1
|
Castellví-Font A, Goligher EC, Dianti J. Lung and Diaphragm Protection During Mechanical Ventilation in Patients with Acute Respiratory Distress Syndrome. Clin Chest Med 2024; 45:863-875. [PMID: 39443003 DOI: 10.1016/j.ccm.2024.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Patients with acute respiratory distress syndrome often require mechanical ventilation to maintain adequate gas exchange and to reduce the workload of the respiratory muscles. Although lifesaving, positive pressure mechanical ventilation can potentially injure the lungs and diaphragm, further worsening patient outcomes. While the effect of mechanical ventilation on the risk of developing lung injury is widely appreciated, its potentially deleterious effects on the diaphragm have only recently come to be considered by the broader intensive care unit community. Importantly, both ventilator-induced lung injury and ventilator-induced diaphragm dysfunction are associated with worse patient-centered outcomes.
Collapse
Affiliation(s)
- Andrea Castellví-Font
- Critical Care Department, Hospital del Mar de Barcelona, Critical Illness Research Group (GREPAC), Hospital del Mar Research Institute (IMIM), Passeig Marítim de la Barceloneta 25-29, Ciutat Vella, 08003, Barcelona, Spain; Interdepartmental Division of Critical Care Medicine, University of Toronto, 27 King's College Circle, Toronto, Ontario M5S 1A1, Canada; Division of Respirology, Department of Medicine, University Health Network, Toronto, Canada
| | - Ewan C Goligher
- Interdepartmental Division of Critical Care Medicine, University of Toronto, 27 King's College Circle, Toronto, Ontario M5S 1A1, Canada; Division of Respirology, Department of Medicine, University Health Network, Toronto, Canada; University Health Network/Sinai Health System, University of Toronto, 27 King's College Circle, Toronto, Ontario M5S 1A1, Canada; Toronto General Hospital Research Institute, 200 Elizabeth Street, Toronto, Ontario M5G 2C4, Canada; Department of Physiology, University of Toronto, 27 King's College Circle, Toronto, Ontario M5S 1A1, Canada.
| | - Jose Dianti
- Critical Care Medicine Department, Centro de Educación Médica e Investigaciones Clínicas "Norberto Quirno" (CEMIC), Av. E. Galván 4102, Ciudad de Buenos Aires, Argentina
| |
Collapse
|
2
|
Consalvo S, Accoce M, Telias I. Monitoring and modulating respiratory drive in mechanically ventilated patients. Curr Opin Crit Care 2024:00075198-990000000-00222. [PMID: 39445600 DOI: 10.1097/mcc.0000000000001223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
PURPOSE OF REVIEW Respiratory drive is frequently deranged in the ICU, being associated with adverse clinical outcomes. Monitoring and modulating respiratory drive to prevent potentially injurious consequences merits attention. This review gives a general overview of the available monitoring tools and interventions to modulate drive. RECENT FINDINGS Airway occlusion pressure (P0.1) is an excellent measure of drive and is displayed on ventilators. Respiratory drive can also be estimated based on the electrical activity of respiratory muscles and measures of respiratory effort; however, high respiratory drive might be present in the context of low effort with neuromuscular weakness. Modulating a deranged drive requires a multifaceted intervention, prioritizing treatment of the underlying cause and adjusting ventilator settings for comfort. Additional tools include changes in PEEP, peak inspiratory flow, fraction of inspired oxygen, and sweep gas flow (in patients receiving extracorporeal life-support). Sedatives and opioids have differential effects on drive according to drug category. Monitoring response to any intervention is warranted and modulating drive should not preclude readiness to wean assessment or delay ventilation liberation. SUMMARY Monitoring and modulating respiratory drive are feasible based on physiological principles presented in this review. However, evidence arising from clinical trials will help determine precise thresholds and optimal interventions.
Collapse
Affiliation(s)
- Sebastián Consalvo
- Intensive Care Unit, Hospital Británico, Ciudad Autónoma de Buenos Aires
| | - Matías Accoce
- Intensive Care Unit, Sanatorio Anchorena San Martín, Provincia de Buenos Aires
- Intensive Care Unit, Hospital de Quemados "Dr Arturo Humberto Illia"
- Facultad de Medicina y Ciencias de la Salud, Universidad Abierta Interamericana, Ciudad Autónoma de Buenos Aires, Argentina
| | - Irene Telias
- Division of Respirology and Critical Care Medicine, University Health Network and Sinai Health System
- Interdepartmental Division of Critical Care Medicine, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
3
|
Vedrenne-Cloquet M, Ito Y, Hotz J, Klein MJ, Herrera M, Chang D, Bhalla AK, Newth CJL, Khemani RG. Phenotypes based on respiratory drive and effort to identify the risk factors when P0.1 fails to estimate ∆P ES in ventilated children. Crit Care 2024; 28:325. [PMID: 39367452 PMCID: PMC11453010 DOI: 10.1186/s13054-024-05103-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 09/17/2024] [Indexed: 10/06/2024] Open
Abstract
BACKGROUND Monitoring respiratory effort and drive during mechanical ventilation is needed to deliver lung and diaphragm protection. Esophageal pressure (∆PES) is the gold standard measure of respiratory effort but is not routinely available. Airway occlusion pressure in the first 100 ms of the breath (P0.1) is a readily available surrogate for both respiratory effort and drive but is only modestly correlated with ∆PES in children. We sought to identify risk factors for P0.1 over or underestimating ∆PES in ventilated children. METHODS Secondary analysis of physiological data from children and young adults enrolled in a randomized controlled trial testing lung and diaphragm protective ventilation in pediatric acute respiratory distress syndrome (PARDS) (NCT03266016). ∆PES (∆PES-REAL), P0.1 and predicted ∆PES (∆PES-PRED = 5.91*P0.1) were measured daily to identify phenotypes based upon the level of respiratory effort and drive: one passive (no spontaneous breathing), three where ∆PES-REAL and ∆PES-PRED were aligned (low, normal, and high effort and drive), two where ∆PES-REAL and ∆PES-PRED were mismatched (high underestimated effort, and overestimated effort). Logistic regression models were used to identify factors associated with each mismatch phenotype (High underestimated effort, or overestimated effort) as compared to all other spontaneous breathing phenotypes. RESULTS We analyzed 953 patient days (222 patients). ∆PES-REAL and ∆PES-PRED were aligned in 536 (77%) of the active patient days. High underestimated effort (n = 119 (12%)) was associated with higher airway resistance (adjusted OR 5.62 (95%CI 2.58, 12.26) per log unit increase, p < 0.001), higher tidal volume (adjusted OR 1.53 (95%CI 1.04, 2.24) per cubic unit increase, p = 0.03), higher opioid use (adjusted OR 2.4 (95%CI 1.12, 5.13, p = 0.024), and lower set ventilator rate (adjusted OR 0.96 (95%CI 0.93, 0.99), p = 0.005). Overestimated effort was rare (n = 37 (4%)) and associated with higher alveolar dead space (adjusted OR 1.05 (95%CI 1.01, 1.09), p = 0.007) and lower respiratory resistance (adjusted OR 0.32 (95%CI 0.13, 0.81), p = 0.017). CONCLUSIONS In patients with PARDS, P0.1 commonly underestimated high respiratory effort particularly with high airway resistance, high tidal volume, and high doses of opioids. Future studies are needed to investigate the impact of measures of respiratory effort, drive, and the presence of a mismatch phenotype on clinical outcome. TRIAL REGISTRATION NCT03266016; August 23, 2017.
Collapse
Affiliation(s)
- Meryl Vedrenne-Cloquet
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital Los Angeles, Los Angeles, USA.
- Department of Pediatric Intensive Care, Necker Sick Children University Hospital, 149 Rue de Sèvres, 75015, Paris, France.
| | - Y Ito
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital Los Angeles, Los Angeles, USA
| | - J Hotz
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital Los Angeles, Los Angeles, USA
| | - M J Klein
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital Los Angeles, Los Angeles, USA
| | - M Herrera
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital Los Angeles, Los Angeles, USA
- Department of Intensive Care, Hospital de Pediatría JP Garrahan, Buenos Aires, Argentina
| | - D Chang
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital Los Angeles, Los Angeles, USA
| | - A K Bhalla
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital Los Angeles, Los Angeles, USA
- Department of Pediatrics, University of Southern California Keck School of Medicine, Los Angeles, USA
| | - C J L Newth
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital Los Angeles, Los Angeles, USA
- Department of Pediatrics, University of Southern California Keck School of Medicine, Los Angeles, USA
| | - R G Khemani
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital Los Angeles, Los Angeles, USA
- Department of Pediatrics, University of Southern California Keck School of Medicine, Los Angeles, USA
| |
Collapse
|
4
|
Jiang N, Xia Y, Luo M, Chen J, Qiu Z, Liu J. Diagnosis of newly developed multiple myeloma without bone disease detectable on conventional computed tomography (CT) scan by using dual-energy CT. J Bone Oncol 2024; 48:100636. [PMID: 39391582 PMCID: PMC11466646 DOI: 10.1016/j.jbo.2024.100636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 09/06/2024] [Accepted: 09/19/2024] [Indexed: 10/12/2024] Open
Abstract
Objective To evaluate the diagnostic utility of fat (hydroxyapatite) density [DFat (HAP)] on dual-energy computed tomography (DECT) for identifying clinical diagnosed multiple myeloma without bone disease (MNBD) that is not visible on conventional CT scans. Material and Methods In this age-gender-examination sites matched case control prospective study, Chest and/or abdominal images on Revolution CT of MNBDs and control subjects were consecutive enrolled in a 1:2 ratio from October 2022 to November 2023. Multiple myeloma was clinical diagnosed according to criteria of the International Myeloma Working Group. Regions of interest (ROIs) were drawn separately for all thoracolumbar vertebrae in the scanning range by two radiologists. Additionally, a radiologist specializing in musculoskeletal imaging supervised the process. DFat (HAP) was extracted from each ROI. The spine was divided into upper thoracic (UPT), middle and lower thoracic (MLT), thoracolumbar (TL), and middle and lower lumbar (MLL) vertebrae. The area under the receiver operating characteristic curve (AUC) was calculated to evaluate the diagnostic performance of DFat (HAP) in diagnosing multiple myeloma, and the sensitivity, specificity, and accuracy under the optimal cut-off were determined by Youden index (sensitivity + specificity -1). Results A total of 32 and MNBD patients and 64 control patients were included. The total number of ROIs outlined included MNBD group (n = 493) and control group (n = 986). For all vertebrae, DFat(HAP) got average performance in the diagnosis of MNBD (AUC = 0.733, p < 0.001) with a cut-off value of 958 (mg/cm3); the sensitivity, specificity, and accuracy were 58.8 %, 77.8 %, and 71.7 %, respectively. Regarding segment analysis, the diagnostic performance was good for all (AUC, 0.803-0.837; p < 0.001) but the UPT segment (AUC = 0.692, p = 0.002). The optimal diagnostic cut-off values for the MLT, TL, and MLL vertebrae were 955 mg/cm3, 947 mg/cm3, and 947 mg/cm3, respectively; the sensitivity, specificity, and accuracy were 80.0 %-87.5 %, 71.9 %-82.6 %, and 77.1 %-81.6 %, respectively. Conclusion DECT was effective for detecting MNBD, and better diagnostic results can be obtained by grouping different spine segments.
Collapse
Affiliation(s)
- Nan Jiang
- Department of Radiology, Fujian Medical University Union Hospital, 29 Xin Quan Road, Gulou District, Fuzhou, Fujian 350001, China
| | - Yu Xia
- Department of Radiology, Fujian Medical University Union Hospital, 29 Xin Quan Road, Gulou District, Fuzhou, Fujian 350001, China
| | - Mingcong Luo
- Department of Radiology, Fujian Medical University Union Hospital, 29 Xin Quan Road, Gulou District, Fuzhou, Fujian 350001, China
| | - Jianhua Chen
- Department of Radiology, Fujian Medical University Union Hospital, 29 Xin Quan Road, Gulou District, Fuzhou, Fujian 350001, China
| | - Zongjian Qiu
- Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, China
| | - Jianfang Liu
- Department of Radiology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Department of Radiology, Fujian Medical University Union Hospital, 29 Xin Quan Road, Gulou District, Fuzhou, Fujian 350001, China
| |
Collapse
|
5
|
Bootjeamjai P, Dianti J, Goligher EC. Noninvasive Longitudinal Monitoring of Respiratory Effort. Am J Respir Crit Care Med 2024; 210:838-840. [PMID: 38941128 DOI: 10.1164/rccm.202401-0100rl] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 06/27/2024] [Indexed: 06/29/2024] Open
Affiliation(s)
- Paweenuch Bootjeamjai
- Interdepartmental Division of Critical Care Medicine and
- Division of Respirology, Department of Medicine, University Health Network, Toronto, Ontario, Canada
- Department of Anesthesiology, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Jose Dianti
- Interdepartmental Division of Critical Care Medicine and
- Division of Respirology, Department of Medicine, University Health Network, Toronto, Ontario, Canada
- Adult Intensive Care Unit, Centro de Educación Médica e Investigaciones Clínicas "Norberto Quirno" (CEMIC), Buenos Aires, Argentina
| | - Ewan C Goligher
- Interdepartmental Division of Critical Care Medicine and
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
- Division of Respirology, Department of Medicine, University Health Network, Toronto, Ontario, Canada
- Toronto General Hospital Research Institute, Toronto, Ontario, Canada
| |
Collapse
|
6
|
He G, Han Y, Zhang L, He C, Cai H, Zheng X. Respiratory effort in mechanical ventilation weaning Prediction: An observational, case-control study. Intensive Crit Care Nurs 2024; 86:103831. [PMID: 39265413 DOI: 10.1016/j.iccn.2024.103831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/10/2024] [Accepted: 09/04/2024] [Indexed: 09/14/2024]
Abstract
BACKGROUND The diaphragm is crucial for ventilator weaning, but its specific impact on weaning indicators needs further clarification. This study investigated the variability in weaning outcomes across different diaphragm function populations and the value of respiratory drive and inspiratory effort in weaning. METHODS This observational case-control study enrolled patients on mechanical ventilation for more than 48 h and completed a 30-minute spontaneous breathing trial (SBT) with pressure-support ventilation for the first time. After the SBT, airway pressure at 100 ms during occlusion (P0.1), inspiratory effort, and diaphragmatic ultrasound were evaluated to predict weaning outcomes. Weaning failure was defined as re-intubation within 48 h of weaning, the need for therapeutic non-invasive ventilation, or death. RESULTS 68 patients with a mean age of 63.21 ± 15.15 years were included. In patients with diaphragm thickness (DT) ≥ 2 mm, P0.1 (P=0.002), pressure-muscle index (PMI) (P=0.012), and occluded expiratory airway pressure swing (ΔPocc) (P=0.030) were significantly higher in those who failed weaning. Conversely, for patients with DT<2 mm, PMI (P=0.003) and ΔPocc (P=0.002) were lower in the weaning failure group. Additionally, within the DT≥2 mm group, P0.1 demonstrated a higher area under the curve (AUC) for weaning prediction (0.889 vs. 0.739) compared to those with DT<2 mm. CONCLUSIONS PMI and ΔPocc are predictive of weaning outcomes in patients with diaphragm thickness ≥ 2 mm, where the assessment value of P0.1 is notably higher. Diaphragm function significantly influences the accuracy of weaning predictions based on respiratory drive and inspiratory effort. IMPLICATIONS FOR CLINICAL PRACTICE Our findings indicate that the effectiveness of respiratory drive and inspiratory effort in predicting successful weaning from mechanical ventilation may vary across different patient populations. Diaphragm function plays a crucial role in weaning assessments, particularly when using P0.1, the pressure-muscle index (PMI), and occluded expiratory airway pressure swing (ΔPocc).
Collapse
Affiliation(s)
- Guojun He
- Department of Respiratory Care, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, PR China; Key Laboratory of Clinical Evaluation Technology for Medical Device of Zhejiang Province, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, PR China
| | - Yijiao Han
- Department of Respiratory Care, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, PR China
| | - Liang Zhang
- Department of Respiratory Care, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, PR China
| | - Chunfeng He
- Department of Respiratory Care, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, PR China
| | - Hongliu Cai
- Key Laboratory of Clinical Evaluation Technology for Medical Device of Zhejiang Province, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, PR China; Department of Critical Care Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, PR China.
| | - Xia Zheng
- Key Laboratory of Clinical Evaluation Technology for Medical Device of Zhejiang Province, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, PR China; Department of Critical Care Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, PR China.
| |
Collapse
|
7
|
Balzani E, Murgolo F, Pozzi M, Di Mussi R, Bartolomeo N, Simonetti U, Brazzi L, Spadaro S, Bellani G, Grasso S, Fanelli V. Respiratory Drive, Effort, and Lung-Distending Pressure during Transitioning from Controlled to Spontaneous Assisted Ventilation in Patients with ARDS: A Multicenter Prospective Cohort Study. J Clin Med 2024; 13:5227. [PMID: 39274439 PMCID: PMC11396025 DOI: 10.3390/jcm13175227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/22/2024] [Accepted: 08/28/2024] [Indexed: 09/16/2024] Open
Abstract
Objectives: To investigate the impact of patient characteristics and treatment factors on excessive respiratory drive, effort, and lung-distending pressure during transitioning from controlled to spontaneous assisted ventilation in patients with acute respiratory distress syndrome (ARDS). Methods: Multicenter cohort observational study of patients with ARDS at four academic intensive care units. Respiratory drive (P0.1), diaphragm electrical activity (EAdi), inspiratory effort derived from EAdi (∆PmusEAdi) and from occlusion of airway pressure (∆Pocc) (PmusΔPocc), and dynamic transpulmonary driving pressure (ΔPL,dyn) were measured at the first transition to assisted spontaneous breathing. Results: A total of 4171 breaths were analyzed in 48 patients. P0.1 was >3.5 cmH2O in 10%, EAdiPEAK > 15 µV in 29%, ∆PmusEAdi > 15 cmH2O in 28%, and ΔPL,dyn > 15 cmH2O in 60% of the studied breaths. COVID-19 etiology of ARDS was the strongest independent risk factor for a higher proportion of breaths with excessive respiratory drive (RR 3.00 [2.43-3.71], p < 0.0001), inspiratory effort (RR 1.84 [1.58-2.15], p < 0.0001), and transpulmonary driving pressure (RR 1.48 [1.36-1.62], p < 0.0001). The P/F ratio at ICU admission, days of deep sedation, and dose of steroids were additional risk factors for vigorous inspiratory effort. Age and dose of steroids were risk factors for high transpulmonary driving pressure. Days of deep sedation (aHR 1.15 [1.07-1.24], p = 0.0002) and COVID-19 diagnosis (aHR 6.96 [1-48.5], p = 0.05) of ARDS were independently associated with composite outcome of transitioning from light to deep sedation (RASS from 0/-3 to -4/-5) or return to controlled ventilation within 48 h of spontaneous assisted breathing. Conclusions: This study identified that specific patient characteristics, including age, COVID-19-related ARDS, and P/F ratio, along with treatment factors such as the duration of deep sedation and the dosage of steroids, are independently associated with an increased likelihood of assisted breaths reaching potentially harmful thresholds of drive, effort, and lung-distending pressure during the initial transition to spontaneous assisted breathing. It is noteworthy that patients who were subjected to prolonged deep sedation under controlled mechanical ventilation, as well as those with COVID-19, were more susceptible to failing the transition from controlled to assisted breathing.
Collapse
Affiliation(s)
- Eleonora Balzani
- Department of Surgical Sciences, University of Turin, 10126 Turin, Italy
| | - Francesco Murgolo
- Department of Precision-Regenerative Medicine and Jonic Area (DiMePRe-J), Section of Anesthesiology and Intensive Care Medicine, University of Bari "Aldo Moro", 70010 Bari, Italy
| | - Matteo Pozzi
- Department of Emergency and Intensive Care, IRCCS San Gerardo dei Tintori Foundation, 20900 Monza, Italy
| | - Rossella Di Mussi
- Department of Precision-Regenerative Medicine and Jonic Area (DiMePRe-J), Section of Anesthesiology and Intensive Care Medicine, University of Bari "Aldo Moro", 70010 Bari, Italy
| | - Nicola Bartolomeo
- Interdisciplinary Department of Medicine, University of Bari Aldo Moro, 70121 Bari, Italy
| | - Umberto Simonetti
- Department of Anesthesia, Critical Care and Emergency, Città della Salute e della Scienza Hospital, University of Turin, 10126 Turin, Italy
| | - Luca Brazzi
- Department of Surgical Sciences, University of Turin, 10126 Turin, Italy
- Department of Anesthesia, Critical Care and Emergency, Città della Salute e della Scienza Hospital, University of Turin, 10126 Turin, Italy
| | - Savino Spadaro
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
- Azienda Ospedaliera-Universitaria di Ferrara, 44122 Ferrara, Italy
| | - Giacomo Bellani
- Centre for Medical Sciences-CISMed, University of Trento, 38122 Trento, Italy
- Department of Anesthesia and Intensive Care, Santa Chiara Hospital, 38122 Trento, Italy
| | - Salvatore Grasso
- Department of Precision-Regenerative Medicine and Jonic Area (DiMePRe-J), Section of Anesthesiology and Intensive Care Medicine, University of Bari "Aldo Moro", 70010 Bari, Italy
| | - Vito Fanelli
- Department of Surgical Sciences, University of Turin, 10126 Turin, Italy
- Department of Anesthesia, Critical Care and Emergency, Città della Salute e della Scienza Hospital, University of Turin, 10126 Turin, Italy
| |
Collapse
|
8
|
Goligher EC, Damiani LF, Patel B. Implementing diaphragm protection during invasive mechanical ventilation. Intensive Care Med 2024; 50:1509-1512. [PMID: 38801520 DOI: 10.1007/s00134-024-07472-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 05/02/2024] [Indexed: 05/29/2024]
Affiliation(s)
- Ewan C Goligher
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Canada.
- Department of Physiology, University of Toronto, Toronto, Canada.
- Division of Respirology, Department of Medicine, University Health Network, Toronto, Canada.
- Toronto General Hospital Research Institute, 585 University Ave., Toronto, ON, M5G 2N2, Canada.
| | - L Felipe Damiani
- Department of Health Science, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Bhakti Patel
- Section of Pulmonary and Critical Care, Department of Medicine, University of Chicago, Chicago, IL, USA
| |
Collapse
|
9
|
Müller-Wirtz LM, O'Gara B, Gama de Abreu M, Schultz MJ, Beitler JR, Jerath A, Meiser A. Volatile anesthetics for lung- and diaphragm-protective sedation. Crit Care 2024; 28:269. [PMID: 39217380 PMCID: PMC11366159 DOI: 10.1186/s13054-024-05049-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 07/30/2024] [Indexed: 09/04/2024] Open
Abstract
This review explores the complex interactions between sedation and invasive ventilation and examines the potential of volatile anesthetics for lung- and diaphragm-protective sedation. In the early stages of invasive ventilation, many critically ill patients experience insufficient respiratory drive and effort, leading to compromised diaphragm function. Compared with common intravenous agents, inhaled sedation with volatile anesthetics better preserves respiratory drive, potentially helping to maintain diaphragm function during prolonged periods of invasive ventilation. In turn, higher concentrations of volatile anesthetics reduce the size of spontaneously generated tidal volumes, potentially reducing lung stress and strain and with that the risk of self-inflicted lung injury. Taken together, inhaled sedation may allow titration of respiratory drive to maintain inspiratory efforts within lung- and diaphragm-protective ranges. Particularly in patients who are expected to require prolonged invasive ventilation, in whom the restoration of adequate but safe inspiratory effort is crucial for successful weaning, inhaled sedation represents an attractive option for lung- and diaphragm-protective sedation. A technical limitation is ventilatory dead space introduced by volatile anesthetic reflectors, although this impact is minimal and comparable to ventilation with heat and moisture exchangers. Further studies are imperative for a comprehensive understanding of the specific effects of inhaled sedation on respiratory drive and effort and, ultimately, how this translates into patient-centered outcomes in critically ill patients.
Collapse
Affiliation(s)
- Lukas M Müller-Wirtz
- Department of Anesthesiology, Outcomes Research Consortium, Cleveland Clinic, Cleveland, OH, USA
- Department of Anesthesiology, Intensive Care and Pain Therapy, Faculty of Medicine, Saarland University Medical Center and Saarland University, Homburg, Saarland, Germany
- Department of Anesthesiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, University Hospital Erlangen, Erlangen, Germany
| | - Brian O'Gara
- Department of Anesthesia, Critical Care, and Pain Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Marcelo Gama de Abreu
- Department of Anesthesiology, Outcomes Research Consortium, Cleveland Clinic, Cleveland, OH, USA
- Division of Intensive Care and Resuscitation, Department of Anesthesiology, Cleveland Clinic, Cleveland, OH, USA
- Division of Cardiothoracic Anesthesiology, Department of Anesthesiology, Cleveland Clinic, Cleveland, OH, USA
| | - Marcus J Schultz
- Department of Intensive Care, Amsterdam University Medical Center, Amsterdam, The Netherlands
- Department of Anesthesiology, Intensive Care Medicine and Pain Medicine, Division of Cardiac Thoracic Vascular Anesthesia and Intensive Care Medicine, Medical University of Vienna, Vienna, Austria
| | - Jeremy R Beitler
- Columbia Respiratory Critical Care Trials Group, New York-Presbyterian Hospital and Columbia University, New York, NY, USA
| | - Angela Jerath
- Department of Anesthesiology and Pain Medicine, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Department of Anesthesia, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Andreas Meiser
- Department of Anesthesiology, Intensive Care and Pain Therapy, Faculty of Medicine, Saarland University Medical Center and Saarland University, Homburg, Saarland, Germany.
| |
Collapse
|
10
|
Heines SJH, de Jongh SAM, de Jongh FHC, Segers RPJ, Gilissen KMH, van der Horst ICC, van Bussel BCT, Bergmans DCJJ. A novel positive end-expiratory pressure titration using electrical impedance tomography in spontaneously breathing acute respiratory distress syndrome patients on mechanical ventilation: an observational study from the MaastrICCht cohort. J Clin Monit Comput 2024:10.1007/s10877-024-01212-8. [PMID: 39196479 DOI: 10.1007/s10877-024-01212-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 08/19/2024] [Indexed: 08/29/2024]
Abstract
There is no universally accepted method for positive end expiratory pressure (PEEP) titration approach for patients on spontaneous mechanical ventilation (SMV). Electrical impedance tomography (EIT) guided PEEP-titration has shown promising results in controlled mechanical ventilation (CMV), current implemented algorithm for PEEP titration (based on regional compliance measurements) is not applicable in SMV. Regional peak flow (RPF, defined as the highest inspiratory flow rate based on EIT at a certain PEEP level) is a new method for quantifying regional lung mechanics designed for SMV. The objective is to study whether RPF by EIT is a feasible method for PEEP titration during SMV. Single EIT measurements were performed in COVID-19 ARDS patients on SMV. Clinical (i.e., tidal volume, airway occlusion pressure, end-tidal CO2) and mechanical (cyclic alveolar recruitment, recruitment, cumulative overdistension (OD), cumulative collapse (CL), pendelluft, and PEEP) outcomes were determined by EIT at several pre-defined PEEP thresholds (1-10% CL and the intersection of the OD and CL curves) and outcomes at all thresholds were compared to the outcomes at baseline PEEP. In total, 25 patients were included. No significant and clinically relevant differences were found between thresholds for tidal volume, end-tidal CO2, and P0.1 compared to baseline PEEP; cyclic alveolar recruitment rates changed by -3.9% to -37.9% across thresholds; recruitment rates ranged from - 49.4% to + 79.2%; cumulative overdistension changed from - 75.9% to + 373.4% across thresholds; cumulative collapse changed from 0% to -94.3%; PEEP levels from 10 up to 14 cmH2O were observed across thresholds compared to baseline PEEP of 10 cmH2O. A threshold of approximately 5% cumulative collapse yields the optimum compromise between all clinical and mechanical outcomes. EIT-guided PEEP titration by the RPF approach is feasible and is linked to improved overall lung mechanics) during SMV using a threshold of approximately 5% CL. However, the long-term clinical safety and effect of this approach remain to be determined.
Collapse
Affiliation(s)
- S J H Heines
- Department of Intensive Care, Maastricht University Medical Center+, P. Debyelaan 25, P.O. Box 5800, Maastricht, 6202, AZ, The Netherlands.
| | - S A M de Jongh
- Department of Intensive Care, Maastricht University Medical Center+, P. Debyelaan 25, P.O. Box 5800, Maastricht, 6202, AZ, The Netherlands
| | - F H C de Jongh
- Department of Pulmonology, Medisch Spectrum Twente, Enschede, The Netherlands
| | - R P J Segers
- Department of Intensive Care, Maastricht University Medical Center+, P. Debyelaan 25, P.O. Box 5800, Maastricht, 6202, AZ, The Netherlands
| | - K M H Gilissen
- Department of Intensive Care, Maastricht University Medical Center+, P. Debyelaan 25, P.O. Box 5800, Maastricht, 6202, AZ, The Netherlands
| | - I C C van der Horst
- Department of Intensive Care, Maastricht University Medical Center+, P. Debyelaan 25, P.O. Box 5800, Maastricht, 6202, AZ, The Netherlands
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, P.O. Box 616, Maastricht, 6200 MD, The Netherlands
| | - B C T van Bussel
- Department of Intensive Care, Maastricht University Medical Center+, P. Debyelaan 25, P.O. Box 5800, Maastricht, 6202, AZ, The Netherlands
- Care and Public Health Research Institute (CAPHRI), Maastricht University, P.O. Box 616, Maastricht, 6200 MD, The Netherlands
| | - D C J J Bergmans
- Department of Intensive Care, Maastricht University Medical Center+, P. Debyelaan 25, P.O. Box 5800, Maastricht, 6202, AZ, The Netherlands
- School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, P.O. Box 616, Maastricht, 6200 MD, The Netherlands
| |
Collapse
|
11
|
Gao R, Yang YL, Zhang L, Miao MY, Zhou JX. Use of pressure muscle index to guide pressure support ventilation setting: a study protocol and statistical plan for a prospective randomised controlled proof-of-concept trial. BMJ Open 2024; 14:e082395. [PMID: 39097307 PMCID: PMC11298740 DOI: 10.1136/bmjopen-2023-082395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 07/18/2024] [Indexed: 08/05/2024] Open
Abstract
INTRODUCTION Although pressure support ventilation is one of the most commonly used assisted ventilation modes in intensive care units, there is still a lack of precise strategies for setting pressure support. By performing an end-inspiratory airway occlusion, the difference between the peak and plateau airway pressure, which is defined as pressure muscle index (PMI), can be easily measured on the ventilator screen. Previous studies have shown that PMI is accurate in detecting high and low inspiratory effort. No study has been conducted to investigate the use of PMI as an indicator for setting inspiratory pressure support. METHOD AND ANALYSIS This is a study protocol for a prospective, single-centre, randomised controlled, pilot trial. Sixty participants undergoing pressure support ventilation will be randomly assigned in a 1:1 ratio to the control group or intervention group, with pressure support adjusted according to standard care or guided by the PMI strategy for 48 hours, respectively. The feasibility of the PMI-guided strategy will be evaluated. The primary endpoint is the proportion of inspiratory effort measurements within a well-accepted 'normal' range, which is predefined as oesophageal pressure-time product per minute between 50 and 200 cmH2O⋅s/min, for each patient during 48 hours of pressure support adjustment. ETHICS AND DISSEMINATION The study protocol has been approved by Beijing Tiantan Hospital (KY2023-005-02). The data generated in the present study will be available from the corresponding author on reasonable request. The results of the trial will be submitted to international peer-reviewed journals. TRIAL REGISTRATION NUMBER NCT05963737; ClinicalTrials.org.
Collapse
Affiliation(s)
- Ran Gao
- Department of Critical Care Medicine, Beijing Tiantan Hospital, Beijing, China
| | - Yan-Lin Yang
- Department of Critical Care Medicine, Beijing Tiantan Hospital, Beijing, China
| | - Linlin Zhang
- Department of Critical Care Medicine, Beijing Tiantan Hospital, Beijing, China
| | - Ming-Yue Miao
- Beijing Shijitan Hospital Capital Medical University, Beijing, China
| | - Jian-Xin Zhou
- Beijing Shijitan Hospital Capital Medical University, Beijing, China
| |
Collapse
|
12
|
Le Marec J, Hajage D, Decavèle M, Schmidt M, Laurent I, Ricard JD, Jaber S, Azoulay E, Fartoukh M, Hraiech S, Mercat A, Similowski T, Demoule A. High Airway Occlusion Pressure Is Associated with Dyspnea and Increased Mortality in Critically Ill Mechanically Ventilated Patients. Am J Respir Crit Care Med 2024; 210:201-210. [PMID: 38319128 DOI: 10.1164/rccm.202308-1358oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 02/05/2024] [Indexed: 02/07/2024] Open
Abstract
Rationale: Airway occlusion pressure at 100 ms (P0.1) reflects central respiratory drive. Objectives: We aimed to assess factors associated with P0.1 and whether an abnormally low or high P0.1 value is associated with higher mortality and longer duration of mechanical ventilation (MV). Methods: We performed a secondary analysis of a prospective cohort study conducted in 10 ICUs in France to evaluate dyspnea in communicative MV patients. In patients intubated for more than 24 hours, P0.1 was measured with dyspnea as soon as patients could communicate and the next day. Measurements and Main Results: Among 260 patients assessed after a median time of ventilation of 4 days, P0.1 was 1.9 (1-3.5) cm H2O at enrollment, 24% had P0.1 values >3.5 cm H2O, 37% had P0.1 values between 1.5 and 3.5 cm H2O, and 39% had P0.1 values <1.5 cm H2O. In multivariable linear regression, independent factors associated with P0.1 were the presence of dyspnea (P = 0.037), respiratory rate (P < 0.001), and PaO2 (P = 0.008). Ninety-day mortality was 33% in patients with P0.1 > 3.5 cm H2O versus 19% in those with P0.1 between 1.5 and 3.5 cm H2O and 17% in those with P0.1 < 1.5 cm H2O (P = 0.046). After adjustment for the main risk factors, P0.1 was associated with 90-day mortality (hazard ratio per 1 cm H2O, 1.19 [95% confidence interval, 1.04-1.37]; P = 0.011). P0.1 was also independently associated with a longer duration of MV (hazard ratio per 1 cm H2O, 1.10 [95% confidence interval, 1.02-1.19]; P = 0.016). Conclusions: In patients receiving invasive MV, abnormally high P0.1 values may suggest dyspnea and are associated with higher mortality and prolonged duration of MV.
Collapse
Affiliation(s)
- Julien Le Marec
- Assistance Publique-Hôpitaux de Paris, 26930, Groupe Hospitalier Universitaire Assistance Publique-Hôpitaux de Paris-Sorbonne Université, Site Pitié-Salpêtrière, Service de Médecine Intensive et Réanimation (Département R3S), Paris, France
| | - David Hajage
- Sorbonne Université, INSERM, Institut Pierre Louis d'Epidémiologie et de Santé Publique, Assistance Publique-Hôpitaux de Paris, Hôpital Pitié Salpêtrière, Département de Santé Publique, Centre de Pharmacoépidémiologie (Cephepi), Unité de Recherche Clinique PSL-CFX, CIC-1901, Paris, France
| | - Maxens Decavèle
- Assistance Publique-Hôpitaux de Paris, 26930, Groupe Hospitalier Universitaire Assistance Publique-Hôpitaux de Paris-Sorbonne Université, Site Pitié-Salpêtrière, Service de Médecine Intensive et Réanimation (Département R3S), Paris, France
- Sorbonne Université, INSERM, UMRS1158 Neurophysiologie Respiratoire Expérimentale et Clinique, Paris, France
- Sorbonne Université, GRC 30, Reanimation et Soins Intensifs du Patient en Insuffisance Respiratoire Aiguë, Assistance Publique-Hôpitaux de Paris, Hôpital de la Pitié Salpêtrière, Paris, France
| | - Matthieu Schmidt
- Sorbonne Université, GRC 30, Reanimation et Soins Intensifs du Patient en Insuffisance Respiratoire Aiguë, Assistance Publique-Hôpitaux de Paris, Hôpital de la Pitié Salpêtrière, Paris, France
- Service de Médecine Intensive-Réanimation, Institut de Cardiologie, Assistance Publique-Hôpitaux de Paris Sorbonne Université Hôpital Pitié-Salpêtrière, Paris, France
- Sorbonne Université, INSERM, Research Unit on Cardiovascular Diseases, Metabolism and Nutrition, ICAN, Paris, France
| | - Isaura Laurent
- Sorbonne Université, INSERM, Institut Pierre Louis d'Epidémiologie et de Santé Publique, Assistance Publique-Hôpitaux de Paris, Hôpital Pitié Salpêtrière, Département de Santé Publique, Centre de Pharmacoépidémiologie (Cephepi), Unité de Recherche Clinique PSL-CFX, CIC-1901, Paris, France
| | - Jean-Damien Ricard
- Assistance Publique-Hôpitaux de Paris, Hôpital Louis Mourier, DMU ESPRIT, Service de Médecine Intensive Réanimation, Colombes, France
- Université Paris Cité, UMR1137 IAME, INSERM, Paris, France
| | - Samir Jaber
- Department of Anesthesia and Intensive Care Unit, Regional University Hospital of Montpellier, St-Eloi Hospital, University of Montpellier, PhyMedExp, INSERM U1046, CNRS UMR 9214, Montpellier, France
| | - Elie Azoulay
- Service de Médecine Intensive et Réanimation, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, and Université de Paris, Paris, France
| | - Muriel Fartoukh
- Assistance Publique-Hôpitaux de Paris, Sorbonne Université, Service de Médecine Intensive Réanimation, Hôpital Tenon, Paris, France
- Sorbonne Université, UFR Médecine, Paris, France
- Groupe de Recherche Clinique CARMAS, Université Paris Est Créteil, Créteil, France
| | - Sami Hraiech
- Assistance Publique-Hôpitaux de Marseille, Hôpital Nord, Médecine Intensive Réanimation, Marseille, France
- Centre d'Etudes et de Recherches sur les Services de Santé et Qualité de Vie EA 3279, Marseille, France
| | - Alain Mercat
- Service de Réanimation Médicale et Médecine Hyperbare, Centre Hospitalier Régional Universitaire, Angers, France; and
| | - Thomas Similowski
- Sorbonne Université, INSERM, UMRS1158 Neurophysiologie Respiratoire Expérimentale et Clinique, Paris, France
- Assistance Publique-Hôpitaux de Paris, Groupe Hospitalier Universitaire Assistance Publique-Hôpitaux de Paris-Sorbonne Université, Site Pitié-Salpêtrière, Département R3S, Paris, France
| | - Alexandre Demoule
- Assistance Publique-Hôpitaux de Paris, 26930, Groupe Hospitalier Universitaire Assistance Publique-Hôpitaux de Paris-Sorbonne Université, Site Pitié-Salpêtrière, Service de Médecine Intensive et Réanimation (Département R3S), Paris, France
- Sorbonne Université, INSERM, UMRS1158 Neurophysiologie Respiratoire Expérimentale et Clinique, Paris, France
- Sorbonne Université, GRC 30, Reanimation et Soins Intensifs du Patient en Insuffisance Respiratoire Aiguë, Assistance Publique-Hôpitaux de Paris, Hôpital de la Pitié Salpêtrière, Paris, France
| |
Collapse
|
13
|
Pérez J, Telias I. Airway Occlusion Pressure and Dyspnea during Mechanical Ventilation: Giving Words to the Pleas of the Respiratory Centers. Am J Respir Crit Care Med 2024; 210:139-141. [PMID: 38484187 PMCID: PMC11273315 DOI: 10.1164/rccm.202402-0384ed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/16/2024] Open
Affiliation(s)
- Joaquin Pérez
- Department of Physical Therapy and Rehabilitation Anchorena San Martín Clinic Buenos Aires, Argentina
- Department of Anesthesia, Critical Care and Emergency Maggiore Policlinico Hospital Milan, Italy
- Department of Emergency Medicine Carlos G. Durand Hospital Buenos Aires, Argentina
| | - Irene Telias
- Division of Respirology and Critical Care Medicine University Health Network and Sinai Health System Toronto, Ontario, Canada
- Department of Medicine University of Toronto Toronto, Ontario, Canada
- Li Ka Shing Knowledge Institute St. Michael's Hospital-Unity Health Toronto Toronto, Ontario, Canada
| |
Collapse
|
14
|
Marongiu I, Slobod D, Leali M, Spinelli E, Mauri T. Clinical and Experimental Evidence for Patient Self-Inflicted Lung Injury (P-SILI) and Bedside Monitoring. J Clin Med 2024; 13:4018. [PMID: 39064059 PMCID: PMC11278124 DOI: 10.3390/jcm13144018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/01/2024] [Accepted: 07/07/2024] [Indexed: 07/28/2024] Open
Abstract
Patient self-inflicted lung injury (P-SILI) is a major challenge for the ICU physician: although spontaneous breathing is associated with physiological benefits, in patients with acute respiratory distress syndrome (ARDS), the risk of uncontrolled inspiratory effort leading to additional injury needs to be assessed to avoid delayed intubation and increased mortality. In the present review, we analyze the available clinical and experimental evidence supporting the existence of lung injury caused by uncontrolled high inspiratory effort, we discuss the pathophysiological mechanisms by which increased effort causes P-SILI, and, finally, we consider the measurements and interpretation of bedside physiological measures of increased drive that should alert the clinician. The data presented in this review could help to recognize injurious respiratory patterns that may trigger P-SILI and to prevent it.
Collapse
Affiliation(s)
- Ines Marongiu
- Department of Anesthesia, Critical Care and Emergency, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (I.M.)
| | - Douglas Slobod
- Department of Critical Care Medicine, McGill University, Montreal, QC H4A 3J1, Canada
| | - Marco Leali
- Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy
| | - Elena Spinelli
- Department of Anesthesia, Critical Care and Emergency, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (I.M.)
| | - Tommaso Mauri
- Department of Anesthesia, Critical Care and Emergency, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (I.M.)
- Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy
| |
Collapse
|
15
|
Costa ELV, Alcala GC, Tucci MR, Goligher E, Morais CC, Dianti J, Nakamura MAP, Oliveira LB, Pereira SM, Toufen C, Barbas CSV, Carvalho CRR, Amato MBP. Impact of extended lung protection during mechanical ventilation on lung recovery in patients with COVID-19 ARDS: a phase II randomized controlled trial. Ann Intensive Care 2024; 14:85. [PMID: 38849605 PMCID: PMC11161454 DOI: 10.1186/s13613-024-01297-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 04/15/2024] [Indexed: 06/09/2024] Open
Abstract
BACKGROUND Protective ventilation seems crucial during early Acute Respiratory Distress Syndrome (ARDS), but the optimal duration of lung protection remains undefined. High driving pressures (ΔP) and excessive patient ventilatory drive may hinder lung recovery, resulting in self-inflicted lung injury. The hidden nature of the ΔP generated by patient effort complicates the situation further. Our study aimed to assess the feasibility of an extended lung protection strategy that includes a stepwise protocol to control the patient ventilatory drive, assessing its impact on lung recovery. METHODS We conducted a single-center randomized study on patients with moderate/severe COVID-19-ARDS with low respiratory system compliance (CRS < 0.6 (mL/Kg)/cmH2O). The intervention group received a ventilation strategy guided by Electrical Impedance Tomography aimed at minimizing ΔP and patient ventilatory drive. The control group received the ARDSNet low-PEEP strategy. The primary outcome was the modified lung injury score (mLIS), a composite measure that integrated daily measurements of CRS, along with oxygen requirements, oxygenation, and X-rays up to day 28. The mLIS score was also hierarchically adjusted for survival and extubation rates. RESULTS The study ended prematurely after three consecutive months without patient enrollment, attributed to the pandemic subsiding. The intention-to-treat analysis included 76 patients, with 37 randomized to the intervention group. The average mLIS score up to 28 days was not different between groups (P = 0.95, primary outcome). However, the intervention group showed a faster improvement in the mLIS (1.4 vs. 7.2 days to reach 63% of maximum improvement; P < 0.001), driven by oxygenation and sustained improvement of X-ray (P = 0.001). The intervention group demonstrated a sustained increase in CRS up to day 28 (P = 0.009) and also experienced a shorter time from randomization to room-air breathing (P = 0.02). Survival at 28 days and time until liberation from the ventilator were not different between groups. CONCLUSIONS The implementation of an individualized PEEP strategy alongside extended lung protection appears viable. Promising secondary outcomes suggested a faster lung recovery, endorsing further examination of this strategy in a larger trial. Clinical trial registration This trial was registered with ClinicalTrials.gov (number NCT04497454) on August 04, 2020.
Collapse
Affiliation(s)
- Eduardo L V Costa
- Laboratório de Pneumologia LIM-09, Faculdade de Medicina, Hospital das Clinicas HCFMUSP, Universidade de Sao Paulo, 455 Dr Arnaldo Ave, Room 2144, São Paulo, SP, Brazil
- Research and Education Institute, Hospital Sírio-Libanes, Sao Paulo, Brazil
- Divisao de Pneumologia, Faculdade de Medicina, Instituto do Coracao, Hospital das Clinicas HCFMUSP, Universidade de Sao Paulo, São Paulo, SP, Brasil
| | - Glasiele C Alcala
- Laboratório de Pneumologia LIM-09, Faculdade de Medicina, Hospital das Clinicas HCFMUSP, Universidade de Sao Paulo, 455 Dr Arnaldo Ave, Room 2144, São Paulo, SP, Brazil
- Divisao de Pneumologia, Faculdade de Medicina, Instituto do Coracao, Hospital das Clinicas HCFMUSP, Universidade de Sao Paulo, São Paulo, SP, Brasil
| | - Mauro R Tucci
- Divisao de Pneumologia, Faculdade de Medicina, Instituto do Coracao, Hospital das Clinicas HCFMUSP, Universidade de Sao Paulo, São Paulo, SP, Brasil
| | - Ewan Goligher
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Canada
- Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Canada
- Toronto General Hospital Research Institute, Toronto, Canada
| | - Caio C Morais
- Laboratório de Pneumologia LIM-09, Faculdade de Medicina, Hospital das Clinicas HCFMUSP, Universidade de Sao Paulo, 455 Dr Arnaldo Ave, Room 2144, São Paulo, SP, Brazil
- Departamento de Fisioterapia, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | - Jose Dianti
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Canada
- Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Canada
- Toronto General Hospital Research Institute, Toronto, Canada
| | - Miyuki A P Nakamura
- Laboratório de Pneumologia LIM-09, Faculdade de Medicina, Hospital das Clinicas HCFMUSP, Universidade de Sao Paulo, 455 Dr Arnaldo Ave, Room 2144, São Paulo, SP, Brazil
| | - Larissa B Oliveira
- Divisao de Pneumologia, Faculdade de Medicina, Instituto do Coracao, Hospital das Clinicas HCFMUSP, Universidade de Sao Paulo, São Paulo, SP, Brasil
| | - Sérgio M Pereira
- Laboratório de Pneumologia LIM-09, Faculdade de Medicina, Hospital das Clinicas HCFMUSP, Universidade de Sao Paulo, 455 Dr Arnaldo Ave, Room 2144, São Paulo, SP, Brazil
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Canada
- Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Canada
| | - Carlos Toufen
- Divisao de Pneumologia, Faculdade de Medicina, Instituto do Coracao, Hospital das Clinicas HCFMUSP, Universidade de Sao Paulo, São Paulo, SP, Brasil
| | - Carmen S V Barbas
- Divisao de Pneumologia, Faculdade de Medicina, Instituto do Coracao, Hospital das Clinicas HCFMUSP, Universidade de Sao Paulo, São Paulo, SP, Brasil
- Adult ICU Albert Einstein Hospital, São Paulo, Brazil
| | - Carlos R R Carvalho
- Laboratório de Pneumologia LIM-09, Faculdade de Medicina, Hospital das Clinicas HCFMUSP, Universidade de Sao Paulo, 455 Dr Arnaldo Ave, Room 2144, São Paulo, SP, Brazil
- Divisao de Pneumologia, Faculdade de Medicina, Instituto do Coracao, Hospital das Clinicas HCFMUSP, Universidade de Sao Paulo, São Paulo, SP, Brasil
| | - Marcelo B P Amato
- Laboratório de Pneumologia LIM-09, Faculdade de Medicina, Hospital das Clinicas HCFMUSP, Universidade de Sao Paulo, 455 Dr Arnaldo Ave, Room 2144, São Paulo, SP, Brazil.
- Divisao de Pneumologia, Faculdade de Medicina, Instituto do Coracao, Hospital das Clinicas HCFMUSP, Universidade de Sao Paulo, São Paulo, SP, Brasil.
| |
Collapse
|
16
|
Protti A, Tonelli R, Dalla Corte F, Grieco DL, Spinelli E, Spadaro S, Piovani D, Menga LS, Schifino G, Vega Pittao ML, Umbrello M, Cammarota G, Volta CA, Bonovas S, Cecconi M, Mauri T, Clini E. Development of clinical tools to estimate the breathing effort during high-flow oxygen therapy: A multicenter cohort study. Pulmonology 2024:S2531-0437(24)00054-0. [PMID: 38760225 DOI: 10.1016/j.pulmoe.2024.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/11/2024] [Accepted: 04/22/2024] [Indexed: 05/19/2024] Open
Abstract
INTRODUCTION AND OBJECTIVES Quantifying breathing effort in non-intubated patients is important but difficult. We aimed to develop two models to estimate it in patients treated with high-flow oxygen therapy. PATIENTS AND METHODS We analyzed the data of 260 patients from previous studies who received high-flow oxygen therapy. Their breathing effort was measured as the maximal deflection of esophageal pressure (ΔPes). We developed a multivariable linear regression model to estimate ΔPes (in cmH2O) and a multivariable logistic regression model to predict the risk of ΔPes being >10 cmH2O. Candidate predictors included age, sex, diagnosis of the coronavirus disease 2019 (COVID-19), respiratory rate, heart rate, mean arterial pressure, the results of arterial blood gas analysis, including base excess concentration (BEa) and the ratio of arterial tension to the inspiratory fraction of oxygen (PaO2:FiO2), and the product term between COVID-19 and PaO2:FiO2. RESULTS We found that ΔPes can be estimated from the presence or absence of COVID-19, BEa, respiratory rate, PaO2:FiO2, and the product term between COVID-19 and PaO2:FiO2. The adjusted R2 was 0.39. The risk of ΔPes being >10 cmH2O can be predicted from BEa, respiratory rate, and PaO2:FiO2. The area under the receiver operating characteristic curve was 0.79 (0.73-0.85). We called these two models BREF, where BREF stands for BReathing EFfort and the three common predictors: BEa (B), respiratory rate (RE), and PaO2:FiO2 (F). CONCLUSIONS We developed two models to estimate the breathing effort of patients on high-flow oxygen therapy. Our initial findings are promising and suggest that these models merit further evaluation.
Collapse
Affiliation(s)
- A Protti
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy; Department of Anesthesia and Intensive Care Units, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy.
| | - R Tonelli
- Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University Hospital of Modena, University of Modena-Reggio Emilia, Modena, Italy; Laboratory of Cell Therapies and Respiratory Medicine, Department of Medical and Surgical Sciences, University Hospital of Modena, University of Modena-Reggio Emilia, Modena, Italy
| | - F Dalla Corte
- Department of Anesthesia and Intensive Care Units, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - D L Grieco
- Department of Emergency, Intensive Care Medicine and Anesthesia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy; Istituto di Anestesiologia e Rianimazione, Università Cattolica del Sacro Cuore Rome, Italy
| | - E Spinelli
- Department of Anesthesia, Intensive Care and Emergency, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - S Spadaro
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - D Piovani
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy; IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - L S Menga
- Department of Emergency, Intensive Care Medicine and Anesthesia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy; Istituto di Anestesiologia e Rianimazione, Università Cattolica del Sacro Cuore Rome, Italy
| | - G Schifino
- Respiratory and Critical Care Unit, IRCCS Azienda Ospedaliero Universitaria di Bologna, Bologna, Italy; Alma Mater Studiorum, Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | - M L Vega Pittao
- Respiratory and Critical Care Unit, IRCCS Azienda Ospedaliero Universitaria di Bologna, Bologna, Italy; Alma Mater Studiorum, Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | - M Umbrello
- SC Rianimazioine e Anestesia, ASST Ovest Milanese, Ospedale Civile di Legnano, Legnano, Milan, Italy
| | - G Cammarota
- Department of Traslational Medicine, Università degli Studi del Piemonte Orientale, Novara, Italy
| | - C A Volta
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - S Bonovas
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy; IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - M Cecconi
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy; Department of Anesthesia and Intensive Care Units, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - T Mauri
- Department of Anesthesia, Intensive Care and Emergency, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - E Clini
- Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University Hospital of Modena, University of Modena-Reggio Emilia, Modena, Italy; Laboratory of Cell Therapies and Respiratory Medicine, Department of Medical and Surgical Sciences, University Hospital of Modena, University of Modena-Reggio Emilia, Modena, Italy
| |
Collapse
|
17
|
Gao R, Zhou JX, Yang YL, Xu SS, Zhou YM, Zhang L, Miao MY. Use of pressure muscle index to predict the contribution of patient's inspiratory effort during pressure support ventilation: a prospective physiological study. Front Med (Lausanne) 2024; 11:1390878. [PMID: 38737762 PMCID: PMC11082330 DOI: 10.3389/fmed.2024.1390878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 04/10/2024] [Indexed: 05/14/2024] Open
Abstract
Background The successful implementation of assisted ventilation depends on matching the patient's effort with the ventilator support. Pressure muscle index (PMI), an airway pressure based measurement, has been used as noninvasive monitoring to assess the patient's inspiratory effort. The authors aimed to evaluate the feasibility of pressure support adjustment according to the PMI target and the diagnostic performance of PMI to predict the contribution of the patient's effort during ventilator support. Methods In this prospective physiological study, 22 adult patients undergoing pressure support ventilation were enrolled. After an end-inspiratory airway occlusion, airway pressure reached a plateau, and the magnitude of change in plateau from peak airway pressure was defined as PMI. Pressure support was adjusted to obtain the PMI which was closest to -1, 0, +1, +2, and + 3 cm H2O. Each pressure support level was maintained for 20 min. Esophageal pressure was monitored. Pressure-time products of respiratory muscle and ventilator insufflation were measured, and the fraction of pressure generated by the patient was calculated to represent the contribution of the patient's inspiratory effort. Results A total of 105 datasets were collected at different PMI-targeted pressure support levels. The differences in PMI between the target and the obtained value were all within ±1 cm H2O. As targeted PMI increased, pressure support settings decreased significantly from a median (interquartile range) of 11 (10-12) to 5 (4-6) cm H2O (p < 0.001), which resulted in a significant increase in pressure-time products of respiratory muscle [from 2.9 (2.1-5.0) to 6.8 (5.3-8.1) cm H2O•s] and the fraction of pressure generated by the patient [from 25% (19-31%) to 72% (62-87%)] (p < 0.001). The area under receiver operating characteristic curves for PMI to predict 30 and 70% contribution of patient's effort were 0.93 and 0.95, respectively. High sensitivity (all 1.00), specificity (0.86 and 0.78), and negative predictive value (all 1.00), but low positive predictive value (0.61 and 0.43) were obtained to predict either high or low contribution of patient's effort. Conclusion Our results preliminarily suggested the feasibility of pressure support adjustment according to the PMI target from the ventilator screen. PMI could reliably predict the high and low contribution of a patient's effort during assisted ventilation.Clinical trial registration: ClinicalTrials.gov, identifier NCT05970393.
Collapse
Affiliation(s)
- Ran Gao
- Department of Critical Care Medicine, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Clinical and Research Center on Acute Lung Injury, Emergency, and Critical Care Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Jian-Xin Zhou
- Clinical and Research Center on Acute Lung Injury, Emergency, and Critical Care Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Yan-Lin Yang
- Department of Critical Care Medicine, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Shan-Shan Xu
- Department of Critical Care Medicine, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yi-Min Zhou
- Department of Critical Care Medicine, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Linlin Zhang
- Department of Critical Care Medicine, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Ming-Yue Miao
- Clinical and Research Center on Acute Lung Injury, Emergency, and Critical Care Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
18
|
Georgopoulos D, Bolaki M, Stamatopoulou V, Akoumianaki E. Respiratory drive: a journey from health to disease. J Intensive Care 2024; 12:15. [PMID: 38650047 DOI: 10.1186/s40560-024-00731-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 04/12/2024] [Indexed: 04/25/2024] Open
Abstract
Respiratory drive is defined as the intensity of respiratory centers output during the breath and is primarily affected by cortical and chemical feedback mechanisms. During the involuntary act of breathing, chemical feedback, primarily mediated through CO2, is the main determinant of respiratory drive. Respiratory drive travels through neural pathways to respiratory muscles, which execute the breathing process and generate inspiratory flow (inspiratory flow-generation pathway). In a healthy state, inspiratory flow-generation pathway is intact, and thus respiratory drive is satisfied by the rate of volume increase, expressed by mean inspiratory flow, which in turn determines tidal volume. In this review, we will explain the pathophysiology of altered respiratory drive by analyzing the respiratory centers response to arterial partial pressure of CO2 (PaCO2) changes. Both high and low respiratory drive have been associated with several adverse effects in critically ill patients. Hence, it is crucial to understand what alters the respiratory drive. Changes in respiratory drive can be explained by simultaneously considering the (1) ventilatory demands, as dictated by respiratory centers activity to CO2 (brain curve); (2) actual ventilatory response to CO2 (ventilation curve); and (3) metabolic hyperbola. During critical illness, multiple mechanisms affect the brain and ventilation curves, as well as metabolic hyperbola, leading to considerable alterations in respiratory drive. In critically ill patients the inspiratory flow-generation pathway is invariably compromised at various levels. Consequently, mean inspiratory flow and tidal volume do not correspond to respiratory drive, and at a given PaCO2, the actual ventilation is less than ventilatory demands, creating a dissociation between brain and ventilation curves. Since the metabolic hyperbola is one of the two variables that determine PaCO2 (the other being the ventilation curve), its upward or downward movements increase or decrease respiratory drive, respectively. Mechanical ventilation indirectly influences respiratory drive by modifying PaCO2 levels through alterations in various parameters of the ventilation curve and metabolic hyperbola. Understanding the diverse factors that modulate respiratory drive at the bedside could enhance clinical assessment and the management of both the patient and the ventilator.
Collapse
Affiliation(s)
| | - Maria Bolaki
- Department of Intensive Care Medicine, University Hospital of Heraklion, Heraklion, Crete, Greece
| | - Vaia Stamatopoulou
- Department of Pulmonary Medicine, University Hospital of Heraklion, Heraklion , Crete, Greece
| | - Evangelia Akoumianaki
- Medical School, University of Crete, Heraklion, Crete, Greece
- Department of Intensive Care Medicine, University Hospital of Heraklion, Heraklion, Crete, Greece
| |
Collapse
|
19
|
Cornejo R, Telias I, Brochard L. Measuring patient's effort on the ventilator. Intensive Care Med 2024; 50:573-576. [PMID: 38436722 DOI: 10.1007/s00134-024-07352-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 02/09/2024] [Indexed: 03/05/2024]
Affiliation(s)
- Rodrigo Cornejo
- Unidad de Pacientes Críticos, Departamento de Medicina, Hospital Clínico Universidad de Chile, Santiago, Chile
| | - Irene Telias
- Division of Respirology and Critical Care Medicine, Department of Medicine, University Health Network and Sinai Health System, Toronto, Canada
- Medical Surgical Neuro ICU, Toronto Western Hospital, University Health Network, Toronto, Canada
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Canada
| | - Laurent Brochard
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Canada.
- Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, Unity Health Toronto, Toronto, Canada.
| |
Collapse
|
20
|
Roca O, Telias I, Grieco DL. Bedside-available strategies to minimise P-SILI and VILI during ARDS. Intensive Care Med 2024; 50:597-601. [PMID: 38498168 DOI: 10.1007/s00134-024-07366-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 02/17/2024] [Indexed: 03/20/2024]
Affiliation(s)
- Oriol Roca
- Servei de Medicina Intensiva, Parc Taulí Hospital Universitari, Institut de Recerca Part Taulí - I3PT, Parc del Taulí 1, 08028, Sabadell, Spain.
- Departament de Medicina, Universitat Autònoma de Barcelona, Bellaterra, Spain.
- Ciber Enfermedades Respiratorias (Ciberes), Instituto de Salud Carlos III, Madrid, Spain.
| | - Irene Telias
- Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St Michael's Hospital, Unity Health Toronto, Toronto, Canada
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Canada
- Division of Respirology, Department of Medicine, University Health Network and Sinai Health System, Toronto, Canada
| | - Domenico L Grieco
- Department of Emergency, Intensive Care Medicine and Anesthesia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Department of Anesthesiology and Intensive Care Medicine, Catholic University of the Sacred Heart, Rome, Italy
| |
Collapse
|
21
|
Poddighe D, Van Hollebeke M, Choudhary YQ, Campos DR, Schaeffer MR, Verbakel JY, Hermans G, Gosselink R, Langer D. Accuracy of respiratory muscle assessments to predict weaning outcomes: a systematic review and comparative meta-analysis. Crit Care 2024; 28:70. [PMID: 38454487 PMCID: PMC10919035 DOI: 10.1186/s13054-024-04823-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 01/29/2024] [Indexed: 03/09/2024] Open
Abstract
BACKGROUND Several bedside assessments are used to evaluate respiratory muscle function and to predict weaning from mechanical ventilation in patients on the intensive care unit. It remains unclear which assessments perform best in predicting weaning success. The primary aim of this systematic review and meta-analysis was to summarize and compare the accuracy of the following assessments to predict weaning success: maximal inspiratory (PImax) and expiratory pressures, diaphragm thickening fraction and excursion (DTF and DE), end-expiratory (Tdiee) and end-inspiratory (Tdiei) diaphragm thickness, airway occlusion pressure (P0.1), electrical activity of respiratory muscles, and volitional and non-volitional assessments of transdiaphragmatic and airway opening pressures. METHODS Medline (via Pubmed), EMBASE, Web of Science, Cochrane Library and CINAHL were comprehensively searched from inception to 04/05/2023. Studies including adult mechanically ventilated patients reporting data on predictive accuracy were included. Hierarchical summary receiver operating characteristic (HSROC) models were used to estimate the SROC curves of each assessment method. Meta-regression was used to compare SROC curves. Sensitivity analyses were conducted by excluding studies with high risk of bias, as assessed with QUADAS-2. Direct comparisons were performed using studies comparing each pair of assessments within the same sample of patients. RESULTS Ninety-four studies were identified of which 88 studies (n = 6296) reporting on either PImax, DTF, DE, Tdiee, Tdiei and P0.1 were included in the meta-analyses. The sensitivity to predict weaning success was 63% (95% CI 47-77%) for PImax, 75% (95% CI 67-82%) for DE, 77% (95% CI 61-87%) for DTF, 74% (95% CI 40-93%) for P0.1, 69% (95% CI 13-97%) for Tdiei, 37% (95% CI 13-70%) for Tdiee, at fixed 80% specificity. Accuracy of DE and DTF to predict weaning success was significantly higher when compared to PImax (p = 0.04 and p < 0.01, respectively). Sensitivity and direct comparisons analyses showed that the accuracy of DTF to predict weaning success was significantly higher when compared to DE (p < 0.01). CONCLUSIONS DTF and DE are superior to PImax and DTF seems to have the highest accuracy among all included respiratory muscle assessments for predicting weaning success. Further studies aiming at identifying the optimal threshold of DTF to predict weaning success are warranted. TRIAL REGISTRATION PROSPERO CRD42020209295, October 15, 2020.
Collapse
Affiliation(s)
- Diego Poddighe
- Department of Rehabilitation Sciences, Research Group for Rehabilitation in Internal Disorders, KU Leuven, 3000, Leuven, Belgium
- Department of Intensive Care Medicine, University Hospitals Leuven, Leuven, Belgium
| | - Marine Van Hollebeke
- Department of Rehabilitation Sciences, Research Group for Rehabilitation in Internal Disorders, KU Leuven, 3000, Leuven, Belgium
- Department of Intensive Care Medicine, University Hospitals Leuven, Leuven, Belgium
| | - Yasir Qaiser Choudhary
- Department of Rehabilitation Sciences, Research Group for Rehabilitation in Internal Disorders, KU Leuven, 3000, Leuven, Belgium
| | - Débora Ribeiro Campos
- Department of Internal Medicine, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Prêto, Brazil
| | - Michele R Schaeffer
- Department of Rehabilitation Sciences, Research Group for Rehabilitation in Internal Disorders, KU Leuven, 3000, Leuven, Belgium
| | - Jan Y Verbakel
- Department of Public Health and Primary Care, EPI-Centre, KU Leuven, Leuven, Belgium
- NIHR Community Healthcare Medtech and IVD Cooperative, Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, UK
| | - Greet Hermans
- Department of Intensive Care Medicine, University Hospitals Leuven, Leuven, Belgium
- Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Rik Gosselink
- Department of Rehabilitation Sciences, Research Group for Rehabilitation in Internal Disorders, KU Leuven, 3000, Leuven, Belgium
- Department of Intensive Care Medicine, University Hospitals Leuven, Leuven, Belgium
- Department of Health and Rehabilitation Sciences, Faculty of Medicine, Stellenbosch University, Stellenbosch, South Africa
| | - Daniel Langer
- Department of Rehabilitation Sciences, Research Group for Rehabilitation in Internal Disorders, KU Leuven, 3000, Leuven, Belgium.
- Department of Intensive Care Medicine, University Hospitals Leuven, Leuven, Belgium.
| |
Collapse
|
22
|
Wennen M, Claassen W, Heunks L. Setting positive end-expiratory pressure: role in diaphragm-protective ventilation. Curr Opin Crit Care 2024; 30:61-68. [PMID: 38085880 DOI: 10.1097/mcc.0000000000001126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
PURPOSE OF REVIEW With mechanical ventilation, positive end-expiratory pressure (PEEP) is applied to improve oxygenation and lung homogeneity. However, PEEP setting has been hypothesized to contribute to critical illness associated diaphragm dysfunction via several mechanisms. Here, we discuss the impact of PEEP on diaphragm function, activity and geometry. RECENT FINDINGS PEEP affects diaphragm geometry: it induces a caudal movement of the diaphragm dome and shortening of the zone of apposition. This results in reduced diaphragm neuromechanical efficiency. After prolonged PEEP application, the zone of apposition adapts by reducing muscle fiber length, so-called longitudinal muscle atrophy. When PEEP is withdrawn, for instance during a spontaneous breathing trial, the shortened diaphragm muscle fibers may over-stretch which may lead to (additional) diaphragm myotrauma. Furthermore, PEEP may either increase or decrease respiratory drive and resulting respiratory effort, probably depending on lung recruitability. Finally, the level of PEEP can also influence diaphragm activity in the expiratory phase, which may be an additional mechanism for diaphragm myotrauma. SUMMARY Setting PEEP could play an important role in both lung and diaphragm protective ventilation. Both high and low PEEP levels could potentially introduce or exacerbate diaphragm myotrauma. Today, the impact of PEEP setting on diaphragm structure and function is in its infancy, and clinical implications are largely unknown.
Collapse
Affiliation(s)
- Myrte Wennen
- Department of Intensive Care, Erasmus Medical Center, Rotterdam
| | - Wout Claassen
- Department of Physiology, Amsterdam UMC, location VUmc, Amsterdam
| | - Leo Heunks
- Department of Intensive Care, Erasmus Medical Center, Rotterdam
- Department of intensive care medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
23
|
Ide Y, Urushibata N, Takayama W, Hondo K, Aiboshi J, Otomo Y. Clinical characteristics of pneumothorax and pneumomediastinum in mechanical ventilated patients with coronavirus disease 2019: a case series. J Med Case Rep 2024; 18:7. [PMID: 38166996 PMCID: PMC10759624 DOI: 10.1186/s13256-023-04281-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 11/21/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Pneumothorax (PTX) and pneumomediastinum (PM) have been reported as potential complications in patients with coronavirus disease 2019 (COVID-19); however, their risk factors and etiology remain unknown. Herein, we investigated the clinical characteristics of mechanically ventilated patients with COVID-19 with PTX or PM. METHODS We examined patients with severe COVID-19 requiring mechanical ventilation who were admitted to the intensive care unit of a tertiary-level emergency medical center in Tokyo, Japan between April 1, 2020. and October 31, 2021. We collected and analyzed the clinical characteristics of the patients who presented with either PTX or PM during mechanical ventilation. RESULTS During the study period, a total of 165 patients required mechanical ventilation, and 15 patients with PTX/PM during mechanical ventilation were selected. Three patients with obvious causes were excluded, and the remaining 12 patients were analyzed (7.3%). The mortality rate in these patients was as high as 50%, demonstrating the difficulty of treatment in the presence of PTX/PM. PTX/PM occurred 14.5 days after intubation. A peak pressure of > 30 cmH2O was only apparent in one patient, suggesting that high positive pressure ventilation may be less involved than mentioned in the literature. In addition, the inspiratory effort was not strong in our group of patients. (P0.1 was 2.1 cm H2O [1.0-3.8]). CONCLUSION Various factors are associated with the development of PTX/PM in patients on mechanical ventilation for COVID-19. We did not find a strong correlation between PTM/PM and barotrauma or strong inspiratory efforts, which have been identified as potential causes in previous studies.
Collapse
Affiliation(s)
- Yohei Ide
- Trauma and Acute Critical Center, Tokyo Medical and Dental University Hospital of Medicine, 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-0034, Japan
| | - Nao Urushibata
- Trauma and Acute Critical Center, Tokyo Medical and Dental University Hospital of Medicine, 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-0034, Japan.
| | - Wataru Takayama
- Trauma and Acute Critical Center, Tokyo Medical and Dental University Hospital of Medicine, 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-0034, Japan
| | - Kenichi Hondo
- Trauma and Acute Critical Center, Tokyo Medical and Dental University Hospital of Medicine, 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-0034, Japan
| | - Junichi Aiboshi
- Trauma and Acute Critical Center, Tokyo Medical and Dental University Hospital of Medicine, 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-0034, Japan
| | - Yasuhiro Otomo
- Trauma and Acute Critical Center, Tokyo Medical and Dental University Hospital of Medicine, 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-0034, Japan
| |
Collapse
|
24
|
Wang WZ, Ying LJ, Liu WD, Zhang P, Li SF. Findings of ventilator-measured P0.1 in assessing respiratory drive in patients with severe ARDS. Technol Health Care 2024; 32:719-726. [PMID: 37393453 DOI: 10.3233/thc-230096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2023]
Abstract
BACKGROUND Providers should adjust the depth of sedation to promote lung-protective ventilation in patients with severe ARDS. This recommendation was based on the assumption that the depth of sedation could be used to assess respiratory drive. OBJECTIVE To assess the association between respiratory drive and sedation in patients with severe ARDS by using ventilator-measured P0.1 and RASS score. METHODS Loss of spontaneous breathing was observed within 48 h of mechanical ventilation in patients with severe ARDS, and spontaneous breathing returned after 48 hours. P0.1 was measured by ventilator every 12 ± 2 hours, and the RASS score was measured synchronously. RESULTS The RASS score was moderately correlated with P0.1 (R𝑆𝑝𝑒𝑎𝑟𝑚𝑎𝑛, 0.570; 95% CI, 0.475 to 0.637; p= 0.00). However, only patients with a RASS score of -5 were considered to have no excessive respiratory drive, but there was a risk for loss of spontaneous breathing. A P0.1 exceeding 3.5 cm H2O in patients with other RASS scores indicated an increase in respiratory drive. CONCLUSION RASS score has little clinical significance in evaluating respiratory drive in severe ARDS. P0.1 should be evaluated by ventilator when adjusting the depth of sedation to promote lung-protective ventilation.
Collapse
|
25
|
Jung C, Gillmann HJ, Stueber T. Modification of Respiratory Drive and Lung Stress by Level of Support Pressure and ECMO Sweep Gas Flow in Patients With Severe COVID-19-Associated Acute Respiratory Distress Syndrome: an Exploratory Retrospective Analysis. J Cardiothorac Vasc Anesth 2024; 38:221-229. [PMID: 38197786 DOI: 10.1053/j.jvca.2023.09.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 08/17/2023] [Accepted: 09/26/2023] [Indexed: 01/11/2024]
Abstract
OBJECTIVES Patients with severe acute respiratory distress syndrome (ARDS) often exhibit an unusually strong respiratory drive, which predisposes them to effort-induced lung injury. Careful titration of support pressure via the ventilator and carbon dioxide removal via extracorporeal membrane oxygenation (ECMO) may attenuate respiratory drive and lung stress. DESIGN A retrospective cohort study. SETTING At a single center, a university hospital. PARTICIPANTS Ten patients with severe COVID-19-associated ARDS (CARDS) on venovenous ECMO therapy. INTERVENTIONS Assessment of the effect of titrated support pressure and titrated ECMO sweep gas flow on respiratory drive and lung stress in spontaneously breathing patients during ECMO therapy. MEASUREMENTS AND MAIN RESULTS Airway occlusion pressure (P0.1) and the total swing of the transpulmonary pressure were determined as surrogate parameters of respiratory drive and lung stress. Ventilator-mediated elevation of support pressure decreased P0.1 but increased transpulmonary driving pressure, airway pressure, tidal volume, and end-inspiratory transpulmonary occlusion pressure. The increase in ECMO sweep gas flow lowered P0.1, transpulmonary pressures, tidal volume, and respiratory frequency linearly. CONCLUSIONS In patients with CARDS on pressure support ventilation, even moderate support pressure may lead to overassistance during assisted ventilation, which is only reflected by advanced monitoring of respiratory mechanics. Modifying carbon dioxide removal via the extracorporeal system profoundly affects respiratory effort and mechanics. Spontaneously breathing patients with CARDS may benefit from consequent carbon dioxide removal.
Collapse
Affiliation(s)
- Carolin Jung
- Department of Anaesthesiology and Intensive Care Medicine, Hannover Medical School, Hannover, Germany.
| | - Hans-Jörg Gillmann
- Department of Anaesthesiology and Intensive Care Medicine, Hannover Medical School, Hannover, Germany
| | - Thomas Stueber
- Department of Anaesthesiology and Intensive Care Medicine, Hannover Medical School, Hannover, Germany
| |
Collapse
|
26
|
Docci M, Rezoagli E, Teggia-Droghi M, Coppadoro A, Pozzi M, Grassi A, Bianchi I, Foti G, Bellani G. Individual response in patient's effort and driving pressure to variations in assistance during pressure support ventilation. Ann Intensive Care 2023; 13:132. [PMID: 38123757 PMCID: PMC10733248 DOI: 10.1186/s13613-023-01231-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023] Open
Abstract
BACKGROUND During Pressure Support Ventilation (PSV) an inspiratory hold allows to measure plateau pressure (Pplat), driving pressure (∆P), respiratory system compliance (Crs) and pressure-muscle-index (PMI), an index of inspiratory effort. This study aims [1] to assess systematically how patient's effort (estimated with PMI), ∆P and tidal volume (Vt) change in response to variations in PSV and [2] to confirm the robustness of Crs measurement during PSV. METHODS 18 patients recovering from acute respiratory failure and ventilated by PSV were cross-randomized to four steps of assistance above (+ 3 and + 6 cmH2O) and below (-3 and -6 cmH2O) clinically set PS. Inspiratory and expiratory holds were performed to measure Pplat, PMI, ∆P, Vt, Crs, P0.1 and occluded inspiratory airway pressure (Pocc). Electromyography of respiratory muscles was monitored noninvasively from body surface (sEMG). RESULTS As PSV was decreased, Pplat (from 20.5 ± 3.3 cmH2O to 16.7 ± 2.9, P < 0.001) and ∆P (from 12.5 ± 2.3 to 8.6 ± 2.3 cmH2O, P < 0.001) decreased much less than peak airway pressure did (from 21.7 ± 3.8 to 9.7 ± 3.8 cmH2O, P < 0.001), given the progressive increase of patient's effort (PMI from -1.2 ± 2.3 to 6.4 ± 3.2 cmH2O) in line with sEMG of the diaphragm (r = 0.614; P < 0.001). As ∆P increased linearly with Vt, Crs did not change through steps (P = 0.119). CONCLUSION Patients react to a decrease in PSV by increasing inspiratory effort-as estimated by PMI-keeping Vt and ∆P on a desired value, therefore, limiting the clinician's ability to modulate them. PMI appears a valuable index to assess the point of ventilatory overassistance when patients lose control over Vt like in a pressure-control mode. The measurement of Crs in PSV is constant-likely suggesting reliability-independently from the level of assistance and patient's effort.
Collapse
Affiliation(s)
- Mattia Docci
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Emanuele Rezoagli
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
- Department of Emergency and Intensive Care, Fondazione IRCCS San Gerardo Dei Tintori, Monza, Italy
| | - Maddalena Teggia-Droghi
- Department of Emergency and Intensive Care, Fondazione IRCCS San Gerardo Dei Tintori, Monza, Italy
| | - Andrea Coppadoro
- Department of Emergency and Intensive Care, Fondazione IRCCS San Gerardo Dei Tintori, Monza, Italy
| | - Matteo Pozzi
- Department of Emergency and Intensive Care, Fondazione IRCCS San Gerardo Dei Tintori, Monza, Italy
| | - Alice Grassi
- Department of Anesthesia and Pain Medicine, Toronto General Hospital, Toronto, ON, Canada
| | - Isabella Bianchi
- Department of Anesthesia and Intensive Care, ASST Papa Giovanni XXIII, Bergamo, Italy
| | - Giuseppe Foti
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
- Department of Emergency and Intensive Care, Fondazione IRCCS San Gerardo Dei Tintori, Monza, Italy
| | - Giacomo Bellani
- Centre for Medical Sciences-CISMed, University of Trento, Trento, Italy.
- Department of Anesthesia and Intensive Care, Santa Chiara Hospital, APSS Trento Largo Medaglie d'Oro Trento, Trento, Italy.
| |
Collapse
|
27
|
Ito Y, Herrera MG, Hotz JC, Kyogoku M, Newth CJL, Bhalla AK, Takeuchi M, Khemani RG. Estimation of inspiratory effort using airway occlusion maneuvers in ventilated children: a secondary analysis of an ongoing randomized trial testing a lung and diaphragm protective ventilation strategy. Crit Care 2023; 27:466. [PMID: 38031116 PMCID: PMC10685539 DOI: 10.1186/s13054-023-04754-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 11/21/2023] [Indexed: 12/01/2023] Open
Abstract
BACKGROUND Monitoring respiratory effort in ventilated patients is important to balance lung and diaphragm protection. Esophageal manometry remains the gold standard for monitoring respiratory effort but is invasive and requires expertise for its measurement and interpretation. Airway pressures during occlusion maneuvers may provide an alternative, although pediatric data are limited. We sought to determine the correlation between change in esophageal pressure during tidal breathing (∆Pes) and airway pressure measured during three airway occlusion maneuvers: (1) expiratory occlusion pressure (Pocc), (2) airway occlusion pressure (P0.1), and (3) respiratory muscle pressure index (PMI) in children. We also sought to explore pediatric threshold values for these pressures to detect excessive or insufficient respiratory effort. METHODS Secondary analysis of physiologic data from children between 1 month and 18 years of age with acute respiratory distress syndrome enrolled in an ongoing randomized clinical trial testing a lung and diaphragm protective ventilation strategy (REDvent, R01HL124666). ∆Pes, Pocc, P0.1, and PMI were measured. Repeated measure correlations were used to investigate correlation coefficients between ∆Pes and the three measures, and linear regression equations were generated to identify potential therapeutic thresholds. RESULTS There were 653 inspiratory and 713 expiratory holds from 97 patients. Pocc had the strongest correlation with ∆Pes (r = 0.68), followed by PMI (r = 0.60) and P0.1 (r = 0.42). ∆Pes could be reliably estimated using the regression equation ∆Pes = 0.66 [Formula: see text] Pocc (R2 = 0.82), with Pocc cut-points having high specificity and moderate sensitivity to detect respective ∆Pes thresholds for high and low respiratory effort. There were minimal differences in the relationship between Pocc and ∆Pes based on age (infant, child, adolescent) or mode of ventilation (SIMV versus Pressure Support), although these differences were more apparent with P0.1 and PMI. CONCLUSIONS Airway occlusion maneuvers may be appropriate alternatives to esophageal pressure measurement to estimate the inspiratory effort in children, and Pocc represents the most promising target. TRIAL REGISTRATION NCT03266016; August 23, 2017.
Collapse
Affiliation(s)
- Yukie Ito
- Department of Intensive Care, Osaka Women's and Children's Hospital, Osaka, Japan
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital Los Angeles, Los Angeles, USA
| | - Matías G Herrera
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital Los Angeles, Los Angeles, USA
- Department of Intensive Care, Hospital de Pediatría JP Garrahan, Buenos Aires, Argentina
| | - Justin C Hotz
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital Los Angeles, Los Angeles, USA
| | - Miyako Kyogoku
- Department of Intensive Care, Osaka Women's and Children's Hospital, Osaka, Japan
| | - Christopher J L Newth
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital Los Angeles, Los Angeles, USA
- Department of Pediatrics, University of Southern California Keck School of Medicine, Los Angeles, USA
| | - Anoopindar K Bhalla
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital Los Angeles, Los Angeles, USA
- Department of Pediatrics, University of Southern California Keck School of Medicine, Los Angeles, USA
| | - Muneyuki Takeuchi
- Department of Intensive Care, Osaka Women's and Children's Hospital, Osaka, Japan
| | - Robinder G Khemani
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital Los Angeles, Los Angeles, USA.
- Department of Pediatrics, University of Southern California Keck School of Medicine, Los Angeles, USA.
| |
Collapse
|
28
|
Yang YL, Liu Y, Gao R, Song DJ, Zhou YM, Miao MY, Chen W, Wang SP, Wang YF, Zhang L, Zhou JX. Use of airway pressure-based indices to detect high and low inspiratory effort during pressure support ventilation: a diagnostic accuracy study. Ann Intensive Care 2023; 13:111. [PMID: 37955842 PMCID: PMC10643759 DOI: 10.1186/s13613-023-01209-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 10/27/2023] [Indexed: 11/14/2023] Open
Abstract
BACKGROUND Assessment of the patient's respiratory effort is essential during assisted ventilation. We aimed to evaluate the accuracy of airway pressure (Paw)-based indices to detect potential injurious inspiratory effort during pressure support (PS) ventilation. METHODS In this prospective diagnostic accuracy study conducted in four ICUs in two academic hospitals, 28 adult acute respiratory failure patients undergoing PS ventilation were enrolled. A downward PS titration was conducted from 20 cmH2O to 2 cmH2O at a 2 cmH2O interval. By performing an end-expiratory airway occlusion maneuver, the negative Paw generated during the first 100 ms (P0.1) and the maximal negative swing of Paw (∆Pocc) were measured. After an end-inspiratory airway occlusion, Paw reached a plateau, and the magnitude of change in plateau from peak Paw was measured as pressure muscle index (PMI). Esophageal pressure was monitored and inspiratory muscle pressure (Pmus) and Pmus-time product per minute (PTPmus/min) were used as the reference standard for the patient's effort. High and low effort was defined as Pmus > 10 and < 5 cmH2O, or PTPmus/min > 200 and < 50 cmH2O s min-1, respectively. RESULTS A total of 246 levels of PS were tested. The low inspiratory effort was diagnosed in 145 (59.0%) and 136 (55.3%) PS levels using respective Pmus and PTPmus/min criterion. The receiver operating characteristic area of the three Paw-based indices by the respective two criteria ranged from 0.87 to 0.95, and balanced sensitivity (0.83-0.96), specificity (0.74-0.88), and positive (0.80-0.91) and negative predictive values (0.78-0.94) were obtained. The high effort was diagnosed in 34 (13.8%) and 17 (6.9%) support levels using Pmus and PTPmus/min criterion, respectively. High receiver operating characteristic areas of the three Paw-based indices by the two criteria were found (0.93-0.95). A high sensitivity (0.80-1.00) and negative predictive value (0.97-1.00) were found with a low positive predictive value (0.23-0.64). CONCLUSIONS By performing simple airway occlusion maneuvers, the Paw-based indices could be reliably used to detect low inspiratory efforts. Non-invasive and easily accessible characteristics support their potential bedside use for avoiding over-assistance. More evaluation of their performance is required in cohorts with high effort.
Collapse
Affiliation(s)
- Yan-Lin Yang
- Department of Critical Care Medicine, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Clinical and Research Center on Acute Lung Injury, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
| | - Yang Liu
- Clinical and Research Center on Acute Lung Injury, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
- Surgical Intensive Care Unit, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Ran Gao
- Department of Critical Care Medicine, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - De-Jing Song
- Surgical Intensive Care Unit, China-Japan Friendship Hospital, Beijing, China
| | - Yi-Min Zhou
- Department of Critical Care Medicine, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Ming-Yue Miao
- Clinical and Research Center on Acute Lung Injury, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
| | - Wei Chen
- Department of Critical Care Medicine, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Shu-Peng Wang
- Surgical Intensive Care Unit, China-Japan Friendship Hospital, Beijing, China
| | - Yue-Fu Wang
- Clinical and Research Center on Acute Lung Injury, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
- Surgical Intensive Care Unit, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Linlin Zhang
- Department of Critical Care Medicine, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Clinical and Research Center on Acute Lung Injury, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
| | - Jian-Xin Zhou
- Department of Critical Care Medicine, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
- Clinical and Research Center on Acute Lung Injury, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China.
| |
Collapse
|
29
|
He G, Han Y, Zhan Y, Yao Y, Zhou H, Zheng X. The combined use of parasternal intercostal muscle thickening fraction and P0.1 for prediction of weaning outcomes. Heart Lung 2023; 62:122-128. [PMID: 37480723 DOI: 10.1016/j.hrtlng.2023.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 07/24/2023]
Abstract
BACKGROUND A variety of parameters and diaphragmatic ultrasound in ventilator weaning has been studied extensively, and the findings yield inconsistent conclusions. The parasternal intercostal muscle holds important substantial respiratory reserve capacity when the central drive is enhanced, the predictive value of combining parasternal intercostal muscle ultrasound parameters with P0.1(airway occlusion pressure at 100 msec) in assessing ventilator weaning outcomes is still unknown. OBJECTIVES Our study aimed to evaluate the predictive efficacy of parasternal intercostal muscle ultrasound in conjunction with P0.1 in determining weaning failure. METHODS We recruited patients who had been admitted to ICU and had been receiving mechanical ventilation for over two days. All patients underwent a half-hour spontaneous breathing trial (SBT) with low-level pressure support ventilation (PSV). They were positioned semi-upright for parasternal intercostal muscle ultrasound evaluations, including parasternal intercostal muscle thickness (PIMT), and parasternal intercostal muscle thickening fraction (PIMTF); P0.1 was obtained from the ventilator. Weaning failure was defined as the need for non-invasive positive pressure ventilation or re-intubation within 48 h post-weaning. RESULTS Of the 56 enrolled patients with a mean age of 63.04 ± 15.80 years, 13 (23.2%) experienced weaning failure. There were differences in P0.1 (P = .001) and PIMTF (P = .017) between the two groups, but also in patients with a diaphragm thickness ≥ 2 mm. The predictive threshold values were PIMTF ≥ 13.15% and P0.1 ≥ 3.9 cmH2O for weaning failure. The AUROC for predicting weaning failure was 0.721 for PIMTF, 0.792 for P0.1, and 0.869 for the combination of PIMTF and P0.1. CONCLUSIONS The parasternal intercostal muscle thickening fraction and P0.1 are independently linked to weaning failure, especially in patients with normal diaphragm thickness. The combination of parasternal intercostal muscle thickening fraction and P0.1 can serve as a valuable tool for the precise clinical prediction of weaning outcomes. TRIAL REGISTRATION Chinese Clinical Trial Registry website (ChiCTR2200065422).
Collapse
Affiliation(s)
- Guojun He
- Department of Critical Care Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, PR China; Key Laboratory of Clinical Evaluation Technology for Medical Device of Zhejiang Province, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, PR China
| | - Yijiao Han
- Department of Critical Care Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, PR China
| | - Yasheng Zhan
- Department of Critical Care Medicine, Jinhua People's Hospital, Jinhua, Zhejiang 321000, PR China
| | - Yake Yao
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, PR China
| | - Hua Zhou
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, PR China.
| | - Xia Zheng
- Department of Critical Care Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, PR China; Key Laboratory of Clinical Evaluation Technology for Medical Device of Zhejiang Province, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, PR China.
| |
Collapse
|
30
|
Teijeiro-Paradis R, Cherkos Dawit T, Munshi L, Ferguson ND, Fan E. Liberation From Venovenous Extracorporeal Membrane Oxygenation for Respiratory Failure: A Scoping Review. Chest 2023; 164:1184-1203. [PMID: 37353070 DOI: 10.1016/j.chest.2023.06.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 06/03/2023] [Accepted: 06/14/2023] [Indexed: 06/25/2023] Open
Abstract
BACKGROUND Safe and timely liberation from venovenous extracorporeal membrane oxygenation (ECMO) would be expected to reduce the duration of ECMO, the risk of complications, and costs. However, how to liberate patients from venovenous ECMO effectively remains understudied. RESEARCH QUESTION What is the current state of the evidence on liberation from venovenous ECMO? STUDY DESIGN AND METHODS We systematically searched for relevant publications on liberation from venovenous ECMO in Medline and EMBASE. Citations were included if the manuscripts provided any of the following: criteria for readiness for liberation, a liberation protocol, or a definition of successful decannulation or decannulation failure. We included randomized trials, observational trials, narrative reviews, guidelines, editorials, and commentaries. We excluded single case reports and citations where the full text was unavailable. RESULTS We screened 1,467 citations to identify 39 key publications on liberation from venovenous ECMO. We then summarized the data into five main topics: current strategies used for liberation, criteria used to define readiness for liberation, conducting liberation trials, criteria used to proceed with decannulation, and parameters used to predict decannulation outcomes. INTERPRETATION Practices on liberation from venovenous ECMO are heterogeneous and are influenced strongly by clinician preference. Additional research on liberation thresholds is needed to define optimal liberation strategies and to close existing knowledge gaps in essential topics on liberation from venovenous ECMO.
Collapse
Affiliation(s)
- Ricardo Teijeiro-Paradis
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, ON, Canada; Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Tsega Cherkos Dawit
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, ON, Canada; Mekelle University College of Health Sciences, Mekelle, Ethiopia
| | - Laveena Munshi
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, ON, Canada; Department of Medicine, University of Toronto, Toronto, ON, Canada; Institute of Health Policy, Management and Evaluation, University of Toronto, Toronto, ON, Canada; Division of Respirology & Critical Care, Department of Medicine, Sinai Health System and University Health Network, Toronto, ON, Canada
| | - Niall D Ferguson
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, ON, Canada; Department of Medicine, University of Toronto, Toronto, ON, Canada; Institute of Health Policy, Management and Evaluation, University of Toronto, Toronto, ON, Canada; Division of Respirology & Critical Care, Department of Medicine, Sinai Health System and University Health Network, Toronto, ON, Canada; Toronto General Hospital Research Institute, Toronto, ON, Canada
| | - Eddy Fan
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, ON, Canada; Institute of Medical Science, University of Toronto, Toronto, ON, Canada; Department of Medicine, University of Toronto, Toronto, ON, Canada; Institute of Health Policy, Management and Evaluation, University of Toronto, Toronto, ON, Canada; Division of Respirology & Critical Care, Department of Medicine, Sinai Health System and University Health Network, Toronto, ON, Canada; Toronto General Hospital Research Institute, Toronto, ON, Canada.
| |
Collapse
|
31
|
Núñez Silveira JM, Gallardo A, García-Valdés P, Ríos F, Rodriguez PO, Felipe Damiani L. Reverse triggering during mechanical ventilation: Diagnosis and clinical implications. Med Intensiva 2023; 47:648-657. [PMID: 37867118 DOI: 10.1016/j.medine.2023.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/04/2023] [Accepted: 09/04/2023] [Indexed: 10/24/2023]
Abstract
This review addresses the phenomenon of "reverse triggering", an asynchrony that occurs in deeply sedated patients or patients in transition from deep to light sedation. Reverse triggering has been reported to occur in 30-90% of all ventilated patients. The underlying pathophysiological mechanisms remain unclear, but "entrainment" is proposed as one of them. Detecting this asynchrony is crucial, and methods such as visual inspection, esophageal pressure, diaphragmatic ultrasound and automated methods have been used. Reverse triggering may have effects on lung and diaphragm function, probably mediated by the level of breathing effort and eccentric activation of the diaphragm. The optimal management of reverse triggering has not been established, but may include the adjustment of ventilatory parameters as well as of sedation level, and in extreme cases, neuromuscular block. It is important to understand the significance of this condition and its detection, but also to conduct dedicated research to improve its clinical management and potential effects in critically ill patients.
Collapse
Affiliation(s)
- Juan M Núñez Silveira
- Servicio de Kinesiología, Hospital Italiano de Buenos Aires, Buenos Aires, Argentina
| | - Adrián Gallardo
- Servicio de Kinesiología, Sanatorio Clínica Modelo de Morón, Morón, Buenos Aires, Argentina
| | - Patricio García-Valdés
- Departamento de Ciencias de la Salud, Carrera de Kinesiología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile; CardioREspirAtory Research Laboratory (CREAR), Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Fernando Ríos
- Casa Hospital San Juan De Dios, Ramos Mejía, Buenos Aires, Argentina
| | - Pablo O Rodriguez
- Unidad de Terapia Intensiva, Centro de Educación Médica e Investigaciones Clínicas (CEMIC), Buenos Aires, Argentina; Instituto Universitario CEMIC (IUC), Buenos Aires, Argentina
| | - L Felipe Damiani
- Departamento de Ciencias de la Salud, Carrera de Kinesiología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile; CardioREspirAtory Research Laboratory (CREAR), Pontificia Universidad Católica de Chile, Santiago, Chile.
| |
Collapse
|
32
|
Burt JS, Davenport MP, Welch JF, Davenport PW. fNIRS analysis of rostral prefrontal cortex activity and perception of inspiratory loads. Respir Physiol Neurobiol 2023; 316:104113. [PMID: 37442516 DOI: 10.1016/j.resp.2023.104113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 06/20/2023] [Accepted: 07/09/2023] [Indexed: 07/15/2023]
Abstract
It is well-established that the brainstem is responsible for the automatic control of breathing, however, cortical areas control perception and conscious breathing. This study investigated activity in the prefrontal cortex (PFC) during breathing difficulty using functional near-infrared spectroscopy (fNIRS). It was hypothesized that extrinsic inspiratory loads will elicit regional changes in PFC activity and increased perception ratings, as a function of load magnitude and type. Participants were exposed to varying magnitudes of resistive (R) and pressure threshold (PT) inspiratory loads to increase breathing effort. Perception ratings of breathing effort and load magnitude were positively correlated (p < 0.05). PT loads were rated more effortful than R loads (p < 0.05). Differences in perceived effort were a function of inspiratory pressure-time-product (PTP) and inspiratory work of breathing (WoB). PFC activity increased with the largest PT load (p < 0.01), suggesting that the PFC is involved in processing respiratory stimuli. The results support the hypothesis that the PFC is an element of the neural network mediating effortful breathing perception.
Collapse
Affiliation(s)
- Juliana S Burt
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, 1333 Center Drive, Gainesville, FL 32610, USA
| | - Matthew P Davenport
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, 1333 Center Drive, Gainesville, FL 32610, USA
| | - Joseph F Welch
- Department of Physical Therapy, College of Veterinary Medicine, University of Florida, 1333 Center Drive, Gainesville, FL 32610, USA; School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Edgbaston, Birmingham, UK
| | - Paul W Davenport
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, 1333 Center Drive, Gainesville, FL 32610, USA.
| |
Collapse
|
33
|
Chen H, Liang M, He Y, Teboul JL, Sun Q, Xie J, Yang Y, Qiu H, Liu L. Inspiratory effort impacts the accuracy of pulse pressure variations for fluid responsiveness prediction in mechanically ventilated patients with spontaneous breathing activity: a prospective cohort study. Ann Intensive Care 2023; 13:72. [PMID: 37592166 PMCID: PMC10435426 DOI: 10.1186/s13613-023-01167-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 08/01/2023] [Indexed: 08/19/2023] Open
Abstract
BACKGROUND Pulse pressure variation (PPV) is unreliable in predicting fluid responsiveness (FR) in patients receiving mechanical ventilation with spontaneous breathing activity. Whether PPV can be valuable for predicting FR in patients with low inspiratory effort is unknown. We aimed to investigate whether PPV can be valuable in patients with low inspiratory effort. METHODS This prospective study was conducted in an intensive care unit at a university hospital and included acute circulatory failure patients receiving volume-controlled ventilation with spontaneous breathing activity. Hemodynamic measurements were collected before and after a fluid challenge. The degree of inspiratory effort was assessed using airway occlusion pressure (P0.1) and airway pressure swing during a whole breath occlusion (ΔPocc) before fluid challenge. Patients were classified as fluid responders if their cardiac output increased by ≥ 10%. Areas under receiver operating characteristic (AUROC) curves and gray zone approach were used to assess the predictive performance of PPV. RESULTS Among the 189 included patients, 53 (28.0%) were defined as responders. A PPV > 9.5% enabled to predict FR with an AUROC of 0.79 (0.67-0.83) in the whole population. The predictive performance of PPV differed significantly in groups stratified by the median value of P0.1 (P0.1 < 1.5 cmH2O and P0.1 ≥ 1.5 cmH2O), but not in groups stratified by the median value of ΔPocc (ΔPocc < - 9.8 cmH2O and ΔPocc ≥ - 9.8 cmH2O). Specifically, in patients with P0.1 < 1.5 cmH2O, PPV was associated with an AUROC of 0.90 (0.82-0.99) compared with 0.68 (0.57-0.79) otherwise (p = 0.0016). The cut-off values of PPV were 10.5% and 9.5%, respectively. Besides, patients with P0.1 < 1.5 cmH2O had a narrow gray zone (10.5-11.5%) compared to patients with P0.1 ≥ 1.5 cmH2O (8.5-16.5%). CONCLUSIONS PPV is reliable in predicting FR in patients who received controlled ventilation with low spontaneous effort, defined as P0.1 < 1.5 cmH2O. Trial registration NCT04802668. Registered 6 February 2021, https://clinicaltrials.gov/ct2/show/record/NCT04802668.
Collapse
Affiliation(s)
- Hui Chen
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, No. 87, Dingjiaqiao Road, Gulou District, Nanjing, 210009 People’s Republic of China
- Department of Critical Care Medicine, The First Affiliated Hospital of Soochow University, Soochow University, No. 899 Pinghai Road, Suzhou, 215000 People’s Republic of China
| | - Meihao Liang
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, No. 87, Dingjiaqiao Road, Gulou District, Nanjing, 210009 People’s Republic of China
- Department of Critical Care Medicine, Changsha central hospital, University of South China, No. 161, South Shaoshan Road, Changsha, 410000 Hunan People’s Republic of China
| | - Yuanchao He
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, No. 87, Dingjiaqiao Road, Gulou District, Nanjing, 210009 People’s Republic of China
- Department of Critical Care Medicine, Wuhan first hospital of Hubei Province, No 215 Zhongshan Avenue, Qiaokou District, Wuhan, 430000 People’s Republic of China
| | - Jean-Louis Teboul
- Service de médecine intensive-réanimation, Hôpital de Bicêtre, Université Paris-Saclay, AP-HP, Inserm UMR S_999, Le Kremlin-Bicêtre, France
| | - Qin Sun
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, No. 87, Dingjiaqiao Road, Gulou District, Nanjing, 210009 People’s Republic of China
| | - Jianfen Xie
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, No. 87, Dingjiaqiao Road, Gulou District, Nanjing, 210009 People’s Republic of China
| | - Yi Yang
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, No. 87, Dingjiaqiao Road, Gulou District, Nanjing, 210009 People’s Republic of China
| | - Haibo Qiu
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, No. 87, Dingjiaqiao Road, Gulou District, Nanjing, 210009 People’s Republic of China
| | - Ling Liu
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, No. 87, Dingjiaqiao Road, Gulou District, Nanjing, 210009 People’s Republic of China
| |
Collapse
|
34
|
Jonkman AH, Telias I, Spinelli E, Akoumianaki E, Piquilloud L. The oesophageal balloon for respiratory monitoring in ventilated patients: updated clinical review and practical aspects. Eur Respir Rev 2023; 32:220186. [PMID: 37197768 PMCID: PMC10189643 DOI: 10.1183/16000617.0186-2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 02/22/2023] [Indexed: 05/19/2023] Open
Abstract
There is a well-recognised importance for personalising mechanical ventilation settings to protect the lungs and the diaphragm for each individual patient. Measurement of oesophageal pressure (P oes) as an estimate of pleural pressure allows assessment of partitioned respiratory mechanics and quantification of lung stress, which helps our understanding of the patient's respiratory physiology and could guide individualisation of ventilator settings. Oesophageal manometry also allows breathing effort quantification, which could contribute to improving settings during assisted ventilation and mechanical ventilation weaning. In parallel with technological improvements, P oes monitoring is now available for daily clinical practice. This review provides a fundamental understanding of the relevant physiological concepts that can be assessed using P oes measurements, both during spontaneous breathing and mechanical ventilation. We also present a practical approach for implementing oesophageal manometry at the bedside. While more clinical data are awaited to confirm the benefits of P oes-guided mechanical ventilation and to determine optimal targets under different conditions, we discuss potential practical approaches, including positive end-expiratory pressure setting in controlled ventilation and assessment of inspiratory effort during assisted modes.
Collapse
Affiliation(s)
- Annemijn H Jonkman
- Department of Intensive Care Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Irene Telias
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, ON, Canada
- Division of Respirology, Department of Medicine, University Health Network and Mount Sinai Hospital, Toronto, ON, Canada
- Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St Michael's Hospital-Unity Health Toronto, Toronto, ON, Canada
| | - Elena Spinelli
- Dipartimento di Anestesia, Rianimazione ed Emergenza-Urgenza, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Evangelia Akoumianaki
- Adult Intensive Care Unit, University Hospital of Heraklion, Heraklion, Greece
- Medical School, University of Crete, Heraklion, Greece
| | - Lise Piquilloud
- Adult Intensive Care Unit, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland
| |
Collapse
|
35
|
Spinelli E, Pesenti A, Slobod D, Fornari C, Fumagalli R, Grasselli G, Volta CA, Foti G, Navalesi P, Knafelj R, Pelosi P, Mancebo J, Brochard L, Mauri T. Clinical risk factors for increased respiratory drive in intubated hypoxemic patients. Crit Care 2023; 27:138. [PMID: 37041553 PMCID: PMC10088111 DOI: 10.1186/s13054-023-04402-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 03/14/2023] [Indexed: 04/13/2023] Open
Abstract
BACKGROUND There is very limited evidence identifying factors that increase respiratory drive in hypoxemic intubated patients. Most physiological determinants of respiratory drive cannot be directly assessed at the bedside (e.g., neural inputs from chemo- or mechano-receptors), but clinical risk factors commonly measured in intubated patients could be correlated with increased drive. We aimed to identify clinical risk factors independently associated with increased respiratory drive in intubated hypoxemic patients. METHODS We analyzed the physiological dataset from a multicenter trial on intubated hypoxemic patients on pressure support (PS). Patients with simultaneous assessment of the inspiratory drop in airway pressure at 0.1-s during an occlusion (P0.1) and risk factors for increased respiratory drive on day 1 were included. We evaluated the independent correlation of the following clinical risk factors for increased drive with P0.1: severity of lung injury (unilateral vs. bilateral pulmonary infiltrates, PaO2/FiO2, ventilatory ratio); arterial blood gases (PaO2, PaCO2 and pHa); sedation (RASS score and drug type); SOFA score; arterial lactate; ventilation settings (PEEP, level of PS, addition of sigh breaths). RESULTS Two-hundred seventeen patients were included. Clinical risk factors independently correlated with higher P0.1 were bilateral infiltrates (increase ratio [IR] 1.233, 95%CI 1.047-1.451, p = 0.012); lower PaO2/FiO2 (IR 0.998, 95%CI 0.997-0.999, p = 0.004); higher ventilatory ratio (IR 1.538, 95%CI 1.267-1.867, p < 0.001); lower pHa (IR 0.104, 95%CI 0.024-0.464, p = 0.003). Higher PEEP was correlated with lower P0.1 (IR 0.951, 95%CI 0.921-0.982, p = 0.002), while sedation depth and drugs were not associated with P0.1. CONCLUSIONS Independent clinical risk factors for higher respiratory drive in intubated hypoxemic patients include the extent of lung edema and of ventilation-perfusion mismatch, lower pHa, and lower PEEP, while sedation strategy does not affect drive. These data underline the multifactorial nature of increased respiratory drive.
Collapse
Affiliation(s)
- Elena Spinelli
- Department of Anesthesia, Critical Care and Emergency, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Antonio Pesenti
- Department of Anesthesia, Critical Care and Emergency, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Douglas Slobod
- Department of Anesthesia, Critical Care and Emergency, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Critical Care Medicine, McGill University, Montreal, QC, Canada
| | - Carla Fornari
- Research Centre On Public Health, University of Milano - Bicocca, Monza, Italy
| | - Roberto Fumagalli
- Anesthesia and Critical Care Service 1, Niguarda Hospital, Milan, Italy
| | - Giacomo Grasselli
- Department of Anesthesia, Critical Care and Emergency, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Carlo Alberto Volta
- Morphology, Surgery and Experimental Medicine, Anesthesia and Intensive Care Unit, University of Ferrara, Ferrara, Italy
| | - Giuseppe Foti
- Anesthesia and Critical Care, San Gerardo Hospital, ASST Monza, Monza, Italy
| | - Paolo Navalesi
- Anesthesia and Intensive Care, Department of Medicine - DIMED, Padua University Hospital, University of Padua, Padua, Italy
| | - Rihard Knafelj
- Center for Internal Intensive Medicine (MICU), University Medical Center Ljubljana, Ljubljana, Slovenia
| | - Paolo Pelosi
- Anesthesia and Intensive Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neurosciences, Genoa, Italy
- Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, Genoa, Italy
| | - Jordi Mancebo
- Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Laurent Brochard
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Canada
| | - Tommaso Mauri
- Department of Anesthesia, Critical Care and Emergency, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy.
| |
Collapse
|
36
|
Sklienka P, Frelich M, Burša F. Patient Self-Inflicted Lung Injury-A Narrative Review of Pathophysiology, Early Recognition, and Management Options. J Pers Med 2023; 13:593. [PMID: 37108979 PMCID: PMC10146629 DOI: 10.3390/jpm13040593] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 03/22/2023] [Accepted: 03/27/2023] [Indexed: 03/31/2023] Open
Abstract
Patient self-inflicted lung injury (P-SILI) is a life-threatening condition arising from excessive respiratory effort and work of breathing in patients with lung injury. The pathophysiology of P-SILI involves factors related to the underlying lung pathology and vigorous respiratory effort. P-SILI might develop both during spontaneous breathing and mechanical ventilation with preserved spontaneous respiratory activity. In spontaneously breathing patients, clinical signs of increased work of breathing and scales developed for early detection of potentially harmful effort might help clinicians prevent unnecessary intubation, while, on the contrary, identifying patients who would benefit from early intubation. In mechanically ventilated patients, several simple non-invasive methods for assessing the inspiratory effort exerted by the respiratory muscles were correlated with respiratory muscle pressure. In patients with signs of injurious respiratory effort, therapy aimed to minimize this problem has been demonstrated to prevent aggravation of lung injury and, therefore, improve the outcome of such patients. In this narrative review, we accumulated the current information on pathophysiology and early detection of vigorous respiratory effort. In addition, we proposed a simple algorithm for prevention and treatment of P-SILI that is easily applicable in clinical practice.
Collapse
Affiliation(s)
- Peter Sklienka
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Ostrava, 17. listopadu 1790, 70800 Ostrava, Czech Republic
- Department of Intensive Medicine, Emergency Medicine and Forensic Studies, Faculty of Medicine, University of Ostrava, Syllabova 19, 70300 Ostrava, Czech Republic
- Institute of Physiology and Pathophysiology, Department of Intensive Care Medicine and Forensic Studies, Faculty of Medicine, University of Ostrava, Syllabova 19, 70300 Ostrava, Czech Republic
| | - Michal Frelich
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Ostrava, 17. listopadu 1790, 70800 Ostrava, Czech Republic
- Department of Intensive Medicine, Emergency Medicine and Forensic Studies, Faculty of Medicine, University of Ostrava, Syllabova 19, 70300 Ostrava, Czech Republic
| | - Filip Burša
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Ostrava, 17. listopadu 1790, 70800 Ostrava, Czech Republic
- Department of Intensive Medicine, Emergency Medicine and Forensic Studies, Faculty of Medicine, University of Ostrava, Syllabova 19, 70300 Ostrava, Czech Republic
- Institute of Physiology and Pathophysiology, Department of Intensive Care Medicine and Forensic Studies, Faculty of Medicine, University of Ostrava, Syllabova 19, 70300 Ostrava, Czech Republic
| |
Collapse
|
37
|
Viegas P, Ageno E, Corsi G, Tagariello F, Razakamanantsoa L, Vilde R, Ribeiro C, Heunks L, Patout M, Fisser C. Highlights from the Respiratory Failure and Mechanical Ventilation 2022 Conference. ERJ Open Res 2023; 9:00467-2022. [PMID: 36949961 PMCID: PMC10026011 DOI: 10.1183/23120541.00467-2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 11/10/2022] [Indexed: 11/25/2022] Open
Abstract
The Respiratory Intensive Care Assembly of the European Respiratory Society gathered in Berlin to organise the second Respiratory Failure and Mechanical Ventilation Conference in June 2022. The conference covered several key points of acute and chronic respiratory failure in adults. During the 3-day conference, ventilatory strategies, patient selection, diagnostic approaches, treatment and health-related quality of life topics were addressed by a panel of international experts. Lectures delivered during the event have been summarised by Early Career Members of the Assembly and take-home messages highlighted.
Collapse
Affiliation(s)
- Pedro Viegas
- Pulmonology Department, Centro Hospitalar de Vila Nova de Gaia/Espinho, Vila Nova de Gaia, Portugal
| | - Elisa Ageno
- Respiratory and Critical Care Unit, IRCCS Azienda Ospedaliero Universitaria di Bologna, University Hospital Sant'Orsola-Malpighi, Bologna, Italy
- Department of Clinical, Integrated and Experimental Medicine (DIMES), Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Gabriele Corsi
- Respiratory and Critical Care Unit, IRCCS Azienda Ospedaliero Universitaria di Bologna, University Hospital Sant'Orsola-Malpighi, Bologna, Italy
- Department of Clinical, Integrated and Experimental Medicine (DIMES), Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Federico Tagariello
- Respiratory and Critical Care Unit, IRCCS Azienda Ospedaliero Universitaria di Bologna, University Hospital Sant'Orsola-Malpighi, Bologna, Italy
- Department of Clinical, Integrated and Experimental Medicine (DIMES), Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Léa Razakamanantsoa
- Unité Ambulatoire d'Appareillage Respiratoire de Domicile (UAARD), Service de Pneumologie (Département R3S), AP-HP, Groupe Hospitalier Universitaire APHP-Sorbonne Université, Paris, France
| | - Rudolfs Vilde
- Centre of Pulmonology and Thoracic Surgery, Pauls Stradiņš Clinical University Hospital, Riga, Latvia
- Riga Stradiņš University, Riga, Latvia
| | - Carla Ribeiro
- Pulmonology Department, Centro Hospitalar de Vila Nova de Gaia/Espinho, Vila Nova de Gaia, Portugal
| | - Leo Heunks
- Department of Intensive Care, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Maxime Patout
- Service des Pathologies du Sommeil (Département R3S), AP-HP, Groupe Hospitalier Universitaire APHP-Sorbonne Université, site Pitié-Salpêtrière, Paris, France
- Sorbonne Université, INSERM, UMRS1158 Neurophysiologie Respiratoire Expérimentale et Clinique, Paris, France
| | - Christoph Fisser
- Department of Internal Medicine II, University Hospital Regensburg, Regensburg, Germany
| |
Collapse
|
38
|
Monitoring Respiratory Effort and Lung-distending Pressure Noninvasively during Mechanical Ventilation: Ready for Prime Time. Anesthesiology 2023; 138:235-237. [PMID: 36749421 DOI: 10.1097/aln.0000000000004489] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
39
|
Performance of Noninvasive Airway Occlusion Maneuvers to Assess Lung Stress and Diaphragm Effort in Mechanically Ventilated Critically Ill Patients. Anesthesiology 2023; 138:274-288. [PMID: 36520507 DOI: 10.1097/aln.0000000000004467] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND Monitoring and controlling lung stress and diaphragm effort has been hypothesized to limit lung injury and diaphragm injury. The occluded inspiratory airway pressure (Pocc) and the airway occlusion pressure at 100 ms (P0.1) have been used as noninvasive methods to assess lung stress and respiratory muscle effort, but comparative performance of these measures and their correlation to diaphragm effort is unknown. The authors hypothesized that Pocc and P0.1 correlate with diaphragm effort and lung stress and would have strong discriminative performance in identifying extremes of lung stress and diaphragm effort. METHODS Change in transdiaphragmatic pressure and transpulmonary pressure was obtained with double-balloon nasogastric catheters in critically ill patients (n = 38). Pocc and P0.1 were measured every 1 to 3 h. Correlations between Pocc and P0.1 with change in transdiaphragmatic pressure and transpulmonary pressure were computed from patients from the first cohort. Accuracy of Pocc and P0.1 to identify patients with extremes of lung stress (change in transpulmonary pressure > 20 cm H2O) and diaphragm effort (change in transdiaphragmatic pressure < 3 cm H2O and >12 cm H2O) in the preceding hour was assessed with area under receiver operating characteristic curves. Cutoffs were validated in patients from the second cohort (n = 13). RESULTS Pocc and P0.1 correlate with change in transpulmonary pressure (R2 = 0.62 and 0.51, respectively) and change in transdiaphragmatic pressure (R2 = 0.53 and 0.22, respectively). Area under receiver operating characteristic curves to detect high lung stress is 0.90 (0.86 to 0.94) for Pocc and 0.88 (0.84 to 0.92) for P0.1. Area under receiver operating characteristic curves to detect low diaphragm effort is 0.97 (0.87 to 1.00) for Pocc and 0.93 (0.81 to 0.99) for P0.1. Area under receiver operating characteristic curves to detect high diaphragm effort is 0.86 (0.81 to 0.91) for Pocc and 0.73 (0.66 to 0.79) for P0.1. Performance was similar in the external dataset. CONCLUSIONS Pocc and P0.1 correlate with lung stress and diaphragm effort in the preceding hour. Diagnostic performance of Pocc and P0.1 to detect extremes in these parameters is reasonable to excellent. Pocc is more accurate in detecting high diaphragm effort. EDITOR’S PERSPECTIVE
Collapse
|
40
|
Abstract
Advanced respiratory monitoring involves several mini- or noninvasive tools, applicable at bedside, focused on assessing lung aeration and morphology, lung recruitment and overdistention, ventilation-perfusion distribution, inspiratory effort, respiratory drive, respiratory muscle contraction, and patient-ventilator asynchrony, in dealing with acute respiratory failure. Compared to a conventional approach, advanced respiratory monitoring has the potential to provide more insights into the pathologic modifications of lung aeration induced by the underlying disease, follow the response to therapies, and support clinicians in setting up a respiratory support strategy aimed at protecting the lung and respiratory muscles. Thus, in the clinical management of the acute respiratory failure, advanced respiratory monitoring could play a key role when a therapeutic strategy, relying on individualization of the treatments, is adopted.
Collapse
|
41
|
Rodrigues A, Telias I, Damiani LF, Brochard L. Reverse Triggering during Controlled Ventilation: From Physiology to Clinical Management. Am J Respir Crit Care Med 2023; 207:533-543. [PMID: 36470240 DOI: 10.1164/rccm.202208-1477ci] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Reverse triggering dyssynchrony is a frequent phenomenon recently recognized in sedated critically ill patients under controlled ventilation. It occurs in at least 30-55% of these patients and often occurs in the transition from fully passive to assisted mechanical ventilation. During reverse triggering, patient inspiratory efforts start after the passive insufflation by mechanical breaths. The most often referred mechanism is the entrainment of the patient's intrinsic respiratory rhythm from the brainstem respiratory centers to periodic mechanical insufflations from the ventilator. However, reverse triggering might also occur because of local reflexes without involving the respiratory rhythm generator in the brainstem. Reverse triggering is observed during the acute phase of the disease, when patients may be susceptible to potential deleterious consequences of injurious or asynchronous efforts. Diagnosing reverse triggering might be challenging and can easily be missed. Inspection of ventilator waveforms or more sophisticated methods, such as the electrical activity of the diaphragm or esophageal pressure, can be used for diagnosis. The occurrence of reverse triggering might have clinical consequences. On the basis of physiological data, reverse triggering might be beneficial or injurious for the diaphragm and the lung, depending on the magnitude of the inspiratory effort. Reverse triggering can cause breath-stacking and loss of protective lung ventilation when triggering a second cycle. Little is known about how to manage patients with reverse triggering; however, available evidence can guide management on the basis of physiological principles.
Collapse
Affiliation(s)
- Antenor Rodrigues
- Keenan Centre for Biomedical Research, Li Ka Shing Knowledge Institute, Unity Health Toronto, Toronto, Ontario, Canada
| | - Irene Telias
- Keenan Centre for Biomedical Research, Li Ka Shing Knowledge Institute, Unity Health Toronto, Toronto, Ontario, Canada.,Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Ontario, Canada.,Division of Respirology, Department of Medicine, University Health Network and Sinai Health System, Toronto, Ontario, Canada; and
| | - L Felipe Damiani
- Departamento Ciencias de la Salud, Carrera de Kinesiología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Laurent Brochard
- Keenan Centre for Biomedical Research, Li Ka Shing Knowledge Institute, Unity Health Toronto, Toronto, Ontario, Canada.,Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
42
|
Soundoulounaki S, Sylligardos E, Akoumianaki E, Sigalas M, Kondili E, Georgopoulos D, Trahanias P, Vaporidi K. Neural Network-Enabled Identification of Weak Inspiratory Efforts during Pressure Support Ventilation Using Ventilator Waveforms. J Pers Med 2023; 13:jpm13020347. [PMID: 36836581 PMCID: PMC9966968 DOI: 10.3390/jpm13020347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/10/2023] [Accepted: 02/15/2023] [Indexed: 02/19/2023] Open
Abstract
During pressure support ventilation (PSV), excessive assist results in weak inspiratory efforts and promotes diaphragm atrophy and delayed weaning. The aim of this study was to develop a classifier using a neural network to identify weak inspiratory efforts during PSV, based on the ventilator waveforms. Recordings of flow, airway, esophageal and gastric pressures from critically ill patients were used to create an annotated dataset, using data from 37 patients at 2-5 different levels of support, computing the inspiratory time and effort for every breath. The complete dataset was randomly split, and data from 22 patients (45,650 breaths) were used to develop the model. Using a One-Dimensional Convolutional Neural Network, a predictive model was developed to characterize the inspiratory effort of each breath as weak or not, using a threshold of 50 cmH2O*s/min. The following results were produced by implementing the model on data from 15 different patients (31,343 breaths). The model predicted weak inspiratory efforts with a sensitivity of 88%, specificity of 72%, positive predictive value of 40%, and negative predictive value of 96%. These results provide a 'proof-of-concept' for the ability of such a neural-network based predictive model to facilitate the implementation of personalized assisted ventilation.
Collapse
Affiliation(s)
- Stella Soundoulounaki
- Department of Intensive Care Medicine, School of Medicine, University of Crete, 71003 Heraklion, Greece
| | - Emmanouil Sylligardos
- Institute of Computer Science, Foundation for Research and Technology—Hellas (FORTH), 70013 Heraklion, Greece
- Department of Computer Science, University of Crete, 70013 Heraklion, Greece
| | - Evangelia Akoumianaki
- Department of Intensive Care Medicine, School of Medicine, University of Crete, 71003 Heraklion, Greece
| | - Markos Sigalas
- Institute of Computer Science, Foundation for Research and Technology—Hellas (FORTH), 70013 Heraklion, Greece
| | - Eumorfia Kondili
- Department of Intensive Care Medicine, School of Medicine, University of Crete, 71003 Heraklion, Greece
| | - Dimitrios Georgopoulos
- Department of Intensive Care Medicine, School of Medicine, University of Crete, 71003 Heraklion, Greece
| | - Panos Trahanias
- Institute of Computer Science, Foundation for Research and Technology—Hellas (FORTH), 70013 Heraklion, Greece
- Department of Computer Science, University of Crete, 70013 Heraklion, Greece
| | - Katerina Vaporidi
- Department of Intensive Care Medicine, School of Medicine, University of Crete, 71003 Heraklion, Greece
- Correspondence:
| |
Collapse
|
43
|
Kneyber MCJ, Khemani RG, Bhalla A, Blokpoel RGT, Cruces P, Dahmer MK, Emeriaud G, Grunwell J, Ilia S, Katira BH, Lopez-Fernandez YM, Rajapreyar P, Sanchez-Pinto LN, Rimensberger PC. Understanding clinical and biological heterogeneity to advance precision medicine in paediatric acute respiratory distress syndrome. THE LANCET. RESPIRATORY MEDICINE 2023; 11:197-212. [PMID: 36566767 PMCID: PMC10880453 DOI: 10.1016/s2213-2600(22)00483-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 10/14/2022] [Accepted: 11/15/2022] [Indexed: 12/24/2022]
Abstract
Paediatric acute respiratory distress syndrome (PARDS) is a heterogeneous clinical syndrome that is associated with high rates of mortality and long-term morbidity. Factors that distinguish PARDS from adult acute respiratory distress syndrome (ARDS) include changes in developmental stage and lung maturation with age, precipitating factors, and comorbidities. No specific treatment is available for PARDS and management is largely supportive, but methods to identify patients who would benefit from specific ventilation strategies or ancillary treatments, such as prone positioning, are needed. Understanding of the clinical and biological heterogeneity of PARDS, and of differences in clinical features and clinical course, pathobiology, response to treatment, and outcomes between PARDS and adult ARDS, will be key to the development of novel preventive and therapeutic strategies and a precision medicine approach to care. Studies in which clinical, biomarker, and transcriptomic data, as well as informatics, are used to unpack the biological and phenotypic heterogeneity of PARDS, and implementation of methods to better identify patients with PARDS, including methods to rapidly identify subphenotypes and endotypes at the point of care, will drive progress on the path to precision medicine.
Collapse
Affiliation(s)
- Martin C J Kneyber
- Department of Paediatrics, Division of Paediatric Critical Care Medicine, Beatrix Children's Hospital, University Medical Center Groningen, University of Groningen, Groningen, Netherlands; Critical Care, Anaesthesiology, Peri-operative and Emergency Medicine, University of Groningen, Groningen, Netherlands.
| | - Robinder G Khemani
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital Los Angeles, Los Angeles, CA, USA; Department of Paediatrics, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Anoopindar Bhalla
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital Los Angeles, Los Angeles, CA, USA; Department of Paediatrics, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Robert G T Blokpoel
- Department of Paediatrics, Division of Paediatric Critical Care Medicine, Beatrix Children's Hospital, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Pablo Cruces
- Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Mary K Dahmer
- Department of Pediatrics, Division of Critical Care, University of Michigan, Ann Arbor, MI, USA
| | - Guillaume Emeriaud
- Department of Pediatrics, CHU Sainte Justine, Université de Montréal, Montreal, QC, Canada
| | - Jocelyn Grunwell
- Department of Pediatrics, Division of Critical Care, Emory University, Atlanta, GA, USA
| | - Stavroula Ilia
- Pediatric Intensive Care Unit, University Hospital, School of Medicine, University of Crete, Heraklion, Crete, Greece
| | - Bhushan H Katira
- Department of Pediatrics, Division of Critical Care Medicine, Washington University in St Louis, St Louis, MO, USA
| | - Yolanda M Lopez-Fernandez
- Pediatric Intensive Care Unit, Department of Pediatrics, Cruces University Hospital, Biocruces-Bizkaia Health Research Institute, Bizkaia, Spain
| | - Prakadeshwari Rajapreyar
- Department of Pediatrics (Critical Care), Medical College of Wisconsin and Children's Wisconsin, Milwaukee, WI, USA
| | - L Nelson Sanchez-Pinto
- Department of Pediatrics (Critical Care), Northwestern University Feinberg School of Medicine and Ann & Robert H Lurie Children's Hospital of Chicago, Chicago, IL, USA
| | - Peter C Rimensberger
- Division of Neonatology and Paediatric Intensive Care, Department of Paediatrics, University Hospital of Geneva, University of Geneva, Geneva, Switzerland
| |
Collapse
|
44
|
Hatozaki C, Sakuramoto H, Ouchi A, Shimojo N, Inoue Y. Early Light Sedation Increased the Duration of Mechanical Ventilation in Patients With Severe Lung Injury. SAGE Open Nurs 2023; 9:23779608231206761. [PMID: 37860159 PMCID: PMC10583523 DOI: 10.1177/23779608231206761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 09/19/2023] [Accepted: 09/23/2023] [Indexed: 10/21/2023] Open
Abstract
Introduction The international guidelines recommend light sedation management for patients receiving mechanical ventilation. One of the benefits of light sedation management during mechanical ventilation is the preservation of spontaneous breathing, which leads to improved gas-exchange and patient outcomes. Conversely, recent experimental animal studies have suggested that strong spontaneous breathing effort may cause worsening of lung injury, especially in severe lung injury cases. The association between depth of sedation and patient outcomes may depend on the severity of lung injury. Objective This study aimed to describe the patients' clinical outcomes under deep or light sedation during the first 48 h of mechanical ventilation and investigate the association of light sedation on patient outcomes for each severity of lung injury. Methods The researchers performed a retrospective observational study at a university hospital in Japan. Patients aged ≥20 years, who received mechanical ventilation for at least 48 h were enrolled. Results A total of 413 patient cases were analyzed. Light sedation was associated with significantly shorter 28-day ventilator-free days compared with deep sedation in patients with severe lung injury (0 [IQR 0-5] days vs. 16 [0-19] days, P = .038). In the groups of patients with moderate and mild lung injury, the sedation depth was not associated with ventilator-free days. After adjusting for the positive end-expiratory pressure and APACHE II score, it was found that light sedation decreased the number of ventilator-free days in patients with severe lung injury (-10.8 days, 95% CI -19.2 to -2.5, P = .012). Conclusion Early light sedation for severe lung injury may be associated with fewer ventilator-free days.
Collapse
Affiliation(s)
- Chie Hatozaki
- Intensive Care Unit, University of Tsukuba Hospital, Tsukuba, Ibaraki, Japan
| | - Hideaki Sakuramoto
- Department of Critical care and Disaster Nursing, Japanese Red Cross Kyushu International College of Nursing, Munakata, Fukuoka, Japan
| | - Akira Ouchi
- Department of Adult Health Nursing, College of Nursing, Ibaraki Christian University, Hitachi, Ibaraki, Japan
| | - Nobutake Shimojo
- Faculty of Medicine, Department of Emergency and Critical Care Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Yoshiaki Inoue
- Faculty of Medicine, Department of Emergency and Critical Care Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| |
Collapse
|
45
|
Takane R, Nakajima M, Miwa M, Kaszynski RH, Nakano T, Goto H, Takeuchi M. Breath-by-breath P0.1 measured on quasi-occlusion via Hamilton C6 may result in underestimation of respiratory drive and inspiratory effort. Crit Care 2022; 26:403. [PMID: 36567319 PMCID: PMC9790810 DOI: 10.1186/s13054-022-04286-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 12/17/2022] [Indexed: 12/27/2022] Open
Abstract
We aimed to identify the threshold for P0.1 in a breath-by-breath manner measured by the Hamilton C6 on quasi-occlusion for high respiratory drive and inspiratory effort. In this prospective observational study, we analyzed the relationships between airway P0.1 on quasi-occlusion and esophageal pressure (esophageal P0.1 and esophageal pressure swing). We also conducted a linear regression analysis and derived the threshold of airway P0.1 on quasi-occlusion for high respiratory drive and inspiratory effort. We found that airway P0.1 measured on quasi-occlusion had a strong positive correlation with esophageal P0.1 measured on quasi-occlusion and esophageal pressure swing, respectively. Additionally, the P0.1 threshold for high respiratory drive and inspiratory effort were calculated at approximately 1.0 cmH2O from the regression equations. Our calculations suggest a lower threshold of airway P0.1 measured by the Hamilton C6 on quasi-occlusion than that which has been previously reported.
Collapse
Affiliation(s)
- Ryo Takane
- grid.417093.80000 0000 9912 5284Emergency and Critical Care Center, Tokyo Metropolitan Hiroo Hospital, 2−34−10, Ebisu, Shibuya-Ku, Tokyo, 150-0013 Japan
| | - Mikio Nakajima
- grid.417093.80000 0000 9912 5284Emergency and Critical Care Center, Tokyo Metropolitan Hiroo Hospital, 2−34−10, Ebisu, Shibuya-Ku, Tokyo, 150-0013 Japan
| | - Maki Miwa
- grid.417093.80000 0000 9912 5284Emergency and Critical Care Center, Tokyo Metropolitan Hiroo Hospital, 2−34−10, Ebisu, Shibuya-Ku, Tokyo, 150-0013 Japan
| | - Richard H. Kaszynski
- grid.417093.80000 0000 9912 5284Emergency and Critical Care Center, Tokyo Metropolitan Hiroo Hospital, 2−34−10, Ebisu, Shibuya-Ku, Tokyo, 150-0013 Japan
| | - Tomotsugu Nakano
- grid.417093.80000 0000 9912 5284Emergency and Critical Care Center, Tokyo Metropolitan Hiroo Hospital, 2−34−10, Ebisu, Shibuya-Ku, Tokyo, 150-0013 Japan
| | - Hideaki Goto
- grid.417093.80000 0000 9912 5284Emergency and Critical Care Center, Tokyo Metropolitan Hiroo Hospital, 2−34−10, Ebisu, Shibuya-Ku, Tokyo, 150-0013 Japan
| | - Muneyuki Takeuchi
- grid.416629.e0000 0004 0377 2137Department of Intensive Care Medicine, Osaka Women’s and Children’s Hospital, Osaka, Japan
| |
Collapse
|
46
|
Su R, Zhou J, Zhu N, Chen X, Zhou JX, Li HL. Efficacy and safety of remifentanil dose titration to correct the spontaneous hyperventilation in aneurysmal subarachnoid haemorrhage: protocol and statistical analysis for a prospective physiological study. BMJ Open 2022; 12:e064064. [PMID: 36351728 PMCID: PMC9664281 DOI: 10.1136/bmjopen-2022-064064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
INTRODUCTION Spontaneous hyperventilation (SHV) is common in aneurysmal subarachnoid haemorrhage (aSAH). The reduction in arterial partial pressure of carbon dioxide (PaCO2) may change the brain physiology, such as haemodynamics, oxygenation, metabolism and may lead to secondary brain injury. However, how to correct SHV safely and effectively in patients with aSAH has not been well investigated. The aim of this study is to investigate the efficacy and safety of remifentanil dose titration to correct hyperventilation in aSAH, as well as the effect of changes in PaCO2 on cerebral blood flow (CBF). METHODS AND ANALYSIS This study is a prospective, single-centre, physiological study in patients with aSAH. The patients who were mechanically ventilated and who meet with SHV (tachypnoea combined with PaCO2 <35 mm Hg and pH >7.45) will be enrolled. The remifentanil will be titrated to correct the SHV. The predetermined initial dose of remifentanil is 0.02 μg/kg/min and will be maintained for 30 min, and PaCO2 and CBF will be measured. After that, the dose of remifentanil will be sequentially increased to 0.04, 0.06, and 0.08 μg/kg/min, and the measurements for PaCO2 and CBF will be repeated 30 min after each dose adjustment and will be compared with their baseline values. ETHICS AND DISSEMINATION This study has been approved by the Institutional Review Board of Beijing Tiantan Hospital, Capital Medical University (KY 2021-006-02) and has been registered at ClinicalTrials.gov. The results of this study will be disseminated through peer-reviewed publications and conference presentations. TRIAL REGISTRATION NUMBER NCT04940273.
Collapse
Affiliation(s)
- Rui Su
- Capital Medical University, Department of Critical Care Medicine, Beijing Tiantan Hospital, Beijing, Beijing, China
| | - Jianfang Zhou
- Capital Medical University, Department of Critical Care Medicine, Beijing Tiantan Hospital, Beijing, Beijing, China
| | - Ning Zhu
- Capital Medical University, Department of Critical Care Medicine, Beijing Tiantan Hospital, Beijing, Beijing, China
| | - Xiaolin Chen
- Capital Medical University, Department of Neurosurgery, Beijing Tiantan Hospital, Beijing, Beijing, China
| | - Jian-Xin Zhou
- Capital Medical University, Department of Critical Care Medicine, Beijing Tiantan Hospital, Beijing, Beijing, China
- Capital Medical University, Department of Critical Care Medicine, Beijing Shijitan Hospital, Beijing, Beijing, China
| | - Hong-Liang Li
- Capital Medical University, Department of Critical Care Medicine, Beijing Tiantan Hospital, Beijing, Beijing, China
| |
Collapse
|
47
|
Cesarano M, Grieco DL, Michi T, Munshi L, Menga LS, Delle Cese L, Ruggiero E, Rosà T, Natalini D, Sklar MC, Cutuli SL, Bongiovanni F, De Pascale G, Ferreyro BL, Goligher EC, Antonelli M. Helmet noninvasive support for acute hypoxemic respiratory failure: rationale, mechanism of action and bedside application. Ann Intensive Care 2022; 12:94. [PMID: 36241926 PMCID: PMC9568634 DOI: 10.1186/s13613-022-01069-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 09/29/2022] [Indexed: 11/23/2022] Open
Abstract
Introduction Helmet noninvasive support may provide advantages over other noninvasive oxygenation strategies in the management of acute hypoxemic respiratory failure. In this narrative review based on a systematic search of the literature, we summarize the rationale, mechanism of action and technicalities for helmet support in hypoxemic patients. Main results In hypoxemic patients, helmet can facilitate noninvasive application of continuous positive-airway pressure or pressure-support ventilation via a hood interface that seals at the neck and is secured by straps under the arms. Helmet use requires specific settings. Continuous positive-airway pressure is delivered through a high-flow generator or a Venturi system connected to the inspiratory port of the interface, and a positive end-expiratory pressure valve place at the expiratory port of the helmet; alternatively, pressure-support ventilation is delivered by connecting the helmet to a mechanical ventilator through a bi-tube circuit. The helmet interface allows continuous treatments with high positive end-expiratory pressure with good patient comfort. Preliminary data suggest that helmet noninvasive ventilation (NIV) may provide physiological benefits compared to other noninvasive oxygenation strategies (conventional oxygen, facemask NIV, high-flow nasal oxygen) in non-hypercapnic patients with moderate-to-severe hypoxemia (PaO2/FiO2 ≤ 200 mmHg), possibly because higher positive end-expiratory pressure (10–15 cmH2O) can be applied for prolonged periods with good tolerability. This improves oxygenation, limits ventilator inhomogeneities, and may attenuate the potential harm of lung and diaphragm injury caused by vigorous inspiratory effort. The potential superiority of helmet support for reducing the risk of intubation has been hypothesized in small, pilot randomized trials and in a network metanalysis. Conclusions Helmet noninvasive support represents a promising tool for the initial management of patients with severe hypoxemic respiratory failure. Currently, the lack of confidence with this and technique and the absence of conclusive data regarding its efficacy render helmet use limited to specific settings, with expert and trained personnel. As per other noninvasive oxygenation strategies, careful clinical and physiological monitoring during the treatment is essential to early identify treatment failure and avoid delays in intubation.
Collapse
Affiliation(s)
- Melania Cesarano
- Department of Emergency, Intensive Care Medicine and Anesthesia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.,Istituto Di Anestesiologia E Rianimazione, Università Cattolica del Sacro Cuore Rome, Fondazione 'Policlinico Universitario A. Gemelli' IRCCS, L.go F. Vito, 00168, Rome, Italy
| | - Domenico Luca Grieco
- Department of Emergency, Intensive Care Medicine and Anesthesia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy. .,Istituto Di Anestesiologia E Rianimazione, Università Cattolica del Sacro Cuore Rome, Fondazione 'Policlinico Universitario A. Gemelli' IRCCS, L.go F. Vito, 00168, Rome, Italy.
| | - Teresa Michi
- Department of Emergency, Intensive Care Medicine and Anesthesia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.,Istituto Di Anestesiologia E Rianimazione, Università Cattolica del Sacro Cuore Rome, Fondazione 'Policlinico Universitario A. Gemelli' IRCCS, L.go F. Vito, 00168, Rome, Italy
| | - Laveena Munshi
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Canada.,Department of Medicine, Division of Respirology, University Health Network/Sinai Health System, Toronto, Canada
| | - Luca S Menga
- Department of Emergency, Intensive Care Medicine and Anesthesia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.,Istituto Di Anestesiologia E Rianimazione, Università Cattolica del Sacro Cuore Rome, Fondazione 'Policlinico Universitario A. Gemelli' IRCCS, L.go F. Vito, 00168, Rome, Italy
| | - Luca Delle Cese
- Department of Emergency, Intensive Care Medicine and Anesthesia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.,Istituto Di Anestesiologia E Rianimazione, Università Cattolica del Sacro Cuore Rome, Fondazione 'Policlinico Universitario A. Gemelli' IRCCS, L.go F. Vito, 00168, Rome, Italy
| | - Ersilia Ruggiero
- Department of Emergency, Intensive Care Medicine and Anesthesia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.,Istituto Di Anestesiologia E Rianimazione, Università Cattolica del Sacro Cuore Rome, Fondazione 'Policlinico Universitario A. Gemelli' IRCCS, L.go F. Vito, 00168, Rome, Italy
| | - Tommaso Rosà
- Department of Emergency, Intensive Care Medicine and Anesthesia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.,Istituto Di Anestesiologia E Rianimazione, Università Cattolica del Sacro Cuore Rome, Fondazione 'Policlinico Universitario A. Gemelli' IRCCS, L.go F. Vito, 00168, Rome, Italy
| | - Daniele Natalini
- Department of Emergency, Intensive Care Medicine and Anesthesia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.,Istituto Di Anestesiologia E Rianimazione, Università Cattolica del Sacro Cuore Rome, Fondazione 'Policlinico Universitario A. Gemelli' IRCCS, L.go F. Vito, 00168, Rome, Italy
| | - Michael C Sklar
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Canada.,Department of Medicine, Division of Respirology, University Health Network/Sinai Health System, Toronto, Canada
| | - Salvatore L Cutuli
- Department of Emergency, Intensive Care Medicine and Anesthesia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.,Istituto Di Anestesiologia E Rianimazione, Università Cattolica del Sacro Cuore Rome, Fondazione 'Policlinico Universitario A. Gemelli' IRCCS, L.go F. Vito, 00168, Rome, Italy
| | - Filippo Bongiovanni
- Department of Emergency, Intensive Care Medicine and Anesthesia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.,Istituto Di Anestesiologia E Rianimazione, Università Cattolica del Sacro Cuore Rome, Fondazione 'Policlinico Universitario A. Gemelli' IRCCS, L.go F. Vito, 00168, Rome, Italy
| | - Gennaro De Pascale
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Canada.,Department of Medicine, Division of Respirology, University Health Network/Sinai Health System, Toronto, Canada
| | - Bruno L Ferreyro
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Canada.,Department of Medicine, Division of Respirology, University Health Network/Sinai Health System, Toronto, Canada
| | - Ewan C Goligher
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Canada.,Department of Medicine, Division of Respirology, University Health Network/Sinai Health System, Toronto, Canada
| | - Massimo Antonelli
- Department of Emergency, Intensive Care Medicine and Anesthesia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.,Istituto Di Anestesiologia E Rianimazione, Università Cattolica del Sacro Cuore Rome, Fondazione 'Policlinico Universitario A. Gemelli' IRCCS, L.go F. Vito, 00168, Rome, Italy
| |
Collapse
|
48
|
Pettenuzzo T, Sella N, Zarantonello F, De Cassai A, Geraldini F, Persona P, Pistollato E, Boscolo A, Navalesi P. How to recognize patients at risk of self-inflicted lung injury. Expert Rev Respir Med 2022; 16:963-971. [PMID: 36154791 DOI: 10.1080/17476348.2022.2128335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Patient self-inflicted lung injury (P-SILI) has been proposed as a form of lung injury caused by strong inspiratory efforts consequent to a high respiratory drive in patients with hypoxemic acute respiratory failure (hARF). Increased respiratory drive and effort may lead to variable combinations of deleterious phenomena, such as excessive transpulmonary pressure, pendelluft, intra-tidal recruitment, local lung volutrauma, and pulmonary edema. Gas exchange and respiratory mechanics derangements further increase respiratory drive and effort, thus inducing a vicious circle. Forms of partial ventilatory support may further add to the detrimental effects of P-SILI. Since P-SILI may worsen patient outcome, strategies aimed at identifying and preventing P-SILI would be of great importance. AREAS COVERED We systematically searched Pubmed since inception until 15 April 2022 to review the patho-physiological mechanisms of P-SILI and the strategies to identify those patients at risk of P-SILI. EXPERT OPINION Although the concept of P-SILI has been increasingly supported by experimental and clinical data, no study has insofar demonstrated the efficacy of any strategy to identify it in the clinical setting. Further research is thus needed to ascertain the detrimental effects of spontaneous breathing and identify patients with hARF at high risk of developing P-SILI.
Collapse
Affiliation(s)
- Tommaso Pettenuzzo
- Department of Surgery, Institute of Anesthesiology and Intensive Care, Padua University Hospital, Padua, Italy
| | - Nicolò Sella
- Department of Surgery, Institute of Anesthesiology and Intensive Care, Padua University Hospital, Padua, Italy
| | - Francesco Zarantonello
- Department of Surgery, Institute of Anesthesiology and Intensive Care, Padua University Hospital, Padua, Italy
| | - Alessandro De Cassai
- Department of Surgery, Institute of Anesthesiology and Intensive Care, Padua University Hospital, Padua, Italy
| | - Federico Geraldini
- Department of Surgery, Institute of Anesthesiology and Intensive Care, Padua University Hospital, Padua, Italy
| | - Paolo Persona
- Department of Surgery, Institute of Anesthesiology and Intensive Care, Padua University Hospital, Padua, Italy
| | - Elisa Pistollato
- Department of Surgery, Institute of Anesthesiology and Intensive Care, Padua University Hospital, Padua, Italy.,Department of Medicine, University of Padua, Padua, Italy
| | - Annalisa Boscolo
- Department of Surgery, Institute of Anesthesiology and Intensive Care, Padua University Hospital, Padua, Italy
| | - Paolo Navalesi
- Department of Surgery, Institute of Anesthesiology and Intensive Care, Padua University Hospital, Padua, Italy.,Department of Medicine, University of Padua, Padua, Italy
| |
Collapse
|
49
|
Miao MY, Chen W, Zhou YM, Gao R, Song DJ, Wang SP, Yang YL, Zhang L, Zhou JX. Validation of the flow index to detect low inspiratory effort during pressure support ventilation. Ann Intensive Care 2022; 12:89. [PMID: 36161543 PMCID: PMC9510081 DOI: 10.1186/s13613-022-01063-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 09/15/2022] [Indexed: 11/10/2022] Open
Abstract
Background Bedside assessment of low levels of inspiratory effort, which are probably insufficient to prevent muscle atrophy, is challenging. The flow index, which is derived from the analysis of the inspiratory portion of the flow–time waveform, has been recently introduced as a non-invasive parameter to evaluate the inspiratory effort. The primary objective of the present study was to provide an external validation of the flow index to detect low inspiratory effort. Methods Datasets containing flow, airway pressure, and esophageal pressure (Pes)–time waveforms were obtained from a previously published study in 100 acute brain-injured patients undergoing pressure support ventilation. Waveforms data were analyzed offline. A low inspiratory effort was defined by one of the following criteria, work of breathing (WOB) less than 0.3 J/L, Pes–time product (PTPes) per minute less than 50 cmH2O•s/min, or inspiratory muscle pressure (Pmus) less than 5 cmH2O, adding “or occurrence of ineffective effort more than 10%” for all criteria. The flow index was calculated according to previously reported method. The association of flow index with Pes-derived parameters of effort was investigated. The diagnostic accuracy of the flow index to detect low effort was analyzed. Results Moderate correlations were found between flow index and WOB, Pmus, and PTPes per breath and per minute (Pearson’s correlation coefficients ranged from 0.546 to 0.634, P < 0.001). The incidence of low inspiratory effort was 62%, 51%, and 55% using the definition of WOB, PTPes per minute, and Pmus, respectively. The area under the receiver operating characteristic curve for flow index to diagnose low effort was 0.88, 0.81, and 0.88, for the three respective definition. By using the cutoff value of flow index less than 2.1, the diagnostic performance for the three definitions showed sensitivity of 0.95–0.96, specificity of 0.57–0.71, positive predictive value of 0.70–0.84, and negative predictive value of 0.90–0.93. Conclusions The flow index is associated with Pes-based inspiratory effort measurements. Flow index can be used as a valid instrument to screen low inspiratory effort with a high probability to exclude cases without the condition.
Collapse
Affiliation(s)
- Ming-Yue Miao
- Department of Critical Care Medicine, Beijing Tiantan Hospital, Capital Medical University, No. 119, South 4th Ring West Road, Fengtai District, Beijing, 100070, China
| | - Wei Chen
- Department of Critical Care Medicine, Beijing Tiantan Hospital, Capital Medical University, No. 119, South 4th Ring West Road, Fengtai District, Beijing, 100070, China
| | - Yi-Min Zhou
- Department of Critical Care Medicine, Beijing Tiantan Hospital, Capital Medical University, No. 119, South 4th Ring West Road, Fengtai District, Beijing, 100070, China.,Beijing Engineering Research Center of Digital Healthcare for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Ran Gao
- Department of Critical Care Medicine, Beijing Tiantan Hospital, Capital Medical University, No. 119, South 4th Ring West Road, Fengtai District, Beijing, 100070, China
| | - De-Jing Song
- Surgical Intensive Care Unit, China-Japan Friendship Hospital, Beijing, China
| | - Shu-Peng Wang
- Surgical Intensive Care Unit, China-Japan Friendship Hospital, Beijing, China
| | - Yan-Lin Yang
- Department of Critical Care Medicine, Beijing Tiantan Hospital, Capital Medical University, No. 119, South 4th Ring West Road, Fengtai District, Beijing, 100070, China.,Beijing Engineering Research Center of Digital Healthcare for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Linlin Zhang
- Department of Critical Care Medicine, Beijing Tiantan Hospital, Capital Medical University, No. 119, South 4th Ring West Road, Fengtai District, Beijing, 100070, China.,Beijing Engineering Research Center of Digital Healthcare for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jian-Xin Zhou
- Department of Critical Care Medicine, Beijing Tiantan Hospital, Capital Medical University, No. 119, South 4th Ring West Road, Fengtai District, Beijing, 100070, China. .,Department of Critical Care Medicine, Beijing Shijitan Hospital, Capital Medical University, No. 10, Tieyi Road Haidian District, Beijing, 100038, China. .,Beijing Engineering Research Center of Digital Healthcare for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
50
|
Advances in Ventilator Management for Patients with Acute Respiratory Distress Syndrome. Clin Chest Med 2022; 43:499-509. [PMID: 36116817 PMCID: PMC9477439 DOI: 10.1016/j.ccm.2022.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The ventilatory care of patients with acute respiratory distress syndrome (ARDS) is evolving as our understanding of physiologic mechanisms of respiratory failure improves. Despite several decades of research, the mortality rate for ARDS remains high. Over the years, we continue to expand strategies to identify and mitigate ventilator-induced lung injury. This now includes a greater understanding of the benefits and harms associated with spontaneous breathing.
Collapse
|