1
|
Jaudas F, Bartenschlager F, Shashikadze B, Santamaria G, Reichart D, Schnell A, Stöckl JB, Degroote RL, Cambra JM, Graeber SY, Bähr A, Kartmann H, Stefanska M, Liu H, Naumann-Bartsch N, Bruns H, Berges J, Hanselmann L, Stirm M, Krebs S, Deeg CA, Blum H, Schulz C, Zawada D, Janda M, Caballero-Posadas I, Kunzelmann K, Moretti A, Laugwitz KL, Kupatt C, Saalmüller A, Fröhlich T, Wolf E, Mall MA, Mundhenk L, Gerner W, Klymiuk N. Perinatal dysfunction of innate immunity in cystic fibrosis. Sci Transl Med 2025; 17:eadk9145. [PMID: 39841805 DOI: 10.1126/scitranslmed.adk9145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 07/13/2024] [Accepted: 12/22/2024] [Indexed: 01/24/2025]
Abstract
In patients with cystic fibrosis (CF), repeated cycles of infection and inflammation eventually lead to fatal lung damage. Although diminished mucus clearance can be restored by highly effective CFTR modulator therapy, inflammation and infection often persist. To elucidate the role of the innate immune system in CF etiology, we investigated a CF pig model and compared these results with those for preschool children with CF. In newborn CF pigs, we observed changes in lung immune cell composition before the onset of infection that were dominated by increased monocyte infiltration, whereas neutrophil numbers remained constant. Flow cytometric and transcriptomic profiling revealed that the infiltrating myeloid cells displayed a more immature status. Cells with comparably immature transcriptomic profiles were enriched in the blood of CF pigs at birth as well as in preschool children with CF. This pattern coincided with decreased CD16 expression in the myeloid cells of both pigs and humans, which translated into lower phagocytic activity and reduced production of reactive oxygen species in both species. These results were indicative of a congenital, translationally conserved, and functionally relevant aberration of the immune system in CF. In newborn wild-type pigs, CFTR transcription in immune cells, including lung-derived and circulating monocytes, isolated from the bone marrow, thymus, spleen, and blood was below the detection limits of highly sensitive assays, suggesting an indirect etiology of the observed effects. Our findings highlight the need for additional immunological treatments to target innate immune deficits in patients with CF.
Collapse
Affiliation(s)
- Florian Jaudas
- First Department of Medicine, Cardiology, TUM University Hospital, Technical University of Munich, School of Medicine and Health, Munich 81675, Germany
- Chair of Molecular Animal Breeding and Biotechnology, Gene Center, LMU Munich, Munich 81377, Germany
- Center of Innovative Medical Models (CiMM), LMU Munich, Oberschleissheim 85764, Germany
- Medizinische Klinik und Poliklinik I, LMU Munich, Munich 81377, Germany
| | | | - Bachuki Shashikadze
- Laboratory for Functional Genome Analysis, Gene Center, LMU Munich, Munich 81377, Germany
| | - Gianluca Santamaria
- First Department of Medicine, Cardiology, TUM University Hospital, Technical University of Munich, School of Medicine and Health, Munich 81675, Germany
- Department of Experimental and Clinical Medicine, University "Magna Graecia" of Catanzaro, Catanzaro 88100, Italy
| | - Daniel Reichart
- Medizinische Klinik und Poliklinik I, LMU Munich, Munich 81377, Germany
- German Center for Cardiovascular Research (DZHK), Munich Heart Alliance, Munich 80802, Germany
- Gene Center Munich, LMU Munich, Munich 81377, Germany
| | - Alexander Schnell
- Department for Pediatric and Adolescent Medicine, University Hospital Erlangen, Erlangen 91054, Germany
| | - Jan Bernd Stöckl
- Laboratory for Functional Genome Analysis, Gene Center, LMU Munich, Munich 81377, Germany
| | - Roxane L Degroote
- Chair of Physiology, Department of Veterinary Sciences, LMU Munich, Planegg 82152, Germany
| | - Josep M Cambra
- First Department of Medicine, Cardiology, TUM University Hospital, Technical University of Munich, School of Medicine and Health, Munich 81675, Germany
- Center of Innovative Medical Models (CiMM), LMU Munich, Oberschleissheim 85764, Germany
| | - Simon Y Graeber
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine and Cystic Fibrosis Center, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin 13353, Germany
- German Center for Lung Research (DZL), associated partner site, Berlin 13353, Germany
- German Center for Child and Adolescent Health (DZKJ), partner site, Berlin 13353, Germany
| | - Andrea Bähr
- First Department of Medicine, Cardiology, TUM University Hospital, Technical University of Munich, School of Medicine and Health, Munich 81675, Germany
- Center of Innovative Medical Models (CiMM), LMU Munich, Oberschleissheim 85764, Germany
| | - Heike Kartmann
- Medizinische Klinik und Poliklinik I, LMU Munich, Munich 81377, Germany
- Gene Center Munich, LMU Munich, Munich 81377, Germany
| | - Monika Stefanska
- Medizinische Klinik und Poliklinik I, LMU Munich, Munich 81377, Germany
| | - Huan Liu
- Medizinische Klinik und Poliklinik I, LMU Munich, Munich 81377, Germany
| | - Nora Naumann-Bartsch
- Department for Pediatric and Adolescent Medicine, University Hospital Erlangen, Erlangen 91054, Germany
| | - Heiko Bruns
- Department of Pediatrics and Adolescent Medicine, FAU Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen 91054, Germany
| | - Johannes Berges
- Department of Pediatrics and Adolescent Medicine, FAU Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen 91054, Germany
| | - Lea Hanselmann
- Institute of Veterinary Pathology, Freie Universität Berlin, Berlin 14163, Germany
| | - Michael Stirm
- Chair of Molecular Animal Breeding and Biotechnology, Gene Center, LMU Munich, Munich 81377, Germany
- Center of Innovative Medical Models (CiMM), LMU Munich, Oberschleissheim 85764, Germany
| | - Stefan Krebs
- Laboratory for Functional Genome Analysis, Gene Center, LMU Munich, Munich 81377, Germany
| | - Cornelia A Deeg
- Chair of Physiology, Department of Veterinary Sciences, LMU Munich, Planegg 82152, Germany
| | - Helmut Blum
- Laboratory for Functional Genome Analysis, Gene Center, LMU Munich, Munich 81377, Germany
| | - Christian Schulz
- Medizinische Klinik und Poliklinik I, LMU Munich, Munich 81377, Germany
- German Center for Cardiovascular Research (DZHK), Munich Heart Alliance, Munich 80802, Germany
- Department of Immunopharmacology, Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, Heidelberg University, Mannheim 68167, Germany
| | - Dorota Zawada
- First Department of Medicine, Cardiology, TUM University Hospital, Technical University of Munich, School of Medicine and Health, Munich 81675, Germany
| | - Melanie Janda
- Chair of Molecular Animal Breeding and Biotechnology, Gene Center, LMU Munich, Munich 81377, Germany
| | | | - Karl Kunzelmann
- Institut für Physiologie, Universität Regensburg, Regensburg 93053, Germany
| | - Alessandra Moretti
- First Department of Medicine, Cardiology, TUM University Hospital, Technical University of Munich, School of Medicine and Health, Munich 81675, Germany
- German Center for Cardiovascular Research (DZHK), Munich Heart Alliance, Munich 80802, Germany
- Chair of Regenerative Medicine in Cardiovascular Disease, TUM University Hospital, Technical University of Munich, School of Medicine and Health, Munich 81675, Germany
| | - Karl-Ludwig Laugwitz
- First Department of Medicine, Cardiology, TUM University Hospital, Technical University of Munich, School of Medicine and Health, Munich 81675, Germany
- German Center for Cardiovascular Research (DZHK), Munich Heart Alliance, Munich 80802, Germany
| | - Christian Kupatt
- First Department of Medicine, Cardiology, TUM University Hospital, Technical University of Munich, School of Medicine and Health, Munich 81675, Germany
- German Center for Cardiovascular Research (DZHK), Munich Heart Alliance, Munich 80802, Germany
| | - Armin Saalmüller
- Institute of Immunology, University of Veterinary Medicine, Vienna 1210, Austria
| | - Thomas Fröhlich
- Laboratory for Functional Genome Analysis, Gene Center, LMU Munich, Munich 81377, Germany
| | - Eckhard Wolf
- Chair of Molecular Animal Breeding and Biotechnology, Gene Center, LMU Munich, Munich 81377, Germany
- Center of Innovative Medical Models (CiMM), LMU Munich, Oberschleissheim 85764, Germany
- Gene Center Munich, LMU Munich, Munich 81377, Germany
| | - Marcus A Mall
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine and Cystic Fibrosis Center, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin 13353, Germany
- German Center for Lung Research (DZL), associated partner site, Berlin 13353, Germany
- German Center for Child and Adolescent Health (DZKJ), partner site, Berlin 13353, Germany
| | - Lars Mundhenk
- Institute of Veterinary Pathology, Freie Universität Berlin, Berlin 14163, Germany
| | - Wilhelm Gerner
- Institute of Immunology, University of Veterinary Medicine, Vienna 1210, Austria
| | - Nikolai Klymiuk
- First Department of Medicine, Cardiology, TUM University Hospital, Technical University of Munich, School of Medicine and Health, Munich 81675, Germany
- Center of Innovative Medical Models (CiMM), LMU Munich, Oberschleissheim 85764, Germany
| |
Collapse
|
2
|
Mall MA, Burgel PR, Castellani C, Davies JC, Salathe M, Taylor-Cousar JL. Cystic fibrosis. Nat Rev Dis Primers 2024; 10:53. [PMID: 39117676 DOI: 10.1038/s41572-024-00538-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/09/2024] [Indexed: 08/10/2024]
Abstract
Cystic fibrosis is a rare genetic disease caused by mutations in CFTR, the gene encoding cystic fibrosis transmembrane conductance regulator (CFTR). The discovery of CFTR in 1989 has enabled the unravelling of disease mechanisms and, more recently, the development of CFTR-directed therapeutics that target the underlying molecular defect. The CFTR protein functions as an ion channel that is crucial for correct ion and fluid transport across epithelial cells lining the airways and other organs. Consequently, CFTR dysfunction causes a complex multi-organ disease but, to date, most of the morbidity and mortality in people with cystic fibrosis is due to muco-obstructive lung disease. Cystic fibrosis care has long been limited to treating symptoms using nutritional support, airway clearance techniques and antibiotics to suppress airway infection. The widespread implementation of newborn screening for cystic fibrosis and the introduction of a highly effective triple combination CFTR modulator therapy that has unprecedented clinical benefits in up to 90% of genetically eligible people with cystic fibrosis has fundamentally changed the therapeutic landscape and improved prognosis. However, people with cystic fibrosis who are not eligible based on their CFTR genotype or who live in countries where they do not have access to this breakthrough therapy remain with a high unmet medical need.
Collapse
Affiliation(s)
- Marcus A Mall
- Department of Paediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität, Berlin, Germany.
- German Centre for Lung Research (DZL), Associated Partner Site Berlin, Berlin, Germany.
- German Center for Child and Adolescent Health (DZKJ), Partner Site Berlin, Berlin, Germany.
| | - Pierre-Régis Burgel
- Université Paris Cité and Institut Cochin, Inserm U1016, Paris, France
- Department of Respiratory Medicine and National Reference Center for Cystic Fibrosis, Cochin Hospital, Assistance Publique Hôpitaux de Paris (AP-HP), Paris, France
| | - Carlo Castellani
- IRCCS Istituto Giannina Gaslini, Cystic Fibrosis Center, Genoa, Italy
| | - Jane C Davies
- National Heart & Lung Institute, Imperial College London, London, UK
- St Thomas' NHS Trust, London, UK
- Royal Brompton Hospital, Part of Guy's & St Thomas' Trust, London, UK
| | - Matthias Salathe
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, MO, USA
| | - Jennifer L Taylor-Cousar
- Division of Pulmonary, Critical Care and Sleep Medicine, National Jewish Health, Denver, CO, USA
- Division of Pulmonary Sciences and Critical Care Medicine, Anschutz Medical Campus, University of Colorado, Aurora, CO, USA
- Division of Paediatric Pulmonary Medicine, National Jewish Health, Denver, CO, USA
| |
Collapse
|
3
|
Meyerholz DK, Burrough ER, Kirchhof N, Anderson DJ, Helke KL. Swine models in translational research and medicine. Vet Pathol 2024; 61:512-523. [PMID: 38197394 DOI: 10.1177/03009858231222235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
Swine are increasingly studied as animal models of human disease. The anatomy, size, longevity, physiology, immune system, and metabolism of swine are more like humans than traditional rodent models. In addition, the size of swine is preferred for surgical placement and testing of medical devices destined for humans. These features make swine useful for biomedical, pharmacological, and toxicological research. With recent advances in gene-editing technologies, genetic modifications can readily and efficiently be made in swine to study genetic disorders. In addition, gene-edited swine tissues are necessary for studies testing and validating xenotransplantation into humans to meet the critical shortfall of viable organs versus need. Underlying all of these biomedical applications, the knowledge of husbandry, background diseases and lesions, and biosecurity needs are important for productive, efficient, and reproducible research when using swine as a human disease model for basic research, preclinical testing, and translational studies.
Collapse
|
4
|
Hill DB, Button B, Rubinstein M, Boucher RC. Physiology and pathophysiology of human airway mucus. Physiol Rev 2022; 102:1757-1836. [PMID: 35001665 PMCID: PMC9665957 DOI: 10.1152/physrev.00004.2021] [Citation(s) in RCA: 110] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 12/13/2021] [Accepted: 12/19/2021] [Indexed: 01/27/2023] Open
Abstract
The mucus clearance system is the dominant mechanical host defense system of the human lung. Mucus is cleared from the lung by cilia and airflow, including both two-phase gas-liquid pumping and cough-dependent mechanisms, and mucus transport rates are heavily dependent on mucus concentration. Importantly, mucus transport rates are accurately predicted by the gel-on-brush model of the mucociliary apparatus from the relative osmotic moduli of the mucus and periciliary-glycocalyceal (PCL-G) layers. The fluid available to hydrate mucus is generated by transepithelial fluid transport. Feedback interactions between mucus concentrations and cilia beating, via purinergic signaling, coordinate Na+ absorptive vs Cl- secretory rates to maintain mucus hydration in health. In disease, mucus becomes hyperconcentrated (dehydrated). Multiple mechanisms derange the ion transport pathways that normally hydrate mucus in muco-obstructive lung diseases, e.g., cystic fibrosis (CF), chronic obstructive pulmonary disease (COPD), non-CF bronchiectasis (NCFB), and primary ciliary dyskinesia (PCD). A key step in muco-obstructive disease pathogenesis is the osmotic compression of the mucus layer onto the airway surface with the formation of adherent mucus plaques and plugs, particularly in distal airways. Mucus plaques create locally hypoxic conditions and produce airflow obstruction, inflammation, infection, and, ultimately, airway wall damage. Therapies to clear adherent mucus with hydrating and mucolytic agents are rational, and strategies to develop these agents are reviewed.
Collapse
Affiliation(s)
- David B Hill
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Joint Department of Biomedical Engineering, The University of North Carolina and North Carolina State University, Chapel Hill, North Carolina
| | - Brian Button
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Michael Rubinstein
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Department of Mechanical Engineering and Materials Science, Biomedical Engineering, Physics, and Chemistry, Duke University, Durham, North Carolina
| | - Richard C Boucher
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
5
|
Meyerholz DK, Leidinger MR, Goeken JA, Businga TR, Akers A, Vizuett S, Kaemmer CA, Kohlmeyer JL, Dodd RD, Quelle DE. Utility of CD138/syndecan-1 immunohistochemistry for localization of plasmacytes is tissue-dependent in B6 mice. BMC Res Notes 2022; 15:219. [PMID: 35752869 PMCID: PMC9233769 DOI: 10.1186/s13104-022-06100-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 06/07/2022] [Indexed: 11/30/2022] Open
Abstract
Objective Inflammation is present in many diseases and identification of immune cell infiltration is a common assessment. CD138 (syndecan-1) is a recommended immunohistochemical marker for human plasmacytes although it is also expressed in various epithelia and tumors. Similarly, CD138 is a marker for murine plasmacytes, but its tissue immunostaining is not well-defined. Endogenous CD138 expression is an important confounding factor when evaluating plasmacyte infiltration. We studied two plasmacyte markers (CD138 and Kappa light chains) for endogenous immunostaining in five organs and one tumor from B6 mice. Results Plasmacytes in Peyer’s patches were positive for CD138 and Kappa markers without endogenous immunostaining. Endogenous CD138 immunostaining was widespread in liver, kidney, lung and a malignant peripheral nerve sheath tumor (MPNST) versus regionalized immunostaining in skin and small intestine wall. Endogenous Kappa immunostaining was absent in all tissues except for plasmacytes. Tissues with widespread endogenous CD138 immunostaining were contrasted by absence of endogenous Kappa immunostaining. Here, plasmacytes would not be distinguished by CD138, but would be obvious by Kappa immunostaining. Our study suggests that utility of immunostaining for plasmacytes by CD138 is tissue dependent in mice. Additionally, Kappa immunostaining may be a useful alternative in mouse tissues with confounding endogenous CD138 immunostaining.
Collapse
Affiliation(s)
| | | | - J Adam Goeken
- Department of Pathology, University of Iowa, Iowa City, IA, USA
| | | | - Allison Akers
- Department of Pathology, University of Iowa, Iowa City, IA, USA
| | | | - Courtney A Kaemmer
- Department of Neuroscience and Pharmacology, University of Iowa, Iowa City, IA, USA
| | | | - Rebecca D Dodd
- Department of Internal Medicine, University of Iowa, Iowa City, IA, USA
| | - Dawn E Quelle
- Department of Pathology, University of Iowa, Iowa City, IA, USA.,Department of Neuroscience and Pharmacology, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
6
|
Thurman AL, Li X, Villacreses R, Yu W, Gong H, Mather SE, Romano-Ibarra GS, Meyerholz DK, Stoltz DA, Welsh MJ, Thornell IM, Zabner J, Pezzulo AA. A Single-Cell Atlas of Large and Small Airways at Birth in a Porcine Model of Cystic Fibrosis. Am J Respir Cell Mol Biol 2022; 66:612-622. [PMID: 35235762 PMCID: PMC9163647 DOI: 10.1165/rcmb.2021-0499oc] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 01/26/2022] [Indexed: 11/24/2022] Open
Abstract
Lack of CFTR (cystic fibrosis transmembrane conductance regulator) affects the transcriptome, composition, and function of large and small airway epithelia in people with advanced cystic fibrosis (CF); however, whether lack of CFTR causes cell-intrinsic abnormalities present at birth versus inflammation-dependent abnormalities is unclear. We performed a single-cell RNA-sequencing census of microdissected small airways from newborn CF pigs, which recapitulate CF host defense defects and pathology over time. Lack of CFTR minimally affected the transcriptome of large and small airways at birth, suggesting that infection and inflammation drive transcriptomic abnormalities in advanced CF. Importantly, common small airway epithelial cell types expressed a markedly different transcriptome than corresponding large airway cell types. Quantitative immunohistochemistry and electrophysiology of small airway epithelia demonstrated basal cells that reach the apical surface and a water and ion transport advantage. This single cell atlas highlights the archetypal nature of airway epithelial cells with location-dependent gene expression and function.
Collapse
Affiliation(s)
| | - Xiaopeng Li
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, Michigan
| | | | | | | | | | | | | | - David A. Stoltz
- Department of Internal Medicine
- Pappajohn Biomedical Institute
- Department of Molecular Physiology and Biophysics, and
- Department of Biomedical Engineering, and
| | - Michael J. Welsh
- Department of Internal Medicine
- Pappajohn Biomedical Institute
- Department of Molecular Physiology and Biophysics, and
- Department of Neurology, Roy J. and Lucille A. Carver College of Medicine
- Howard Hughes Medical Institute, University of Iowa, Iowa City, Iowa
| | | | - Joseph Zabner
- Department of Internal Medicine
- Pappajohn Biomedical Institute
| | | |
Collapse
|
7
|
Saluzzo F, Riberi L, Messore B, Loré NI, Esposito I, Bignamini E, De Rose V. CFTR Modulator Therapies: Potential Impact on Airway Infections in Cystic Fibrosis. Cells 2022; 11:cells11071243. [PMID: 35406809 PMCID: PMC8998122 DOI: 10.3390/cells11071243] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/27/2022] [Accepted: 03/31/2022] [Indexed: 11/16/2022] Open
Abstract
Cystic Fibrosis (CF) is an autosomal recessive disease caused by mutations in the gene encoding for the Cystic Fibrosis Transmembrane conductance Regulator (CFTR) protein, expressed on the apical surface of epithelial cells. CFTR absence/dysfunction results in ion imbalance and airway surface dehydration that severely compromise the CF airway microenvironment, increasing infection susceptibility. Recently, novel therapies aimed at correcting the basic CFTR defect have become available, leading to substantial clinical improvement of CF patients. The restoration or increase of CFTR function affects the airway microenvironment, improving local defence mechanisms. CFTR modulator drugs might therefore affect the development of chronic airway infections and/or improve the status of existing infections in CF. Thus far, however, the full extent of these effects of CFTR-modulators, especially in the long-term remains still unknown. This review aims to provide an overview of current evidence on the potential impact of CFTR modulators on airway infections in CF. Their role in affecting CF microbiology, the susceptibility to infections as well as the potential efficacy of their use in preventing/decreasing the development of chronic lung infections and the recurrent acute exacerbations in CF will be critically analysed.
Collapse
Affiliation(s)
- Francesca Saluzzo
- Emerging Bacterial Pathogens Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy;
| | - Luca Riberi
- Postgraduate School in Respiratory Medicine, University of Torino, 10124 Torino, Italy;
| | - Barbara Messore
- Adult Cystic Fibrosis Centre, Azienda Ospedaliero-Universitaria San Luigi Gonzaga, 10043 Orbassano, Italy;
| | - Nicola Ivan Loré
- WHO Collaborating Centre and TB Supranational Reference Laboratory, Emerging Bacterial Pathogens Unit, IRCCS Ospedale San Raffaele, 20132 Milan, Italy;
| | - Irene Esposito
- Paediatric Pulmonology Unit, Regina Margherita Hospital AOU Città della Salute e della Scienza, 10126 Torino, Italy; (I.E.); (E.B.)
| | - Elisabetta Bignamini
- Paediatric Pulmonology Unit, Regina Margherita Hospital AOU Città della Salute e della Scienza, 10126 Torino, Italy; (I.E.); (E.B.)
| | - Virginia De Rose
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy
- Correspondence:
| |
Collapse
|
8
|
Cellular and molecular architecture of submucosal glands in wild-type and cystic fibrosis pigs. Proc Natl Acad Sci U S A 2022; 119:2119759119. [PMID: 35046051 PMCID: PMC8794846 DOI: 10.1073/pnas.2119759119] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/03/2021] [Indexed: 12/13/2022] Open
Abstract
Submucosal glands (SMGs) protect lungs but can also contribute to disease. For example, in cystic fibrosis (CF), SMGs produce abnormal mucus that disrupts mucociliary transport. CF is an ion transport disease, yet knowledge of the ion transporters expressed by SMG acini, which produce mucus, and SMG ducts that carry it to the airway lumen is limited. Therefore, we isolated SMGs from newborn pigs and used single-cell messenger RNA sequencing, immunohistochemistry, and in situ hybridization to identify cell types, gene expression, and spatial distribution. Cell types and transcript levels were the same in non-CF and CF SMGs, suggesting that loss of epithelial anion secretion rather than an intrinsic cell defect causes CF mucus abnormalities. Gene signatures of acinar mucous and acinar serous cells revealed specialized functions in producing mucins and antimicrobials, respectively. However, surprisingly, these two cell types expressed the same ion transporters and neurohumoral receptors, suggesting the importance of balancing mucin and liquid secretion to produce optimal mucus properties. SMG duct cell transcripts suggest that they secrete HCO3- and Cl-, and thus have some similarity to pancreatic ducts that are also defective in CF. These and additional findings suggest the functions of the SMG acinus and duct and provide a baseline for understanding how environmental and genetic challenges impact their contribution to lung disease.
Collapse
|
9
|
Fleurot I, López-Gálvez R, Barbry P, Guillon A, Si-Tahar M, Bähr A, Klymiuk N, Sirard JC, Caballero I. TLR5 signalling is hyper-responsive in porcine cystic fibrosis airways epithelium. J Cyst Fibros 2021; 21:e117-e121. [PMID: 34420900 DOI: 10.1016/j.jcf.2021.08.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 06/07/2021] [Accepted: 08/04/2021] [Indexed: 10/20/2022]
Abstract
Excessive lung inflammation and airway epithelium damage are hallmarks of cystic fibrosis (CF) disease. It is unclear whether lung inflammation is related to an intrinsic defect in the immune response or to chronic infection. We aimed to determine whether TLR5-mediated response is defective in the CF airway epithelium. We used a newborn CF pig model to study intrinsic alterations in CF airway epithelium innate immune response. Airway epithelial cells (AECs) were stimulated with flagellin or lipopolysaccharide to determine responses specific for TLR5 and TLR4, respectively. We observed a significant increase in cytokine secretion when CF AECs were stimulated with flagellin compared to wild type (WT) AECs. These results were recapitulated when AECs were treated with an inhibitor of CFTR channel activity. We show that TLR5-signalling is altered in CF lung epithelium at birth. Modulation of TLR5 signalling could contribute to better control the excessive inflammatory response observed in CF lungs.
Collapse
Affiliation(s)
- Isabelle Fleurot
- INRAE, Université de Tours, UMR-1282 Infectiologie et Santé Publique (ISP), Centre de Recherche Val de Loire, 37380 Nouzilly, France
| | - Raquel López-Gálvez
- INRAE, Université de Tours, UMR-1282 Infectiologie et Santé Publique (ISP), Centre de Recherche Val de Loire, 37380 Nouzilly, France
| | - Pascal Barbry
- Université Côte d'Azur, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, F06560 Sophia Antipolis, France
| | - Antoine Guillon
- Université de Tours, 37000 Tours, France; INSERM U1100, Centre d'étude des pathologies respiratoires (CEPR), 37000 Tours, France
| | - Mustapha Si-Tahar
- Université de Tours, 37000 Tours, France; INSERM U1100, Centre d'étude des pathologies respiratoires (CEPR), 37000 Tours, France
| | - Andrea Bähr
- CIMM-Gene Center and Center for Innovative Medical Models, LMU Munich, Germany
| | - Nikolai Klymiuk
- CIMM-Gene Center and Center for Innovative Medical Models, LMU Munich, Germany
| | - Jean-Claude Sirard
- Univ. Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019 - UMR9017 - CIIL - Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Ignacio Caballero
- INRAE, Université de Tours, UMR-1282 Infectiologie et Santé Publique (ISP), Centre de Recherche Val de Loire, 37380 Nouzilly, France.
| |
Collapse
|
10
|
Alberio R, Wolf E. 25th ANNIVERSARY OF CLONING BY SOMATIC-CELL NUCLEAR TRANSFER: Nuclear transfer and the development of genetically modified/gene edited livestock. Reproduction 2021; 162:F59-F68. [PMID: 34096507 PMCID: PMC8240728 DOI: 10.1530/rep-21-0078] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 05/04/2021] [Indexed: 12/11/2022]
Abstract
The birth and adult development of 'Dolly' the sheep, the first mammal produced by the transfer of a terminally differentiated cell nucleus into an egg, provided unequivocal evidence of nuclear equivalence among somatic cells. This ground-breaking experiment challenged a long-standing dogma of irreversible cellular differentiation that prevailed for over a century and enabled the development of methodologies for reversal of differentiation of somatic cells, also known as nuclear reprogramming. Thanks to this new paradigm, novel alternatives for regenerative medicine in humans, improved animal breeding in domestic animals and approaches to species conservation through reproductive methodologies have emerged. Combined with the incorporation of new tools for genetic modification, these novel techniques promise to (i) transform and accelerate our understanding of genetic diseases and the development of targeted therapies through creation of tailored animal models, (ii) provide safe animal cells, tissues and organs for xenotransplantation, (iii) contribute to the preservation of endangered species, and (iv) improve global food security whilst reducing the environmental impact of animal production. This review discusses recent advances that build on the conceptual legacy of nuclear transfer and – when combined with gene editing – will have transformative potential for medicine, biodiversity and sustainable agriculture. We conclude that the potential of these technologies depends on further fundamental and translational research directed at improving the efficiency and safety of these methods.
Collapse
Affiliation(s)
- Ramiro Alberio
- School of Biosciences University of Nottingham, Nottingham, UK
| | - Eckhard Wolf
- Gene Center and Department of Veterinary Sciences, LMU Munich, Munich, Germany
| |
Collapse
|
11
|
López-Gálvez R, Fleurot I, Chamero P, Trapp S, Olivier M, Chevaleyre C, Barc C, Riou M, Rossignol C, Guillon A, Si-Tahar M, May T, Barbry P, Bähr A, Klymiuk N, Sirard JC, Caballero I. Airway Administration of Flagellin Regulates the Inflammatory Response to Pseudomonas aeruginosa. Am J Respir Cell Mol Biol 2021; 65:378-389. [PMID: 34102087 PMCID: PMC8525202 DOI: 10.1165/rcmb.2021-0125oc] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Excessive lung inflammation and airway epithelial damage are hallmarks of human inflammatory lung diseases, such as cystic fibrosis (CF). Enhancement of innate immunity provides protection against pathogens while reducing lung-damaging inflammation. However, the mechanisms underlying innate immunity–mediated protection in the lung remain mysterious, in part because of the lack of appropriate animal models for these human diseases. TLR5 (Toll-like receptor 5) stimulation by its specific ligand, the bacterial protein flagellin, has been proposed to enhance protection against several respiratory infectious diseases, although other cellular events, such as calcium signaling, may also control the intensity of the innate immune response. Here, we investigated the molecular events prompted by stimulation with flagellin and its role in regulating innate immunity in the lung of the pig, which is anatomically and genetically more similar to humans than rodent models. We found that flagellin treatment modulated NF-κB signaling and intracellular calcium homeostasis in airway epithelial cells. Flagellin pretreatment reduced the NF-κB nuclear translocation and the expression of proinflammatory cytokines to a second flagellin stimulus as well as to Pseudomonas aeruginosa infection. Moreover, in vivo administration of flagellin decreased the severity of P. aeruginosa–induced pneumonia. Then we confirmed these beneficial effects of flagellin in a pathological model of CF by using ex vivo precision-cut lung slices from a CF pigz model. These results provide evidence that flagellin treatment contributes to a better regulation of the inflammatory response in inflammatory lung diseases such as CF.
Collapse
Affiliation(s)
| | | | - Pablo Chamero
- INRAE, 27057, Laboratoire de Physiologie de la Reproduction et des Comportements UMR 0085 INRAE/CNRS/IFCE/Université de Tours, Nouzilly, France
| | - Sascha Trapp
- INRAE, 27057, Infectiologie et Santé Publique, Nouzilly, France
| | - Michel Olivier
- INRAE, 27057, Infectiologie et Santé Publique, Nouzilly, France
| | | | - Céline Barc
- INRAE, UE-1277 Plateforme d'infectiologie expérimentale (PFIE), Centre de Recherche Val de Loire, Nouzilly, France
| | - Mickael Riou
- INRAE, 27057, UE-1277 Plateforme d'infectiologie expérimentale (PFIE), Centre de Recherche Val de Loire, Nouzilly, France
| | | | - Antoine Guillon
- INSERM, Centre d'Etude des Pathologies Respiratoires, UMR 1100, Tours, France.,CHRU de Tours, service de médecine intensive - réanimation, Tours, France
| | - Mustapha Si-Tahar
- INSERM U1100 - Faculty of Medicine, Study Center for Respiratory Pathologies, Tours, France
| | | | - Pascal Barbry
- Université Côte d'Azur, Institut de Pharmacologie Moléculaire et Cellulaire, Sophia Antipolis, France.,CNRS, 27051, Institut de Pharmacologie Moléculaire et Cellulaire, Sophia Antipolis, France
| | | | - Nikolai Klymiuk
- LMU, 9183, CIMM-Gene Center and Center for Innovative Medical Models, Munchen, Germany
| | - Jean-Claude Sirard
- Center for Infection and Immunity of Lille, 165209, Univ. Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019 - UMR9017 , Lille, France
| | | |
Collapse
|
12
|
Thurman AL, Ratcliff JA, Chimenti MS, Pezzulo AA. Differential gene expression analysis for multi-subject single cell RNA sequencing studies with aggregateBioVar. Bioinformatics 2021; 37:3243-3251. [PMID: 33970215 PMCID: PMC8504643 DOI: 10.1093/bioinformatics/btab337] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 04/07/2021] [Accepted: 04/30/2021] [Indexed: 11/14/2022] Open
Abstract
Motivation Single-cell RNA-sequencing (scRNA-seq) provides more granular biological information than bulk RNA-sequencing; bulk RNA sequencing remains popular due to lower costs which allows processing more biological replicates and design more powerful studies. As scRNA-seq costs have decreased, collecting data from more than one biological replicate has become more feasible, but careful modeling of different layers of biological variation remains challenging for many users. Here, we propose a statistical model for scRNA-seq gene counts, describe a simple method for estimating model parameters and show that failing to account for additional biological variation in scRNA-seq studies can inflate false discovery rates (FDRs) of statistical tests. Results First, in a simulation study, we show that when the gene expression distribution of a population of cells varies between subjects, a naïve approach to differential expression analysis will inflate the FDR. We then compare multiple differential expression testing methods on scRNA-seq datasets from human samples and from animal models. These analyses suggest that a naïve approach to differential expression testing could lead to many false discoveries; in contrast, an approach based on pseudobulk counts has better FDR control. Availability and implementation A software package, aggregateBioVar, is freely available on Bioconductor (https://www.bioconductor.org/packages/release/bioc/html/aggregateBioVar.html) to accommodate compatibility with upstream and downstream methods in scRNA-seq data analysis pipelines. Supplementary information Raw gene-by-cell count matrices for pig scRNA-seq data are available as GEO accession GSE150211. Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Andrew L Thurman
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
- To whom correspondence should be addressed. or
| | - Jason A Ratcliff
- Iowa Institute of Human Genetics, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Michael S Chimenti
- Iowa Institute of Human Genetics, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Alejandro A Pezzulo
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
- To whom correspondence should be addressed. or
| |
Collapse
|
13
|
Evidence of early increased sialylation of airway mucins and defective mucociliary clearance in CFTR-deficient piglets. J Cyst Fibros 2020; 20:173-182. [PMID: 32978064 DOI: 10.1016/j.jcf.2020.09.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 06/29/2020] [Accepted: 09/09/2020] [Indexed: 12/22/2022]
Abstract
BACKGROUND Bacterial colonization in cystic fibrosis (CF) lungs has been directly associated to the loss of CFTR function, and/or secondarily linked to repetitive cycles of chronic inflammation/infection. We hypothesized that altered molecular properties of mucins could contribute to this process. METHODS Newborn CFTR+/+ and CFTR-/- were sacrificed before and 6 h after inoculation with luminescent Pseudomonas aeruginosa into the tracheal carina. Tracheal mucosa and the bronchoalveolar lavage (BAL) fluid were collected to determine the level of mucin O-glycosylation, bacteria binding to mucins and the airways transcriptome. Disturbances in mucociliary transport were determined by ex-vivo imaging of luminescent Pseudomonas aeruginosa. RESULTS We provide evidence of an increased sialylation of CF airway mucins and impaired mucociliary transport that occur before the onset of inflammation. Hypersialylation of mucins was reproduced on tracheal explants from non CF animals treated with GlyH101, an inhibitor of CFTR channel activity, indicating a causal relationship between the absence of CFTR expression and the sialylation of mucins. This increased sialylation was correlated to an increased adherence of P. aeruginosa to mucins. In vivo infection of newborn CF piglets by live luminescent P. aeruginosa demonstrated an impairment of mucociliary transport of this bacterium, with no evidence of pre-existing inflammation. CONCLUSIONS Our results document for the first time in a well-defined CF animal model modifications that affect the O-glycan chains of mucins. These alterations precede infection and inflammation of airway tissues, and provide a favorable context for microbial development in CF lung that hallmarks this disease.
Collapse
|
14
|
Briottet M, Shum M, Urbach V. The Role of Specialized Pro-Resolving Mediators in Cystic Fibrosis Airways Disease. Front Pharmacol 2020; 11:1290. [PMID: 32982730 PMCID: PMC7493015 DOI: 10.3389/fphar.2020.01290] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 08/04/2020] [Indexed: 12/26/2022] Open
Abstract
Cystic Fibrosis (CF) is a recessive genetic disease due to mutations of the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) gene encoding the CFTR chloride channel. The ion transport abnormalities related to CFTR mutation generate a dehydrated airway surface liquid (ASL) layer, which is responsible for an altered mucociliary clearance, favors infections and persistent inflammation that lead to progressive lung destruction and respiratory failure. The inflammatory response is normally followed by an active resolution phase to return to tissue homeostasis, which involves specialized pro-resolving mediators (SPMs). SPMs promote resolution of inflammation, clearance of microbes, tissue regeneration and reduce pain, but do not evoke unwanted immunosuppression. The airways of CF patients showed a decreased production of SPMs even in the absence of pathogens. SPMs levels in the airway correlated with CF patients' lung function. The prognosis for CF has greatly improved but there remains a critical need for more effective treatments that prevent excessive inflammation, lung damage, and declining pulmonary function for all CF patients. This review aims to highlight the recent understanding of CF airway inflammation and the possible impact of SPMs on functions that are altered in CF airways.
Collapse
Affiliation(s)
| | | | - Valerie Urbach
- Institut national de la santé et de la recherche médicale (Inserm) U955, Institut Mondor de Recherche Biomédicale (IMRB), Créteil, France
| |
Collapse
|
15
|
Wheelock CE, Strandvik B. Abnormal n-6 fatty acid metabolism in cystic fibrosis contributes to pulmonary symptoms. Prostaglandins Leukot Essent Fatty Acids 2020; 160:102156. [PMID: 32750662 DOI: 10.1016/j.plefa.2020.102156] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 06/24/2020] [Accepted: 06/24/2020] [Indexed: 01/09/2023]
Abstract
Cystic fibrosis (CF) is a recessively inherited fatal disease that is the subject of extensive research and ongoing development of therapeutics targeting the defective protein, cystic fibrosis transmembrane conductance regulator (CFTR). Despite progress, the link between CFTR and clinical symptoms is incomplete. The severe CF phenotypes are associated with a deficiency of linoleic acid, which is the precursor of arachidonic acid. The release of arachidonic acid from membranes via phospholipase A2 is the rate-limiting step for eicosanoid synthesis and is increased in CF, which contributes to the observed inflammation. A potential deficiency of docosahexaenoic acid may lead to decreased levels of specialized pro-resolving mediators. This pathophysiology may contribute to an early and sterile inflammation, mucus production, and to bacterial colonization, which further increases inflammation and potentiates the clinical symptoms. Advances in lipid technology will assist in elucidating the role of lipid metabolism in CF, and stimulate therapeutic modulations of inflammation.
Collapse
Affiliation(s)
- Craig E Wheelock
- Division of Physiological Chemistry 2, Dept of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Birgitta Strandvik
- Dept of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
16
|
Zhang S, Shrestha CL, Wisniewski BL, Pham H, Hou X, Li W, Dong Y, Kopp BT. Consequences of CRISPR-Cas9-Mediated CFTR Knockout in Human Macrophages. Front Immunol 2020; 11:1871. [PMID: 32973772 PMCID: PMC7461958 DOI: 10.3389/fimmu.2020.01871] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 07/13/2020] [Indexed: 01/12/2023] Open
Abstract
Macrophage dysfunction is fundamentally related to altered immunity in cystic fibrosis (CF). How genetic deficits in the cystic fibrosis transmembrane conductance regulator (CFTR) lead to these defects remains unknown. Rapid advances in genomic editing such as the clustered regularly interspaced short palindromic repeats associated protein 9 (CRISPR/Cas9) system provide new tools for scientific study. We aimed to create a stable CFTR knockout (KO) in human macrophages in order to study how CFTR regulates macrophage function. Peripheral blood monocytes were isolated from non-CF healthy volunteers and differentiated into monocyte-derived macrophages (MDMs). MDMs were transfected with a CRISPR Cas9 CFTR KO plasmid. CFTR KO efficiency was verified and macrophage halide efflux, phagocytosis, oxidative burst, apoptosis, and cytokine functional assays were performed. CFTR KO in human MDMs was efficient and stable after puromycin selection. CFTR KO was confirmed by CFTR mRNA and protein expression. CFTR function was abolished in CFTR KO MDMs. CFTR KO recapitulated known defects in human CF MDM (CFTR class I/II variants) dysfunction including (1) increased apoptosis, (2) decreased phagocytosis, (3) reduced oxidative burst, and (4) increased bacterial load. Activation of the oxidative burst via nicotinamide adenine dinucleotide phosphate (NADPH) oxidase assembly was diminished in CFTR KO MDMs (decreased phosphorylated p47phox). Cytokine production was unchanged or decreased in response to infection in CFTR KO MDMs. In conclusion, we developed a primary human macrophage CFTR KO system. CFTR KO mimics most pathology observed in macrophages obtained from persons with CF, which suggests that many aspects of CF macrophage dysfunction are CFTR-dependent and not just reflective of the CF inflammatory milieu.
Collapse
Affiliation(s)
- Shuzhong Zhang
- Center for Microbial Pathogenesis, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, United States
| | - Chandra L Shrestha
- Center for Microbial Pathogenesis, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, United States
| | - Benjamin L Wisniewski
- Center for Microbial Pathogenesis, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, United States.,Division of Pulmonary Medicine, Nationwide Children's Hospital, Columbus, OH, United States
| | - Hanh Pham
- Division of Pulmonary Medicine, Nationwide Children's Hospital, Columbus, OH, United States
| | - Xucheng Hou
- Pharmaceutics and Pharmacology, The Ohio State University, Columbus, OH, United States
| | - Wenqing Li
- Pharmaceutics and Pharmacology, The Ohio State University, Columbus, OH, United States
| | - Yizhou Dong
- Pharmaceutics and Pharmacology, The Ohio State University, Columbus, OH, United States
| | - Benjamin T Kopp
- Center for Microbial Pathogenesis, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, United States.,Division of Pulmonary Medicine, Nationwide Children's Hospital, Columbus, OH, United States
| |
Collapse
|
17
|
Tang Y, Yan Z, Engelhardt JF. Viral Vectors, Animal Models, and Cellular Targets for Gene Therapy of Cystic Fibrosis Lung Disease. Hum Gene Ther 2020; 31:524-537. [PMID: 32138545 PMCID: PMC7232698 DOI: 10.1089/hum.2020.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 03/05/2020] [Indexed: 12/14/2022] Open
Abstract
After more than two decades since clinical trials tested the first use of recombinant adeno-associated virus (rAAV) to treat cystic fibrosis (CF) lung disease, gene therapy for this disorder has undergone a tremendous resurgence. Fueling this enthusiasm has been an enhanced understanding of rAAV transduction biology and cellular processes that limit transduction of airway epithelia, the development of new rAAV serotypes and other vector systems with high-level tropism for airway epithelial cells, an improved understanding of CF lung pathogenesis and the cellular targets for gene therapy, and the development of new animal models that reproduce the human CF disease phenotype. These advances have created a preclinical path for both assessing the efficacy of gene therapies in the CF lung and interrogating the target cell types in the lung required for complementation of the CF disease state. Lessons learned from early gene therapy attempts with rAAV in the CF lung have guided thinking for the testing of next-generation vector systems. Although unknown questions still remain regarding the cellular targets in the lung that are required or sufficient to complement CF lung disease, the field is now well positioned to tackle these challenges. This review will highlight the role that next-generation CF animal models are playing in the preclinical development of gene therapies for CF lung disease and the knowledge gaps in disease pathophysiology that these models are attempting to fill.
Collapse
Affiliation(s)
- Yinghua Tang
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Ziying Yan
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - John F. Engelhardt
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
18
|
Cystic fibrosis transmembrane conductance regulator (CFTR) modulators have differential effects on cystic fibrosis macrophage function. Sci Rep 2018; 8:17066. [PMID: 30459435 PMCID: PMC6244248 DOI: 10.1038/s41598-018-35151-7] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 10/30/2018] [Indexed: 12/03/2022] Open
Abstract
Despite the addition of cystic fibrosis transmembrane conductance regulator (CFTR) modulators to the cystic fibrosis (CF) treatment regimen, patients with CF continue to suffer from chronic bacterial infections that lead to progressive respiratory morbidity. Host immunity, and macrophage dysfunction specifically, has an integral role in the inability of patients with CF to clear bacterial infections. We sought to characterize macrophage responses to CFTR modulator treatment as we hypothesized that there would be differential effects based on patient genotype. Human CF and non-CF peripheral blood monocyte-derived macrophages (MDMs) were analyzed for CFTR expression, apoptosis, polarization, phagocytosis, bacterial killing, and cytokine production via microscopy, flow cytometry, and ELISA-based assays. Compared to non-CF MDMs, CF MDMs display decreased CFTR expression, increased apoptosis, and decreased phagocytosis. CFTR expression increased and apoptosis decreased in response to ivacaftor or lumacaftor/ivacaftor therapy, and phagocytosis improved with ivacaftor alone. Ivacaftor restored CF macrophage polarization responses to non-CF levels and reduced Pseudomonas aeruginosa bacterial burden, but did not reduce other bacterial loads. Macrophage inflammatory cytokine production decreased in response to ivacaftor alone. In summary, ivacaftor and lumacaftor/ivacaftor have differential impacts on macrophage function with minimal changes observed in CF patients treated with lumacaftor/ivacaftor. Overall improvements in macrophage function in ivacaftor-treated CF patients result in modestly improved macrophage-mediated bacterial killing.
Collapse
|
19
|
Castellani S, Di Gioia S, di Toma L, Conese M. Human Cellular Models for the Investigation of Lung Inflammation and Mucus Production in Cystic Fibrosis. Anal Cell Pathol (Amst) 2018; 2018:3839803. [PMID: 30581723 PMCID: PMC6276497 DOI: 10.1155/2018/3839803] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 09/04/2018] [Accepted: 09/23/2018] [Indexed: 12/12/2022] Open
Abstract
Chronic inflammation, oxidative stress, mucus plugging, airway remodeling, and respiratory infections are the hallmarks of the cystic fibrosis (CF) lung disease. The airway epithelium is central in the innate immune responses to pathogens colonizing the airways, since it is involved in mucociliary clearance, senses the presence of pathogens, elicits an inflammatory response, orchestrates adaptive immunity, and activates mesenchymal cells. In this review, we focus on cellular models of the human CF airway epithelium that have been used for studying mucus production, inflammatory response, and airway remodeling, with particular reference to two- and three-dimensional cultures that better recapitulate the native airway epithelium. Cocultures of airway epithelial cells, macrophages, dendritic cells, and fibroblasts are instrumental in disease modeling, drug discovery, and identification of novel therapeutic targets. Nevertheless, they have to be implemented in the CF field yet. Finally, novel systems hijacking on tissue engineering, including three-dimensional cocultures, decellularized lungs, microfluidic devices, and lung organoids formed in bioreactors, will lead the generation of relevant human preclinical respiratory models a step forward.
Collapse
Affiliation(s)
- Stefano Castellani
- Laboratory of Regenerative and Experimental Medicine, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Sante Di Gioia
- Laboratory of Regenerative and Experimental Medicine, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Lorena di Toma
- Laboratory of Regenerative and Experimental Medicine, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Massimo Conese
- Laboratory of Regenerative and Experimental Medicine, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| |
Collapse
|
20
|
Webster MJ, Tarran R. Slippery When Wet: Airway Surface Liquid Homeostasis and Mucus Hydration. CURRENT TOPICS IN MEMBRANES 2018; 81:293-335. [PMID: 30243435 DOI: 10.1016/bs.ctm.2018.08.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The ability to regulate cell volume is crucial for normal physiology; equally the regulation of extracellular fluid homeostasis is of great importance. Alteration of normal extracellular fluid homeostasis contributes to the development of several diseases including cystic fibrosis. With regard to the airway surface liquid (ASL), which lies apically on top of airway epithelia, ion content, pH, mucin and protein abundance must be tightly regulated. Furthermore, airway epithelia must be able to switch from an absorptive to a secretory state as required. A heterogeneous population of airway epithelial cells regulate ASL solute and solvent composition, and directly secrete large mucin molecules, antimicrobials, proteases and soluble mediators into the airway lumen. This review focuses on how epithelial ion transport influences ASL hydration and ASL pH, with a specific focus on the roles of anion and cation channels and exchangers. The role of ions and pH in mucin expansion is also addressed. With regard to fluid volume regulation, we discuss the roles of nucleotides, adenosine and the short palate lung and nasal epithelial clone 1 (SPLUNC1) as soluble ASL mediators. Together, these mechanisms directly influence ciliary beating and in turn mucociliary clearance to maintain sterility and to detoxify the airways. Whilst all of these components are regulated in normal airways, defective ion transport and/or mucin secretion proves detrimental to lung homeostasis as such we address how defective ion and fluid transport, and a loss of homeostatic mechanisms, contributes to the development of pathophysiologies associated with cystic fibrosis.
Collapse
Affiliation(s)
- Megan J Webster
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Robert Tarran
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States; Department of Cell Biology & Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
21
|
Hurley MN. Staphylococcus aureus in cystic fibrosis: problem bug or an innocent bystander? Breathe (Sheff) 2018; 14:87-90. [PMID: 29877519 PMCID: PMC5980475 DOI: 10.1183/20734735.014718] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Staphylococcus aureus in cystic fibrosis: problem bug or an innocent bystander? The jury requires more evidence http://ow.ly/HQjk30j3nmL.
Collapse
Affiliation(s)
- Matthew N. Hurley
- Paediatric Respiratory Medicine, Nottingham Children’s Hospital, Nottingham, UK
| |
Collapse
|
22
|
Luan X, Belev G, Tam JS, Jagadeeshan S, Hassan N, Gioino P, Grishchenko N, Huang Y, Carmalt JL, Duke T, Jones T, Monson B, Burmester M, Simovich T, Yilmaz O, Campanucci VA, Machen TE, Chapman LD, Ianowski JP. Cystic fibrosis swine fail to secrete airway surface liquid in response to inhalation of pathogens. Nat Commun 2017; 8:786. [PMID: 28983075 PMCID: PMC5629252 DOI: 10.1038/s41467-017-00835-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 07/28/2017] [Indexed: 11/09/2022] Open
Abstract
Cystic fibrosis is caused by mutations in the gene encoding the cystic fibrosis transmembrane conductance regulator (CFTR) channel, which can result in chronic lung disease. The sequence of events leading to lung disease is not fully understood but recent data show that the critical pathogenic event is the loss of the ability to clear bacteria due to abnormal airway surface liquid secretion (ASL). However, whether the inhalation of bacteria triggers ASL secretion and whether this is abnormal in cystic fibrosis has never been tested. Here we show, using a novel synchrotron-based in vivo imaging technique, that wild-type pigs display both a basal and a Toll-like receptor-mediated ASL secretory response to the inhalation of cystic fibrosis relevant bacteria. Both mechanisms fail in CFTR-/- swine, suggesting that cystic fibrosis airways do not respond to inhaled pathogens, thus favoring infection and inflammation that may eventually lead to tissue remodeling and respiratory disease.Cystic fibrosis is caused by mutations in the CFTR chloride channel, leading to reduced airway surface liquid secretion. Here the authors show that exposure to bacteria triggers secretion in wild-type but not in pig models of cystic fibrosis, suggesting an impaired response to pathogens contributes to infection.
Collapse
Affiliation(s)
- Xiaojie Luan
- Department of Physiology, University of Saskatchewan, Health Science Building, Room 2D01, 107 Wiggins Road, Saskatoon, SK, Canada, S7N 5E5
| | - George Belev
- Canadian Light Source Inc., 44 Innovation Boulevard, Saskatoon, SK, Canada, S7N 2V3
| | - Julian S Tam
- Department of Medicine, Division of Respirology, Critical Care, and Sleep Medicine, University of Saskatchewan, Royal University Hospital, 103 Hospital Drive, Saskatoon, SK, Canada, S7N 0W8
| | - Santosh Jagadeeshan
- Department of Physiology, University of Saskatchewan, Health Science Building, Room 2D01, 107 Wiggins Road, Saskatoon, SK, Canada, S7N 5E5
| | - Noman Hassan
- Department of Physiology, University of Saskatchewan, Health Science Building, Room 2D01, 107 Wiggins Road, Saskatoon, SK, Canada, S7N 5E5
| | - Paula Gioino
- Department of Physiology, University of Saskatchewan, Health Science Building, Room 2D01, 107 Wiggins Road, Saskatoon, SK, Canada, S7N 5E5
| | - Nikolay Grishchenko
- Department of Physiology, University of Saskatchewan, Health Science Building, Room 2D01, 107 Wiggins Road, Saskatoon, SK, Canada, S7N 5E5
| | - Yanyun Huang
- Prairie Diagnostic Services Inc., 52 Campus Drive, Saskatoon, SK, Canada, S7N 5B4
| | - James L Carmalt
- Department of Large Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, Saskatoon, SK, Canada, S7N 5B4
| | - Tanya Duke
- Department of Small Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, Saskatoon, SK, Canada, S7N 5B4
| | - Teela Jones
- Department of Small Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, Saskatoon, SK, Canada, S7N 5B4
| | - Bev Monson
- Animal Care Unit, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, Saskatoon, SK, Canada, S7N 5B4
| | - Monique Burmester
- Animal Care Unit, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, Saskatoon, SK, Canada, S7N 5B4
| | - Tomer Simovich
- Surface Science and Technology Group, School of Chemistry, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Orhan Yilmaz
- Department of Physiology, University of Saskatchewan, Health Science Building, Room 2D01, 107 Wiggins Road, Saskatoon, SK, Canada, S7N 5E5
| | - Veronica A Campanucci
- Department of Physiology, University of Saskatchewan, Health Science Building, Room 2D01, 107 Wiggins Road, Saskatoon, SK, Canada, S7N 5E5
| | - Terry E Machen
- Department of Molecular and Cell Biology, University of California, 231 LSA, Berkeley, CA, 94720-3200, USA
| | - L Dean Chapman
- University of Saskatchewan, Department of Anatomy and Cell Biology, Health Science Building, Room 2D01, 107 Wiggins Road, Saskatoon, SK, Canada, S7N 5E5
| | - Juan P Ianowski
- Department of Physiology, University of Saskatchewan, Health Science Building, Room 2D01, 107 Wiggins Road, Saskatoon, SK, Canada, S7N 5E5.
| |
Collapse
|
23
|
Meyerholz DK, Sieren JC, Beck AP, Flaherty HA. Approaches to Evaluate Lung Inflammation in Translational Research. Vet Pathol 2017; 55:42-52. [PMID: 28812529 DOI: 10.1177/0300985817726117] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Inflammation is a common feature in several types of lung disease and is a frequent end point to validate lung disease models, evaluate genetic or environmental impact on disease severity, or test the efficacy of new therapies. Questions relevant to a study should be defined during experimental design and techniques selected to specifically address these scientific queries. In this review, the authors focus primarily on the breadth of techniques to evaluate lung inflammation that have both clinical and preclinical applications. Stratification of approaches to assess lung inflammation can diminish weaknesses inherent to each technique, provide data validation, and increase the reproducibility of a study. Specialized techniques (eg, imaging, pathology) often require experienced personnel to collect, evaluate, and interpret the data; these experts should be active contributors to the research team through reporting of the data. Scoring of tissue lesions is a useful method to transform observational pathologic data into semiquantitative or quantitative data for statistical analysis and enhanced rigor. Each technique to evaluate lung inflammation has advantages and limitations; understanding these parameters can help identify approaches that best complement one another to increase the rigor and translational significance of data.
Collapse
Affiliation(s)
- David K Meyerholz
- 1 Department of Pathology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Jessica C Sieren
- 2 Department of Radiology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA.,3 Department of Biomedical Engineering, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Amanda P Beck
- 4 Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Heather A Flaherty
- 5 Department of Veterinary Pathology, Iowa State University, Ames, IA, USA
| |
Collapse
|
24
|
Paemka L, McCullagh BN, Abou Alaiwa MH, Stoltz DA, Dong Q, Randak CO, Gray RD, McCray PB. Monocyte derived macrophages from CF pigs exhibit increased inflammatory responses at birth. J Cyst Fibros 2017; 16:471-474. [PMID: 28377087 PMCID: PMC5515361 DOI: 10.1016/j.jcf.2017.03.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 02/17/2017] [Accepted: 03/13/2017] [Indexed: 11/20/2022]
Abstract
BACKGROUND We sought to address whether CF macrophages have a primary functional defect as a consequence of CFTR loss and thus contribute to the onset of infection and inflammation observed in CF lung disease. METHODS Monocyte derived macrophages (MDMs) were prepared from newborn CF and non-CF pigs. CFTR mRNA expression was quantified by rtPCR and anion channel function was determined using whole cell patch clamp analysis. IL8 and TNFα release from MDMs in response to lipopolysaccharide stimulation was measured by ELISA. RESULTS CFTR was expressed in MDMs by Q-rtPCR at a lower level than in epithelial cells. MDMs exhibited functional CFTR current at the cell membrane and this current was absent in CF MDMs. CF MDMs demonstrated an exaggerated response to lipopolysaccharide stimulation. CONCLUSIONS In the absence of CFTR function, macrophages from newborn CF pigs exhibit an increased inflammatory response to a lipopolysaccharide challenge. This may contribute to the onset and progression of CF lung disease.
Collapse
Affiliation(s)
- Lily Paemka
- Department of Pediatrics, Pappajohn Biomedical Institute, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Brian N McCullagh
- Department of Pediatrics, Pappajohn Biomedical Institute, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Mahmoud H Abou Alaiwa
- Department of Internal Medicine, Pappajohn Biomedical Institute, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - David A Stoltz
- Department of Internal Medicine, Pappajohn Biomedical Institute, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Qian Dong
- Department of Pediatrics, Pappajohn Biomedical Institute, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Christoph O Randak
- Department of Pediatrics, Pappajohn Biomedical Institute, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Robert D Gray
- Department of Pediatrics, Pappajohn Biomedical Institute, Carver College of Medicine, University of Iowa, Iowa City, IA, USA; MRC/University of Edinburgh Centre for Inflammation Research, Edinburgh, Scotland, UK.
| | - Paul B McCray
- Department of Pediatrics, Pappajohn Biomedical Institute, Carver College of Medicine, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
25
|
Saint-Criq V, Gray MA. Role of CFTR in epithelial physiology. Cell Mol Life Sci 2016; 74:93-115. [PMID: 27714410 PMCID: PMC5209439 DOI: 10.1007/s00018-016-2391-y] [Citation(s) in RCA: 269] [Impact Index Per Article: 29.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 09/28/2016] [Indexed: 12/20/2022]
Abstract
Salt and fluid absorption and secretion are two processes that are fundamental to epithelial function and whole body fluid homeostasis, and as such are tightly regulated in epithelial tissues. The CFTR anion channel plays a major role in regulating both secretion and absorption in a diverse range of epithelial tissues, including the airways, the GI and reproductive tracts, sweat and salivary glands. It is not surprising then that defects in CFTR function are linked to disease, including life-threatening secretory diarrhoeas, such as cholera, as well as the inherited disease, cystic fibrosis (CF), one of the most common life-limiting genetic diseases in Caucasian populations. More recently, CFTR dysfunction has also been implicated in the pathogenesis of acute pancreatitis, chronic obstructive pulmonary disease (COPD), and the hyper-responsiveness in asthma, underscoring its fundamental role in whole body health and disease. CFTR regulates many mechanisms in epithelial physiology, such as maintaining epithelial surface hydration and regulating luminal pH. Indeed, recent studies have identified luminal pH as an important arbiter of epithelial barrier function and innate defence, particularly in the airways and GI tract. In this chapter, we will illustrate the different operational roles of CFTR in epithelial function by describing its characteristics in three different tissues: the airways, the pancreas, and the sweat gland.
Collapse
Affiliation(s)
- Vinciane Saint-Criq
- Epithelial Research Group, Institute for Cell and Molecular Biosciences, University Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH UK
| | - Michael A. Gray
- Epithelial Research Group, Institute for Cell and Molecular Biosciences, University Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH UK
| |
Collapse
|
26
|
Stick SM, Kicic A, Ranganathan S. Of Pigs, Mice, and Men: Understanding Early Triggers of Cystic Fibrosis Lung Disease. Am J Respir Crit Care Med 2016; 194:784-785. [PMID: 27689703 DOI: 10.1164/rccm.201605-1094ed] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Affiliation(s)
- Stephen M Stick
- 1 Telethon Kids Institute Perth, Australia.,2 School of Paediatrics and Child Health University of Western Australia Perth, Australia.,3 Department of Respiratory and Sleep Medicine Princess Margaret Hospital for Children Perth, Australia
| | - Anthony Kicic
- 1 Telethon Kids Institute Perth, Australia.,2 School of Paediatrics and Child Health University of Western Australia Perth, Australia
| | - Sarath Ranganathan
- 4 Department of Respiratory and Sleep Medicine Royal Children's Hospital Melbourne, Australia.,5 Department of Paediatrics University of Melbourne Melbourne, Australia and.,6 Infection and Immunology Murdoch Children's Research Institute Melbourne, Australia
| |
Collapse
|
27
|
Veltman M, Stolarczyk M, Radzioch D, Wojewodka G, De Sanctis JB, Dik WA, Dzyubachyk O, Oravecz T, de Kleer I, Scholte BJ. Correction of lung inflammation in a F508del CFTR murine cystic fibrosis model by the sphingosine-1-phosphate lyase inhibitor LX2931. Am J Physiol Lung Cell Mol Physiol 2016; 311:L1000-L1014. [PMID: 27663991 DOI: 10.1152/ajplung.00298.2016] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 09/19/2016] [Indexed: 01/08/2023] Open
Abstract
Progressive lung disease with early onset is the main cause of mortality and morbidity in cystic fibrosis patients. Here we report a reduction of sphingosine-1-phosphate (S1P) in the lung of unchallenged Cftrtm1EUR F508del CFTR mutant mice. This correlates with enhanced infiltration by inducible nitric oxide synthase (iNOS)-expressing granulocytes, B cells, and T cells. Furthermore, the ratio of macrophage-derived dendritic cells (MoDC) to conventional dendritic cells (cDC) is higher in mutant mouse lung, consistent with unprovoked inflammation. Oral application of a S1P lyase inhibitor (LX2931) increases S1P levels in mutant mouse tissues. This normalizes the lung MoDC/cDC ratio and reduces B and T cell counts. Lung granulocytes are enhanced, but iNOS expression is reduced in this population. Although lung LyC6+ monocytes are enhanced by LX2931, they apparently do not differentiate to MoDC and macrophages. After challenge with bacterial toxins (LPS-fMLP) we observe enhanced levels of proinflammatory cytokines TNF-α, KC, IFNγ, and IL-12 and the inducible mucin MUC5AC in mutant mouse lung, evidence of deficient resolution of inflammation. LX2931 does not prevent transient inflammation or goblet cell hyperplasia after challenge, but it reduces MUC5AC and proinflammatory cytokine levels toward normal values. We conclude that lung pathology in homozygous mice expressing murine F508del CFTR, which represents the most frequent mutation in CF patients, is characterized by abnormal behavior of infiltrating myeloid cells and delayed resolution of induced inflammation. This phenotype can be partially corrected by a S1P lyase inhibitor, providing a rationale for therapeutic targeting of the S1P signaling pathway in CF patients.
Collapse
Affiliation(s)
- Mieke Veltman
- Cell Biology, Erasmus MC, Rotterdam, The Netherlands
| | | | - Danuta Radzioch
- Departments of Medicine and Human Genetics, McGill University, Montreal, Canada
| | - Gabriella Wojewodka
- Departments of Medicine and Human Genetics, McGill University, Montreal, Canada
| | - Juan B De Sanctis
- Faculty of Medicine. Universidad Central de Venezuela, Institute of Immunology, Caracas, Venezuela
| | - Willem A Dik
- Immunology, Erasmus MC, Rotterdam, The Netherlands
| | - Oleh Dzyubachyk
- Department of Radiology, Division of Image Processing, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Ismé de Kleer
- Department of Pediatrics, Division of Respiratory Medicine, Erasmus MC, Rotterdam, The Netherlands; and.,Laboratory of Pulmonary Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Bob J Scholte
- Cell Biology, Erasmus MC, Rotterdam, The Netherlands;
| |
Collapse
|