1
|
Abstract
Objective: To focus on the asthmatic pathogenesis and clinical manifestations related to epithelial sodium channel (ENaC)/chlorine ion channel. Data Sources: The data analyzed in this review were the English articles from 1980 to 2015 from journal databases, primarily PubMed and Google Scholar. The terms used in the literature search were: (1) ENaCs; cystic fibrosis (CF) transmembrane conductance regulator (CFTR); asthma/asthmatic, (2) ENaC/sodium salt; CF; asthma/asthmatic, (3) CFTR/chlorine ion channels; asthma/asthmatic, (4) ENaC/sodium channel/scnn1a/scnn1b/scnn1g/scnn1d/amiloride-sensitive/amiloride-inhibtable sodium channels/sodium salt; asthma/asthmatic, lung/pulmonary/respiratory/tracheal/alveolar, and (5) CFTR; CF; asthma/asthmatic (ti). Study Selection: These studies included randomized controlled trials or studies covering asthma pathogenesis and clinical manifestations related to ENaC/chlorine ion channels within the last 25 years (from 1990 to 2015). The data involving chronic obstructive pulmonary disease and CF obtained from individual studies were also reviewed by the authors. Results: Airway surface liquid dehydration can cause airway inflammation and obstruction. ENaC and CFTR are closely related to the airway mucociliary clearance. Ion transporters may play a critical role in pathogenesis of asthmatic exacerbations. Conclusions: Ion channels have been the center of many studies aiming to understand asthmatic pathophysiological mechanisms or to identify therapeutic targets for better control of the disease.
Collapse
Affiliation(s)
- Wen Wang
- Department of Respiratory and Critical Care Medicine, Beijing Chaoyang Hospital, Capital Medical University, Beijing Institute of Respiratory Medicine, Beijing Key Laboratory of Respiratory and Pulmonary Circulation Disorders, Beijing 100020, China; Department of Cellular and Molecular Biology, Texas Lung Injury Institute, University of Texas Health Science Center at Tyler, Tyler Texas 75708, USA,
| | | |
Collapse
|
2
|
Zhang CH, Li Y, Zhao W, Lifshitz LM, Li H, Harfe BD, Zhu MS, ZhuGe R. The transmembrane protein 16A Ca(2+)-activated Cl- channel in airway smooth muscle contributes to airway hyperresponsiveness. Am J Respir Crit Care Med 2012; 187:374-81. [PMID: 23239156 DOI: 10.1164/rccm.201207-1303oc] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
RATIONALE Asthma is a chronic inflammatory disorder with a characteristic of airway hyperresponsiveness (AHR). Ca(2+)-activated Cl(-) [Cl((Ca))] channels are inferred to be involved in AHR, yet their molecular nature and the cell type they act within to mediate this response remain unknown. OBJECTIVES Transmembrane protein 16A (TMEM16A) and TMEM16B are Cl((Ca)) channels, and activation of Cl((Ca)) channels in airway smooth muscle (ASM) contributes to agonist-induced airway contraction. We hypothesized that Tmem16a and/or Tmem16b encode Cl((Ca)) channels in ASM and mediate AHR. METHODS We assessed the expression of the TMEM16 family, and the effects of niflumic acid and benzbromarone on AHR and airway contraction, in an ovalbumin-sensitized mouse model of chronic asthma. We also cloned TMEM16A from ASM and examined the Cl(-) currents it produced in HEK293 cells. We further studied the impacts of TMEM16A deletion on Ca(2+) agonist-induced cell shortening, and on Cl((Ca)) currents activated by Ca(2+) sparks (localized, short-lived Ca(2+) transients due to the opening of ryanodine receptors) in mouse ASM cells. MEASUREMENTS AND MAIN RESULTS TMEM16A, but not TMEM16B, is expressed in ASM cells and its expression in these cells is up-regulated in ovalbumin-sensitized mice. Niflumic acid and benzbromarone prevent AHR and contraction evoked by methacholine in ovalbumin-sensitized mice. TMEM16A produces Cl((Ca)) currents with kinetics similar to native Cl((Ca)) currents. TMEM16A deletion renders Ca(2+) sparks unable to activate Cl((Ca)) currents, and weakens caffeine- and methacholine-induced cell shortening. CONCLUSIONS Tmem16a encodes Cl((Ca)) channels in ASM and contributes to Ca(2+) agonist-induced contraction. In addition, up-regulation of TMEM16A and its augmented activation contribute to AHR in an ovalbumin-sensitized mouse model of chronic asthma. TMEM16A may represent a potential therapeutic target for asthma.
Collapse
Affiliation(s)
- Cheng-Hai Zhang
- Model Animal Research Center, Nanjing University, Nanjing, China
| | | | | | | | | | | | | | | |
Collapse
|
3
|
Huang F, Zhang H, Wu M, Yang H, Kudo M, Peters CJ, Woodruff PG, Solberg OD, Donne ML, Huang X, Sheppard D, Fahy JV, Wolters PJ, Hogan BLM, Finkbeiner WE, Li M, Jan YN, Jan LY, Rock JR. Calcium-activated chloride channel TMEM16A modulates mucin secretion and airway smooth muscle contraction. Proc Natl Acad Sci U S A 2012; 109:16354-9. [PMID: 22988107 PMCID: PMC3479591 DOI: 10.1073/pnas.1214596109] [Citation(s) in RCA: 271] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Mucous cell hyperplasia and airway smooth muscle (ASM) hyperresponsiveness are hallmark features of inflammatory airway diseases, including asthma. Here, we show that the recently identified calcium-activated chloride channel (CaCC) TMEM16A is expressed in the adult airway surface epithelium and ASM. The epithelial expression is increased in asthmatics, particularly in secretory cells. Based on this and the proposed functions of CaCC, we hypothesized that TMEM16A inhibitors would negatively regulate both epithelial mucin secretion and ASM contraction. We used a high-throughput screen to identify small-molecule blockers of TMEM16A-CaCC channels. We show that inhibition of TMEM16A-CaCC significantly impairs mucus secretion in primary human airway surface epithelial cells. Furthermore, inhibition of TMEM16A-CaCC significantly reduces mouse and human ASM contraction in response to cholinergic agonists. TMEM16A-CaCC blockers, including those identified here, may positively impact multiple causes of asthma symptoms.
Collapse
Affiliation(s)
- Fen Huang
- Howard Hughes Medical Institute and
- Department of Physiology, University of California, San Francisco, CA 94158
| | - Hongkang Zhang
- Department of Neuroscience, High Throughput Biology Center, School of Medicine, Johns Hopkins University, Baltimore, MD 21205
| | - Meng Wu
- Department of Neuroscience, High Throughput Biology Center, School of Medicine, Johns Hopkins University, Baltimore, MD 21205
| | - Huanghe Yang
- Howard Hughes Medical Institute and
- Department of Physiology, University of California, San Francisco, CA 94158
| | - Makoto Kudo
- Lung Biology Center, Department of Medicine, University of California, San Francisco, CA 94158
- Department of Internal Medicine and Clinical Immunology, Yokohama City University Graduate School of Medicine, Kanazawa, Yokohama 236-0004, Japan
| | - Christian J. Peters
- Howard Hughes Medical Institute and
- Department of Physiology, University of California, San Francisco, CA 94158
| | - Prescott G. Woodruff
- Division of Pulmonary and Critical Care Medicine, Department of Medicine and Cardiovascular Research Institute, University of California, San Francisco, CA 94143
| | - Owen D. Solberg
- Division of Pulmonary and Critical Care Medicine, Department of Medicine and Cardiovascular Research Institute, University of California, San Francisco, CA 94143
| | | | - Xiaozhu Huang
- Lung Biology Center, Department of Medicine, University of California, San Francisco, CA 94158
| | - Dean Sheppard
- Lung Biology Center, Department of Medicine, University of California, San Francisco, CA 94158
| | - John V. Fahy
- Division of Pulmonary and Critical Care Medicine, Department of Medicine and Cardiovascular Research Institute, University of California, San Francisco, CA 94143
| | - Paul J. Wolters
- Medicine, School of Medicine, University of California, San Francisco, CA 94143; and
| | - Brigid L. M. Hogan
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710
| | | | - Min Li
- Department of Neuroscience, High Throughput Biology Center, School of Medicine, Johns Hopkins University, Baltimore, MD 21205
| | - Yuh-Nung Jan
- Howard Hughes Medical Institute and
- Department of Physiology, University of California, San Francisco, CA 94158
| | - Lily Yeh Jan
- Howard Hughes Medical Institute and
- Department of Physiology, University of California, San Francisco, CA 94158
| | - Jason R. Rock
- Departments of Anatomy
- Medicine, School of Medicine, University of California, San Francisco, CA 94143; and
| |
Collapse
|
4
|
Huang F, Wong X, Jan LY. International Union of Basic and Clinical Pharmacology. LXXXV: calcium-activated chloride channels. Pharmacol Rev 2011; 64:1-15. [PMID: 22090471 DOI: 10.1124/pr.111.005009] [Citation(s) in RCA: 135] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Calcium-activated chloride channels (CaCCs) are widely expressed in various tissues and implicated in physiological processes such as sensory transduction, epithelial secretion, and smooth muscle contraction. Transmembrane proteins with unknown function 16 (TMEM16A) has recently been identified as a major component of CaCCs. Detailed molecular analysis of TMEM16A will be needed to understand its structure-function relationships. The role this channel plays in physiological systems remains to be established and is currently a subject of intense investigation.
Collapse
Affiliation(s)
- Fen Huang
- Department of Physiology, Howard Hughes Medical Institute, University of California, San Francisco, Mission Bay Campus, San Francisco, CA 94158-2811, USA
| | | | | |
Collapse
|
5
|
Ferrera L, Caputo A, Galietta LJV. TMEM16A protein: a new identity for Ca(2+)-dependent Cl⁻ channels. Physiology (Bethesda) 2011; 25:357-63. [PMID: 21186280 DOI: 10.1152/physiol.00030.2010] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Ca(+)-dependent Cl⁻ channels (CaCCs) play a variety of physiological roles in different organs and tissues, including transepithelial Cl⁻ secretion, smooth muscle contraction, regulation of neuronal excitability, and transduction of sensory stimuli. The recent identification of TMEM16A protein as an important component of CaCCs should allow a better understanding of their physiological role, structure-function relationship, and regulatory mechanisms.
Collapse
Affiliation(s)
- Loretta Ferrera
- Laboratory of Molecular Genetics, Istituto Giannina Gaslini, Genova, Italy
| | | | | |
Collapse
|
6
|
Nakagami Y, Favoreto S, Zhen G, Park SW, Nguyenvu LT, Kuperman DA, Dolganov GM, Huang X, Boushey HA, Avila PC, Erle DJ. The epithelial anion transporter pendrin is induced by allergy and rhinovirus infection, regulates airway surface liquid, and increases airway reactivity and inflammation in an asthma model. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2008; 181:2203-10. [PMID: 18641360 PMCID: PMC2491716 DOI: 10.4049/jimmunol.181.3.2203] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Asthma exacerbations can be triggered by viral infections or allergens. The Th2 cytokines IL-13 and IL-4 are produced during allergic responses and cause increases in airway epithelial cell mucus and electrolyte and water secretion into the airway surface liquid (ASL). Since ASL dehydration can cause airway inflammation and obstruction, ion transporters could play a role in pathogenesis of asthma exacerbations. We previously reported that expression of the epithelial cell anion transporter pendrin is markedly increased in response to IL-13. Herein we show that pendrin plays a role in allergic airway disease and in regulation of ASL thickness. Pendrin-deficient mice had less allergen-induced airway hyperreactivity and inflammation than did control mice, although other aspects of the Th2 response were preserved. In cultures of IL-13-stimulated mouse tracheal epithelial cells, pendrin deficiency caused an increase in ASL thickness, suggesting that reductions in allergen-induced hyperreactivity and inflammation in pendrin-deficient mice result from improved ASL hydration. To determine whether pendrin might also play a role in virus-induced exacerbations of asthma, we measured pendrin mRNA expression in human subjects with naturally occurring common colds caused by rhinovirus and found a 4.9-fold increase in mean expression during colds. Studies of cultured human bronchial epithelial cells indicated that this increase could be explained by the combined effects of rhinovirus and IFN-gamma, a Th1 cytokine induced during virus infection. We conclude that pendrin regulates ASL thickness and may be an important contributor to asthma exacerbations induced by viral infections or allergens.
Collapse
Affiliation(s)
- Yasuhiro Nakagami
- Lung Biology Center, Department of Medicine, University of California, San Francisco, CA 94158, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Woodruff PG, Boushey HA, Dolganov GM, Barker CS, Yang YH, Donnelly S, Ellwanger A, Sidhu SS, Dao-Pick TP, Pantoja C, Erle DJ, Yamamoto KR, Fahy JV. Genome-wide profiling identifies epithelial cell genes associated with asthma and with treatment response to corticosteroids. Proc Natl Acad Sci U S A 2007; 104:15858-63. [PMID: 17898169 PMCID: PMC2000427 DOI: 10.1073/pnas.0707413104] [Citation(s) in RCA: 651] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Airway inflammation and epithelial remodeling are two key features of asthma. IL-13 and other cytokines produced during T helper type 2 cell-driven allergic inflammation contribute to airway epithelial goblet cell metaplasia and may alter epithelial-mesenchymal signaling, leading to increased subepithelial fibrosis or hyperplasia of smooth muscle. The beneficial effects of corticosteroids in asthma could relate to their ability to directly or indirectly decrease epithelial cell activation by inflammatory cells and cytokines. To identify markers of epithelial cell dysfunction and the effects of corticosteroids on epithelial cells in asthma, we studied airway epithelial cells collected from asthmatic subjects enrolled in a randomized controlled trial of inhaled corticosteroids, from healthy subjects and from smokers (disease control). By using gene expression microarrays, we found that chloride channel, calcium-activated, family member 1 (CLCA1), periostin, and serine peptidase inhibitor, clade B (ovalbumin), member 2 (serpinB2) were up-regulated in asthma but not in smokers. Corticosteroid treatment down-regulated expression of these three genes and markedly up-regulated expression of FK506-binding protein 51 (FKBP51). Whereas high baseline expression of CLCA1, periostin, and serpinB2 was associated with a good clinical response to corticosteroids, high expression of FKBP51 was associated with a poor response. By using airway epithelial cells in culture, we found that IL-13 increased expression of CLCA1, periostin, and serpinB2, an effect that was suppressed by corticosteroids. Corticosteroids also induced expression of FKBP51. Taken together, our findings show that airway epithelial cells in asthma have a distinct activation profile and identify direct and cell-autonomous effects of corticosteroid treatment on airway epithelial cells that relate to treatment responses and can now be the focus of specific mechanistic studies.
Collapse
Affiliation(s)
- Prescott G. Woodruff
- *Division of Pulmonary and Critical Care Medicine and
- Cardiovascular Research Institute, and
| | - Homer A. Boushey
- *Division of Pulmonary and Critical Care Medicine and
- Cardiovascular Research Institute, and
| | | | | | - Yee Hwa Yang
- School of Mathematics and Statistics, University of Sydney, Sydney NSW 2006, Australia
| | | | | | | | | | - Carlos Pantoja
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94143
| | - David J. Erle
- *Division of Pulmonary and Critical Care Medicine and
- **Lung Biology Center, Department of Medicine
- Cardiovascular Research Institute, and
| | - Keith R. Yamamoto
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94143
- To whom correspondence may be addressed at:
University of California at San Francisco, Box 2280, Genentech Hall S572D, 600 16th Street, San Francisco, CA 94158-2517. E-mail:
| | - John V. Fahy
- *Division of Pulmonary and Critical Care Medicine and
- Cardiovascular Research Institute, and
- To whom correspondence may be addressed at:
University of California at San Francisco, Box 0130, 505 Parnassus Avenue, San Francisco, CA 94143. E-mail:
| |
Collapse
|