1
|
Zhu Z, Zhang Y, Chen H, Zhang H. Cell-cell crosstalk in the pathogenesis of acute lung injury and acute respiratory distress syndrome. Tissue Barriers 2025:2452082. [PMID: 39798076 DOI: 10.1080/21688370.2025.2452082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 12/21/2024] [Accepted: 01/05/2025] [Indexed: 01/13/2025] Open
Abstract
Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are the result of an exaggerated inflammatory response triggered by a variety of pulmonary and systemic insults. The lung tissues are comprised of a variety of cell types, including alveolar epithelial cells, pulmonary vascular endothelial cells, macrophages, neutrophils, and others. There is mounting evidence that these diverse cell populations within the lung interact to regulate lung inflammation in response to both direct and indirect stimuli. The aim of this review is to provide a summary and discussion of recent advances in the understanding of the importance of cell-cell crosstalk in the pathogenesis of ALI/ARDS, with a specific focus on the cell-cell interactions that may offer prospective therapeutic avenues for ALI/ARDS.
Collapse
Affiliation(s)
- Zhenzhen Zhu
- Sepsis Translational Medicine Key Laboratory of Hunan Province, Department of Pathophysiology, School of Basic Medicine Science, Central South University, Changsha, Hunan, PR China
| | - Ying Zhang
- Sepsis Translational Medicine Key Laboratory of Hunan Province, Department of Pathophysiology, School of Basic Medicine Science, Central South University, Changsha, Hunan, PR China
| | - Huan Chen
- Sepsis Translational Medicine Key Laboratory of Hunan Province, Department of Pathophysiology, School of Basic Medicine Science, Central South University, Changsha, Hunan, PR China
| | - Huali Zhang
- Sepsis Translational Medicine Key Laboratory of Hunan Province, Department of Pathophysiology, School of Basic Medicine Science, Central South University, Changsha, Hunan, PR China
| |
Collapse
|
2
|
García AH, De Sanctis JB. Exploring the Contrasts and Similarities of Dengue and SARS-CoV-2 Infections During the COVID-19 Era. Int J Mol Sci 2024; 25:11624. [PMID: 39519178 PMCID: PMC11546508 DOI: 10.3390/ijms252111624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 10/25/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
Extensive research has been conducted on the SARS-CoV-2 virus in association with various infectious diseases to understand the pathophysiology of the infection and potential co-infections. In tropical countries, exposure to local viruses may alter the course of SARS-CoV-2 infection and coinfection. Notably, only a portion of the antibodies produced against SARS-CoV-2 proteins demonstrate neutralizing properties, and the immune response following natural infection tends to be temporary. In contrast, long-lasting IgG antibodies are common after dengue virus infections. In cases where preexisting antibodies from an initial dengue virus infection bind to a different dengue serotype during a subsequent infection, there is a potential for antibody-dependent enhancement (ADE) and the formation of immune complexes associated with disease severity. Both SARS-CoV-2 and dengue infections can result in immunodeficiency. Viral proteins of both viruses interfere with the host's IFN-I signaling. Additionally, a cytokine storm can occur after viral infection, impairing a proper response, and autoantibodies against a wide array of proteins can appear during convalescence. Most of the reported autoantibodies are typically short-lived. Vaccines against both viruses alter the immune response, affecting the course of viral infection and enhancing clearance. A comprehensive analysis of both viral infections and pathogenicity is revisited to prevent infection, severity, and mortality.
Collapse
Affiliation(s)
- Alexis Hipólito García
- Institute of Immunology Nicolás Enrique Bianco, Faculty of Medicine, Universidad Central de Venezuela, Caracas 1050, Venezuela
| | - Juan Bautista De Sanctis
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Hněvotínská 1333/5, 77900 Olomouc, Czech Republic
- Czech Advanced Technology and Research Institute, Palacky University, 77900 Olomouc, Czech Republic
| |
Collapse
|
3
|
Watanabe S, Kikuchi T. Does Autoimmune Response Against Surfactant Protein Cause Interstitial Lung Disease? Am J Respir Crit Care Med 2024; 210:864-866. [PMID: 38843086 PMCID: PMC11506892 DOI: 10.1164/rccm.202404-0866ed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 06/04/2024] [Indexed: 10/02/2024] Open
Affiliation(s)
- Satoshi Watanabe
- Department of Respiratory Medicine and Infectious Diseases Niigata University Graduate School of Medical and Dental Sciences Niigata, Japan
| | - Toshiaki Kikuchi
- Department of Respiratory Medicine and Infectious Diseases Niigata University Graduate School of Medical and Dental Sciences Niigata, Japan
| |
Collapse
|
4
|
Wyss N, Berner F, Walter V, Jochum AK, Purde MT, Abdou MT, Sinnberg T, Hofmeister K, Pop OT, Hasan Ali O, Bauer J, Cheng HW, Lütge M, Klümper N, Diem S, Kosaloglu-Yalcin Z, Zhang Y, Sellmer L, Macek B, Karbach J, König D, Läubli H, Zender L, Meyer BS, Driessen C, Schürch CM, Jochum W, Amaral T, Heinzerling L, Cozzio A, Hegazy AN, Schneider T, Brutsche MH, Sette A, Lenz TL, Walz J, Rammensee HG, Früh M, Jäger E, Becher B, Tufman A, Nuñez N, Joerger M, Flatz L. Autoimmunity Against Surfactant Protein B Is Associated with Pneumonitis During Checkpoint Blockade. Am J Respir Crit Care Med 2024; 210:919-930. [PMID: 38626354 DOI: 10.1164/rccm.202311-2136oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 04/16/2024] [Indexed: 04/18/2024] Open
Abstract
Rationale: Immune checkpoint inhibitor (ICI)-related pneumonitis is a serious autoimmune event affecting as many as 20% of patients with non-small-cell lung cancer (NSCLC), yet the factors underpinning its development in some patients and not others are poorly understood. Objectives: To investigate the role of autoantibodies and autoreactive T cells against surfactant-related proteins in the development of pneumonitis. Methods: The study cohort consisted of patients with NSCLC who provided blood samples before and during ICI treatment. Serum was used for proteomics analyses and to detect autoantibodies present during pneumonitis. T-cell stimulation assays and single-cell RNA sequencing were performed to investigate the specificity and functionality of peripheral autoreactive T cells. The findings were confirmed in a validation cohort comprising patients with NSCLC and patients with melanoma. Measurements and Main Results: Across both cohorts, patients in whom pneumonitis developed had higher pretreatment levels of immunoglobulin G autoantibodies targeting surfactant protein (SP)-B. At the onset of pneumonitis, these patients also exhibited higher frequencies of CD4+ IFN-γ-positive SP-B-specific T cells and expanding T-cell clonotypes recognizing this protein, accompanied by a proinflammatory serum proteomic profile. Conclusions: Our data suggest that the cooccurrence of SP-B-specific immunoglobulin G autoantibodies and CD4+ T cells is associated with the development of pneumonitis during ICI therapy. Pretreatment levels of these antibodies may represent a potential biomarker for an increased risk of developing pneumonitis, and on-treatment levels may provide a diagnostic aid.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Tobias Sinnberg
- Department of Dermatology, University Hospital Tübingen
- iFIT Cluster of Excellence 2180 "Image-guided and Functionally Instructed Tumor Therapies,"
- Department of Dermatology, Venereology and Allergology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | | | | | - Omar Hasan Ali
- Institute of Immunobiology
- Department of Dermatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Jens Bauer
- iFIT Cluster of Excellence 2180 "Image-guided and Functionally Instructed Tumor Therapies,"
- Department of Peptide-based Immunotherapy, Institute of Immunology, University Hospital Tübingen, and
| | | | | | - Niklas Klümper
- Institute for Experimental Oncology
- Center for Integrated Oncology Cologne/Bonn, and
- Department of Urology, University Hospital Bonn, Bonn, Germany
| | | | - Zeynep Kosaloglu-Yalcin
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, California
| | - Yizheng Zhang
- Department of Pathology and Neuropathology, University Hospital and Comprehensive Cancer Center Tübingen, Tübingen, Germany
| | - Laura Sellmer
- Department of Medicine V, University Hospital, and
- Comprehensive Pneumology Center Munich, German Center for Lung Research, Munich, Germany
| | - Boris Macek
- Quantitative Proteomics, Interfaculty Institute of Cell Biology, Faculty of Science
| | - Julia Karbach
- Department of Oncology and Hematology, Krankenhaus Nordwest, Frankfurt, Germany
| | - David König
- Medical Oncology, University Hospital Basel, Basel, Switzerland
- Laboratory of Cancer Immunotherapy, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Heinz Läubli
- Medical Oncology, University Hospital Basel, Basel, Switzerland
- Laboratory of Cancer Immunotherapy, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Lars Zender
- iFIT Cluster of Excellence 2180 "Image-guided and Functionally Instructed Tumor Therapies,"
- Department of Medical Oncology and Pneumology (Internal Medicine VIII), University Hospital Tübingen, University of Tübingen, Tübingen, Germany
- German Cancer Research Consortium, partner site Tübingen, German Cancer Research Center, Heidelberg, Germany
| | - Britta S Meyer
- Research Unit Evolutionary Immunogenomics, Department of Biology, University of Hamburg, Hamburg, Germany
| | | | - Christian M Schürch
- Department of Pathology and Neuropathology, University Hospital and Comprehensive Cancer Center Tübingen, Tübingen, Germany
| | | | | | - Lucie Heinzerling
- Department of Dermatology, Ludwig Maximilian University of Munich, Munich, Germany
| | | | - Ahmed N Hegazy
- Department of Gastroenterology, Infectious Diseases and Rheumatology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt- Universität zu Berlin, Berlin, Germany
- Deutsches Rheuma-Forschungszentrum, ein Institut der Leibniz-Gemeinschaft, Berlin, Germany
| | - Tino Schneider
- Department of Pneumology, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Martin H Brutsche
- Department of Pneumology, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Alessandro Sette
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, California
- Department of Pathology, University of California, San Diego, La Jolla, California
| | - Tobias L Lenz
- Research Unit Evolutionary Immunogenomics, Department of Biology, University of Hamburg, Hamburg, Germany
| | - Juliane Walz
- iFIT Cluster of Excellence 2180 "Image-guided and Functionally Instructed Tumor Therapies,"
- Department of Peptide-based Immunotherapy, Institute of Immunology, University Hospital Tübingen, and
- Clinical Collaboration Unit Translational Immunology, Department of Internal Medicine, University Hospital Tübingen, Tübingen, Germany
- German Cancer Consortium and German Cancer Research Center, partner site Tübingen, Tübingen, Germany
| | - Hans-Georg Rammensee
- iFIT Cluster of Excellence 2180 "Image-guided and Functionally Instructed Tumor Therapies,"
- Institute of Immunology
- German Cancer Consortium and German Cancer Research Center, partner site Tübingen, Tübingen, Germany
| | - Martin Früh
- Department of Oncology and Hematology
- Department of Oncology, University of Bern, Bern, Switzerland
| | - Elke Jäger
- Department of Oncology and Hematology, Krankenhaus Nordwest, Frankfurt, Germany
| | - Burkhard Becher
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland; and
| | - Amanda Tufman
- Department of Medicine V, University Hospital, and
- Comprehensive Pneumology Center Munich, German Center for Lung Research, Munich, Germany
| | - Nicolas Nuñez
- Facultad de Ciencias Químicas, Departamento de Bioquímica Clínica, Universidad Nacional de Córdoba y Centro de Investigaciones en Bioquímica Clínica e Inmunología, Córdoba, Argentina
| | | | - Lukas Flatz
- Institute of Immunobiology
- Department of Dermatology, and
- Department of Dermatology, University Hospital Tübingen
| |
Collapse
|
5
|
Upadhyay V, Yoon YM, Vazquez SE, Velez TE, Jones KD, Lee CT, Law CS, Wolters PJ, Lee S, Yang MM, Farrand E, Noth I, Strek ME, Anderson MS, DeRisi JL, Sperling AI, Shum AK. Phage Immunoprecipitation-Sequencing Reveals CDHR5 Autoantibodies in Select Patients With Interstitial Lung Disease. ACR Open Rheumatol 2024; 6:568-580. [PMID: 38952015 PMCID: PMC11506559 DOI: 10.1002/acr2.11696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 04/10/2024] [Accepted: 04/26/2024] [Indexed: 07/03/2024] Open
Abstract
OBJECTIVE Interstitial lung diseases (ILDs) are a heterogeneous group of disorders that can develop in patients with connective tissue diseases. Establishing autoimmunity in ILD impacts prognosis and treatment. Patients with ILD are screened for autoimmunity by measuring antinuclear autoantibodies, rheumatoid factors, and other nonspecific tests. However, this approach may miss autoimmunity that manifests as autoantibodies to tissue antigens not previously defined in ILD. METHODS We use Phage Immunoprecipitation-Sequencing (PhIP-Seq) to conduct an autoantibody discovery screen of patients with ILD and controls. We screened for novel autoantigen candidates using PhIP-Seq. We next developed a radio-labeled binding assay and validated the leading candidate in 398 patients with ILD recruited from two academic medical centers and 138 blood bank individuals that formed our reference cohort. RESULTS PhIP-Seq identified 17 novel autoreactive targets, and machine learning classifiers derived from these targets discriminated ILD serum from controls. Among the 17 candidates, we validated CDHR5 and found CDHR5 autoantibodies in patients with rheumatologic disorders and importantly, patients not previously diagnosed with autoimmunity. Using survival and transplant free-survival data available from one of the two centers, patients with CDHR5 autoantibodies showed worse survival compared with other patients with connective tissue disease ILD. CONCLUSION We used PhIP-Seq to define a novel CDHR5 autoantibody in a subset of select patients with ILD. Our data complement a recent study showing polymorphisms in the CDHR5-IRF7 gene locus strongly associated with titer of anticentromere antibodies in systemic sclerosis, creating a growing body of evidence suggesting a link between CDHR5 and autoimmunity.
Collapse
Affiliation(s)
| | | | - Sara E. Vazquez
- University of California San Francisco and Chan Zuckerberg Biohub
| | - Tania E. Velez
- University of Chicago, Illinois, and University of VirginiaCharlottesville
| | | | | | | | | | | | | | | | - Imre Noth
- University of VirginiaCharlottesville
| | | | | | - Joseph L. DeRisi
- University of California San Francisco and Chan Zuckerberg Biohub
| | - Anne I. Sperling
- University of Chicago, Illinois, and University of VirginiaCharlottesville
| | | |
Collapse
|
6
|
Bastani MN, Jalilian S. Unraveling the enigma: The emerging significance of pulmonary surfactant proteins in predicting, diagnosing, and managing COVID-19. Immun Inflamm Dis 2024; 12:e1302. [PMID: 38860749 PMCID: PMC11165688 DOI: 10.1002/iid3.1302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/23/2024] [Accepted: 05/19/2024] [Indexed: 06/12/2024] Open
Abstract
BACKGROUND Severe cases of COVID-19 often lead to the development of acute respiratory syndrome, a critical condition believed to be caused by the harmful effects of SARS-CoV-2 on type II alveolar cells. These cells play a crucial role in producing pulmonary surfactants, which are essential for proper lung function. Specifically focusing on surfactant proteins, including Surfactant protein A (SP-A), Surfactant protein B, Surfactant protein C, and Surfactant protein D (SP-D), changes in the levels of pulmonary surfactants may be a significant factor in the pathological changes seen in COVID-19 infection. OBJECTIVE This study aims to gain insights into surfactants, particularly their impacts and changes during COVID-19 infection, through a comprehensive review of current literature. The study focuses on the function of surfactants as prognostic markers, diagnostic factors, and essential components in the management and treatment of COVID-19. FINDING In general, pulmonary surfactants serve to reduce the surface tension at the gas-liquid interface, thereby significantly contributing to the regulation of respiratory mechanics. Additionally, these surfactants play a crucial role in the innate immune system within the pulmonary microenvironment. Within the spectrum of COVID-19 infections, a compelling association is observed, characterized by elevated levels of SP-D and SP-A across a range of manifestations from mild to severe pneumonia. The sudden decline in respiratory function observed in COVID-19 patients may be attributed to the decreased synthesis of surfactants by type II alveolar cells. CONCLUSION Collectin proteins such as SP-A and SP-D show promise as biomarkers, offering potential avenues for predicting and monitoring pulmonary alveolar injury in the context of COVID-19. This clarification enhances our understanding of the molecular complexities contributing to respiratory complications in severe COVID-19 cases, providing a foundation for targeted therapeutic approaches using surfactants and refined clinical management strategies.
Collapse
Affiliation(s)
- Mohammad Navid Bastani
- Department of Medical Virology, School of MedicineAhvaz Jundishapur University of Medical SciencesAhvazIran
| | - Shahram Jalilian
- Department of Medical Virology, School of MedicineAhvaz Jundishapur University of Medical SciencesAhvazIran
| |
Collapse
|
7
|
Kageyama T, Ito T, Tanaka S, Nakajima H. Physiological and immunological barriers in the lung. Semin Immunopathol 2024; 45:533-547. [PMID: 38451292 PMCID: PMC11136722 DOI: 10.1007/s00281-024-01003-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 02/10/2024] [Indexed: 03/08/2024]
Abstract
The lungs serve as the primary organ for respiration, facilitating the vital exchange of gases with the bloodstream. Given their perpetual exposure to external particulates and pathogens, they possess intricate protective barriers. Cellular adhesion in the lungs is robustly maintained through tight junctions, adherens junctions, and desmosomes. Furthermore, the pulmonary system features a mucociliary clearance mechanism that synthesizes mucus and transports it to the outside. This mucus is enriched with chemical barriers like antimicrobial proteins and immunoglobulin A (IgA). Additionally, a complex immunological network comprising epithelial cells, neural cells, and immune cells plays a pivotal role in pulmonary defense. A comprehensive understanding of these protective systems offers valuable insights into potential pathologies and their therapeutic interventions.
Collapse
Affiliation(s)
- Takahiro Kageyama
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chiba, 260-8670, Japan.
- Institute for Advanced Academic Research, Chiba University, Chiba, Japan.
| | - Takashi Ito
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chiba, 260-8670, Japan
- Chiba University Synergy Institute for Futuristic Mucosal Vaccine Research and Development (cSIMVa), Chiba, Japan
| | - Shigeru Tanaka
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chiba, 260-8670, Japan
| | - Hiroshi Nakajima
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chiba, 260-8670, Japan
- Chiba University Synergy Institute for Futuristic Mucosal Vaccine Research and Development (cSIMVa), Chiba, Japan
| |
Collapse
|
8
|
Abstract
Pulmonary surfactant is a critical component of lung function in healthy individuals. It functions in part by lowering surface tension in the alveoli, thereby allowing for breathing with minimal effort. The prevailing thinking is that low surface tension is attained by a compression-driven squeeze-out of unsaturated phospholipids during exhalation, forming a film enriched in saturated phospholipids that achieves surface tensions close to zero. A thorough review of past and recent literature suggests that the compression-driven squeeze-out mechanism may be erroneous. Here, we posit that a surfactant film enriched in saturated lipids is formed shortly after birth by an adsorption-driven sorting process and that its composition does not change during normal breathing. We provide biophysical evidence for the rapid formation of an enriched film at high surfactant concentrations, facilitated by adsorption structures containing hydrophobic surfactant proteins. We examine biophysical evidence for and against the compression-driven squeeze-out mechanism and propose a new model for surfactant function. The proposed model is tested against existing physiological and pathophysiological evidence in neonatal and adult lungs, leading to ideas for biophysical research, that should be addressed to establish the physiological relevance of this new perspective on the function of the mighty thin film that surfactant provides.
Collapse
Affiliation(s)
- Fred Possmayer
- Department of Biochemistry, Western University, London, Ontario N6A 3K7, Canada
- Department of Obstetrics/Gynaecology, Western University, London, Ontario N6A 3K7, Canada
| | - Yi Y Zuo
- Department of Mechanical Engineering, University of Hawaii at Manon, Honolulu, Hawaii 96822, United States
- Department of Pediatrics, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii 96826, United States
| | - Ruud A W Veldhuizen
- Department of Physiology & Pharmacology, Western University, London, Ontario N6A 5C1, Canada
- Department of Medicine, Western University, London, Ontario N6A 3K7, Canada
- Lawson Health Research Institute, London, Ontario N6A 4V2, Canada
| | - Nils O Petersen
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
- Department of Chemistry, Western University, London, Ontario N6A 5B7, Canada
| |
Collapse
|
9
|
Gruper Y, Wolff ASB, Glanz L, Spoutil F, Marthinussen MC, Osickova A, Herzig Y, Goldfarb Y, Aranaz-Novaliches G, Dobeš J, Kadouri N, Ben-Nun O, Binyamin A, Lavi B, Givony T, Khalaila R, Gome T, Wald T, Mrazkova B, Sochen C, Besnard M, Ben-Dor S, Feldmesser E, Orlova EM, Hegedűs C, Lampé I, Papp T, Felszeghy S, Sedlacek R, Davidovich E, Tal N, Shouval DS, Shamir R, Guillonneau C, Szondy Z, Lundin KEA, Osicka R, Prochazka J, Husebye ES, Abramson J. Autoimmune amelogenesis imperfecta in patients with APS-1 and coeliac disease. Nature 2023; 624:653-662. [PMID: 37993717 DOI: 10.1038/s41586-023-06776-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 10/23/2023] [Indexed: 11/24/2023]
Abstract
Ameloblasts are specialized epithelial cells in the jaw that have an indispensable role in tooth enamel formation-amelogenesis1. Amelogenesis depends on multiple ameloblast-derived proteins that function as a scaffold for hydroxyapatite crystals. The loss of function of ameloblast-derived proteins results in a group of rare congenital disorders called amelogenesis imperfecta2. Defects in enamel formation are also found in patients with autoimmune polyglandular syndrome type-1 (APS-1), caused by AIRE deficiency3,4, and in patients diagnosed with coeliac disease5-7. However, the underlying mechanisms remain unclear. Here we show that the vast majority of patients with APS-1 and coeliac disease develop autoantibodies (mostly of the IgA isotype) against ameloblast-specific proteins, the expression of which is induced by AIRE in the thymus. This in turn results in a breakdown of central tolerance, and subsequent generation of corresponding autoantibodies that interfere with enamel formation. However, in coeliac disease, the generation of such autoantibodies seems to be driven by a breakdown of peripheral tolerance to intestinal antigens that are also expressed in enamel tissue. Both conditions are examples of a previously unidentified type of IgA-dependent autoimmune disorder that we collectively name autoimmune amelogenesis imperfecta.
Collapse
Affiliation(s)
- Yael Gruper
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Anette S B Wolff
- Department of Clinical Science and K.G. Jebsen Center for Autoimmune Disorders, University of Bergen, Bergen, Norway.
- Department of Medicine, Haukeland University Hospital, Bergen, Norway.
| | - Liad Glanz
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Frantisek Spoutil
- Czech Centre for Phenogenomics & Laboratory of Transgenic Models of Diseases, Institute of Molecular Genetics of the Czech Academy of Sciences v.v.i 252 50, Vestec, Czech Republic
| | - Mihaela Cuida Marthinussen
- Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, Bergen, Norway
- Oral Health Centre of Expertise in Western Norway/Vestland, Bergen, Norway
| | - Adriana Osickova
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Yonatan Herzig
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Yael Goldfarb
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Goretti Aranaz-Novaliches
- Czech Centre for Phenogenomics & Laboratory of Transgenic Models of Diseases, Institute of Molecular Genetics of the Czech Academy of Sciences v.v.i 252 50, Vestec, Czech Republic
| | - Jan Dobeš
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
- Department of Cell Biology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Noam Kadouri
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Osher Ben-Nun
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Amit Binyamin
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Bar Lavi
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Tal Givony
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Razi Khalaila
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Tom Gome
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Tomáš Wald
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Blanka Mrazkova
- Czech Centre for Phenogenomics & Laboratory of Transgenic Models of Diseases, Institute of Molecular Genetics of the Czech Academy of Sciences v.v.i 252 50, Vestec, Czech Republic
| | - Carmel Sochen
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Marine Besnard
- Nantes Université, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, Nantes, France
| | - Shifra Ben-Dor
- Bioinformatics Unit, Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Ester Feldmesser
- Bioinformatics Unit, Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Elisaveta M Orlova
- Endocrinological Research Center, Institute of Pediatric Endocrinology, Moscow, Russian Federation
| | - Csaba Hegedűs
- Department of Biomaterials and Prosthetic Dentistry, Faculty of Dentistry, University of Debrecen, Debrecen, Hungary
| | - István Lampé
- Department of Biomaterials and Prosthetic Dentistry, Faculty of Dentistry, University of Debrecen, Debrecen, Hungary
| | - Tamás Papp
- Division of Dental Anatomy, Department of Basic Medical Sciences, Faculty of Dentistry, University of Debrecen, Debrecen, Hungary
| | - Szabolcs Felszeghy
- Division of Dental Anatomy, Department of Basic Medical Sciences, Faculty of Dentistry, University of Debrecen, Debrecen, Hungary
- Institute of Dentistry, University of Eastern Finland, Kuopio, Finland
| | - Radislav Sedlacek
- Czech Centre for Phenogenomics & Laboratory of Transgenic Models of Diseases, Institute of Molecular Genetics of the Czech Academy of Sciences v.v.i 252 50, Vestec, Czech Republic
| | - Esti Davidovich
- Department of Pediatric Dentistry, The Hebrew University-Hadassah School of Dental Medicine, Jerusalem, Israel
| | - Noa Tal
- The Institute of Gastroenterology, Nutrition and Liver Diseases, Schneider Children's Medical Center of Israel, Petach Tikvah, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Dror S Shouval
- The Institute of Gastroenterology, Nutrition and Liver Diseases, Schneider Children's Medical Center of Israel, Petach Tikvah, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Raanan Shamir
- The Institute of Gastroenterology, Nutrition and Liver Diseases, Schneider Children's Medical Center of Israel, Petach Tikvah, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Carole Guillonneau
- Nantes Université, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, Nantes, France
| | - Zsuzsa Szondy
- Division of Dental Biochemistry, Department of Basic Medical Sciences, Faculty of Dentistry, University of Debrecen, Debrecen, Hungary
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Knut E A Lundin
- K.G. Jebsen Coeliac Disease Research Centre, University of Oslo, Oslo, Norway
- Department of Gastroenterology, Oslo University Hospital, Oslo, Norway
| | - Radim Osicka
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jan Prochazka
- Czech Centre for Phenogenomics & Laboratory of Transgenic Models of Diseases, Institute of Molecular Genetics of the Czech Academy of Sciences v.v.i 252 50, Vestec, Czech Republic
| | - Eystein S Husebye
- Department of Clinical Science and K.G. Jebsen Center for Autoimmune Disorders, University of Bergen, Bergen, Norway
- Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | - Jakub Abramson
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
10
|
Allué-Guardia A, Torrelles JB, Sigal A. Tuberculosis and COVID-19 in the elderly: factors driving a higher burden of disease. Front Immunol 2023; 14:1250198. [PMID: 37841265 PMCID: PMC10569613 DOI: 10.3389/fimmu.2023.1250198] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 09/11/2023] [Indexed: 10/17/2023] Open
Abstract
Mycobacterium tuberculosis (M.tb) and SARS-CoV-2 are both infections that can lead to severe disease in the lower lung. However, these two infections are caused by very different pathogens (Mycobacterium vs. virus), they have different mechanisms of pathogenesis and immune response, and differ in how long the infection lasts. Despite the differences, SARS-CoV-2 and M.tb share a common feature, which is also frequently observed in other respiratory infections: the burden of disease in the elderly is greater. Here, we discuss possible reasons for the higher burden in older adults, including the effect of co-morbidities, deterioration of the lung environment, auto-immunity, and a reduced antibody response. While the answer is likely to be multifactorial, understanding the main drivers across different infections may allow us to design broader interventions that increase the health-span of older people.
Collapse
Affiliation(s)
- Anna Allué-Guardia
- Population Health Program, Texas Biomedical Research Institute, San Antonio, TX, United States
| | - Jordi B. Torrelles
- Population Health Program, Texas Biomedical Research Institute, San Antonio, TX, United States
- International Center for the Advancement of Research and Education (I•CARE), Texas Biomedical Research Institute, San Antonio, TX, United States
| | - Alex Sigal
- Africa Health Research Institute, Durban, South Africa
- Centre for the AIDS Programme of Research in South Africa, Durban, South Africa
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
11
|
Khudadah K, Ramadan A, Othman A, Refaey N, Elrosasy A, Rezkallah A, Heseba T, Moawad M, Mektebi A, Elejla S, Abouzid M, Abdelazeem B. Surfactant replacement therapy as promising treatment for COVID-19: an updated narrative review. Biosci Rep 2023; 43:BSR20230504. [PMID: 37497603 PMCID: PMC10412525 DOI: 10.1042/bsr20230504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 07/11/2023] [Accepted: 07/25/2023] [Indexed: 07/28/2023] Open
Abstract
Patients with COVID-19 exhibit similar symptoms to neonatal respiratory distress syndrome. SARS-CoV-2 spike protein has been shown to target alveolar type 2 lung cells which synthesize and secrete endogenous surfactants leading to acute respiratory distress syndrome in some patients. This was proven by post-mortem histopathological findings revealing desquamated alveolar type 2 cells. Surfactant use in patients with COVID-19 respiratory distress syndrome results in marked improvement in respiratory parameters but not mortality which needs further clinical trials comparing surfactant formulas and modes of administration to decrease the mortality. In addition, surfactants could be a promising vehicle for specific drug delivery as a liposomal carrier, which requires more and more challenging efforts. In this review, we highlight the current reviews and two clinical trials on exogenous surfactant therapy in COVID-19-associated respiratory distress in adults, and how surfactant could be a promising drug to help fight the COVID-19 infection.
Collapse
Affiliation(s)
| | - Alaa Ramadan
- Faculty of Medicine, South Valley University, Qena, Egypt
| | - Ahmed Othman
- Kuwait Oil Company Ahmadi Hospital, Al Ahmadi, Kuwait
| | - Neveen Refaey
- Women’s Health department, Faculty of Physical Therapy, Cairo University, Cairo, Egypt
| | - Amr Elrosasy
- Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Ayoub Rezkallah
- Faculty of Medicine, University of Algeirs, Algeirs, Algeria
- Department of Hematology Laboratory and Blood Transfusion, Hospital Center University Lamine Debaghine, Algeirs, Algeria
| | - Toka Heseba
- Faculty of Medicine, Assuit University, Assuit, Egypt
| | - Mostafa Hossam El Din Moawad
- Faculty of Pharmacy, Clinical Department, Alexandria University, Egypt
- Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Ammar Mektebi
- Faculty of Medicine, Kutahya Health Sciences University, Kutahya, Turkey
| | - Sewar A Elejla
- Faculty of Medicine, Alquds University, Jerusalem, Palestine
| | - Mohamed Abouzid
- Department of Physical Pharmacy and Pharmacokinetics, Faculty of Pharmacy, Poznan University of Medical Sciences, Rokietnicka 3 St., 60-806 Poznan, Poland
- Doctoral School, Poznan University of Medical Sciences, 60-812 Poznan, Poland
| | - Basel Abdelazeem
- McLaren Health Care, Flint, Michigan, U.S.A
- Michigan State University, East Lansing, Michigan, U.S.A
| |
Collapse
|
12
|
Karachaliou CE, Livaniou E. Immunosensors for Autoimmune-Disease-Related Biomarkers: A Literature Review. SENSORS (BASEL, SWITZERLAND) 2023; 23:6770. [PMID: 37571553 PMCID: PMC10422610 DOI: 10.3390/s23156770] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/20/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023]
Abstract
Immunosensors are a special class of biosensors that employ specific antibodies for biorecognition of the target analyte. Immunosensors that target disease biomarkers may be exploited as tools for disease diagnosis and/or follow-up, offering several advantages over conventional analytical techniques, such as rapid and easy analysis of patients' samples at the point-of-care. Autoimmune diseases have been increasingly prevalent worldwide in recent years, while the COVID-19 pandemic has also been associated with autoimmunity. Consequently, demand for tools enabling the early and reliable diagnosis of autoimmune diseases is expected to increase in the near future. To this end, interest in immunosensors targeting autoimmune disease biomarkers, mainly, various autoantibodies and specific pro-inflammatory proteins (e.g., specific cytokines), has been rekindled. This review article presents most of the immunosensors proposed to date as potential tools for the diagnosis of various autoimmune diseases, such as type 1 diabetes, rheumatoid arthritis, and multiple sclerosis. The signal transduction and the immunoassay principles of each immunosensor have been suitably classified and are briefly presented along with certain sensor elements, e.g., special nano-sized materials used in the construction of the immunosensing surface. The main concluding remarks are presented and future perspectives of the field are also briefly discussed.
Collapse
Affiliation(s)
| | - Evangelia Livaniou
- Immunopeptide Chemistry Lab, Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, National Centre for Scientific Research ‘‘Demokritos”, P.O. Box 60037, 153 10 Agia Paraskevi, Greece;
| |
Collapse
|
13
|
Mukherjee M, Kolb M. A novel take on idiopathic pulmonary fibrosis disease progression: localised autoimmunity. Eur Respir J 2023; 61:61/5/2300653. [PMID: 37208038 DOI: 10.1183/13993003.00653-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 04/21/2023] [Indexed: 05/21/2023]
Affiliation(s)
- Manali Mukherjee
- Department of Medicine, McMaster University and Firestone Institute for Respiratory Health, St. Joseph's Healthcare, Hamilton, ON, Canada
| | - Martin Kolb
- Department of Medicine, McMaster University and Firestone Institute for Respiratory Health, St. Joseph's Healthcare, Hamilton, ON, Canada
| |
Collapse
|
14
|
Upadhyay V, Yoon YM, Vazquez SE, Velez TE, Jones KD, Lee CT, Law CS, Wolters PJ, Lee S, Yang MM, Farrand E, Noth I, Strek ME, Anderson M, DeRisi J, Sperling AI, Shum AK. PhIP-Seq uncovers novel autoantibodies and unique endotypes in interstitial lung disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.24.538091. [PMID: 37163026 PMCID: PMC10168232 DOI: 10.1101/2023.04.24.538091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Interstitial lung diseases (ILDs) are a heterogeneous group of disorders that can develop in patients with connective tissue diseases (CTD). Establishing autoimmunity in ILD impacts prognosis and treatment. ILD patients are screened for autoimmunity by assaying for anti-nuclear autoantibodies, rheumatoid factors and other non-specific tests. However, this approach has not been rigorously validated and may miss autoimmunity that manifests as autoantibodies to tissue antigens not previously defined in ILD. Here, we use Phage Immunoprecipitation-Sequencing (PhIP-Seq) to conduct a large, multi-center unbiased autoantibody discovery screen of ILD patients and controls. PhIP-Seq identified 17 novel autoreactive targets, and machine learning classifiers derived from these targets discriminated ILD serum from controls. Among these 17 candidates, we validated Cadherin Related Family Member 5 (CDHR5) as an autoantigen and found CDHR5 autoantibodies in patients with rheumatologic disorders and importantly, subjects not previously diagnosed with autoimmunity. Lung tissue of CDHR5 autoreactive patients showed transcriptional profiles consistent with activation of NFκB signaling and upregulation of chitotriosidase (CHIT1), a molecular pathway linked to fibrosis. Our study shows PhIP-Seq uncovers novel autoantibodies in ILD patients not revealed by standard clinical tests. Furthermore, CDHR5 autoantibodies may define a novel molecular endotype of ILD characterized by inflammation and fibrosis.
Collapse
|
15
|
Schuchmann P, Scheuch G, Naumann R, Keute M, Lücke T, Zielen S, Brinkmann F. Exhaled aerosols among PCR-confirmed SARS-CoV-2-infected children. Front Pediatr 2023; 11:1156366. [PMID: 37152322 PMCID: PMC10160682 DOI: 10.3389/fped.2023.1156366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 04/03/2023] [Indexed: 05/09/2023] Open
Abstract
Background Available data on aerosol emissions among children and adolescents during spontaneous breathing are limited. Our aim was to gain insight into the role of children in the spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and whether aerosol measurements among children can be used to help detect so-called superspreaders-infected individuals with extremely high numbers of exhaled aerosol particles. Methods In this prospective study, the aerosol concentrations of SARS-CoV-2 PCR-positive and SARS-CoV-2 PCR-negative children and adolescents (2-17 years) were investigated. All subjects were asked about their current health status and medical history. The exhaled aerosol particle counts of PCR-negative and PCR-positive subjects were measured using the Resp-Aer-Meter (Palas GmbH, Karlsruhe, Germany) and compared using linear regression. Results A total of 250 children and adolescents were included in this study, 105 of whom were SARS-CoV-2 positive and 145 of whom were SARS-CoV-2 negative. The median age in both groups was 9 years (IQR 7-11 years). A total of 124 (49.6%) participants were female, and 126 (50.4%) participants were male. A total of 81.9% of the SARS-CoV-2-positive group had symptoms of viral infection. The median particle count of all individuals was 79.55 particles/liter (IQR 44.55-141.15). There was a tendency for older children to exhale more particles (1-5 years: 79.54 p/L; 6-11 years: 77.96 p/L; 12-17 years: 98.63 p/L). SARS-CoV-2 PCR status was not a bivariate predictor (t = 0.82, p = 0.415) of exhaled aerosol particle count; however, SARS-CoV-2 status was shown to be a significant predictor in a multiple regression model together with age, body mass index (BMI), COVID-19 vaccination, and past SARS-CoV-2 infection (t = 2.81, p = 0.005). COVID-19 vaccination status was a highly significant predictor of exhaled aerosol particles (p < .001). Conclusion During SARS-CoV-2 infection, children and adolescents did not have elevated aerosol levels. In addition, no superspreaders were found.
Collapse
Affiliation(s)
- Pia Schuchmann
- Department of Children and Adolescents, University Children’s Hospital, Ruhr University of Bochum, Bochum, Germany
- Pediatric Practice (Dr. Voigt, Dr. Heier), Stadtbergen, Germany
- Correspondence: Pia Schuchmann
| | - Gerhard Scheuch
- GS Bio-Inhalation GmbH, Headquarters & Logistics, Gemuenden, Germany
| | | | - Marius Keute
- Independent Statistical Consultant, Warendorf, Germany
| | - Thomas Lücke
- Department of Children and Adolescents, University Children’s Hospital, Ruhr University of Bochum, Bochum, Germany
| | - Stefan Zielen
- Department for Children and Adolescents, Allergology, Pulmonology and Cystic Fibrosis, University Hospital, Goethe University, Frankfurt, Germany
| | - Folke Brinkmann
- Department of Pediatric Pneumology, University Children's Hospital, Ruhr University of Bochum, Bochum, Germany
- Department of Pediatric Pneumology and Allergology, University Children’s Hospital Schleswig-Holstein, Lübeck, Germany
| |
Collapse
|
16
|
Richmond BW, Dela Cruz CS. Adding Insult to Injury: Does COVID-19 Promote Acute Respiratory Distress Syndrome by Inhibiting Surfactant? Am J Respir Crit Care Med 2023; 207:5-6. [PMID: 35976979 PMCID: PMC9952871 DOI: 10.1164/rccm.202208-1549ed] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Affiliation(s)
- Bradley W Richmond
- Department of Veterans Affairs Nashville, Tennessee
- Division of Allergy, Pulmonary, and Critical Care Medicine Vanderbilt University Medical Center Nashville, Tennessee
- Department of Cell and Developmental Biology Vanderbilt University Nashville, Tennessee
| | - Charles S Dela Cruz
- Department of Internal Medicine
- Department of Microbial Pathogenesis Yale University New Haven, Connecticut
- Veterans Affairs Connecticut Healthcare Systems West Haven, Connecticut
| |
Collapse
|