1
|
Rupani H, Busse WW, Howarth PH, Bardin PG, Adcock IM, Konno S, Jackson DJ. Therapeutic relevance of eosinophilic inflammation and airway viral interactions in severe asthma. Allergy 2024; 79:2589-2604. [PMID: 39087443 DOI: 10.1111/all.16242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 06/21/2024] [Accepted: 07/08/2024] [Indexed: 08/02/2024]
Abstract
The role of eosinophils in airway inflammation and asthma pathogenesis is well established, with raised eosinophil counts in blood and sputum associated with increased disease severity and risk of asthma exacerbation. Conversely, there is also preliminary evidence suggesting antiviral properties of eosinophils in the airways. These dual roles for eosinophils are particularly pertinent as respiratory virus infections contribute to asthma exacerbations. Biologic therapies targeting key molecules implicated in eosinophil-associated pathologies have been approved in patients with severe asthma and, therefore, the effects of depleting eosinophils in a clinical setting are of considerable interest. This review discusses the pathological and antiviral roles of eosinophils in asthma and exacerbations. We also highlight the significant reduction in asthma exacerbations seen with biologic therapies, even at the height of the respiratory virus season. Furthermore, we discuss the implications of these findings in relation to the role of eosinophils in inflammation and antiviral responses to respiratory virus infection in asthma.
Collapse
Affiliation(s)
- Hitasha Rupani
- Department of Respiratory Medicine, University Hospital Southampton NHS Foundation Trust, Southampton, Hampshire, UK
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, Hampshire, UK
| | - William W Busse
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Peter H Howarth
- Global Medical, Global Specialty and Primary Care, GSK, Brentford, Middlesex, UK
| | - Philip G Bardin
- Monash Lung Sleep Allergy and Immunology, Monash University and Medical Centre and Hudson Institute, Melbourne, Victoria, Australia
| | - Ian M Adcock
- Airway Disease Section, National Heart and Lung Institute, Imperial College London, London, UK
| | - Satoshi Konno
- Department of Respiratory Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - David J Jackson
- Guy's Severe Asthma Centre, Guy's and St Thomas' Hospitals, London, UK
- School of Immunology and Microbial Sciences, King's College London, London, UK
| |
Collapse
|
2
|
Papadopoulos NG, Bacharier LB, Jackson DJ, Deschildre A, Phipatanakul W, Szefler SJ, Gall R, Ledanois O, Jacob-Nara JA, Sacks H. Type 2 Inflammation and Asthma in Children: A Narrative Review. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2024; 12:2310-2324. [PMID: 38878861 DOI: 10.1016/j.jaip.2024.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 06/05/2024] [Accepted: 06/05/2024] [Indexed: 07/22/2024]
Abstract
Increased understanding of the underlying pathophysiology has highlighted the heterogeneity of asthma and identified that most children with asthma have type 2 inflammation with elevated biomarkers, such as blood eosinophils and/or fractional exhaled nitric oxide. Although in the past most of these children may have been categorized as having allergic asthma, identifying the type 2 inflammatory phenotype provides a mechanism to explain both allergic and non-allergic triggers in pediatric patients with asthma. Most children achieve control with low to medium doses of inhaled corticosteroids. However, in a small but significant proportion of children, asthma remains uncontrolled despite maximum conventional treatment, with an increased risk of severe exacerbations. In this review, we focus on the role of type 2 inflammation and allergic processes in children with asthma, together with evidence of the efficacy of available treatment options for those who experience severe symptoms.
Collapse
Affiliation(s)
- Nikolaos G Papadopoulos
- Allergy and Clinical Immunology Unit, Second Pediatric Clinic, University of Athens, Athens, Greece; Lydia Becker Institute of Immunity and Inflammation, The University of Manchester, Manchester, United Kingdom.
| | - Leonard B Bacharier
- Division of Allergy, Immunology and Pulmonary Medicine, Monroe Carell Jr Children's Hospital at Vanderbilt University Medical Center, Nashville, Tenn
| | - Daniel J Jackson
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, Wis
| | - Antoine Deschildre
- University Lille, CHU Lille, Pediatric Pulmonology and Allergy Department, Hôpital Jeanne de Flandre, Lille, France
| | - Wanda Phipatanakul
- Department of Pediatrics, Harvard Medical School, Boston, Mass; Department of Allergy and Immunology, Boston Children's Hospital, Boston, Mass
| | - Stanley J Szefler
- Section of Pediatric Pulmonary and Sleep Medicine, Breathing Institute, Department of Pediatrics, Children's Hospital Colorado, University of Colorado School of Medicine, Aurora, Colo
| | | | | | | | | |
Collapse
|
3
|
Nakagome K, Nagata M. The Possible Roles of IL-4/IL-13 in the Development of Eosinophil-Predominant Severe Asthma. Biomolecules 2024; 14:546. [PMID: 38785953 PMCID: PMC11117569 DOI: 10.3390/biom14050546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 04/21/2024] [Accepted: 04/29/2024] [Indexed: 05/25/2024] Open
Abstract
Bronchial asthma is characterized by airway inflammation, airway hyperresponsiveness, and reversible airway obstruction. Eosinophils contribute to the pathogenesis of airway disease mainly by releasing eosinophil-specific granules, lipid mediators, superoxide anions, and their DNA. Type-2 cytokines such as interleukin (IL)-4 and IL-13 also play roles in the development of bronchial asthma. Among these cytokines, IL-4 is involved in T-cell differentiation, B-cell activation, B-cell differentiation into plasma cells, and the production of immunoglobulin E. Although IL-13 has similar effects to IL-4, IL-13 mainly affects structural cells, such as epithelial cells, smooth muscle cells, and fibroblasts. IL-13 induces the differentiation of goblet cells that produce mucus and induces the airway remodeling, including smooth muscle hypertrophy. IL-4 and IL-13 do not directly activate the effector functions of eosinophils; however, they can induce eosinophilic airway inflammation by upregulating the expression of vascular cell adhesion molecule-1 (for adhesion) and CC chemokine receptor 3 ligands (for migration). Dupilumab, a human anti-IL-4 receptor α monoclonal antibody that inhibits IL-4 and IL-13 signaling, decreases asthma exacerbations and mucus plugs and increases lung function in moderate to severe asthma. In addition, dupilumab is effective for chronic rhinosinusitis with nasal polyps and for atopic dermatitis, and IL-4/IL-13 blocking is expected to suppress allergen sensitization, including transcutaneous sensitization and atopic march.
Collapse
Affiliation(s)
- Kazuyuki Nakagome
- Department of Respiratory Medicine, Saitama Medical University, Saitama 350-0495, Japan
- Allergy Center, Saitama Medical University, Saitama 350-0495, Japan
| | - Makoto Nagata
- Department of Respiratory Medicine, Saitama Medical University, Saitama 350-0495, Japan
- Allergy Center, Saitama Medical University, Saitama 350-0495, Japan
| |
Collapse
|
4
|
Le M, Khoury L, Lu Y, Prosty C, Cormier M, Cheng MP, Fowler R, Murthy S, Tsang JLY, Ben-Shoshan M, Rahme E, Golchi S, Dendukuri N, Lee TC, Netchiporouk E. COVID-19 Immunologic Antiviral Therapy With Omalizumab (CIAO)-a Randomized Controlled Clinical Trial. Open Forum Infect Dis 2024; 11:ofae102. [PMID: 38560604 PMCID: PMC10977629 DOI: 10.1093/ofid/ofae102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 02/21/2024] [Indexed: 04/04/2024] Open
Abstract
Background Omalizumab is an anti-immunoglobulin E monoclonal antibody used to treat moderate to severe chronic idiopathic urticaria, asthma, and nasal polyps. Recent research suggested that omalizumab may enhance the innate antiviral response and have anti-inflammatory properties. Objective We aimed to investigate the efficacy and safety of omalizumab in adults hospitalized for coronavirus disease 2019 (COVID-19) pneumonia. Methods This was a phase II randomized, double blind, placebo-controlled trial comparing omalizumab with placebo (in addition to standard of care) in hospitalized patients with COVID-19. The primary endpoint was the composite of mechanical ventilation and/or death at day 14. Secondary endpoints included all-cause mortality at day 28, time to clinical improvement, and duration of hospitalization. Results Of 41 patients recruited, 40 were randomized (20 received the study drug and 20 placebo). The median age of the patients was 74 years and 55.0% were male. Omalizumab was associated with a 92.6% posterior probability of a reduction in mechanical ventilation and death on day 14 with an adjusted odds ratio of 0.11 (95% credible interval 0.002-2.05). Omalizumab was also associated with a 75.9% posterior probability of reduced all-cause mortality on day 28 with an adjusted odds ratio of 0.49 (95% credible interval, 0.06-3.90). No statistically significant differences were found for the time to clinical improvement and duration of hospitalization. Numerically fewer adverse events were reported in the omalizumab group and there were no drug-related serious adverse events. Conclusions These results suggest that omalizumab could prove protective against death and mechanical ventilation in hospitalized patients with COVID-19. This study could also support the development of a phase III trial program investigating the antiviral and anti-inflammatory effect of omalizumab for severe respiratory viral illnesses requiring hospital admission. ClinicalTrials.gov ID: NCT04720612.
Collapse
Affiliation(s)
- Michelle Le
- Division of Dermatology, Department of Medicine, McGill University, Montreal, QC, Canada
| | - Lauren Khoury
- Faculty of Medicine, McGill University, Montreal, QC, Canada
| | - Yang Lu
- Department of Epidemiology, Biostatistics, and Occupational Health, McGill University, Montreal, QC, Canada
| | - Connor Prosty
- Faculty of Medicine, McGill University, Montreal, QC, Canada
| | - Maxime Cormier
- Division of Respiratory Medicine, Department of Medicine, McGill University, Montreal, QC, Canada
| | - Mathew P Cheng
- Divisions of Infectious Diseases & Medical Microbiology, McGill University, McGill's Interdisciplinary Initiative in Infection and Immunity, Montreal, QC, Canada
| | - Robert Fowler
- Department of Critical Care Medicine, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Srinivas Murthy
- Department of Pediatrics, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Jennifer L Y Tsang
- Niagara Health Knowledge Institute, Niagara Health, St. Catharines, ON, Canada
| | - Moshe Ben-Shoshan
- Division of Allergy, Immunology and Dermatology, Department of Pediatrics, McGill University, Montreal, QC, Canada
| | - Elham Rahme
- Department of Epidemiology, Biostatistics, and Occupational Health, McGill University, Montreal, QC, Canada
| | - Shirin Golchi
- Department of Epidemiology, Biostatistics, and Occupational Health, McGill University, Montreal, QC, Canada
| | - Nandini Dendukuri
- Department of Epidemiology, Biostatistics, and Occupational Health, McGill University, Montreal, QC, Canada
| | - Todd C Lee
- Divisions of Infectious Diseases & Medical Microbiology, McGill University, McGill's Interdisciplinary Initiative in Infection and Immunity, Montreal, QC, Canada
| | - Elena Netchiporouk
- Division of Dermatology, Department of Medicine, McGill University, Montreal, QC, Canada
| |
Collapse
|
5
|
Russell RJ, Boulet LP, Brightling CE, Pavord ID, Porsbjerg C, Dorscheid D, Sverrild A. The airway epithelium: an orchestrator of inflammation, a key structural barrier and a therapeutic target in severe asthma. Eur Respir J 2024; 63:2301397. [PMID: 38453256 PMCID: PMC10991852 DOI: 10.1183/13993003.01397-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 02/15/2024] [Indexed: 03/09/2024]
Abstract
Asthma is a disease of heterogeneous pathology, typically characterised by excessive inflammatory and bronchoconstrictor responses to the environment. The clinical expression of the disease is a consequence of the interaction between environmental factors and host factors over time, including genetic susceptibility, immune dysregulation and airway remodelling. As a critical interface between the host and the environment, the airway epithelium plays an important role in maintaining homeostasis in the face of environmental challenges. Disruption of epithelial integrity is a key factor contributing to multiple processes underlying asthma pathology. In this review, we first discuss the unmet need in asthma management and provide an overview of the structure and function of the airway epithelium. We then focus on key pathophysiological changes that occur in the airway epithelium, including epithelial barrier disruption, immune hyperreactivity, remodelling, mucus hypersecretion and mucus plugging, highlighting how these processes manifest clinically and how they might be targeted by current and novel therapeutics.
Collapse
Affiliation(s)
- Richard J Russell
- Institute for Lung Health, NIHR Leicester Biomedical Research Centre, University of Leicester, Leicester, UK
| | | | - Christopher E Brightling
- Institute for Lung Health, NIHR Leicester Biomedical Research Centre, University of Leicester, Leicester, UK
| | - Ian D Pavord
- Respiratory Medicine, NIHR Oxford Biomedical Research Centre, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Celeste Porsbjerg
- Department of Respiratory Medicine and Infectious Diseases, Bispebjerg Hospital, Copenhagen University, Copenhagen, Denmark
| | - Del Dorscheid
- Centre for Heart Lung Innovation, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Asger Sverrild
- Department of Respiratory Medicine and Infectious Diseases, Bispebjerg Hospital, Copenhagen University, Copenhagen, Denmark
| |
Collapse
|
6
|
Spector C, De Sanctis CM, Panettieri RA, Koziol-White CJ. Rhinovirus induces airway remodeling: what are the physiological consequences? Respir Res 2023; 24:238. [PMID: 37773065 PMCID: PMC10540383 DOI: 10.1186/s12931-023-02529-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 09/01/2023] [Indexed: 09/30/2023] Open
Abstract
BACKGROUND Rhinovirus infections commonly evoke asthma exacerbations in children and adults. Recurrent asthma exacerbations are associated with injury-repair responses in the airways that collectively contribute to airway remodeling. The physiological consequences of airway remodeling can manifest as irreversible airway obstruction and diminished responsiveness to bronchodilators. Structural cells of the airway, including epithelial cells, smooth muscle, fibroblasts, myofibroblasts, and adjacent lung vascular endothelial cells represent an understudied and emerging source of cellular and extracellular soluble mediators and matrix components that contribute to airway remodeling in a rhinovirus-evoked inflammatory environment. MAIN BODY While mechanistic pathways associated with rhinovirus-induced airway remodeling are still not fully characterized, infected airway epithelial cells robustly produce type 2 cytokines and chemokines, as well as pro-angiogenic and fibroblast activating factors that act in a paracrine manner on neighboring airway cells to stimulate remodeling responses. Morphological transformation of structural cells in response to rhinovirus promotes remodeling phenotypes including induction of mucus hypersecretion, epithelial-to-mesenchymal transition, and fibroblast-to-myofibroblast transdifferentiation. Rhinovirus exposure elicits airway hyperresponsiveness contributing to irreversible airway obstruction. This obstruction can occur as a consequence of sub-epithelial thickening mediated by smooth muscle migration and myofibroblast activity, or through independent mechanisms mediated by modulation of the β2 agonist receptor activation and its responsiveness to bronchodilators. Differential cellular responses emerge in response to rhinovirus infection that predispose asthmatic individuals to persistent signatures of airway remodeling, including exaggerated type 2 inflammation, enhanced extracellular matrix deposition, and robust production of pro-angiogenic mediators. CONCLUSIONS Few therapies address symptoms of rhinovirus-induced airway remodeling, though understanding the contribution of structural cells to these processes may elucidate future translational targets to alleviate symptoms of rhinovirus-induced exacerbations.
Collapse
Affiliation(s)
- Cassandra Spector
- Rutgers Institute for Translation Medicine and Science, New Brunswick, NJ, USA
| | - Camden M De Sanctis
- Rutgers Institute for Translation Medicine and Science, New Brunswick, NJ, USA
| | | | | |
Collapse
|
7
|
Kawakami Y, Takazawa I, Fajt ML, Kasakura K, Lin J, Ferrer J, Kantor DB, Phipatanakul W, Heymann PW, Benedict CA, Kawakami Y, Kawakami T. Histamine-releasing factor in severe asthma and rhinovirus-associated asthma exacerbation. J Allergy Clin Immunol 2023; 152:633-640.e4. [PMID: 37301412 PMCID: PMC10917146 DOI: 10.1016/j.jaci.2023.04.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 04/07/2023] [Accepted: 04/28/2023] [Indexed: 06/12/2023]
Abstract
BACKGROUND Histamine-releasing factor (HRF) is implicated in allergic diseases. We previously showed its pathogenic role in murine models of asthma. OBJECTIVE We aim to present data analysis from 3 separate human samples (sera samples from asthmatic patients, nasal washings from rhinovirus [RV]-infected individuals, and sera samples from patients with RV-induced asthma exacerbation) and 1 mouse sample to investigate correlates of HRF function in asthma and virus-induced asthma exacerbations. METHODS Total IgE and HRF-reactive IgE/IgG as well as HRF in sera from patients with mild/moderate asthma or severe asthma (SA) and healthy controls (HCs) were quantified by ELISA. HRF secretion in culture media from RV-infected adenovirus-12 SV40 hybrid virus transformed human bronchial epithelial cells and in nasal washings from experimentally RV-infected subjects was analyzed by Western blotting. HRF-reactive IgE/IgG levels in longitudinal serum samples from patients with asthma exacerbations were also quantified. RESULTS HRF-reactive IgE and total IgE levels were higher in patients with SA than in HCs, whereas HRF-reactive IgG (and IgG1) level was lower in asthmatic patients versus HCs. In comparison with HRF-reactive IgElow asthmatic patients, HRF-reactive IgEhigh asthmatic patients had a tendency to release more tryptase and prostaglandin D2 on anti-IgE stimulation of bronchoalveolar lavage cells. RV infection induced HRF secretion from adenovirus-12 SV40 hybrid virus transformed bronchial epithelial cells, and intranasal RV infection of human subjects induced increased HRF secretion in nasal washes. Asthmatic patients had higher levels of HRF-reactive IgE at the time of asthma exacerbations associated with RV infection, compared with those after the resolution. This phenomenon was not seen in asthma exacerbations without viral infections. CONCLUSIONS HRF-reactive IgE is higher in patients with SA. RV infection induces HRF secretion from respiratory epithelial cells both in vitro and in vivo. These results suggest the role of HRF in asthma severity and RV-induced asthma exacerbation.
Collapse
Affiliation(s)
- Yu Kawakami
- Laboratory of Allergic Diseases, La Jolla Institute for Immunology, La Jolla, Calif
| | - Ikuo Takazawa
- Laboratory of Allergic Diseases, La Jolla Institute for Immunology, La Jolla, Calif
| | - Merritt L Fajt
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pa
| | - Kazumi Kasakura
- Laboratory of Allergic Diseases, La Jolla Institute for Immunology, La Jolla, Calif
| | - Joseph Lin
- Laboratory of Allergic Diseases, La Jolla Institute for Immunology, La Jolla, Calif
| | - Julienne Ferrer
- Laboratory of Allergic Diseases, La Jolla Institute for Immunology, La Jolla, Calif
| | - David B Kantor
- Critical Care Medicine, Department of Anesthesiology, Critical Care and Pain Medicine, Children's Hospital, Boston, Mass
| | | | - Peter W Heymann
- Asthma and Allergic Diseases Center, University of Virginia, Charlottsville, Va; Division of Pediatric Respiratory Medicine, University of Virginia, Charlottsville, Va
| | - Chris A Benedict
- Benedict Laboratory, Center for Autoimmunity and Inflammation and Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, Calif
| | - Yuko Kawakami
- Laboratory of Allergic Diseases, La Jolla Institute for Immunology, La Jolla, Calif
| | - Toshiaki Kawakami
- Laboratory of Allergic Diseases, La Jolla Institute for Immunology, La Jolla, Calif.
| |
Collapse
|
8
|
Boboltz A, Kumar S, Duncan GA. Inhaled drug delivery for the targeted treatment of asthma. Adv Drug Deliv Rev 2023; 198:114858. [PMID: 37178928 PMCID: PMC10330872 DOI: 10.1016/j.addr.2023.114858] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 04/14/2023] [Accepted: 04/29/2023] [Indexed: 05/15/2023]
Abstract
Asthma is a chronic lung disease affecting millions worldwide. While classically acknowledged to result from allergen-driven type 2 inflammatory responses leading to IgE and cytokine production and the influx of immune cells such as mast cells and eosinophils, the wide range in asthmatic pathobiological subtypes lead to highly variable responses to anti-inflammatory therapies. Thus, there is a need to develop patient-specific therapies capable of addressing the full spectrum of asthmatic lung disease. Moreover, delivery of targeted treatments for asthma directly to the lung may help to maximize therapeutic benefit, but challenges remain in design of effective formulations for the inhaled route. In this review, we discuss the current understanding of asthmatic disease progression as well as genetic and epigenetic disease modifiers associated with asthma severity and exacerbation of disease. We also overview the limitations of clinically available treatments for asthma and discuss pre-clinical models of asthma used to evaluate new therapies. Based on the shortcomings of existing treatments, we highlight recent advances and new approaches to treat asthma via inhalation for monoclonal antibody delivery, mucolytic therapy to target airway mucus hypersecretion and gene therapies to address underlying drivers of disease. Finally, we conclude with discussion on the prospects for an inhaled vaccine to prevent asthma.
Collapse
Affiliation(s)
- Allison Boboltz
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, United States
| | - Sahana Kumar
- Biological Sciences Graduate Program, University of Maryland, College Park, MD 20742, United States
| | - Gregg A Duncan
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, United States; Biological Sciences Graduate Program, University of Maryland, College Park, MD 20742, United States.
| |
Collapse
|
9
|
Kim SR. Viral Infection and Airway Epithelial Immunity in Asthma. Int J Mol Sci 2022; 23:9914. [PMID: 36077310 PMCID: PMC9456547 DOI: 10.3390/ijms23179914] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/26/2022] [Accepted: 08/29/2022] [Indexed: 12/19/2022] Open
Abstract
Viral respiratory tract infections are associated with asthma development and exacerbation in children and adults. In the course of immune responses to viruses, airway epithelial cells are the initial platform of innate immunity against viral invasion. Patients with severe asthma are more vulnerable than those with mild to moderate asthma to viral infections. Furthermore, in most cases, asthmatic patients tend to produce lower levels of antiviral cytokines than healthy subjects, such as interferons produced from immune effector cells and airway epithelial cells. The epithelial inflammasome appears to contribute to asthma exacerbation through overactivation, leading to self-damage, despite its naturally protective role against infectious pathogens. Given the mixed and complex immune responses in viral-infection-induced asthma exacerbation, this review examines the diverse roles of airway epithelial immunity and related potential therapeutic targets and discusses the mechanisms underlying the heterogeneous manifestations of asthma exacerbations.
Collapse
Affiliation(s)
- So Ri Kim
- Division of Respiratory Medicine and Allergy, Department of Internal Medicine, Medical School of Jeonbuk National University, 20 Geonji-ro, Deokjin-gu, Jeonju 54907, Korea
| |
Collapse
|
10
|
Nakagome K, Nagata M. Innate Immune Responses by Respiratory Viruses, Including Rhinovirus, During Asthma Exacerbation. Front Immunol 2022; 13:865973. [PMID: 35795686 PMCID: PMC9250977 DOI: 10.3389/fimmu.2022.865973] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 05/13/2022] [Indexed: 01/14/2023] Open
Abstract
Viral infection, especially with rhinovirus (RV), is a major cause of asthma exacerbation. The production of anti-viral cytokines such as interferon (IFN)-β and IFN-α from epithelial cells or dendritic cells is lower in patients with asthma or those with high IgE, which can contribute to viral-induced exacerbated disease in these patients. As for virus-related factors, RV species C (RV-C) induces more exacerbated disease than other RVs, including RV-B. Neutrophils activated by viral infection can induce eosinophilic airway inflammation through different mechanisms. Furthermore, virus-induced or virus-related proteins can directly activate eosinophils. For example, CXCL10, which is upregulated during viral infection, activates eosinophils in vitro. The role of innate immune responses, especially type-2 innate lymphoid cells (ILC2) and epithelial cell-related cytokines including IL-33, IL-25, and thymic stromal lymphopoietin (TSLP), in the development of viral-induced airway inflammation has recently been established. For example, RV infection induces the expression of IL-33 or IL-25, or increases the ratio of ILC2 in the asthmatic airway, which is correlated with the severity of exacerbation. A mouse model has further demonstrated that virus-induced mucous metaplasia and ILC2 expansion are suppressed by antagonizing or deleting IL-33, IL-25, or TSLP. For treatment, IFNs including IFN-β suppress not only viral replication but also ILC2 activation in vitro. Agonists of toll-like receptor (TLR) 3 or 7 can induce IFNs, which can then suppress viral replication and ILC2 activation. Therefore, if delivered in the airway, IFNs or TLR agonists could become innovative treatments for virus-induced asthma exacerbation.
Collapse
Affiliation(s)
- Kazuyuki Nakagome
- Department of Respiratory Medicine, Saitama Medical University, Saitama, Japan
- Allergy Center, Saitama Medical University, Saitama, Japan
- *Correspondence: Kazuyuki Nakagome,
| | - Makoto Nagata
- Department of Respiratory Medicine, Saitama Medical University, Saitama, Japan
- Allergy Center, Saitama Medical University, Saitama, Japan
| |
Collapse
|
11
|
Kawakami T, Kasakura K, Kawakami Y, Ando T. Immunoglobulin E-Dependent Activation of Immune Cells in Rhinovirus-Induced Asthma Exacerbation. FRONTIERS IN ALLERGY 2022; 3:835748. [PMID: 35386658 PMCID: PMC8974681 DOI: 10.3389/falgy.2022.835748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 01/24/2022] [Indexed: 11/26/2022] Open
Abstract
Acute exacerbation is the major cause of asthma morbidity, mortality, and health-care costs. Respiratory viral infections, particularly rhinovirus (RV) infections, are associated with the majority of asthma exacerbations. The risk for bronchoconstriction with RV is associated with allergic sensitization and type 2 airway inflammation. The efficacy of the humanized anti-IgE monoclonal antibody omalizumab in treating asthma and reducing the frequency and severity of RV-induced asthma exacerbation is well-known. Despite these clinical data, mechanistic details of omalizumab's effects on RV-induced asthma exacerbation have not been well-defined for years due to the lack of appropriate animal models. In this Perspective, we discuss potential IgE-dependent roles of mast cells and dendritic cells in asthma exacerbations.
Collapse
Affiliation(s)
- Toshiaki Kawakami
- Laboratory of Allergic Diseases, Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, La Jolla, CA, United States
- Department of Dermatology, School of Medicine, University of California, San Diego, La Jolla, CA, United States
- *Correspondence: Toshiaki Kawakami
| | - Kazumi Kasakura
- Laboratory of Allergic Diseases, Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, La Jolla, CA, United States
| | - Yu Kawakami
- Laboratory of Allergic Diseases, Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, La Jolla, CA, United States
| | - Tomoaki Ando
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
12
|
Banzon TM, Phipatanakul W. Pneumonia in Infancy and Risk for Asthma: Examining the Role of How Viruses Impact Asthma and Potential Interventions. Chest 2021; 160:385-386. [PMID: 34366017 DOI: 10.1016/j.chest.2021.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 04/08/2021] [Accepted: 04/10/2021] [Indexed: 11/29/2022] Open
Affiliation(s)
- Tina M Banzon
- Department of Allergy and Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA
| | - Wanda Phipatanakul
- Departments of Pediatrics and of Asthma, Allergy and Immunology, Clinical Research Center, Boston Children's Hospital, Harvard Medical School, Boston, MA.
| |
Collapse
|
13
|
Menzella F, Ghidoni G, Galeone C, Capobelli S, Scelfo C, Facciolongo NC. Immunological Aspects Related to Viral Infections in Severe Asthma and the Role of Omalizumab. Biomedicines 2021; 9:348. [PMID: 33808197 PMCID: PMC8066139 DOI: 10.3390/biomedicines9040348] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 03/26/2021] [Accepted: 03/26/2021] [Indexed: 12/11/2022] Open
Abstract
Viral respiratory infections are recognized risk factors for the loss of control of allergic asthma and the induction of exacerbations, both in adults and children. Severe asthma is more susceptible to virus-induced asthma exacerbations, especially in the presence of high IgE levels. In the course of immune responses to viruses, an initial activation of innate immunity typically occurs and the production of type I and III interferons is essential in the control of viral spread. However, the Th2 inflammatory environment still appears to be protective against viral infections in general and in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections as well. As for now, literature data, although extremely limited and preliminary, show that severe asthma patients treated with biologics don't have an increased risk of SARS-CoV-2 infection or progression to severe forms compared to the non-asthmatic population. Omalizumab, an anti-IgE monoclonal antibody, exerts a profound cellular effect, which can stabilize the effector cells, and is becoming much more efficient from the point of view of innate immunity in contrasting respiratory viral infections. In addition to the antiviral effect, clinical efficacy and safety of this biological allow a great improvement in the management of asthma.
Collapse
Affiliation(s)
- Francesco Menzella
- Pneumology Unit, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, 42122 Reggio Emilia, Italy; (G.G.); (C.G.); (S.C.); (C.S.); (N.C.F.)
| | | | | | | | | | | |
Collapse
|
14
|
Lejeune S, Deschildre A, Le Rouzic O, Engelmann I, Dessein R, Pichavant M, Gosset P. Childhood asthma heterogeneity at the era of precision medicine: Modulating the immune response or the microbiota for the management of asthma attack. Biochem Pharmacol 2020; 179:114046. [PMID: 32446884 PMCID: PMC7242211 DOI: 10.1016/j.bcp.2020.114046] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 05/19/2020] [Indexed: 12/12/2022]
Abstract
Exacerbations are a main characteristic of asthma. In childhood, the risk is increasing with severity. Exacerbations are a strong phenotypic marker, particularly of severe and therapy-resistant asthma. These early-life events may influence the evolution and be involved in lung function decline. In children, asthma attacks are facilitated by exposure to allergens and pollutants, but are mainly triggered by microbial agents. Multiple studies have assessed immune responses to viruses, and to a lesser extend bacteria, during asthma exacerbation. Research has identified impairment of innate immune responses in children, related to altered pathogen recognition, interferon release, or anti-viral response. Influence of this host-microbiota dialog on the adaptive immune response may be crucial, leading to the development of biased T helper (Th)2 inflammation. These dynamic interactions may impact the presentations of asthma attacks, and have long-term consequences. The aim of this review is to synthesize studies exploring immune mechanisms impairment against viruses and bacteria promoting asthma attacks in children. The potential influence of the nature of infectious agents and/or preexisting microbiota on the development of exacerbation is also addressed. We then discuss our understanding of how these diverse host-microbiota interactions in children may account for the heterogeneity of endotypes and clinical presentations. Finally, improving the knowledge of the pathophysiological processes induced by infections has led to offer new opportunities for the development of preventive or curative therapeutics for acute asthma. A better definition of asthma endotypes associated with precision medicine might lead to substantial progress in the management of severe childhood asthma.
Collapse
Affiliation(s)
- Stéphanie Lejeune
- CHU Lille, Univ. Lille, Pediatric Pulmonology and Allergy Department, Hôpital Jeanne de Flandre, F-59000 Lille, France; Univ. Lille, INSERM Unit 1019, CNRS UMR 9017, CHU Lille, Institut Pasteur de Lille, Center for Infection and Immunity of Lille, F-59019 Lille Cedex, France
| | - Antoine Deschildre
- CHU Lille, Univ. Lille, Pediatric Pulmonology and Allergy Department, Hôpital Jeanne de Flandre, F-59000 Lille, France; Univ. Lille, INSERM Unit 1019, CNRS UMR 9017, CHU Lille, Institut Pasteur de Lille, Center for Infection and Immunity of Lille, F-59019 Lille Cedex, France
| | - Olivier Le Rouzic
- Univ. Lille, INSERM Unit 1019, CNRS UMR 9017, CHU Lille, Institut Pasteur de Lille, Center for Infection and Immunity of Lille, F-59019 Lille Cedex, France; CHU Lille, Univ. Lille, Department of Respiratory Diseases, F-59000 Lille Cedex, France
| | - Ilka Engelmann
- Univ. Lille, Virology Laboratory, EA3610, Institute of Microbiology, CHU Lille, F-59037 Lille Cedex, France
| | - Rodrigue Dessein
- Univ. Lille, INSERM Unit 1019, CNRS UMR 9017, CHU Lille, Institut Pasteur de Lille, Center for Infection and Immunity of Lille, F-59019 Lille Cedex, France; Univ. Lille, Bacteriology Department, Institute of Microbiology, CHU Lille, F-59037 Lille Cedex, France
| | - Muriel Pichavant
- Univ. Lille, INSERM Unit 1019, CNRS UMR 9017, CHU Lille, Institut Pasteur de Lille, Center for Infection and Immunity of Lille, F-59019 Lille Cedex, France
| | - Philippe Gosset
- Univ. Lille, INSERM Unit 1019, CNRS UMR 9017, CHU Lille, Institut Pasteur de Lille, Center for Infection and Immunity of Lille, F-59019 Lille Cedex, France.
| |
Collapse
|
15
|
Altman MC, Beigelman A, Ciaccio C, Gern JE, Heymann PW, Jackson DJ, Kennedy JL, Kloepfer K, Lemanske RF, McWilliams LM, Muehling L, Nance C, Peebles RS. Evolving concepts in how viruses impact asthma: A Work Group Report of the Microbes in Allergy Committee of the American Academy of Allergy, Asthma & Immunology. J Allergy Clin Immunol 2020; 145:1332-1344. [PMID: 31926183 PMCID: PMC7577409 DOI: 10.1016/j.jaci.2019.12.904] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 12/02/2019] [Accepted: 12/04/2019] [Indexed: 12/13/2022]
Abstract
Over the past decade, there have been substantial advances in our understanding about how viral infections regulate asthma. Important lessons have been learned from birth cohort studies examining viral infections and subsequent asthma and from understanding the relationships between host genetics and viral infections, the contributions of respiratory viral infections to patterns of immune development, the impact of environmental exposure on the severity of viral infections, and how the viral genome influences host immune responses to viral infections. Further, there has been major progress in our knowledge about how bacteria regulate host immune responses in asthma pathogenesis. In this article, we also examine the dynamics of bacterial colonization of the respiratory tract during viral upper respiratory tract infection, in addition to the relationship of the gut and respiratory microbiomes with respiratory viral infections. Finally, we focus on potential interventions that could decrease virus-induced wheezing and asthma. There are emerging therapeutic options to decrease the severity of wheezing exacerbations caused by respiratory viral infections. Primary prevention is a major goal, and a strategy toward this end is considered.
Collapse
Affiliation(s)
| | - Avraham Beigelman
- Division of Pediatric Allergy, Immunology & Pulmonary Medicine, Washington University School of Medicine, St Louis, Mo; Kipper Institute of Allergy and Immunology, Schneider Children's Medical Center of Israel, Tel Aviv University, Petach Tikvah, Israel
| | - Christina Ciaccio
- Allergy/Immunology and Pediatric Pulmonology and Sleep Medicine, University of Chicago School of Medicine, Chicago, Ill
| | - James E Gern
- Division of Pediatric Allergy, Immunology and Rheumatology, Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, Wis
| | - Peter W Heymann
- Department of Pediatrics, University of Virginia Medical Center, Charlottesville, Va
| | - Daniel J Jackson
- Division of Pediatric Allergy, Immunology and Rheumatology, Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, Wis
| | - Joshua L Kennedy
- Division of Allergy/Immunology, Departments of Pediatrics and Internal Medicine, University of Arkansas for Medical Sciences, Little Rock, Ark
| | - Kirsten Kloepfer
- Division of Pediatric Pulmonology, Allergy and Sleep Medicine, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Ind
| | - Robert F Lemanske
- Division of Pediatric Allergy, Immunology and Rheumatology, Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, Wis
| | | | - Lyndsey Muehling
- Department of Medicine, University of Virginia Medical Center, Charlottesville, Va
| | - Christy Nance
- Department of Pediatrics, Baylor College of Medicine, Houston, Tex; Department of Immunology/Pathology, Baylor College of Medicine, Houston, Tex
| | - R Stokes Peebles
- Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, Tenn.
| |
Collapse
|
16
|
Mikhail I, Grayson MH. Asthma and viral infections: An intricate relationship. Ann Allergy Asthma Immunol 2019; 123:352-358. [PMID: 31276807 PMCID: PMC7111180 DOI: 10.1016/j.anai.2019.06.020] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 06/11/2019] [Accepted: 06/24/2019] [Indexed: 12/28/2022]
Abstract
OBJECTIVE To synthesize available data related to the complex associations among viral infections, atopy, and asthma. DATA SOURCES Key historical articles, articles highlighted in our recent review of most significant recent asthma advancements, and findings from several birth cohorts related to asthma and viral infections were reviewed. In addition, PubMed was searched for review articles and original research related to the associations between viral infection and asthma, using the search words asthma, viral infections, atopy, development of asthma, rhinovirus (RV), and respiratory syncytial virus (RSV). STUDY SELECTIONS Articles were selected based on novelty and relevance to our topic of interest, the role of asthma and viral infections, and possible mechanisms to explain the association. RESULTS There is a large body of evidence demonstrating a link between early viral infections (especially RV and RSV) and asthma inception and exacerbations. RV-induced wheezing is an important risk factor for asthma only when atopy is present, with much evidence supporting the idea that sensitization is a risk factor for early RV-induced wheezing, which in turn is a risk factor for asthma. RSV, on the other hand, is a more important risk factor for nonatopic asthma, with severe infections conferring greater risk. CONCLUSION There are important differences in the development of atopic and nonatopic asthma, with several proposed mechanisms explaining the association between viral infections and the development of asthma and asthma exacerbations. Understanding these complex associations is important for developing asthma prevention strategies and targeted asthma therapies.
Collapse
Affiliation(s)
- Irene Mikhail
- Division of Allergy and Immunology, Department of Pediatrics, Nationwide Children's Hospital, The Ohio State University College of Medicine, Columbus, Ohio.
| | - Mitchell H Grayson
- Division of Allergy and Immunology, Department of Pediatrics, Nationwide Children's Hospital, The Ohio State University College of Medicine, Columbus, Ohio
| |
Collapse
|
17
|
Yii ACA, Tay TR, Puah SH, Lim HF, Li A, Lau P, Tan R, Neo LP, Chung KF, Koh MS. Blood eosinophil count correlates with severity of respiratory failure in life-threatening asthma and predicts risk of subsequent exacerbations. Clin Exp Allergy 2019; 49:1578-1586. [PMID: 31310686 DOI: 10.1111/cea.13465] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 06/18/2019] [Accepted: 07/10/2019] [Indexed: 11/30/2022]
Abstract
BACKGROUND An elevated blood eosinophil count when asthma is stable predicts exacerbations and therapeutic response to corticosteroids or biologics targeting eosinophils. Few studies have examined the prognostic value of blood eosinophils measured at exacerbation. AIM To elucidate the relationship between a spot blood eosinophil count-measured at the onset of a life-threatening asthma exacerbation-with indices of exacerbation severity and risk of subsequent exacerbations. METHODS Real-world, retrospective review of all life-threatening asthma cases admitted at 4 public hospitals in Singapore between 2011-2015. We assessed the trends and correlations between blood eosinophil count on admission with arterial blood gas values, duration of mechanical ventilation, and risk of death, hypoxic ischemic encephalopathy or respiratory arrest. Risk of future exacerbations among survivors was modelled using Cox regression and survival curves. RESULTS There were 376 index life-threatening exacerbations with median blood eosinophil count (5-95th percentiles) of 0.270 × 109 /L (0-1.410 × 109 /L). Arterial pH decreased and PCO2 increased with increasing eosinophil count. Duration of mechanical ventilation and risk of death, hypoxic ischaemic encephalopathy or respiratory arrest did not vary with eosinophils. Among 329 survivors who were followed-up over a median of 52 months, blood eosinophils ≥1.200 × 109 /L was associated with an increased hazard of emergency visits and/or admissions for asthma (hazard ratio 1.8, 95% confidence interval 1.1-2.9, P = .02). CONCLUSION In this study of life-threatening asthma, we found that a spot blood eosinophil count correlates with severity of respiratory failure and predicts risk of subsequent exacerbations.
Collapse
Affiliation(s)
- Anthony C A Yii
- Respiratory and Critical Care Medicine, Changi General Hospital, Singapore, Singapore.,Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Duke-National University of Singapore Graduate Medical School, Singapore, Singapore
| | - Tunn-Ren Tay
- Respiratory and Critical Care Medicine, Changi General Hospital, Singapore, Singapore
| | - Ser Hon Puah
- Respiratory and Critical Care Medicine, Tan Tock Seng Hospital, Singapore, Singapore
| | - Hui-Fang Lim
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Respiratory and Critical Care Medicine, National University Hospital, Singapore, Singapore
| | - Andrew Li
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Respiratory and Critical Care Medicine, National University Hospital, Singapore, Singapore
| | - Priscilla Lau
- Duke-National University of Singapore Graduate Medical School, Singapore, Singapore
| | - Raeann Tan
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Lay-Ping Neo
- Respiratory and Critical Care Medicine, Tan Tock Seng Hospital, Singapore, Singapore
| | - Kian Fan Chung
- Airways Disease, National Heart and Lung Institute, Imperial College London & Royal Brompton Hospital, London, UK
| | - Mariko S Koh
- Duke-National University of Singapore Graduate Medical School, Singapore, Singapore.,Respiratory and Critical Care Medicine, Singapore General Hospital, Singapore, Singapore
| |
Collapse
|
18
|
Bachert C, Zhang N, Hellings PW, Bousquet J. Endotype-driven care pathways in patients with chronic rhinosinusitis. J Allergy Clin Immunol 2019; 141:1543-1551. [PMID: 29731100 DOI: 10.1016/j.jaci.2018.03.004] [Citation(s) in RCA: 136] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 03/26/2018] [Accepted: 03/26/2018] [Indexed: 12/13/2022]
Abstract
Chronic rhinosinusitis (CRS) has been differentiated clinically into CRS without nasal polyps and CRS with nasal polyps, with both forms subjected to glucocorticosteroid and antibiotic treatments and, if not successful, to nasal and sinus surgery tailored to endoscopic and computed tomographic scan findings. The elaboration of endotypes based on pathomechanisms involving different immune responses offers new possibilities in terms of prediction of prognosis and risks and sophisticated guidance in personalized pharmacotherapy, surgical approaches, and innovative treatment approaches in the CRS field with various biologics. Surgical approaches can vary from classical functional endoscopic sinus surgery to extended and "reboot" approaches, with the idea to completely remove the dysfunctional and inflamed mucosa and replace it with a newly grown healthy mucosa. Biologics in this field are targeting the type 2 cytokines IL-4, IL-5, and IL-13, as well as IgE. Phase I and II study results are promising, and phase III studies are currently being performed. The development of endotype-driven integrated care pathways appreciating these innovations are now needed for the management of CRS.
Collapse
Affiliation(s)
- Claus Bachert
- Upper Airways Research Laboratory and Department of Oto-Rhino-Laryngology, Ghent University and Ghent University Hospital, Ghent, Belgium; Division of ENT Diseases, CLINTEC, Karolinska Institute, University of Stockholm, Stockholm, Sweden.
| | - Nan Zhang
- Upper Airways Research Laboratory and Department of Oto-Rhino-Laryngology, Ghent University and Ghent University Hospital, Ghent, Belgium
| | - Peter W Hellings
- Department of Oto-Rhino-Laryngology, Leuven University Hospital, Leuven, Belgium
| | | |
Collapse
|
19
|
Kantor DB, Phipatanakul W, Hirschhorn JN. Gene-Environment Interactions Associated with the Severity of Acute Asthma Exacerbation in Children. Am J Respir Crit Care Med 2019; 197:545-547. [PMID: 29160726 DOI: 10.1164/rccm.201711-2166ed] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- David B Kantor
- 1 Department of Anesthesiology, Critical Care and Pain Medicine Boston Children's Hospital Boston, Massachusetts.,2 Department of Anaesthesia Harvard Medical School Boston, Massachusetts
| | - Wanda Phipatanakul
- 3 Department of Pediatrics Harvard Medical School Boston, Massachusetts.,4 Division of Allergy and Immunology Boston Children's Hospital Boston, Massachusetts
| | - Joel N Hirschhorn
- 5 Division of Endocrinology Boston Children's Hospital Boston, Massachusetts.,6 Program in Medical & Population Genetics Broad Institute of Harvard and Massachusetts Institute of Technology Cambridge, Massachusetts and.,7 Department of Genetics Harvard Medical School Boston, Massachusetts
| |
Collapse
|
20
|
Contoli M, Papi A. Effects of Anti-IL-5 on Virus-induced Exacerbation in Asthma. Light and Shadow. Am J Respir Crit Care Med 2019; 199:410-411. [PMID: 30265568 DOI: 10.1164/rccm.201809-1684ed] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Affiliation(s)
- Marco Contoli
- 1 Research Centre on Asthma and COPD University of Ferrara Ferrara, Italy
| | - Alberto Papi
- 1 Research Centre on Asthma and COPD University of Ferrara Ferrara, Italy
| |
Collapse
|
21
|
Abstract
PURPOSE OF REVIEW Although biologic therapies can provide outstanding efficacy in the management of lung disease, especially asthma, most of these agents have been approved only for adults. Recent findings provide new strategies for using these agents in children. RECENT FINDINGS Extensive evidence has consistently demonstrated the efficacy and safety of biologic therapy for asthma. In addition, some studies have documented potentially important secondary effects, such as improving response to respiratory virus infection in asthmatic patients. Additional strategies for improving asthma control using biologic therapy, such as seasonal administration, have been suggested, and may limit cost while still providing a high degree of efficacy. SUMMARY Many of the current biologics are able to readily establish control even in asthmatic patients for whom inhaled steroid and long-acting β agonist have failed. However, biologics currently have limited regulatory approval and availability in the pediatric age range, despite this age being disproportionately affected by asthma. In addition, successful biologics for asthma to date have largely been limited to the Th2-high endotype of asthma, and there is great need for similar medications to target the Th2-low endotype. Other pediatric lung disease might well benefit from the specificity allowed by biologic therapy.
Collapse
|
22
|
Kantor DB, Hirshberg EL, McDonald MC, Griffin J, Buccigrosso T, Stenquist N, Smallwood CD, Nelson KA, Zurakowski D, Phipatanakul W, Hirschhorn JN. Fluid Balance Is Associated with Clinical Outcomes and Extravascular Lung Water in Children with Acute Asthma Exacerbation. Am J Respir Crit Care Med 2018; 197:1128-1135. [PMID: 29313715 PMCID: PMC6019929 DOI: 10.1164/rccm.201709-1860oc] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 01/08/2018] [Indexed: 11/16/2022] Open
Abstract
RATIONALE The effects of fluid administration during acute asthma exacerbation are likely unique in this patient population: highly negative inspiratory intrapleural pressure resulting from increased airway resistance may interact with excess fluid administration to favor the accumulation of extravascular lung water, leading to worse clinical outcomes. OBJECTIVES Investigate how fluid balance influences clinical outcomes in children hospitalized for asthma exacerbation. METHODS We analyzed the association between fluid overload and clinical outcomes in a retrospective cohort of children admitted to an urban children's hospital with acute asthma exacerbation. These findings were validated in two cohorts: a matched retrospective and a prospective observational cohort. Finally, ultrasound imaging was used to identify extravascular lung water and investigate the physiological basis for the inferential findings. MEASUREMENTS AND MAIN RESULTS In the retrospective cohort, peak fluid overload [(fluid input - output)/weight] is associated with longer hospital length of stay, longer treatment duration, and increased risk of supplemental oxygen use (P values < 0.001). Similar results were obtained in the validation cohorts. There was a strong interaction between fluid balance and intrapleural pressure: the combination of positive fluid balance and highly negative inspiratory intrapleural pressures is associated with signs of increased extravascular lung water (P < 0.001), longer length of stay (P = 0.01), longer treatment duration (P = 0.03), and increased risk of supplemental oxygen use (P = 0.02). CONCLUSIONS Excess volume administration leading to fluid overload in children with acute asthma exacerbation is associated with increased extravascular lung water and worse clinical outcomes.
Collapse
Affiliation(s)
- David B. Kantor
- Division of Critical Care Medicine, Department of Anesthesiology, Critical Care and Pain Medicine
- Department of Anaesthesia
| | - Eliotte L. Hirshberg
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Intermountain Medical Center, Murray, Utah
- Department of Pediatrics, Division of Pediatric Critical Care, University of Utah, Salt Lake City, Utah; and
| | | | - John Griffin
- Division of Critical Care Medicine, Department of Anesthesiology, Critical Care and Pain Medicine
| | | | - Nicole Stenquist
- Division of Critical Care Medicine, Department of Anesthesiology, Critical Care and Pain Medicine
| | - Craig D. Smallwood
- Division of Critical Care Medicine, Department of Anesthesiology, Critical Care and Pain Medicine
- Department of Anaesthesia
| | - Kyle A. Nelson
- Division of Pediatric Emergency Medicine
- Department of Pediatrics, and
| | - David Zurakowski
- Division of Critical Care Medicine, Department of Anesthesiology, Critical Care and Pain Medicine
- Department of Anaesthesia
| | | | - Joel N. Hirschhorn
- Division of Endocrinology, Boston Children’s Hospital, Boston, Massachusetts
- Department of Genetics, Harvard Medical School, Boston, Massachusetts
- Program in Medical and Population Genetics, Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts
| |
Collapse
|
23
|
Chipps BE, Bacharier LB, Farrar JR, Jackson DJ, Murphy KR, Phipatanakul W, Szefler SJ, Teague WG, Zeiger RS. The pediatric asthma yardstick: Practical recommendations for a sustained step-up in asthma therapy for children with inadequately controlled asthma. Ann Allergy Asthma Immunol 2018; 120:559-579.e11. [PMID: 29653238 DOI: 10.1016/j.anai.2018.04.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 03/31/2018] [Accepted: 04/03/2018] [Indexed: 12/29/2022]
Abstract
Current asthma guidelines recommend a control-based approach to management involving assessment of impairment and risk followed by implementation of treatment strategies individualized according to the patient's needs and preferences. However, for children with asthma, achieving control can be elusive. Although tools are available to help children (and families) track and manage day-to-day symptoms, when and how to implement a longer-term step-up in care is less clear. Furthermore, treatment is challenged by the 3 age groups of childhood-adolescence (12-18 years old), school age (6-11 years old), and young children (≤5 years old)-and what works for 1 age group might not be the best approach for another. The Pediatric Asthma Yardstick provides an in-depth assessment of when and how to step-up therapy for the child with not well or poorly controlled asthma. Development of this tool follows others in the Yardstick series, presenting patient profiles and step-up strategies based on current guidance documents, but modified according to newer data and the authors' combined clinical experience. The objective is to provide clinicians who treat children with asthma practical and clinically relevant recommendations for each step-up and each intervention, with the intent of helping practitioners better treat their pediatric patients with asthma, particularly those who do not always respond to recommended therapies.
Collapse
Affiliation(s)
- Bradley E Chipps
- Capital Allergy & Respiratory Disease Center, Sacramento, California.
| | - Leonard B Bacharier
- Division of Allergy, Immunology and Pulmonary Medicine, Washington University School of Medicine and St Louis Children's Hospital, St Louis, Missouri
| | | | - Daniel J Jackson
- University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Kevin R Murphy
- Boys Town National Research Hospital, Boys Town, Nebraska
| | - Wanda Phipatanakul
- Allergy, Asthma, Immunology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Stanley J Szefler
- Breathing Institute, Children's Hospital of Colorado and Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado
| | - W Gerald Teague
- Division of Pediatric Respiratory Medicine and Allergy, University of Virginia Children's Hospital, Charlottesville, Virginia
| | - Robert S Zeiger
- Department of Allergy and Research and Evaluation, Kaiser Permanente Southern California Region, San Diego and Pasadena, California
| |
Collapse
|
24
|
Beghé B, Fabbri LM, Contoli M, Papi A. Update in Asthma 2016. Am J Respir Crit Care Med 2017; 196:548-557. [PMID: 28530112 DOI: 10.1164/rccm.201702-0318up] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Bianca Beghé
- 1 Department of Medical and Surgical Sciences, University of Modena Reggio Emilia, Modena, Italy
| | - Leonardo M Fabbri
- 2 Research Centre on Asthma and Chronic Obstructive Pulmonary Disease, Department of Medical Sciences, University of Ferrara, Ferrara, Italy; and.,3 Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Marco Contoli
- 2 Research Centre on Asthma and Chronic Obstructive Pulmonary Disease, Department of Medical Sciences, University of Ferrara, Ferrara, Italy; and
| | - Alberto Papi
- 2 Research Centre on Asthma and Chronic Obstructive Pulmonary Disease, Department of Medical Sciences, University of Ferrara, Ferrara, Italy; and
| |
Collapse
|
25
|
Bousquet J, Brusselle G, Buhl R, Busse WW, Cruz AA, Djukanovic R, Domingo C, Hanania NA, Humbert M, Menzies Gow A, Phipatanakul W, Wahn U, Wechsler ME. Care pathways for the selection of a biologic in severe asthma. Eur Respir J 2017; 50:50/6/1701782. [PMID: 29217605 DOI: 10.1183/13993003.01782-2017] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 10/03/2017] [Indexed: 12/13/2022]
Affiliation(s)
- Jean Bousquet
- Contre les MAladies Chroniques pour un VIeillissement Actif en France European Innovation Partnership on Active and Healthy Ageing Reference Site, Montpellier, France .,INSERM U 1168, VIMA: Ageing and chronic diseases Epidemiological and public health approaches, Villejuif, Université Versailles St-Quentin-en-Yvelines, UMR-S 1168, Montigny le Bretonneux, France.,Euforea, Brussels, Belgium
| | - Guy Brusselle
- Dept of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
| | - Roland Buhl
- Dept of Pulmonary Medicine, Mainz University Hospital, Mainz, Germany
| | - William W Busse
- Division of Allergy, Pulmonary and Critical Care Medicine, Dept of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Alvaro A Cruz
- ProAR - Nucleo de Excelencia em Asma, Federal University of Bahia, Brazil.,GARD Executive Committee, Brazil
| | - Ratko Djukanovic
- University Southampton Faculty of Medicine and NIHR Southampton Respiratory Biomedical Research Unit, Southampton, UK
| | - Christian Domingo
- Pulmonary Service, Corporació Sanitària Parc Taulí, Dept of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Nicola A Hanania
- Section of Pulmonary and Critical Care Medicine, Baylor College of Medicine, American Lung Association, Asthma Clinical Research Centers Network, Houston, TX, USA
| | - Marc Humbert
- Université Paris-Sud; Service de Pneumologie, Hôpital Bicêtre; Inserm UMR_S999, Le Kremlin Bicêtre, France
| | | | - Wanda Phipatanakul
- Harvard Medical School, Division of Allergy and Immunology, Asthma Clinical Research Center, Boston Children's Hospital, Boston, MA, USA
| | - Ulrich Wahn
- Pediatric Department, Charité, Berlin, Germany
| | - Michael E Wechsler
- Dept of Pulmonary and Critical Care Medicine, National Jewish Health, Denver, CO, USA
| |
Collapse
|
26
|
Esquivel A, Busse WW, Calatroni A, Togias AG, Grindle KG, Bochkov YA, Gruchalla RS, Kattan M, Kercsmar CM, Khurana Hershey G, Kim H, Lebeau P, Liu AH, Szefler SJ, Teach SJ, West JB, Wildfire J, Pongracic JA, Gern JE. Effects of Omalizumab on Rhinovirus Infections, Illnesses, and Exacerbations of Asthma. Am J Respir Crit Care Med 2017; 196:985-992. [PMID: 28608756 DOI: 10.1164/rccm.201701-0120oc] [Citation(s) in RCA: 178] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
RATIONALE Allergic inflammation has been linked to increased susceptibility to viral illnesses, but it is unclear whether this association is causal. OBJECTIVES To test whether omalizumab treatment to reduce IgE would shorten the frequency and duration of rhinovirus (RV) illnesses in children with allergic asthma. METHODS In the PROSE (Preventative Omalizumab or Step-up Therapy for Severe Fall Exacerbations) study, we examined children with allergic asthma (aged 6-17 yr; n = 478) from low-income census tracts in eight U.S. cities, and we analyzed virology for the groups randomized to treatment with guidelines-based asthma care (n = 89) or add-on omalizumab (n = 259). Weekly nasal mucus samples were analyzed for RVs, and respiratory symptoms and asthma exacerbations were recorded over a 90-day period during the fall seasons of 2012 or 2013. Adjusted illness rates (illnesses per sample) by treatment arm were calculated using Poisson regression. MEASUREMENTS AND MAIN RESULTS RVs were detected in 97 (57%) of 171 exacerbation samples and 2,150 (36%) of 5,959 nonexacerbation samples (OR, 2.32; P < 0.001). Exacerbations were significantly associated with detection of rhinovirus C (OR, 2.85; P < 0.001) and rhinovirus A (OR, 2.92; P < 0.001), as well as, to a lesser extent, rhinovirus B (OR, 1.98; P = 0.019). Omalizumab decreased the duration of RV infection (11.2 d vs. 12.4 d; P = 0.03) and reduced peak RV shedding by 0.4 log units (95% confidence interval, -0.77 to -0.02; P = 0.04). Finally, omalizumab decreased the frequency of RV illnesses (risk ratio, 0.64; 95% confidence interval, 0.49-0.84). CONCLUSIONS In children with allergic asthma, treatment with omalizumab decreased the duration of RV infections, viral shedding, and the risk of RV illnesses. These findings provide direct evidence that blocking IgE decreases susceptibility to RV infections and illness. Clinical trial registered with www.clinicaltrials.gov (NCT01430403).
Collapse
Affiliation(s)
- Ann Esquivel
- 1 University of Wisconsin, Madison, Madison, Wisconsin
| | | | | | - Alkis G Togias
- 3 National Institute of Allergy and Infectious Diseases, Rockville, Maryland
| | | | | | | | - Meyer Kattan
- 5 Columbia University Medical Center, New York, New York
| | | | | | - Haejin Kim
- 7 Henry Ford Health System, Detroit, Michigan
| | - Petra Lebeau
- 2 Rho Inc. Federal Systems Division, Chapel Hill, North Carolina
| | - Andrew H Liu
- 8 National Jewish Health, Denver, Colorado.,9 Children's Hospital Colorado and University of Colorado School of Medicine, Aurora, Colorado
| | - Stanley J Szefler
- 9 Children's Hospital Colorado and University of Colorado School of Medicine, Aurora, Colorado
| | | | - Joseph B West
- 11 Boston University School of Medicine, Boston, Massachussetts; and
| | - Jeremy Wildfire
- 2 Rho Inc. Federal Systems Division, Chapel Hill, North Carolina
| | | | - James E Gern
- 1 University of Wisconsin, Madison, Madison, Wisconsin
| |
Collapse
|
27
|
Jartti T, Gern JE. Role of viral infections in the development and exacerbation of asthma in children. J Allergy Clin Immunol 2017; 140:895-906. [PMID: 28987219 PMCID: PMC7172811 DOI: 10.1016/j.jaci.2017.08.003] [Citation(s) in RCA: 295] [Impact Index Per Article: 36.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 08/03/2017] [Accepted: 08/22/2017] [Indexed: 12/31/2022]
Abstract
Viral infections are closely linked to wheezing illnesses in children of all ages. Respiratory syncytial virus (RSV) is the main causative agent of bronchiolitis, whereas rhinovirus (RV) is most commonly detected in wheezing children thereafter. Severe respiratory illness induced by either of these viruses is associated with subsequent development of asthma, and the risk is greatest for young children who wheeze with RV infections. Whether viral illnesses actually cause asthma is the subject of intense debate. RSV-induced wheezing illnesses during infancy influence respiratory health for years. There is definitive evidence that RSV-induced bronchiolitis can damage the airways to promote airway obstruction and recurrent wheezing. RV likely causes less structural damage and yet is a significant contributor to wheezing illnesses in young children and in the context of asthma. For both viruses, interactions between viral virulence factors, personal risk factors (eg, genetics), and environmental exposures (eg, airway microbiome) promote more severe wheezing illnesses and the risk for progression to asthma. In addition, allergy and asthma are major risk factors for more frequent and severe RV-related illnesses. Treatments that inhibit inflammation have efficacy for RV-induced wheezing, whereas the anti-RSV mAb palivizumab decreases the risk of severe RSV-induced illness and subsequent recurrent wheeze. Developing a greater understanding of personal and environmental factors that promote more severe viral illnesses might lead to new strategies for the prevention of viral wheezing illnesses and perhaps reduce the subsequent risk for asthma.
Collapse
Affiliation(s)
- Tuomas Jartti
- Department of Paediatrics, Turku University Hospital and University of Turku, Turku, Finland.
| | - James E Gern
- Departments of Pediatrics and Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wis
| |
Collapse
|
28
|
Papadopoulos NG, Megremis S, Kitsioulis NA, Vangelatou O, West P, Xepapadaki P. Promising approaches for the treatment and prevention of viral respiratory illnesses. J Allergy Clin Immunol 2017; 140:921-932. [PMID: 28739285 PMCID: PMC7112313 DOI: 10.1016/j.jaci.2017.07.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 07/11/2017] [Accepted: 07/14/2017] [Indexed: 02/09/2023]
Abstract
Viral respiratory tract infections are the most common human ailments, leading to enormous health and economic burden. Hundreds of viral species and subtypes have been associated with these conditions, with influenza viruses, respiratory syncytial virus, and rhinoviruses being the most frequent and with the highest burden. When considering prevention or treatment of viral respiratory tract infections, potential targets include the causative pathogens themselves but also the immune response, disease transmission, or even just the symptoms. Strategies targeting all these aspects are developing concurrently, and several novel and promising approaches are emerging. In this perspective we overview the entire range of options and highlight some of the most promising approaches, including new antiviral agents, symptomatic or immunomodulatory drugs, the re-emergence of natural remedies, and vaccines and public health policies toward prevention. Wide-scale prevention through immunization appears to be within reach for respiratory syncytial virus and promising for influenza virus, whereas additional effort is needed in regard to rhinovirus, as well as other respiratory tract viruses.
Collapse
Affiliation(s)
- Nikolaos G Papadopoulos
- Division of Infection, Immunity & Respiratory Medicine, University of Manchester, Manchester, United Kingdom; Allergy Department, 2nd Pediatric Clinic, National & Kapodistrian University of Athens, Athens, Greece.
| | - Spyridon Megremis
- Division of Infection, Immunity & Respiratory Medicine, University of Manchester, Manchester, United Kingdom
| | - Nikolaos A Kitsioulis
- Allergy Department, 2nd Pediatric Clinic, National & Kapodistrian University of Athens, Athens, Greece
| | - Olympia Vangelatou
- Department of Nutritional Physiology & Feeding, Agricultural University of Athens, Athens, Greece
| | - Peter West
- Division of Infection, Immunity & Respiratory Medicine, University of Manchester, Manchester, United Kingdom
| | - Paraskevi Xepapadaki
- Allergy Department, 2nd Pediatric Clinic, National & Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
29
|
Carr TF, Kraft M. Management of Severe Asthma before Referral to the Severe Asthma Specialist. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2017; 5:877-886. [PMID: 28689838 PMCID: PMC5526085 DOI: 10.1016/j.jaip.2017.04.027] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 04/18/2017] [Accepted: 04/20/2017] [Indexed: 12/26/2022]
Abstract
Severe asthma is associated with significant morbidity and can be challenging to assess and control, due to heterogeneity of disease, complexity of diagnosis, and impact of comorbidities. A structured approach to the assessment and management of severe asthma may be helpful to the practicing clinician. First, it is important to confirm a diagnosis of asthma. In patients who are either not responding to treatment, or who require high doses of medication to control symptoms, it is highly possible that disease mimickers or comorbidities are present and can inhibit therapeutic responsiveness. The assessment and management of common comorbidities of asthma may dramatically impact disease control and thus medication requirement. Determining medication adherence and optimizing drug dose and delivery may separate out truly severe asthmatics from those not using medications regularly or properly. Next, although true personalized medicine for severe asthma is not yet realized, for those individuals with severe asthma, phenotypic characteristics of each patient may guide which therapeutic options may be most effective for that patient. Finally, evaluation and management of severe asthma at a referral center can add additional phenotyping, therapeutic, and diagnostic strategies.
Collapse
Affiliation(s)
- Tara F Carr
- Asthma and Airway Disease Research Center, University of Arizona, Tucson, Ariz.
| | - Monica Kraft
- Asthma and Airway Disease Research Center, University of Arizona, Tucson, Ariz
| |
Collapse
|
30
|
Pomés A, Mueller GA, Randall TA, Chapman MD, Arruda LK. New Insights into Cockroach Allergens. Curr Allergy Asthma Rep 2017; 17:25. [PMID: 28421512 DOI: 10.1007/s11882-017-0694-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
PURPOSE OF REVIEW This review addresses the most recent developments on cockroach allergen research in relation to allergic diseases, especially asthma. RECENT FINDINGS The number of allergens relevant to cockroach allergy has recently expanded considerably up to 12 groups. New X-ray crystal structures of allergens from groups 1, 2, and 5 revealed interesting features with implications for allergen standardization, sensitization, diagnosis, and therapy. Cockroach allergy is strongly associated with asthma particularly among children and young adults living in inner-city environments, posing challenges for disease control. Environmental interventions targeted at reducing cockroach allergen exposure have provided conflicting results. Immunotherapy may be a way to modify the natural history of cockroach allergy and decrease symptoms and asthma severity among sensitized and exposed individuals. The new information on cockroach allergens is important for the assessment of allergen markers of exposure and disease, and for the design of immunotherapy trials.
Collapse
Affiliation(s)
- Anna Pomés
- Indoor Biotechnologies, Inc., 700 Harris Street, Charlottesville, VA, 22903, USA.
| | - Geoffrey A Mueller
- Genome Integrity and Structural Biology Laboratory, Intramural Program, National Institute of Environmental Health Sciences, National Institutes of Health, 111 T.W. Alexander Drive, MD-MR01, Research Triangle Park, NC, 27709, USA
| | - Thomas A Randall
- Integrative Bioinformatics, National Institute of Environmental Health Sciences, National Institutes of Health, 111 T.W. Alexander Drive, MD-MR01, Research Triangle Park, NC, 27709, USA
| | - Martin D Chapman
- Indoor Biotechnologies, Inc., 700 Harris Street, Charlottesville, VA, 22903, USA
| | - L Karla Arruda
- Department of Medicine, Ribeirao Preto Medical School, University of Sao Paulo, Av. Bandeirantes 3900, Ribeirao Preto, SP, 14049-900, Brazil
| |
Collapse
|
31
|
Reply. J Allergy Clin Immunol 2017; 139:1717-1718. [PMID: 28274584 DOI: 10.1016/j.jaci.2016.11.054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 11/07/2016] [Indexed: 11/22/2022]
|
32
|
Wang T, Hou W, Fu Z. Preventative effect of OMZ-SPT on lipopolysaccharide-induced acute lung injury and inflammation via nuclear factor-kappa B signaling in mice. Biochem Biophys Res Commun 2017; 485:284-289. [PMID: 28223218 DOI: 10.1016/j.bbrc.2017.02.090] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 02/18/2017] [Indexed: 11/17/2022]
Abstract
Acute lung injury (ALI) is an early pathophysiologic change in acute respiratory distress syndrome and its management can be challenging. Omalizumab (Xolair™) is a recombinant DNA-derived, humanized antibody. OMZ-SPT is a polypeptide on the heavy chain of omalizumab monoclonal antibody. Here, we found that intramuscular administration of OMZ-SPT significantly improved survival and attenuated lung inflammation in female C57BL/6 mice suffering from lipopolysaccharide (LPS)-induced ALI. We also demonstrated that OMZ-SPT can inhibit expression of the inflammatory cytokines tumor necrosis factor-α, interleukin-1β and interleukin-6 by ELISA in mice suffering from LPS-induced ALI and a mouse macrophage line (RAW264.7 cells). In addition, we showed that OMZ-SPT inhibited LPS-induced activation of nuclear factor-kappa B (NF-κB) signaling and total expression of NF-κB by western blotting. These data suggest that OMZ-SPT could be a novel therapeutic choice for ALI.
Collapse
Affiliation(s)
- Ting Wang
- Pediatrics Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China; Department of Respiratory Medicine, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China.
| | - Wanru Hou
- Secular Peptide Biomedicine, Chengdu, China.
| | - Zhou Fu
- Pediatrics Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China; Department of Respiratory Medicine, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China.
| |
Collapse
|