1
|
Bal C, Schiffers C, Breyer MK, Hartl S, Agusti A, Karimi A, Pohl W, Idzko M, Breyer-Kohansal R. Fractional exhaled nitric oxide in a respiratory healthy general population through the lifespan. Pulmonology 2025; 31:2442662. [PMID: 39760541 DOI: 10.1080/25310429.2024.2442662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 12/11/2024] [Indexed: 01/07/2025] Open
Abstract
INTRODUCTION AND OBJECTIVES The fractional exhaled fraction of nitric oxide (FeNO) is used in clinical practice for asthma diagnosis, phenotyping, and therapeutic management. Therefore, accurate thresholds are crucial. The normal FeNO values over lifespan in a respiratory healthy population and the factors related to them remain unclear. MATERIALS AND METHODS We determined FeNO levels in 2,251 respiratory healthy, non-atopic, and non-smoking participants from the Lung, hEart, sociAl, boDy (LEAD) cohort, a general population, observational cohort study of participants aged 6-82 years in Austria. RESULTS The median FeNO value in the total study population was 13.0 [interquartile range: 9.0, 20.0] ppb, increases with age, and, except in young participants (<18 years: 9.0 [7.0, 12.0], ≥18 years: 15.0 [11.0, 22.0]), it was significantly lower in females versus males. Multiple regression analyses showed that body height and blood eosinophil counts were associated with higher FeNO levels, both in children/adolescents and adults. In children/adolescents, FeNO values were positively associated with total IgE levels, FEV1/FVC ratio, and urban living. In adults, FeNO was positively associated with age and negatively associated with the presence of cardiovascular and ischaemic vascular disease. CONCLUSIONS We identified the normal FeNO ranges within a respiratory healthy population at different age ranges and associated factors. Collectively, they serve as a reference to frame FeNO values in clinical practice.
Collapse
Affiliation(s)
- Christina Bal
- Department of Pneumology, University Hospital Vienna AKH, Medical University of Vienna, Vienna, Austria
| | | | - Marie-Kathrin Breyer
- Ludwig Boltzmann Institute for Lung Health, Vienna, Austria
- Department of Respiratory and Pulmonary Diseases, Vienna Healthcare Group, Clinic Penzing, Vienna, Austria
| | - Sylvia Hartl
- Ludwig Boltzmann Institute for Lung Health, Vienna, Austria
- Department of Respiratory and Pulmonary Diseases, Vienna Healthcare Group, Clinic Penzing, Vienna, Austria
- Faculty for Medicine, Sigmund Freud University, Vienna, Austria
| | - Alvar Agusti
- Ludwig Boltzmann Institute for Lung Health, Vienna, Austria
- Faculty for Medicine, Sigmund Freud University, Vienna, Austria
- Cathedra Salud Respiratoria, Universitat de Barcelona, Barcelona, Spain
- Instituto Respiratoro of the Hospital Clínic de Barcelona, Barcelona, Spain
- IDIBAPS, Barcelona, Spain
- CIBER Enfermedades Respiratorias (CIBERES), Barcelona, Spain
| | - Ahmad Karimi
- Ludwig Boltzmann Institute for Lung Health, Vienna, Austria
- Faculty for Medicine, Sigmund Freud University, Vienna, Austria
| | - Wolfgang Pohl
- Department of Respiratory and Lung Diseases, Karl Landsteiner Institute for Experimental and Clinical Pneumology
| | - Marco Idzko
- Department of Pneumology, University Hospital Vienna AKH, Medical University of Vienna, Vienna, Austria
| | - Robab Breyer-Kohansal
- Ludwig Boltzmann Institute for Lung Health, Vienna, Austria
- Department of Respiratory and Pulmonary Diseases, Vienna Healthcare Group, Clinic Hietzing, Vienna, Austria
| |
Collapse
|
2
|
Dharmage SC, Faner R, Agustí A. Treatable traits in pre-COPD: Time to extend the treatable traits paradigm beyond established disease. Respirology 2024; 29:551-562. [PMID: 38862131 DOI: 10.1111/resp.14760] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 05/15/2024] [Indexed: 06/13/2024]
Abstract
To date, the treatable traits (TTs) approach has been applied in the context of managing diagnosed diseases. TTs are clinical characteristics and risk factors that can be identified clinically and/or biologically, and that merit treatment if present. There has been an exponential increase in the uptake of this approach by both researchers and clinicians. Realizing the potential of the TTs approach to pre-clinical disease, this expert review proposes that it is timely to consider acting on TTs present before a clinical diagnosis is made, which might help to prevent development of the full disease. Such an approach is ideal for diseases where there is a long pre-clinical phase, such as in chronic obstructive pulmonary disease (COPD). The term 'pre-COPD' has been recently proposed to identify patients with respiratory symptoms and/or structural or functional abnormalities without airflow limitation. They may eventually develop airflow limitation with time but patients with pre-COPD are likely to have traits that are already treatable. This review first outlines the contribution of recently generated knowledge into lifetime lung function trajectories and the conceptual framework of 'GETomics' to the field of pre-COPD. GETomics is a dynamic and cumulative model of interactions between genes and the environment throughout the lifetime that integrates information from multi-omics to understand aetiology and mechanisms of diseases. This review then discusses the current evidence on potential TTs in pre-COPD patients and makes recommendations for practice and future research. At a broader level, this review proposes that introducing the TTs in pre-COPD may help reenergize the preventive approaches to health and diseases.
Collapse
Affiliation(s)
- Shyamali C Dharmage
- Allergy and Lung Health Unit, Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Rosa Faner
- Universitat de Barcelona, Biomedicine Department. Immunology Unit, Barcelona, Spain
- Fundació Clinic per a la Recerca Biomedica (FCRB-IDIBAPS), Institut Investigacions Biomediques, Barcelona, Spain
- Consorcio Investigacion Biomedica en Red (CIBER) ENfermedades Respiratorias, Barcelona, Spain
| | - Alvar Agustí
- Fundació Clinic per a la Recerca Biomedica (FCRB-IDIBAPS), Institut Investigacions Biomediques, Barcelona, Spain
- Consorcio Investigacion Biomedica en Red (CIBER) ENfermedades Respiratorias, Barcelona, Spain
- Cathedra Salud Respiratoria, Department of Medicine, University of Barcelona, Barcelona, Spain
- Pulmonary Division, Respiratory Institute, Clinic Barcelona, Barcelona, Spain
| |
Collapse
|
3
|
Chatziparasidis G, Chatziparasidi MR, Kantar A, Bush A. Time-dependent gene-environment interactions are essential drivers of asthma initiation and persistence. Pediatr Pulmonol 2024; 59:1143-1152. [PMID: 38380964 DOI: 10.1002/ppul.26935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/27/2024] [Accepted: 02/12/2024] [Indexed: 02/22/2024]
Abstract
Asthma is a clinical syndrome caused by heterogeneous underlying mechanisms with some of them having a strong genetic component. It is known that up to 82% of atopic asthma has a genetic background with the rest being influenced by environmental factors that cause epigenetic modification(s) of gene expression. The interaction between the gene(s) and the environment has long been regarded as the most likely explanation of asthma initiation and persistence. Lately, much attention has been given to the time frame the interaction occurs since the host response (immune or biological) to environmental triggers, differs at different developmental ages. The integration of the time variant into asthma pathogenesis is appearing to be equally important as the gene(s)-environment interaction. It seems that, all three factors should be present to trigger the asthma initiation and persistence cascade. Herein, we introduce the importance of the time variant in asthma pathogenesis and emphasize the long-term clinical significance of the time-dependent gene-environment interactions in childhood.
Collapse
Affiliation(s)
- Grigorios Chatziparasidis
- Faculty of Nursing, University of Thessaly, Volos, Greece
- School of Physical Education, Sport Science & Dietetics, University of Thessaly, Volos, Greece
| | | | - Ahmad Kantar
- Pediatric Asthma and Cough Centre, Instituti Ospedalieri Bergamashi, Bergamo, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Andrew Bush
- Departments of Paediatrics and Paediatric Respiratory Medicine, Royal Brompton Harefield NHS Foundation Trust and Imperial College, London, UK
| |
Collapse
|
4
|
Vellvé K, Garcia-Canadilla P, Nogueira M, Youssef L, Arranz A, Nakaki A, Boada D, Blanco I, Faner R, Figueras F, Agustí À, Gratacós E, Crovetto F, Bijnens B, Crispi F. Pulmonary vascular reactivity in growth restricted fetuses using computational modelling and machine learning analysis of fetal Doppler waveforms. Sci Rep 2024; 14:5919. [PMID: 38467666 PMCID: PMC10928161 DOI: 10.1038/s41598-024-54603-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 02/14/2024] [Indexed: 03/13/2024] Open
Abstract
The aim of this study was to investigate the pulmonary vasculature in baseline conditions and after maternal hyperoxygenation in growth restricted fetuses (FGR). A prospective cohort study of singleton pregnancies including 97 FGR and 111 normally grown fetuses was carried out. Ultrasound Doppler of the pulmonary vessels was obtained at 24-37 weeks of gestation and data were acquired before and after oxygen administration. After, Machine Learning (ML) and a computational model were used on the Doppler waveforms to classify individuals and estimate pulmonary vascular resistance (PVR). Our results showed lower mean velocity time integral (VTI) in the main pulmonary and intrapulmonary arteries in baseline conditions in FGR individuals. Delta changes of the main pulmonary artery VTI and intrapulmonary artery pulsatility index before and after hyperoxygenation were significantly greater in FGR when compared with controls. Also, ML identified two clusters: A (including 66% controls and 34% FGR) with similar Doppler traces over time and B (including 33% controls and 67% FGR) with changes after hyperoxygenation. The computational model estimated the ratio of PVR before and after maternal hyperoxygenation which was closer to 1 in cluster A (cluster A 0.98 ± 0.33 vs cluster B 0.78 ± 0.28, p = 0.0156). Doppler ultrasound allows the detection of significant changes in pulmonary vasculature in most FGR at baseline, and distinct responses to hyperoxygenation. Future studies are warranted to assess its potential applicability in the clinical management of FGR.
Collapse
Affiliation(s)
- Kilian Vellvé
- BCNatal Fetal Medicine Research Center (Hospital Clínic and Hospital Sant Joan de Déu), University of Barcelona, Sabino Arana 1, 08028, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Patricia Garcia-Canadilla
- BCNatal Fetal Medicine Research Center (Hospital Clínic and Hospital Sant Joan de Déu), University of Barcelona, Sabino Arana 1, 08028, Barcelona, Spain
- Interdisciplinary Cardiovascular Research Group, Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain
| | - Mariana Nogueira
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Lina Youssef
- BCNatal Fetal Medicine Research Center (Hospital Clínic and Hospital Sant Joan de Déu), University of Barcelona, Sabino Arana 1, 08028, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Angela Arranz
- BCNatal Fetal Medicine Research Center (Hospital Clínic and Hospital Sant Joan de Déu), University of Barcelona, Sabino Arana 1, 08028, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Ayako Nakaki
- BCNatal Fetal Medicine Research Center (Hospital Clínic and Hospital Sant Joan de Déu), University of Barcelona, Sabino Arana 1, 08028, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - David Boada
- BCNatal Fetal Medicine Research Center (Hospital Clínic and Hospital Sant Joan de Déu), University of Barcelona, Sabino Arana 1, 08028, Barcelona, Spain
| | - Isabel Blanco
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Pneumology Department, Respiratory Institute, Hospital Clínic, University of Barcelona, Barcelona, Spain
- Centre for Biomedical Research on Respiratory Diseases (CIBER-ES), Madrid, Spain
| | - Rosa Faner
- Centre for Biomedical Research on Respiratory Diseases (CIBER-ES), Madrid, Spain
| | - Francesc Figueras
- BCNatal Fetal Medicine Research Center (Hospital Clínic and Hospital Sant Joan de Déu), University of Barcelona, Sabino Arana 1, 08028, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Àlvar Agustí
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Pneumology Department, Respiratory Institute, Hospital Clínic, University of Barcelona, Barcelona, Spain
- Centre for Biomedical Research on Respiratory Diseases (CIBER-ES), Madrid, Spain
- Cathedra Salud Respiratoria, University of Barcelona, Barcelona, Spain
| | - Eduard Gratacós
- BCNatal Fetal Medicine Research Center (Hospital Clínic and Hospital Sant Joan de Déu), University of Barcelona, Sabino Arana 1, 08028, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centre for Biomedical Research on Rare Diseases (CIBER-ER), Madrid, Spain
| | - Francesca Crovetto
- BCNatal Fetal Medicine Research Center (Hospital Clínic and Hospital Sant Joan de Déu), University of Barcelona, Sabino Arana 1, 08028, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centre for Biomedical Research on Rare Diseases (CIBER-ER), Madrid, Spain
| | | | - Fàtima Crispi
- BCNatal Fetal Medicine Research Center (Hospital Clínic and Hospital Sant Joan de Déu), University of Barcelona, Sabino Arana 1, 08028, Barcelona, Spain.
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.
- Centre for Biomedical Research on Rare Diseases (CIBER-ER), Madrid, Spain.
| |
Collapse
|
5
|
Papi A, Faner R, Pavord I, Baraldi F, McDonald VM, Thomas M, Miravitlles M, Roche N, Agustí A. From treatable traits to GETomics in airway disease: moving towards clinical practice. Eur Respir Rev 2024; 33:230143. [PMID: 38232989 DOI: 10.1183/16000617.0143-2023] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 10/24/2023] [Indexed: 01/19/2024] Open
Abstract
The treatable traits approach represents a strategy for patient management. It is based on the identification of characteristics susceptible to treatments or predictive of treatment response in each individual patient. With the objective of accelerating progress in research and clinical practice relating to such a treatable traits approach, the Portraits event was convened in Barcelona, Spain, in November 2022. Here, while reporting the key concepts that emerged from the discussions during the meeting, we review the current state of the art related to treatable traits and chronic respiratory diseases management, and we describe the possible actions that clinicians can take in clinical practice to implement the treatable traits framework. Furthermore, we explore the new concept of GETomics and the new models of research in the field of COPD.
Collapse
Affiliation(s)
- Alberto Papi
- Respiratory Medicine, University of Ferrara, Ferrara, Italy
| | - Rosa Faner
- University of Barcelona, Biomedicine Department, FCRB-IDIBAPS, Centro de Investigación Biomedica en Red M.P. (CIBER), Barcelona, Spain
| | - Ian Pavord
- Respiratory Medicine Unit, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | | | - Vanessa M McDonald
- School of Nursing and Midwifery, The University of Newcastle, NHMRC Centre of Excellence in Asthma Treatable Traits, Hunter Medical Research Institute Asthma and Breathing Research Programme and Department of Respiratory and Sleep Medicine, John Hunter Hospital, Newcastle, Australia
| | - Mike Thomas
- Primary Care and Population Sciences, University of Southampton, Southampton, UK
| | - Marc Miravitlles
- Pneumology Department Hospital Universitari Vall d'Hebron, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Nicholas Roche
- Respiratory Medicine Department, Hôpitaux Universitaires Paris Centre, Hôpital Cochin, AP-HP and Université Paris Cité, Paris, France
| | - Alvar Agustí
- University of Barcelona, Hospital Clinic, IDIBAPS and CIBERES, Barcelona, Spain
- Pulmonary Service, Respiratory Institute, Clinic Barcelona, Barcelona, Spain
| |
Collapse
|
6
|
Carsin AE, Garcia-Aymerich J, Accordini S, Dharmage S, Leynaert B, de Las Heras M, Casas L, Caviezel S, Demoly P, Forsberg B, Gislason T, Corsico AG, Janson C, Jogi R, Martínez-Moratalla J, Nowak D, Gómez LP, Pin I, Probst-Hensch N, Raherison-Semjen C, Squillacioti G, Svanes C, Torén K, Urrutia I, Huerta I, Anto JM, Jarvis D, Guerra S. Spirometric patterns in young and middle-aged adults: a 20-year European study. Thorax 2024; 79:153-162. [PMID: 37758456 DOI: 10.1136/thorax-2022-219696] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 07/19/2023] [Indexed: 10/03/2023]
Abstract
BACKGROUND Understanding the natural history of abnormal spirometric patterns at different stages of life is critical to identify and optimise preventive strategies. We aimed to describe characteristics and risk factors of restrictive and obstructive spirometric patterns occurring before 40 years (young onset) and between 40 and 61 years (mid-adult onset). METHODS We used data from the population-based cohort of the European Community Respiratory Health Survey (ECRHS). Prebronchodilator forced expiratory volume in one second (FEV1) and forced vital capacity (FVC) were assessed longitudinally at baseline (ECRHS1, 1993-1994) and again 20 years later (ECRHS3, 2010-2013). Spirometry patterns were defined as: restrictive if FEV1/FVC≥LLN and FVC<10th percentile, obstructive if FEV1/FVC RESULTS Among 3502 participants (mean age=30.4 (SD 5.4) at ECRHS1, 50.4 (SD 5.4) at ECRHS3), 2293 (65%) had a normal, 371 (11%) a young restrictive, 301 (9%) a young obstructive, 187 (5%) a mid-adult onset restrictive and 350 (10%) a mid-adult onset obstructive spirometric pattern. Being lean/underweight in childhood and young adult life was associated with the occurrence of the young spirometric restrictive pattern (relative risk ratio (RRR)=1.61 95% CI=1.21 to 2.14, and RRR=2.43 95% CI=1.80 to 3.29; respectively), so were respiratory infections before 5 years (RRR=1.48, 95% CI=1.05 to 2.08). The main determinants for young obstructive, mid-adult restrictive and mid-adult obstructive patterns were asthma, obesity and smoking, respectively. CONCLUSION Spirometric patterns with onset in young and mid-adult life were associated with distinct characteristics and risk factors.
Collapse
Affiliation(s)
- Anne-Elie Carsin
- ISGlobal, Campus mar, Barcelona, Catalunya, Spain
- Universita Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Spain, Spain
- Biometrics, RTI-Health Solutions, Barcelona, Spain
| | - Judith Garcia-Aymerich
- ISGlobal, Campus mar, Barcelona, Catalunya, Spain
- Universita Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Spain, Spain
| | - Simone Accordini
- Unit of Epidemiology and Medical Statistics, Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Shyamali Dharmage
- Allergy and Lung Health Unit, School of Population and Global Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Bénédicte Leynaert
- Université Paris-Saclay, UVSQ, Univ Paris-Sud, Inserm, INSERM, Paris, France
| | - Marti de Las Heras
- ISGlobal, Campus mar, Barcelona, Catalunya, Spain
- Universita Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Spain, Spain
| | - Lidia Casas
- Social Epidemiology and Health Policy, Department of Family Medicine and Population Health, University of Antwerp, Antwerpen, Belgium
- Institute for Environment and Sustainable Development (IMDO), University of Antwerp, Antwerpen, Belgium
| | - Seraina Caviezel
- Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Basel, Switzerland
| | - Pascal Demoly
- Département de Pneumologie et Addictologie, University Hospital of Montpellier, Montpellier, France
- IDESP, University of Montpellier - Inserm UMR UA11, Montpellier, France
| | - Bertil Forsberg
- Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | - Thorarinn Gislason
- Department of Sleep, Landspitali University Hospital, Reykjavik, Iceland
- Medical Faculty, University of Iceland, Iceland, Iceland
| | - Angelo Guido Corsico
- Department of Internal Medicine and Therapeutics, University of Pavia, Italy, Italy
- Division of Respiratory Diseases, Fondazione IRCCS Policlinico San Matteo-University of Pavia, Pavia, Italy
| | - Christer Janson
- Department of Medical Sciences, Respiratory, Allergy and Sleep Research, Uppsala University, Uppsala, Sweden
| | - Rain Jogi
- Lung Clinic, Tartu University Hospital, Tartu, Estonia
| | | | - Dennis Nowak
- Institute and Clinic for Occupational and Environmental Medicine, University Hospital, LMU Munich, Comprehensive Pneumology Centre Munich, member DZL, German Centre for Lung Research, Munich, Germany
| | | | - Isabelle Pin
- Department of Pediatrics, CHU de Grenoble Alpes, Grenoble, France
- Inserm, UMR 1209, Institute for Advanced Biosciences, Grenoble, France
| | - Nicole Probst-Hensch
- Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Basel, Switzerland
| | | | - Giulia Squillacioti
- Department of Public Health and Pediatrics, University of Turin, Torino, Piemonte, Italy
| | - Cecilie Svanes
- Centre for International Health, Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway
- Department of Occupational Medicine, Haukeland University Hospital, Bergen, Norway
| | - Kjell Torén
- Department of Occupational and Environmental, School of Public Health and Community Medicine, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
- Department of Occupational and Environmental Medicine, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Isabel Urrutia
- Pulmonology Department, Galdakao Hospital, Biocruces Bizkaia, Spain
| | - Ismael Huerta
- Epidemiological Surveillance Section, Directorate General of Public Health, Oviedo, Spain
| | - Josep Maria Anto
- ISGlobal, Campus mar, Barcelona, Catalunya, Spain
- Universita Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Spain, Spain
| | - Debbie Jarvis
- National Heart and Lung Institute, Imperial College, London, UK
| | - Stefano Guerra
- ISGlobal, Campus mar, Barcelona, Catalunya, Spain
- Asthma and Airway Disease Research Center, University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
7
|
Agustí A, Hughes R, Rapsomaki E, Make B, del Olmo R, Papi A, Price D, Benton L, Franzen S, Vestbo J, Mullerova H. The many faces of COPD in real life: a longitudinal analysis of the NOVELTY cohort. ERJ Open Res 2024; 10:00895-2023. [PMID: 38348246 PMCID: PMC10860203 DOI: 10.1183/23120541.00895-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 11/23/2023] [Indexed: 02/15/2024] Open
Abstract
Background The diagnosis of COPD requires the demonstration of non-fully reversible airflow limitation by spirometry in the appropriate clinical context. Yet, there are patients with symptoms and relevant exposures suggestive of COPD with either normal spirometry (pre-COPD) or preserved ratio but impaired spirometry (PRISm). Their prevalence, clinical characteristics and associated outcomes in a real-life setting are unclear. Methods To investigate them, we studied 3183 patients diagnosed with COPD by their attending physician included in the NOVELTY study (clinicaltrials.gov identifier NCT02760329), a global, 3-year, observational, real-life cohort that included patients recruited from both primary and specialist care clinics in 18 countries. Results We found that 1) approximately a quarter of patients diagnosed with (and treated for) COPD in real life did not fulfil the spirometric diagnostic criteria recommended by the Global Initiative for Chronic Obstructive Lung Disease (GOLD), and could be instead categorised as pre-COPD (13%) or PRISm (14%); 2) disease burden (symptoms and exacerbations) was highest in GOLD 3-4 patients (exacerbations per person-year (PPY) 0.82) and lower but similar in those in GOLD 1-2, pre-COPD and PRISm (exacerbations range 0.27-0.43 PPY); 3) lung function decline was highest in pre-COPD and GOLD 1-2, and much less pronounced in PRISm and GOLD 3-4; 4) PRISm and pre-COPD were not stable diagnostic categories and change substantially over time; and 5) all-cause mortality was highest in GOLD 3-4, lowest in pre-COPD, and intermediate and similar in GOLD 1-2 and PRISm. Conclusions Patients diagnosed COPD in a real-life clinical setting present great diversity in symptom burden, progression and survival, warranting medical attention.
Collapse
Affiliation(s)
- Alvar Agustí
- University of Barcelona, Respiratory Institute – Clinic Barcelona, IDIBAPS, and CIBERES, Barcelona, Spain
- These authors contributed equally
| | - Rod Hughes
- Research and Early Development, Respiratory and Immunology, AstraZeneca, Cambridge, UK
- These authors contributed equally
| | - Eleni Rapsomaki
- Research and Early Development, Respiratory and Immunology, AstraZeneca, Cambridge, UK
| | - Barry Make
- National Jewish Health and University of Colorado Denver, Denver, CO, USA
| | - Ricardo del Olmo
- Diagnostic and Treatment Department, Hospital de Rehabilitaciόn Respiratoria “Maria Ferrer” and IDIM CR, Buenos Aires, Argentina
| | - Alberto Papi
- University of Ferrara, Department of Translation Medicine, Ferrara, Italy
| | - David Price
- Observational and Pragmatic Research Institute, Singapore and Centre of Academic Primary Care, Division of Applied Health Sciences, University of Aberdeen, Aberdeen, UK
| | - Laura Benton
- Research and Early Development, Respiratory and Immunology, AstraZeneca, Cambridge, UK
| | - Stefan Franzen
- Research and Early Development, Respiratory and Immunology, AstraZeneca, Cambridge, UK
| | - Jørgen Vestbo
- University of Manchester and Manchester University NHS Foundation Trust, Manchester, UK
| | - Hana Mullerova
- Research and Early Development, Respiratory and Immunology, AstraZeneca, Cambridge, UK
| |
Collapse
|
8
|
Xing Z, Yang T, Shi S, Meng X, Chai D, Liu W, Tong Y, Wang Y, Ma Y, Pan M, Cui J, Long H, Sun T, Chen R, Guo Y. Combined effect of ozone and household air pollution on COPD in people aged less than 50 years old. Thorax 2023; 79:35-42. [PMID: 37852778 PMCID: PMC10804043 DOI: 10.1136/thorax-2022-219691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 09/14/2023] [Indexed: 10/20/2023]
Abstract
OBJECTIVES Air pollution has been suggested as an important risk factor for chronic obstructive pulmonary disease (COPD); however, evidence of interactive effects on COPD between different factors was sparse, especially for young adults. We aimed to assess the combined effects of ambient ozone (O3) and household air pollution on COPD in young individuals. METHODS We conducted a population-based study of residents aged 15-50 years in the low-income and middle-income regions of western China. We used multivariable logistic regression models to examine the associations between long-term ozone exposure and COPD in young individuals. RESULTS A total of 6537 young cases were identified among the participants, with a COPD prevalence rate of 7.8 (95% CI 7.2% to 8.5%), and most young COPD individuals were asymptomatic. Exposure to household air pollution was associated with COPD in young patients after adjustment for other confounding factors (OR 1.82, 95% CI 1.41 to 2.37). We also found positive associations of COPD with O3 per IQR increase of 20 ppb (OR 1.92, 95% CI 1.59 to 2.32). The individual effects of household air pollution and O3 were 1.68 (95% CI 1.18 to 2.46) and 1.55 (95% CI 0.99 to 2.43), respectively, while their joint effect was 3.28 (95% CI 2.35 to 4.69) with the relative excess risk due to interaction of 1.05 (95% CI 0.33 to 1.78). CONCLUSIONS This study concludes that exposure to ambient O3 and household air pollution might be important risk factors for COPD among young adults, and simultaneous exposure to high levels of the two pollutants may intensify their individual effects.
Collapse
Affiliation(s)
- Zhenzhen Xing
- Department of Respiratory and Critical Care Medicine, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
- Peking University Fifth School of Clinical Medicine, Peking University, Beijing, China
| | - Ting Yang
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, National Center for Respiratory Medicine & National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, China-Japan Friendship Hospital, Beijing, China
| | - Su Shi
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, China
| | - Xia Meng
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, China
| | - Di Chai
- Department of Respiratory and Critical Care Medicine, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - WeiMing Liu
- Department of Intensive Care Medicine, Beijing Boai Hospital, Rehabilitation Research Center, Beijing, China
| | - Yaqi Tong
- Department of Respiratory and Critical Care Medicine, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Yuxia Wang
- Department of Respiratory and Critical Care Medicine, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Yali Ma
- Department of Respiratory and Critical Care Medicine, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - MingMing Pan
- Department of Respiratory and Critical Care Medicine, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Jia Cui
- Department of Respiratory and Critical Care Medicine, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Huanyu Long
- Department of Respiratory and Critical Care Medicine, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Tieying Sun
- Department of Respiratory and Critical Care Medicine, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Renjie Chen
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, China
| | - YanFei Guo
- Department of Respiratory and Critical Care Medicine, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
9
|
Schiffers C, Faner R, Ofenheimer A, Sunanta O, Puchhammer P, Mraz T, Breyer MK, Burghuber OC, Hartl S, Agustí A, Breyer-Kohansal R. Supranormal lung function: Prevalence, associated factors and clinical manifestations across the lifespan. Respirology 2023; 28:942-953. [PMID: 37434280 DOI: 10.1111/resp.14553] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 07/03/2023] [Indexed: 07/13/2023]
Abstract
BACKGROUND AND OBJECTIVE It is now well established that there are different life-long lung function trajectories in the general population, and that some are associated with better or worse health outcomes. Yet, the prevalence, clinical characteristics and risk factors of individuals with supranormal FEV1 or FVC values (above the upper-limit of normal [ULN]) in different age-bins through the lifetime in the general population are poorly understood. METHOD To address these questions, we investigated the prevalence of supranormal FEV1 and FVC values in the LEAD (Lung, hEart, sociAl and boDy) study, a general population cohort in Austria that includes participants from 6 to 82 years of age. RESULTS We found that: (1) the prevalence of supranormal pre-bronchodilator FEV1 and FVC values was 3.4% and 3.1%, respectively, and that these figures remained relatively stable through different age-bins except for participants >60 years., in whom they increased (5.0% and 4.2%, respectively). Approximately 50% of supranormal individuals had both increased FEV1 and FVC values; (2) supranormal spirometric values were consistently accompanied by higher static lung volumes and lower specific airway resistance through the lifespan, indicating better overall lung function; and (3) multivariate regression analysis identified that female sex, higher muscle mass (FFMI), less diabetes and fewer respiratory symptoms were consistently associated with supranormal FEV1 and FVC values. CONCLUSION Supranormal FEV1 and/or FVC values occur in about 3% of the general population in different age bins and are associated with better health markers.
Collapse
Affiliation(s)
| | - Rosa Faner
- University of Barcelona, Barcelona, Spain
- Institut d'Investigacions Biomediques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- CIBER Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| | - Alina Ofenheimer
- Ludwig Boltzmann Institute for Lung Health, Vienna, Austria
- NUTRIM, School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Owat Sunanta
- Ludwig Boltzmann Institute for Lung Health, Vienna, Austria
| | | | - Tobias Mraz
- Ludwig Boltzmann Institute for Lung Health, Vienna, Austria
- Department of Respiratory and Critical Care Medicine, Clinic Penzing, Vienna, Austria
| | - Marie-Kathrin Breyer
- Ludwig Boltzmann Institute for Lung Health, Vienna, Austria
- Department of Respiratory and Critical Care Medicine, Clinic Penzing, Vienna, Austria
| | - Otto Chris Burghuber
- Ludwig Boltzmann Institute for Lung Health, Vienna, Austria
- Medical School, Sigmund Freud University, Vienna, Austria
| | - Sylvia Hartl
- Ludwig Boltzmann Institute for Lung Health, Vienna, Austria
- Department of Respiratory and Critical Care Medicine, Clinic Penzing, Vienna, Austria
- Medical School, Sigmund Freud University, Vienna, Austria
| | - Alvar Agustí
- University of Barcelona, Barcelona, Spain
- Institut d'Investigacions Biomediques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- CIBER Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
- Respiratory Institute, Hospital Clinic, Barcelona, Spain
| | - Robab Breyer-Kohansal
- Ludwig Boltzmann Institute for Lung Health, Vienna, Austria
- Department of Respiratory and Critical Care Medicine, Clinic Penzing, Vienna, Austria
| |
Collapse
|
10
|
Agusti A, Faner R. All roads lead to COPD… or not? Eur Respir J 2023; 62:2301470. [PMID: 37770089 DOI: 10.1183/13993003.01470-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 09/05/2023] [Indexed: 10/03/2023]
Affiliation(s)
- Alvar Agusti
- Cathedra Salut Respiratoria, University of Barcelona, Barcelona, Spain
- Pulmonary Service, Respiratory Institute, Clinic Barcelona, Barcelona, Spain
- Fundació Clinic, Institut d'Investigacions Biomèdiques August Pi i Sunyer (FCRB-IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBER), Barcelona, Spain
| | - Rosa Faner
- Cathedra Salut Respiratoria, University of Barcelona, Barcelona, Spain
- Fundació Clinic, Institut d'Investigacions Biomèdiques August Pi i Sunyer (FCRB-IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBER), Barcelona, Spain
- Immunology Unit, Department of Biomedicine, University of Barcelona, Barcelona, Spain
| |
Collapse
|
11
|
Divo MJ, Liu C, Polverino F, Castaldi PJ, Celli BR, Tesfaigzi Y. From pre-COPD to COPD: a Simple, Low cost and easy to IMplement (SLIM) risk calculator. Eur Respir J 2023; 62:2300806. [PMID: 37678951 PMCID: PMC10533946 DOI: 10.1183/13993003.00806-2023] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 08/09/2023] [Indexed: 09/09/2023]
Abstract
BACKGROUND The lifetime risk of developing clinical COPD among smokers ranges from 13% to 22%. Identifying at-risk individuals who will develop overt disease in a reasonable timeframe may allow for early intervention. We hypothesised that readily available clinical and physiological variables could help identify ever-smokers at higher risk of developing chronic airflow limitation (CAL). METHODS Among 2273 Lovelace Smokers' Cohort (LSC) participants, we included 677 (mean age 54 years) with normal spirometry at baseline and a minimum of three spirometries, each 1 year apart. Repeated spirometric measurements were used to determine incident CAL. Using logistic regression, demographics, anthropometrics, smoking history, modified Medical Research Council dyspnoea scale, St George's Respiratory Questionnaire, comorbidities and spirometry, we related variables obtained at baseline to incident CAL as defined by the Global Initiative for Chronic Obstructive Lung Disease and lower limit of normal criteria. The predictive model derived from the LSC was validated in subjects from the COPDGene study. RESULTS Over 6.3 years, the incidence of CAL was 26 cases per 1000 person-years. The strongest independent predictors were forced expiratory volume in 1 s (FEV1)/forced vital capacity (FVC) <0.75, having smoked ≥30 pack-years, body mass index (BMI) ≤25 kg·m2 and symptoms of chronic bronchitis. Having all four predictors increased the risk of developing CAL over 6 years to 85% (area under the receiver operating characteristic curve (AUC ROC) 0.84, 95% CI 0.81-0.89). The prediction model showed similar results when applied to subjects in the COPDGene study with a follow-up period of 10 years (AUC ROC 0.77, 95% CI 0.72-0.81). CONCLUSION In middle-aged ever-smokers, a simple predictive model with FEV1/FVC, smoking history, BMI and chronic bronchitis helps identify subjects at high risk of developing CAL.
Collapse
Affiliation(s)
- Miguel J Divo
- Pulmonary and Critical Care Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Congjian Liu
- Pulmonary and Critical Care Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Francesca Polverino
- Pulmonary and Critical Care Medicine, Department of Medicine, Baylor College of Medicine Houston, Houston, TX, USA
| | - Peter J Castaldi
- Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- General Medicine and Primary Care, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Bartolome R Celli
- Pulmonary and Critical Care Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- B.R. Celli and Y. Tesfaigzi are senior authors and contributed equally to this study and manuscript
| | - Yohannes Tesfaigzi
- Pulmonary and Critical Care Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- B.R. Celli and Y. Tesfaigzi are senior authors and contributed equally to this study and manuscript
| |
Collapse
|
12
|
Pellegrino D, Casas-Recasens S, Faner R, Palange P, Agusti A. When GETomics meets aging and exercise in COPD. Respir Med 2023:107294. [PMID: 37295536 DOI: 10.1016/j.rmed.2023.107294] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/17/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023]
Abstract
The term GETomics has been recently proposed to illustrate that human health and disease are actually the final outcome of many dynamic, interacting and cumulative gene (G) - environment (E) interactions that occur through the lifetime (T) of the individual. According to this new paradigm, the final outcome of any GxE interactions depends on both the age of the individual at which such GxE interaction occurs as well as on the previous, cumulative history of previous GxE interactions through the induction of epigenetic changes and immune memory (both lasting overtime). Following this conceptual approach, our understanding of the pathogenesis of chronic obstructive pulmonary disease (COPD) has changed dramatically. Traditionally believed to be a self-inflicted disease induced by tobacco smoking occurring in older men and characterized by an accelerated decline of lung function with age, now we understand that there are many other risk factors associated with COPD, that it occurs also in females and young individuals, that there are different lung function trajectories through life, and that COPD is not always characterized by accelerated lung function decline. In this paper we discuss how a GETomics approach to COPD may open new perspectives to better understand its relationship with exercise limitation and the ageing process.
Collapse
Affiliation(s)
- D Pellegrino
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Italy; Respiratory and Critical Care Unit, Policlinico Umberto I Hospital of Rome, Italy
| | - S Casas-Recasens
- Institut d'investigacions biomédiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro Investigacion Biomedica en Red de Enfermedades Respiratorias (CIBERES), Spain
| | - R Faner
- Institut d'investigacions biomédiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro Investigacion Biomedica en Red de Enfermedades Respiratorias (CIBERES), Spain; Cathedra Salut Respiratoria, University of Barcelona, Spain
| | - P Palange
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Italy; Respiratory and Critical Care Unit, Policlinico Umberto I Hospital of Rome, Italy
| | - A Agusti
- Institut d'investigacions biomédiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro Investigacion Biomedica en Red de Enfermedades Respiratorias (CIBERES), Spain; Cathedra Salut Respiratoria, University of Barcelona, Spain; Respiratory Institute, Clinic Barcelona, Spain.
| |
Collapse
|
13
|
Agusti A, Celli BR. GOLD 2023: What's New, Doc? Arch Bronconeumol 2023; 59:193-194. [PMID: 37011971 DOI: 10.1016/j.arbres.2023.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 03/06/2023] [Indexed: 04/03/2023]
Affiliation(s)
- Alvar Agusti
- Cátedra de Salud Respiratoria, Universidad de Barcelona, Spain; Servei Pneumologia, Institut Respiratori, Clinic Barcelona, Spain; IDIBAPS, Barcelona, Spain; CIBERES, Spain.
| | | |
Collapse
|
14
|
Wang G, Hallberg J, Faner R, Koefoed HJ, Kebede Merid S, Klevebro S, Björkander S, Gruzieva O, Pershagen G, van Hage M, Guerra S, Bottai M, Georgelis A, Gehring U, Bergström A, Vonk JM, Kull I, Koppelman GH, Agusti A, Melén E. Plasticity of Individual Lung Function States from Childhood to Adulthood. Am J Respir Crit Care Med 2023; 207:406-415. [PMID: 36409973 PMCID: PMC9940138 DOI: 10.1164/rccm.202203-0444oc] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 11/21/2022] [Indexed: 11/23/2022] Open
Abstract
Rationale: Recent evidence highlights the importance of optimal lung development during childhood for health throughout life. Objectives: To explore the plasticity of individual lung function states during childhood. Methods: Prebronchodilator FEV1 z-scores determined at age 8, 16, and 24 years in the Swedish population-based birth cohort BAMSE (Swedish abbreviation for Child [Barn], Allergy, Milieu, Stockholm, Epidemiological study) (N = 3,069) were used. An unbiased, data-driven dependent mixture model was applied to explore lung function states and individual state chains. Lung function catch-up was defined as participants moving from low or very low states to normal or high or very high states, and growth failure as moving from normal or high or very high states to low or very low states. At 24 years, we compared respiratory symptoms, small airway function (multiple-breath washout), and circulating inflammatory protein levels, by using proteomics, across states. Models were replicated in the independent Dutch population-based PIAMA (Prevention and Incidence of Asthma and Mite Allergy) cohort. Measurements and Main Results: Five lung function states were identified in BAMSE. Lung function catch-up and growth failure were observed in 74 (14.5%) BAMSE participants with low or very low states and 36 (2.4%) participants with normal or high or very high states, respectively. The occurrence of catch-up and growth failure was replicated in PIAMA. Early-life risk factors were cumulatively associated with the very low state, as well as with catch-up (inverse association) and growth failure. The very low state as well as growth failure were associated with respiratory symptoms, airflow limitation, and small airway dysfunction at adulthood. Proteomics identified IL-6 and CXCL10 (C-X-C motif chemokine 10) as potential biomarkers of impaired lung function development. Conclusions: Individual lung function states during childhood are plastic, including catch-up and growth failure.
Collapse
Affiliation(s)
- Gang Wang
- Department of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Sichuan, China
- Department of Clinical Science and Education, Södersjukhuset
- Institute of Environmental Medicine, and
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, China
| | - Jenny Hallberg
- Department of Clinical Science and Education, Södersjukhuset
- Sachs’ Children and Youth Hospital, Södersjukhuset, Stockholm, Sweden
| | - Rosa Faner
- Centro de Investigación Biomédica en Red Enfermedades Respiratorias (CIBERES), Madrid, Spain
- Instituto de Investigaciones Biomédicas August Pi i Sunyer (IDIBAPS)
| | | | | | - Susanna Klevebro
- Department of Clinical Science and Education, Södersjukhuset
- Sachs’ Children and Youth Hospital, Södersjukhuset, Stockholm, Sweden
| | | | - Olena Gruzieva
- Institute of Environmental Medicine, and
- Centre for Occupational and Environmental Medicine, Region Stockholm, Stockholm, Sweden
| | - Göran Pershagen
- Institute of Environmental Medicine, and
- Centre for Occupational and Environmental Medicine, Region Stockholm, Stockholm, Sweden
| | - Marianne van Hage
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Stefano Guerra
- Asthma and Airway Disease Research Center, University of Arizona, Tucson, Arizona
- ISGlobal, Barcelona, Spain
| | - Matteo Bottai
- Division of Biostatistics, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Antonios Georgelis
- Centre for Occupational and Environmental Medicine, Region Stockholm, Stockholm, Sweden
| | - Ulrike Gehring
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands; and
| | - Anna Bergström
- Institute of Environmental Medicine, and
- Centre for Occupational and Environmental Medicine, Region Stockholm, Stockholm, Sweden
| | - Judith M. Vonk
- Groningen Research Institute for Asthma and COPD (GRIAC) and
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Inger Kull
- Department of Clinical Science and Education, Södersjukhuset
- Sachs’ Children and Youth Hospital, Södersjukhuset, Stockholm, Sweden
| | - Gerard H. Koppelman
- Groningen Research Institute for Asthma and COPD (GRIAC) and
- Department of Pediatric Pulmonology and Pediatric Allergology, Beatrix Children’s Hospital, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Alvar Agusti
- Centro de Investigación Biomédica en Red Enfermedades Respiratorias (CIBERES), Madrid, Spain
- Instituto de Investigaciones Biomédicas August Pi i Sunyer (IDIBAPS)
- Cátedra de Salud Respiratoria and
- Respiratory Institute, Hospital Clinic, University of Barcelona, Barcelona, Spain
| | - Erik Melén
- Department of Clinical Science and Education, Södersjukhuset
- Sachs’ Children and Youth Hospital, Södersjukhuset, Stockholm, Sweden
| |
Collapse
|
15
|
Alter P, Lucke T, Watz H, Andreas S, Kahnert K, Trudzinski FC, Speicher T, Söhler S, Bals R, Waschki B, Welte T, Rabe KF, Vestbo J, Wouters EFM, Vogelmeier CF, Jörres RA. Cardiovascular predictors of mortality and exacerbations in patients with COPD. Sci Rep 2022; 12:21882. [PMID: 36536050 PMCID: PMC9763357 DOI: 10.1038/s41598-022-25938-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 12/07/2022] [Indexed: 12/23/2022] Open
Abstract
In chronic obstructive pulmonary disease (COPD), comorbidities and worse functional status predict worse outcomes, but how these predictors compare with regard to different outcomes is not well studied. We thus compared the role of cardiovascular comorbidities for mortality and exacerbations. Data from baseline and up to four follow-up visits of the COSYCONET cohort were used. Cox or Poisson regression was employed to determine the relationship of predictors to mortality or mean annual exacerbation rate, respectively. Predictors comprised major comorbidities (including cardiovascular disease), lung function (forced expiratory volume in 1 s [FEV1], diffusion capacity for carbon monoxide [TLCO]) and their changes over time, baseline symptoms, exacerbations, physical activity, and cardiovascular medication. Overall, 1817 patients were included. Chronic coronary artery disease (p = 0.005), hypertension (p = 0.044) and the annual decline in TLCO (p = 0.001), but not FEV1 decline, were predictors of mortality. In contrast, the annual decline of FEV1 (p = 0.019) but not that of TLCO or cardiovascular comorbidities were linked to annual exacerbation rate. In conclusion, the presence of chronic coronary artery disease and hypertension were predictors of increased mortality in COPD, but not of increased exacerbation risk. This emphasizes the need for broad diagnostic workup in COPD, including the assessment of cardiovascular comorbidity.Clinical Trials: NCT01245933.
Collapse
Affiliation(s)
- Peter Alter
- grid.10253.350000 0004 1936 9756Department of Medicine, Pulmonary and Critical Care Medicine, University of Marburg (UMR), Member of the German Center for Lung Research (DZL), Baldingerstrasse 1, 35033 Marburg, Germany
| | - Tanja Lucke
- grid.411095.80000 0004 0477 2585Institute and Outpatient Clinic for Occupational, Social and Environmental Medicine, University Hospital, LMU Munich, Comprehensive Pneumology Center Munich (CPC-M), Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Henrik Watz
- grid.414769.90000 0004 0493 3289Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Pulmonary Research Institute at LungenClinic Grosshansdorf, Grosshansdorf, Germany
| | - Stefan Andreas
- grid.411984.10000 0001 0482 5331LungClinic Immenhausen and Department of Cardiology and Pneumology, University Medical Center Göttingen, Member of the German Center for Lung Research (DZL), Göttingen, Germany
| | - Kathrin Kahnert
- grid.411095.80000 0004 0477 2585Department of Internal Medicine V, University Hospital, LMU Munich, Comprehensive Pneumology Center Munich (CPC-M), Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Franziska C. Trudzinski
- grid.7700.00000 0001 2190 4373Department of Pneumology and Critical Care Medicine, Thoraxklinik, University of Heidelberg, Translational Lung Research Center Heidelberg (TLRC-H), Member of the German Center for Lung Research (DZL), Heidelberg, Germany
| | - Tim Speicher
- grid.10253.350000 0004 1936 9756Department of Medicine, Pulmonary and Critical Care Medicine, University of Marburg (UMR), Member of the German Center for Lung Research (DZL), Baldingerstrasse 1, 35033 Marburg, Germany
| | - Sandra Söhler
- grid.10253.350000 0004 1936 9756Department of Medicine, Pulmonary and Critical Care Medicine, University of Marburg (UMR), Member of the German Center for Lung Research (DZL), Baldingerstrasse 1, 35033 Marburg, Germany
| | - Robert Bals
- grid.411937.9Department of Internal Medicine V - Pulmonology, Allergology, Intensive Care Medicine, Saarland University Hospital, Homburg, Germany
| | - Benjamin Waschki
- grid.414769.90000 0004 0493 3289Department of Pneumology, Hospital Itzehoe, Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), LungenClinic Grosshansdorf, Grosshansdorf, Germany ,grid.13648.380000 0001 2180 3484Department of Cardiology, University Heart Center Hamburg, Hamburg, Germany
| | - Tobias Welte
- grid.452624.3Clinic for Pneumology, Hannover Medical School, Member of the German Center for Lung Research (DZL), Hannover, Germany
| | - Klaus F. Rabe
- grid.9764.c0000 0001 2153 9986LungenClinic Grosshansdorf and Department of Medicine, Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Christian-Albrechts University, Kiel, Kiel/Grosshansdorf, Germany
| | - Jørgen Vestbo
- grid.5379.80000000121662407Division of Infection, Immunity and Respiratory Medicine, University of Manchester, Manchester, UK
| | - Emiel F. M. Wouters
- grid.412966.e0000 0004 0480 1382Department of Respiratory Medicine, Maastricht University Medical Centre, Maastricht, The Netherlands ,grid.476478.e0000 0004 9342 5701Ludwig Boltzmann Institute for Lung Health, Vienna, Austria
| | - Claus F. Vogelmeier
- grid.10253.350000 0004 1936 9756Department of Medicine, Pulmonary and Critical Care Medicine, University of Marburg (UMR), Member of the German Center for Lung Research (DZL), Baldingerstrasse 1, 35033 Marburg, Germany
| | - Rudolf A. Jörres
- grid.411095.80000 0004 0477 2585Institute and Outpatient Clinic for Occupational, Social and Environmental Medicine, University Hospital, LMU Munich, Comprehensive Pneumology Center Munich (CPC-M), Member of the German Center for Lung Research (DZL), Munich, Germany
| |
Collapse
|
16
|
Celli B, Fabbri L, Criner G, Martinez FJ, Mannino D, Vogelmeier C, Montes de Oca M, Papi A, Sin DD, Han MK, Agusti A. Definition and Nomenclature of Chronic Obstructive Pulmonary Disease: Time for Its Revision. Am J Respir Crit Care Med 2022; 206:1317-1325. [PMID: 35914087 PMCID: PMC9746870 DOI: 10.1164/rccm.202204-0671pp] [Citation(s) in RCA: 188] [Impact Index Per Article: 62.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 08/01/2022] [Indexed: 12/24/2022] Open
Affiliation(s)
- Bartolome Celli
- Pulmonary Division, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Leonardo Fabbri
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - Gerard Criner
- Department of Thoracic Medicine and Surgery, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Fernando J Martinez
- Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, New York
| | - David Mannino
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of Kentucky College of Medicine, Lexington, Kentucky
| | - Claus Vogelmeier
- Pulmonary and Critical Care Medicine, Department of Medicine, University Medical Center University of Marburg, German Center for Lung Research (DZL), Philipps University Marburg, Marburg, Germany
| | - Maria Montes de Oca
- Hospital Universitario de Caracas, Universidad Central de Venezuela and Centro Médico de Caracas, Caracas, Venezuela
| | - Alberto Papi
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - Don D Sin
- Division of Respiratory Medicine, Centre for Heart Lung Innovation, St. Paul's Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - MeiLan K Han
- University of Michigan Health System, Ann Arbor, Michigan; and
| | - Alvar Agusti
- Cátedra Salud Respiratoria, Universitat de Barcelona; Respiratory Institute, Hospital Clinic, Barcelona; IDIBAPS, CIBERES, Barcelona, Spain
| |
Collapse
|
17
|
Martínez-García MÁ, Alvar Agusti. POINT: Is Chronic Bacterial Infection Clinically Relevant in COPD? Yes. Chest 2022; 162:970-972. [PMID: 36344127 DOI: 10.1016/j.chest.2022.07.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 06/10/2022] [Accepted: 07/12/2022] [Indexed: 11/06/2022] Open
Affiliation(s)
- Miguel Ángel Martínez-García
- Respiratory Department. Hospital Universitario y Politécnico La Fe, Valencia, Spain; Centro de Investigación Biomédica en Red (CIBERES), Instituto de Salud Carlos III, Madrid Spain, Valencia, Spain.
| | - Alvar Agusti
- Centro de Investigación Biomédica en Red (CIBERES), Instituto de Salud Carlos III, Madrid Spain, Valencia, Spain; Cátedra de Salud Respiratoria, Universidad de Barcelona, Barcelona, Spain; Pulmonary Service, Respiratory Institute, Hospital Clinic, Barcelona, Spain; Institut d'investigacions Biomediques August Pi I Sunyer, Barcelona, Spain
| |
Collapse
|
18
|
Divo MJ, Marin JM, Casanova C, Cabrera Lopez C, Pinto-Plata VM, Marin-Oto M, Polverino F, de-Torres JP, Billheimer D, Celli BR. Comorbidities and mortality risk in adults younger than 50 years of age with chronic obstructive pulmonary disease. Respir Res 2022; 23:267. [PMID: 36167533 PMCID: PMC9516817 DOI: 10.1186/s12931-022-02191-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 08/24/2022] [Indexed: 11/24/2022] Open
Abstract
Rationale and objective Patients with chronic obstructive pulmonary disease (COPD), usually diagnosed after the 6th decade, frequently suffer from comorbidities. Whether COPD patients 50 years or younger (Young COPD) have similar comorbidities with the same frequency and mortality impact as aged-matched controls or older COPD patients is unknown. Methods We compared comorbidity number, prevalence and type in 3 groups of individuals with ≥ 10 pack-years of smoking: A Young (≤ 50 years) COPD group (n = 160), an age-balanced control group without airflow obstruction (n = 125), and Old (> 50 years) COPD group (n = 1860). We also compared survival between the young COPD and control subjects. Using Cox proportional model, we determined the comorbidities associated with mortality risk and generated Comorbidomes for the “Young” and “Old” COPD groups. Results The severity distribution by GOLD spirometric stages and BODE quartiles were similar between Young and Old COPD groups. After adjusting for age, sex, and pack-years, the prevalence of subjects with at least one comorbidity was 31% for controls, 77% for the Young, and 86% for older COPD patients. Compared to controls, “Young” COPDs’ had a nine-fold increased mortality risk (p < 0.0001). “Comorbidomes” differed between Young and Old COPD groups, with tuberculosis, substance use, and bipolar disorders being distinct comorbidities associated with increased mortality risk in the Young COPD group. Conclusions Young COPD patients carry a higher comorbidity prevalence and mortality risk compared to non-obstructed control subjects. Young COPD differed from older COPD patients by the behavioral-related comorbidities that increase their risk of premature death. Supplementary Information The online version contains supplementary material available at 10.1186/s12931-022-02191-7.
Collapse
Affiliation(s)
- Miguel J Divo
- Pulmonary and Critical Care Division, Brigham and Women's Hospital and Spaulding Rehabilitation Hospital, Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA.
| | - José M Marin
- Respiratory Service, Hospital Universitario Miguel Servet-IISAragón & CIBER Enfermedades Respiratorias, Avda Isabel la Catolica 1-3, 50006, Saragossa, Spain
| | - Ciro Casanova
- Pulmonary Department, Hospital Universitario La Candelaria, Universidad de La Laguna, Carretera del Rosario n 145, 38010, Santa Cruz de Tenerife, Spain
| | - Carlos Cabrera Lopez
- Respiratory Service, Hospital Universitario de Gran Canaria Dr. Negrin, Las Palmas, Canary Islands, Spain
| | - Victor M Pinto-Plata
- Pulmonary and Critical Care Division Chair, Lahey Hospital and Medical Center, Burlington, MA, USA
| | - Marta Marin-Oto
- Pulmonary Department, Hospital Clínico Universitario Lozano Blesa, Saragossa, Spain
| | | | - Juan P de-Torres
- Division of Respirology and Sleep Medicine, Queen's University, Kingston, Canada
| | - Dean Billheimer
- BIO5 Institute, Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, AZ, USA
| | - Bartolome R Celli
- Pulmonary and Critical Care Division, Brigham and Women's Hospital and Spaulding Rehabilitation Hospital, Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA
| | | |
Collapse
|
19
|
Vila M, Faner R, Agustí A. Beyond the COPD-tobacco binomium: New opportunities for the prevention and early treatment of the disease. Med Clin (Barc) 2022; 159:33-39. [PMID: 35279314 DOI: 10.1016/j.medcli.2022.01.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/16/2022] [Accepted: 01/18/2022] [Indexed: 11/16/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) has been traditionally understood as a self-inflicted disease cause by tobacco smoking occurring in individuals older than 50-60 years. This traditional paradigm has changed over the last decade because new scientific evidence showed that there are many genetic (G) and environmental (E) factors associated with reduced lung function, that vary, accumulate, and interact over time (T), even before birth (G×E×T). This new perspective opens novel windows of opportunity for the prevention, early diagnosis, and personalized treatment of COPD. This review presents the evidence that supports this proposal, as well as its practical implications, with particular emphasis on the need that clinical histories in patients with suspected COPD should investigate early life events and that spirometry should be used much more widely as a global health marker.
Collapse
Affiliation(s)
- Marc Vila
- Equip d'Assistència Primària Vic (EAP VIC), Barcelona, España; Càtedra Salut Respiratòria, Universitat Barcelona, Barcelona, España
| | - Rosa Faner
- Càtedra Salut Respiratòria, Universitat Barcelona, Barcelona, España; Respiratory Institute, Hospital Clínic, Barcelona, España; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, España
| | - Alvar Agustí
- Càtedra Salut Respiratòria, Universitat Barcelona, Barcelona, España; Respiratory Institute, Hospital Clínic, Barcelona, España; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, España; CIBER Enfermedades Respiratorias, Madrid, España.
| |
Collapse
|
20
|
Agustí A, Melén E, DeMeo DL, Breyer-Kohansal R, Faner R. Pathogenesis of chronic obstructive pulmonary disease: understanding the contributions of gene-environment interactions across the lifespan. THE LANCET. RESPIRATORY MEDICINE 2022; 10:512-524. [PMID: 35427533 PMCID: PMC11428195 DOI: 10.1016/s2213-2600(21)00555-5] [Citation(s) in RCA: 133] [Impact Index Per Article: 44.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 11/08/2021] [Accepted: 12/06/2021] [Indexed: 12/31/2022]
Abstract
The traditional view of chronic obstructive pulmonary disease (COPD) as a self-inflicted disease caused by tobacco smoking in genetically susceptible individuals has been challenged by recent research findings. COPD can instead be understood as the potential end result of the accumulation of gene-environment interactions encountered by an individual over the life course. Integration of a time axis in pathogenic models of COPD is necessary because the biological responses to and clinical consequences of different exposures might vary according to both the age of an individual at which a given gene-environment interaction occurs and the cumulative history of previous gene-environment interactions. Future research should aim to understand the effects of dynamic interactions between genes (G) and the environment (E) by integrating information from basic omics (eg, genomics, epigenomics, proteomics) and clinical omics (eg, phenomics, physiomics, radiomics) with exposures (the exposome) over time (T)-an approach that we refer to as GETomics. In the context of this approach, we argue that COPD should be viewed not as a single disease, but as a clinical syndrome characterised by a recognisable pattern of chronic symptoms and structural or functional impairments due to gene-environment interactions across the lifespan that influence normal lung development and ageing.
Collapse
Affiliation(s)
- Alvar Agustí
- Càtedra Salut Respiratòria, Universitat Barcelona, Barcelona, Spain; Respiratory Institute, Hospital Clinic, Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Barcelona, Spain
| | - Erik Melén
- Department of Clinical Science and Education, Södersjukhuset, Karolinska Institutet, Stockholm, Sweden; Sachs' Children and Youth Hospital, Södersjukhuset, Stockholm, Sweden
| | - Dawn L DeMeo
- Channing Division of Network Medicine, and Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Robab Breyer-Kohansal
- Ludwig Boltzmann Institute for Lung Health, Vienna, Austria; Department of Respiratory and Critical Care Medicine, Clinic Penzing, Vienna, Austria
| | - Rosa Faner
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Barcelona, Spain.
| |
Collapse
|
21
|
Agustí A, Alcázar B, Ancochea J, Casanova C, Celli B, Cosio B, Echave-Sustaeta JM, Villar AF, Rivero JLG, González C, Izquierdo JL, Lopez-Campos JL, Trigo JMM, Sánchez JM, Miravitlles M, Molina J, Peces-Barba G, Roman M, Cataluña JJS, Villar-Alvarez F. [Translated article] The ANTES Program in COPD: First Year. Arch Bronconeumol 2022. [PMID: 35484017 DOI: 10.1016/j.arbres.2021.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Alvar Agustí
- Institut Respiratori, Hospital Clinic, Barcelona, Spain.
| | - Bernardino Alcázar
- Servicio de Neumología, Hospital Universitario Virgen de las Nieves, Granada, Spain
| | - Julio Ancochea
- Servicio de Neumología, Hospital Universitario La Princesa, Madrid, Spain
| | - Ciro Casanova
- Servicio de Neumología, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain
| | - Bartolome Celli
- Brigham and Women's Hospital, Professor of Medicine, Harvard Medical School, Boston, United States
| | - Borja Cosio
- Servei de Pneumologia, Universitari Son Espases, Palma de Mallorca, Spain
| | | | | | | | - Cruz González
- Servicio de Neumología, Hospital Universitario Clínico de Valencia, Spain
| | | | - José Luis Lopez-Campos
- Unidad Médico-Quirúrgica de Enfermedades Respiratorias, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/Universidad de Sevilla, Spain; Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| | | | | | - Marc Miravitlles
- Servei de Pneumologia, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Jesús Molina
- Centro de Salud Francia, Fuenlabrada, Madrid, Spain
| | - Germán Peces-Barba
- Servicio de Neumología, Hospital Universitario Fundación Jiménez Díaz, Madrid, Spain
| | - Miguel Roman
- Centro de Salud Son Pisa, Palma de Mallorca, Spain
| | | | - Felipe Villar-Alvarez
- Servicio de Neumología, Hospital Universitario Fundación Jiménez Díaz, Madrid, Spain
| |
Collapse
|
22
|
Varela-Aguilar JM, Medrano-Ortega FJ. EPOC: ¿una epidemia prevenible? Rev Clin Esp 2022. [DOI: 10.1016/j.rce.2022.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
23
|
Varela-Aguilar J, Medrano-Ortega F. COPD: A preventable epidemic? Rev Clin Esp 2022; 222:233-234. [DOI: 10.1016/j.rceng.2022.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 02/14/2022] [Indexed: 11/28/2022]
|
24
|
Agustí A, Alcázar B, Ancochea J, Casanova C, Celli B, Cosio B, Echave-Sustaeta JM, Fernandez Villar A, Garcia Rivero JL, González C, Izquierdo JL, Lopez-Campos JL, Marín Trigo JM, Martín Sánchez J, Miravitlles M, Molina J, Peces-Barba G, Roman M, Soler Cataluña JJ, Villar-Alvarez F. The ANTES program in COPD: First year. Arch Bronconeumol 2022; 58:291-294. [PMID: 35312529 DOI: 10.1016/j.arbres.2021.10.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 10/29/2021] [Indexed: 11/25/2022]
Affiliation(s)
- Alvar Agustí
- Institut Respiratori, Hospital Clinic, Barcelona, España.
| | - Bernardino Alcázar
- Servicio de Neumología, Hospital Universitario Virgen de las Nieves, Granada, España
| | - Julio Ancochea
- Servicio de Neumología, Hospital Universitario La Princesa, Madrid, España
| | - Ciro Casanova
- Servicio de Neumología, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, España
| | - Bartolome Celli
- Brigham and Women's Hospital, Professor of Medicine, Harvard Medical School, Boston, Estados Unidos
| | - Borja Cosio
- Servei de Pneumologia, Universitari Son Espases, Palma de Mallorca, España
| | | | | | | | - Cruz González
- Servicio de Neumología, Hospital Universitario Clínico de Valencia, España
| | | | - José Luis Lopez-Campos
- Unidad Médico-Quirúrgica de Enfermedades Respiratorias. Instituto de Biomedicina de Sevilla (IBiS). Hospital Universitario Virgen del Rocío/Universidad de Sevilla, España; Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES). Instituto de Salud Carlos III, Madrid, España
| | | | | | - Marc Miravitlles
- Servei de Pneumologia, Hospital Universitari Vall d'Hebron, Barcelona, España
| | - Jesús Molina
- Centro de Salud Francia, Fuenlabrada, Madrid, España
| | - Germán Peces-Barba
- Servicio de Neumología, Hospital Universitario Fundación Jiménez Díaz, Madrid, España
| | - Miguel Roman
- Centro de Salud Son Pisa, Palma de Mallorca, España
| | | | - Felipe Villar-Alvarez
- Servicio de Neumología, Hospital Universitario Fundación Jiménez Díaz, Madrid, España
| |
Collapse
|
25
|
Martinez FJ, Agusti A, Celli BR, Han MK, Allinson JP, Bhatt SP, Calverley P, Chotirmall SH, Chowdhury B, Darken P, Da Silva CA, Donaldson G, Dorinsky P, Dransfield M, Faner R, Halpin DM, Jones P, Krishnan JA, Locantore N, Martinez FD, Mullerova H, Price D, Rabe KF, Reisner C, Singh D, Vestbo J, Vogelmeier CF, Wise RA, Tal-Singer R, Wedzicha JA. Treatment Trials in Young Patients with Chronic Obstructive Pulmonary Disease and Pre-Chronic Obstructive Pulmonary Disease Patients: Time to Move Forward. Am J Respir Crit Care Med 2022; 205:275-287. [PMID: 34672872 PMCID: PMC8886994 DOI: 10.1164/rccm.202107-1663so] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 10/19/2021] [Indexed: 02/03/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is the end result of a series of dynamic and cumulative gene-environment interactions over a lifetime. The evolving understanding of COPD biology provides novel opportunities for prevention, early diagnosis, and intervention. To advance these concepts, we propose therapeutic trials in two major groups of subjects: "young" individuals with COPD and those with pre-COPD. Given that lungs grow to about 20 years of age and begin to age at approximately 50 years, we consider "young" patients with COPD those patients in the age range of 20-50 years. Pre-COPD relates to individuals of any age who have respiratory symptoms with or without structural and/or functional abnormalities, in the absence of airflow limitation, and who may develop persistent airflow limitation over time. We exclude from the current discussion infants and adolescents because of their unique physiological context and COPD in older adults given their representation in prior randomized controlled trials (RCTs). We highlight the need of RCTs focused on COPD in young patients or pre-COPD to reduce disease progression, providing innovative approaches to identifying and engaging potential study subjects. We detail approaches to RCT design, including potential outcomes such as lung function, patient-reported outcomes, exacerbations, lung imaging, mortality, and composite endpoints. We critically review study design components such as statistical powering and analysis, duration of study treatment, and formats to trial structure, including platform, basket, and umbrella trials. We provide a call to action for treatment RCTs in 1) young adults with COPD and 2) those with pre-COPD at any age.
Collapse
Affiliation(s)
| | - Alvar Agusti
- Catedra Salut Respiratoria and
- Institut Respiratorio, Hospital Clinic, Barcelona, Spain
- Institut d’investigacions biomediques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigacion Biomedica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Bartolome R. Celli
- Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - MeiLan K. Han
- University of Michigan Health System, Ann Arbor, Michigan
| | - James P. Allinson
- National Heart and Lung Institute, Imperial College, London, United Kingdom
| | - Surya P. Bhatt
- Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Peter Calverley
- Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, United Kingdom
| | | | | | | | - Carla A. Da Silva
- Clinical Development, Research and Early Development, Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Gavin Donaldson
- National Heart and Lung Institute, Imperial College, London, United Kingdom
| | | | - Mark Dransfield
- Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Rosa Faner
- Department of Biomedical Sciences, University of Barcelona, Barcelona, Spain
| | | | - Paul Jones
- St. George’s University of London, London, United Kingdom
| | | | | | | | | | - David Price
- Observational and Pragmatic Research Institute, Singapore
- Centre of Academic Primary Care, Division of Applied Health Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Klaus F. Rabe
- LungenClinic Grosshansdorf, Member of the German Center for Lung Research, Grosshansdorf, Germany
- Department of Medicine, Christian Albrechts University Kiel, Member of the German Center for Lung Research Kiel, Germany
| | | | | | - Jørgen Vestbo
- Manchester University NHS Trust, Manchester, United Kingdom
| | - Claus F. Vogelmeier
- Department of Medicine, Pulmonary and Critical Care Medicine, University of Marburg, Member of the German Center for Lung Research, Marburg, Germany
| | | | | | | |
Collapse
|
26
|
Wang G, Hallberg J, Charalampopoulos D, Sanahuja MC, Breyer-Kohansal R, Langhammer A, Granell R, Vonk JM, Mian A, Olvera N, Laustsen LM, Rönmark E, Abellan A, Agusti A, Arshad SH, Bergström A, Boezen HM, Breyer MK, Burghuber O, Bolund AC, Custovic A, Devereux G, Donaldson GC, Duijts L, Esplugues A, Faner R, Ballester F, Garcia-Aymerich J, Gehring U, Haider S, Hartl S, Backman H, Holloway JW, Koppelman GH, Lertxundi A, Holmen TL, Lowe L, Mensink-Bout SM, Murray CS, Roberts G, Hedman L, Schlünssen V, Sigsgaard T, Simpson A, Sunyer J, Torrent M, Turner S, Van den Berge M, Vermeulen RC, Vikjord SAA, Wedzicha JA, Maitland van der Zee AH, Melén E. Spirometric phenotypes from early childhood to young adulthood: a Chronic Airway Disease Early Stratification study. ERJ Open Res 2021; 7:00457-2021. [PMID: 34881328 PMCID: PMC8646001 DOI: 10.1183/23120541.00457-2021] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 08/25/2021] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND The prevalences of obstructive and restrictive spirometric phenotypes, and their relation to early-life risk factors from childhood to young adulthood remain poorly understood. The aim was to explore these phenotypes and associations with well-known respiratory risk factors across ages and populations in European cohorts. METHODS We studied 49 334 participants from 14 population-based cohorts in different age groups (≤10, >10-15, >15-20, >20-25 years, and overall, 5-25 years). The obstructive phenotype was defined as forced expiratory volume in 1 s (FEV1)/forced vital capacity (FVC) z-score less than the lower limit of normal (LLN), whereas the restrictive phenotype was defined as FEV1/FVC z-score ≥LLN, and FVC z-score RESULTS The prevalence of obstructive and restrictive phenotypes varied from 3.2-10.9% and 1.8-7.7%, respectively, without clear age trends. A diagnosis of asthma (adjusted odds ratio (aOR=2.55, 95% CI 2.14-3.04), preterm birth (aOR=1.84, 1.27-2.66), maternal smoking during pregnancy (aOR=1.16, 95% CI 1.01-1.35) and family history of asthma (aOR=1.44, 95% CI 1.25-1.66) were associated with a higher prevalence of obstructive, but not restrictive, phenotype across ages (5-25 years). A higher current body mass index (BMI was more often observed in those with the obstructive phenotype but less in those with the restrictive phenotype (aOR=1.05, 95% CI 1.03-1.06 and aOR=0.81, 95% CI 0.78-0.85, per kg·m-2 increase in BMI, respectively). Current smoking was associated with the obstructive phenotype in participants older than 10 years (aOR=1.24, 95% CI 1.05-1.46). CONCLUSION Obstructive and restrictive phenotypes were found to be relatively prevalent during childhood, which supports the early origins concept. Several well-known respiratory risk factors were associated with the obstructive phenotype, whereas only low BMI was associated with the restrictive phenotype, suggesting different underlying pathobiology of these two phenotypes.
Collapse
Affiliation(s)
- Gang Wang
- Dept of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Sichuan, China
- Dept of Clinical Science and Education, Södersjukhuset, Karolinska Institutet, Stockholm, Sweden
- Shared first authors
| | - Jenny Hallberg
- Dept of Clinical Science and Education, Södersjukhuset, Karolinska Institutet, Stockholm, Sweden
- Sachs’ Children and Youth Hospital, Södersjukhuset, Stockholm, Sweden
- Shared first authors
| | - Dimitrios Charalampopoulos
- MRC Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Maribel Casas Sanahuja
- ISGlobal, Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Robab Breyer-Kohansal
- Ludwig Boltzmann Institute for Lung Health, Vienna, Austria
- Dept of Respiratory and Critical Care Medicine, Clinic Penzing, Vienna, Austria
| | - Arnulf Langhammer
- Dept of Public Health and Nursing, Faculty of Medicine and Health Sciences, HUNT Research Centre, Norwegian University of Science and Technology (NTNU), Levanger, Norway
| | - Raquel Granell
- MRC Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Judith M. Vonk
- Dept of Epidemiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- University Medical Center Groningen, Groningen Research Institute for Asthma and COPD, University of Groningen, Groningen, The Netherlands
| | - Annemiek Mian
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Division of Respiratory Medicine and Allergology, and Neonatology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Núria Olvera
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain
- Institut d'investigacions biomediques August Pi I Sunyer, Barcelona, Spain
| | - Lisbeth Mølgaard Laustsen
- Dept of Public Health, Environment Occupation and Health, Danish Ramazzini Centre, Aarhus University, Aarhus, Denmark
| | - Eva Rönmark
- Dept of Public Health and Clinical Medicine, Section for Sustainable Health, The OLIN Unit, Umeå University, Umeå, Sweden
| | - Alicia Abellan
- ISGlobal, Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain
- Fundació Institut Universitari per a la recerca a l'Atenció Primària de Salut Jordi Gol i Gurina, Barcelona, Spain
| | - Alvar Agusti
- Institut d'investigacions biomediques August Pi I Sunyer, Barcelona, Spain
- Respiratory Institute, Hospital Clinic, Univ. Barcelona, Barcelona, Spain
- CIBERESP (ISCiii), Barcelona, Spain
| | - Syed Hasan Arshad
- David Hide Asthma and Allergy Research Centre, Newport, UK
- NIHR Southampton Biomedical Research Centre, University Hospitals Southampton NHS Foundation Trust, Southampton, UK
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Anna Bergström
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
- Centre for Occupational and Environmental Medicine, Region Stockholm, Stockholm, Sweden
| | - H. Marike Boezen
- Dept of Epidemiology, University Medical Center Groningen, Groningen, The Netherlands
| | - Marie-Kathrin Breyer
- Ludwig Boltzmann Institute for Lung Health, Vienna, Austria
- Dept of Respiratory and Critical Care Medicine, Clinic Penzing, Vienna, Austria
| | - Otto Burghuber
- Ludwig Boltzmann Institute for Lung Health, Vienna, Austria
- Faculty of Medicine, Sigmund Freud University, Vienna, Austria
| | - Anneli Clea Bolund
- Dept of Public Health, Environment Occupation and Health, Danish Ramazzini Centre, Aarhus University, Aarhus, Denmark
| | - Adnan Custovic
- National Heart and Lung Institute, Imperial College London, London, UK
| | | | | | - Liesbeth Duijts
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Division of Respiratory Medicine and Allergology, and Neonatology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Division of Neonatology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Ana Esplugues
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain
- Nursing Department, Faculty of Nursing and Chiropody, Universitat de València, Valencia, Spain
- Epidemiology and Environmental Health Joint Research Unit, FISABIO−Universitat Jaume I−Universitat de València, Valencia, Spain
| | - Rosa Faner
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Ferran Ballester
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain
- Nursing Department, Faculty of Nursing and Chiropody, Universitat de València, Valencia, Spain
- Epidemiology and Environmental Health Joint Research Unit, FISABIO−Universitat Jaume I−Universitat de València, Valencia, Spain
| | - Judith Garcia-Aymerich
- ISGlobal, Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Ulrike Gehring
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands
| | - Sadia Haider
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Sylvia Hartl
- Ludwig Boltzmann Institute for Lung Health, Vienna, Austria
- Dept of Respiratory and Critical Care Medicine, Clinic Penzing, Vienna, Austria
- Faculty of Medicine, Sigmund Freud University, Vienna, Austria
| | - Helena Backman
- Dept of Public Health and Clinical Medicine, Section for Sustainable Health, The OLIN Unit, Umeå University, Umeå, Sweden
| | - John W. Holloway
- NIHR Southampton Biomedical Research Centre, University Hospitals Southampton NHS Foundation Trust, Southampton, UK
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Gerard H. Koppelman
- University Medical Center Groningen, Groningen Research Institute for Asthma and COPD, University of Groningen, Groningen, The Netherlands
- Dept of Pediatric Pulmonology and Pediatric Allergology, University Medical Center Groningen, Beatrix Children's Hospital, University of Groningen, Groningen, The Netherlands
| | - Aitana Lertxundi
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain
- Dept of Preventive Medicine and Public Health, Faculty of Medicine, University of the Basque Country (UPV/EHU), Leioa, Spain
- BIODONOSTIA Health Research Institute, Donostia-San Sebastian, Spain
| | - Turid Lingaas Holmen
- Dept of Public Health and General Practice, HUNT Research Center, NTNU, Levanger, Norway
| | - Lesley Lowe
- Division of Infection, Immunity and Respiratory Medicine, University of Manchester, Manchester Academic Health Science Centre, NIHR, Manchester, UK
- Manchester Biomedical Research Centre, Manchester University NHS Foundation Trust, Manchester, UK
| | - Sara M. Mensink-Bout
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Clare S. Murray
- Division of Infection, Immunity and Respiratory Medicine, University of Manchester, Manchester Academic Health Science Centre, NIHR, Manchester, UK
- Manchester Biomedical Research Centre, Manchester University NHS Foundation Trust, Manchester, UK
| | - Graham Roberts
- David Hide Asthma and Allergy Research Centre, Newport, UK
- NIHR Southampton Biomedical Research Centre, University Hospitals Southampton NHS Foundation Trust, Southampton, UK
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Linnea Hedman
- Dept of Public Health and Clinical Medicine, Section for Sustainable Health, The OLIN Unit, Umeå University, Umeå, Sweden
| | - Vivi Schlünssen
- Dept of Public Health, Environment Occupation and Health, Danish Ramazzini Centre, Aarhus University, Aarhus, Denmark
| | - Torben Sigsgaard
- Dept of Public Health, Environment Occupation and Health, Danish Ramazzini Centre, Aarhus University, Aarhus, Denmark
| | - Angela Simpson
- Division of Infection, Immunity and Respiratory Medicine, University of Manchester, Manchester Academic Health Science Centre, NIHR, Manchester, UK
- Manchester Biomedical Research Centre, Manchester University NHS Foundation Trust, Manchester, UK
| | - Jordi Sunyer
- ISGlobal, Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
- IMIM-Parc Salut Mar, Barcelona, Spain
| | | | - Stephen Turner
- Royal Aberdeen Children's Hospital NHS Grampian, Aberdeen, UK
| | - Maarten Van den Berge
- University Medical Center Groningen, Groningen Research Institute for Asthma and COPD, University of Groningen, Groningen, The Netherlands
- Dept of Pulmonary Diseases, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Roel C.H. Vermeulen
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands
| | - Sigrid Anna Aalberg Vikjord
- Dept of Public Health and Nursing, Faculty of Medicine and Health Sciences, HUNT Research Centre, Norwegian University of Science and Technology (NTNU), Levanger, Norway
- Dept of Medicine and Rehabilitation, Levanger Hospital, Nord-Trøndelag Hospital Trust, Levanger, Norway
| | | | - Anke H. Maitland van der Zee
- Dept of Respiratory Medicine, Amsterdam University Medical Centers (UMC), University of Amsterdam
- Pediatric Respiratory Medicine, Emma Children's Hospital, Amsterdam UMC, Amsterdam, The Netherlands
- Shared last authors
| | - Erik Melén
- Dept of Clinical Science and Education, Södersjukhuset, Karolinska Institutet, Stockholm, Sweden
- Sachs’ Children and Youth Hospital, Södersjukhuset, Stockholm, Sweden
- Shared last authors
| |
Collapse
|
27
|
Agusti A, Fabbri LM, Baraldi E, Celli B, Corradi M, Faner R, Martinez FD, Melén E, Papi A. Spirometry: A practical lifespan predictor of global health and chronic respiratory and non-respiratory diseases. Eur J Intern Med 2021; 89:3-9. [PMID: 34016514 DOI: 10.1016/j.ejim.2021.04.027] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 04/28/2021] [Indexed: 01/12/2023]
Abstract
OBJECTIVES 1. To review and discuss available evidence supporting that spirometry is an overlooked global health marker, that could be used regularly through the lifespan to monitor human health and predict risk of chronic respiratory and other chronic non-communicable diseases (NCDs). 2. To discuss the challenges and opportunities that this proposal faces.Summary of key data. First, spirometry is essential to assess and monitor respiratory health. Second, spirometry adds prognostic value to other well-accepted health markers used in clinical practice, such as blood pressure, body mass index, glucose and blood lipids, by identifying individuals at risk, not only of respiratory diseases, but also of other NCDs, particularly cardiovascular and metabolic disorders. CONCLUSION Although we acknowledge that research gaps still exist, we propose that spirometry assessed during childhood, adolescence and early and late adulthood can be a reproducible, non-invasive, safe and affordable global health marker to identify individuals in the general population at risk of respiratory and non-respiratory NCDs. In this context, spirometry may act as the caged canaries that miners used to carry into mines to alert them of dangerous accumulations of gases, thus providing an early warning and save lives.
Collapse
Affiliation(s)
- Alvar Agusti
- Cátedra Salud Respiratoria, University of Barcelona, Spain; Respiratory Institute, Hospital Clinic, C/Villarroel 170, 08036 Barcelona, Spain; Institut d'Investigacions Biomediques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; CIBER Enfermedades Respiratorias, Instituto de Salud Carlos III, Spain.
| | - Leonardo M Fabbri
- Section of Respiratory Medicine, Translational Medicine & Romagna, University of Ferrara, Ferrara, Italy
| | - Eugenio Baraldi
- Department of Women's and Children's Health, Neonatal Intensive Care Unit and Institute of Pediatric Research, University of Padova, Padova, Italy
| | | | - Massimo Corradi
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Rosa Faner
- Institut d'Investigacions Biomediques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; CIBER Enfermedades Respiratorias, Instituto de Salud Carlos III, Spain
| | - Fernando D Martinez
- Asthma & Airway Disease Research Center, University of Arizona, Tucson, AZ, USA
| | - Erik Melén
- Department of Clinical Science and Education Södersjukhuset, Karolinska Institutet, Stockholm, Sweden; Sachs' Children's Hospital, Stockholm, Sweden
| | - Alberto Papi
- Respiratory Medicine, University of Ferrara; Emergency Department, University Hospital S. Anna, Ferrara, Italy
| |
Collapse
|
28
|
Wang G, Hallberg J, Um Bergström P, Janson C, Pershagen G, Gruzieva O, van Hage M, Georgelis A, Bergström A, Kull I, Lindén A, Melén E. Assessment of chronic bronchitis and risk factors in young adults: results from BAMSE. Eur Respir J 2021; 57:13993003.02120-2020. [PMID: 33184115 PMCID: PMC7930470 DOI: 10.1183/13993003.02120-2020] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 09/11/2020] [Indexed: 02/05/2023]
Abstract
Background Chronic bronchitis is associated with substantial morbidity among elderly adults, but little is known about its prevalence and risk factors in young adults. Our aim was to assess the prevalence and early-life risk factors for chronic bronchitis in young adults. Methods Questionnaire data and clinical measures from the 24-year follow-up of the Swedish BAMSE (Child (Barn), Allergy, Milieu, Stockholm, Epidemiological) cohort were used. We assessed chronic bronchitis (CB) as the combination of cough and mucus production in the morning during winter. Environmental and clinical data from birth and onwards were used for analyses of risk factors. Results At the 24-year follow-up, 75% (n=3064) participants completed the questionnaire and 2030 performed spirometry. The overall prevalence of CB was 5.5% (n=158) with similar estimates in males and females. 49% of CB cases experienced more than three self-reported respiratory infections in the past year compared to 18% in non-CB subjects (p<0.001), and 37% of cases were current smokers (versus 19% of non-CB cases). Statistically significant lower post-bronchodilator forced expiratory volume in 1 s/forced vital capacity were observed in CB compared to non-CB subjects (mean z-score −0.06 versus 0.13, p=0.027). Daily smoking (adjusted (a)OR 3.85, p<0.001), air pollution exposure (black carbon at ages 1–4 years aOR 1.71 per 1 μg·m−3 increase, p=0.009) and exclusive breastfeeding for ≤4 months (aOR 0.66, p=0.044) were associated with CB. Conclusion Chronic bronchitis in young adults is associated with recurrent respiratory infections. Besides smoking, our results support the role of early-life exposures, such as air pollution and exclusive breastfeeding, for respiratory health later in life. Chronic bronchitis in young adults is strongly associated with recurrent respiratory infections. Besides smoking, our results support the role of early-life environmental exposures for respiratory health in this age group.https://bit.ly/2RNsv5z
Collapse
Affiliation(s)
- Gang Wang
- Dept of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Sichuan, China.,Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.,Dept of Clinical Science and Education, Södersjukhuset, Karolinska Institutet, Stockholm, Sweden
| | - Jenny Hallberg
- Dept of Clinical Science and Education, Södersjukhuset, Karolinska Institutet, Stockholm, Sweden.,Sachs' Children and Youth Hospital, Södersjukhuset, Stockholm, Sweden
| | - Petra Um Bergström
- Dept of Clinical Science and Education, Södersjukhuset, Karolinska Institutet, Stockholm, Sweden.,Sachs' Children and Youth Hospital, Södersjukhuset, Stockholm, Sweden
| | - Christer Janson
- Dept of Medical Sciences: Respiratory, Allergy and Sleep Research, Uppsala University, Uppsala, Sweden
| | - Göran Pershagen
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.,Centre for Occupational and Environmental Medicine, Region Stockholm, Stockholm, Sweden
| | - Olena Gruzieva
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.,Centre for Occupational and Environmental Medicine, Region Stockholm, Stockholm, Sweden
| | - Marianne van Hage
- Division of Immunology and Allergy, Dept of Medicine, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Antonios Georgelis
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.,Centre for Occupational and Environmental Medicine, Region Stockholm, Stockholm, Sweden
| | - Anna Bergström
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.,Centre for Occupational and Environmental Medicine, Region Stockholm, Stockholm, Sweden
| | - Inger Kull
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.,Dept of Clinical Science and Education, Södersjukhuset, Karolinska Institutet, Stockholm, Sweden.,Sachs' Children and Youth Hospital, Södersjukhuset, Stockholm, Sweden
| | - Anders Lindén
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.,Dept of Respiratory Medicine and Allergy, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Erik Melén
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden .,Dept of Clinical Science and Education, Södersjukhuset, Karolinska Institutet, Stockholm, Sweden.,Sachs' Children and Youth Hospital, Södersjukhuset, Stockholm, Sweden
| |
Collapse
|
29
|
Agusti A, Breyer-Kohansal R, Faner R. Transitioning from infancy to adulthood: a black box full of opportunities. Eur Respir J 2021; 57:57/3/2003997. [PMID: 33664098 DOI: 10.1183/13993003.03997-2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 11/02/2020] [Indexed: 01/12/2023]
Affiliation(s)
- Alvar Agusti
- Respiratory Institute, Hospital Clinic, University of Barcelona, Barcelona, Spain .,Institut d'Investigacions BIomediques August Pi I Sunyer (IDIBAPS), Barcelona, Spain.,CIBER Enfermedades Respiratorias, Instituto Carlos III, Barcelona, Spain
| | - Robab Breyer-Kohansal
- Dept for Respiratory and Critical Care Medicine, Clinic Penzing, Vienna, Austria.,Ludwig Boltzmann Institute for Lung Health, Vienna, Austria
| | - Rosa Faner
- Institut d'Investigacions BIomediques August Pi I Sunyer (IDIBAPS), Barcelona, Spain.,CIBER Enfermedades Respiratorias, Instituto Carlos III, Barcelona, Spain
| |
Collapse
|
30
|
Agustí A, Vogelmeier C, Faner R. COPD 2020: changes and challenges. Am J Physiol Lung Cell Mol Physiol 2020; 319:L879-L883. [PMID: 32964724 DOI: 10.1152/ajplung.00429.2020] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Alvar Agustí
- Respiratory Institute, Hospital Clinic, University of Barcelona, Barcelona, Spain.,CIBER Enfermedades Respiratorias, Barcelona, Spain.,Chair of the Board of Directors, Global Initiative for Chronic Obstructive Lung Disease (GOLD), Fontana, Wisconsin
| | - Claus Vogelmeier
- Department of Medicine, Pulmonary and Critical Care Medicine, University of Marburg, Member of the German Center for Lung Research (DZL), Marburg, Germany.,Chair of the Science Committee, Global Initiative for Chronic Obstructive Lung Disease (GOLD), Fontana, Wisconsin
| | - Rosa Faner
- CIBER Enfermedades Respiratorias, Barcelona, Spain
| |
Collapse
|
31
|
Agusti A, Alcazar B, Cosio B, Echave JM, Faner R, Izquierdo JL, Marin JM, Soler-Cataluña JJ, Celli B. Time for a change: anticipating the diagnosis and treatment of COPD. Eur Respir J 2020; 56:56/1/2002104. [DOI: 10.1183/13993003.02104-2020] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 06/15/2020] [Indexed: 01/12/2023]
|