulmonary artery (PA) of neonatal calves; an observation which has been followed by a series of in vitro studies on isolated PA VVEC. Here we present a detailed protocol for reproducible isolation, purification, and culture of PA VVEC. We show these cells to express generic endothelial markers, (vWF, eNOS, VEGFR2, Tie1, and CD31), as well as progenitor markers (CD34 and CD133), bind lectin Lycopersicon Esculentum, and incorporate acetylated low-density lipoproteins labeled with acetylated LDL (DiI-Ac-LDL). qPCR analysis additionally revealed the expression of CD105, VCAM-1, ICAM-1, MCAM, and NCAM. Ultrastructural electron microscopy and immunofluorescence staining demonstrated that VVEC are morphologically characterized by a developed actin and microtubular cytoskeleton, mitochondrial network, abundant intracellular vacuolar/secretory system, and cell-surface filopodia. VVEC exhibit exponential growth in culture and can be mitogenically activated by multiple growth factors. Thus, our protocol provides the opportunity for VVEC isolation from the PA, and potentially from other large vessels, enabling advances in VV research.
Collapse
Affiliation(s)
- Nana Burns
- Department of Pediatric Critical Care Medicine, University of Colorado Denver, Aurora, CO, United States of America
| | - Hala Nijmeh
- Department of Pediatric Critical Care Medicine, University of Colorado Denver, Aurora, CO, United States of America
| | - Martin Lapel
- Department of Pediatric Critical Care Medicine, University of Colorado Denver, Aurora, CO, United States of America
| | - Suzette Riddle
- Department of Pediatric Critical Care Medicine, University of Colorado Denver, Aurora, CO, United States of America
| | - Gennady G Yegutkin
- MediCity Research Laboratory and InFLAMES Flagship, University of Turku, Turku, Finland
| | - Kurt R Stenmark
- Department of Pediatric Critical Care Medicine, University of Colorado Denver, Aurora, CO, United States of America
| | - Evgenia Gerasimovskaya
- Department of Pediatric Critical Care Medicine, University of Colorado Denver, Aurora, CO, United States of America.
| |
Collapse
|
17
|
Galambos C, Bush D, Abman SH, Caplan M. Prominent Intrapulmonary Shunt Vessels and Altered Lung Development in Infants With Sudden Unexplained Infant Death. J Pediatr 2023; 255:214-219.e1. [PMID: 36336004 DOI: 10.1016/j.jpeds.2022.10.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 09/29/2022] [Accepted: 10/14/2022] [Indexed: 11/06/2022]
Abstract
The purpose of this study was to evaluate intrapulmonary arteriovenous shunts in patients with and without sudden unexplained infant death. We identified open intrapulmonary bronchopulmonary anastomoses as potential pathways for right-to-left shunt in a subset of infants with sudden unexplained infant death.
Collapse
Affiliation(s)
- Csaba Galambos
- Department of Pathology and Laboratory Medicine, University of Colorado School of Medicine, Aurora, CO; Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO.
| | - Douglas Bush
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Steven H Abman
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO
| | | |
Collapse
|
18
|
Ren Y, Zhang H. Emerging role of exosomes in vascular diseases. Front Cardiovasc Med 2023; 10:1090909. [PMID: 36937921 PMCID: PMC10017462 DOI: 10.3389/fcvm.2023.1090909] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 01/11/2023] [Indexed: 03/06/2023] Open
Abstract
Exosomes are biological small spherical lipid bilayer vesicles secreted by most cells in the body. Their contents include nucleic acids, proteins, and lipids. Exosomes can transfer material molecules between cells and consequently have a variety of biological functions, participating in disease development while exhibiting potential value as biomarkers and therapeutics. Growing evidence suggests that exosomes are vital mediators of vascular remodeling. Endothelial cells (ECs), vascular smooth muscle cells (VSMCs), inflammatory cells, and adventitial fibroblasts (AFs) can communicate through exosomes; such communication is associated with inflammatory responses, cell migration and proliferation, and cell metabolism, leading to changes in vascular function and structure. Essential hypertension (EH), atherosclerosis (AS), and pulmonary arterial hypertension (PAH) are the most common vascular diseases and are associated with significant vascular remodeling. This paper reviews the latest research progress on the involvement of exosomes in vascular remodeling through intercellular information exchange and provides new ideas for understanding related diseases.
Collapse
Affiliation(s)
- Yi Ren
- Institute of Microcirculation, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Graduate School, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Honggang Zhang
- Institute of Microcirculation, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
19
|
Novel Molecular Mechanisms Involved in the Medical Treatment of Pulmonary Arterial Hypertension. Int J Mol Sci 2023; 24:ijms24044147. [PMID: 36835558 PMCID: PMC9965798 DOI: 10.3390/ijms24044147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/14/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
Pulmonary arterial hypertension (PAH) is a severe condition with a high mortality rate despite advances in diagnostic and therapeutic strategies. In recent years, significant scientific progress has been made in the understanding of the underlying pathobiological mechanisms. Since current available treatments mainly target pulmonary vasodilation, but lack an effect on the pathological changes that develop in the pulmonary vasculature, there is need to develop novel therapeutic compounds aimed at antagonizing the pulmonary vascular remodeling. This review presents the main molecular mechanisms involved in the pathobiology of PAH, discusses the new molecular compounds currently being developed for the medical treatment of PAH and assesses their potential future role in the therapeutic algorithms of PAH.
Collapse
|
20
|
Mohanka M, Banga A. Alterations in Pulmonary Physiology with Lung Transplantation. Compr Physiol 2023; 13:4269-4293. [PMID: 36715279 DOI: 10.1002/cphy.c220008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Lung transplant is a treatment option for patients with end-stage lung diseases; however, survival outcomes continue to be inferior when compared to other solid organs. We review the several anatomic and physiologic changes that result from lung transplantation surgery, and their role in the pathophysiology of common complications encountered by lung recipients. The loss of bronchial circulation into the allograft after transplant surgery results in ischemia-related changes in the bronchial artery territory of the allograft. We discuss the role of bronchopulmonary anastomosis in blood circulation in the allograft posttransplant. We review commonly encountered complications related to loss of bronchial circulation such as allograft airway ischemia, necrosis, anastomotic dehiscence, mucociliary dysfunction, and bronchial stenosis. Loss of dual circulation to the lung also increases the risk of pulmonary infarction with acute pulmonary embolism. The loss of lymphatic drainage during transplant surgery also impairs the management of allograft interstitial fluid, resulting in pulmonary edema and early pleural effusion. We discuss the role of lymphatic drainage in primary graft dysfunction. Besides, we review the association of late posttransplant pleural effusion with complications such as acute rejection. We then review the impact of loss of afferent and efferent innervation from the allograft on control of breathing, as well as lung protective reflexes. We conclude with discussion about pulmonary function testing, allograft monitoring with spirometry, and classification of chronic lung allograft dysfunction phenotypes based on total lung capacity measurements. We also review factors limiting physical exercise capacity after lung transplantation, especially impairment of muscle metabolism. © 2023 American Physiological Society. Compr Physiol 13:4269-4293, 2023.
Collapse
Affiliation(s)
- Manish Mohanka
- Pulmonary and Critical Care Medicine, University of Texas Southwestern, Dallas, Texas, USA
| | - Amit Banga
- Pulmonary and Critical Care Medicine, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
21
|
Segovia F, Garcia H, Alkhateeb H, Mukherjee D, Nickel N. Updates in the Pharmacotherapy of Pulmonary Hypertension in Patients with Heart Failure with Preserved Ejection Fraction. Cardiovasc Hematol Disord Drug Targets 2023; 23:215-225. [PMID: 37921162 DOI: 10.2174/011871529x258234230921112507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/24/2023] [Accepted: 08/24/2023] [Indexed: 11/04/2023]
Abstract
Pulmonary hypertension (PH) associated with left heart disease (LHD) is a complex cardiopulmonary condition where a variable degree of pulmonary congestion, arterial vasoconstriction and vascular remodeling can lead to PH and right heart strain. Right heart dysfunction has a significant prognostic impact on these patients. Therefore, preserving right ventricular (RV) function is an important treatment goal. However, the treatment of PH in patients with left heart disease has produced conflicting evidence. The transition from pure LHD to LHD with PH is a continuum and clinically challenging. The heart failure with preserved ejection fraction (HFpEF) patient population is heterogeneous when it comes to PH and RV function. Appropriate clinical and hemodynamic phenotyping of patients with HFpEF and concomitant PH is paramount to making the appropriate treatment decision. This manuscript will summarize the current evidence for the use of pulmonary arterial vasodilators in patients with HFpEF.
Collapse
Affiliation(s)
- Fernando Segovia
- Department of Internal Medicine, Texas Tech University Health Sciences Center, El Paso, Texas, USA
| | - Hernando Garcia
- Pulmonary and Critical Care, Mount Sinai Medical Center, Miami, Florida, USA
| | - Haider Alkhateeb
- Division of Cardiovascular Medicine, Texas Tech University Health Sciences Center, El Paso, Texas, USA
| | - Debabrata Mukherjee
- Division of Cardiovascular Medicine, Texas Tech University Health Sciences Center, El Paso, Texas, USA
| | - Nils Nickel
- Division of Pulmonary and Critical Care Medicine, Texas Tech University Health Sciences Center, El Paso, Texas, USA
| |
Collapse
|
22
|
van der Have O, Mead TJ, Westöö C, Peruzzi N, Mutgan AC, Norvik C, Bech M, Struglics A, Hoetzenecker K, Brunnström H, Westergren‐Thorsson G, Kwapiszewska G, Apte SS, Tran‐Lundmark K. Aggrecan accumulates at sites of increased pulmonary arterial pressure in idiopathic pulmonary arterial hypertension. Pulm Circ 2023; 13:e12200. [PMID: 36824691 PMCID: PMC9941846 DOI: 10.1002/pul2.12200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 02/01/2023] [Accepted: 02/03/2023] [Indexed: 02/11/2023] Open
Abstract
Expansion of extracellular matrix occurs in all stages of pulmonary angiopathy associated with pulmonary arterial hypertension (PAH). In systemic arteries, dysregulation and accumulation of the large chondroitin-sulfate proteoglycan aggrecan is associated with swelling and disruption of vessel wall homeostasis. Whether aggrecan is present in pulmonary arteries, and its potential roles in PAH, has not been thoroughly investigated. Here, lung tissue from 11 patients with idiopathic PAH was imaged using synchrotron radiation phase-contrast microcomputed tomography (TOMCAT beamline, Swiss Light Source). Immunohistochemistry for aggrecan core protein in subsequently sectioned lung tissue demonstrated accumulation in PAH compared with failed donor lung controls. RNAscope in situ hybridization indicated ACAN expression in vascular endothelium and smooth muscle cells. Based on qualitative histological analysis, aggrecan localizes to cellular, rather than fibrotic or collagenous, lesions. Interestingly, ADAMTS15, a potential aggrecanase, was upregulated in pulmonary arteries in PAH. Aligning traditional histological analysis with three-dimensional renderings of pulmonary arteries from synchrotron imaging identified aggrecan in lumen-reducing lesions containing loose, cell-rich connective tissue, at sites of intrapulmonary bronchopulmonary shunting, and at sites of presumed elevated pulmonary blood pressure. Our findings suggest that ACAN expression may be an early response to injury in pulmonary angiopathy and supports recent work showing that dysregulation of aggrecan turnover is a hallmark of arterial adaptations to altered hemodynamics. Whether cause or effect, aggrecan and aggrecanase regulation in PAH are potential therapeutic targets.
Collapse
Affiliation(s)
- Oscar van der Have
- Department of Experimental Medical Science, Faculty of MedicineLund UniversityLundSweden
| | - Timothy J. Mead
- Department of Biomedical EngineeringCleveland Clinic Lerner Research InstituteClevelandOhioUSA
| | - Christian Westöö
- Department of Experimental Medical Science, Faculty of MedicineLund UniversityLundSweden
| | - Niccolò Peruzzi
- Department of Experimental Medical Science, Faculty of MedicineLund UniversityLundSweden
- Department of Medical Radiation Physics, Clinical Sciences LundLund UniversityLundSweden
| | - Ayse C. Mutgan
- Ludwig Boltzmann Institute for Lung Vascular ResearchGrazAustria
- Division of Physiology, Otto Loewi Research CenterMedical University GrazGrazAustria
| | - Christian Norvik
- Department of Experimental Medical Science, Faculty of MedicineLund UniversityLundSweden
| | - Martin Bech
- Department of Medical Radiation Physics, Clinical Sciences LundLund UniversityLundSweden
| | - André Struglics
- Department of Clinical Sciences Lund, Orthopaedics, Faculty of MedicineLund UniversityLundSweden
| | | | - Hans Brunnström
- Department of Clinical Sciences Lund, Division of Pathology, Faculty of MedicineLund UniversityLundSweden
- Department of Genetics and PathologyDivision of Laboratory MedicineLundSweden
| | - Gunilla Westergren‐Thorsson
- Department of Experimental Medical Science, Faculty of MedicineLund UniversityLundSweden
- Wallenberg Center for Molecular MedicineLund UniversityLundSweden
| | - Grazyna Kwapiszewska
- Ludwig Boltzmann Institute for Lung Vascular ResearchGrazAustria
- Division of Physiology, Otto Loewi Research CenterMedical University GrazGrazAustria
- Institute for Lung HealthJustus Liebig UniversityGiessenGermany
| | - Suneel S. Apte
- Department of Biomedical EngineeringCleveland Clinic Lerner Research InstituteClevelandOhioUSA
| | - Karin Tran‐Lundmark
- Department of Experimental Medical Science, Faculty of MedicineLund UniversityLundSweden
- Wallenberg Center for Molecular MedicineLund UniversityLundSweden
- The Pediatric Heart CenterSkåne University HospitalLundSweden
| |
Collapse
|
23
|
Engelbrecht E, Kooistra T, Knipe RS. The Vasculature in Pulmonary Fibrosis. CURRENT TISSUE MICROENVIRONMENT REPORTS 2022; 3:83-97. [PMID: 36712832 PMCID: PMC9881604 DOI: 10.1007/s43152-022-00040-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/23/2022] [Indexed: 02/02/2023]
Abstract
Purpose of Review The current paradigm of idiopathic pulmonary fibrosis (IPF) pathogenesis involves recurrent injury to a sensitive alveolar epithelium followed by impaired repair responses marked by fibroblast activation and deposition of extracellular matrix. Multiple cell types are involved in this response with potential roles suggested by advances in single-cell RNA sequencing and lung developmental biology. Notably, recent work has better characterized the cell types present in the pulmonary endothelium and identified vascular changes in patients with IPF. Recent Findings Lung tissue from patients with IPF has been examined at single-cell resolution, revealing reductions in lung capillary cells and expansion of a population of vascular cells expressing markers associated with bronchial endothelium. In addition, pre-clinical models have demonstrated a fundamental role for aging and vascular permeability in the development of pulmonary fibrosis. Summary Mounting evidence suggests that the endothelium undergoes changes in the context of fibrosis, and these changes may contribute to the development and/or progression of pulmonary fibrosis. Additional studies will be needed to further define the functional role of these vascular changes.
Collapse
Affiliation(s)
| | - Tristan Kooistra
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Rachel S. Knipe
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| |
Collapse
|
24
|
Cullivan S, Higgins M, Gaine S. Diagnosis and management of pulmonary arterial hypertension. Breathe (Sheff) 2022; 18:220168. [PMID: 36865939 PMCID: PMC9973456 DOI: 10.1183/20734735.0168-2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 10/03/2022] [Indexed: 12/15/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a progressive disease of the pulmonary vasculature that is characterised by elevated pressures within the pulmonary vascular tree. Recent decades have witnessed a dramatic expansion in our understanding of the pathobiology and the epidemiology of PAH, and improvements in treatment options and outcomes. The prevalence of PAH is estimated to be between 48 and 55 cases per million adults. The definition was recently amended and a diagnosis of PAH now requires evidence of a mean pulmonary artery pressure >20 mmHg, a pulmonary vascular resistance >2 Wood units and a pulmonary artery wedge pressure ≤15 mmHg at right heart catheterisation. Detailed clinical assessment and a number of additional diagnostic tests are required to assign a clinical group. Biochemistry, echocardiography, lung imaging and pulmonary function tests provide valuable information to assist in the assignment of a clinical group. Risk assessment tools have been refined, and these greatly facilitate risk stratification and enhance treatment decisions and prognostication. Current therapies target three therapeutic pathways: the nitric oxide, prostacyclin and endothelin pathways. While lung transplantation remains the only curative intervention for PAH, there are a number of promising therapies under investigation which may further reduce morbidity and improve outcomes. This review describes the epidemiology, pathology and pathobiology of PAH and introduces important concepts regarding the diagnosis and risk stratification of PAH. The management of PAH is also discussed, with a special focus on PAH specific therapy and key supportive measures.
Collapse
Affiliation(s)
- Sarah Cullivan
- National Pulmonary Hypertension Unit, Mater Misericordiae University Hospital, Dublin, Ireland,Corresponding author: Sarah Cullivan ()
| | - Margaret Higgins
- National Pulmonary Hypertension Unit, Mater Misericordiae University Hospital, Dublin, Ireland
| | - Sean Gaine
- National Pulmonary Hypertension Unit, Mater Misericordiae University Hospital, Dublin, Ireland
| |
Collapse
|
25
|
Weinman JP, Mong DA, Malone LJ, Ivy DD, Deterding RR, Galambos C. Chest computed tomography findings of ground-glass nodules with enhancing central vessel/nodule in pediatric patients with BMPR2 mutations and plexogenic arteriopathy. Pediatr Radiol 2022; 52:2549-2556. [PMID: 35689704 DOI: 10.1007/s00247-022-05413-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 05/10/2022] [Accepted: 05/31/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND Germline mutation in bone morphogenetic protein type II (BMPR2) is the most common cause of idiopathic/heritable pulmonary hypertension in pediatric patients. Despite the discovery of this gene there are no known descriptions of the CT or CT angiography findings in these children. OBJECTIVE To correlate the clinical presentation, pathology and chest CT findings in pediatric patients with pulmonary hypertension caused by mutations in the BMPR2 gene. MATERIALS AND METHODS We performed a search to identify pediatric patients with a BMPR2 mutation and CT or CT angiography with the clinical history of pulmonary hypertension. Three pediatric radiologists reviewed the children's CT imaging findings and ranked the dominant findings in order of prevalence via consensus. RESULTS We identified three children with pulmonary hypertension and confirmed germline BMPR2 mutations, two of whom had undergone lung biopsy. We then correlated the imaging findings with histopathology and clinical course. CONCLUSION All of our patients with BMPR2 mutations demonstrated a distinct CT pattern of ground-glass nodules with a prominent central enhancing vessel/nodule. These findings correlated well with the pathological findings of plexogenic arteriopathy.
Collapse
Affiliation(s)
- Jason P Weinman
- Department of Radiology, Children's Hospital Colorado, 13123 E. 16th Ave., Box 125, Aurora, CO, 80045, USA.
| | - David A Mong
- Department of Radiology, Children's Hospital Colorado, 13123 E. 16th Ave., Box 125, Aurora, CO, 80045, USA
| | - LaDonna J Malone
- Department of Radiology, Children's Hospital Colorado, 13123 E. 16th Ave., Box 125, Aurora, CO, 80045, USA
| | - Dunbar D Ivy
- Division of Cardiology, Department of Pediatrics, Children's Hospital Colorado, Aurora, CO, USA
| | - Robin R Deterding
- Division of Pulmonary Medicine, Department of Pediatrics, Children's Hospital Colorado, Aurora, CO, USA
| | - Csaba Galambos
- Department of Pathology and Laboratory Medicine, Children's Hospital Colorado, Aurora, CO, USA
| |
Collapse
|
26
|
Bush D, Abman SH, Galambos C. Microvascular Shunts in COVID-19 Pneumonia. Am J Respir Crit Care Med 2022; 206:227-228. [PMID: 35533392 PMCID: PMC9887413 DOI: 10.1164/rccm.202111-2627le] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Affiliation(s)
- Douglas Bush
- Icahn School of Medicine at Mount SinaiNew York, New York,Corresponding author (e-mail: )
| | | | | |
Collapse
|
27
|
van der Have O, Westöö C, Ahrné F, Tian X, Ichimura K, Dreier T, Norvik C, Kumar ME, Spiekerkoetter E, Tran-Lundmark K. Shunt-type plexiform lesions identified in the Sugen5416/Hypoxia rat model of pulmonary arterial hypertension using SPµCT. Eur Respir J 2022; 59:13993003.02802-2021. [PMID: 35332070 PMCID: PMC9202485 DOI: 10.1183/13993003.02802-2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 02/20/2022] [Indexed: 11/05/2022]
Abstract
We recently described four distinct types of plexiform lesions in human idiopathic and familial pulmonary arterial hypertension (PAH) [1], visualising the three-dimensional lesion structure using synchrotron-based phase-contrast micro-computed tomography (SPµCT). Two types, 1 and 2, are shunt-type lesions that connect pulmonary arteries to the bronchial circulation: type 1 to the vasa vasorum, and type 2 to peribronchial vessels. Type 3 lesions are found peripherally in the lung as spherical structures abruptly terminating the distal pulmonary artery/arteriole, and type 4 lesions are characterised by recanalisation of an occluded artery/arteriole. Our observation of type 1 and type 2 lesions in PAH supports previous work that demonstrated intrapulmonary bronchopulmonary anastomoses (IBAs) connected to plexiform lesions in human PAH, suggesting that shunting of blood can occur within lesions in the setting of supra-systemic pulmonary arterial pressure [2]. Further haemodynamic studies of distinct subtypes of plexiform lesions have been hampered by the lack of available animal models with plexiform lesions representative of the full range of lesion types found in human disease. Plexiform lesions have previously been described in the Sugen5416/hypoxia rat model of pulmonary hypertension when time until sacrifice following hypoxia is extended to 13–14 weeks. Initially plexiform lesions were identified within the pulmonary artery, as well as in the form of aneurysm-like lesions projecting outside the vessel lumen [3], and recently the latter type was shown to form in supernumerary arteries [4]. However, neither study observed plexiform lesions communicating with the bronchial circulation, possibly because of methodological limitations of the histological analysis. Human like plexiform lesions identified in the prolonged Sugen5416/hypoxia rat model, visualised by synchrotron tomography imaging https://bit.ly/3KQvDHg
Collapse
Affiliation(s)
- Oscar van der Have
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Christian Westöö
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Filip Ahrné
- The Pediatric Heart Center, Skane University Hospital, Lund, Sweden
| | - Xuefei Tian
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Stanford University, Stanford, CA, USA.,Vera Moulton Wall Center for Pulmonary Vascular Disease, Stanford School of Medicine, Stanford University, Stanford, CA, USA
| | - Kenzo Ichimura
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Stanford University, Stanford, CA, USA.,Vera Moulton Wall Center for Pulmonary Vascular Disease, Stanford School of Medicine, Stanford University, Stanford, CA, USA
| | - Till Dreier
- Medical Radiation Physics, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Christian Norvik
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Maya E Kumar
- Vera Moulton Wall Center for Pulmonary Vascular Disease, Stanford School of Medicine, Stanford University, Stanford, CA, USA.,Division of Pulmonary Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA.,Sean N. Parker Center for Asthma and Allergy Research, Stanford University School of Medicine, Stanford, CA, USA
| | - Edda Spiekerkoetter
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Stanford University, Stanford, CA, USA.,Vera Moulton Wall Center for Pulmonary Vascular Disease, Stanford School of Medicine, Stanford University, Stanford, CA, USA.,Cardiovascular Institute, Stanford University, Stanford, CA, USA
| | - Karin Tran-Lundmark
- Department of Experimental Medical Science, Lund University, Lund, Sweden.,The Pediatric Heart Center, Skane University Hospital, Lund, Sweden.,Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden
| |
Collapse
|
28
|
Simonneau G, Dorfmüller P, Guignabert C, Mercier O, Humbert M. Chronic thromboembolic pulmonary hypertension: the magic of pathophysiology. Ann Cardiothorac Surg 2022; 11:106-119. [PMID: 35433354 PMCID: PMC9012195 DOI: 10.21037/acs-2021-pte-10] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 08/26/2021] [Indexed: 08/19/2023]
Abstract
Chronic thromboembolic pulmonary hypertension (CTEPH) is a rare and underdiagnosed complication of acute pulmonary embolism (APE). CTEPH is a common cause of pulmonary hypertension (PH) with distinct management strategy including pulmonary endarterectomy, balloon pulmonary angioplasty, long-term anticoagulation and PH drugs targeting endothelial cell dysfunction. Initially, PH in chronic thromboembolic pulmonary disease (CTEPD) was thought to be due exclusively to the intravascular obstruction of pulmonary arteries by unresolved fibrotic clots. However, it is now well accepted that pulmonary vascular remodelling can include significant pulmonary microvasculopathy, which plays a role in the development of CTEPH. The histological description and clinical consequences of CTEPH microvasculopathy are now better understood. These lesions may involve not only small muscular pulmonary arteries <500 µm, but also pulmonary capillaries and veins. In addition, enlargement and proliferation of systemic bronchial arteries as well as anastomoses between the systemic and pulmonary circulations contribute to the development of microvasculopathy. In this review, we discuss the recent advances in the understanding of the pathophysiology of CTEPH.
Collapse
Affiliation(s)
- Gérald Simonneau
- Faculty of Medicine, Université Paris-Saclay, Le Kremlin-Bicêtre, France
- Assistance Publique Hôpitaux de Paris, Department of Respiratory and Intensive Care Medicine, Pulmonary Hypertension Referral Centre, Hôpital Bicêtre, Le Kremlin-Bicêtre, France
- Department of Thoracic and Vascular Surgery, Hôpital Marie Lannelongue, Groupe Hospitalier Paris Saint Joseph, Le Plessis-Robinson, France
- INSERM UMR_S 999, Hôpital Marie Lannelongue, Le Plessis Robinson, France
| | - Peter Dorfmüller
- Department of Pathology, University Hospital Giessen/Marburg, Giessen, Germany
- German Centre for Lung Research (DZL), Giessen, Germany
| | - Christophe Guignabert
- Faculty of Medicine, Université Paris-Saclay, Le Kremlin-Bicêtre, France
- INSERM UMR_S 999, Hôpital Marie Lannelongue, Le Plessis Robinson, France
| | - Olaf Mercier
- Faculty of Medicine, Université Paris-Saclay, Le Kremlin-Bicêtre, France
- Department of Thoracic and Vascular Surgery, Hôpital Marie Lannelongue, Groupe Hospitalier Paris Saint Joseph, Le Plessis-Robinson, France
- INSERM UMR_S 999, Hôpital Marie Lannelongue, Le Plessis Robinson, France
| | - Marc Humbert
- Faculty of Medicine, Université Paris-Saclay, Le Kremlin-Bicêtre, France
- Assistance Publique Hôpitaux de Paris, Department of Respiratory and Intensive Care Medicine, Pulmonary Hypertension Referral Centre, Hôpital Bicêtre, Le Kremlin-Bicêtre, France
- INSERM UMR_S 999, Hôpital Marie Lannelongue, Le Plessis Robinson, France
| |
Collapse
|
29
|
Tobal R, Potjewijd J, van Empel VPM, Ysermans R, Schurgers LJ, Reutelingsperger CP, Damoiseaux JGMC, van Paassen P. Vascular Remodeling in Pulmonary Arterial Hypertension: The Potential Involvement of Innate and Adaptive Immunity. Front Med (Lausanne) 2022; 8:806899. [PMID: 35004784 PMCID: PMC8727487 DOI: 10.3389/fmed.2021.806899] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 12/02/2021] [Indexed: 11/30/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a severe disease with high morbidity and mortality. Current therapies are mainly focused on vasodilative agents to improve prognosis. However, recent literature has shown the important interaction between immune cells and stromal vascular cells in the pathogenic modifications of the pulmonary vasculature. The immunological pathogenesis of PAH is known as a complex interplay between immune cells and vascular stromal cells, via direct contacts and/or their production of extra-cellular/diffusible factors such as cytokines, chemokines, and growth factors. These include, the B-cell—mast-cell axis, endothelium mediated fibroblast activation and subsequent M2 macrophage polarization, anti-endothelial cell antibodies and the versatile role of IL-6 on vascular cells. This review aims to outline the major pathophysiological changes in vascular cells caused by immunological mechanisms, leading to vascular remodeling, increased pulmonary vascular resistance and eventually PAH. Considering the underlying immunological mechanisms, these mechanisms may be key to halt progression of disease.
Collapse
Affiliation(s)
- Rachid Tobal
- Division of Nephrology and Clinical and Experimental Immunology, Department of Internal Medicine, Maastricht University Medical Center, Maastricht, Netherlands
| | - Judith Potjewijd
- Division of Nephrology and Clinical and Experimental Immunology, Department of Internal Medicine, Maastricht University Medical Center, Maastricht, Netherlands
| | - Vanessa P M van Empel
- Department of Cardiology, Maastricht University Medical Center, Maastricht, Netherlands
| | - Renee Ysermans
- Division of Nephrology and Clinical and Experimental Immunology, Department of Internal Medicine, Maastricht University Medical Center, Maastricht, Netherlands
| | - Leon J Schurgers
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht, Netherlands
| | - Chris P Reutelingsperger
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht, Netherlands
| | - Jan G M C Damoiseaux
- Central Diagnostic Laboratory, Maastricht University Medical Center, Maastricht, Netherlands
| | - Pieter van Paassen
- Division of Nephrology and Clinical and Experimental Immunology, Department of Internal Medicine, Maastricht University Medical Center, Maastricht, Netherlands
| |
Collapse
|
30
|
Affiliation(s)
- Paul M Hassoun
- From the Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore
| |
Collapse
|
31
|
Abstract
Pulmonary arterial hypertension is characterized by obliteration and obstruction of the pulmonary arterioles that in turn results in high right ventricular afterload and right heart failure. The pathobiology of pulmonary arterial hypertension is complex, with contributions from multiple pathophysiologic processes that are regulated by a variety of molecular mechanisms. This nature likely explains the limited efficacy of our current therapies, which only target a small portion of the pathobiological mechanisms that underlie advanced disease. Here we review the pathobiology of pulmonary arterial hypertension, focusing on the systemic, cellular, and molecular mechanisms that underlie the disease.
Collapse
Affiliation(s)
- Sudarshan Rajagopal
- Division of Cardiology, Department of Medicine, Duke University Medical Center, Room 128A Hanes House, 330 Trent Drive, Durham, NC 27710, USA.
| | - Yen-Rei A Yu
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado, 12605 E. 16th Avenue, Aurora, CO 80045, USA
| |
Collapse
|
32
|
Predictive value of chest HRCT for survival in idiopathic pulmonary arterial hypertension. Respir Res 2021; 22:293. [PMID: 34789251 PMCID: PMC8597242 DOI: 10.1186/s12931-021-01893-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 11/09/2021] [Indexed: 11/15/2022] Open
Abstract
Background Little attention has been paid to chest high resolution computed tomography (HRCT) findings in idiopathic pulmonary arterial hypertension (IPAH) patients so far, while a couple of small studies suggested that presence of centrilobular ground-glass opacifications (GGO) on lung scans could have a significant negative prognostic value. Therefore, the aims of the present study were: to assess frequency and clinical significance of GGO in IPAH, and to verify if it carries an add-on prognostic value in reference to multidimensional risk assessment tool recommended by the 2015 European pulmonary hypertension guidelines. Methods Chest HRCT scans of 110 IPAH patients were retrospectively analysed. Patients were divided into three groups: with panlobular (p)GGO, centrilobular (c)GGO, and normal lung pattern. Association of different GGO patterns with demographic, functional, haemodynamic, and biochemical parameters was tested. Survival analysis was also performed. Results GGO were found in 46% of the IPAH patients: pGGO in 24% and cGGO in 22%. Independent predictors of pGGO were: positive history of haemoptysis, higher number of low-risk factors, and lower cardiac output. Independent predictors of cGGO were: positive history of haemoptysis, younger age, higher right atrial pressure, and higher mixed venous blood oxygen saturation. CGGO had a negative prognostic value for outcome in a 2-year perspective. This effect was not seen in the longer term, probably due to short survival of cGGO patients. Conclusions Lung HRCT carries a significant independent prognostic information in IPAH, and in patients with cGGO present on the scans an early referral to lung transplantation centres should be considered.
Collapse
|
33
|
Kruse JM, Zickler D, Lüdemann WM, Piper SK, Gotthardt I, Ihlow J, Greuel S, Horst D, Kahl A, Eckardt KU, Elezkurtaj S. Evidence for a thromboembolic pathogenesis of lung cavitations in severely ill COVID-19 patients. Sci Rep 2021; 11:16039. [PMID: 34362979 PMCID: PMC8346507 DOI: 10.1038/s41598-021-95694-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 07/29/2021] [Indexed: 01/06/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causing coronavirus disease 2019 (COVID-19) induces lung injury of varying severity, potentially causing severe acute respiratory distress syndrome (ARDS). Pulmonary injury patterns in COVID-19 patients differ from those in patients with other causes of ARDS. We aimed to explore the frequency and pathogenesis of cavitary lung lesions in critically ill patients with COVID-19. Retrospective study in 39 critically ill adult patients hospitalized with severe acute respiratory syndrome coronavirus 2 including lung injury of varying severity in a tertiary care referral center during March and May 2020, Berlin/Germany. We observed lung cavitations in an unusually large proportion of 22/39 (56%) COVID-19 patients treated on intensive care units (ICU), including 3/5 patients without mechanical ventilation. Median interquartile range (IQR) time between onset of symptoms and ICU admission was 11.5 (6.25–17.75) days. In 15 patients, lung cavitations were already present on the first CT scan, performed after ICU admission; in seven patients they developed during a subsequent median (IQR) observation period of 48 (35–58) days. In seven patients we found at least one cavitation with a diameter > 2 cm (maximum 10 cm). Patients who developed cavitations were older and had a higher body mass index. Autopsy findings in three patients revealed that the cavitations reflected lung infarcts undergoing liquefaction, secondary to thrombotic pulmonary artery branch occlusions. Lung cavitations appear to be a frequent complication of severely ill COVID-19 patients, probably related to the prothrombotic state associated with COVID-19.
Collapse
Affiliation(s)
- Jan Matthias Kruse
- Department of Nephrology and Medical Intensive Care, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany.
| | - Daniel Zickler
- Department of Nephrology and Medical Intensive Care, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Willie M Lüdemann
- Institute of Radiology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Sophie K Piper
- Institute of Biometry and Clinical Epidemiology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Inka Gotthardt
- Department of Nephrology and Medical Intensive Care, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Jana Ihlow
- Institute of Pathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Selina Greuel
- Institute of Pathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - David Horst
- Institute of Pathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Andreas Kahl
- Department of Nephrology and Medical Intensive Care, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Kai-Uwe Eckardt
- Department of Nephrology and Medical Intensive Care, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Sefer Elezkurtaj
- Institute of Pathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany.
| |
Collapse
|
34
|
Delcroix M, Torbicki A, Gopalan D, Sitbon O, Klok FA, Lang I, Jenkins D, Kim NH, Humbert M, Jais X, Vonk Noordegraaf A, Pepke-Zaba J, Brénot P, Dorfmuller P, Fadel E, Ghofrani HA, Hoeper MM, Jansa P, Madani M, Matsubara H, Ogo T, Grünig E, D'Armini A, Galie N, Meyer B, Corkery P, Meszaros G, Mayer E, Simonneau G. ERS statement on chronic thromboembolic pulmonary hypertension. Eur Respir J 2021; 57:13993003.02828-2020. [PMID: 33334946 DOI: 10.1183/13993003.02828-2020] [Citation(s) in RCA: 295] [Impact Index Per Article: 98.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 11/05/2020] [Indexed: 12/25/2022]
Abstract
Chronic thromboembolic pulmonary hypertension (CTEPH) is a rare complication of acute pulmonary embolism, either symptomatic or not. The occlusion of proximal pulmonary arteries by fibrotic intravascular material, in combination with a secondary microvasculopathy of vessels <500 µm, leads to increased pulmonary vascular resistance and progressive right heart failure. The mechanism responsible for the transformation of red clots into fibrotic material remnants has not yet been elucidated. In patients with pulmonary hypertension, the diagnosis is suspected when a ventilation/perfusion lung scan shows mismatched perfusion defects, and confirmed by right heart catheterisation and vascular imaging. Today, in addition to lifelong anticoagulation, treatment modalities include surgery, angioplasty and medical treatment according to the localisation and characteristics of the lesions.This statement outlines a review of the literature and current practice concerning diagnosis and management of CTEPH. It covers the definitions, diagnosis, epidemiology, follow-up after acute pulmonary embolism, pathophysiology, treatment by pulmonary endarterectomy, balloon pulmonary angioplasty, drugs and their combination, rehabilitation and new lines of research in CTEPH.It represents the first collaboration of the European Respiratory Society, the International CTEPH Association and the European Reference Network-Lung in the pulmonary hypertension domain. The statement summarises current knowledge, but does not make formal recommendations for clinical practice.
Collapse
Affiliation(s)
- Marion Delcroix
- Clinical Dept of Respiratory Diseases, Pulmonary Hypertension Center, UZ Leuven, Leuven, Belgium .,BREATHE, Dept CHROMETA, KU Leuven, Leuven, Belgium.,Co-chair
| | - Adam Torbicki
- Dept of Pulmonary Circulation, Thrombo-embolic Diseases and Cardiology, Center of Postgraduate Medical Education, ECZ-Otwock, Otwock, Poland.,Section editors
| | - Deepa Gopalan
- Dept of Radiology, Imperial College Hospitals NHS Trusts, London, UK.,Section editors
| | - Olivier Sitbon
- Université Paris-Saclay; Inserm UMR_S 999, Service de Pneumologie, Hôpital Bicêtre (AP-HP), Le Kremlin-Bicêtre, France.,Section editors
| | - Frederikus A Klok
- Dept of Medicine - Thrombosis and Hemostasis, Leiden University Medical Center, Leiden, The Netherlands.,Section editors
| | - Irene Lang
- Medical University of Vienna, Vienna, Austria.,Section editors
| | - David Jenkins
- Royal Papworth Hospital, Cambridge University Hospital, Cambridge, UK.,Section editors
| | - Nick H Kim
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of California San Diego, La Jolla, CA, USA.,Section editors
| | - Marc Humbert
- Université Paris-Saclay; Inserm UMR_S 999, Service de Pneumologie, Hôpital Bicêtre (AP-HP), Le Kremlin-Bicêtre, France.,Section editors
| | - Xavier Jais
- Université Paris-Saclay; Inserm UMR_S 999, Service de Pneumologie, Hôpital Bicêtre (AP-HP), Le Kremlin-Bicêtre, France.,Section editors
| | - Anton Vonk Noordegraaf
- Dept of Pulmonary Medicine, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands.,Section editors
| | - Joanna Pepke-Zaba
- Royal Papworth Hospital, Cambridge University Hospital, Cambridge, UK.,Section editors
| | - Philippe Brénot
- Marie Lannelongue Hospital, Paris-South University, Le Plessis Robinson, France
| | - Peter Dorfmuller
- University of Giessen and Marburg Lung Center, German Center of Lung Research (DZL), Giessen, Germany.,Dept of Medicine, Imperial College London, London, UK.,Dept of Pneumology, Kerckhoff-Clinic Bad Nauheim, Bad Nauheim, Germany
| | - Elie Fadel
- Hannover Medical School, Hannover, Germany
| | - Hossein-Ardeschir Ghofrani
- University of Giessen and Marburg Lung Center, German Center of Lung Research (DZL), Giessen, Germany.,Dept of Medicine, Imperial College London, London, UK.,Dept of Pneumology, Kerckhoff-Clinic Bad Nauheim, Bad Nauheim, Germany
| | | | - Pavel Jansa
- 2nd Department of Medicine, Dept of Cardiovascular Medicine, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Michael Madani
- Sulpizio Cardiovascular Centre, University of California, San Diego, CA, USA
| | - Hiromi Matsubara
- National Hospital Organization Okayama Medical Center, Okayama, Japan
| | - Takeshi Ogo
- National Cerebral and Cardiovascular Centre, Osaka, Japan
| | - Ekkehard Grünig
- Thoraxklinik Heidelberg at Heidelberg University Hospital, Heidelberg, Germany
| | - Andrea D'Armini
- Unit of Cardiac Surgery, Intrathoracic Transplantation and Pulmonary Hypertension, University of Pavia School of Medicine, Foundation I.R.C.C.S. Policlinico San Matteo, Pavia, Italy
| | | | - Bernhard Meyer
- Institute for Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany
| | | | | | - Eckhard Mayer
- Dept of Thoracic Surgery, Kerckhoff Clinic Bad Nauheim, Bad Nauheim, Germany.,Equal contribution.,Co-chair
| | - Gérald Simonneau
- Université Paris-Saclay; Inserm UMR_S 999, Service de Pneumologie, Hôpital Bicêtre (AP-HP), Le Kremlin-Bicêtre, France.,Equal contribution.,Co-chair
| |
Collapse
|
35
|
Westöö C, Norvik C, Peruzzi N, van der Have O, Lovric G, Jeremiasen I, Tran PK, Mokso R, de Jesus Perez V, Brunnström H, Bech M, Galambos C, Tran-Lundmark K. Distinct types of plexiform lesions identified by synchrotron-based phase-contrast micro-CT. Am J Physiol Lung Cell Mol Physiol 2021; 321:L17-L28. [PMID: 33881927 DOI: 10.1152/ajplung.00432.2020] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
In pulmonary arterial hypertension, plexiform lesions are associated with severe arterial obstruction and right ventricular failure. Exploring their structure and position is crucial for understanding the interplay between hemodynamics and vascular remodeling. The aim of this research was to use synchrotron-based phase-contrast micro-CT to study the three-dimensional structure of plexiform lesions. Archived paraffin-embedded tissue samples from 14 patients with pulmonary arterial hypertension (13 idiopathic, 1 with known BMPR2-mutation) were imaged. Clinical data showed high-median PVR (12.5 WU) and mPAP (68 mmHg). Vascular lesions with more than 1 lumen were defined as plexiform. Prior radiopaque dye injection in some samples facilitated 3-D rendering. Four distinct types of plexiform lesions were identified: 1) localized within or derived from monopodial branches (supernumerary arteries), often with a connection to the vasa vasorum; 2) localized between pulmonary arteries and larger airways as a tortuous transformation of intrapulmonary bronchopulmonary anastomoses; 3) as spherical structures at unexpected abrupt ends of distal pulmonary arteries; and 4) as occluded pulmonary arteries with recanalization. By appearance and localization, types 1-2 potentially relieve pressure via the bronchial circulation, as pulmonary arteries in these patients were almost invariably occluded distally. In addition, types 1-3 were often surrounded by dilated thin-walled vessels, often connected to pulmonary veins, peribronchial vessels, or the vasa vasorum. Collaterals, bypassing completely occluded pulmonary arteries, were also observed to originate within plexiform lesions. In conclusion, synchrotron-based imaging revealed significant plexiform lesion heterogeneity, resulting in a novel classification. The four types likely have different effects on hemodynamics and disease progression.
Collapse
Affiliation(s)
- Christian Westöö
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Christian Norvik
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Niccolò Peruzzi
- Department of Clinical Sciences, Division of Medical Radiation Physics, Lund University, Lund, Sweden
| | - Oscar van der Have
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Goran Lovric
- Centre d'Imagerie BioMédicale, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.,Swiss Light Source, Paul Scherrer Institute, Villigen, Switzerland
| | - Ida Jeremiasen
- Department of Experimental Medical Science, Lund University, Lund, Sweden.,Children's Heart Center, Skåne University Hospital, Lund, Sweden
| | - Phan-Kiet Tran
- Children's Heart Center, Skåne University Hospital, Lund, Sweden
| | - Rajmund Mokso
- Max IV Laboratory, Lund University, Lund, Sweden.,Institute for Biomedical Engineering, University and ETH Zürich, Zurich, Switzerland
| | | | - Hans Brunnström
- Department of Clinical Sciences Lund, Division of Pathology, Lund University, Lund, Sweden.,Department of Genetics and Pathology, Division of Laboratory Medicine, Lund University, Lund, Sweden
| | - Martin Bech
- Department of Clinical Sciences, Division of Medical Radiation Physics, Lund University, Lund, Sweden
| | - Csaba Galambos
- Department of Pathology and Laboratory Medicine, Children's Hospital Colorado, Aurora, Colorado
| | - Karin Tran-Lundmark
- Department of Experimental Medical Science, Lund University, Lund, Sweden.,Children's Heart Center, Skåne University Hospital, Lund, Sweden.,Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden
| |
Collapse
|
36
|
Galambos C, Bush D, Abman SH. Intrapulmonary bronchopulmonary anastomoses in COVID-19 respiratory failure. Eur Respir J 2021; 58:13993003.04397-2020. [PMID: 33863743 PMCID: PMC8051184 DOI: 10.1183/13993003.04397-2020] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 04/05/2021] [Indexed: 11/22/2022]
Abstract
The spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has led to a devastating and worldwide pandemic disease known as coronavirus disease 2019 (COVID-19). COVID-19 causes acute hypoxic respiratory failure (COVID-ARF), a major cause of mortality and morbidity, with an incompletely understood pathophysiological mechanism. Gattinoniet al. [1] noted that COVID-19 patients with acute hypoxic respiratory failure have lung disease that is often characterised by a remarkable dissociation between relatively well-preserved lung mechanics, including lung compliance, and severe hypoxaemia. These findings are consistent with the concept that profound hypoxaemia occurring in ventilated patients with highly compliant lungs could be due to the loss of regulation of lung perfusion and impaired hypoxic pulmonary vasoconstriction. Early autopsy studies suggest that the lung circulation is a major target of coronavirus infection, which leads to striking pulmonary vascular disease due to variable degrees of thrombosis, apoptosis, oedema, inflammation and angiogenesis [2–4]. These changes contribute to dysregulation of the pulmonary vasculature, which induces perfusion abnormalities and contributes to the physiological phenotypes reported in COVID-19 pneumonia. Further, computed tomography suggests a unique “tree in bud” appearance of small pulmonary arteries [3] and transcranial agitated saline microbubble doppler studies of COVID-19 patients with hypoxaemia have demonstrated intrapulmonary shunting of these bubbles, and that the presence and degree of transpulmonary bubble transit correlates with the degree of hypoxaemia [5]. Despite these studies, histopathological correlates of severe hypoxaemia and shunt in the setting of relatively normal lung compliance in COVID-19 patients are largely lacking. Open intrapulmonary bronchopulmonary anastomoses (IBA) were identified in COVID-19 patients who died of respiratory failure. IBA may be the microanatomical basis of intrapulmonary right to left shunt leading to severe hypoxaemia in COVID-19.https://bit.ly/3e2GajO
Collapse
Affiliation(s)
- Csaba Galambos
- Pediatric Heart Lung Center, Aurora, CO, USA .,Children's Hospital Colorado, Aurora, CO, USA.,University of Colorado Anschutz School of Medicine, Aurora, CO, USA
| | - Douglas Bush
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Steven H Abman
- Pediatric Heart Lung Center, Aurora, CO, USA.,Children's Hospital Colorado, Aurora, CO, USA.,University of Colorado Anschutz School of Medicine, Aurora, CO, USA
| |
Collapse
|
37
|
Steffes LC, Froistad AA, Andruska A, Boehm M, McGlynn M, Zhang F, Zhang W, Hou D, Tian X, Miquerol L, Nadeau K, Metzger RJ, Spiekerkoetter E, Kumar ME. A Notch3-Marked Subpopulation of Vascular Smooth Muscle Cells Is the Cell of Origin for Occlusive Pulmonary Vascular Lesions. Circulation 2020; 142:1545-1561. [PMID: 32794408 PMCID: PMC7578108 DOI: 10.1161/circulationaha.120.045750] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Pulmonary arterial hypertension (PAH) is a fatal disease characterized by profound vascular remodeling in which pulmonary arteries narrow because of medial thickening and occlusion by neointimal lesions, resulting in elevated pulmonary vascular resistance and right heart failure. Therapies targeting the neointima would represent a significant advance in PAH treatment; however, our understanding of the cellular events driving neointima formation, and the molecular pathways that control them, remains limited. METHODS We comprehensively map the stepwise remodeling of pulmonary arteries in a robust, chronic inflammatory mouse model of pulmonary hypertension. This model demonstrates pathological features of the human disease, including increased right ventricular pressures, medial thickening, neointimal lesion formation, elastin breakdown, increased anastomosis within the bronchial circulation, and perivascular inflammation. Using genetic lineage tracing, clonal analysis, multiplexed in situ hybridization, immunostaining, deep confocal imaging, and staged pharmacological inhibition, we define the cell behaviors underlying each stage of vascular remodeling and identify a pathway required for neointima formation. RESULTS Neointima arises from smooth muscle cells (SMCs) and not endothelium. Medial SMCs proliferate broadly to thicken the media, after which a small number of SMCs are selected to establish the neointima. These neointimal founder cells subsequently undergoing massive clonal expansion to form occlusive neointimal lesions. The normal pulmonary artery SMC population is heterogeneous, and we identify a Notch3-marked minority subset of SMCs as the major neointimal cell of origin. Notch signaling is specifically required for the selection of neointimal founder cells, and Notch inhibition significantly improves pulmonary artery pressure in animals with pulmonary hypertension. CONCLUSIONS This work describes the first nongenetically driven murine model of pulmonary hypertension (PH) that generates robust and diffuse occlusive neointimal lesions across the pulmonary vascular bed and does so in a stereotyped timeframe. We uncover distinct cellular and molecular mechanisms underlying medial thickening and neointima formation and highlight novel transcriptional, behavioral, and pathogenic heterogeneity within pulmonary artery SMCs. In this model, inflammation is sufficient to generate characteristic vascular pathologies and physiological measures of human PAH. We hope that identifying the molecular cues regulating each stage of vascular remodeling will open new avenues for therapeutic advancements in the treatment of PAH.
Collapse
Affiliation(s)
- Lea C Steffes
- Division of Pulmonary Medicine, Department of Pediatrics (L.C.S., R.J.M., M.E.K.), Stanford University School of Medicine, CA
- Vera Moulton Wall Center for Pulmonary Vascular Research (L.C.S., F.Z., R.J.M., E.S., M.E.K.), Stanford University School of Medicine, CA
| | - Alexis A Froistad
- Sean N. Parker Center for Asthma and Allergy Research (A.A.F., M.M., W.Z., D.H., K.N., M.E.K.), Stanford University School of Medicine, CA
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine (A.A.F., A.A., M.B., M.M., D.H., X.T., K.N., E.S., M.E.K.), Stanford University School of Medicine, CA
| | - Adam Andruska
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine (A.A.F., A.A., M.B., M.M., D.H., X.T., K.N., E.S., M.E.K.), Stanford University School of Medicine, CA
| | - Mario Boehm
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine (A.A.F., A.A., M.B., M.M., D.H., X.T., K.N., E.S., M.E.K.), Stanford University School of Medicine, CA
- Universities of Giessen and Marburg Lung Center, Justus-Liebig University Giessen, German Center for Lung Research (M.B.)
| | - Madeleine McGlynn
- Sean N. Parker Center for Asthma and Allergy Research (A.A.F., M.M., W.Z., D.H., K.N., M.E.K.), Stanford University School of Medicine, CA
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine (A.A.F., A.A., M.B., M.M., D.H., X.T., K.N., E.S., M.E.K.), Stanford University School of Medicine, CA
| | - Fan Zhang
- Vera Moulton Wall Center for Pulmonary Vascular Research (L.C.S., F.Z., R.J.M., E.S., M.E.K.), Stanford University School of Medicine, CA
| | - Wenming Zhang
- Sean N. Parker Center for Asthma and Allergy Research (A.A.F., M.M., W.Z., D.H., K.N., M.E.K.), Stanford University School of Medicine, CA
| | - David Hou
- Sean N. Parker Center for Asthma and Allergy Research (A.A.F., M.M., W.Z., D.H., K.N., M.E.K.), Stanford University School of Medicine, CA
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine (A.A.F., A.A., M.B., M.M., D.H., X.T., K.N., E.S., M.E.K.), Stanford University School of Medicine, CA
| | - Xuefei Tian
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine (A.A.F., A.A., M.B., M.M., D.H., X.T., K.N., E.S., M.E.K.), Stanford University School of Medicine, CA
| | - Lucile Miquerol
- Aix-Marseille University, Centre Nationale de la Recherche Scientifique (CNRS), Institut de Biologie du Developpement de Marseille, Marseille, France (L.M.)
| | - Kari Nadeau
- Sean N. Parker Center for Asthma and Allergy Research (A.A.F., M.M., W.Z., D.H., K.N., M.E.K.), Stanford University School of Medicine, CA
| | - Ross J Metzger
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine (A.A.F., A.A., M.B., M.M., D.H., X.T., K.N., E.S., M.E.K.), Stanford University School of Medicine, CA
| | - Edda Spiekerkoetter
- Vera Moulton Wall Center for Pulmonary Vascular Research (L.C.S., F.Z., R.J.M., E.S., M.E.K.), Stanford University School of Medicine, CA
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine (A.A.F., A.A., M.B., M.M., D.H., X.T., K.N., E.S., M.E.K.), Stanford University School of Medicine, CA
| | - Maya E Kumar
- Division of Pulmonary Medicine, Department of Pediatrics (L.C.S., R.J.M., M.E.K.), Stanford University School of Medicine, CA
- Vera Moulton Wall Center for Pulmonary Vascular Research (L.C.S., F.Z., R.J.M., E.S., M.E.K.), Stanford University School of Medicine, CA
- Sean N. Parker Center for Asthma and Allergy Research (A.A.F., M.M., W.Z., D.H., K.N., M.E.K.), Stanford University School of Medicine, CA
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine (A.A.F., A.A., M.B., M.M., D.H., X.T., K.N., E.S., M.E.K.), Stanford University School of Medicine, CA
| |
Collapse
|
38
|
Lee JY, Francis CM, Bauer NN, Gassman NR, Stevens T. A cancer amidst us: the plexiform lesion in pulmonary arterial hypertension. Am J Physiol Lung Cell Mol Physiol 2020; 318:L1142-L1144. [PMID: 32191119 PMCID: PMC7347268 DOI: 10.1152/ajplung.00092.2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 03/17/2020] [Indexed: 01/21/2023] Open
Affiliation(s)
- Ji Young Lee
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, Alabama
- Department of Internal Medicine, University of South Alabama, Mobile, Alabama
- Center for Lung Biology, University of South Alabama, Mobile, Alabama
| | - C Michael Francis
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, Alabama
- Center for Lung Biology, University of South Alabama, Mobile, Alabama
| | - Natalie N Bauer
- Department of Pharmacology, University of South Alabama, Mobile, Alabama
- Center for Lung Biology, University of South Alabama, Mobile, Alabama
| | - Natalie R Gassman
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, Alabama
- Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama
| | - Troy Stevens
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, Alabama
- Department of Internal Medicine, University of South Alabama, Mobile, Alabama
- Center for Lung Biology, University of South Alabama, Mobile, Alabama
| |
Collapse
|
39
|
Cool CD, Kuebler WM, Bogaard HJ, Spiekerkoetter E, Nicolls MR, Voelkel NF. The hallmarks of severe pulmonary arterial hypertension: the cancer hypothesis-ten years later. Am J Physiol Lung Cell Mol Physiol 2020; 318:L1115-L1130. [PMID: 32023082 PMCID: PMC9847334 DOI: 10.1152/ajplung.00476.2019] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 01/31/2020] [Accepted: 01/31/2020] [Indexed: 01/25/2023] Open
Abstract
Severe forms of pulmonary arterial hypertension (PAH) are most frequently the consequence of a lumen-obliterating angiopathy. One pathobiological model is that the initial pulmonary vascular endothelial cell injury and apoptosis is followed by the evolution of phenotypically altered, apoptosis-resistant, proliferating cells and an inflammatory vascular immune response. Although there may be a vasoconstrictive disease component, the increased pulmonary vascular shear stress in established PAH is caused largely by the vascular wall pathology. In this review, we revisit the "quasi-malignancy concept" of severe PAH and examine to what extent the hallmarks of PAH can be compared with the hallmarks of cancer. The cancer model of severe PAH, based on the growth of abnormal vascular and bone marrow-derived cells, may enable the emergence of novel cell-based PAH treatment strategies.
Collapse
Affiliation(s)
- Carlyne D Cool
- Department of Pathology, University of Colorado, Anschuetz Campus, Aurora, Colorado
| | - Wolfgang M Kuebler
- Institute of Physiology, Charité - Universitaetsmedizin, Berlin, Germany
| | - Harm Jan Bogaard
- Amsterdam University Medical Centers, Department of Pulmonary Medicine, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| | - Edda Spiekerkoetter
- Division of Pulmonary and Critical Care Medicine, Stanford University, Palo Alto, California
| | - Mark R Nicolls
- Division of Pulmonary and Critical Care Medicine, Stanford University, Palo Alto, California
| | - Norbert F Voelkel
- Amsterdam University Medical Centers, Department of Pulmonary Medicine, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| |
Collapse
|
40
|
Nickel NP, Yuan K, Dorfmuller P, Provencher S, Lai YC, Bonnet S, Austin ED, Koch CD, Morris A, Perros F, Montani D, Zamanian RT, de Jesus Perez VA. Beyond the Lungs: Systemic Manifestations of Pulmonary Arterial Hypertension. Am J Respir Crit Care Med 2020; 201:148-157. [PMID: 31513751 DOI: 10.1164/rccm.201903-0656ci] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a disease characterized by progressive loss and remodeling of the pulmonary arteries, resulting in right heart failure and death. Until recently, PAH was seen as a disease restricted to the pulmonary circulation. However, there is growing evidence that patients with PAH also exhibit systemic vascular dysfunction, as evidenced by impaired brachial artery flow-mediated dilation, abnormal cerebral blood flow, skeletal myopathy, and intrinsic kidney disease. Although some of these anomalies are partially due to right ventricular insufficiency, recent data support a mechanistic link to the genetic and molecular events behind PAH pathogenesis. This review serves as an introduction to the major systemic findings in PAH and the evidence that supports a common mechanistic link with PAH pathophysiology. In addition, it discusses recent studies describing morphological changes in systemic vessels and the possible role of bronchopulmonary anastomoses in the development of plexogenic arteriopathy. On the basis of available evidence, we propose a paradigm in which metabolic abnormalities, genetic injury, and systemic vascular dysfunction contribute to systemic manifestations in PAH. This concept not only opens exciting research possibilities but also encourages clinicians to consider extrapulmonary manifestations in their management of patients with PAH.
Collapse
Affiliation(s)
- Nils P Nickel
- Division of Pulmonary and Critical Care Medicine, Stanford University, Stanford, California
| | - Ke Yuan
- Division of Pulmonary and Critical Care Medicine, Stanford University, Stanford, California
| | - Peter Dorfmuller
- Department of Pathology, University of Giessen, Giessen, Germany
| | - Steeve Provencher
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Quebec, Quebec, Quebec, Canada
| | - Yen-Chun Lai
- Division of Pulmonary and Critical Care Medicine, Indiana University, Bloomington, Indiana
| | - Sebastien Bonnet
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Quebec, Quebec, Quebec, Canada
| | - Eric D Austin
- Division of Pediatric Pulmonary and Critical Care Medicine, Vanderbilt University, Nashville Tennessee
| | - Carl D Koch
- Division of Pulmonary and Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Alison Morris
- Division of Pulmonary and Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Frédéric Perros
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Quebec, Quebec, Quebec, Canada.,Inserm Université Paris Sud-Centre chirurgical Marie Lannelongue 999, Université Paris Sud-Paris Saclay, Hôpital Marie Lannelongue, Le Plessis Robinson, France; and
| | - David Montani
- Inserm Université Paris Sud-Centre chirurgical Marie Lannelongue 999, Université Paris Sud-Paris Saclay, Hôpital Marie Lannelongue, Le Plessis Robinson, France; and.,Service de Pneumologie, Centre de Référence de l'Hypertension Pulmonaire, Hôpital Bicêtre, Assistance Publique-Hôpitaux de Paris (AP-HP), Le Kremlin-Bicêtre, France
| | - Roham T Zamanian
- Division of Pulmonary and Critical Care Medicine, Stanford University, Stanford, California
| | | |
Collapse
|
41
|
Hernandez-Gonzalez I, Tenorio J, Palomino-Doza J, Martinez Meñaca A, Morales Ruiz R, Lago-Docampo M, Valverde Gomez M, Gomez Roman J, Enguita Valls AB, Perez-Olivares C, Valverde D, Gil Carbonell J, Garrido-Lestache Rodríguez-Monte E, del Cerro MJ, Lapunzina P, Escribano-Subias P. Clinical heterogeneity of Pulmonary Arterial Hypertension associated with variants in TBX4. PLoS One 2020; 15:e0232216. [PMID: 32348326 PMCID: PMC7190146 DOI: 10.1371/journal.pone.0232216] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Accepted: 04/09/2020] [Indexed: 12/21/2022] Open
Abstract
Background The knowledge of hereditary predisposition has changed our understanding of Pulmonary Arterial Hypertension. Genetic testing has been widely extended and the application of Pulmonary Arterial Hypertension specific gene panels has allowed its inclusion in the diagnostic workup and increase the diagnostic ratio compared to the traditional sequencing techniques. This is particularly important in the differential diagnosis between Pulmonary Arterial Hypertension and Pulmonary Venoocclusive Disease. Methods Since November 2011, genetic testing is offered to all patients with idiopathic, hereditable and associated forms of Pulmonary Arterial Hypertension or Pulmonary Venoocclusive Disease included in the Spanish Registry of Pulmonary Arterial Hypertension. Herein, we present the clinical phenotype and prognosis of all Pulmonary Arterial Hypertension patients with disease-associated variants in TBX4. Results Out of 579 adults and 45 children, we found in eight patients from seven families, disease-causing associated variants in TBX4. All adult patients had a moderate-severe reduction in diffusion capacity. However, we observed a wide spectrum of clinical presentations, including Pulmonary Venoocclusive Disease suspicion, interstitial lung disease, pulmonary vascular abnormalities and congenital heart disease. Conclusions Genetic testing is now essential for a correct diagnosis work-up in Pulmonary Arterial Hypertension. TBX4-associated Pulmonary Arterial Hypertension has marked clinical heterogeneity. In this regard, a genetic study is extremely useful to obtain an accurate diagnosis and provide appropriate management.
Collapse
Affiliation(s)
| | - Jair Tenorio
- Institute of Medical and Molecular Genetics (INGEMM), Hospital Universitario La Paz, IdiPAZ, Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Institto de Salud Carlos III, Madrid, Spain
| | - Julian Palomino-Doza
- Department of Cardiology, Inherited Cardiac Disease Unit, Hospital Universitario Doce de Octubre, Madrid, Spain
- Department of Cardiology, Pulmonary Hypertension Unit, Hospital Universitario Doce de Octubre, Madrid, Spain
- Centro de Investigación Biomedica en Red en Enfermedades Cardiovasculares, Institto de Salud Carlos III (CIBERCV), Madrid, Spain
| | - Amaya Martinez Meñaca
- Department of Pneumology, Pulmonary Hypertension Unit, Lung Transplant Unit, Hospital Universitario Marqués de Valdecilla, Santander, Spain
| | - Rafael Morales Ruiz
- Department of Radiology, Pulmonary Hypertension Unit, Hospital Universitario Doce de Octubre, Madrid, Spain
| | - Mauro Lago-Docampo
- Department of Biochemistry, Genetics and Immunology, University of Vigo, Vigo, Spain
| | - María Valverde Gomez
- Department of Cardiology, Inherited Cardiac Disease Unit, Hospital Universitario Doce de Octubre, Madrid, Spain
| | - Javier Gomez Roman
- Department of Pathology, Hospital Universitario Marqués de Valdecilla, Santander, Spain
| | - Ana Belén Enguita Valls
- Department of Pathology, Pulmonary Hypertension Unit, Hospital Universitario Doce de Octubre, Madrid, Spain
| | - Carmen Perez-Olivares
- Department of Cardiology, Pulmonary Hypertension Unit, Hospital Universitario Doce de Octubre, Madrid, Spain
| | - Diana Valverde
- Department of Biochemistry, Genetics and Immunology, University of Vigo, Vigo, Spain
| | | | | | - Maria Jesus del Cerro
- Paediatric Cardiology and Grown Up Congenital Heart Disease Department, Hospital Universitario Ramón y Cajal, Madrid, Spain
| | - Pablo Lapunzina
- Institute of Medical and Molecular Genetics (INGEMM), Hospital Universitario La Paz, IdiPAZ, Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Institto de Salud Carlos III, Madrid, Spain
| | - Pilar Escribano-Subias
- Department of Cardiology, Pulmonary Hypertension Unit, Hospital Universitario Doce de Octubre, Madrid, Spain
- Centro de Investigación Biomedica en Red en Enfermedades Cardiovasculares, Institto de Salud Carlos III (CIBERCV), Madrid, Spain
- * E-mail: (PES); (IHG)
| |
Collapse
|
42
|
Birjiniuk A, Glinton KE, Villafranco N, Boyer S, Laufman J, Mizerik E, Scott D, Elsea SH, Galambos C, Varghese NP, Scaglia F. Multiple mitochondrial dysfunctions syndrome 1: An unusual cause of developmental pulmonary hypertension. Am J Med Genet A 2020; 182:755-761. [PMID: 31970900 DOI: 10.1002/ajmg.a.61491] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 12/30/2019] [Accepted: 01/05/2020] [Indexed: 11/06/2022]
Abstract
Pulmonary hypertension (pHTN) is a severe, life-threatening disease, which can be idiopathic or associated with an underlying syndrome or genetic diagnosis. Here we discuss a patient who presented with severe pHTN and was later found to be compound heterozygous for pathogenic variants in the NFU1 gene causing multiple mitochondrial dysfunctions syndrome 1 (MMDS1). Review of autopsy slides from an older sibling revealed the same diagnosis along with pulmonary findings consistent with a developmental lung disorder. In particular, these postmortem, autopsy findings have not been described previously in humans with this mitochondrial syndrome and suggest a possible developmental basis for the severe pHTN seen in this disease. Given the rarity of patients reported with MMDS1, we review the current state of knowledge of this disease and our novel management strategies for pHTN and MMDS1-associated complications in this population.
Collapse
Affiliation(s)
- Alona Birjiniuk
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Kevin E Glinton
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Natalie Villafranco
- Department of Pulmonary Medicine, Texas Children's Hospital, Houston, Texas.,Department of Pediatrics, Section of Pediatric Pulmonology, Baylor College of Medicine, Houston, Texas
| | - Suzanne Boyer
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Jason Laufman
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Elizabeth Mizerik
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Daryl Scott
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Sarah H Elsea
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Csaba Galambos
- Department of Pathology and Laboratory Medicine, University of Colorado School of Medicine and Children's Hospital Colorado, Aurora, Colorado.,Pediatric Heart Lung Center, University of Colorado School of Medicine and Children's Hospital Colorado, Aurora, Colorado
| | - Nidhy P Varghese
- Department of Pulmonary Medicine, Texas Children's Hospital, Houston, Texas.,Department of Pediatrics, Section of Pediatric Pulmonology, Baylor College of Medicine, Houston, Texas
| | - Fernando Scaglia
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas.,BCM-CUHK Center of Medical Genetics, Prince of Wales Hospital, Shatin, Hong Kong.,Texas Children's Hospital, Houston, Texas
| |
Collapse
|
43
|
Norvik C, Westöö CK, Peruzzi N, Lovric G, van der Have O, Mokso R, Jeremiasen I, Brunnström H, Galambos C, Bech M, Tran-Lundmark K. Synchrotron-based phase-contrast micro-CT as a tool for understanding pulmonary vascular pathobiology and the 3-D microanatomy of alveolar capillary dysplasia. Am J Physiol Lung Cell Mol Physiol 2019; 318:L65-L75. [PMID: 31596108 DOI: 10.1152/ajplung.00103.2019] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
This study aimed to explore the value of synchrotron-based phase-contrast microcomputed tomography (micro-CT) in pulmonary vascular pathobiology. The microanatomy of the lung is complex with intricate branching patterns. Tissue sections are therefore difficult to interpret. Recruited intrapulmonary bronchopulmonary anastomoses (IBAs) have been described in several forms of pulmonary hypertension, including alveolar capillary dysplasia with misaligned pulmonary veins (ACD/MPV). Here, we examine paraffin-embedded tissue using this nondestructive method for high-resolution three-dimensional imaging. Blocks of healthy and ACD/MPV lung tissue were used. Pulmonary and bronchial arteries in the ACD/MPV block had been preinjected with dye. One section per block was stained, and areas of interest were marked to allow precise beam-alignment during image acquisition at the X02DA TOMCAT beamline (Swiss Light Source). A ×4 magnifying objective coupled to a 20-µm thick scintillating material and a sCMOS detector yielded the best trade-off between spatial resolution and field-of-view. A phase retrieval algorithm was applied and virtual tomographic slices and video clips of the imaged volumes were produced. Dye injections generated a distinct attenuation difference between vessels and surrounding tissue, facilitating segmentation and three-dimensional rendering. Histology and immunohistochemistry post-imaging offered complementary information. IBAs were confirmed in ACD/MPV, and the MPVs were positioned like bronchial veins/venules. We demonstrate the advantages of using synchrotron-based phase-contrast micro-CT for three-dimensional characterization of pulmonary microvascular anatomy in paraffin-embedded tissue. Vascular dye injections add additional value. We confirm intrapulmonary shunting in ACD/MPV and provide support for the hypothesis that MPVs are dilated bronchial veins/venules.
Collapse
Affiliation(s)
- Christian Norvik
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| | | | - Niccolò Peruzzi
- Medical Radiation Physics, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Goran Lovric
- Centre d'Imagerie BioMédicale, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.,Swiss Light Source, Paul Scherrer Institute, Villigen, Switzerland
| | - Oscar van der Have
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| | | | - Ida Jeremiasen
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Hans Brunnström
- Division of Oncology and Pathology, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Csaba Galambos
- Children's Hospital Colorado, Department of Pathology and Laboratory Medicine, Aurora, Colorado
| | - Martin Bech
- Medical Radiation Physics, Department of Clinical Sciences, Lund University, Lund, Sweden
| | | |
Collapse
|
44
|
Oshima K, Crockett ES, Joshi SR, McLendon JM, Matsumoto Y, McMurtry IF, Abe K, Oka M. Aneurysm-type plexiform lesions form in supernumerary arteries in pulmonary arterial hypertension: potential therapeutic implications. Am J Physiol Lung Cell Mol Physiol 2019; 317:L805-L815. [PMID: 31577161 DOI: 10.1152/ajplung.00121.2019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Histological observations in human pulmonary arterial hypertension (PAH) suggest a link between plexiform lesions and pulmonary supernumerary arteries. Pulmonary microvascular endothelial cells are characterized as hyperproliferative and progenitor-like. This study investigates the hypothesis that aneurysm-type plexiform lesions form in pulmonary supernumerary arteries because of their anatomical properties and endothelial characteristics similar to pulmonary microvascular endothelial cells. To induce PAH, rats were injected with Sugen5416, and exposed to hypoxia (10% O2) for 3 days (early stage) or 3 wk (mid-stage), or 3 wk of hypoxia with an additional 10 wk of normoxia (late-stage PAH). We examined morphology of pulmonary vasculature and vascular remodeling in lung serial sections from PAH and normal rats. Aneurysm-type plexiform lesions formed in small side branches of pulmonary arteries with morphological characteristics similar to supernumerary arteries. Over the course of PAH development, the number of Ki67-positive cells increased in small pulmonary arteries, including supernumerary arteries, whereas the number stayed consistently low in large pulmonary arteries. The increase in Ki67-positive cells was delayed in supernumerary arteries compared with small pulmonary arteries. In late-stage PAH, ~90% of small unconventional side branches that were likely to be supernumerary arteries were nearly closed. These results support our hypothesis that supernumerary arteries are the predominant site for aneurysm-type plexiform lesions in Sugen5416/hypoxia/normoxia-exposed PAH rats partly because of the combination of their unique anatomical properties and the hyperproliferative potential of endothelial cells. We propose that the delayed and extensive occlusive lesion formation in supernumerary arteries could be a preventive therapeutic target in patients with PAH.
Collapse
Affiliation(s)
- Kaori Oshima
- Department of Pharmacology, University of South Alabama, Mobile, Alabama.,Center for Lung Biology, University of South Alabama, Mobile, Alabama
| | - Edward S Crockett
- Department of Pharmacology, University of South Alabama, Mobile, Alabama.,Center for Lung Biology, University of South Alabama, Mobile, Alabama
| | - Sachindra R Joshi
- Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, Alabama.,Center for Lung Biology, University of South Alabama, Mobile, Alabama
| | - Jared M McLendon
- Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, Alabama.,Center for Lung Biology, University of South Alabama, Mobile, Alabama
| | - Yuri Matsumoto
- Department of Pharmacology, University of South Alabama, Mobile, Alabama.,Center for Lung Biology, University of South Alabama, Mobile, Alabama
| | - Ivan F McMurtry
- Department of Pharmacology, University of South Alabama, Mobile, Alabama.,Department of Internal Medicine, University of South Alabama, Mobile, Alabama.,Center for Lung Biology, University of South Alabama, Mobile, Alabama
| | - Kohtaro Abe
- Department of Advanced Cardiovascular Regulation and Therapeutics, Kyushu University, Fukuoka, Japan
| | - Masahiko Oka
- Department of Pharmacology, University of South Alabama, Mobile, Alabama.,Department of Internal Medicine, University of South Alabama, Mobile, Alabama.,Center for Lung Biology, University of South Alabama, Mobile, Alabama
| |
Collapse
|
45
|
Spiekerkoetter E, Goncharova EA, Guignabert C, Stenmark K, Kwapiszewska G, Rabinovitch M, Voelkel N, Bogaard HJ, Graham B, Pullamsetti SS, Kuebler WM. Hot topics in the mechanisms of pulmonary arterial hypertension disease: cancer-like pathobiology, the role of the adventitia, systemic involvement, and right ventricular failure. Pulm Circ 2019; 9:2045894019889775. [PMID: 31798835 PMCID: PMC6868582 DOI: 10.1177/2045894019889775] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 10/29/2019] [Indexed: 02/06/2023] Open
Abstract
In order to intervene appropriately and develop disease-modifying therapeutics for pulmonary arterial hypertension, it is crucial to understand the mechanisms of disease pathogenesis and progression. We herein discuss four topics of disease mechanisms that are currently highly debated, yet still unsolved, in the field of pulmonary arterial hypertension. Is pulmonary arterial hypertension a cancer-like disease? Does the adventitia play an important role in the initiation of pulmonary vascular remodeling? Is pulmonary arterial hypertension a systemic disease? Does capillary loss drive right ventricular failure? While pulmonary arterial hypertension does not replicate all features of cancer, anti-proliferative cancer therapeutics might still be beneficial in pulmonary arterial hypertension if monitored for safety and tolerability. It was recognized that the adventitia as a cell-rich compartment is important in the disease pathogenesis of pulmonary arterial hypertension and should be a therapeutic target, albeit the data are inconclusive as to whether the adventitia is involved in the initiation of neointima formation. There was agreement that systemic diseases can lead to pulmonary arterial hypertension and that pulmonary arterial hypertension can have systemic effects related to the advanced lung pathology, yet there was less agreement on whether idiopathic pulmonary arterial hypertension is a systemic disease per se. Despite acknowledging the limitations of exactly assessing vascular density in the right ventricle, it was recognized that the failing right ventricle may show inadequate vascular adaptation resulting in inadequate delivery of oxygen and other metabolites. Although the debate was not meant to result in a definite resolution of the specific arguments, it sparked ideas about how we might resolve the discrepancies by improving our disease modeling (rodent models, large-animal studies, studies of human cells, tissues, and organs) as well as standardization of the models. Novel experimental approaches, such as lineage tracing and better three-dimensional imaging of experimental as well as human lung and heart tissues, might unravel how different cells contribute to the disease pathology.
Collapse
Affiliation(s)
- Edda Spiekerkoetter
- Division of Pulmonary and Critical Care Medicine, Wall Center for Pulmonary Vascular Disease, Cardiovascular Institute, Stanford University, Stanford, CA, USA
| | - Elena A. Goncharova
- Pittsburgh Heart, Blood and Vascular Medicine Institute, Pulmonary, Allergy & Critical Care Division, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Christophe Guignabert
- INSERM UMR_S 999, Université Paris-Sud, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Kurt Stenmark
- Department of Pediatrics, School of Medicine, University of Colorado, Denver, CO, USA
- Cardio Vascular Pulmonary Research Lab, University of Colorado, Denver, CO, USA
| | - Grazyna Kwapiszewska
- Ludwig Boltzmann Institute, Lung Vascular Research, Medical University of Graz, Graz, Austria
| | - Marlene Rabinovitch
- Division of Pediatric Cardiology, Wall Center for Pulmonary Vascular Disease, Cardiovascular Institute, Stanford University, Stanford, CA, USA
| | - Norbert Voelkel
- Department of Pulmonary Medicine, Vrije Universiteit MC, Amsterdam, The Netherlands
| | - Harm J. Bogaard
- Department of Pulmonary Medicine, Vrije Universiteit MC, Amsterdam, The Netherlands
| | - Brian Graham
- Pulmonary Sciences and Critical Care, School of Medicine, University of Colorado, Denver, CO, USA
| | - Soni S. Pullamsetti
- Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
- Department of Internal Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), Giessen, Germany
| | - Wolfgang M. Kuebler
- Institute of Physiology, Charité – Universitaetsmedizin Berlin, Berlin, Germany
- The Keenan Research Centre for Biomedical Science at St. Michael's, Toronto, ON, Canada
- Department of Surgery, University of Toronto, Toronto, ON, Canada
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
46
|
Humbert M, Guignabert C, Bonnet S, Dorfmüller P, Klinger JR, Nicolls MR, Olschewski AJ, Pullamsetti SS, Schermuly RT, Stenmark KR, Rabinovitch M. Pathology and pathobiology of pulmonary hypertension: state of the art and research perspectives. Eur Respir J 2019; 53:13993003.01887-2018. [PMID: 30545970 PMCID: PMC6351340 DOI: 10.1183/13993003.01887-2018] [Citation(s) in RCA: 782] [Impact Index Per Article: 156.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 10/08/2018] [Indexed: 12/21/2022]
Abstract
Clinical and translational research has played a major role in advancing our understanding of pulmonary hypertension (PH), including pulmonary arterial hypertension and other forms of PH with severe vascular remodelling (e.g. chronic thromboembolic PH and pulmonary veno-occlusive disease). However, PH remains an incurable condition with a high mortality rate, underscoring the need for a better transfer of novel scientific knowledge into healthcare interventions. Herein, we review recent findings in pathology (with the questioning of the strict morphological categorisation of various forms of PH into pre- or post-capillary involvement of pulmonary vessels) and cellular mechanisms contributing to the onset and progression of pulmonary vascular remodelling associated with various forms of PH. We also discuss ways to improve management and to support and optimise drug development in this research field.
Collapse
Affiliation(s)
- Marc Humbert
- Faculté de Médecine, Université Paris-Sud and Université Paris-Saclay, Le Kremlin-Bicêtre, France.,INSERM UMR_S 999, Le Plessis-Robinson, France.,AP-HP, Service de Pneumologie, Centre de Référence de l'Hypertension Pulmonaire Sévère, Département Hospitalo-Universitaire (DHU) Thorax Innovation (TORINO), Hôpital de Bicêtre, Le Kremlin-Bicêtre, France
| | - Christophe Guignabert
- Faculté de Médecine, Université Paris-Sud and Université Paris-Saclay, Le Kremlin-Bicêtre, France.,INSERM UMR_S 999, Le Plessis-Robinson, France
| | - Sébastien Bonnet
- Pulmonary Hypertension Research Group, Centre de Recherche de l'Institut de Cardiologie et de Pneumologie de Quebec, Quebec City, QC, Canada.,Dept of Medicine, Université Laval, Quebec City, QC, Canada
| | - Peter Dorfmüller
- Faculté de Médecine, Université Paris-Sud and Université Paris-Saclay, Le Kremlin-Bicêtre, France.,INSERM UMR_S 999, Le Plessis-Robinson, France.,Pathology Dept, Hôpital Marie Lannelongue, Le Plessis-Robinson, France
| | - James R Klinger
- Division of Pulmonary, Critical Care and Sleep Medicine, Dept of Medicine, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Mark R Nicolls
- Cardiovascular Institute, Dept of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA.,Division of Pulmonary and Critical Care Medicine, Dept of Medicine, Stanford University School of Medicine/VA Palo Alto, Palo Alto, CA, USA.,The Vera Moulton Wall Center for Pulmonary Vascular Disease, Stanford, CA, USA
| | - Andrea J Olschewski
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria.,Institute of Physiology, Medical University of Graz, Graz, Austria
| | - Soni S Pullamsetti
- Max Planck Institute for Heart and Lung Research Bad Nauheim, Bad Nauheim, Germany.,Justus-Liebig University Giessen, Excellence Cluster Cardio Pulmonary Institute (CPI), Giessen, Germany
| | - Ralph T Schermuly
- University of Giessen and Marburg Lung Centre (UGMLC), Justus-Liebig University Giessen and Member of the German Center for Lung Research (DZL), Excellence Cluster Cardio Pulmonary Institute (CPI), Giessen, Germany
| | - Kurt R Stenmark
- Developmental Lung Biology and Cardiovascular Pulmonary Research Laboratories, University of Colorado, Denver, CO, USA
| | - Marlene Rabinovitch
- Cardiovascular Institute, Dept of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA.,Division of Pulmonary and Critical Care Medicine, Dept of Medicine, Stanford University School of Medicine/VA Palo Alto, Palo Alto, CA, USA.,The Vera Moulton Wall Center for Pulmonary Vascular Disease, Stanford, CA, USA
| |
Collapse
|
47
|
Adang LA, Frank DB, Gilani A, Takanohashi A, Ulrick N, Collins A, Cross Z, Galambos C, Helman G, Kanaan U, Keller S, Simon D, Sherbini O, Hanna BD, Vanderver AL. Aicardi goutières syndrome is associated with pulmonary hypertension. Mol Genet Metab 2018; 125:351-358. [PMID: 30219631 PMCID: PMC6880931 DOI: 10.1016/j.ymgme.2018.09.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 09/06/2018] [Accepted: 09/06/2018] [Indexed: 12/18/2022]
Abstract
While pulmonary hypertension (PH) is a potentially life threatening complication of many inflammatory conditions, an association between Aicardi Goutières syndrome (AGS), a rare genetic cause of interferon (IFN) overproduction, and the development of PH has not been characterized to date. We analyzed the cardiac function of individuals with AGS enrolled in the Myelin Disorders Bioregistry Project using retrospective chart review (n = 61). Additional prospective echocardiograms were obtained when possible (n = 22). An IFN signature score, a marker of systemic inflammation, was calculated through the measurement of mRNA transcripts of type I IFN-inducible genes (interferon signaling genes or ISG). Pathologic analysis was performed as available from autopsy samples. Within our cohort, four individuals were identified to be affected by PH: three with pathogenic gain-of-function mutations in the IFIH1 gene and one with heterozygous TREX1 mutations. All studied individuals with AGS were noted to have elevated IFN signature scores (Mann-Whitney p < .001), with the highest levels in individuals with IFIH1 mutations (Mann-Whitney p < .0001). We present clinical and histologic evidence of PH in a series of four individuals with AGS, a rare interferonopathy. Importantly, IFIH1 and TREX1 may represent a novel cause of PH. Furthermore, these findings underscore the importance of screening all individuals with AGS for PH.
Collapse
Affiliation(s)
- Laura A Adang
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
| | - David B Frank
- Division of Cardiology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Ahmed Gilani
- Department of Pathology, University of Colorado, Children's Hospital Colorado, Aurora, CO, USA
| | - Asako Takanohashi
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Nicole Ulrick
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Abigail Collins
- Division of Pediatric Neurology, Colorado Children's Hospital, Aurora, CO, USA
| | - Zachary Cross
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Csaba Galambos
- Department of Pathology, University of Colorado, Children's Hospital Colorado, Aurora, CO, USA
| | - Guy Helman
- Murdoch Children's Research Institute, Parkville, Melbourne, Australia
| | - Usama Kanaan
- Division of Pediatric Cardiology, Emory University, Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Stephanie Keller
- Division of Pediatric Neurology, Emory University, Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Dawn Simon
- Division of pediatric pulmonology, Children's Healthcare of Atlanta, Emory University, Atlanta, GA, USA
| | - Omar Sherbini
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Brian D Hanna
- Division of Cardiology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Adeline L Vanderver
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| |
Collapse
|
48
|
Wang T, Zheng X, Li R, Liu X, Wu J, Zhong X, Zhang W, Liu Y, He X, Liu W, Wang H, Zeng H. Integrated bioinformatic analysis reveals YWHAB as a novel diagnostic biomarker for idiopathic pulmonary arterial hypertension. J Cell Physiol 2018; 234:6449-6462. [PMID: 30317584 DOI: 10.1002/jcp.27381] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Accepted: 08/17/2018] [Indexed: 11/05/2022]
Abstract
Idiopathic pulmonary arterial hypertension (IPAH) is a severe cardiovascular disease that is a serious threat to human life. However, the specific diagnostic biomarkers have not been fully clarified and candidate regulatory targets for IPAH have not been identified. The aim of this study was to explore the potential diagnostic biomarkers and possible regulatory targets of IPAH. We performed a weighted gene coexpression network analysis and calculated module-trait correlations based on a public microarray data set (GSE703) and six modules were found to be related to IPAH. Two modules which have the strongest correlation with IPAH were further analyzed and the top 10 hub genes in the two modules were identified. Furthermore, we validated the data by quantitative real-time polymerase chain reaction (qRT-PCR) in an independent sample set originated from our study center. Overall, the qRT-PCR results were consistent with most of the results of the microarray analysis. Intriguingly, the highest change was found for YWHAB, a gene encodes a protein belonging to the 14-3-3 family of proteins, members of which mediate signal transduction by binding to phosphoserine-containing proteins. Thus, YWHAB was subsequently selected for validation. In congruent with the gene expression analysis, plasma 14-3-3β concentrations were significantly increased in patients with IPAH compared with healthy controls, and 14-3-3β expression was also positively correlated with mean pulmonary artery pressure ( R 2 = 0.8783; p < 0.001). Taken together, using weighted gene coexpression analysis, YWHAB was identified and validated in association with IPAH progression, which might serve as a biomarker and/or therapeutic target for IPAH.
Collapse
Affiliation(s)
- Tao Wang
- Department of Internal Medicine, Division of Cardiology, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| | - Xuan Zheng
- Laboratory of Molecular Cardiology, Wuhan Asia Heart Hospital, Wuhan University, Wuhan, China
| | - Ruidong Li
- Graduate Program in Genetics, Genomics, and Bioinformatics, University of California, Riverside, California
| | - Xintian Liu
- Department of Cardiology, Wuhan Asia Heart Hospital, Wuhan University, Wuhan, China
| | - Jinhua Wu
- Department of Internal Medicine, Division of Cardiology, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| | - Xiaodan Zhong
- Department of Internal Medicine, Division of Cardiology, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| | - Wenjun Zhang
- Department of Internal Medicine, Division of Cardiology, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| | - Yujian Liu
- Department of Internal Medicine, Division of Cardiology, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| | - Xingwei He
- Department of Internal Medicine, Division of Cardiology, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| | - Wanjun Liu
- Department of Internal Medicine, Division of Cardiology, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| | - Hongjie Wang
- Department of Internal Medicine, Division of Cardiology, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| | - Hesong Zeng
- Department of Internal Medicine, Division of Cardiology, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| |
Collapse
|
49
|
Kuebler WM, Nicolls MR, Olschewski A, Abe K, Rabinovitch M, Stewart D, Chan SY, Morrell NW, Archer SL, Spiekerkoetter E. A pro-con debate: current controversies in PAH pathogenesis at the American Thoracic Society International Conference in 2017. Am J Physiol Lung Cell Mol Physiol 2018; 315:L502-L516. [PMID: 29877097 PMCID: PMC6230875 DOI: 10.1152/ajplung.00150.2018] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 05/22/2018] [Accepted: 06/02/2018] [Indexed: 12/16/2022] Open
Abstract
The following review summarizes the pro-con debate about current controversies regarding the pathogenesis of pulmonary arterial hypertension (PAH) that took place at the American Thoracic Society Conference in May 2017. Leaders in the field of PAH research discussed the importance of the immune system, the role of hemodynamic stress and endothelial apoptosis, as well as bone morphogenetic protein receptor-2 signaling in PAH pathogenesis. Whereas this summary does not intend to resolve obvious conflicts in opinion, we hope that the presented arguments entice further discussions and draw a new generation of enthusiastic researchers into this vibrant field of science to bridge existing gaps for a better understanding and therapy of this fatal disease.
Collapse
Affiliation(s)
- Wolfgang M Kuebler
- Institute of Physiology, Charité-Universitaetsmedizin Berlin, Berlin , Germany
- Keenan Research Centre for Biomedical Science at Saint Michael's , Toronto, Ontario , Canada
- Department of Surgery, University of Toronto , Toronto, Ontario , Canada
- Department of Physiology, University of Toronto , Toronto, Ontario , Canada
| | - Mark R Nicolls
- Division of Pulmonary and Critical Care, Department of Medicine, Wall Center for Pulmonary Vascular Disease, Cardiovascular Institute, Stanford University , Stanford, California
| | - Andrea Olschewski
- Ludwig Boltzmann Institute, Lung Vascular Research, Medical University of Graz , Graz , Austria
- Johannes Kepler University Linz, Medicine Rectorate, Linz, Austria
| | - Kohtaro Abe
- Department of Cardiovascular Medicine, Kyushu University Graduate School of Medical Sciences , Fukuoka , Japan
| | - Marlene Rabinovitch
- Division of Cardiology, Department of Pediatrics, Stanford University School of Medicine , Stanford, California
| | - Duncan Stewart
- Division of Cardiology, Department of Medicine, Ottawa Hospital Research Institute , Ottawa, Ontario , Canada
| | - Stephen Y Chan
- Division of Cardiology, Department of Medicine, Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center , Pittsburgh, Pennsylvania
| | - Nicholas W Morrell
- Division of Respiratory Medicine, Department of Medicine, University of Cambridge School of Clinical Medicine, University of Cambridge , Cambridge , United Kingdom
| | - Stephen L Archer
- Department of Medicine, Queen's University , Kingston, Ontario , Canada
| | - Edda Spiekerkoetter
- Division of Pulmonary and Critical Care, Department of Medicine, Wall Center for Pulmonary Vascular Disease, Cardiovascular Institute, Stanford University , Stanford, California
| |
Collapse
|
50
|
Consequences of BMPR2 Deficiency in the Pulmonary Vasculature and Beyond: Contributions to Pulmonary Arterial Hypertension. Int J Mol Sci 2018; 19:ijms19092499. [PMID: 30149506 PMCID: PMC6165502 DOI: 10.3390/ijms19092499] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 08/17/2018] [Accepted: 08/18/2018] [Indexed: 12/18/2022] Open
Abstract
Since its association with familial pulmonary arterial hypertension (PAH) in 2000, Bone Morphogenetic Protein Receptor II (BMPR2) and its related signaling pathway have become recognized as a key regulator of pulmonary vascular homeostasis. Herein, we define BMPR2 deficiency as either an inactivation of the receptor, decreased receptor expression, or an impairment of the receptor’s downstream signaling pathway. Although traditionally the phenotypic consequences of BMPR2 deficiency in PAH have been thought to be limited to the pulmonary vasculature, there is evidence that abnormalities in BMPR2 signaling may have consequences in many other organ systems and cellular compartments. Revisiting how BMPR2 functions throughout health and disease in cells and organs beyond the lung vasculature may provide insight into the contribution of these organ systems to PAH pathogenesis as well as the potential systemic manifestation of PAH. Here we review our knowledge of the consequences of BMPR2 deficiency across multiple organ systems.
Collapse
|