1
|
Li Y, Yan F, Jiang L, Zhen W, Li X, Wang H. Epidemiological trends and risk factors of chronic obstructive pulmonary disease in young individuals based on the 2021 global burden of disease data (1990-2021). BMC Pulm Med 2025; 25:174. [PMID: 40221711 PMCID: PMC11993973 DOI: 10.1186/s12890-025-03630-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Accepted: 03/27/2025] [Indexed: 04/14/2025] Open
Abstract
OBJECTIVE Recent studies have shown that chronic obstructive pulmonary disease (COPD) in young individuals cannot be ignored. This study aims to investigate the burden of COPD and its associated risk factors in individuals aged 15 to 49 years, with a particular focus on health inequities across different levels of socioeconomic development. METHODS By analyzing data from the Global Burden of Disease (GBD) 2021, we utilized statistical methods such as Joinpoint regression, frontier analysis, and health inequality analysis to evaluate the changes in the age-standardized disability-adjusted life year (DALY) rates (ASDR) and incidence rates (ASIR) of COPD among the global population aged 15-49 years from 1990 to 2021. We specifically examined the disparities in health across countries and regions with varying levels of socioeconomic development. Key risk factors, including particulate matter pollution, smoking, and occupational exposure, were analyzed. RESULTS The number of COPD cases among young people globally has significantly increased.While the global ASDR and ASIR of COPD in the 15-49 age group showed an overall declining trend, the burden of COPD remained high in low Sociodemographic Index (SDI) regions and there were significant health inequalities between countries. Particulate matter pollution (41.79%), smoking (19.81%), and occupational exposure (11.73%) were identified as the primary contributors to the burden of COPD in younger individuals. In low SDI regions, particulate matter pollution had a particularly significant impact, accounting for 58.65% of attributable proportion of DALYs, and remained at a persistently high level. Smoking continued to contribute significantly to the burden of COPD in high-income regions, notably in North America, where smoking accounted for 34.26% of DALYs in 2021. CONCLUSION Although there is a global downward trend in the burden of COPD among young people, significant health inequities persist in low SDI regions. The findings emphasize the need for more effective public health activities targeting younger populations and low SDI countries and regions, particularly in improving air quality, reducing smoking, and mitigating occupational exposures. CLINICAL TRIAL NUMBER Not applicable.
Collapse
Affiliation(s)
- Yaolin Li
- The Third People's Hospital of Chengdu, Chengdu, Sichuan, China
| | - Fangtao Yan
- The Third People's Hospital of Chengdu, Chengdu, Sichuan, China
| | - Lixiang Jiang
- The 3rd Affiliated Hospital of Chengdu Medical College, Pidu District People's Hospital, Chengdu, China
| | - Wang Zhen
- The Third People's Hospital of Chengdu, Chengdu, Sichuan, China
| | - Xiayahu Li
- Chengdu Second's People Hospital, Chengdu, China.
| | - Huiqin Wang
- Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 611731, China.
| |
Collapse
|
2
|
Luo Z, Liao G, Meng M, Huang X, Liu X, Wen W, Yue T, Yu W, Wang C, Jiang Y. The Causal Relationship Between Gut and Skin Microbiota and Chronic Obstructive Pulmonary Disease:A Bidirectional Two-Sample Mendelian Randomization Analysis. Int J Chron Obstruct Pulmon Dis 2025; 20:709-722. [PMID: 40115862 PMCID: PMC11922780 DOI: 10.2147/copd.s494289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 03/09/2025] [Indexed: 03/23/2025] Open
Abstract
Background Recently, numerous studies have explored the potential impact of gut microbiota on Chronic Obstructive Pulmonary Disease (COPD). However, the causal relationship between skin microbiota and COPD, as well as the differences and similarities between the relationships of gut microbiota and COPD, has not been thoroughly studied. Methods We conducted a comprehensive two-sample Mendelian randomization (MR) analysis to investigate the relationships between gut and skin microbiota and COPD. The inverse variance weighted (IVW) method was used as the primary approach. MR-Egger, weighted median, and MR-PRESSO methods were used as supplementary approaches. Various sensitivity and stability analyses were conducted to validate the results. Genetic variations of gut microbiota were obtained from the FR02 cohort study. Genetic variations of skin microbiota were derived from the KORA FF4 and PopGen cohorts, with a total of 1,656 skin samples. GWAS data for COPD were obtained from the FinnGen consortium, including 18,266 COPD cases and 311,286 controls from European cohorts. Results The results of IVW method of MR analysis showed that 10 gut microbiotas and 4 skin microbiotas were negatively associated with COPD [p < 0.05, odds ratio (OR) < 1]; 3 gut microbiotas and 6 skin microbiotas were positively associated with COPD (p < 0.05, OR > 1). None of them were heterogeneous or horizontally pleiotropic (p > 0.05) or reverse causality. Conclusion This study revealed the causal relationships between gut and skin microbiota and COPD, offering fresh perspectives for the prevention, diagnosis, and management of COPD.
Collapse
Affiliation(s)
- Zhiyan Luo
- Department of Respiratory and Critical Care Medicine, Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Shenzhen, People's Republic of China
- The First Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, People's Republic of China
| | - Gang Liao
- Department of Respiratory and Critical Care Medicine, Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Shenzhen, People's Republic of China
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, People's Republic of China
- Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, People's Republic of China
| | - Miaodi Meng
- The First Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, People's Republic of China
| | - Xiufang Huang
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, People's Republic of China
| | - Xiaohong Liu
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, People's Republic of China
| | - Wujin Wen
- Department of Respiratory and Critical Care Medicine, Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Shenzhen, People's Republic of China
| | - Tiegang Yue
- Department of Respiratory and Critical Care Medicine, Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Shenzhen, People's Republic of China
| | - Weifeng Yu
- Department of Respiratory and Critical Care Medicine, Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Shenzhen, People's Republic of China
| | - Changjun Wang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, People's Republic of China
- Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, People's Republic of China
| | - Yong Jiang
- Department of Respiratory and Critical Care Medicine, Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Shenzhen, People's Republic of China
| |
Collapse
|
3
|
Mulshine JL, Pyenson B, Healton C, Aldige C, Avila RS, Blum T, Cham M, de Koning HJ, Fain SB, Field JK, Flores R, Giger ML, Gipp I, Grannis FW, Gratama JWC, Kazerooni EA, Kelly K, Lancaster HL, Montuenga L, Myers KJ, Naghavi M, Osarogiagbon R, Pastorino U, Reeves AP, Rizzo A, Ross S, Schneider V, Seijo LM, Shaham D, Silva M, Smith R, Taioli E, Ten Haaf K, van der Aalst CM, Viola L, Vogel-Claussen J, Walstra ANH, Wu N, Yang PC, Yip R, Yankelevitz DF, Henschke CI, Oudkerk M. Paradigm shift in early detection: Lung cancer screening to comprehensive CT screening. Eur J Cancer 2025; 218:115264. [PMID: 39904127 DOI: 10.1016/j.ejca.2025.115264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 01/22/2025] [Accepted: 01/24/2025] [Indexed: 02/06/2025]
Abstract
Large-scale lung cancer screening implementation combined with improvements in early detection techniques for three major tobacco-related diseases presents a rare opportunity to markedly improve population health outcomes for millions of people. Chest CT enables routine detection of early lung cancer as well as characterizing coronary calcium and detecting early emphysema in the course of lung cancer screening. Integrated preventive care centered on comprehensive chest CT screening has the potential to bring large benefits across co-morbid diseases with a common etiology. The current one-disease/ silo paradigm of medical practice is an obstacle to maximizing chest CT screening's benefits. The large potential for improved health outcomes across the world demands careful public health, quality assurance, and health policy considerations. A systematic analysis of imaging and health data from ongoing chest CT screening could accelerate this paradigm shift through sustained optimization of screening detection, quantitation and management for the three most lethal tobacco-related co-morbidities. To coordinate this effort to advance progress with implementing the full benefit of comprehensive chest CT screening, a new multi- disciplinary professional and advocacy consortium has been developed to foster collaboration to realize the future of multi-disease chest CT screening.
Collapse
Affiliation(s)
- James L Mulshine
- Department of Internal Medicine, Rush University, Chicago, IL, USA; Center for Healthy Aging, Rush University, 1700 W van Buren St Suite 245, Chicago, IL 60612, USA.
| | | | | | | | | | - Torsten Blum
- The Helios Klinikum Emil von Behring, Berlin, Germany.
| | - Matthew Cham
- Department of Radiology, University of Washington, Seattle, WA, USA.
| | | | - Sean B Fain
- Department of Radiology, University of Iowa, Iowa City, IA, USA.
| | - John K Field
- Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, United Kingdom.
| | - Raja Flores
- Mount Sinai Health System, New York, NY, USA.
| | | | - Ilya Gipp
- General Electric Healthcare, Atlanta, GA, USA.
| | | | | | - Ella A Kazerooni
- Department of Radiology, Michigan Medicine/University of Michigan, Ann Arbor, MI, USA.
| | - Karen Kelly
- International Association for the Study of Lung Cancer, Denver, CO, USA.
| | - Harriet L Lancaster
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, the Netherlands.
| | - Luis Montuenga
- Universidad de Navarra, CIMA, CIBERONC, and IdisNa, Pamplona, Spain.
| | - Kyle J Myers
- Hagler Institute for Advanced Study, Texas A&M University, College Station, TX, USA.
| | | | | | - Ugo Pastorino
- Surgery Unit, Fondazione IRCCS Istituto Nazionale Dei Tumori, Milan, Italy.
| | - Anthony P Reeves
- School of Electrical and Computer Engineering, Cornell University, Ithaca, NY, USA.
| | | | | | | | - Luis M Seijo
- Pulmonary Department, Clinica Universidad de Navarra, Madrid, Spain.
| | - Dorith Shaham
- Hadassah Medical Center and Faculty of Medicine, Hebrew University of Jerusalem, Israel; Department of Radiology, Hebrew University of Jerusalem, Israel.
| | - Mario Silva
- Scienze Radiologische, Department of Medicine and Surgery (DiMeC), University of Parma, Parma, IT, Department of Radiology, and University of Massachusetts Medical Center, Worcester, MA, USA.
| | | | | | - Kevin Ten Haaf
- Department of Public Health, Erasmus MC-University Medical Center Rotterdam, Rotterdam, the Netherlands.
| | | | - Lucia Viola
- Internal Medicine, Fundación Neumológica, Colombiana, Bogotá, Colombia.
| | - Jens Vogel-Claussen
- Institute for Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany.
| | | | - Ning Wu
- National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences, Beijing, China.
| | | | - Rowena Yip
- Mount Sinai Health System, New York, NY, USA.
| | | | | | | |
Collapse
|
4
|
Zheng HY, Zhang HY, Wu KH, Cai WJ, Li ZZ, Song XY. Efficacy of nutrient supplements in managing malnutrition and sarcopenia in Chronic Obstructive Pulmonary Disease (COPD) patients: a protocol for systematic review and meta-analysis. Syst Rev 2025; 14:58. [PMID: 40069756 PMCID: PMC11895150 DOI: 10.1186/s13643-025-02801-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Accepted: 02/17/2025] [Indexed: 03/15/2025] Open
Abstract
BACKGROUND COPD patients suffering from malnutrition or sarcopenia often incur higher healthcare costs and experience adverse clinical outcomes. Despite this, the effectiveness of nutrient supplements in this population remains uncertain. METHODS AND ANALYSIS Two reviewers will independently search seven databases-PubMed, Embase, Web of Science, China National Knowledge Infrastructure, Wanfang, Chinese Biomedical Literature Database, and the Cochrane Library-for randomized controlled trials (RCTs) published before August 31, 2024. These RCTs should compare the effects of nutrient supplements against either a standard diet or placebo supplements in patients with COPD. The risk of bias in the included studies will be evaluated using the modified Jadad scale and the Cochrane Collaboration's risk of bias tool. Data synthesis will be conducted using RevMan software. Trial sequential analysis (TSA) will be applied to the primary outcomes. Additionally, subgroup and sensitivity analyses will be performed to assess the robustness of the findings. ETHICS AND DISSEMINATION Ethical approval is not required because this study is a secondary analysis of existing data. We will disseminate the findings through peer- reviewed publications. SYSTEMATIC REVIEW REGISTRATION CRD42024585694. STRENGTHS AND LIMITATIONS OF THIS STUDY This systematic review and meta-analysis provides a thorough assessment of the efficacy of nutrient supplements in COPD patients, covering a wide range of studies. ·The use of the modified Jadad scale and the Cochrane Collaboration's risk of bias tool ensures a robust evaluation of study quality. Additionally, trial sequential analysis and subgroup analyses are employed to enhance the robustness of the findings. ·The credibility of the evidence may be compromised due to the potential for uncertain study quality and limited sample sizes in some included trials.
Collapse
Affiliation(s)
- Hong-Yan Zheng
- Department of Respiratory and Critical Care Medicine, the First College of Clinical Medicine Science, Chinaaq , Three Gorges University, Yichang, 443003, People's Republic of China
- Department of Respiratory and Critical Care Medicine, Yichang Central People's Hospital, Yichang, 443003, People's Republic of China
- Clinical Medical Research Center for Precision Diagnosis and Treatment of Lung Cancer and Management of Advanced Cancer Pain of Hubei Province, Hubei, China
| | - Hao-Yu Zhang
- Department of Respiratory and Critical Care Medicine, the First College of Clinical Medicine Science, Chinaaq , Three Gorges University, Yichang, 443003, People's Republic of China
- Department of Respiratory and Critical Care Medicine, Yichang Central People's Hospital, Yichang, 443003, People's Republic of China
- Clinical Medical Research Center for Precision Diagnosis and Treatment of Lung Cancer and Management of Advanced Cancer Pain of Hubei Province, Hubei, China
| | - Kuang-Hao Wu
- Department of Respiratory and Critical Care Medicine, the First College of Clinical Medicine Science, Chinaaq , Three Gorges University, Yichang, 443003, People's Republic of China
- Department of Respiratory and Critical Care Medicine, Yichang Central People's Hospital, Yichang, 443003, People's Republic of China
- Clinical Medical Research Center for Precision Diagnosis and Treatment of Lung Cancer and Management of Advanced Cancer Pain of Hubei Province, Hubei, China
| | - Wen-Jie Cai
- Department of Respiratory and Critical Care Medicine, the First College of Clinical Medicine Science, Chinaaq , Three Gorges University, Yichang, 443003, People's Republic of China
- Department of Respiratory and Critical Care Medicine, Yichang Central People's Hospital, Yichang, 443003, People's Republic of China
- Clinical Medical Research Center for Precision Diagnosis and Treatment of Lung Cancer and Management of Advanced Cancer Pain of Hubei Province, Hubei, China
| | - Zhou-Zhou Li
- Department of Respiratory and Critical Care Medicine, the First College of Clinical Medicine Science, Chinaaq , Three Gorges University, Yichang, 443003, People's Republic of China
- Department of Respiratory and Critical Care Medicine, Yichang Central People's Hospital, Yichang, 443003, People's Republic of China
- Clinical Medical Research Center for Precision Diagnosis and Treatment of Lung Cancer and Management of Advanced Cancer Pain of Hubei Province, Hubei, China
| | - Xin-Yu Song
- Department of Respiratory and Critical Care Medicine, the First College of Clinical Medicine Science, Chinaaq , Three Gorges University, Yichang, 443003, People's Republic of China.
- Department of Respiratory and Critical Care Medicine, Yichang Central People's Hospital, Yichang, 443003, People's Republic of China.
- Clinical Medical Research Center for Precision Diagnosis and Treatment of Lung Cancer and Management of Advanced Cancer Pain of Hubei Province, Hubei, China.
| |
Collapse
|
5
|
Mulshine JL, Avila RS, Sylva M, Aldige C, Blum T, Cham M, de Koning HJ, Fain SB, Field J, Flores R, Giger ML, Gipp I, Grannis FW, Gratama JWC, Healton C, Kazerooni EA, Kelly K, Lancaster HL, Montuenga LM, Myers KJ, Naghavi M, Osarogiagbon R, Pastorino U, Pyenson BS, Reeves AP, Rizzo A, Ross S, Schneider V, Seijo LM, Shaham D, Smith R, Taoli E, Tenhaaf, van der Aalst CM, Viola L, Vogel-Claussen J, Walstra ANH, Wu N, Yang PC, Yip R, Oudkerk M, Henschke CI, Yankelelvitz DF. AI integrations with lung cancer screening: Considerations in developing AI in a public health setting. Eur J Cancer 2025; 220:115345. [PMID: 40090215 DOI: 10.1016/j.ejca.2025.115345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 02/25/2025] [Accepted: 03/03/2025] [Indexed: 03/18/2025]
Abstract
Lung cancer screening implementation has led to expanded imaging of the chest in older, tobacco-exposed populations. Growing numbers of screening cases are also found to have CT-detectable emphysema or elevated levels of coronary calcium, indicating the presence of coronary artery disease. Early interventions based on these additional findings, especially with coronary calcium, are emerging and follow established protocols. Given the pace of diagnostic innovation and the potential public health impact, it is timely to review issues in developing useful chest CT screening infrastructure as chest CT screening will soon involve millions of participants worldwide. Lung cancer screening succeeds because it detects curable, early primary lung cancer by characterizing and measuring changes in non-calcified, lung nodules in the size-range from 3mm to 15 mm in diameter. Therefore, close attention to imaging methodology is essential to lung screening success and similar image quality issues are required for reliable quantitative characterization of early emphysema and coronary artery disease. Today's emergence of advanced image analysis using artificial intelligence (AI) is disrupting many aspects of medical imaging including chest CT screening. Given these emerging technological and volume trends, a major concern is how to balance the diverse needs of parties committed to building AI tools for precise, reproducible, and economical chest CT screening, while addressing the public health needs of screening participants receiving this service. A new consortium, the Alliance for Global Implementation of Lung and Cardiac Early Disease Detection and Treatment (AGILEDxRx) is committed to facilitate broad, equitable implementation of multi-disciplinary, high quality chest CT screening using advanced computational tools at accessible cost.
Collapse
Affiliation(s)
- James L Mulshine
- Department of Internal Medicine, Rush University, Chicago, IL, USA; Center for Healthy Aging, Rush University, 1700 W van Buren St Suite 245, Chicago, IL 60612, USA.
| | | | - Mario Sylva
- Scienze Radiologische, Department of Medicine and Surgery (DiMeC), University of Parma, Parma, IT, Department of Radiology, University of Massachusetts Medical Center, Worcester, MA, USA.
| | | | - Torsten Blum
- The Helios Klinikum Emil von Behring, Berlin, Germany.
| | - Matthew Cham
- Department of Radiology, University of Washington, Seattle, WA, USA.
| | | | - Sean B Fain
- Department of Radiology, University of Iowa, Iowa City, IA, USA.
| | - John Field
- Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, UK.
| | - Raja Flores
- Mount Sinai Health System, New York, NY, USA.
| | | | - Ilya Gipp
- General Electric Healthcare, Atlanta, GA, USA.
| | | | | | - Cheryl Healton
- School of Global Public Health, New York University, New York, USA.
| | - Ella A Kazerooni
- Department of Radiology, Michigan Medicine/University of Michigan, Ann Arbor, MI, USA.
| | - Karen Kelly
- International Association for the Study of Lung Cancer, Denver, CO, USA.
| | - Harriet L Lancaster
- Department of Epidemiology, University of Groningen, University Medical Center, Groningen, the Netherlands.
| | - Luis M Montuenga
- Universidad de Navarre, CIMA, CIBERONC and IdisNa, Pamplona, Spain.
| | - Kyle J Myers
- Hagler Institute for Advanced Study, Texas A&M University, College Station, TX, USA
| | | | | | - Ugo Pastorino
- Thoracic Surgery Unit, Fondazione IRCCS Istituto Nazionale Dei Tumori, Milan, Italy.
| | | | - Anthony P Reeves
- School of Electrical and Computer Engineering, Cornell University, Ithaca, NY, USA.
| | | | | | | | - Luis M Seijo
- Pulmonary Department, Clinica Universidad de Navarra, Madrid, Spain.
| | - Dorith Shaham
- Department of Radiology, Hebrew University of Jerusalem, Israel; Hadassah Medical Center and Faculty of Medicine, Hebrew University of Jerusalem, Israel.
| | | | | | - Tenhaaf
- Department of Public Health, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, the Netherlands.
| | | | - Lucia Viola
- Internal Medicine, Fundación Neumológica, Colombiana, Bogotá, Colombia.
| | - Jens Vogel-Claussen
- Institute for Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany.
| | | | - Ning Wu
- National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences, Beijing, China.
| | | | - Rowena Yip
- Mount Sinai Health System, New York, NY, USA.
| | | | | | | |
Collapse
|
6
|
Peng C, Chen Z, Zhou H, Dai C, Yuan H, Gao Y, Wang F, Liang Z. Quantitative CT and COPD: cluster analysis reveals five distinct subtypes with varying exacerbation risks. BMC Pulm Med 2025; 25:92. [PMID: 40011880 DOI: 10.1186/s12890-025-03562-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 02/19/2025] [Indexed: 02/28/2025] Open
Abstract
BACKGROUND The heterogeneity of chronic obstructive pulmonary disease (COPD) is increasingly recognized. To characterize the heterogeneity of COPD, we aimed to identify subtypes related to quantitative CT by using principal component analysis (PCA) and cluster analysis. METHODS The data of 1879 participants in the SPIROMICS study were obtained from the NHLBI Biologic Specimen and Data Repository Information Coordinating Center. A combination of PCA and k-means clustering was used to analyze the data from these participants in the SPIROMICS study. We randomly split the samples into training and validation sets. Clusters were evaluated for their relationship with acute exacerbation risk throughout the entire follow-up period. The results of the training set were confirmed in the validation set. To avoid sampling errors, we conducted 10 random sampling cycles. Normalized mutual information (NMI) was applied in every cycle to evaluate the stability of clustering. RESULTS We identified five clusters related to quantitative CT characterized as follows: (1) male-dominated low disease impact cluster, (2) obesity with relatively high symptom burden cluster, (3) airway wall lesion cluster, (4) lung upper region zone-predominant emphysema cluster, (5) severe emphysema cluster. There are significant differences in acute exacerbation risk among these five clusters. CONCLUSIONS Cluster analysis identified 5 clusters related to quantitative CT of all participants in the SPIROMICS cohort with significant differences in baseline characteristics and acute exacerbation risk. The stability of clustering results was validated through NMI in 10 sampling cycles. In addition, dimensionality reduction results showed high reproducibility in different studies.
Collapse
Affiliation(s)
- Chusheng Peng
- Department of Clinical Medicine, Guangzhou Medical University, Guangzhou, 511436, China
| | - Zizheng Chen
- Department of Clinical Medicine, Guangzhou Medical University, Guangzhou, 511436, China
- Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, 151Yanjiang Road, Yuexiu District, Guangzhou, 510120, Guangdong, China
| | - Haobin Zhou
- Department of Clinical Medicine, Guangzhou Medical University, Guangzhou, 511436, China
| | - Chaoyue Dai
- Department of Clinical Medicine, Guangzhou Medical University, Guangzhou, 511436, China
| | - Haolei Yuan
- Department of Clinical Medicine, Guangzhou Medical University, Guangzhou, 511436, China
| | - Yuan Gao
- Department of Clinical Medicine, Guangzhou Medical University, Guangzhou, 511436, China
| | - Fengyan Wang
- Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, 151Yanjiang Road, Yuexiu District, Guangzhou, 510120, Guangdong, China
| | - Zhenyu Liang
- Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, 151Yanjiang Road, Yuexiu District, Guangzhou, 510120, Guangdong, China.
| |
Collapse
|
7
|
He Z, Cao B, Liu K, Wei Q. Skeletal Muscle Function in Relation to COPD Severity and Its Predictive Significance for Disease Progression. Int J Chron Obstruct Pulmon Dis 2025; 20:389-397. [PMID: 40008111 PMCID: PMC11853920 DOI: 10.2147/copd.s510425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 02/17/2025] [Indexed: 02/27/2025] Open
Abstract
Purpose To compare skeletal muscle function levels in different COPD severities and explore their relationship with COPD severity and progression. Patients and Methods The study included COPD patients from the First People's Hospital of Shuangliu District, Chengdu between May 2021 and May 2022, categorized into mild, moderate, severe and very severe groups based on FEV1%. Skeletal muscle function (quadriceps strength, respiratory muscle strength, 6MWD) was compared among these groups. Patients were followed up to assess disease progression, and logistic regression was used to analyze the predictive value of skeletal muscle function for COPD progression. Results Among the 400 subjects, respiratory muscle strength, quadriceps strength, and 6MWD were all higher in the nonsmoking group than in the smoking group, with the mild group better than the moderate group, the moderate group better than the severe group, males stronger than females, the MMRC score ≤ 2 group better than the >2 group, and strength greater in the age ≤ 70 group than in the age >70 group. The mild group had a higher 6MWD than the moderate group, the moderate group was better than the severe group, non-smokers had a higher 6MWD than smokers, and the difference between males and females was greater with statistical significance. There are differences in quadriceps strength, respiratory strength, and 6MWD within the progression group. Logistic regression analysis showed that respiratory muscle strength, quadriceps strength, 6MWD, and COPD severity were risk factors for COPD progression (P < 0.05). Conclusion COPD patients show skeletal muscle dysfunction that worsens with disease severity. Respiratory muscle strength, quadriceps strength, 6MWD, and COPD severity predict COPD prognosis.
Collapse
Affiliation(s)
- Zemin He
- Department of Thoracic Surgery, The First People’s Hospital of Shuangliu District, Chendu, Sichuan Province, People’s Republic of China
| | - Boxiong Cao
- Department of Thoracic Surgery, The First People’s Hospital of Shuangliu District, Chendu, Sichuan Province, People’s Republic of China
| | - Keting Liu
- Department of Neurology, Chengdu Seventh People’s Hospital, Chendu, Sichuan Province, People’s Republic of China
| | - Qiang Wei
- Department of Thoracic Surgery, The First People’s Hospital of Shuangliu District, Chendu, Sichuan Province, People’s Republic of China
| |
Collapse
|
8
|
Perret JL, Bui DS, Pistenmaa C, Vicendese D, Khan SS, Han MK, San José Estépar R, Lowe AJ, Lodge CJ, Labaki WW, Pham JV, Idrose NS, Senaratna CV, Tan DJ, Hamilton GS, Thompson BR, Munsif M, Arynchyn A, Jacobs DR, Abramson MJ, Walters EH, Washko GR, Kalhan R, Dharmage SC. Associations between life-course FEV 1/FVC trajectories and respiratory symptoms up to middle age: analysis of data from two prospective cohort studies. THE LANCET. RESPIRATORY MEDICINE 2025; 13:130-140. [PMID: 39615504 PMCID: PMC11802298 DOI: 10.1016/s2213-2600(24)00265-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 07/10/2024] [Accepted: 08/12/2024] [Indexed: 02/08/2025]
Abstract
BACKGROUND Life-course lung function trajectories leading to airflow obstruction, as measured by impaired FEV1/FVC (forced vital capacity), precede the onset of chronic obstructive pulmonary disease (COPD). We aimed to investigate whether individuals on impaired FEV1/FVC trajectories have an increased burden of respiratory symptoms, including those who do not meet the spirometric criteria for COPD. METHODS We analysed serial life-course data from two population-based cohort studies separately, which included respiratory symptoms and spirometry: the Tasmanian Longitudinal Health Study (TAHS, Australia) cohort was recruited at age 6-7 years and followed up until middle age (mean age 53 years; range 51-55); and the Coronary Artery Risk Development in Young Adults (CARDIA, USA) cohort was recruited at a mean age of 25 years (range 18-30) and followed up to a mean age of 55 years (range 47-64). Participants' symptom profiles at ages 53 and 55 years were derived by latent class analysis. Symptom profiles were compared across pre-bronchodilator FEV1/FVC trajectories derived by group-based modelling, then restricted to those without COPD defined by post-bronchodilator airflow obstruction (FEV1/FVC <5th percentile) at ages 51-55 years and 47-64 years. FINDINGS Six FEV1/FVC trajectories previously derived for TAHS were replicated in CARDIA. Optimal models identified five symptom profiles in TAHS (n=2421) and six in CARDIA (n=3153). For both cohorts, the most impaired FEV1/FVC trajectory (early low, rapid decline in TAHS; low peak, rapid decline in CARDIA) was associated with predominant wheeze (multinomial odds ratio [mOR] 6·71 [95% CI 4·10-10·90] in TAHS and 9·90 [4·52-21·70] in CARDIA) and nearly all respiratory symptoms (4·95 [2·52-9·74] and 14·80 [5·97-36·60]) at age 51-55 years in TAHS and age 47-64 years in CARDIA, compared with the average trajectory. Among individuals belonging to the three most impaired trajectories, the associations with predominant wheeze increased with worsening FEV1/FVC impairment and persisted when considering only those without spirometry-defined COPD. Additionally, for those belonging to the two rapid decline trajectories, both wheezing and usual phlegm or bronchitis were reported by 54 (20%) of 265 participants younger than 14 years in TAHS and by 31 (25%) of 123 participants aged 30 years or younger in CARDIA. INTERPRETATION In two independent cohorts that collected similar data, people on impaired FEV1/FVC trajectories often had a longstanding history of both wheeze and phlegm or bronchitis, and wheeze was the predominant symptom in individuals aged 47-64 years among those who had not already progressed to COPD. FUNDING National Health and Medical Research Council (Australia); The University of Melbourne; Clifford Craig Medical Research Trust; Victorian, Queensland & Tasmanian Asthma Foundations; Royal Hobart Hospital Research Foundation; Helen MacPherson Smith Trust; GlaxoSmithKline; National Heart, Lung, and Blood Institute of the US National Institutes of Health.
Collapse
Affiliation(s)
- Jennifer L Perret
- Allergy and Lung Health Unit, Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, VIC, Australia; Department of Respiratory and Sleep Medicine, Austin Hospital, Melbourne, VIC, Australia; Institute for Breathing and Sleep (IBAS), Melbourne, VIC, Australia.
| | - Dinh S Bui
- Allergy and Lung Health Unit, Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, VIC, Australia
| | - Carrie Pistenmaa
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Don Vicendese
- Allergy and Lung Health Unit, Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, VIC, Australia; School of Computing, Engineering and Mathematical Sciences, La Trobe University, Bundoora, VIC, Australia
| | - Sadiya S Khan
- Division of Cardiology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA; Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - MeiLan K Han
- Division of Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, MI, USA
| | | | - Adrian J Lowe
- Allergy and Lung Health Unit, Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, VIC, Australia; Murdoch Childrens Research Institute, Parkville, VIC, Australia
| | - Caroline J Lodge
- Allergy and Lung Health Unit, Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, VIC, Australia; Murdoch Childrens Research Institute, Parkville, VIC, Australia
| | - Wassim W Labaki
- Division of Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Jonathan V Pham
- Allergy and Lung Health Unit, Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, VIC, Australia; Asthma, Allergy and Clinical Immunology (AACI) service, Department of Respiratory Medicine, Alfred Health, Melbourne, VIC, Australia
| | - Nur Sabrina Idrose
- Allergy and Lung Health Unit, Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, VIC, Australia
| | - Chamara V Senaratna
- Allergy and Lung Health Unit, Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, VIC, Australia
| | - Daniel J Tan
- Allergy and Lung Health Unit, Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, VIC, Australia
| | - Garun S Hamilton
- Monash Lung, Sleep, Allergy and Immunology, Monash Health, Melbourne, VIC, Australia; School of Clinical Sciences, Monash University, Melbourne, VIC, Australia
| | - Bruce R Thompson
- Melbourne School of Health Science, The University of Melbourne, Melbourne, VIC, Australia
| | - Maitri Munsif
- Department of Respiratory and Sleep Medicine, Austin Hospital, Melbourne, VIC, Australia; Institute for Breathing and Sleep (IBAS), Melbourne, VIC, Australia
| | - Alexander Arynchyn
- School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - David R Jacobs
- School of Public Health, University of Minnesota, Minneapolis, MN, USA
| | - Michael J Abramson
- School of Public Health & Preventive Medicine, Monash University, Melbourne, VIC, Australia
| | - E Haydn Walters
- Allergy and Lung Health Unit, Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, VIC, Australia; School of Medicine, University of Tasmania, Hobart, TAS, Australia
| | - George R Washko
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Ravi Kalhan
- Division of Pulmonary and Critical Care Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Shyamali C Dharmage
- Allergy and Lung Health Unit, Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, VIC, Australia; Murdoch Childrens Research Institute, Parkville, VIC, Australia.
| |
Collapse
|
9
|
Jin Q, Zhang Z, Zhou T, Zhou X, Jiang X, Xia Y, Guan Y, Liu S, Fan L. Preserved ratio impaired spirometry: clinical, imaging and artificial intelligence perspective. J Thorac Dis 2025; 17:450-460. [PMID: 39975722 PMCID: PMC11833564 DOI: 10.21037/jtd-24-1582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Accepted: 12/13/2024] [Indexed: 02/21/2025]
Abstract
Preserved ratio impaired spirometry (PRISm) is a pulmonary function pattern characterized by a forced expiratory volume in one second (FEV1) to forced vital capacity ratio greater than 0.70, with an FEV1 that is below 80% of the predicted value, even after the use of bronchodilators. PRISm is considered a form of "Pre-Chronic Obstructive Pulmonary Disease (Pre-COPD)" within the broader scope of COPD. Clinically, it presents with respiratory symptoms and is more commonly observed in individuals with high body mass index, females, and those who are current smokers. Additionally, it is frequently associated with metabolic disorders and cardiovascular diseases. Regarding prognosis, PRISm shows considerable variation, ranging from improvement in lung function to the development of COPD. In this article, we review the epidemiology, comorbidities, and clinical outcomes of PRISm, with a particular emphasis on the crucial role of imaging assessments, especially computed tomography scans and magnetic resonance imaging (MRI) technology, in diagnosing, evaluating, and predicting the prognosis of PRISm. Comprehensive imaging provides a quantitative evaluation of lung volume, density, airways, and vasculature, while MRI technology can directly quantify ventilation function and pulmonary blood flow. We also emphasize the future potential of X-ray technology in this field. Moreover, the article discusses the application of artificial intelligence, including its role in predicting PRISm subtypes and modeling ventilation function.
Collapse
Affiliation(s)
- Qianxi Jin
- Department of Radiology, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Ziwei Zhang
- Department of Radiology, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Taohu Zhou
- Department of Radiology, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Xiuxiu Zhou
- Department of Radiology, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Xin'ang Jiang
- Department of Radiology, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Yi Xia
- Department of Radiology, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Yu Guan
- Department of Radiology, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Shiyuan Liu
- Department of Radiology, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Li Fan
- Department of Radiology, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| |
Collapse
|
10
|
Zhu Y, Shen T, Guo R, Liu K, Cao X, Yang X, Zhang C. Global, regional, and national burden of young COPD, 1990-2021, with forecasts to 2050: a systematic analysis for the global burden of disease study 2021. BMC Public Health 2025; 25:276. [PMID: 39844173 PMCID: PMC11756153 DOI: 10.1186/s12889-025-21414-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 01/10/2025] [Indexed: 01/24/2025] Open
Abstract
BACKGROUND Young chronic obstructive pulmonary disease (COPD) refers to people with COPD between the ages of 20 and 50 years. Current epidemiological studies focus on local geography, and there is a lack of global-level analysis. This study provides in-depth analyses of the disease burden of young COPD at global, regional, and national levels. METHODS This study used the Global Burden of Disease Study 2021 (GBD). The age-standardised prevalence rate (ASPR), age-standardised incidence rate (ASIR), age-standardised death rate (ASDR), and age-standardised disability-adjusted life years (DALYs) rate were used to describe the disease burden. The estimated annual percentage change (EAPC) during the study period was calculated. Joinpoint regression analysis examined the time trend from 1990 to 2021. Annual percentage change (APC) and average annual percentage change (AAPC) were calculated. Risk factors were reported by region and sex. RESULTS In 2021, the global number of young COPD cases was 30,384,539, and the ASPR, ASIR, ASDR, and age-standardised DALYs rates fell slightly. Oceania reported the highest ASPR, ASDR, and age-standardised DALYs rate. High-income North America has the highest ASIR. In 2021, the prevalence, incidence, death, and DALYs rates exhibited similar trends, increasing with age. From 1990 to 2021, both the prevalence and death rates showed a consistent downward trend across all age groups. Joinpoint regression analysis indicated a slight increase in both the ASPR (APC: 0.13; 95% CI: 0.06 to 0.19) and the ASIR (APC: 0.17; 95% CI: 0.10 to 0.24) during the period from 1990 to 1994. The leading DALYs attributable to risk factors for young COPD are household air pollution from solid fuels (20.4%), ambient particulate matter pollution (17.9%), and smoking (13.5%). CONCLUSIONS The global burden of ASPR, ASIR, ASDR, and age-standardised DALYs rates in young COPD has decreased, however, the absolute number of patients has increased. The global burden shows noticeable regional differences, with particularly high burdens observed in Oceania. Improving air quality, promoting smoking cessation, and increasing access to lung function tests, raising awareness of young COPD are key strategies for alleviating the burden of young COPD.
Collapse
Affiliation(s)
- Yi Zhu
- Department of Respiratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Tao Shen
- Department of Respiratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ruixin Guo
- Department of Respiratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ke Liu
- Department of Respiratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiyu Cao
- Department of Respiratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiuli Yang
- Department of Respiratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chuantao Zhang
- Department of Respiratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| |
Collapse
|
11
|
Shen R, Guo Y, Shen C. Quantitative assessment of lung structure changes in low-intensity smokers: a retrospective study in a Chinese male cohort. Quant Imaging Med Surg 2025; 15:287-298. [PMID: 39838995 PMCID: PMC11744156 DOI: 10.21037/qims-24-1171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 11/06/2024] [Indexed: 01/23/2025]
Abstract
Background With an increasing number of smokers who consume fewer cigarettes, it is crucial to understand the lung structure changes of low-intensity smoking. This study aimed to investigate the lung structure changes in low-intensity smokers in a Chinese male cohort. Methods Chest computed tomography (CT) examinations of 465 asymptomatic healthy male participants were divided into non-smoking (n=256), light-smoking (n=84), intermediate-smoking (n=85), and heavy-smoking (n=40) groups. Low-intensity smokers (fewer than 10 cigarettes per day) were included (n=32), and a new group of non-smokers was generated using propensity score matching according to age. Quantitative CT parameters, including the volume of the intrapulmonary vessel (IPVV), the volume of the lung, mean lung density (MLD), the low-attenuation areas below -910 Hounsfield units (LAA-910), and the volume ratio of intrapulmonary vessel to the lung for the total lung and each lobe were measured. Quantitative CT parameters were compared among the four smoking groups and also between the low-intensity smokers and non-smokers. Binary logistic regression was used to determine the independent quantitative CT measurements of smoking intensity. Results Compared with that in non-smokers, the IPVV and the MLD of the total lung and five lobes was significantly higher in light smokers (P<0.05); meanwhile, the LAA-910 of the total lung and five lobes of the light and intermediate smokers were significantly lower (P<0.05). The IPVV of the total lung and five lobes was significantly higher in the low-intensity smoking group (P<0.05). The IPVV of the total lung was the independent factor for discriminating between the non-smokers and light smokers (odds ratio =1.040; 95% confidence interval: 1.027-1.053) and between the non-smokers and low-intensity smokers (odds ratio =1.034; 95% confidence interval: 1.013-1.055). Conclusions CT-quantified measurements of the IPVVs and MLD increased in light and intermediate smokers. The IPVV of the total lung was selected as the independent factor between non-smokers and light smokers and between non-smokers and low-intensity smokers.
Collapse
Affiliation(s)
- Rui Shen
- Department of Positron Emission Tomography/Computed Tomography, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Department of Gastroenterology, Xi’an Chest Hospital, Xi’an, China
| | - Youmin Guo
- Department of Positron Emission Tomography/Computed Tomography, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Cong Shen
- Department of Positron Emission Tomography/Computed Tomography, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
12
|
Vila M, Agustí A, Vestbo J, Celli B, Cosio BG, Silverman EK, Sibila O, Badía JR, Bakke P, Tal-Singer R, MacNee W, Faner R. Contrasting the clinical and biological characteristics of young and old COPD patients. ERJ Open Res 2025; 11:00671-2024. [PMID: 40008176 PMCID: PMC11849125 DOI: 10.1183/23120541.00671-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 08/21/2024] [Indexed: 02/27/2025] Open
Abstract
Background The ECLIPSE study was a large, international, prospective, controlled, observational study that included COPD patients (Global Initiative for Chronic Obstructive Lung Disease (GOLD) grades 2-4), as well as smoking and non-smoking participants with normal spirometry, aged 40-75 years, who were followed-up regularly for 3 years. Here we sought to contrast the clinical and biological characteristics of young COPD versus controls of similar age and older COPD patients included in ECLIPSE. Methods We compared 106 young (<50 years) and 488 old (>70 years) COPD patients, as well as 119 young smokers and 92 nonsmoker controls (<50 years) with normal spirometry. Results Young COPD patients: 1) were more symptomatic than young controls, often reported a family history of chronic bronchitis, emphysema and asthma, as well as a personal history of asthma and bronchitis, and suffered from a similar disease burden to older patients; 2) were at higher risk of substantial forced expiratory volume in 1 s decline over time; and 3) had reduced serum levels of CC16 (a lung-derived anti-inflammatory protein that relates to lung damage) and, at the same time, reduced pro-inflammatory markers compared to older COPD patients. Conclusions Young COPD patients suffer from significant disease burden, display an altered biomarker and disease progression profile reflected by an accelerated risk of lung function decline highlighting the need for early life diagnosis, prevention approaches and treatment.
Collapse
Affiliation(s)
- Marc Vila
- Equip d'Atenció Primària Vic (EAPVIC), Universitat de Vic-Universitat Central de Catalunya, Vic, Spain
- These authors contributed equally
| | - Alvar Agustí
- Respiratory Institute, Hospital Clinic, Barcelona, Spain
- University of Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias, Spain
- Fundació Clinic Recerca Biomedica-Institut d'Investigacions Biomediques August Pi i Sunyer, Barcelona, Spain
- These authors contributed equally
| | - Jørgen Vestbo
- Division of Infection, Immunity, and Respiratory Medicine, The University of Manchester, Manchester, UK
- Copenhagen Respiratory Research, Gentofte Hospital, Hellerup, Denmark
| | | | - Borja G. Cosio
- Hospital Universitario Son Espases-IdISBa, Palma de Mallorca, Spain
| | - Edwin K. Silverman
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Oriol Sibila
- Respiratory Institute, Hospital Clinic, Barcelona, Spain
- University of Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias, Spain
- Fundació Clinic Recerca Biomedica-Institut d'Investigacions Biomediques August Pi i Sunyer, Barcelona, Spain
| | - Joan Ramon Badía
- Respiratory Institute, Hospital Clinic, Barcelona, Spain
- University of Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias, Spain
- Fundació Clinic Recerca Biomedica-Institut d'Investigacions Biomediques August Pi i Sunyer, Barcelona, Spain
| | - Per Bakke
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Ruth Tal-Singer
- Global Allergy and Airways Patient Platform, Vienna, Austria
| | | | - Rosa Faner
- University of Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias, Spain
- Fundació Clinic Recerca Biomedica-Institut d'Investigacions Biomediques August Pi i Sunyer, Barcelona, Spain
| |
Collapse
|
13
|
Zhou Y, Ampon MR, Abramson MJ, James AL, Maguire GP, Wood-Baker R, Johns DP, Marks GB, Reddel HK, Toelle BG. Prevalence and characteristics of adults with preserved ratio impaired spirometry (PRISm): Data from the BOLD Australia study. Chron Respir Dis 2025; 22:14799731241312687. [PMID: 39844530 PMCID: PMC11755527 DOI: 10.1177/14799731241312687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 11/27/2024] [Accepted: 12/10/2024] [Indexed: 01/24/2025] Open
Abstract
Background: Individuals with Preserved Ratio Impaired Spirometry (PRISm), defined as FEV1/FVC ≥0.7 and FEV1 <80% predicted, are at higher risk of developing COPD. However, data for Australian adults are limited. We aimed to describe prevalence of PRISm and its relationship with clinical characteristics in Australia. Method: Data from the Burden of Lung Disease (BOLD) Australia study of randomly selected adults aged ≥40 years from six sites was classified into airflow limitation, PRISm, or normal spirometry groups. Demographic, clinical characteristics, and lung function were compared between groups. Results: Of the study sample (n = 3518), 387 (11%) had PRISm, 549 (15.6%) had airflow limitation, and 2582 (73.4%) had normal spirometry. PRISm was more common in Indigenous Australian adults. Adults with PRISm had more frequent respiratory symptoms, more comorbidities, greater health burden and poorer quality of life than those with normal spirometry. Pre- and post-bronchodilator FEV1 and FVC were lower in adults with PRISm than those with airflow limitation. Adults with PRISm were less likely to use respiratory medicine than those with airflow limitation (OR = 0.56, 95% CI 0.38-0.81). Conclusions: PRISm was present in 11% of adults in this study and they had similar respiratory symptoms and health burden as adults with airflow limitation.
Collapse
Affiliation(s)
- Yijun Zhou
- The Woolcock Institute of Medical Research, The University of Sydney, Sydney, Australia
| | - Maria R Ampon
- Australian Centre for Airways Disease Monitoring, The Woolcock Institute of Medical Research, The University of Sydney, Glebe, Australia
| | - Michael J Abramson
- School of Public Health & Preventive Medicine, Monash University, Melbourne, Australia
| | | | | | - Richard Wood-Baker
- Melbourne School of Population and Global Health, University of Melbourne, Melbourne, Australia
| | - David P Johns
- Melbourne School of Population and Global Health, University of Melbourne, Melbourne, Australia
| | - Guy B Marks
- The Woolcock Institute of Medical Research, The University of Sydney, Sydney, Australia
- South Western Sydney Clinical School, University of New South Wales, Sydney, Australia
| | - Helen K Reddel
- Australian Centre for Airways Disease Monitoring, The Woolcock Institute of Medical Research, The University of Sydney, Glebe, Australia
- Faculty of Medicine, Health and Human Science, Macquarie University, Sydney, Australia
- Sydney Local Health District, Sydney, Australia
| | - Brett G Toelle
- The Woolcock Institute of Medical Research, The University of Sydney, Sydney, Australia
- Faculty of Medicine, Health and Human Science, Macquarie University, Sydney, Australia
- Sydney Local Health District, Sydney, Australia
| |
Collapse
|
14
|
Im Y, Chalmers JD, Choi H. Disease Severity and Activity in Bronchiectasis: A Paradigm Shift in Bronchiectasis Management. Tuberc Respir Dis (Seoul) 2025; 88:109-119. [PMID: 39218441 PMCID: PMC11704736 DOI: 10.4046/trd.2024.0120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024] Open
Abstract
Bronchiectasis has an increasing prevalence and substantial clinical and economic burden. Therefore, physicians should identify patients with bronchiectasis at high risk of disease progression to ensure optimal management in advance. The heterogeneity of bronchiectasis means it is unlikely that any single parameter could identify highrisk patients; therefore, disease severity is usually assessed using validated composite tools, such as the Bronchiectasis Severity Index, FACED, and Bronchiectasis Aetiology Comorbidity Index, to predict long-term outcomes in bronchiectasis. Disease severity, however, implies an advanced process with lung destruction. Earlier intervention may prevent disease progression and improve outcomes. To identify patients at risk, rather than patients with established advanced disease, we need to shift our focus from disease severity to disease activity. Disease activity denotes the activation level of underlying pathophysiological processes and can be measured using clinical presentations and biomarkers. This review discusses a paradigm shift in bronchiectasis management, focusing on disease activity rather than severity, to prevent disease progression.
Collapse
Affiliation(s)
- Yunjoo Im
- Division of Pulmonology and Allergy, Department of Internal Medicine, Kyung Hee University Medical Center, Seoul, Republic of Korea
| | - James D. Chalmers
- Division of Molecular and Clinical Medicine, University of Dundee, Ninewells Hospital and Medical School, Dundee, United Kingdom
| | - Hayoung Choi
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Internal Medicine, Hallym University Kangnam Sacred Heart Hospital, College of Medicine, Hallym University, Seoul, Republic of Korea
| |
Collapse
|
15
|
Elashmawi WH, Djellal A, Sheta A, Surani S, Aljahdali S. Machine Learning for Enhanced COPD Diagnosis: A Comparative Analysis of Classification Algorithms. Diagnostics (Basel) 2024; 14:2822. [PMID: 39767182 PMCID: PMC11674508 DOI: 10.3390/diagnostics14242822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/08/2024] [Accepted: 12/12/2024] [Indexed: 01/11/2025] Open
Abstract
Background: In the United States, chronic obstructive pulmonary disease (COPD) is a significant cause of mortality. As far as we know, it is a chronic, inflammatory lung condition that cuts off airflow to the lungs. Many symptoms have been reported for such a disease: breathing problems, coughing, wheezing, and mucus production. Patients with COPD might be at risk, since they are more susceptible to heart disease and lung cancer. Methods: This study reviews COPD diagnosis utilizing various machine learning (ML) classifiers, such as Logistic Regression (LR), Gradient Boosting Classifier (GBC), Support Vector Machine (SVM), Gaussian Naïve Bayes (GNB), Random Forest Classifier (RFC), K-Nearest Neighbors Classifier (KNC), Decision Tree (DT), and Artificial Neural Network (ANN). These models were applied to a dataset comprising 1603 patients after being referred for a pulmonary function test. Results: The RFC has achieved superior accuracy, reaching up to 82.06% in training and 70.47% in testing. Furthermore, it achieved a maximum F score in training and testing with an ROC value of 0.0.82. Conclusions: The results obtained with the utilized ML models align with previous work in the field, with accuracies ranging from 67.81% to 82.06% in training and from 66.73% to 71.46% in testing.
Collapse
Affiliation(s)
- Walaa H. Elashmawi
- Department of Computer Science, Suez Canal University, Ismailia 41522, Egypt
- Department of Computer Science, Misr International University, Cairo 11828, Egypt
| | - Adel Djellal
- Department of Electronics, Electrotechnics, and Automation (EEA), National Higher School of Technology and Engineering, Annaba 23000, Algeria;
| | - Alaa Sheta
- Computer Science Department, Southern Connecticut State University, New Haven, CT 06515, USA;
| | - Salim Surani
- Department of Pharmacy & Medicine, Texas A&M University, College Station, TX 75428, USA;
| | - Sultan Aljahdali
- Computer Science Department, Taif University, Taif 21944, Saudi Arabia;
| |
Collapse
|
16
|
Aljama C, Esquinas C, Loeb E, Granados G, Nuñez A, Lopez-Gonzalez A, Miravitlles M, Barrecheguren M. Demographic and Clinical Characteristics of Mild, Young and Early COPD: A Cross-Sectional Analysis of 5468 Patients. J Clin Med 2024; 13:7380. [PMID: 39685837 DOI: 10.3390/jcm13237380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 11/28/2024] [Accepted: 11/30/2024] [Indexed: 12/18/2024] Open
Abstract
Early, mild and young COPD concepts are not clearly defined and are often used interchangeably to refer to the onset of the disease. Objective: To describe and compare the characteristics of mild, young and early COPD in a large sample of COPD from primary and secondary care. Methods: Pooled analysis of individual data from four multicenter observational studies of patients with stable COPD (≥40 years, FEV1/FVC < 0.7, smoking ≥ 10 pack-years). Mild COPD was defined as FEV1% ≥ 65%; young COPD as <55 years; and early COPD as <55 years and smoking ≤ 20 pack-years. The relationship between FEV1(%), age and pack-years was analyzed with linear regression equations. Results: We included 5468 patients. Their mean age was 67 (SD: 9.6) years, and 85% were male. A total of 1158 (21.2%) patients had mild COPD; 636 (11.6%) had young COPD and 191 (3.5%) early COPD. The three groups shared common characteristics: they were more frequently female, younger and with less tobacco exposure compared with the remaining patients. Early COPD had fewer comorbidities and fewer COPD admissions, but no significant differences were found in ambulatory exacerbations. In linear regression analysis, the decline in FEV1(%) was more pronounced for the first 20 pack-years for all age groups and was even more important in younger patients. Conclusions: Mild, young and early COPD patients were more frequently women. The steepest decline in FEV1(%) was observed in individuals <55 years and smoking between 10 and 20 pack-years (early COPD), which highlights the importance of an early detection and implementation of preventive and therapeutic measures.
Collapse
Affiliation(s)
- Cristina Aljama
- Department of Pneumology, Universitary Hospital Vall d'Hebron/Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
| | - Cristina Esquinas
- Department of Pneumology, Universitary Hospital Vall d'Hebron/Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
- Department of Public Health, Mental Health and Maternal and Child Health Nursing, Faculty of Nursing, University of Barcelona (UB), 08007 Barcelona, Spain
| | - Eduardo Loeb
- Department of Pneumology, Centro Médico Teknon, Grupo Quironsalud, 08023 Barcelona, Spain
| | - Galo Granados
- Department of Pneumology, Universitary Hospital Vall d'Hebron/Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), 08035 Barcelona, Spain
| | - Alexa Nuñez
- Department of Pneumology, Universitary Hospital Vall d'Hebron/Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
| | - Ane Lopez-Gonzalez
- Department of Pneumology, Universitary Hospital Vall d'Hebron/Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
| | - Marc Miravitlles
- Department of Pneumology, Universitary Hospital Vall d'Hebron/Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), 08035 Barcelona, Spain
| | - Miriam Barrecheguren
- Department of Pneumology, Universitary Hospital Vall d'Hebron/Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), 08035 Barcelona, Spain
| |
Collapse
|
17
|
Olenga Vuvu Lofuta P, Klass M, Pauwen N, Kipula AM, van de Borne P, Van Muylem A, Perez-Bogerd S, Deboeck G. Occupational Exposure to Charcoal Smoke and Dust, a Major Risk Factor for COPD: A Multiregional Cross-Sectional Study in the Democratic Republic of Congo. Chest 2024; 166:1334-1346. [PMID: 39147233 DOI: 10.1016/j.chest.2024.07.158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 07/01/2024] [Accepted: 07/13/2024] [Indexed: 08/17/2024] Open
Abstract
BACKGROUND Occupational exposure to charcoal smoke and dust is a threat to workers' respiratory systems. RESEARCH QUESTION What is the prevalence of COPD in charcoal workers compared with that of farmers in rural areas of Democratic Republic of Congo (DRC)? STUDY DESIGN AND METHODS This cross-sectional, comparative, and multisite study was performed in the charcoal-producing provinces of southwestern DRC. We randomly included charcoal workers and compared them with farmers (age range, 18-70 years). Air quality indexes, anthropometric features, physical activity, sociodemographic characteristics, and related medical events data were recorded. A lung function questionnaire was used to assess respiratory symptoms and spirometry was performed. COPD was defined as the presence of respiratory symptoms for > 3 months with an FEV1 to FVC ratio less than the lower limit of normal. The prevalence of COPD was calculated, and logistic regression was used to identify COPD-associated factors. RESULTS We included 485 participants between August 2020 and July 2021. Charcoal producers (CPs; n = 229) were compared with farmers (n = 118), and charcoal saleswomen (n = 72) were compared with vegetable saleswomen (n = 66). Respective groups were similar in age, job seniority, height, and weight. The air was more polluted at charcoal workplaces. The prevalence of COPD was higher in CPs than in farmers (39.7% vs 14.4%; P < .0001) and higher in charcoal saleswomens compared with vegetable saleswomen (40.3% vs 13.6%; P < .0001). Being a charcoal worker was associated independently with COPD in the CP and farmers groups (adjusted OR, 3.54; 95% CI, 1.94-6.46) and in the saleswomen group (adjusted OR, 7.85; 95% CI, 2.85-21.5), where it was also associated independently with young age (adjusted OR, 0.85; 95% CI, 0.80-0.93) and monthly income (adjusted OR, 0.88; 95% CI, 0.83-0.96). INTERPRETATION In rural areas of DRC, producing or selling charcoal is associated with a higher risk of COPD.
Collapse
Affiliation(s)
- Pierre Olenga Vuvu Lofuta
- Research Unit in Rehabilitation Sciences, Faculty of Motor Sciences, Université Libre de Bruxelles, Brussels, Belgium
| | - Malgorzata Klass
- Research Unit in Biometry and Exercise Nutrition, Faculty of Motor Sciences, Université Libre de Bruxelles, Brussels, Belgium
| | - Nathalie Pauwen
- Cardio-Pulmonary Exercise Laboratory, Faculty of Motor Sciences, Université Libre de Bruxelles, Brussels, Belgium
| | - Augustin Mboko Kipula
- Pulmonary Rehabilitation Unit, Physical Medicine and Rehabilitation Department, University Clinics of Kinshasa, University of Kinshasa, Kinshasa, Democratic Republic of Congo
| | - Philippe van de Borne
- Department of Cardiology, Erasme University Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Alain Van Muylem
- Department of Pulmonology, Erasme University Hospital, Université Libre de Bruxelles, Brussels, Belgium; Epidemiology and Biostatistics Unit, Public Health School, Université Libre de Bruxelles, Brussels, Belgium
| | - Silvia Perez-Bogerd
- Department of Pulmonology, Erasme University Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Gaël Deboeck
- Research Unit in Rehabilitation Sciences, Faculty of Motor Sciences, Université Libre de Bruxelles, Brussels, Belgium.
| |
Collapse
|
18
|
Moll M, Hecker J, Platig J, Zhang J, Ghosh AJ, Pratte KA, Wang RS, Hill D, Konigsberg IR, Chiles JW, Hersh CP, Castaldi PJ, Glass K, Dy JG, Sin DD, Tal-Singer R, Mouded M, Rennard SI, Anderson GP, Kinney GL, Bowler RP, Curtis JL, McDonald ML, Silverman EK, Hobbs BD, Cho MH. Polygenic and transcriptional risk scores identify chronic obstructive pulmonary disease subtypes in the COPDGene and ECLIPSE cohort studies. EBioMedicine 2024; 110:105429. [PMID: 39509750 PMCID: PMC11570824 DOI: 10.1016/j.ebiom.2024.105429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 10/04/2024] [Accepted: 10/16/2024] [Indexed: 11/15/2024] Open
Abstract
BACKGROUND Genetic variants and gene expression predict risk of chronic obstructive pulmonary disease (COPD), but their effect on COPD heterogeneity is unclear. We aimed to define high-risk COPD subtypes using genetics (polygenic risk score, PRS) and blood gene expression (transcriptional risk score, TRS) and assess differences in clinical and molecular characteristics. METHODS We defined high-risk groups based on PRS and TRS quantiles by maximising differences in protein biomarkers in a COPDGene training set and identified these groups in COPDGene and ECLIPSE test sets. We tested multivariable associations of subgroups with clinical outcomes and compared protein-protein interaction networks and drug repurposing analyses between high-risk groups. FINDINGS We examined two high-risk omics-defined groups in non-overlapping test sets (n = 1133 NHW COPDGene, n = 299 African American (AA) COPDGene, n = 468 ECLIPSE). We defined "high activity" (low PRS, high TRS) and "severe risk" (high PRS, high TRS) subgroups. Participants in both subgroups had lower body-mass index (BMI), lower lung function, and alterations in metabolic, growth, and immune signalling processes compared to a low-risk (low PRS, low TRS) subgroup. "High activity" but not "severe risk" participants had greater prospective FEV1 decline (COPDGene: -51 mL/year; ECLIPSE: -40 mL/year) and proteomic profiles were enriched in gene sets perturbed by treatment with 5-lipoxygenase inhibitors and angiotensin-converting enzyme (ACE) inhibitors. INTERPRETATION Concomitant use of polygenic and transcriptional risk scores identified clinical and molecular heterogeneity amongst high-risk individuals. Proteomic and drug repurposing analysis identified subtype-specific enrichment for therapies and suggest prior drug repurposing failures may be explained by patient selection. FUNDING National Institutes of Health.
Collapse
Affiliation(s)
- Matthew Moll
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, 02115, USA; Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, 02115, USA; Division of Pulmonary, Critical Care, Sleep and Allergy, Veterans Affairs Boston Healthcare System, West Roxbury, MA, 02123, USA; Harvard Medical School, Boston, MA, 02115, USA
| | - Julian Hecker
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, 02115, USA; Harvard Medical School, Boston, MA, 02115, USA
| | - John Platig
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, 22903, USA
| | - Jingzhou Zhang
- The Pulmonary Center, Boston University Medical Center, Boston, MA 02118, USA
| | - Auyon J Ghosh
- Division of Pulmonary, Critical Care, and Sleep Medicine, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
| | - Katherine A Pratte
- Department of Biostatistics, National Jewish Health, Denver, CO, 80206, USA
| | - Rui-Sheng Wang
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, 02115, USA
| | - Davin Hill
- Department of Electrical and Computer Engineering, Northeastern University, Boston, MA, 02115, USA
| | - Iain R Konigsberg
- Department of Biomedical Informatics, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Joe W Chiles
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35233, USA
| | - Craig P Hersh
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, 02115, USA; Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, 02115, USA; Harvard Medical School, Boston, MA, 02115, USA
| | - Peter J Castaldi
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, 02115, USA; Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35233, USA; Division of General Internal Medicine and Primary Care, Department of Medicine, Brigham and Women's Hospital, Boston, MA, 02115, USA; Harvard Medical School, Boston, MA, 02115, USA
| | - Kimberly Glass
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, 02115, USA; Harvard Medical School, Boston, MA, 02115, USA
| | - Jennifer G Dy
- Department of Electrical and Computer Engineering, Northeastern University, Boston, MA, 02115, USA
| | - Don D Sin
- Centre for Heart Lung Innovation, St. Paul's Hospital, and Department of Medicine (Respiratory Division), University of British Columbia, Vancouver, BC, Canada
| | - Ruth Tal-Singer
- Global Allergy and Airways Patient Platform, Vienna, Austria
| | - Majd Mouded
- Novartis Institute for Biomedical Research, Cambridge, MA, USA
| | - Stephen I Rennard
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of Nebraska, Omaha, NE, 68198, USA
| | - Gary P Anderson
- Lung Health Research Centre, Department of Biochemistry and Pharmacology, University of Melbourne, Melbourne, Victoria, Australia
| | - Gregory L Kinney
- Department of Epidemiology, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Russell P Bowler
- Division of Pulmonary, Critical Care and Sleep Medicine, National Jewish Health, Denver, CO, 80206, USA
| | - Jeffrey L Curtis
- Division of Pulmonary and Critical Care Medicine, University of Michigan School of Medicine, Ann Arbor, MI, 48109, USA; Medical Service, Veterans Affairs Ann Arbor Healthcare System, Ann Arbor, MI, 48109, USA
| | - Merry-Lynn McDonald
- Department of Biomedical Informatics, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA; Department of Epidemiology, School of Public Health, University of Alabama at Birmingham, 701, 19th Street S., LHRB 440, Birmingham, AL, 35233, USA; Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, 35233, USA
| | - Edwin K Silverman
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, 02115, USA; Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, 02115, USA; Harvard Medical School, Boston, MA, 02115, USA
| | | | - Michael H Cho
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, 02115, USA; Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, 02115, USA; Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
19
|
Shi R, Liang R, Wang F, Wang L, Zidai W, Zhang J, Min L, Du X, Sun S, Xiao C, Li C, Liang X, Chen AF, Yang W. Identification and experimental validation of PYCARD as a crucial PANoptosis-related gene for immune response and inflammation in COPD. Apoptosis 2024; 29:2091-2107. [PMID: 38652339 DOI: 10.1007/s10495-024-01961-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/15/2024] [Indexed: 04/25/2024]
Abstract
Chronic inflammatory and immune responses play key roles in the development and progression of chronic obstructive pulmonary disease (COPD). PANoptosis, as a unique inflammatory cell death modality, is involved in the pathogenesis of many inflammatory diseases. We aim to identify critical PANoptosis-related biomarkers and explore their potential effects on respiratory tract diseases and immune infiltration landscapes in COPD. Total microarray data consisting of peripheral blood and lung tissue datasets associated with COPD were obtained from the GEO database. PANoptosis-associated genes in COPD were identified by intersecting differentially expressed genes (DEGs) with genes involved in pyroptosis, apoptosis, and necroptosis after normalizing and removing the batch effect. Furthermore, GO, KEGG, PPI network, WGCNA, LASSO-COX, and ROC curves analysis were conducted to screen and verify hub genes, and the correlation between PYCARD and infiltrated immune cells was analyzed. The effect of PYCARD on respiratory tract diseases and the potential small-molecule agents for the treatment of COPD were identified. PYCARD expression was verified in the lung tissue of CS/LPS-induced COPD mice. PYCARD was a critical PANoptosis-related gene in all COPD patients. PYCARD was positively related to NOD-like receptor signaling pathway and promoted immune cell infiltration. Moreover, PYCARD was significantly activated in COPD mice mainly by targeting PANoptosis. PANoptosis-related gene PYCARD is a potential biomarker for COPD diagnosis and treatment.
Collapse
Affiliation(s)
- Rui Shi
- Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, China
| | - Renwen Liang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Fang Wang
- Department of Emergency, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Lueli Wang
- Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, China
| | - Wuyi Zidai
- Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, China
| | - Jie Zhang
- Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, China
| | - Luo Min
- Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, China
| | - Xiaohua Du
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Shibo Sun
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital, Kunming Medical University, Kunming, China
| | - Chuang Xiao
- Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, China
| | - Chaozhong Li
- Department of Emergency, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Xuewu Liang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.
| | - Alex F Chen
- Institute for Developmental and Regenerative Cardiovascular Medicine, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China.
| | - Weimin Yang
- Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, China.
| |
Collapse
|
20
|
Belz DC, Putcha N, Alupo P, Siddharthan T, Baugh A, Hopkinson N, Castaldi P, Papi A, Mannino D, Miravitlles M, Han M, Fabbri LM, Montes de Oca M, Krishnan JA, Singh D, Martinez FJ, Hansel NN, Calverley P. Call to Action: How Can We Promote the Development of New Pharmacologic Treatments in Chronic Obstructive Pulmonary Disease? Am J Respir Crit Care Med 2024; 210:1300-1307. [PMID: 39405496 DOI: 10.1164/rccm.202311-2180pp] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 09/24/2024] [Indexed: 11/28/2024] Open
Affiliation(s)
- Daniel C Belz
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Nirupama Putcha
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Patricia Alupo
- Lung Institute, Makerere University College of Health Sciences, Kampala, Uganda
| | - Trishul Siddharthan
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Miami, Miami, Florida
| | - Aaron Baugh
- Pulmonary, Critical Care, Allergy, and Sleep Medicine, University of California, San Francisco, San Francisco, California
| | - Nick Hopkinson
- National Heart and Lung Institute, Imperial College, London, United Kingdom
| | - Peter Castaldi
- Division of General Internal Medicine and Primary Care, Brigham and Women's Hospital, Boston, Massachusetts
| | - Alberto Papi
- Section of Respiratory Medicine, Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - David Mannino
- Department of Medicine, University of Kentucky College of Medicine, Lexington, Kentucky
| | - Marc Miravitlles
- Pulmonology Department, Vall d'Hebron University Hospital, Vall d'Hebron Research Institute, Barcelona, Spain
| | - MeiLan Han
- Division of Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, Michigan
| | - Leonardo M Fabbri
- Section of Respiratory Medicine, Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - Maria Montes de Oca
- Pulmonary Division, University Hospital of Caracas, Central University of Venezuela, and Medical Center of Caracas, Caracas, Venezuela
| | - Jerry A Krishnan
- Division of Pulmonary, Critical Care, Sleep, and Allergy, University of Illinois Chicago, Chicago, Illinois
| | - Dave Singh
- Division of Immunology, Immunity to Infection and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester and Manchester University NHS Foundation Trust, Manchester, United Kingdom
| | - Fernando J Martinez
- Division of Pulmonary and Critical Care Medicine, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, New York; and
| | - Nadia N Hansel
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Peter Calverley
- Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
21
|
Huang L, Guan Q, Lu R, Zhang Z, Liu C, Tian Y, Li J. Mechanism underlying the therapeutic effects of effective component compatibility of Bufei Yishen formula III combined with exercise rehabilitation on chronic obstructive pulmonary disease. Ann Med 2024; 56:2403729. [PMID: 39276358 PMCID: PMC11404378 DOI: 10.1080/07853890.2024.2403729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 09/04/2024] [Accepted: 09/05/2024] [Indexed: 09/17/2024] Open
Abstract
OBJECTIVE To explore the mechanism underlying the therapeutic effect of Bufei Yishen Formula III combined with exercise rehabilitation (ECC-BYF III + ER) on chronic obstructive pulmonary disease (COPD) and further identify hub genes. MATERIALS AND METHODS Gene Set Enrichment Analysis was used to identify the COPD-associated pathways and reversal pathways after ECC-BYF III + ER treatment. Protein-protein interaction network analysis and cytoHubba were used to identify the hub genes. These genes were verified using independent datasets, molecular docking and quantitative real-time polymerase chain reaction experiment. RESULTS Using the high-throughput sequencing data of COPD rats from our laboratory, 49 significantly disturbed pathways were identified in COPD model compared with control group via gene set enrichment analysis (false discovery rate < 0.05). The 34 pathways were reversed after ECC-BYF III + ER treatment. In the 2306 genes of these 34 pathways, 121 of them were differentially expressed in COPD rats compared with control samples. A protein-protein interaction network comprising 111 nodes and 274 edges was created, and 34 candidate genes were identified. Finally, seven COPD hub genes (Il1b, Ccl2, Cxcl1, Apoe, Ccl7, Ccl12, and Ccl4) were well identified and verified in independent COPD rat data from our laboratory and the public dataset GSE178513. The area under the receiver operating characteristic curve values ranged from 0.86 to 1 and from 0.67 to 1, respectively. The reliability of the mentioned genes, which can bind to the active ingredients of ECC-BYF III through molecular docking, were further verified through qRT-PCR experiments. CONCLUSION Thirty-four COPD-related pathways and seven hub genes that may be regulated by ECC-BYF III + ER were identified and well verified. The findings of this study may provide insights into the treatment and mechanism underlying COPD.
Collapse
Affiliation(s)
- Lidong Huang
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, China
- Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan & Education Ministry of P.R. China, Henan University of Chinese Medicine, Zhengzhou, China
| | - Qingzhou Guan
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, China
- Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan & Education Ministry of P.R. China, Henan University of Chinese Medicine, Zhengzhou, China
| | - Ruilong Lu
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, China
- Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan & Education Ministry of P.R. China, Henan University of Chinese Medicine, Zhengzhou, China
| | - Zhenzhen Zhang
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, China
- Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan & Education Ministry of P.R. China, Henan University of Chinese Medicine, Zhengzhou, China
| | - Chunlei Liu
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, China
- Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan & Education Ministry of P.R. China, Henan University of Chinese Medicine, Zhengzhou, China
| | - Yange Tian
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, China
- Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan & Education Ministry of P.R. China, Henan University of Chinese Medicine, Zhengzhou, China
| | - Jiansheng Li
- Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan & Education Ministry of P.R. China, Henan University of Chinese Medicine, Zhengzhou, China
- The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan, China
| |
Collapse
|
22
|
Moaleș EA, Dima-Cozma LC, Cojocaru DC, Zota IM, Ghiciuc CM, Adam CA, Ciorpac M, Tudorancea IM, Petrariu FD, Leon MM, Cozma RS, Mitu F. Assessment of Metabolic Syndrome in Patients with Chronic Obstructive Pulmonary Disease: A 6-Month Follow-Up Study. Diagnostics (Basel) 2024; 14:2437. [PMID: 39518404 PMCID: PMC11545736 DOI: 10.3390/diagnostics14212437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/22/2024] [Accepted: 10/27/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND/OBJECTIVES The association between chronic obstructive pulmonary disease (COPD) and metabolic syndrome (MetS) is a common one, with long-term therapeutic and prognostic impact. In view of the high pulmonary and cardiovascular morbidity and mortality, self-management contributes to decreasing the risk of an acute cardiac event or pulmonary decompensation. METHODS We conducted a prospective cohort study on 100 patients admitted to Iasi Clinical Rehabilitation Hospital who were divided into two groups according to the presence (67 patients) or absence (33 patients) of MetS. All patients benefited from multidisciplinary counseling sessions on their active role in improving modifiable cardiovascular risk factors and thus increasing quality of life. The aim of this study was to examine the impact of metabolic syndrome on lung function and the role of self-management in a 6-month follow-up period. The demographic, anthropometric, cardiovascular risk factors, and respiratory function were analyzed at baseline and at 6 months. RESULTS The presence of MetS was associated with higher fasting blood glucose (p = 0.004) and triglycerides (p = 0.003) but not with higher levels of interleukins or TNF-alpha. At the 6-month follow-up, abdominal circumference, forced expiratory volume in one second (FEV1), dyspnea severity, and blood pressure values improved in male patients with COPD. Systolic and diastolic blood pressure decreased in the COPD group as a whole, but especially in male patients with and without associated MetS. BMI was positively correlated with FEV1 (r = 0.389, p = 0.001) and the FEV1/forced vital capacity (FVC) ratio (r = 0.508, p < 0.001) in all COPD patients and in the MetS subgroup. In the COPD group as a whole. the six-minute walk test (6MWT) results (m) were positively correlated with FEV1 and FVC. The correlation remained significant for FVC in COPD patients with and without MetS. An increase in BMI by one unit led to an increase in TG values by 3.358 mg/dL, and the presence of metabolic syndrome led to an increase in TG values by 17.433 mg/dL. CONCLUSIONS In our study, MetS is a common comorbidity in patients with COPD and is associated with higher BMI, fasting glucose, and triglycerides but not with the inflammatory parameters. A mixed pulmonary-cardiovascular rehabilitation intervention leads to improvement in various parameters in both female and male COPD patients.
Collapse
Affiliation(s)
- Elena-Andreea Moaleș
- Department of Medical Specialities I, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, University Street No. 16, 700115 Iași, Romania (L.C.D.-C.); (I.M.Z.); (F.M.)
| | - Lucia Corina Dima-Cozma
- Department of Medical Specialities I, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, University Street No. 16, 700115 Iași, Romania (L.C.D.-C.); (I.M.Z.); (F.M.)
- Clinical Rehabilitation Hospital, Pantelimon Halipa Street No. 14, 700661 Iași, Romania
| | - Doina-Clementina Cojocaru
- Department of Medical Specialities I, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, University Street No. 16, 700115 Iași, Romania (L.C.D.-C.); (I.M.Z.); (F.M.)
- Clinical Rehabilitation Hospital, Pantelimon Halipa Street No. 14, 700661 Iași, Romania
| | - Ioana Mădălina Zota
- Department of Medical Specialities I, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, University Street No. 16, 700115 Iași, Romania (L.C.D.-C.); (I.M.Z.); (F.M.)
| | - Cristina Mihaela Ghiciuc
- Pharmacology, Clinical Pharmacology and Algeziology, Department of Morpho-Functional Sciences II, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, University Street No. 16, 700115 Iași, Romania
- Saint Mary Emergency Children Hospital, 700887 Iași, Romania
| | - Cristina Andreea Adam
- Department of Medical Specialities I, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, University Street No. 16, 700115 Iași, Romania (L.C.D.-C.); (I.M.Z.); (F.M.)
- Clinical Rehabilitation Hospital, Pantelimon Halipa Street No. 14, 700661 Iași, Romania
| | - Mitică Ciorpac
- Advanced Research and Development Center for Experimental Medicine “Prof. Ostin C. Mungiu”—CEMEX, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania (I.M.T.)
| | - Ivona Maria Tudorancea
- Advanced Research and Development Center for Experimental Medicine “Prof. Ostin C. Mungiu”—CEMEX, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania (I.M.T.)
| | - Florin Dumitru Petrariu
- Department of Preventive Medicine and Interdisciplinarity, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, University Street No. 16, 700115 Iași, Romania
| | - Maria-Magdalena Leon
- Department of Medical Specialities I, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, University Street No. 16, 700115 Iași, Romania (L.C.D.-C.); (I.M.Z.); (F.M.)
- Clinical Rehabilitation Hospital, Pantelimon Halipa Street No. 14, 700661 Iași, Romania
| | - Romică Sebastian Cozma
- Department of Otorhinolaryngology, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, University Street No 16, 700115 Iași, Romania
| | - Florin Mitu
- Department of Medical Specialities I, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, University Street No. 16, 700115 Iași, Romania (L.C.D.-C.); (I.M.Z.); (F.M.)
- Clinical Rehabilitation Hospital, Pantelimon Halipa Street No. 14, 700661 Iași, Romania
- Romanian Academy of Medical Sciences, 030167 Bucharest, Romania
- Romanian Academy of Scientists, 050045 Bucharest, Romania
| |
Collapse
|
23
|
Saha P, Bodduluri S, Nakhmani A, Chaudhary MFA, Amudala Puchakalaya PR, Sthanam V, San Jose Estepar R, Reinhardt JM, Zhang C, Bhatt SP. CT Radiomics Features Predict Change in Lung Density and Rate of Emphysema Progression. Ann Am Thorac Soc 2024; 22:83-92. [PMID: 39404745 PMCID: PMC11708762 DOI: 10.1513/annalsats.202401-009oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 10/15/2024] [Indexed: 11/10/2024] Open
Abstract
Rationale Emphysema progression is heterogeneous. Predicting temporal changes in lung density and detecting rapid progressors may facilitate selection of individuals for targeted therapies. Objective To test whether computed tomography (CT) radiomics can be used to predict changes in lung density and detect rapid progressors. Methods We extracted radiomics features from inspiratory chest CT in 4,575 subjects with and without airflow obstruction at enrollment, who completed a follow-up visit at approximately 5 years. We quantified emphysema using adjusted lung density (ALD) and estimated emphysema progression as the annualized change in ALD (∆ALD/year) between visits. We categorized participants into rapid progressors (>1% ∆ALD/year) and stable disease (≤1% ∆ALD/year). A gradient boosting model was used (1) to predict ALD at 5-years and (2) to identify rapid progressors. Four models using demographics (base clinical model); CT density; radiomics; and combined features (clinical, radiomics, and CT density) were evaluated and tested. Results There were 1,773 (38.8%) rapid progressors. For predicting ALD at 5-years in the 20% held-out data, the base model explained 31% of the variance (adjusted R2 = 0.31) whereas R2 was 0.74 for the CT density model, 0.66 for the radiomics-only model, and 0.77 for the combined features model. For detecting rapid progressors, the base model (AUC = 0.57, 95%CI 0.53-0.61) was outperformed by the radiomics-only model (AUC = 0.73, 95%CI 0.69-0.76, ∆ =0.0003, p < 0.001) and the combined model (AUC = 0.74, 95%CI 0.71-0.77, ∆ = 0.0003, p < 0.001). Conclusions Parenchymal and airway radiomics features derived from inspiratory scans can be used to predict temporal changes in lung density and help identify rapid progressors.
Collapse
Affiliation(s)
- Pratim Saha
- The University of Alabama at Birmingham, Computer Science, Birmingham, Alabama, United States
| | - Sandeep Bodduluri
- University of Alabama at Birmingham, Pulmonary, Allergy and Critical Care Medicine, Birmingham, Alabama, United States
| | - Arie Nakhmani
- University of Alabama at Birmingham, Electrical and Computer Engineering, Birmingham, Alabama, United States
| | - Muhammad F A Chaudhary
- The University of Alabama at Birmingham Heersink School of Medicine, Pulmonary, Allergy and Critical Care Medicine, Birmingham, Alabama, United States
| | - Praneeth R Amudala Puchakalaya
- The University of Alabama at Birmingham Heersink School of Medicine, Pulmonary, Allergy and Critical Care Medicine, Birmingham, Alabama, United States
| | - Venkata Sthanam
- University of Alabama at Birmingham, Pulmonary, Allergy and Critical Care Medicine, Birmingham, Alabama, United States
| | | | - Joseph M Reinhardt
- University of Iowa, Radiology and Biomedical Engineering, Iowa City, Iowa, United States
| | - Chengzui Zhang
- University of Alabama at Birmingham, Computer Science, Birmingham, Alabama, United States
| | - Surya P Bhatt
- University of Alabama at Birmingham, Pulmonary, Allergy and Critical Care Medicine, Birmingham, Alabama, United States;
| |
Collapse
|
24
|
Zhao M, Wei L, Zhang L, Hang J, Zhang F, Su L, Wang H, Zhang R, Chen F, Christiani DC, Wei Y. Proteomic biomarkers of long-term lung function decline in textile workers: a 35-year longitudinal study. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2024:10.1038/s41370-024-00721-7. [PMID: 39358504 DOI: 10.1038/s41370-024-00721-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 09/20/2024] [Accepted: 09/23/2024] [Indexed: 10/04/2024]
Abstract
BACKGROUND Occupational exposures contribute significantly to obstructive lung disease among textile workers. However, biomarkers associated with such declines are not available. OBJECTIVES We conducted a large-scale proteomic study to explore protein biomarkers potentially associated with long-term lung function decline. METHODS Shanghai Textile Workers Cohort was established in 1981 with 35 years of follow-up, assessing textile workers' lung functions every five years. Quantitative serum proteomics was performed on all 453 workers at 2016 survey. We employed four distinct models to examine the association between forced expiratory volume in one second (FEV1) and proteins, and consolidated the findings using an aggregated Cauchy association test. Furthermore, proteomic data of UK Biobank (UKB) was used to explore the associations of potential protein markers and decline of FEV1, and the interactions of these proteins were examined through STRING database. Associations were also externally validated using two-sample Mendelian randomizations (MR). RESULTS 15 of 907 analyzed proteins displayed potential associations with long-term FEV1 decline, including two hemoglobin subunits: hemoglobin subunit beta (HBB, FDR-qACAT = 0.040), alpha globin chain (HBA2, FDR-qACAT = 0.045), and four immunoglobulin subunits: immunoglobulin kappa variable 3-7 (IGKV3-7, FDR-qACAT = 0.003), immunoglobulin heavy chain variable region (IgH, FDR-qACAT = 0.011). Five proteins were significantly associated with the rate of decline of FEV1 in UKB, in which RAB6A, LRRN1, and BSG were also found to be associated with proteins identified in Shanghai Textile Workers Cohort using STRING database. MR indicated bidirectional associations between HBB and FEV1 (P < 0.05), while different immunoglobulin subunits exhibited varying associations with FEV1. IMPACT STATEMENT We performed a large-scale proteomic study of the longest-follow-up pulmonary function cohort of textile workers to date. We discovered multiple novel proteins associated with long-term decline of FEV1 that have potential for identifying new biomarkers associated with long-term lung function decline among occupational populations, and may identify individuals at risk, as well as potential pharmaceutical targets for early intervention.
Collapse
Affiliation(s)
- Mengsheng Zhao
- Department of Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Liangmin Wei
- Department of Public Health, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Longyao Zhang
- Department of Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Jingqing Hang
- Department of Pulmonary Medicine, Shanghai Putuo District People's Hospital, Shanghai, China
| | - Fengying Zhang
- Department of Pulmonary Medicine, Shanghai Putuo District People's Hospital, Shanghai, China
| | - Li Su
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Hantao Wang
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Ruyang Zhang
- Department of Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Feng Chen
- Department of Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - David C Christiani
- Department of Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China.
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
- Pulmonary and Critical Care Division, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| | - Yongyue Wei
- Center for Public Health and Epidemic Preparedness & Response, Peking University, Beijing, China.
- Key Laboratory of Epidemiology of Major Diseases (Peking University), Ministry of Education, Beijing, China.
| |
Collapse
|
25
|
Zhou Y, Wu F, Shi Z, Cao J, Tian J, Yao W, Wei L, Li F, Cai S, Shen Y, Wang Z, Zhang H, Chen Y, Fu Y, He Z, Chang C, Jiang Y, Chen S, Yang C, Yu S, Tian H, Cheng Q, Zhao Z, Ying Y, Zhou Y, Liu S, Deng Z, Huang P, Zhang Y, Luo X, Zhao H, Gui J, Lai W, Hu G, Liu C, Su L, Liu Z, Huang J, Zhao D, Zhong N, Ran P. Effect of high-dose N-acetylcysteine on exacerbations and lung function in patients with mild-to-moderate COPD: a double-blind, parallel group, multicentre randomised clinical trial. Nat Commun 2024; 15:8468. [PMID: 39349461 PMCID: PMC11442465 DOI: 10.1038/s41467-024-51079-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 07/29/2024] [Indexed: 10/02/2024] Open
Abstract
Evidence for the treatment of patients with mild-to-moderate chronic obstructive pulmonary disease (COPD) is limited. The efficacy of N-acetylcysteine (an antioxidant and mucolytic agent) for patients with mild-to-moderate COPD is uncertain. In this multicentre, randomised, double-blind, placebo-controlled trial, we randomly assigned 968 patients with mild-to-moderate COPD to treatment with N-acetylcysteine (600 mg, twice daily) or matched placebo for two years. Eligible participants were 40-80 years of age and had mild-to-moderate COPD (forced expiratory volume in 1 second [FEV1] to forced vital capacity ratio <0.70 and an FEV1 ≥ 50% predicted value after bronchodilator use). The coprimary outcomes were the annual rate of total exacerbations and the between-group difference in the change from baseline to 24 months in FEV1 before bronchodilator use. COPD exacerbation was defined as the appearance or worsening of at least two major symptoms (cough, expectoration, purulent sputum, wheezing, or dyspnoea) persisting for at least 48 hours. Assessment of exacerbations was conducted every three months, and lung function was performed annually after enrolment. The difference between the N-acetylcysteine group and the placebo group in the annual rate of total exacerbation were not significant (0.65 vs. 0.72 per patient-year; relative risk [RR], 0.90; 95% confidence interval [CI], 0.80-1.02; P = 0.10). There was no significant difference in FEV1 before bronchodilator use at 24 months. Long-term treatment with high-dose N-acetylcysteine neither significantly reduced the annual rate of total exacerbations nor improved lung function in patients with mild-to-moderate COPD. Chinese Clinical Trial Registration: ChiCTR-IIR-17012604.
Collapse
Grants
- This study was supported by grants from the National Key Research and Development Program of the 13th National 5-Year Development Plan (2016YFC1304101), the Local Innovative and Research Teams Project of Guangdong Pearl River Talents Program (2017BT01S155), the foundation of Guangzhou National Laboratory (SRPG22-016 and SRPG22-018), the National Natural Science Foundation of China (81970045, 81970038, and 82270043), and the Clinical and Epidemiological Research Project of State Key Laboratory of Respiratory Disease (SKLRD-L-202402). The funding providers and Zhejiang Jinhua Pharmaceutical (Hangzhou, China) had no role in the study design, implementation, monitoring, statistical analysis, interpretation, writing and publication of the manuscript.
Collapse
Affiliation(s)
- Yumin Zhou
- State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease & National Center for Respiratory Medicine & Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
- Guangzhou National Laboratory, Bio-land, Guangzhou, China
| | - Fan Wu
- State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease & National Center for Respiratory Medicine & Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
- Guangzhou National Laboratory, Bio-land, Guangzhou, China
| | - Zhe Shi
- Huizhou First Hospital, Huizhou, China
| | - Jie Cao
- Tianjin Medical University General Hospital, Tianjin, China
| | - Jia Tian
- The Second People's Hospital of Hunan Province, Changsha, China
| | - Weimin Yao
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Liping Wei
- The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Fenglei Li
- Liwan Central Hospital of Guangzhou, Guangzhou, China
| | - Shan Cai
- The Second Xiangya Hospital of Central South University, Changsha, China
| | - Yao Shen
- Department of Pulmonary and Critical Care Medicine, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Zanfeng Wang
- The First Hospital of China Medical University, Shenyang, China
| | - Huilan Zhang
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yanfan Chen
- The First Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yingyun Fu
- Shenzhen People's Hospital, Shenzhen, China
| | - Zhiyi He
- The First Hospital of Guangxi Medical University, Nanning, China
| | - Chun Chang
- Peking University Third Hospital, Beijing, China
| | | | - Shujing Chen
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Changli Yang
- Wengyuan County People's Hospital, Shaoguan, China
| | - Shuqing Yu
- Lianping County People,s Hospital, Lianping County Hospital of Traditional Chinese Medicine, Heyuan, China
| | - Heshen Tian
- State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease & National Center for Respiratory Medicine & Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Qijian Cheng
- Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ziwen Zhao
- Guangzhou First People's Hospital, Guangzhou, China
| | - Yinghua Ying
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Yong Zhou
- Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shengming Liu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Zhishan Deng
- State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease & National Center for Respiratory Medicine & Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Peiyu Huang
- State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease & National Center for Respiratory Medicine & Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | | | - Xiangwen Luo
- Lianping County People,s Hospital, Lianping County Hospital of Traditional Chinese Medicine, Heyuan, China
| | - Haiyan Zhao
- Tianjin Medical University General Hospital, Tianjin, China
| | - Jianping Gui
- The Second People's Hospital of Hunan Province, Changsha, China
| | - Weiguang Lai
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Guoping Hu
- The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Cong Liu
- The Second Xiangya Hospital of Central South University, Changsha, China
| | - Ling Su
- Department of Pulmonary and Critical Care Medicine, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Zhiguang Liu
- Hunan Provincial People's Hospital, Changsha, China
| | - Jianhui Huang
- Lianping County People,s Hospital, Lianping County Hospital of Traditional Chinese Medicine, Heyuan, China
| | - Dongxing Zhao
- State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease & National Center for Respiratory Medicine & Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Nanshan Zhong
- State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease & National Center for Respiratory Medicine & Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
- Guangzhou National Laboratory, Bio-land, Guangzhou, China
| | - Pixin Ran
- State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease & National Center for Respiratory Medicine & Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China.
- Guangzhou National Laboratory, Bio-land, Guangzhou, China.
| |
Collapse
|
26
|
Curtis JL, Bateman LA, Murray S, Couper DJ, Labaki WW, Freeman CM, Arnold KB, Christenson SA, Alexis NE, Kesimer M, Boucher RC, Kaner RJ, Barjaktarevic I, Cooper CB, Hoffman EA, Barr RG, Bleecker ER, Bowler RP, Comellas A, Dransfield MT, Freedman MB, Hansel NN, Krishnan JA, Marchetti N, Meyers DA, Ohar J, O'Neal WK, Ortega VE, Paine III R, Peters SP, Smith BM, Wedzicha JA, Wells JM, Woodruff PG, Han MK, Martinez FJ. Design of the SPIROMICS Study of Early COPD Progression: SOURCE Study. CHRONIC OBSTRUCTIVE PULMONARY DISEASES (MIAMI, FLA.) 2024; 11:444-459. [PMID: 39159077 PMCID: PMC11548966 DOI: 10.15326/jcopdf.2023.0490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/30/2024] [Indexed: 08/21/2024]
Abstract
Background The biological mechanisms leading some tobacco-exposed individuals to develop early-stage chronic obstructive pulmonary disease (COPD) are poorly understood. This knowledge gap hampers development of disease-modifying agents for this prevalent condition. Objectives Accordingly, with National Heart, Lung and Blood Institute support, we initiated the SubPopulations and InteRmediate Outcome Measures In COPD Study (SPIROMICS) Study of Early COPD Progression (SOURCE), a multicenter observational cohort study of younger individuals with a history of cigarette smoking and thus at-risk for, or with, early-stage COPD. Our overall objectives are to identify those who will develop COPD earlier in life, characterize them thoroughly, and by contrasting them to those not developing COPD, define mechanisms of disease progression. Methods/Discussion SOURCE utilizes the established SPIROMICS clinical network. Its goal is to enroll n=649 participants, ages 30-55 years, all races/ethnicities, with ≥10 pack-years cigarette smoking, in either Global initiative for chronic Obstructive Lung Disease (GOLD) groups 0-2 or with preserved ratio-impaired spirometry; and an additional n=40 never-smoker controls. Participants undergo baseline and 3-year follow-up visits, each including high-resolution computed tomography, respiratory oscillometry and spirometry (pre- and postbronchodilator administration), exhaled breath condensate (baseline only), and extensive biospecimen collection, including sputum induction. Symptoms, interim health care utilization, and exacerbations are captured every 6 months via follow-up phone calls. An embedded bronchoscopy substudy involving n=100 participants (including all never-smokers) will allow collection of lower airway samples for genetic, epigenetic, genomic, immunological, microbiome, mucin analyses, and basal cell culture. Conclusion SOURCE should provide novel insights into the natural history of lung disease in younger individuals with a smoking history, and its biological basis.
Collapse
Affiliation(s)
- Jeffrey L. Curtis
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States
- Medical Service, VA Ann Arbor Healthcare System, Ann Arbor, Michigan, United States
- Graduate Program in Immunology, University of Michigan, Ann Arbor, Michigan, United States
- *Co-first authors
| | - Lori A. Bateman
- Collaborative Studies Coordinating Center, Department of Biostatistics, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States
- *Co-first authors
| | - Susan Murray
- Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, Michigan, United States
| | - David J. Couper
- Collaborative Studies Coordinating Center, Department of Biostatistics, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States
| | - Wassim W. Labaki
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States
| | - Christine M. Freeman
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States
- Graduate Program in Immunology, University of Michigan, Ann Arbor, Michigan, United States
- Research Service, VA Ann Arbor Healthcare System, Ann Arbor, Michigan, United States
| | - Kelly B. Arnold
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, United States
| | - Stephanie A. Christenson
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of California San Francisco, San Francisco, California, United States
| | - Neil E. Alexis
- Division of Allergy, Immunology, and Infectious Disease, Department of Pediatrics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States
| | - Mehmet Kesimer
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States
| | - Richard C. Boucher
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States
| | - Robert J. Kaner
- Weill Cornell Medicine, New York-Presbyterian Hospital, New York City, New York, United States
| | - Igor Barjaktarevic
- Division of Pulmonary, Critical Care and Sleep Medicine, University of California Los Angeles, Los Angeles, California, United States
| | - Christopher B. Cooper
- Division of Pulmonary, Critical Care and Sleep Medicine, University of California Los Angeles, Los Angeles, California, United States
| | - Eric A. Hoffman
- Department of Radiology, University of Iowa, Iowa City, Iowa, United States
| | - R. Graham Barr
- Department of Medicine and Department of Epidemiology, Columbia University Medical Center, New York City, New York, United States
| | - Eugene R. Bleecker
- Division of Pulmonary and Critical Care Medicine, Mayo Clinic, Scottsdale, Arizona, United States
| | - Russell P. Bowler
- Division of Pulmonary, Critical Care and Sleep Medicine, National Jewish Health, Denver, Colorado, United States
| | - Alejandro Comellas
- Department of Medicine, University of Iowa, Iowa City, Iowa, United States
| | - Mark T. Dransfield
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Michael B. Freedman
- Division of Pulmonary, Critical Care, Sleep and Allergy, University of Illinois at Chicago, Chicago, Illinois, United States
| | - Nadia N. Hansel
- Department of Medicine, Johns Hopkins University, Baltimore, Maryland, United States
| | - Jerry A. Krishnan
- Division of Pulmonary, Critical Care, Sleep and Allergy, University of Illinois at Chicago, Chicago, Illinois, United States
| | - Nathaniel Marchetti
- Department of Thoracic Medicine and Surgery, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, United States
| | - Deborah A. Meyers
- Division of Pulmonary, Critical Care and Sleep Medicine, National Jewish Health, Denver, Colorado, United States
| | - Jill Ohar
- Section of Pulmonary, Critical Care, Allergy and Immunologic Diseases, Wake Forest University, Winston-Salem, North Carolina, United States
| | - Wanda K. O'Neal
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States
| | - Victor E. Ortega
- Division of Pulmonary and Critical Care Medicine, Mayo Clinic, Scottsdale, Arizona, United States
| | - Robert Paine III
- Division of Respiratory, Critical Care, and Occupational Pulmonary Medicine, University of Utah Health Sciences Center, Salt Lake City, Utah, United States
| | - Stephen P. Peters
- Section of Pulmonary, Critical Care, Allergy and Immunologic Diseases, Wake Forest University, Winston-Salem, North Carolina, United States
| | - Benjamin M. Smith
- Department of Medicine and Department of Epidemiology, Columbia University Medical Center, New York City, New York, United States
| | | | - J. Michael Wells
- Department of Medicine, University of Iowa, Iowa City, Iowa, United States
| | - Prescott G. Woodruff
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of California San Francisco, San Francisco, California, United States
| | - MeiLan K. Han
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States
- **Co-senior authors
| | - Fernando J. Martinez
- Weill Cornell Medicine, New York-Presbyterian Hospital, New York City, New York, United States
- **Co-senior authors
| | - for the SOURCE Investigators
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States
- Medical Service, VA Ann Arbor Healthcare System, Ann Arbor, Michigan, United States
- Graduate Program in Immunology, University of Michigan, Ann Arbor, Michigan, United States
- Collaborative Studies Coordinating Center, Department of Biostatistics, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States
- Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, Michigan, United States
- Research Service, VA Ann Arbor Healthcare System, Ann Arbor, Michigan, United States
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, United States
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of California San Francisco, San Francisco, California, United States
- Division of Allergy, Immunology, and Infectious Disease, Department of Pediatrics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States
- Weill Cornell Medicine, New York-Presbyterian Hospital, New York City, New York, United States
- Division of Pulmonary, Critical Care and Sleep Medicine, University of California Los Angeles, Los Angeles, California, United States
- Department of Radiology, University of Iowa, Iowa City, Iowa, United States
- Department of Medicine and Department of Epidemiology, Columbia University Medical Center, New York City, New York, United States
- Division of Pulmonary and Critical Care Medicine, Mayo Clinic, Scottsdale, Arizona, United States
- Division of Pulmonary, Critical Care and Sleep Medicine, National Jewish Health, Denver, Colorado, United States
- Department of Medicine, University of Iowa, Iowa City, Iowa, United States
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
- Division of Pulmonary, Critical Care, Sleep and Allergy, University of Illinois at Chicago, Chicago, Illinois, United States
- Department of Medicine, Johns Hopkins University, Baltimore, Maryland, United States
- Department of Thoracic Medicine and Surgery, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, United States
- Section of Pulmonary, Critical Care, Allergy and Immunologic Diseases, Wake Forest University, Winston-Salem, North Carolina, United States
- Division of Respiratory, Critical Care, and Occupational Pulmonary Medicine, University of Utah Health Sciences Center, Salt Lake City, Utah, United States
- National Heart and Lung Institute, Imperial College, London, United Kingdom
- *Co-first authors
- **Co-senior authors
| |
Collapse
|
27
|
Mannino DM, Wright J. Are We Getting Closer to the "Cholesterol" for Chronic Respiratory Disease? Am J Respir Crit Care Med 2024; 211:6-7. [PMID: 39265184 PMCID: PMC11755355 DOI: 10.1164/rccm.202407-1480ed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 09/10/2024] [Indexed: 09/14/2024] Open
Affiliation(s)
- David M Mannino
- COPD Foundation, Miami, Florida, United States
- University of Kentucky College of Medicine, Department of Medicine, Lexington, Kentucky, United States;
| | - Jean Wright
- COPD Foundation, Miami, Florida, United States
| |
Collapse
|
28
|
Choi JY, Rhee CK. It is high time to discard a cut-off of 0.70 in the diagnosis of COPD. Expert Rev Respir Med 2024; 18:709-719. [PMID: 39189795 DOI: 10.1080/17476348.2024.2397480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 08/23/2024] [Indexed: 08/28/2024]
Abstract
INTRODUCTION Chronic obstructive pulmonary disease (COPD) has traditionally been diagnosed based on the criterion of an FEV1/FVC <0.70. However, this definition has limitations as it may only detect patients with later-stage disease, when pathologic changes have become irreversible. Consequently, it potentially omits individuals with early-stage disease, in whom the pathologic changes could be delayed or reversed. AREAS COVERED This narrative review summarizes recent evidence regarding early-stage COPD, which may not fulfill the spirometric criteria but nonetheless exhibits features of COPD or is at risk of future COPD progression. EXPERT OPINION A comprehensive approach, including symptoms assessment, various physiologic tests, and radiologic features, is required to diagnose COPD. This approach is necessary to identify currently underdiagnosed patients and to halt disease progression in at- risk patients.
Collapse
Affiliation(s)
- Joon Young Choi
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Chin Kook Rhee
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
29
|
Çolak Y, Lange P, Vestbo J, Nordestgaard BG, Afzal S. Susceptible Young Adults and Development of Chronic Obstructive Pulmonary Disease Later in Life. Am J Respir Crit Care Med 2024; 210:607-617. [PMID: 38364200 DOI: 10.1164/rccm.202308-1452oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 02/16/2024] [Indexed: 02/18/2024] Open
Abstract
Rationale: Chronic obstructive pulmonary disease (COPD) has its origin in early life, and the Global Initiative for Chronic Obstructive Lung Disease (GOLD) proposes a predisease state termed "pre-COPD." Objectives: We tested the hypothesis that susceptible young adults identified with chronic bronchitis and subtle lung function impairment will develop COPD later in life. Methods: We followed random individuals without COPD ages 20-50 years from two population-based cohorts from different smoking eras-the Copenhagen General Population Study from 2003 (N = 5,497) and the Copenhagen City Heart Study from 1976-1978 (N = 2,609)-for 10 and 25 years, for the development of COPD (FEV1/FVC <0.70) and COPD GOLD Stages 2-4 (additionally, FEV1 <80% predicted). Measurements and Main Results: After 10 years, 28% developed COPD and 13% developed COPD GOLD Stages 2-4 in individuals susceptible to COPD, compared with 8% and 1% in those without any susceptibility to COPD. Correspondingly, after 25 years, 22% versus 13% developed COPD and 20% versus 8% developed COPD GOLD Stages 2-4. More than half of incident COPD cases developed from a susceptible state. Compared with those without susceptibility to COPD, multivariable-adjusted odds ratios in those susceptible to COPD were 3.42 (95% confidence interval: 2.78-4.21) for COPD and 10.1 (6.77-15.2) for COPD GOLD Stages 2-4 after 10 years and were 1.54 (1.23-1.93) and 2.12 (1.64-2.73) after 25 years. The ability of a COPD risk score-consisting of the state of susceptibility to COPD with smoking and asthma as risk factors-to predict COPD later in life was high. Conclusions: Our study suggests the existence of a predisease state of COPD, which can be used for early identification of susceptible individuals at risk for COPD later in life.
Collapse
Affiliation(s)
- Yunus Çolak
- Department of Respiratory Medicine
- The Copenhagen General Population Study, and
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, and
| | - Peter Lange
- Department of Respiratory Medicine
- The Copenhagen General Population Study, and
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, and
- Department of Public Health, Section of Epidemiology, University of Copenhagen, Copenhagen, Denmark; and
| | - Jørgen Vestbo
- Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | - Børge G Nordestgaard
- The Copenhagen General Population Study, and
- Department of Clinical Biochemistry, Copenhagen University Hospital - Herlev and Gentofte, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, and
| | - Shoaib Afzal
- The Copenhagen General Population Study, and
- Department of Clinical Biochemistry, Copenhagen University Hospital - Herlev and Gentofte, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, and
| |
Collapse
|
30
|
Tan L, Li Y, Wang Z, Wang Z, Liu S, Lin J, Huang J, Liang L, Peng K, Gao Y, Zheng J. Comprehensive appraisal of lung function in young COPD patients: a single center observational study. BMC Pulm Med 2024; 24:358. [PMID: 39049038 PMCID: PMC11267774 DOI: 10.1186/s12890-024-03165-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 07/12/2024] [Indexed: 07/27/2024] Open
Abstract
PURPOSE The present study aimed to investigate the clinical characteristics and lung function impairment in young people diagnosed with chronic obstructive pulmonary disease (COPD). PATIENTS AND METHODS We retrospectively enrolled patients with COPD who underwent symptom assessment and comprehensive pulmonary function tests at the First Affiliated Hospital of Guangzhou Medical University between August 2017 and March 2022. The patients were categorized into two groups based on age: a young COPD group (aged 20-50 years) and an old COPD group (aged > 50 years). RESULTS A total of 1282 patients with COPD were included in the study, with 76 young COPD patients and 1206 old COPD patients. Young COPD patients exhibited a higher likelihood of being asymptomatic, lower rates of smoking, and a lower smoking index compared to old COPD patients. Although young COPD patients had higher median post-bronchodilator forced expiratory volume in 1 s (post-BD FEV1) (1.4 vs.1.2 L, P = 0.019), diffusing capacity of the lung for carbon monoxide (DLCO) (7.2 vs. 4.6, P<0.001), and a lower median residual volume to total lung capacity ratio (RV/TLC) compared to their older counterparts, there were no differences observed in severity distribution by GOLD categories or the proportion of lung hyperinflation (RV/TLC%pred > 120%) between two groups. Surprisingly, the prevalence of reduced DLCO was found to be 71.1% in young COPD, although lower than in old COPD (85.2%). CONCLUSION Young COPD showed fewer respiratory symptoms, yet displayed a similar severity distribution by GOLD categories. Furthermore, a majority of them demonstrated lung hyperinflation and reduced DLCO. These results underscore the importance of a comprehensive assessment of lung function in young COPD patients.
Collapse
Affiliation(s)
- Lunfang Tan
- Guangzhou National Laboratory, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, No.151 Yanjiang Road, Guangzhou, Guangdong, 510120, China
| | - Yun Li
- Guangzhou National Laboratory, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, No.151 Yanjiang Road, Guangzhou, Guangdong, 510120, China
| | - Zhufeng Wang
- Guangzhou National Laboratory, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, No.151 Yanjiang Road, Guangzhou, Guangdong, 510120, China
| | - Zihui Wang
- Guangzhou National Laboratory, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, No.151 Yanjiang Road, Guangzhou, Guangdong, 510120, China
| | - Shuyi Liu
- Guangzhou National Laboratory, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, No.151 Yanjiang Road, Guangzhou, Guangdong, 510120, China
| | - Junfeng Lin
- Guangzhou National Laboratory, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, No.151 Yanjiang Road, Guangzhou, Guangdong, 510120, China
| | - Jinhai Huang
- Guangzhou National Laboratory, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, No.151 Yanjiang Road, Guangzhou, Guangdong, 510120, China
| | - Lina Liang
- Guangzhou National Laboratory, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, No.151 Yanjiang Road, Guangzhou, Guangdong, 510120, China
| | - Kang Peng
- Guangzhou National Laboratory, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, No.151 Yanjiang Road, Guangzhou, Guangdong, 510120, China
| | - Yi Gao
- Guangzhou National Laboratory, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, No.151 Yanjiang Road, Guangzhou, Guangdong, 510120, China.
| | - Jinping Zheng
- Guangzhou National Laboratory, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, No.151 Yanjiang Road, Guangzhou, Guangdong, 510120, China.
| |
Collapse
|
31
|
Bae J, Lee HJ, Choi KY, Lee JK, Park TY, Heo EY, Lee CH, Kim DK, Lee HW. Risk factors of acute exacerbation and disease progression in young patients with COPD. BMJ Open Respir Res 2024; 11:e001740. [PMID: 39019624 PMCID: PMC11256056 DOI: 10.1136/bmjresp-2023-001740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 06/28/2024] [Indexed: 07/19/2024] Open
Abstract
OBJECTIVE We aimed to elucidate the clinical factors associated with acute exacerbation and disease progression in young patients with chronic obstructive pulmonary disease (COPD). METHODS This retrospective longitudinal observational study included patients with COPD aged between 20 and 50 years with post-bronchodilator forced expiratory volume in one second (FEV1)/forced vital capacity (FVC)<0.7. Eligible patients were followed up with ≥2 spirometry examinations at 1 year interval after COPD diagnosis. The primary outcome was moderate-to-severe acute exacerbation in young patients with COPD. Secondary outcomes were early initiation of regular inhalation therapy and accelerated annual post-bronchodilator FEV1 decline. RESULTS A total of 342 patients were followed up during a median of 64 months. In multivariable analyses, risk factors for moderate-to-severe exacerbation were history of asthma (adjusted HR (aHR)=2.999, 95% CI=[2.074-4.335]), emphysema (aHR=1.951, 95% CI=[1.331-2.960]), blood eosinophil count >300/µL (aHR=1.469, 95% CI=[1.038-2.081]) and low FEV1 (%) (aHR=0.979, 95% CI=[0.970-0.987]). A history of asthma, sputum, blood eosinophil count >300/µL, low FEV1 (%) and low diffusing capacity of the lung for carbon monoxide (DLCO) (%) were identified as clinical factors associated with the early initiation of regular inhalation therapy. The risk factors associated with worsened FEV1 decline were increasing age, female sex, history of pulmonary tuberculosis, sputum, low FEV1 (%) and low DLCO (%). CONCLUSIONS In young COPD patients, specific high-risk features of acute exacerbation and disease progression need to be identified, including a history of previous respiratory diseases, current respiratory symptoms, blood eosinophil counts, and structural or functional pulmonary impairment.
Collapse
Affiliation(s)
- Juye Bae
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul National University Hospital, Jongno-gu, Seoul, Korea (the Republic of)
| | - Hyo Jin Lee
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul National University College of Medicine, Seoul Metropolitan Government Boramae Medical Center, Dongjak-gu, Seoul, Korea (the Republic of)
| | - Kwang Yong Choi
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Internal Medicine, Hallym University Sacred Heart Hospital, Anyang-si, Korea (the Republic of)
| | - Jung-Kyu Lee
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul National University College of Medicine, Seoul Metropolitan Government Boramae Medical Center, Dongjak-gu, Seoul, Korea (the Republic of)
| | - Tae Yun Park
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul National University College of Medicine, Seoul Metropolitan Government Boramae Medical Center, Dongjak-gu, Seoul, Korea (the Republic of)
| | - Eun Young Heo
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul National University College of Medicine, Seoul Metropolitan Government Boramae Medical Center, Dongjak-gu, Seoul, Korea (the Republic of)
| | - Chang Hoon Lee
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul National University Hospital, Jongno-gu, Seoul, Korea (the Republic of)
| | - Deog Kyeom Kim
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul National University College of Medicine, Seoul Metropolitan Government Boramae Medical Center, Dongjak-gu, Seoul, Korea (the Republic of)
| | - Hyun Woo Lee
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul National University College of Medicine, Seoul Metropolitan Government Boramae Medical Center, Dongjak-gu, Seoul, Korea (the Republic of)
| |
Collapse
|
32
|
Dharmage SC, Faner R, Agustí A. Treatable traits in pre-COPD: Time to extend the treatable traits paradigm beyond established disease. Respirology 2024; 29:551-562. [PMID: 38862131 DOI: 10.1111/resp.14760] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 05/15/2024] [Indexed: 06/13/2024]
Abstract
To date, the treatable traits (TTs) approach has been applied in the context of managing diagnosed diseases. TTs are clinical characteristics and risk factors that can be identified clinically and/or biologically, and that merit treatment if present. There has been an exponential increase in the uptake of this approach by both researchers and clinicians. Realizing the potential of the TTs approach to pre-clinical disease, this expert review proposes that it is timely to consider acting on TTs present before a clinical diagnosis is made, which might help to prevent development of the full disease. Such an approach is ideal for diseases where there is a long pre-clinical phase, such as in chronic obstructive pulmonary disease (COPD). The term 'pre-COPD' has been recently proposed to identify patients with respiratory symptoms and/or structural or functional abnormalities without airflow limitation. They may eventually develop airflow limitation with time but patients with pre-COPD are likely to have traits that are already treatable. This review first outlines the contribution of recently generated knowledge into lifetime lung function trajectories and the conceptual framework of 'GETomics' to the field of pre-COPD. GETomics is a dynamic and cumulative model of interactions between genes and the environment throughout the lifetime that integrates information from multi-omics to understand aetiology and mechanisms of diseases. This review then discusses the current evidence on potential TTs in pre-COPD patients and makes recommendations for practice and future research. At a broader level, this review proposes that introducing the TTs in pre-COPD may help reenergize the preventive approaches to health and diseases.
Collapse
Affiliation(s)
- Shyamali C Dharmage
- Allergy and Lung Health Unit, Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Rosa Faner
- Universitat de Barcelona, Biomedicine Department. Immunology Unit, Barcelona, Spain
- Fundació Clinic per a la Recerca Biomedica (FCRB-IDIBAPS), Institut Investigacions Biomediques, Barcelona, Spain
- Consorcio Investigacion Biomedica en Red (CIBER) ENfermedades Respiratorias, Barcelona, Spain
| | - Alvar Agustí
- Fundació Clinic per a la Recerca Biomedica (FCRB-IDIBAPS), Institut Investigacions Biomediques, Barcelona, Spain
- Consorcio Investigacion Biomedica en Red (CIBER) ENfermedades Respiratorias, Barcelona, Spain
- Cathedra Salud Respiratoria, Department of Medicine, University of Barcelona, Barcelona, Spain
- Pulmonary Division, Respiratory Institute, Clinic Barcelona, Barcelona, Spain
| |
Collapse
|
33
|
Tan DJ, Lodge CJ, Walters EH, Bui DS, Pham J, Lowe AJ, Bowatte G, Vicendese D, Erbas B, Johns DP, James AL, Frith P, Hamilton GS, Thomas PS, Wood-Baker R, Han MK, Washko GR, Abramson MJ, Perret JL, Dharmage SC. Can We Use Lung Function Thresholds and Respiratory Symptoms to Identify Pre-Chronic Obstructive Pulmonary Disease? A Prospective, Population-based Cohort Study. Am J Respir Crit Care Med 2024; 209:1431-1440. [PMID: 38236192 DOI: 10.1164/rccm.202212-2330oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 01/16/2024] [Indexed: 01/19/2024] Open
Abstract
Rationale: The term "pre-chronic obstructive pulmonary disease" ("pre-COPD") refers to individuals at high risk of developing COPD who do not meet conventional spirometric criteria for airflow obstruction. New approaches to identifying these individuals are needed, particularly in younger populations. Objectives: To determine whether lung function thresholds and respiratory symptoms can be used to identify individuals at risk of developing COPD. Methods: The Tasmanian Longitudinal Health Study comprises a population-based cohort first studied in 1968 (at age 7 yr). Respiratory symptoms, pre- and post-bronchodilator (BD) spirometry, diffusing capacity, and static lung volumes were measured in a subgroup at age 45, and the incidence of COPD was assessed at age 53. For each lung function measure, z-scores were calculated using Global Lung Function Initiative references. The optimal threshold for best discrimination of COPD incidence was determined by the unweighted Youden index. Measurements and Main Results: Among 801 participants who did not have COPD at age 45, the optimal threshold for COPD incidence by age 53 was pre-BD FEV1/FVC z-score less than -1.264, corresponding to the lowest 10th percentile. Those below this threshold had a 36-fold increased risk of developing COPD over an 8-year follow-up period (risk ratio, 35.8; 95% confidence interval, 8.88 to 144), corresponding to a risk difference of 16.4% (95% confidence interval, 3.7 to 67.4). The sensitivity was 88%, and the specificity was 87%. Positive and negative likelihood ratios were 6.79 and 0.14, respectively. Respiratory symptoms, post-BD spirometry, diffusing capacity, and static lung volumes did not improve on the classification achieved by pre-BD FEV1/FVC alone. Conclusions: This is the first study, to our knowledge, to evaluate the discriminatory accuracy of spirometry, diffusing capacity, and static lung volume thresholds for COPD incidence in middle-aged adults. Our findings support the inclusion of pre-BD spirometry in the physiological definition of pre-COPD and indicate that pre-BD FEV1/FVC at the 10th percentile accurately identifies individuals at high risk of developing COPD in community-based settings.
Collapse
Affiliation(s)
- Daniel J Tan
- Allergy and Lung Health Unit, Centre for Epidemiology and Biostatistics, School of Population and Global Health, University of Melbourne, Melbourne, Victoria, Australia
- Monash Lung, Sleep, Allergy & Immunology, Monash Health, Melbourne, Victoria, Australia
| | - Caroline J Lodge
- Allergy and Lung Health Unit, Centre for Epidemiology and Biostatistics, School of Population and Global Health, University of Melbourne, Melbourne, Victoria, Australia
| | - E Haydn Walters
- Allergy and Lung Health Unit, Centre for Epidemiology and Biostatistics, School of Population and Global Health, University of Melbourne, Melbourne, Victoria, Australia
- School of Medicine, University of Tasmania, Hobart, Tasmania, Australia
| | - Dinh S Bui
- Allergy and Lung Health Unit, Centre for Epidemiology and Biostatistics, School of Population and Global Health, University of Melbourne, Melbourne, Victoria, Australia
| | - Jonathan Pham
- Allergy and Lung Health Unit, Centre for Epidemiology and Biostatistics, School of Population and Global Health, University of Melbourne, Melbourne, Victoria, Australia
- Allergy, Asthma and Clinical Immunology, The Alfred Hospital, Melbourne, Victoria, Australia
| | - Adrian J Lowe
- Allergy and Lung Health Unit, Centre for Epidemiology and Biostatistics, School of Population and Global Health, University of Melbourne, Melbourne, Victoria, Australia
| | - Gayan Bowatte
- Allergy and Lung Health Unit, Centre for Epidemiology and Biostatistics, School of Population and Global Health, University of Melbourne, Melbourne, Victoria, Australia
- Department of Basic Sciences, Faculty of Allied Health Sciences, University of Peradeniya, Peradeniya, Sri Lanka
| | - Don Vicendese
- Allergy and Lung Health Unit, Centre for Epidemiology and Biostatistics, School of Population and Global Health, University of Melbourne, Melbourne, Victoria, Australia
- School of Engineering and Mathematical Science and
| | - Bircan Erbas
- School of Psychology and Public Health, La Trobe University, Melbourne, Victoria, Australia
- Violet Vines Marshman Centre for Rural Health Research, La Trobe University, Bendigo, Victoria, Australia
| | - David P Johns
- Allergy and Lung Health Unit, Centre for Epidemiology and Biostatistics, School of Population and Global Health, University of Melbourne, Melbourne, Victoria, Australia
- School of Medicine, University of Tasmania, Hobart, Tasmania, Australia
| | - Alan L James
- Department of Pulmonary Physiology and Sleep Medicine, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia
| | - Peter Frith
- College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
| | - Garun S Hamilton
- Monash Lung, Sleep, Allergy & Immunology, Monash Health, Melbourne, Victoria, Australia
- School of Clinical Sciences, and
| | - Paul S Thomas
- Prince of Wales Clinical School, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | | | - MeiLan K Han
- Division of Pulmonary and Critical Care Medicine, University of Michigan Health System, Ann Arbor, Michigan
| | - George R Washko
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, Massachusetts
| | - Michael J Abramson
- School of Public Health & Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - Jennifer L Perret
- Allergy and Lung Health Unit, Centre for Epidemiology and Biostatistics, School of Population and Global Health, University of Melbourne, Melbourne, Victoria, Australia
- Institute for Breathing and Sleep, Melbourne, Victoria, Australia; and
- Department of Respiratory and Sleep Medicine, Austin Health, Melbourne, Victoria, Australia
| | - Shyamali C Dharmage
- Allergy and Lung Health Unit, Centre for Epidemiology and Biostatistics, School of Population and Global Health, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
34
|
Moll M, Hecker J, Platig J, Zhang J, Ghosh AJ, Pratte KA, Wang RS, Hill D, Konigsberg IR, Chiles JW, Hersh CP, Castaldi PJ, Glass K, Dy JG, Sin DD, Tal-Singer R, Mouded M, Rennard SI, Anderson GP, Kinney GL, Bowler RP, Curtis JL, McDonald ML, Silverman EK, Hobbs BD, Cho MH. Polygenic and transcriptional risk scores identify chronic obstructive pulmonary disease subtypes. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.05.20.24307621. [PMID: 38826461 PMCID: PMC11142287 DOI: 10.1101/2024.05.20.24307621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Rationale Genetic variants and gene expression predict risk of chronic obstructive pulmonary disease (COPD), but their effect on COPD heterogeneity is unclear. Objectives Define high-risk COPD subtypes using both genetics (polygenic risk score, PRS) and blood gene expression (transcriptional risk score, TRS) and assess differences in clinical and molecular characteristics. Methods We defined high-risk groups based on PRS and TRS quantiles by maximizing differences in protein biomarkers in a COPDGene training set and identified these groups in COPDGene and ECLIPSE test sets. We tested multivariable associations of subgroups with clinical outcomes and compared protein-protein interaction networks and drug repurposing analyses between high-risk groups. Measurements and Main Results We examined two high-risk omics-defined groups in non-overlapping test sets (n=1,133 NHW COPDGene, n=299 African American (AA) COPDGene, n=468 ECLIPSE). We defined "High activity" (low PRS/high TRS) and "severe risk" (high PRS/high TRS) subgroups. Participants in both subgroups had lower body-mass index (BMI), lower lung function, and alterations in metabolic, growth, and immune signaling processes compared to a low-risk (low PRS, low TRS) reference subgroup. "High activity" but not "severe risk" participants had greater prospective FEV 1 decline (COPDGene: -51 mL/year; ECLIPSE: - 40 mL/year) and their proteomic profiles were enriched in gene sets perturbed by treatment with 5-lipoxygenase inhibitors and angiotensin-converting enzyme (ACE) inhibitors. Conclusions Concomitant use of polygenic and transcriptional risk scores identified clinical and molecular heterogeneity amongst high-risk individuals. Proteomic and drug repurposing analysis identified subtype-specific enrichment for therapies and suggest prior drug repurposing failures may be explained by patient selection.
Collapse
|
35
|
Ritchie AI, Donaldson GC, Hoffman EA, Allinson JP, Bloom CI, Bolton CE, Choudhury G, Gerard SE, Guo J, Alves-Moreira L, McGarvey L, Sapey E, Stockley RA, Yip KP, Singh D, Wilkinson T, Fageras M, Ostridge K, Jöns O, Bucchioni E, Compton CH, Jones P, Mezzi K, Vestbo J, Calverley PMA, Wedzicha JA. Structural Predictors of Lung Function Decline in Young Smokers with Normal Spirometry. Am J Respir Crit Care Med 2024; 209:1208-1218. [PMID: 38175920 PMCID: PMC11146542 DOI: 10.1164/rccm.202307-1203oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 01/04/2024] [Indexed: 01/06/2024] Open
Abstract
Rationale: Chronic obstructive pulmonary disease (COPD) due to tobacco smoking commonly presents when extensive lung damage has occurred. Objectives: We hypothesized that structural change would be detected early in the natural history of COPD and would relate to loss of lung function with time. Methods: We recruited 431 current smokers (median age, 39 yr; 16 pack-years smoked) and recorded symptoms using the COPD Assessment Test (CAT), spirometry, and quantitative thoracic computed tomography (QCT) scans at study entry. These scan results were compared with those from 67 never-smoking control subjects. Three hundred sixty-eight participants were followed every six months with measurement of postbronchodilator spirometry for a median of 32 months. The rate of FEV1 decline, adjusted for current smoking status, age, and sex, was related to the initial QCT appearances and symptoms, measured using the CAT. Measurements and Main Results: There were no material differences in demography or subjective CT appearances between the young smokers and control subjects, but 55.7% of the former had CAT scores greater than 10, and 24.2% reported chronic bronchitis. QCT assessments of disease probability-defined functional small airway disease, ground-glass opacification, bronchovascular prominence, and ratio of small blood vessel volume to total pulmonary vessel volume were increased compared with control subjects and were all associated with a faster FEV1 decline, as was a higher CAT score. Conclusions: Radiological abnormalities on CT are already established in young smokers with normal lung function and are associated with FEV1 loss independently of the impact of symptoms. Structural abnormalities are present early in the natural history of COPD and are markers of disease progression. Clinical trial registered with www.clinicaltrials.gov (NCT03480347).
Collapse
Affiliation(s)
- Andrew I. Ritchie
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
- AstraZeneca, Cambridge, United Kingdom
| | - Gavin C. Donaldson
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Eric A. Hoffman
- Department of Radiology and
- Roy J. Carver Department of Biomedical Engineering, Medicine and Biomedical Engineering, University of Iowa, Iowa City, Iowa
| | - James P. Allinson
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
- Royal Brompton Hospital, London, United Kingdom
| | - Chloe I. Bloom
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Charlotte E. Bolton
- NIHR Nottingham Biomedical Research Centre
- Centre for Respiratory Research, NIHR Nottingham, Translational Medical Sciences, School of Medicine, University of Nottingham, Nottingham, UK
| | - Gourab Choudhury
- ELEGI and COLT Laboratories, Queen’s Medical Research Institute, Edinburgh, United Kingdom
| | - Sarah E. Gerard
- Roy J. Carver Department of Biomedical Engineering, Medicine and Biomedical Engineering, University of Iowa, Iowa City, Iowa
| | | | - Luana Alves-Moreira
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Lorcan McGarvey
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, Belfast, United Kingdom
- Belfast Health and Social Care Trust, Belfast, United Kingdom
| | - Elizabeth Sapey
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| | - Robert A. Stockley
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| | - K. P. Yip
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| | - Dave Singh
- Division of Infection, Immunity and Respiratory Medicine, University of Manchester, Manchester, United Kingdom
| | - Tom Wilkinson
- Faculty of Medicine, University of Southampton, Southampton, United Kingdom
- National Institute for Health and Care Research Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, United Kingdom
| | | | - Kristoffer Ostridge
- Faculty of Medicine, University of Southampton, Southampton, United Kingdom
- AstraZeneca, Gothenburg, Sweden
| | - Olaf Jöns
- Boehringer Ingelheim International GmbH, Ingelheim am Rhein, Germany
| | | | | | - Paul Jones
- GlaxoSmithKline, Brentford, United Kingdom
| | | | - Jørgen Vestbo
- Division of Infection, Immunity and Respiratory Medicine, University of Manchester, Manchester, United Kingdom
| | - Peter M. A. Calverley
- Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Jadwiga A. Wedzicha
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| |
Collapse
|
36
|
Verleden SE, Hendriks JMH, Lapperre TS. Reply to Polverino: Clearing the Air: Innovations in Imaging for Early Detection and Management of Chronic Obstructive Pulmonary Disease. Am J Respir Crit Care Med 2024; 209:1044-1045. [PMID: 38227940 PMCID: PMC11531214 DOI: 10.1164/rccm.202312-2329le] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 01/16/2024] [Indexed: 01/18/2024] Open
Affiliation(s)
- Stijn E. Verleden
- Division of Thoracic Surgery, Antwerp Surgical Training Anatomy and Research Centre
- LEARN, Lung Research Antwerp, University of Antwerp, Wilrijk (Antwerp), Belgium; and
- Department of Thoracic and Vascular Surgery and
- Department of Pulmonology, University Hospital Antwerp, Edegem, Belgium
| | - Jeroen M. H. Hendriks
- Division of Thoracic Surgery, Antwerp Surgical Training Anatomy and Research Centre
- LEARN, Lung Research Antwerp, University of Antwerp, Wilrijk (Antwerp), Belgium; and
- Department of Thoracic and Vascular Surgery and
| | - Therese S. Lapperre
- Laboratory of Experimental Medicine and Pediatrics, and
- LEARN, Lung Research Antwerp, University of Antwerp, Wilrijk (Antwerp), Belgium; and
- Department of Pulmonology, University Hospital Antwerp, Edegem, Belgium
| |
Collapse
|
37
|
Lei J, Huang K, Wu S, Xu J, Xu Y, Zhao J, Zhang X, Bai C, Song Y, Kang J, Ran P, Zhou Y, Shen H, Wen F, Huang K, Chen Y, Yao W, Sun T, Lin Y, Zhu J, Shan G, Yang T, Wang C. Heterogeneities and impact profiles of early chronic obstructive pulmonary disease status: findings from the China Pulmonary Health Study. THE LANCET REGIONAL HEALTH. WESTERN PACIFIC 2024; 45:101021. [PMID: 38352242 PMCID: PMC10862401 DOI: 10.1016/j.lanwpc.2024.101021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 01/09/2024] [Accepted: 01/18/2024] [Indexed: 02/16/2024]
Abstract
Background The prevalence, epidemiological and clinical heterogeneities, and impact profiles of individuals with preserved ratio impaired spirometry (PRISm), pre-COPD, young COPD, and mild COPD in general Chinese population were not known yet. Methods Data were obtained from the China Pulmonary Health study (2012-2015), a nationally representative cross-sectional survey that recruited 50,991 adults aged 20 years or older. Definitions of the four early disease status were consistent with the latest publications and the Global Initiative for Chronic Obstructive Lung Disease criteria. Findings The age-standardised prevalences of PRISm, pre-COPD, young COPD, and mild COPD were 5.5% (95% confidence interval, 4.3-6.9), 7.2% (5.9-8.8), 1.1% (0.7-1.8), and 3.1% (2.5-3.8), respectively. In summary, mild COPD was under more direct or established impact factor exposures, such as older age, male gender, lower education level, lower family income, biomass use, air pollution, and more accumulative cigarette exposures; young COPD and pre-COPD experienced more personal and parents' events in earlier lives, such as history of bronchitis or pneumonia in childhood, frequent chronic cough in childhood, parental history of respiratory diseases, passive smoke exposure in childhood, and mother exposed to passive smoke while pregnant; pre-COPD coexisted with heavier symptoms and comorbidities burdens; young COPD exhibited worse airway obstruction; and most of the four early disease status harbored small airway dysfunction. Overall, older age, male gender, lower education level, living in the urban area, occupational exposure, frequent chronic cough in childhood, more accumulated cigarette exposure, comorbid with cardiovascular disease and gastroesophageal reflux disease were all associated with increased presence of the four early COPD status; different impact profiles were additionally observed with distinct entities. Over the four categories, less than 10% had ever taken pulmonary function test; less than 1% reported a previously diagnosed COPD; and no more than 13% had received pharmaceutical treatment. Interpretation Significant heterogeneities in prevalence, epidemiological and clinical features, and impact profiles were noted under varied defining criteria of early COPD; a unified and validated definition for an early disease stage is warranted. Closer attention, better management, and further research need to be administrated to these population. Funding Chinese Academy of Medical Sciences Institute of Respiratory Medicine Grant for Young Scholars (No. 2023-ZF-9); China International Medical Foundation (No. Z-2017-24-2301); Chinese Academy of Medical Sciences Innovation Fund for Medical Sciences (No. 2021-I2M-1-049); National High Level Hospital Clinical Research Funding (No. 2022-NHLHCRF-LX-01); Major Program of National Natural Science Foundation of China (No. 82090011).
Collapse
Affiliation(s)
- Jieping Lei
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Department of Clinical Research and Data Management, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, PR China
| | - Ke Huang
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, PR China
| | - Sinan Wu
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Department of Clinical Research and Data Management, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, PR China
| | - Jianying Xu
- Department of Pulmonary and Critical Care Medicine, Shanxi Bethune Hospital Shanxi Academy of Medical Sciences, Taiyuan, Shanxi Province, PR China
| | - Yongjian Xu
- Department of Pulmonary and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, PR China
| | - Jianping Zhao
- Department of Pulmonary and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, PR China
| | - Xiangyan Zhang
- Department of Pulmonary and Critical Care Medicine, Guizhou Provincial People's Hospital, Guiyang, Guizhou Province, PR China
| | - Chunxue Bai
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, PR China
| | - Yuanlin Song
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, PR China
| | - Jian Kang
- Department of Pulmonary and Critical Care Medicine, The First Hospital of China Medical University, Shenyang, Liaoning Province, PR China
| | - Pixin Ran
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Diseases, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong Province, PR China
| | - Yumin Zhou
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Diseases, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong Province, PR China
| | - Huahao Shen
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, Zhejiang Province, PR China
| | - Fuqiandg Wen
- State Key Laboratory of Biotherapy of China and Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan Province, PR China
| | - Kewu Huang
- Beijing Key Laboratory of Respiratory and Pulmonary Circulation Disorders, Department of Pulmonary and Critical Care Medicine, Beijing Chao-Yang Hospital, Beijing, PR China
- Department of Respiratory Medicine, Capital Medical University, Beijing, PR China
- Beijing Institute of Respiratory Medicine, Beijing, PR China
| | - Yahong Chen
- Department of Pulmonary and Critical Care Medicine, Peking University Third Hospital, Beijing, PR China
| | - Wanzhen Yao
- Department of Pulmonary and Critical Care Medicine, Peking University Third Hospital, Beijing, PR China
| | - Tieying Sun
- Department of Respiratory and Critical Care Medicine, Beijing Hospital, Beijing, PR China
- National Center of Gerontology, Beijing, PR China
| | - Yingxiang Lin
- Beijing Key Laboratory of Respiratory and Pulmonary Circulation Disorders, Department of Pulmonary and Critical Care Medicine, Beijing Chao-Yang Hospital, Beijing, PR China
- Beijing Institute of Respiratory Medicine, Beijing, PR China
| | - Jianguo Zhu
- National Center of Gerontology, Beijing, PR China
| | - Guangliang Shan
- Department of Epidemiology and Biostatistics, School of Basic Medicine of Peking Union Medical College, Institute of Basic Medical Sciences of Chinese Academy of Medical Sciences, Beijing, PR China
| | - Ting Yang
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, PR China
| | - Chen Wang
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, PR China
- Department of Respiratory Medicine, Capital Medical University, Beijing, PR China
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| | - China Pulmonary Health (CPH) Study Investigators
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Department of Clinical Research and Data Management, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, PR China
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, PR China
- Department of Pulmonary and Critical Care Medicine, Shanxi Bethune Hospital Shanxi Academy of Medical Sciences, Taiyuan, Shanxi Province, PR China
- Department of Pulmonary and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, PR China
- Department of Pulmonary and Critical Care Medicine, Guizhou Provincial People's Hospital, Guiyang, Guizhou Province, PR China
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, PR China
- Department of Pulmonary and Critical Care Medicine, The First Hospital of China Medical University, Shenyang, Liaoning Province, PR China
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Diseases, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong Province, PR China
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, Zhejiang Province, PR China
- State Key Laboratory of Biotherapy of China and Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan Province, PR China
- Beijing Key Laboratory of Respiratory and Pulmonary Circulation Disorders, Department of Pulmonary and Critical Care Medicine, Beijing Chao-Yang Hospital, Beijing, PR China
- Department of Respiratory Medicine, Capital Medical University, Beijing, PR China
- Beijing Institute of Respiratory Medicine, Beijing, PR China
- Department of Pulmonary and Critical Care Medicine, Peking University Third Hospital, Beijing, PR China
- Department of Respiratory and Critical Care Medicine, Beijing Hospital, Beijing, PR China
- National Center of Gerontology, Beijing, PR China
- Department of Epidemiology and Biostatistics, School of Basic Medicine of Peking Union Medical College, Institute of Basic Medical Sciences of Chinese Academy of Medical Sciences, Beijing, PR China
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| |
Collapse
|
38
|
Verleden SE, Hendriks JMH, Snoeckx A, Mai C, Mentens Y, Callebaut W, De Belie B, Van Schil PE, Verplancke V, Janssens A, Jacob J, Pakzad A, Conlon TM, Guvenc G, Yildirim AÖ, Pauwels P, Koljenovic S, Kwakkel-Van Erp JM, Lapperre TS. Small Airway Disease in Pre-Chronic Obstructive Pulmonary Disease with Emphysema: A Cross-Sectional Study. Am J Respir Crit Care Med 2024; 209:683-692. [PMID: 38055196 DOI: 10.1164/rccm.202301-0132oc] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 12/06/2023] [Indexed: 12/07/2023] Open
Abstract
Rationale: Small airway disease is an important pathophysiological feature of chronic obstructive pulmonary disease (COPD). Recently, "pre-COPD" has been put forward as a potential precursor stage of COPD that is defined by abnormal spirometry findings or significant emphysema on computed tomography (CT) in the absence of airflow obstruction. Objective: To determine the degree and nature of (small) airway disease in pre-COPD using microCT in a cohort of explant lobes/lungs. Methods: We collected whole lungs/lung lobes from patients with emphysematous pre-COPD (n = 10); Global Initiative for Chronic Obstructive Lung Disease (GOLD) stage I (n = 6), II (n = 6), and III/IV (n = 7) COPD; and controls (n = 10), which were analyzed using CT and microCT. The degree of emphysema and the number and morphology of small airways were compared between groups, and further correlations were investigated with physiologic measures. Airway and parenchymal pathology was also validated with histopathology. Measurements and Main Results: The numbers of transitional bronchioles and terminal bronchioles per milliliter of lung were significantly lower in pre-COPD and GOLD stages I, II, and III/IV COPD compared with controls. In addition, the number of alveolar attachments of the transitional bronchioles and terminal bronchioles was also lower in pre-COPD and all COPD groups compared with controls. We did not find any differences between the pre-COPD and COPD groups in CT or microCT measures. The percentage of emphysema on CT showed the strongest correlation with the number of small airways in the COPD groups. Histopathology showed an increase in the mean chord length and a decrease in alveolar surface density in pre-COPD and all GOLD COPD stages compared with controls. Conclusions: Lungs of patients with emphysematous pre-COPD already show fewer small airways and airway remodeling even in the absence of physiologic airway obstruction.
Collapse
Affiliation(s)
- Stijn E Verleden
- Division of Thoracic Surgery, Antwerp Surgical Training, Anatomy and Research Centre
- Department of Thoracic and Vascular Surgery
- Department of Pulmonology
| | - Jeroen M H Hendriks
- Division of Thoracic Surgery, Antwerp Surgical Training, Anatomy and Research Centre
- Department of Thoracic and Vascular Surgery
| | - Annemiek Snoeckx
- Department of Molecular Morphology Microscopy, Faculty of Medicine and Health Sciences
- Department of Radiology
| | | | - Yves Mentens
- Department of Pulmonology, General Hospital Herentals, Herentals, Belgium
| | - Wim Callebaut
- Department of Pulmonology, General Hospital Voorkempen, Malle, Belgium
| | - Bruno De Belie
- Department of Pulmonology, General Hospital, Rumst, Belgium
| | - Paul E Van Schil
- Division of Thoracic Surgery, Antwerp Surgical Training, Anatomy and Research Centre
- Department of Thoracic and Vascular Surgery
| | | | | | - Joseph Jacob
- Department of Radiology, University College London Hospitals National Health Service Foundation Trust, London, United Kingdom
| | - Ashkan Pakzad
- Department of Radiology, University College London Hospitals National Health Service Foundation Trust, London, United Kingdom
| | - Thomas M Conlon
- Comprehensive Pneumology Center, Institute of Lung Health and Immunity, Helmholtz Munich, Munich, Germany; and
| | - Guney Guvenc
- Comprehensive Pneumology Center, Institute of Lung Health and Immunity, Helmholtz Munich, Munich, Germany; and
| | - Ali Önder Yildirim
- Comprehensive Pneumology Center, Institute of Lung Health and Immunity, Helmholtz Munich, Munich, Germany; and
- Institute of Experimental Pneumology, University Hospital, Ludwig-Maximilians University, Munich, Germany
| | - Patrick Pauwels
- Center for Oncologic Research, and
- Department of Pathology, University Hospital Antwerp, Edegem, Belgium
| | - Senada Koljenovic
- Center for Oncologic Research, and
- Department of Pathology, University Hospital Antwerp, Edegem, Belgium
| | - Johanna M Kwakkel-Van Erp
- Laboratory of Experimental Medicine and Pediatrics, University of Antwerp, Antwerp, Belgium
- Department of Pulmonology
| | - Thérèse S Lapperre
- Laboratory of Experimental Medicine and Pediatrics, University of Antwerp, Antwerp, Belgium
- Department of Pulmonology
| |
Collapse
|
39
|
Tanabe N. Increase Attention to Computed Tomography Findings of Emphysema without Airflow Limitation: Small Airway Disease Is Already There. Am J Respir Crit Care Med 2024; 209:619-621. [PMID: 38207095 PMCID: PMC10945056 DOI: 10.1164/rccm.202312-2245ed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 01/10/2024] [Indexed: 01/13/2024] Open
Affiliation(s)
- Naoya Tanabe
- Department of Respiratory Medicine Kyoto University Kyoto, Japan
| |
Collapse
|
40
|
Mochizuki F, Tanabe N, Shimada T, Iijima H, Sakamoto R, Shiraishi Y, Maetani T, Shimizu K, Suzuki M, Chubachi S, Ishikawa H, Naito T, Kanasaki M, Masuda I, Oguma T, Sato S, Hizawa N, Hirai T. Centrilobular emphysema and airway dysanapsis: factors associated with low respiratory function in younger smokers. ERJ Open Res 2024; 10:00695-2023. [PMID: 38444662 PMCID: PMC10910308 DOI: 10.1183/23120541.00695-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 01/18/2024] [Indexed: 03/07/2024] Open
Abstract
Background Low respiratory function in young adulthood is one of the important factors in the trajectory leading to the future development of COPD, but its morphological characteristics are not well characterised. Methods We retrospectively enrolled 172 subjects aged 40-49 years with ≥10 pack-years smoking history who underwent lung cancer screening by computed tomography (CT) and spirometry at two Japanese hospitals. Emphysema was visually assessed according to the Fleischner Society guidelines and classified into two types: centrilobular emphysema (CLE) and paraseptal emphysema (PSE). Airway dysanapsis was assessed with the airway/lung ratio (ALR), which was calculated by the geometric mean of the lumen diameters of the 14 branching segments divided by the cube root of total lung volume on a CT scan. Results Among the subjects, CLE and PSE were observed in 20.9% and 30.8%, respectively. The mean ALR was 0.04 and did not differ between those with and without each type of emphysema. Multivariable regression analysis models adjusted for age, sex, body mass index and smoking status indicated that CLE and a low ALR were independently associated with lower forced expiratory volume in 1 s (FEV1)/forced vital capacity (estimate -1.64 (95% CI -2.68- -0.60) and 6.73 (95% CI 4.24-9.24), respectively) and FEV1 % pred (estimate -2.81 (95% CI -5.10- -0.52) and 10.9 (95% CI 5.36-16.4), respectively). Conclusions CLE and airway dysanapsis on CT were independently associated with low respiratory function in younger smokers.
Collapse
Affiliation(s)
- Fumi Mochizuki
- Department of Respiratory Medicine, Tsukuba Medical Center Hospital, Tsukuba, Japan
| | - Naoya Tanabe
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takafumi Shimada
- Department of Respiratory Medicine, Tsukuba Medical Center Hospital, Tsukuba, Japan
| | - Hiroaki Iijima
- Department of Respiratory Medicine, Tsukuba Medical Center Hospital, Tsukuba, Japan
| | - Ryo Sakamoto
- Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yusuke Shiraishi
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Tomoki Maetani
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kaoruko Shimizu
- Department of Respiratory Medicine, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Masaru Suzuki
- Department of Respiratory Medicine, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Shotaro Chubachi
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Hiroichi Ishikawa
- Department of Respiratory Medicine, Tsukuba Medical Center Hospital, Tsukuba, Japan
| | - Takashi Naito
- Department of Respiratory Medicine, Tsukuba Medical Center Hospital, Tsukuba, Japan
| | | | - Izuru Masuda
- Clinical Research Institute, National Hospital Organization, Kyoto Medical Center, Kyoto, Japan
| | - Tsuyoshi Oguma
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Department of Respiratory Medicine, Kyoto City Hospital, Kyoto, Japan
| | - Susumu Sato
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Department of Respiratory Care and Sleep Control Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Nobuyuki Hizawa
- Department of Pulmonary Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Toyohiro Hirai
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
41
|
Su H, Song Y, Yang S, Zhang Z, Shen Y, Yu L, Chen S, Gao L, Chen C, Hou D, Wei X, Ma X, Huang P, Sun D, Zhou J, Qian K. Plasmonic Alloys Enhanced Metabolic Fingerprints for the Diagnosis of COPD and Exacerbations. ACS CENTRAL SCIENCE 2024; 10:331-343. [PMID: 38435520 PMCID: PMC10906255 DOI: 10.1021/acscentsci.3c01201] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/11/2023] [Accepted: 12/27/2023] [Indexed: 03/05/2024]
Abstract
Accurate diagnosis of chronic obstructive pulmonary disease (COPD) and exacerbations by metabolic biomarkers enables individualized treatment. Advanced metabolic detection platforms rely on designed materials. Here, we design mesoporous PdPt alloys to characterize metabolic fingerprints for diagnosing COPD and exacerbations. As a result, the optimized PdPt alloys enable the acquisition of metabolic fingerprints within seconds, requiring only 0.5 μL of native plasma by laser desorption/ionization mass spectrometry owing to the enhanced electric field, photothermal conversion, and photocurrent response. Machine learning decodes metabolic profiles acquired from 431 individuals, achieving a precise diagnosis of COPD with an area under the curve (AUC) of 0.904 and an accurate distinction between stable COPD and acute exacerbations of COPD (AECOPD) with an AUC of 0.951. Notably, eight metabolic biomarkers identified accurately discriminate AECOPD from stable COPD while providing valuable information on disease progress. Our platform will offer an advanced nanoplatform for the management of COPD, complementing standard clinical techniques.
Collapse
Affiliation(s)
- Haiyang Su
- State
Key Laboratory of Systems Medicine for Cancer, School of Biomedical
Engineering, Institute of Medical Robotics and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai 200030, P. R. China
| | - Yuanlin Song
- Department
of Pulmonary and Critical Care Medicine, Shanghai Respiratory Research
Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, P. R. China
- Shanghai
Key Laboratory of Lung Inflammation and Injury, 180 Fenglin Road, Shanghai 200032, P. R. China
- Center
of Emergency and Critical Medicine, Jinshan
Hospital of Fudan University, Shanghai 201508, P. R. China
| | - Shouzhi Yang
- State
Key Laboratory of Systems Medicine for Cancer, School of Biomedical
Engineering, Institute of Medical Robotics and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai 200030, P. R. China
| | - Ziyue Zhang
- State
Key Laboratory of Systems Medicine for Cancer, School of Biomedical
Engineering, Institute of Medical Robotics and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai 200030, P. R. China
| | - Yao Shen
- Department
of Respiratory and Critical Care Medicine, Shanghai Pudong Hospital, Fudan University, Shanghai 201399, P. R. China
| | - Lan Yu
- Clinical
Medical Research Center, Inner Mongolia
People’s Hospital, Hohhot 010017, Inner Mongolia, P. R. China
- Inner
Mongolia Key Laboratory of Gene Regulation of The Metabolic Disease, Inner Mongolia People’s Hospital, Hohhot 010017, Inner Mongolia, P.
R. China
- Inner
Mongolia Academy of Medical Sciences, Inner
Mongolia People’s Hospital, Hohhot 010017, Inner
Mongolia, P. R. China
| | - Shujing Chen
- Department
of Pulmonary and Critical Care Medicine, Shanghai Respiratory Research
Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, P. R. China
- Shanghai
Key Laboratory of Lung Inflammation and Injury, 180 Fenglin Road, Shanghai 200032, P. R. China
| | - Lei Gao
- Department
of Pulmonary and Critical Care Medicine, Shanghai Respiratory Research
Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, P. R. China
- Shanghai
Key Laboratory of Lung Inflammation and Injury, 180 Fenglin Road, Shanghai 200032, P. R. China
| | - Cuicui Chen
- Department
of Pulmonary and Critical Care Medicine, Shanghai Respiratory Research
Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, P. R. China
- Shanghai
Key Laboratory of Lung Inflammation and Injury, 180 Fenglin Road, Shanghai 200032, P. R. China
| | - Dongni Hou
- Department
of Pulmonary and Critical Care Medicine, Shanghai Respiratory Research
Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, P. R. China
- Shanghai
Key Laboratory of Lung Inflammation and Injury, 180 Fenglin Road, Shanghai 200032, P. R. China
| | - Xinping Wei
- Shanghai
Minhang District Gumei Community Health Center affiliated with Fudan
University, Shanghai 201102, P. R. China
| | - Xuedong Ma
- Shanghai
Minhang District Gumei Community Health Center affiliated with Fudan
University, Shanghai 201102, P. R. China
| | - Pengyu Huang
- Shanghai
Minhang District Gumei Community Health Center affiliated with Fudan
University, Shanghai 201102, P. R. China
| | - Dejun Sun
- Inner
Mongolia Key Laboratory of Gene Regulation of The Metabolic Disease, Inner Mongolia People’s Hospital, Hohhot 010017, Inner Mongolia, P.
R. China
- Department
of Respiratory and Critical Care Medicine, Inner Mongolia People’s Hospital, Hohhot 010017, P. R. China
| | - Jian Zhou
- Department
of Pulmonary and Critical Care Medicine, Shanghai Respiratory Research
Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, P. R. China
- Shanghai
Key Laboratory of Lung Inflammation and Injury, 180 Fenglin Road, Shanghai 200032, P. R. China
- Center
of Emergency and Critical Medicine, Jinshan
Hospital of Fudan University, Shanghai 201508, P. R. China
| | - Kun Qian
- State
Key Laboratory of Systems Medicine for Cancer, School of Biomedical
Engineering, Institute of Medical Robotics and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai 200030, P. R. China
- Shanghai
Key Laboratory of Gynecologic Oncology, Renji Hospital, School of
Medicine, Shanghai Jiao Tong University, Shanghai 200127, P. R. China
| |
Collapse
|
42
|
Hou Y, Wu F, Fan H, Li H, Hao B, Deng Z, Lu X, Zhou Y, Ran P. Association of non-obstructive dyspnoea with all-cause mortality and incident chronic obstructive pulmonary disease: a systematic literature review and meta-analysis. BMJ Open Respir Res 2024; 11:e001933. [PMID: 38395457 PMCID: PMC10895236 DOI: 10.1136/bmjresp-2023-001933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 01/19/2024] [Indexed: 02/25/2024] Open
Abstract
BACKGROUND Controversy exists regarding the association between non-obstructive dyspnoea and the future development of chronic obstructive pulmonary disease (COPD) and mortality. Therefore, we aimed to evaluate the association of non-obstructive dyspnoea with mortality and incident COPD in adults. METHODS We searched PubMed, Embase, and Web of Science to identify studies published from inception to 13 May 2023. Eligibility screening, data extraction, and quality assessment of the retrieved articles were conducted independently by two reviewers. Studies were included if they were original articles comparing incident COPD and all-cause mortality between individuals with normal lung function with and without dyspnoea. The primary outcomes were incident COPD and all-cause mortality. The secondary outcome was respiratory disease-related mortality. We used the random-effects model to calculate pooled estimates and corresponding 95% confidence interval (CI). Heterogeneity was determined using the I² statistic. RESULTS Of 6486 studies, 8 studies involving 100 758 individuals fulfilled the inclusion and exclusion criteria and were included in the study. Compared with individuals without non-obstructive dyspnoea, individuals with non-obstructive dyspnoea had an increased risk of incident COPD (relative risk: 1.41, 95% CI: 1.08 to 1.83), and moderate heterogeneity was found (p=0.079, I2=52.2%). Individuals with non-obstructive dyspnoea had a higher risk of all-cause mortality (hazard ratio: 1.21, 95% CI: 1.14 to 1.28, I2=0.0%) and respiratory disease-related mortality (hazard ratio: 1.52, 95% CI: 1.14 to 2.02, I2=0.0%) than those without. CONCLUSIONS Individuals with non-obstructive dyspnoea are at a higher risk of incident COPD and all-cause mortality than individuals without dyspnoea. Further research should investigate whether these high-risk adults may benefit from risk management and early therapeutic intervention. PROSPERO REGISTRATION NUMBER CRD42023395192.
Collapse
Affiliation(s)
- Yuyan Hou
- Jiaying University, Meizhou, Guangdong, China
| | - Fan Wu
- State Key Laboratory of Respiratory Disease & Guangzhou Institute of Respiratory Health & National Clinical Research Center for Respiratory Disease & National Center for Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Guangzhou National Laboratory, Guangzhou, China
| | - Huanhuan Fan
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Haiqing Li
- State Key Laboratory of Respiratory Disease & Guangzhou Institute of Respiratory Health & National Clinical Research Center for Respiratory Disease & National Center for Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Binwei Hao
- Department of Pulmonary and Critical Care Medicine, Shanxi Bethune Hospital Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
| | - Zhishan Deng
- State Key Laboratory of Respiratory Disease & Guangzhou Institute of Respiratory Health & National Clinical Research Center for Respiratory Disease & National Center for Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiaoyan Lu
- State Key Laboratory of Respiratory Disease & Guangzhou Institute of Respiratory Health & National Clinical Research Center for Respiratory Disease & National Center for Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yumin Zhou
- State Key Laboratory of Respiratory Disease & Guangzhou Institute of Respiratory Health & National Clinical Research Center for Respiratory Disease & National Center for Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Guangzhou National Laboratory, Guangzhou, China
| | - Pixin Ran
- State Key Laboratory of Respiratory Disease & Guangzhou Institute of Respiratory Health & National Clinical Research Center for Respiratory Disease & National Center for Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Guangzhou National Laboratory, Guangzhou, China
| |
Collapse
|
43
|
Papi A, Faner R, Pavord I, Baraldi F, McDonald VM, Thomas M, Miravitlles M, Roche N, Agustí A. From treatable traits to GETomics in airway disease: moving towards clinical practice. Eur Respir Rev 2024; 33:230143. [PMID: 38232989 DOI: 10.1183/16000617.0143-2023] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 10/24/2023] [Indexed: 01/19/2024] Open
Abstract
The treatable traits approach represents a strategy for patient management. It is based on the identification of characteristics susceptible to treatments or predictive of treatment response in each individual patient. With the objective of accelerating progress in research and clinical practice relating to such a treatable traits approach, the Portraits event was convened in Barcelona, Spain, in November 2022. Here, while reporting the key concepts that emerged from the discussions during the meeting, we review the current state of the art related to treatable traits and chronic respiratory diseases management, and we describe the possible actions that clinicians can take in clinical practice to implement the treatable traits framework. Furthermore, we explore the new concept of GETomics and the new models of research in the field of COPD.
Collapse
Affiliation(s)
- Alberto Papi
- Respiratory Medicine, University of Ferrara, Ferrara, Italy
| | - Rosa Faner
- University of Barcelona, Biomedicine Department, FCRB-IDIBAPS, Centro de Investigación Biomedica en Red M.P. (CIBER), Barcelona, Spain
| | - Ian Pavord
- Respiratory Medicine Unit, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | | | - Vanessa M McDonald
- School of Nursing and Midwifery, The University of Newcastle, NHMRC Centre of Excellence in Asthma Treatable Traits, Hunter Medical Research Institute Asthma and Breathing Research Programme and Department of Respiratory and Sleep Medicine, John Hunter Hospital, Newcastle, Australia
| | - Mike Thomas
- Primary Care and Population Sciences, University of Southampton, Southampton, UK
| | - Marc Miravitlles
- Pneumology Department Hospital Universitari Vall d'Hebron, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Nicholas Roche
- Respiratory Medicine Department, Hôpitaux Universitaires Paris Centre, Hôpital Cochin, AP-HP and Université Paris Cité, Paris, France
| | - Alvar Agustí
- University of Barcelona, Hospital Clinic, IDIBAPS and CIBERES, Barcelona, Spain
- Pulmonary Service, Respiratory Institute, Clinic Barcelona, Barcelona, Spain
| |
Collapse
|
44
|
Sharma M, Joshi S, Banjade P, Ghamande SA, Surani S. Global Initiative for Chronic Obstructive Lung Disease (GOLD) 2023 Guidelines Reviewed. Open Respir Med J 2024; 18:e18743064279064. [PMID: 38660684 PMCID: PMC11037508 DOI: 10.2174/0118743064279064231227070344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/10/2023] [Accepted: 12/11/2023] [Indexed: 04/26/2024] Open
Abstract
The Global Initiative for Chronic Obstructive Lung Disease (GOLD) report is an essential resource for all clinicians who strive to provide optimal care to patients with chronic obstructive lung disease (COPD). The annual report of GOLD makes few revisions and updates besides including data from the preceding year. At an interval, GOLD comes up with a significant modification in its guidelines, which is generally a major overhaul of the pre-existing guidelines. According to the latest 2023 updates, published in November 2022, there have been significant advancements made in the field of COPD. These include the development of more precise definitions for COPD and its exacerbations, the introduction of a new set of parameters to measure exacerbation severity, and updating the COPD assessment tool. Additionally, revisions have been made to the initial and follow-up treatment guidelines. The report also simplifies the treatment algorithm and sheds light on new findings that suggest the use of pharmacological triple therapy can reduce mortality rates. Furthermore, the report includes discussions on inhaler device selection and adherence to COPD medications. These improvements demonstrate a continued effort to enhance COPD treatment and management. Although there are some areas that could benefit from more detailed guidance and explanation, such as the proper utilization of blood eosinophil counts for treatment decisions, and the establishment of treatment protocols post-hospitalization, the latest modifications to the GOLD recommendations will undoubtedly aid healthcare providers in addressing any gaps in patient care. We aim to highlight key changes in the GOLD 2023 report and present a viewpoint about their potential implications in a real-world clinical scenario.
Collapse
Affiliation(s)
- Munish Sharma
- Division of Pulmonary, Critical Care and Sleep Medicine, Baylor Scott and White Medical Center, Temple, Texas
| | - Sushil Joshi
- Department of Medicine, Mantra Hospital and Research Center, Kanchanpur, Nepal. Nepalese Army Institute of Health Science, Kathmandu, Nepal
| | - Prakash Banjade
- Division of Pulmonary, Critical Care and Sleep Medicine, Baylor Scott and White Medical Center, Baylor College of Medicine, Temple, Texas
| | - Shekhar A Ghamande
- Adjunct Clinical Professor of Medicine, Texas A and M University, Texas, United States
| | - Salim Surani
- Adjunct Clinical Professor of Medicine, Texas A and M University, Texas, United States
| |
Collapse
|
45
|
Agustí A, Hughes R, Rapsomaki E, Make B, del Olmo R, Papi A, Price D, Benton L, Franzen S, Vestbo J, Mullerova H. The many faces of COPD in real life: a longitudinal analysis of the NOVELTY cohort. ERJ Open Res 2024; 10:00895-2023. [PMID: 38348246 PMCID: PMC10860203 DOI: 10.1183/23120541.00895-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 11/23/2023] [Indexed: 02/15/2024] Open
Abstract
Background The diagnosis of COPD requires the demonstration of non-fully reversible airflow limitation by spirometry in the appropriate clinical context. Yet, there are patients with symptoms and relevant exposures suggestive of COPD with either normal spirometry (pre-COPD) or preserved ratio but impaired spirometry (PRISm). Their prevalence, clinical characteristics and associated outcomes in a real-life setting are unclear. Methods To investigate them, we studied 3183 patients diagnosed with COPD by their attending physician included in the NOVELTY study (clinicaltrials.gov identifier NCT02760329), a global, 3-year, observational, real-life cohort that included patients recruited from both primary and specialist care clinics in 18 countries. Results We found that 1) approximately a quarter of patients diagnosed with (and treated for) COPD in real life did not fulfil the spirometric diagnostic criteria recommended by the Global Initiative for Chronic Obstructive Lung Disease (GOLD), and could be instead categorised as pre-COPD (13%) or PRISm (14%); 2) disease burden (symptoms and exacerbations) was highest in GOLD 3-4 patients (exacerbations per person-year (PPY) 0.82) and lower but similar in those in GOLD 1-2, pre-COPD and PRISm (exacerbations range 0.27-0.43 PPY); 3) lung function decline was highest in pre-COPD and GOLD 1-2, and much less pronounced in PRISm and GOLD 3-4; 4) PRISm and pre-COPD were not stable diagnostic categories and change substantially over time; and 5) all-cause mortality was highest in GOLD 3-4, lowest in pre-COPD, and intermediate and similar in GOLD 1-2 and PRISm. Conclusions Patients diagnosed COPD in a real-life clinical setting present great diversity in symptom burden, progression and survival, warranting medical attention.
Collapse
Affiliation(s)
- Alvar Agustí
- University of Barcelona, Respiratory Institute – Clinic Barcelona, IDIBAPS, and CIBERES, Barcelona, Spain
- These authors contributed equally
| | - Rod Hughes
- Research and Early Development, Respiratory and Immunology, AstraZeneca, Cambridge, UK
- These authors contributed equally
| | - Eleni Rapsomaki
- Research and Early Development, Respiratory and Immunology, AstraZeneca, Cambridge, UK
| | - Barry Make
- National Jewish Health and University of Colorado Denver, Denver, CO, USA
| | - Ricardo del Olmo
- Diagnostic and Treatment Department, Hospital de Rehabilitaciόn Respiratoria “Maria Ferrer” and IDIM CR, Buenos Aires, Argentina
| | - Alberto Papi
- University of Ferrara, Department of Translation Medicine, Ferrara, Italy
| | - David Price
- Observational and Pragmatic Research Institute, Singapore and Centre of Academic Primary Care, Division of Applied Health Sciences, University of Aberdeen, Aberdeen, UK
| | - Laura Benton
- Research and Early Development, Respiratory and Immunology, AstraZeneca, Cambridge, UK
| | - Stefan Franzen
- Research and Early Development, Respiratory and Immunology, AstraZeneca, Cambridge, UK
| | - Jørgen Vestbo
- University of Manchester and Manchester University NHS Foundation Trust, Manchester, UK
| | - Hana Mullerova
- Research and Early Development, Respiratory and Immunology, AstraZeneca, Cambridge, UK
| |
Collapse
|
46
|
Bertels X, Ross JC, Faner R, Cho MH, Ikram MA, Brusselle GG, Lahousse L. Clinical relevance of lung function trajectory clusters in middle-aged and older adults. ERJ Open Res 2024; 10:00793-2023. [PMID: 38333649 PMCID: PMC10851953 DOI: 10.1183/23120541.00793-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 10/27/2023] [Indexed: 02/10/2024] Open
Abstract
Background The determinants and health outcomes of lung function trajectories in adults among the general population are poorly understood. We aimed to identify and characterise clusters of lung function trajectories in adults aged ≥45 years. Methods Gaussian finite-mixture modelling was applied to baseline and annualised change of forced expiratory volume in 1 s (FEV1), forced vital capacity (FVC) and FEV1/FVC ratio z-scores in participants of the Rotterdam Study, a prospective population-based cohort study, with repeated spirometry (n=3884; mean±sd age 64.7±8.9 years). Longitudinal outcomes were all-cause mortality, respiratory outcomes (symptoms, COPD (FEV1/FVC <0.7 in absence of asthma), preserved ratio impaired spirometry (PRISm; FEV1/FVC ≥0.7 and FEV1 or FVC <80%)), smoking cessation and weight changes. Independent risk factors, including genetics, were identified by multiple logistic regression. Results We identified eight trajectory clusters, with the reference group having persistently normal spirometry (prevalence 42.8%). Three clusters showed higher mortality, adjusted for confounders: 1) the persistently low FEV1 cluster (prevalence 6.8%, hazard ratio (HR) 1.71, 95% CI 1.37-2.13); 2) rapid FEV1 decliners (prevalence 4.6%, HR 1.48, 95% CI 1.10-1.99); and 3) FVC decliners (prevalence 3.7%, HR 1.49, 95% CI 1.09-2.03). In contrast, FVC improvers (prevalence 6.7%, HR 0.61, 95% CI 0.41-0.90) and persistently high FEV1 (prevalence 29.2%, HR 0.82, 95% CI 0.69-0.98) were protective trajectory clusters. Clusters were characterised by differences in genetic predisposition (polygenic scores of FEV1 and FEV1/FVC), demographics, cigarette smoking, respiratory symptoms (chronic cough, wheezing and dyspnoea), cardiovascular factors (body mass index, hypertension and heart failure) and serum C-reactive protein levels. Frailty, weight changes and the development of respiratory symptoms, COPD and PRISm were significantly associated with trajectory clusters. Conclusions This study reveals clinically relevant lung function trajectory clusters in older adults of the general population.
Collapse
Affiliation(s)
- Xander Bertels
- Department of Bioanalysis, Ghent University, Ghent, Belgium
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - James C. Ross
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Rosa Faner
- Institut d'Investigacions Biomédiques August Pi i Sunyer, Hospital Clinic de Barcelona, Barcelona, Spain
- Department of Biomedical Sciences, University of Barcelona, Barcelona, Spain
- Centro Investigaciones Biomédicas en Red, Instituto de Salud Carlos III, Madrid, Spain
| | - Michael H. Cho
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - M. Arfan Ikram
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Guy G. Brusselle
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
- Department of Respiratory Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Lies Lahousse
- Department of Bioanalysis, Ghent University, Ghent, Belgium
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| |
Collapse
|
47
|
Poletti V, Bresciani G, Banfi P, Volpato E. Exploring perceptions and expectations of COPD patients: A grounded theory approach for personalized therapeutic interventions. Chron Respir Dis 2024; 21:14799731241268262. [PMID: 39241114 PMCID: PMC11380127 DOI: 10.1177/14799731241268262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2024] Open
Abstract
Objectives: This study aimed to investigate the dynamic patterns of perception and expectations among COPD patients. Methods: Conducted at the Heart-Respiratory Rehabilitation Unit, IRCCS Fondazione Don Carlo Gnocchi, in Milan, Italy, the research involved 28 participants (16 males; mean age 72.8 ± 9.9) in face-to-face interviews. Utilizing a Grounded Theory approach, complemented by clinical data, recorded, and transcribed interviews underwent enhancement through the integration of two pictorial tools. Results: The central theme that emerged was a profound sense of responsibility toward their condition, perceived as a significant threat to life. Key symptoms, such as shortness of breath, coupled with negative expectations about their condition, contributed to depressive mood and avoidance behaviors. A notable proportion (N = 17; 60.71%) of participants struggled to envision a positive future, expressing a pervasive sense of hopelessness, which significantly influenced their health behaviors and adherence to medical recommendations. Conversely, individuals who felt supported and optimistic about treatment efficacy exhibited more positive expectations and adopted proactive coping strategies. Discussion: Recognizing the dynamic nature of patients' perceptions and negative illness expectations is essential to create personalized therapeutic interventions and meet the specific needs of COPD patients, ultimately improving the overall effectiveness of their care journey.
Collapse
Affiliation(s)
- Valentina Poletti
- IRCCS Fondazione Don Carlo Gnocchi, Milan (MI), Italy
- Department of Psychology, Università Cattolica del Sacro Cuore, Milan, Italy
| | - Gaia Bresciani
- Department of Psychology, Università Cattolica del Sacro Cuore, Milan, Italy
| | - Paolo Banfi
- IRCCS Fondazione Don Carlo Gnocchi, Milan (MI), Italy
| | - Eleonora Volpato
- IRCCS Fondazione Don Carlo Gnocchi, Milan (MI), Italy
- Department of Psychology, Università Cattolica del Sacro Cuore, Milan, Italy
| |
Collapse
|
48
|
Agusti A, Vogelmeier CF. GOLD 2024: a brief overview of key changes. J Bras Pneumol 2023; 49:e20230369. [PMID: 38126685 PMCID: PMC10760434 DOI: 10.36416/1806-3756/e20230369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023] Open
Affiliation(s)
- Alvar Agusti
- . Respiratory Institute, Clinic Barcelona, University of Barcelona, IDIBAPS, CIBERES, Spain
| | - Claus F Vogelmeier
- . Department of Medicine, Pulmonary and Critical Care Medicine, University of Marburg, German Center for Lung Research (DZL), Marburg, Germany
| |
Collapse
|
49
|
Vrbica Ž, Steiner J, Labor M, Gudelj I, Plavec D. Breathlessness and "exacerbation" questions predictive for incident COPD (MARKO study): data after two years of follow-up. PeerJ 2023; 11:e16650. [PMID: 38130928 PMCID: PMC10734450 DOI: 10.7717/peerj.16650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 11/20/2023] [Indexed: 12/23/2023] Open
Abstract
Aims To determine the predictability of the MARKO questionnaire and/or its domains, individually or in combination with other markers and characteristics (age, gender, smoking history, lung function, 6-min walk test (6 MWT), exhaled breath temperature (EBT), and hsCRP for the incident chronic obstructive pulmonary disease (COPD) in subjects at risk over 2 years follow-up period). Participants and Methods Patients, smokers/ex-smokers with >20 pack-years, aged 40-65 years of both sexes were recruited and followed for 2 years. After recruitment and signing the informed consent at the GP, a detailed diagnostic workout was done by the pulmonologist; they completed three self-assessment questionnaires-MARKO, SGRQ and CAT, detailed history and physical, laboratory (CBC, hsCRP), lung function tests with bronchodilator and EBT. At the 2 year follow-up visit they performed: the same three self-assessment questionnaires, history and physical, lung function tests and EBT. Results A sample of 320 subjects (41.9% male), mean (SD) age 51.9 (7.4) years with 36.4 (17.4) pack-years of smoking was reassessed after 2.1 years. Exploratory factor analysis of MARKO questionnaire isolated three distinct domains (breathlessness and fatigue, "exacerbations", cough and expectorations). We have determined a rate for incident COPD that was 4.911/100 person-years (95% CI [3.436-6.816]). We found out that questions about breathlessness and "exacerbations", and male sex were predictive of incident COPD after two years follow-up (AUC 0.79, 95% CI [0.74-0.84], p < 0.001). When only active smokers were analyzed a change in EBT after a cigarette (ΔEBT) was added to a previous model (AUC 0.83, 95% CI [0.78-0.88], p < 0.001). Conclusion Our preliminary data shows that the MARKO questionnaire combined with EBT (change after a cigarette smoke) could potentially serve as early markers of future COPD in smokers.
Collapse
Affiliation(s)
- Žarko Vrbica
- Medical Nursing, University of Dubrovnik, Dubrovnik, Croatia, Dubrovnik, Croatia
- Pulmonology and Immunology, Dubrovnik General Hospital, Dubrovnik, Croatia, Croatia
| | - Justinija Steiner
- Osijek-Baranja Country Medical Center, Osijek, Croatia, Osijek, Croatia
| | - Marina Labor
- Cancer and Lung Health Care Unit, University Hospital at Linköping, Linköping, Sweden
| | - Ivan Gudelj
- Medical Faculty, University of Split, Split, Croatia
| | - Davor Plavec
- Research Department, Prima Nova, Zagreb, Croatia
- Medical Faculty, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| |
Collapse
|
50
|
Xing Z, Yang T, Shi S, Meng X, Chai D, Liu W, Tong Y, Wang Y, Ma Y, Pan M, Cui J, Long H, Sun T, Chen R, Guo Y. Combined effect of ozone and household air pollution on COPD in people aged less than 50 years old. Thorax 2023; 79:35-42. [PMID: 37852778 PMCID: PMC10804043 DOI: 10.1136/thorax-2022-219691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 09/14/2023] [Indexed: 10/20/2023]
Abstract
OBJECTIVES Air pollution has been suggested as an important risk factor for chronic obstructive pulmonary disease (COPD); however, evidence of interactive effects on COPD between different factors was sparse, especially for young adults. We aimed to assess the combined effects of ambient ozone (O3) and household air pollution on COPD in young individuals. METHODS We conducted a population-based study of residents aged 15-50 years in the low-income and middle-income regions of western China. We used multivariable logistic regression models to examine the associations between long-term ozone exposure and COPD in young individuals. RESULTS A total of 6537 young cases were identified among the participants, with a COPD prevalence rate of 7.8 (95% CI 7.2% to 8.5%), and most young COPD individuals were asymptomatic. Exposure to household air pollution was associated with COPD in young patients after adjustment for other confounding factors (OR 1.82, 95% CI 1.41 to 2.37). We also found positive associations of COPD with O3 per IQR increase of 20 ppb (OR 1.92, 95% CI 1.59 to 2.32). The individual effects of household air pollution and O3 were 1.68 (95% CI 1.18 to 2.46) and 1.55 (95% CI 0.99 to 2.43), respectively, while their joint effect was 3.28 (95% CI 2.35 to 4.69) with the relative excess risk due to interaction of 1.05 (95% CI 0.33 to 1.78). CONCLUSIONS This study concludes that exposure to ambient O3 and household air pollution might be important risk factors for COPD among young adults, and simultaneous exposure to high levels of the two pollutants may intensify their individual effects.
Collapse
Affiliation(s)
- Zhenzhen Xing
- Department of Respiratory and Critical Care Medicine, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
- Peking University Fifth School of Clinical Medicine, Peking University, Beijing, China
| | - Ting Yang
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, National Center for Respiratory Medicine & National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, China-Japan Friendship Hospital, Beijing, China
| | - Su Shi
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, China
| | - Xia Meng
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, China
| | - Di Chai
- Department of Respiratory and Critical Care Medicine, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - WeiMing Liu
- Department of Intensive Care Medicine, Beijing Boai Hospital, Rehabilitation Research Center, Beijing, China
| | - Yaqi Tong
- Department of Respiratory and Critical Care Medicine, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Yuxia Wang
- Department of Respiratory and Critical Care Medicine, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Yali Ma
- Department of Respiratory and Critical Care Medicine, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - MingMing Pan
- Department of Respiratory and Critical Care Medicine, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Jia Cui
- Department of Respiratory and Critical Care Medicine, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Huanyu Long
- Department of Respiratory and Critical Care Medicine, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Tieying Sun
- Department of Respiratory and Critical Care Medicine, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Renjie Chen
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, China
| | - YanFei Guo
- Department of Respiratory and Critical Care Medicine, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|