1
|
Hu X, Wei Z, Wu Y, Zhao M, Zhou L, Lin Q. Pathogenesis and Therapy of Hermansky-Pudlak Syndrome (HPS)-Associated Pulmonary Fibrosis. Int J Mol Sci 2024; 25:11270. [PMID: 39457053 PMCID: PMC11508683 DOI: 10.3390/ijms252011270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/15/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024] Open
Abstract
Hermansky-Pudlak syndrome (HPS)-associated pulmonary fibrosis (HPS-PF) is a progressive lung disease that is a major cause of morbidity and mortality in HPS patients. Previous studies have demonstrated that the HPS proteins play an essential role in the biogenesis and function of lysosome-related organelles (LROs) in alveolar epithelial type II (AT2) cells and found that HPS-PF is associated with dysfunction of AT2 cells and abnormal immune reactions. Despite recent advances in research on HPS and the pathology of HPS-PF, the pathological mechanisms underlying HPS-PF remain poorly understood, and no effective treatment has been established. Therefore, it is necessary to refresh the progress in the pathogenesis of HPS-PF to increase our understanding of the pathogenic mechanism of HPS-PF and develop targeted therapeutic strategies. This review summarizes the recent progress in the pathogenesis of HPS-PF provides information about the current treatment strategies for HPS-PF, and hopefully increases our understanding of the pathogenesis of HPS-PF and offers thoughts for new therapeutic interventions.
Collapse
Affiliation(s)
| | | | | | | | | | - Qiong Lin
- School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China; (X.H.); (Z.W.); (Y.W.); (M.Z.); (L.Z.)
| |
Collapse
|
2
|
Dietl P, Frick M. Channels and Transporters of the Pulmonary Lamellar Body in Health and Disease. Cells 2021; 11:45. [PMID: 35011607 PMCID: PMC8750383 DOI: 10.3390/cells11010045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/20/2021] [Accepted: 12/22/2021] [Indexed: 02/06/2023] Open
Abstract
The lamellar body (LB) of the alveolar type II (ATII) cell is a lysosome-related organelle (LRO) that contains surfactant, a complex mix of mainly lipids and specific surfactant proteins. The major function of surfactant in the lung is the reduction of surface tension and stabilization of alveoli during respiration. Its lack or deficiency may cause various forms of respiratory distress syndrome (RDS). Surfactant is also part of the innate immune system in the lung, defending the organism against air-borne pathogens. The limiting (organelle) membrane that encloses the LB contains various transporters that are in part responsible for translocating lipids and other organic material into the LB. On the other hand, this membrane contains ion transporters and channels that maintain a specific internal ion composition including the acidic pH of about 5. Furthermore, P2X4 receptors, ligand gated ion channels of the danger signal ATP, are expressed in the limiting LB membrane. They play a role in boosting surfactant secretion and fluid clearance. In this review, we discuss the functions of these transporting pathways of the LB, including possible roles in disease and as therapeutic targets, including viral infections such as SARS-CoV-2.
Collapse
Affiliation(s)
- Paul Dietl
- Institute of General Physiology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Manfred Frick
- Institute of General Physiology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| |
Collapse
|
3
|
Liu X, Liu L, Bi W, Alcorn JL. An internal amino-terminal FLAG-tag octapeptide alters oligomerization of expressed surfactant protein-A. Protein Expr Purif 2020; 176:105727. [PMID: 32835791 DOI: 10.1016/j.pep.2020.105727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 06/29/2020] [Accepted: 08/06/2020] [Indexed: 10/23/2022]
Abstract
Pulmonary surfactant protein-A (SP-A) is expressed by lung alveolar and bronchiolar epithelial cells and plays a critical role in innate immunity of the lung. Exposure of the lung to various environmental insults alters SP-A homeostasis. To investigate the cellular mechanisms involved in these alterations, we added the FLAG octapeptide (DYKDDDDK) to the carboxy-terminus (SP-A/C-FLAG) or near the amino-terminus (SP-A/N-FLAG) of mouse SP-A (WT-SP-A) to tag specific pools of protein. We hypothesized that addition of FLAG would have negligible effects on SP-A expression, oligomerization and secretion. Analysis of Chinese hamster ovary cells expressing these proteins indicated that tagged SP-A mRNA could be distinguished from WT-SP-A by northern analysis and RT-PCR using sequence-specific oligonucleotides. Tagged SP-A protein could be differentiated from WT-SP-A by western analysis using antibodies specific for the FLAG epitope. Subcellular fractionation and immunocytochemistry indicated the majority of each protein was present in punctuate (presumably endocytic) vesicles, and all forms of SP-A protein were secreted. These results suggest that a FLAG epitope added to the carboxy-terminus or inserted into the amino-terminus of the mature SP-A protein has little effect on its expression and cellular processing. However, disruptions of the amino-terminal end of SP-A prevents proper oligomerization, suggesting that this region of mature SP-A is critical in proper oligomeric assembly and is not useful for studies intended to define mechanisms underlying SP-A homeostasis.
Collapse
Affiliation(s)
- Xiangli Liu
- Department of Thoracic Surgery, First Hospital of China Medical University, Shenyang, 110001, China
| | - Lidan Liu
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, 110036, China
| | - Weizhen Bi
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Joseph L Alcorn
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA; Department of Pediatrics, Pediatric Research Center, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA.
| |
Collapse
|
4
|
Osanai K, Mizuno S, Toga H, Takahashi K. Trafficking of newly synthesized surfactant protein B to the lamellar body in alveolar type II cells. Cell Tissue Res 2020; 381:427-438. [PMID: 32556725 DOI: 10.1007/s00441-020-03232-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 05/18/2020] [Indexed: 10/24/2022]
Abstract
Lung surfactant accumulates in the lamellar body (LB) via not only the secretory (anterograde) pathway but also the endocytic (retrograde) pathway. Our previous studies suggested that the major surfactant components, phosphatidylcholine and surfactant protein A take independent trafficking routes in alveolar type II cells. Thus, trafficking of surfactant protein B (SP-B), a major hydrophobic surfactant apoprotein, should be re-evaluated by a straightforward method. Radiolabeling of cells and subsequent cell fractionation were employed to pursue the sequential trafficking of newly synthesized SP-B in rabbit alveolar type II cells. The LB fraction was prepared by gradient ultracentrifugation. Immunoprecipitation from the culture medium, total cells, and LB fraction was carried out with anti-SP-B antibody. Newly synthesized [35S]-pro-SP-B (~ 42 kDa) was detected in the cells after 1 h. An ~ 8-kDa mature form of [35S]-SP-B was detected in the cells after 3 h and in the LB after 6 h. Mature [35S]-SP-B was predominant in the cells after 24 h, and the dominant portion was present in the LB. In contrast, only a small amount of mature [35S]-SP-B was present in the culture medium. Molecular processing of ~ 42 kDa [35S]-pro-SP-B and transport to the LB was inhibited by brefeldin A, which disassembles the Golgi apparatus. These results suggest that newly synthesized SP-B is sorted to the LB via the Golgi and stored until exocytosis. This pathway is distinct from the pathways reported for phosphatidylcholine and surfactant protein A.
Collapse
Affiliation(s)
- Kazuhiro Osanai
- Department of Life Science, Medical Research Institute, Kanazawa Medical University, 1-1 Daigaku-Uchinada, Kahoku-gun, Ishikawa, 920-0293, Japan. .,Department of Respiratory Medicine, Kanazawa Medical University, 1-1 Daigaku-Uchinada, Kahoku-gun, Ishikawa, 920-0293, Japan.
| | - Shiro Mizuno
- Department of Respiratory Medicine, Kanazawa Medical University, 1-1 Daigaku-Uchinada, Kahoku-gun, Ishikawa, 920-0293, Japan
| | - Hirohisa Toga
- Department of Respiratory Medicine, Kanazawa Medical University, 1-1 Daigaku-Uchinada, Kahoku-gun, Ishikawa, 920-0293, Japan
| | - Keiji Takahashi
- Department of Respiratory Medicine, Kanazawa Medical University, 1-1 Daigaku-Uchinada, Kahoku-gun, Ishikawa, 920-0293, Japan
| |
Collapse
|
5
|
Osanai K. Rab38 Mutation and the Lung Phenotype. Int J Mol Sci 2018; 19:E2203. [PMID: 30060521 PMCID: PMC6122074 DOI: 10.3390/ijms19082203] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Revised: 07/21/2018] [Accepted: 07/23/2018] [Indexed: 12/12/2022] Open
Abstract
Rab38 is highly expressed in alveolar type II cells, melanocytes, and platelets. These cells are specifically-differentiated cells and contain characteristic intracellular organelles called lysosome-related organelles, i.e., lamellar bodies in alveolar type II cells, melanosomes in melanocytes, and dense granules in platelets. There are Rab38-mutant rodents, i.e., chocolate mice and Ruby rats. While chocolate mice only show oculocutaneous albinism, Ruby rats show oculocutaneous albinism and prolonged bleeding time and, hence, are a rat model of Hermansky-Pudlak syndrome (HPS). Most patients with HPS suffer from fatal interstitial pneumonia by middle age. The lungs of both chocolate mice and Ruby rats show remarkably increased amounts of lung surfactant and conspicuously enlarged lysosome-related organelles, i.e., lamellar bodies, which are also characteristic of the lungs in human HPS. There are 16 mutant HPS-mouse strains, of which ten mutant genes have been identified to be causative in patients with HPS thus far. The gene products of eight of the ten genes constitute one of the three protein complexes, i.e., biogenesis of lysosome-related organelle complex-1, -2, -3 (BLOC-1, -2, -3). Patients with HPS of the mutant BLOC-3 genotype develop interstitial pneumonia. Recently, BLOC-3 has been elucidated to be a guanine nucleotide exchange factor for Rab38. Growing evidence suggests that Rab38 is an additional candidate gene of human HPS that displays the lung phenotype.
Collapse
Affiliation(s)
- Kazuhiro Osanai
- Department of Life Science, Medical Research Institute, Kanazawa Medical University, 1-1 Uchinada-Daigaku, Kahokugun, Ishikawa 920-0293, Japan.
- Department of Respiratory Medicine, Kanazawa Medical University, 1-1 Uchinada-Daigaku, Kahokugun, Ishikawa 920-0293, Japan.
| |
Collapse
|
6
|
Osanai K, Nakase K, Sakuma T, Nishiki K, Nojiri M, Kato R, Saito M, Fujimoto Y, Mizuno S, Toga H. Exogenous gene transfer of Rab 38 small GTPase ameliorates aberrant lung surfactant homeostasis in Ruby rats. Respir Res 2017; 18:70. [PMID: 28438206 PMCID: PMC5402648 DOI: 10.1186/s12931-017-0549-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 04/11/2017] [Indexed: 11/25/2022] Open
Abstract
Background Rab38 small GTPase regulates intracellular transport in melanocytes and alveolar type II epithelial cells. Ruby rats carrying Rab38 and other gene mutations exhibit oculocutaneous albinism, bleeding diathesis, and hence, are a rat model of human Hermansky-Pudlak syndrome (HPS). We previously showed that Long Evans Cinnamon (LEC) rats, one strain of the Ruby rats, developed aberrant lung surfactant homeostasis with remarkably enlarged lamellar bodies in alveolar type II cells. Methods A replication-deficient recombinant adenovirus expressing rat Rab38 (Ad-Rab38) was constructed. Alveolar type II cells were isolated from the LEC rats and tested for lung surfactant phosphatidylcholine secretion. The rats were also examined whether exogenous expression of Ad- Rab38 could rescue the altered lung surfactant homeostasis in the lungs. Results Isolated type II cells infected with Ad-Rab38 exhibited improved secretion patterns of [3H]phosphatidylcholine, i.e. increased basal hyposecretion and decreased agonist-induced hypersecretion. Endobronchial administration of Ad-Rab38 improved the morphology of type II cells and lamellar bodies, reducing their sizes close to those of wild-type rats. The increased amounts of phosphatidylcholine and surfactant protein B in the lamellar body fractions were decreased in the Ad-Rab38 infected lungs. Conclusions These results provide strong evidence that the aberrant lung surfactant homeostasis in the LEC rats is caused by Rab38 deficit, and suggest that endobronchial delivery of the responsive transgene could be an effective method to ameliorate the abnormal lung phenotype in the animal model of HPS.
Collapse
Affiliation(s)
- Kazuhiro Osanai
- Department of Respiratory Medicine, Kanazawa Medical University, 1-1 Uchinada-Daigaku, Kahokugun, Ishikawa, 920-0293, Japan.
| | - Keisuke Nakase
- Department of Respiratory Medicine, Kanazawa Medical University, 1-1 Uchinada-Daigaku, Kahokugun, Ishikawa, 920-0293, Japan
| | - Takashi Sakuma
- Department of Respiratory Medicine, Kanazawa Medical University, 1-1 Uchinada-Daigaku, Kahokugun, Ishikawa, 920-0293, Japan
| | - Kazuaki Nishiki
- Department of Respiratory Medicine, Kanazawa Medical University, 1-1 Uchinada-Daigaku, Kahokugun, Ishikawa, 920-0293, Japan
| | - Masafumi Nojiri
- Department of Respiratory Medicine, Kanazawa Medical University, 1-1 Uchinada-Daigaku, Kahokugun, Ishikawa, 920-0293, Japan
| | - Ryo Kato
- Department of Respiratory Medicine, Kanazawa Medical University, 1-1 Uchinada-Daigaku, Kahokugun, Ishikawa, 920-0293, Japan
| | - Masatoshi Saito
- Department of Respiratory Medicine, Kanazawa Medical University, 1-1 Uchinada-Daigaku, Kahokugun, Ishikawa, 920-0293, Japan
| | - Yuki Fujimoto
- Department of Respiratory Medicine, Kanazawa Medical University, 1-1 Uchinada-Daigaku, Kahokugun, Ishikawa, 920-0293, Japan
| | - Shiro Mizuno
- Department of Respiratory Medicine, Kanazawa Medical University, 1-1 Uchinada-Daigaku, Kahokugun, Ishikawa, 920-0293, Japan
| | - Hirohisa Toga
- Department of Respiratory Medicine, Kanazawa Medical University, 1-1 Uchinada-Daigaku, Kahokugun, Ishikawa, 920-0293, Japan
| |
Collapse
|
7
|
The biology of the ABCA3 lipid transporter in lung health and disease. Cell Tissue Res 2016; 367:481-493. [PMID: 28025703 DOI: 10.1007/s00441-016-2554-z] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 11/29/2016] [Indexed: 01/10/2023]
Abstract
The lipid transporter, ATP-binding cassette class A3 (ABCA3), is a highly conserved multi-membrane-spanning protein that plays a critical role in the regulation of pulmonary surfactant homeostasis. Mutations in ABCA3 have been increasingly recognized as one of the causes of inherited pulmonary diseases. These monogenic disorders produce familial lung abnormalities with pathological presentations ranging from neonatal surfactant-deficiency-induced respiratory failure to childhood or adult diffuse parenchymal lung diseases for which specific treatment modalities remain limited. More than 200 ABCA3 mutations have been reported to date with approximately three quarters of patients presenting as compound heterozygotes. Recent advances in our understanding of the molecular basis underlying normal ABCA3 biosynthesis and processing and of the mechanisms of alveolar epithelial cell dysregulation caused by the expression of its mutant forms are beginning to emerge. These insights and the role of environmental factors and modifier genes are discussed in the context of the considerable variability in disease presentation observed in patients with identical ABCA3 gene mutations. Moreover, the opportunities afforded by an enhanced understanding of ABCA3 biology for targeted therapeutic strategies are addressed.
Collapse
|
8
|
Olmeda B, Martínez-Calle M, Pérez-Gil J. Pulmonary surfactant metabolism in the alveolar airspace: Biogenesis, extracellular conversions, recycling. Ann Anat 2016; 209:78-92. [PMID: 27773772 DOI: 10.1016/j.aanat.2016.09.008] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 09/22/2016] [Accepted: 09/25/2016] [Indexed: 01/03/2023]
Abstract
Pulmonary surfactant is a lipid-protein complex that lines and stabilizes the respiratory interface in the alveoli, allowing for gas exchange during the breathing cycle. At the same time, surfactant constitutes the first line of lung defense against pathogens. This review presents an updated view on the processes involved in biogenesis and intracellular processing of newly synthesized and recycled surfactant components, as well as on the extracellular surfactant transformations before and after the formation of the surface active film at the air-water interface. Special attention is paid to the crucial regulation of surfactant homeostasis, because its disruption is associated with several lung pathologies.
Collapse
Affiliation(s)
- Bárbara Olmeda
- Department of Biochemistry, Faculty of Biology, and Research Institute "Hospital 12 de Octubre", Complutense University, 28040 Madrid, Spain
| | - Marta Martínez-Calle
- Department of Biochemistry, Faculty of Biology, and Research Institute "Hospital 12 de Octubre", Complutense University, 28040 Madrid, Spain
| | - Jesus Pérez-Gil
- Department of Biochemistry, Faculty of Biology, and Research Institute "Hospital 12 de Octubre", Complutense University, 28040 Madrid, Spain.
| |
Collapse
|
9
|
|
10
|
Orgeig S, Morrison JL, Daniels CB. Evolution, Development, and Function of the Pulmonary Surfactant System in Normal and Perturbed Environments. Compr Physiol 2015; 6:363-422. [PMID: 26756637 DOI: 10.1002/cphy.c150003] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Surfactant lipids and proteins form a surface active film at the air-liquid interface of internal gas exchange organs, including swim bladders and lungs. The system is uniquely positioned to meet both the physical challenges associated with a dynamically changing internal air-liquid interface, and the environmental challenges associated with the foreign pathogens and particles to which the internal surface is exposed. Lungs range from simple, transparent, bag-like units to complex, multilobed, compartmentalized structures. Despite this anatomical variability, the surfactant system is remarkably conserved. Here, we discuss the evolutionary origin of the surfactant system, which likely predates lungs. We describe the evolution of surfactant structure and function in invertebrates and vertebrates. We focus on changes in lipid and protein composition and surfactant function from its antiadhesive and innate immune to its alveolar stability and structural integrity functions. We discuss the biochemical, hormonal, autonomic, and mechanical factors that regulate normal surfactant secretion in mature animals. We present an analysis of the ontogeny of surfactant development among the vertebrates and the contribution of different regulatory mechanisms that control this development. We also discuss environmental (oxygen), hormonal and biochemical (glucocorticoids and glucose) and pollutant (maternal smoking, alcohol, and common "recreational" drugs) effects that impact surfactant development. On the adult surfactant system, we focus on environmental variables including temperature, pressure, and hypoxia that have shaped its evolution and we discuss the resultant biochemical, biophysical, and cellular adaptations. Finally, we discuss the effect of major modern gaseous and particulate pollutants on the lung and surfactant system.
Collapse
Affiliation(s)
- Sandra Orgeig
- School of Pharmacy & Medical Sciences and Sansom Institute for Health Research, University of South Australia, Adelaide, Australia
| | - Janna L Morrison
- School of Pharmacy & Medical Sciences and Sansom Institute for Health Research, University of South Australia, Adelaide, Australia
| | - Christopher B Daniels
- School of Pharmacy & Medical Sciences and Sansom Institute for Health Research, University of South Australia, Adelaide, Australia
| |
Collapse
|
11
|
Mulugeta S, Nureki SI, Beers MF. Lost after translation: insights from pulmonary surfactant for understanding the role of alveolar epithelial dysfunction and cellular quality control in fibrotic lung disease. Am J Physiol Lung Cell Mol Physiol 2015; 309:L507-25. [PMID: 26186947 PMCID: PMC4572416 DOI: 10.1152/ajplung.00139.2015] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 07/10/2015] [Indexed: 01/08/2023] Open
Abstract
Dating back nearly 35 years ago to the Witschi hypothesis, epithelial cell dysfunction and abnormal wound healing have reemerged as central concepts in the pathophysiology of idiopathic pulmonary fibrosis (IPF) in adults and in interstitial lung disease in children. Alveolar type 2 (AT2) cells represent a metabolically active compartment in the distal air spaces responsible for pulmonary surfactant biosynthesis and function as a progenitor population required for maintenance of alveolar integrity. Rare mutations in surfactant system components have provided new clues to understanding broader questions regarding the role of AT2 cell dysfunction in the pathophysiology of fibrotic lung diseases. Drawing on data generated from a variety of model systems expressing disease-related surfactant component mutations [surfactant proteins A and C (SP-A and SP-C); the lipid transporter ABCA3], this review will examine the concept of epithelial dysfunction in fibrotic lung disease, provide an update on AT2 cell and surfactant biology, summarize cellular responses to mutant surfactant components [including endoplasmic reticulum (ER) stress, mitochondrial dysfunction, and intrinsic apoptosis], and examine quality control pathways (unfolded protein response, the ubiquitin-proteasome system, macroautophagy) that can be utilized to restore AT2 homeostasis. This integrated response and its derangement will be placed in the context of cell stress and quality control signatures found in patients with familial or sporadic IPF as well as non-surfactant-related AT2 cell dysfunction syndromes associated with a fibrotic lung phenotype. Finally, the need for targeted therapeutic strategies for pulmonary fibrosis that address epithelial ER stress, its downstream signaling, and cell quality control are discussed.
Collapse
Affiliation(s)
- Surafel Mulugeta
- Pulmonary, Allergy, and Critical Care Division; Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania; and
| | - Shin-Ichi Nureki
- Department of Respiratory Medicine and Infectious Diseases, Oita University, Yufu, Oita, Japan
| | - Michael F Beers
- Pulmonary, Allergy, and Critical Care Division; Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania; and
| |
Collapse
|
12
|
Lin S, Ikegami M, Moon C, Naren AP, Shannon JM. Lysophosphatidylcholine Acyltransferase 1 (LPCAT1) Specifically Interacts with Phospholipid Transfer Protein StarD10 to Facilitate Surfactant Phospholipid Trafficking in Alveolar Type II Cells. J Biol Chem 2015; 290:18559-74. [PMID: 26048993 DOI: 10.1074/jbc.m115.666701] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Indexed: 01/10/2023] Open
Abstract
Pulmonary surfactant, a mixture of proteins and phospholipids, plays an important role in facilitating gas exchange by maintaining alveolar stability. Saturated phosphatidylcholine (SatPC), the major component of surfactant, is synthesized both de novo and by the remodeling of unsaturated phosphatidylcholine (PC) by lyso-PC acyltransferase 1 (LPCAT1). After synthesis in the endoplasmic reticulum, SatPC is routed to lamellar bodies (LBs) for storage prior to secretion. The mechanism by which SatPC is transported to LB is not understood. The specificity of LPCAT1 for lyso-PC as an acyl acceptor suggests that formation of SatPC via LPCAT1 reacylation is a final step in SatPC synthesis prior to transport. We hypothesized that LPCAT1 forms a transient complex with SatPC and specific phospholipid transport protein(s) to initiate trafficking of SatPC from the endoplasmic reticulum to the LB. Herein we have assessed the ability of different StarD proteins to interact with LPCAT1. We found that LPCAT1 interacts with StarD10, that this interaction is direct, and that amino acids 79-271 of LPCAT1 and the steroidogenic acute regulatory protein-related lipid transfer (START) domain of START domain-containing protein 10 (StarD10) are sufficient for this interaction. The role of StarD10 in trafficking of phospholipid to LB was confirmed by the observation that knockdown of StarD10 significantly reduced transport of phospholipid to LB. LPCAT1 also interacted with one isoform of StarD7 but showed no interaction with StarD2/PC transfer protein.
Collapse
Affiliation(s)
- Sui Lin
- From the Divisions of Pulmonary Biology and
| | | | - Changsuk Moon
- Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229
| | - Anjaparavanda P Naren
- Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229
| | | |
Collapse
|
13
|
Casals C. Role of Surfactant Protein a (SP-A)/Lipid Interactions for SP-A Functions in the Lung. ACTA ACUST UNITED AC 2010. [DOI: 10.1080/15513810109168821] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
14
|
Fisher AB, Dodia C, Ruckert P, Tao JQ, Bates SR. Pathway to lamellar bodies for surfactant protein A. Am J Physiol Lung Cell Mol Physiol 2010; 299:L51-8. [PMID: 20382745 DOI: 10.1152/ajplung.00066.2010] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Alveolar surfactant protein A (SP-A) is endocytosed by type II epithelial cells through clathrin-dependent uptake and targeted to lamellar bodies for resecretion. However, the mechanism for secretion of newly synthesized SP-A, whether regulated exocytosis of lamellar bodies or constitutive secretion, is unresolved. If it is the latter, lamellar body SP-A would represent endocytosed protein. Amantadine, an inhibitor of clathrin-coated vesicle budding, was used to evaluate the role of endocytosis in accumulation of SP-A in lamellar bodies. In isolated rat lungs, amantadine (10 mM) inhibited uptake of endotracheally instilled (35)S-labeled biosynthesized surfactant proteins by >80%. To study trafficking of newly synthesized SP-A, lungs were perfused for up to 6 h with [(35)S]methionine, and surfactant was isolated from lung lavage fluid and lamellar bodies were isolated from lung homogenate. With control lungs, the mean specific activity of [(35)S]SP-A (disintegrations per minute per microgram of SP-A) increased linearly with time of perfusion: it was significantly higher in isolated lamellar bodies than in surfactant and was increased in both compartments by 50-60% in the presence of 0.1 mM 8-bromo-cAMP. These results suggest a precursor-product relationship between lamellar body and extracellular [(35)S]SP-A. Specific activities in both compartments were unaffected by addition of amantadine (10 mM) to the lung perfusate, indicating that uptake from the alveolar space was not responsible for the increase in lamellar body [(35)S]SP-A. Thus the pathway for secretion of newly synthesized SP-A is by transfer from the site of synthesis to the storage/secretory organelle prior to lamellar body exocytosis.
Collapse
Affiliation(s)
- Aron B Fisher
- Institute for Environmental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
| | | | | | | | | |
Collapse
|
15
|
Osanai K, Higuchi J, Oikawa R, Kobayashi M, Tsuchihara K, Iguchi M, Huang J, Voelker DR, Toga H. Altered lung surfactant system in a Rab38-deficient rat model of Hermansky-Pudlak syndrome. Am J Physiol Lung Cell Mol Physiol 2010; 298:L243-51. [DOI: 10.1152/ajplung.00242.2009] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Several Long-Evans rat substrains carrying the phenotype of oculocutaneous albinism and bleeding diathesis are a rat model of Hermansky-Pudlak syndrome (HPS). The mutation responsible for the phenotype ( Ruby) was identified as a point mutation in the initiation codon of Rab38 small GTPase that regulates intracellular vesicle transport. As patients with HPS often develop life-limiting interstitial pneumonia accompanied by abnormal morphology of alveolar type II cells, we investigated lung surfactant system in Long-Evans Cinnamon rats, one strain of the Ruby rats. The lungs showed conspicuous morphology of type II cells containing markedly enlarged lamellar bodies. Surfactant phosphatidylcholine and surfactant protein B were increased in lung tissues and lamellar bodies but not in alveolar lumen. Expression levels of mRNA for surfactant proteins A, B, C, and D were not altered. Isolated type II cells showed aberrant secretory pattern of newly synthesized [3H]phosphatidylcholine, i.e., decreased basal secretion and remarkably amplified agonist-induced secretion. [3H]phosphatidylcholine synthesis and uptake by type II cells were not altered. Thus Rab38-deficient type II cells appear to carry abnormality in lung surfactant secretion but not in synthesis or uptake. These results suggest that aberrant lung surfactant secretion may be involved in the pathogenesis of interstitial pneumonia in HPS.
Collapse
Affiliation(s)
- Kazuhiro Osanai
- Department of Respiratory Medicine, Kanazawa Medical University, Kahokugun, Ishikawa; and
| | - Junko Higuchi
- Department of Human Pathology, Yamagata University Graduate School of Medicine, Yamagata, Yamagata, Japan; and
| | - Rieko Oikawa
- Department of Respiratory Medicine, Kanazawa Medical University, Kahokugun, Ishikawa; and
| | - Makoto Kobayashi
- Department of Respiratory Medicine, Kanazawa Medical University, Kahokugun, Ishikawa; and
| | - Katsuma Tsuchihara
- Department of Respiratory Medicine, Kanazawa Medical University, Kahokugun, Ishikawa; and
| | - Masaharu Iguchi
- Department of Respiratory Medicine, Kanazawa Medical University, Kahokugun, Ishikawa; and
| | - Jyongsu Huang
- Department of Respiratory Medicine, Kanazawa Medical University, Kahokugun, Ishikawa; and
| | | | - Hirohisa Toga
- Department of Respiratory Medicine, Kanazawa Medical University, Kahokugun, Ishikawa; and
| |
Collapse
|
16
|
Conkright JJ, Apsley KS, Martin EP, Ridsdale R, Rice WR, Na CL, Yang B, Weaver TE. Nedd4-2-mediated ubiquitination facilitates processing of surfactant protein-C. Am J Respir Cell Mol Biol 2009; 42:181-9. [PMID: 19423771 DOI: 10.1165/rcmb.2009-0058oc] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
We previously proposed a model of surfactant protein (SP)-C biosynthesis in which internalization of the proprotein from the limiting membrane of the multivesicular body to internal vesicles represents a key step in the processing and secretion of SP-C. To test this hypothesis, alanine mutagenesis of the N-terminal propeptide of SP-C was performed. Adenoviruses encoding mutant proproteins were infected into type II cells isolated from Sftpc(-/-) mice, and media analyzed for secreted SP-C 24 hours after infection. Mutation of S(12)PPDYS(17) completely blocked secretion of SP-C. PPDY (PY motif) has previously been shown to bind WW domains of neural precursor cell-expressed developmentally down-regulated (Nedd) 4-like E3 ubiquitin ligases. Purified recombinant glutathione S-transferase-SP-C propeptide (residues 1-35) bound recombinant Nedd4-2 strongly, and Nedd4 weakly; the S(12)PPDYS(17)mutation abrogated binding of SP-C to Nedd4-2. Immobilized recombinant Nedd4-2 WW domain captured SP-C proprotein from mouse type II cell lysates; in the reverse pulldown, endogenous SP-C in type II cells was captured by recombinant Nedd4-2. To determine if the interaction of Nedd4-2 and SP-C resulted in ubiquitination, the SP-C proprotein was immunoprecipitated from transiently transfected human embryonic kidney 293 cells, and analyzed by SDS-PAGE/Western blotting with ubiquitin antibody. Two ubiquitinated forms of SP-C were detected; ubiquitination was blocked by mutation of K6, but not K34, in the SP-C propeptide. Mutation of K6 also inhibited processing of SP-C proprotein to the mature peptide in human embryonic kidney 293 cells. Nedd4-2-mediated ubiquitination regulates lumenal relocation of SP-C, leading to processing and, ultimately, secretion of SP-C.
Collapse
Affiliation(s)
- Juliana J Conkright
- Cincinnati Children's Hospital Medical Center, Division of Pulmonary Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Johnson LN, Koval M. Cross-talk between pulmonary injury, oxidant stress, and gap junctional communication. Antioxid Redox Signal 2009; 11:355-67. [PMID: 18816185 PMCID: PMC2933150 DOI: 10.1089/ars.2008.2183] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Gap junction channels interconnect several different types of cells in the lung, ranging from the alveolar epithelium to the pulmonary vasculature, each of which expresses a unique subset of gap junction proteins (connexins). Major lung functions regulated by gap junctional communication include coordination of ciliary beat frequency and inflammation. Gap junctions help enable the alveolus to regulate surfactant secretion as an integrated system, in which type I cells act as mechanical sensors that transmit calcium transients to type II cells. Thus, disruption of epithelial gap junctional communication, particularly during acute lung injury, can interfere with these processes and increase the severity of injury. Consistent with this, connexin expression is altered during lung injury, and connexin-deficiency has a negative impact on the injury response and lung-growth control. It has recently been shown that alcohol abuse is a significant risk factor associated with acute respiratory distress syndrome. Oxidant stress and hormone-signaling cascades in the lung induced by prolonged alcohol ingestion are discussed, as well as the effects of these pathways on connexin expression and function.
Collapse
Affiliation(s)
- Latoya N Johnson
- Division of Pulmonary, Allergy and Critical Care Medicine, and Emory Alcohol and Lung Biology Center, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | |
Collapse
|
18
|
Osanai K, Oikawa R, Higuchi J, Kobayashi M, Tsuchihara K, Iguchi M, Jongsu H, Toga H, Voelker DR. A mutation in Rab38 small GTPase causes abnormal lung surfactant homeostasis and aberrant alveolar structure in mice. THE AMERICAN JOURNAL OF PATHOLOGY 2008; 173:1265-74. [PMID: 18832574 DOI: 10.2353/ajpath.2008.080056] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The chocolate mutation, which is associated with oculocutaneous albinism in mice, has been attributed to a G146T transversion in the conserved GTP/GDP-interacting domain of Rab38, a small GTPase that regulates intracellular vesicular trafficking. Rab38 displays a unique tissue-specific expression pattern with highest levels present in the lung. The purpose of this study was to characterize the effects of Rab38-G146T on lung phenotype and to investigate the molecular basis of the mutant gene product (Rab38(cht) protein). Chocolate lungs exhibited a uniform enlargement of the distal airspaces with mild alveolar destruction as well as a slight increase in lung compliance. Alveolar type II cells were engorged with lamellar bodies of increased size and number. Hydrophobic surfactant constituents (ie, phosphatidylcholine and surfactant protein B) were increased in lung tissues but decreased in alveolar spaces, consistent with a malfunction in lamellar body secretion and the subsequent cellular accumulation of these organelles. In contrast to wild-type Rab38, native Rab38(cht) proteins were found to be hydrophilic and not bound to intracellular membranes. Unexpectedly, recombinant Rab38(cht) proteins retained GTP-binding activity but failed to undergo prenyl modification that is required for membrane-binding activity. These results suggest that the genetic abnormality of Rab38 affects multiple lysosome-related organelles, resulting in lung disease in addition to oculocutaneous albinism.
Collapse
Affiliation(s)
- Kazuhiro Osanai
- Department of Respiratory Medicine, Kanazawa Medical University, Kahokugun, Ishikawa 920-0293, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Andreeva AV, Kutuzov MA, Voyno-Yasenetskaya TA. Regulation of surfactant secretion in alveolar type II cells. Am J Physiol Lung Cell Mol Physiol 2007; 293:L259-71. [PMID: 17496061 DOI: 10.1152/ajplung.00112.2007] [Citation(s) in RCA: 147] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Molecular mechanisms of surfactant delivery to the air/liquid interface in the lung, which is crucial to lower the surface tension, have been studied for more than two decades. Lung surfactant is synthesized in the alveolar type II cells. Its delivery to the cell surface is preceded by surfactant component synthesis, packaging into specialized organelles termed lamellar bodies, delivery to the apical plasma membrane and fusion. Secreted surfactant undergoes reuptake, intracellular processing, and finally resecretion of recycled material. This review focuses on the mechanisms of delivery of surfactant components to and their secretion from lamellar bodies. Lamellar bodies-independent secretion is also considered. Signal transduction pathways involved in regulation of these processes are discussed as well as disorders associated with their malfunction.
Collapse
Affiliation(s)
- Alexandra V Andreeva
- Department of Pharmacology, University of Illinois College of Medicine, Center for Lung and Vascular Biology, Chicago, IL, USA
| | | | | |
Collapse
|
20
|
Gupta N, Manevich Y, Kazi AS, Tao JQ, Fisher AB, Bates SR. Identification and characterization of p63 (CKAP4/ERGIC-63/CLIMP-63), a surfactant protein A binding protein, on type II pneumocytes. Am J Physiol Lung Cell Mol Physiol 2006; 291:L436-46. [PMID: 16556726 DOI: 10.1152/ajplung.00415.2005] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Surfactant protein A (SP-A) binds to alveolar type II cells through a specific high-affinity cell membrane receptor, although the molecular nature of this receptor is unclear. In the present study, we have identified and characterized an SP-A cell surface binding protein by utilizing two chemical cross-linkers: profound sulfo-SBED protein-protein interaction reagent and dithiobis(succinimidylpropionate) (DSP). Sulfo-SBED-biotinylated SP-A was cross-linked to the plasma membranes isolated from rat type II cells, and the biotin label was transferred from SP-A to its receptor by reduction. The biotinylated SP-A-binding protein was identified on blots by using streptavidin-labeled horseradish peroxidase. By using DSP, we cross-linked SP-A to intact mouse type II cells and immunoprecipitated the SP-A-receptor complex using anti-SP-A antibody. Both of the cross-linking approaches showed a major band of 63 kDa under reduced conditions that was identified as the rat homolog of the human type II transmembrane protein p63 (CKAP4/ERGIC-63/CLIMP-63) by matrix-assisted laser desorption ionization and nanoelectrospray tandem mass spectrometry of tryptic fragments. Thereafter, we confirmed the presence of p63 protein in the cross-linked SP-A-receptor complex by immunoprobing with p63 antibody. Coimmunoprecipitation experiments and functional assays confirmed specific interaction between SP-A and p63. Antibody to p63 could block SP-A-mediated inhibition of ATP-stimulated phospholipid secretion. Both intracellular and membrane localized pools of p63 were detected on type II cells by immunofluorescence and immunobloting. p63 colocalized with SP-A in early endosomes. Thus p63 closely interacts with SP-A and may play a role in the trafficking or the biological function of the surfactant protein.
Collapse
Affiliation(s)
- Nisha Gupta
- Institute for Environmental Medicine, University of Pennsylvania School of Medicine, Philadelphia, 19104, USA
| | | | | | | | | | | |
Collapse
|
21
|
Crowther JE, Schlesinger LS. Endocytic pathway for surfactant protein A in human macrophages: binding, clathrin-mediated uptake, and trafficking through the endolysosomal pathway. Am J Physiol Lung Cell Mol Physiol 2006; 290:L334-42. [PMID: 16169899 DOI: 10.1152/ajplung.00267.2005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In the noninflamed lung, surfactant protein A (SP-A) acts as an anti-inflammatory molecule through its effects on macrophage (MΦ) function, modulating cytokine and reactive oxygen and nitrogen intermediate production. The receptors responsible for these effects of SP-A on human MΦ are not clear, although SP-A binding to several proteins has been described. In this study, we demonstrate high-affinity specific binding of SP-A to primary human MΦ. SP-A binding was inhibited by EGTA, indicating calcium dependence. However, mannan did not inhibit SP-A binding, suggesting that binding is mediated by a direct protein-protein interaction that does not involve carbohydrate recognition. Our laboratory has previously shown that SP-A is rapidly endocytosed by human MΦ into discrete vesicles. Although previous work indicates that SP-A is ultimately degraded by murine MΦ over time, the trafficking pathway of SP-A through MΦ after uptake has not been reported and is of potential biological importance. We examined trafficking of SP-A in human MΦ by electron and confocal microscopy and show for the first time that SP-A is endocytosed by primary human MΦ through clathrin-coated pits and colocalizes sequentially over time with the early endosome marker EEA1, late endosome marker lamp-1, and lysosome marker cathepsin D. We conclude that SP-A binds to receptor(s) on human MΦ, is endocytosed by a receptor-mediated, clathrin-dependent process, and trafficks through the endolysosomal pathway. These studies provide further insight into the interactions of SP-A with the MΦ cell surface and intracellular compartments that play important roles in SP-A modulation of lung MΦ biology.
Collapse
Affiliation(s)
- Joy E Crowther
- Dept. of Medicine, Ohio State Univ., 420 W. 12th Ave., 200 MRF, Columbus, OH 43210, USA
| | | |
Collapse
|
22
|
Osanai K, Tsuchihara C, Hatta R, Oikawa T, Tsuchihara K, Iguchi M, Seki T, Takahashi M, Huang J, Toga H. Pulmonary surfactant transport in alveolar type II cells. Respirology 2006; 11 Suppl:S70-3. [PMID: 16423277 DOI: 10.1111/j.1440-1843.2006.00813.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Pulmonary surfactant (PS) is a mixture of several lipids (mainly phosphatidylcholine; PC) and four apoproteins (A, B, C and D). The classical hypothesis of PS transport suggests that PS is synthesized in the endoplasmic reticulum and transported to the lamellar body (LB) via the Golgi apparatus. However, recent studies have raised questions regarding this single route. This study examined, independently, the intracellular trafficking route of three different components of PS, that is, PC, SP-A and SP-B. Alveolar type II cells were isolated from Sprague-Dawley rats or Japanese white rabbits. The cells were cultured with either [3H]choline or [35S]methionine/cysteine with or without brefeldin A, which disassembles the Golgi apparatus. LB was purified from disintegrated cells with sucrose density gradient centrifugation. [3H]PC was extracted from radiolabeled media, cells, and the LB fraction with Bligh-Dyer's method. [35S]SP-A or [35S]SP-B was immunoprecipitated from each sample with a specific antibody. [3H]PC was transported and stored to the LB via a Golgi-independent pathway. [35S]SP-A was transported to the Golgi apparatus, underwent glycosylation, and was then constitutively secreted. The secreted [35S]SP-A was re-uptaken into the LB. [35S]SP-B was transported and stored to the LB via the Golgi-dependent pathway. These results indicate that, rather than a single route, surfactant components take different pathways to reside in the LB. These different pathways may reflect the different nature and role of each surfactant component such as surface tension-lowering activity and innate host defense.
Collapse
Affiliation(s)
- Kazuhiro Osanai
- Department of Respiratory Medicine, Kanazawa Medical University, Ishikawa, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Schmiedl A, Ochs M, Mühlfeld C, Johnen G, Brasch F. Distribution of surfactant proteins in type II pneumocytes of newborn, 14-day old, and adult rats: an immunoelectron microscopic and stereological study. Histochem Cell Biol 2005; 124:465-76. [PMID: 16187065 DOI: 10.1007/s00418-005-0066-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/17/2005] [Indexed: 10/25/2022]
Abstract
Surfactant proteins (SP) have an important impact on the function of the pulmonary surfactant. In contrast to humans, rat lungs are immature at birth. Alveolarization starts on postnatal day 4. Little is known about the distribution of SP during postnatal alveolarization. By immunoelectron microscopy, we studied the distribution of SP-A, SP-D, SP-B, and precursors of SP-C in type II pneumocytes before, near the end and after alveolarization and in mature lungs. We determined the subcellular volume fractions and the relative labeling index to obtain information about preferential labeling of compartments and non-randomness of labeling. Independently of alveolarization, the overall cellular distribution of SP was non-random. A preferential labeling for SP-A and SP-D was found in small vesicles and multivesicular bodies (mvb). SP-B and precursors of SP-C were localized in mvb and lamellar bodies (lb). There are no postnatal changes in labeling for all three SP in these compartments. Labeling intensity for SP-B in lb increased in close correlation with a significant increase in the volume fractions of lb during alveolarization. Our results support the concept that postnatal alveolarization in rat lungs is associated with significant increases in the SP-B content in lb and volume fraction of lb in type II pneumocytes. The postnatal compartment-specific distribution of SP-A, precursors of SP-C and SP-D does not change.
Collapse
Affiliation(s)
- Andreas Schmiedl
- Centre of Anatomy, Hannover School of Medicine, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany.
| | | | | | | | | |
Collapse
|
24
|
Guttentag SH, Akhtar A, Tao JQ, Atochina E, Rusiniak ME, Swank RT, Bates SR. Defective surfactant secretion in a mouse model of Hermansky-Pudlak syndrome. Am J Respir Cell Mol Biol 2005; 33:14-21. [PMID: 15790974 PMCID: PMC2715302 DOI: 10.1165/rcmb.2004-0293oc] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Hermansky-Pudlak syndrome (HPS) in humans represents a family of disorders of lysosome-related organelle biogenesis associated with severe, progressive pulmonary disease. Human case reports and a mouse model of HPS, the pale ear/pearl mouse (ep/pe), exhibit giant lamellar bodies (GLB) in type II alveolar epithelial cells. We examined surfactant proteins and phospholipid from ep/pe mice to elucidate the process of GLB formation. The 2.8-fold enrichment of tissue phospholipids in ep/pe mice resulted from accumulation from birth through adulthood. Tissue surfactant protein (SP)-B and -C were increased in adult ep/pe mice compared with wild-type mice (WT), whereas SP-A and -D were not different. Large aggregate surfactant (LA) from adult ep/pe mice had decreased phospholipid, SP-B, and SP-C, with no differences in SP-A and -D compared with WT. Although LA from ep/pe animals exhibited an increased total protein-to-total phospholipid ratio compared with WT, surface tension was not compromised. Phospholipid secretion from isolated type II cells showed that basal and stimulated secretion from ep/pe cells were approximately 50% of WT cells. Together, our data indicate that GLB formation is not associated with abnormal trafficking or recycling of surfactant material. Instead, impaired secretion is an important component of GLB formation in ep/pe mice.
Collapse
Affiliation(s)
- Susan H Guttentag
- Division of Neonatology, Department of Pediatrics, Children's Hospital of Philadelphia, 19104-4318, USA.
| | | | | | | | | | | | | |
Collapse
|
25
|
Abstract
Surfactant protein C (SP-C) is a hydrophobic 35-amino acid peptide that co-isolates with the phospholipid fraction of lung surfactant. SP-C represents a structurally and functionally challenging protein for the alveolar type 2 cell, which must synthesize, traffic, and process a 191-197-amino acid precursor protein through the regulated secretory pathway. The current understanding of SP-C biosynthesis considers the SP-C proprotein (proSP-C) as a hybrid molecule that incorporates structural and functional features of both bitopic integral membrane proteins and more classically recognized luminal propeptide hormones, which are subject to post-translational processing and regulated exocytosis. Adding to the importance of a detailed understanding of SP-C biosynthesis has been the recent association of mutations in the proSP-C sequence with chronic interstitial pneumonias in children and adults. Many of these mutations involve either missense or deletion mutations located in a region of the proSP-C molecule that has structural homology to the BRI family of proteins linked to inherited degenerative dementias. This review examines the current state of SP-C biosynthesis with a focus on recent developments related to molecular and cellular mechanisms implicated in the emerging role of SP-C mutations in the pathophysiology of diffuse parenchymal lung disease.
Collapse
Affiliation(s)
- Michael F Beers
- Pulmonary and Critical Care Division, Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-6061, USA.
| | | |
Collapse
|
26
|
Osanai K, Takahashi K, Nakamura K, Takahashi M, Ishigaki M, Sakuma T, Toga H, Suzuki T, Voelker DR. Expression and characterization of Rab38, a new member of the Rab small G protein family. Biol Chem 2005; 386:143-53. [PMID: 15843158 DOI: 10.1515/bc.2005.018] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Rab38 is a new member of the Rab small G protein family that regulates intracellular vesicle trafficking. Rab38 is expressed in melanocytes and it has been clarified that a point mutation in the postulated GTP-binding domain of Rab38 is the gene responsible for oculocutaneous albinism in chocolate mice. However, basic information regarding recombinant protein production, intracellular location, and tissue-specific expression pattern has not yet been reported. We produced recombinant Rab38 using a baculovirus/insect cell-protein expression system. A combination of Triton X-114 phase separation and nickel-affinity chromatography yielded exclusively prenylated Rab38 that bound [alpha-32P]-GTP. The mRNA and the native protein were expressed in a tissue-specific manner, e.g., in the lung, skin, stomach, liver, and kidney. Freshly isolated rat alveolar type II cells were highly positive for the mRNA signal, but the signal was rapidly lost over time. Immunofluorescence staining demonstrated that expressed GST-tagged Rab38 was mainly co-localized with endoplasmic reticulum-resident protein and also partly with intermittent vesicles between the endoplasmic reticulum and the Golgi complex. These results indicate that Rab38 is expressed non-ubiquitously in specific tissues and regulates early vesicle transport relating to the endoplasmic reticulum, and hence suggest that Rab38 abnormality may cause multiple organ diseases as well as oculocutaneous albinism.
Collapse
Affiliation(s)
- Kazuhiro Osanai
- Department of Respiratory Medicine, Kanazawa Medical University, 1-1 Daigaku-Uchinada, Kahokugun, Ishikawa 920-0293, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Ridsdale R, Post M. Surfactant lipid synthesis and lamellar body formation in glycogen-laden type II cells. Am J Physiol Lung Cell Mol Physiol 2004; 287:L743-51. [PMID: 15169678 DOI: 10.1152/ajplung.00146.2004] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Pulmonary surfactant is a lipoprotein complex that functions to reduce surface tension at the air liquid interface in the alveolus of the mature lung. In late gestation glycogen-laden type II cells shift their metabolic program toward the synthesis of surfactant, of which phosphatidylcholine (PC) is by far the most abundant lipid. To investigate the cellular site of surfactant PC synthesis in these cells we determined the subcellular localization of two key enzymes for PC biosynthesis, fatty acid synthase (FAS) and CTP:phosphocholine cytidylyltransferase-alpha (CCT-alpha), and compared their localization with that of surfactant storage organelles, the lamellar bodies (LBs), and surfactant proteins (SPs) in fetal mouse lung. Ultrastructural analysis showed that immature and mature LBs were present within the glycogen pools of fetal type II cells. Multivesicular bodies were noted only in the cytoplasm. Immunogold electron microscopy (EM) revealed that the glycogen pools were the prominent cellular sites for FAS and CCT-alpha. Energy-filtering EM demonstrated that CCT-alpha bound to phosphorus-rich (phospholipid) structures in the glycogen. SP-B and SP-C, but not SP-A, localized predominantly to the glycogen stores. Collectively, these data suggest that the glycogen stores in fetal type II cells are a cellular site for surfactant PC synthesis and LB formation/maturation consistent with the idea that the glycogen is a unique substrate for surfactant lipids.
Collapse
Affiliation(s)
- Ross Ridsdale
- Canadian Institutes of Health Research Group in Lung Development, Hospital for Sick Children Research Institute, and Institute of Medical Sciences, University of Toronto, Toronto, Ontario, M5G 1X8, Canada
| | | |
Collapse
|
28
|
Brasch F, Johnen G, Winn-Brasch A, Guttentag SH, Schmiedl A, Kapp N, Suzuki Y, Müller KM, Richter J, Hawgood S, Ochs M. Surfactant protein B in type II pneumocytes and intra-alveolar surfactant forms of human lungs. Am J Respir Cell Mol Biol 2004; 30:449-58. [PMID: 12972403 DOI: 10.1165/rcmb.2003-0262oc] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Surfactant protein B (SP-B) is synthesized by type II pneumocytes as a proprotein (proSP-B) that is proteolytically processed to an 8-kD protein. In human type II pneumocytes, we identified not only proSP-B, processing intermediates of proSP-B, and mature SP-B, but also fragments of the N-terminal propeptide. By means of immunoelectron microscopy, proSP-B and processing intermediates were localized in the endoplasmic reticulum, Golgi vesicles, and few multivesicular bodies in type II pneumocytes in human lungs. A colocalization of fragments of the N-terminal propeptide and mature SP-B was found in multivesicular, composite, and some lamellar bodies. Mature SP-B was localized over the projection core of lamellar bodies and core-like structures in tubular myelin figures. In line with immunoelectron microscopy and Western blot analysis of human type II pneumocytes, a fragment of the N-terminal propeptide was also detected in isolated rat lamellar bodies. In conclusion, our data indicate that the processing of proSP-B occurs between the Golgi complex and multivesicular bodies and provide evidence that a fragment of the N-terminal propeptide and mature SP-B are transported together to the lamellar bodies. In human lungs, mature SP-B is involved in the structural organization of lamellar bodies and tubular myelin by the formation of core particles.
Collapse
Affiliation(s)
- Frank Brasch
- Department of Anatomy, University of Göttingen, Göttingen, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Cowland JB, Sørensen OE, Sehested M, Borregaard N. Neutrophil gelatinase-associated lipocalin is up-regulated in human epithelial cells by IL-1 beta, but not by TNF-alpha. THE JOURNAL OF IMMUNOLOGY 2004; 171:6630-9. [PMID: 14662866 DOI: 10.4049/jimmunol.171.12.6630] [Citation(s) in RCA: 275] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Synthesis of the antimicrobial protein neutrophil gelatinase-associated lipocalin (NGAL) increases dramatically in bronchial epithelial cells and alveolear type II pneumocytes during lung inflammation. IL-1beta induces a >10-fold up-regulation of NGAL expression in the type II pneumocyte-derived cell line A549 cells, whereas TNF-alpha, IL-6, and LPS had no effect. Similar IL-1beta selectivity was demonstrated in primary bronchial epithelial cells and epidermal keratinocytes and for an NGAL promoter fragment transfected into A549 cells. By deletion and substitution analysis of the NGAL promoter, a 40-bp region containing an NF-kappaB consensus site was found to control the IL-1beta-specific up-regulation. Involvement of the NF-kappaB site was demonstrated by site-directed mutagenesis, by transfection with a dominant-negative inhibitor of the NF-kappaB pathway, and by EMSA. TNF-alpha activation of NF-kappaB, in contrast, did not increase NGAL synthesis, even though induced binding of NF-kappaB to the NGAL promoter was observed in vitro. IL-1beta specificity was not contained within the NF-kappaB site of the NGAL promoter, as determined by exchanging the NGAL promoter's NF-kappaB-binding sequence with that of the IL-8 promoter or with the NF-kappaB consensus sequence and by testing the NF-kappaB-binding sequence of the NGAL promoter against the heterologous SV40 promoter. Selectivity for the IL-1 pathway was substantiated by demonstrating that NGAL promoter activity could be induced by LPS stimulation of A549 cells transiently expressing Toll-like receptor 4, which use the same intracellular signaling pathway as the IL-1R. Together, this demonstrates a selective up-regulation of NGAL by the IL-1 pathway.
Collapse
Affiliation(s)
- Jack B Cowland
- Department of Hematology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark.
| | | | | | | |
Collapse
|
30
|
Foster CD, Zhang PX, Gonzales LW, Guttentag SH. In vitro surfactant protein B deficiency inhibits lamellar body formation. Am J Respir Cell Mol Biol 2003; 29:259-66. [PMID: 12649122 DOI: 10.1165/rcmb.2002-0149oc] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Surfactant protein (SP) B is essential for normal pulmonary surfactant activity and lamellar body genesis in type 2 cells. However, the role of SP-B in lamellar body genesis is poorly understood. We developed an adenovirus vector expressing antisense SP-B as an alternative in vitro model of SP-B deficiency to begin to explore the role of SP-B in lamellar body genesis. RT-PCR analysis revealed that antisense SP-B expression interfered with translation of endogenous SP-B mRNA. Antisense SP-B expression resulted in reliable in vitro reproduction of many features of SP-B deficiency, including absent mature SP-B and decreased lamellar bodies and SP-C. Light and electron microscopy demonstrated significant reductions in lamellar body number. Western blotting revealed a significant reduction in mature 8-kD SP-B protein and decreased mature SP-C. Our data indicate that antisense SP-B can be effectively used to replicate the SP-B-deficient type 2 cell phenotype in vitro, and provides an attractive alternative to transgenic models for the further study of the role of SP-B in lamellar body genesis.
Collapse
Affiliation(s)
- Cherie D Foster
- Department of Pediatrics, University of Pennsylvania School of Medicine, Children's Hospital of Philadelphia, 3516 Civic Center Blvd., Philadelphia, PA 19104-4318, USA
| | | | | | | |
Collapse
|
31
|
Platt JA, Kraipowich N, Villafane F, DeMartini JC. Alveolar type II cells expressing jaagsiekte sheep retrovirus capsid protein and surfactant proteins are the predominant neoplastic cell type in ovine pulmonary adenocarcinoma. Vet Pathol 2002; 39:341-52. [PMID: 12014498 DOI: 10.1354/vp.39-3-341] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Ovine pulmonary adenocarcinoma is caused by jaagsiekte sheep retrovirus. To gain insight into the histogenesis and viral pathogenesis of this neoplasm, the tumor cell phenotypes and differentiation state were correlated with the distribution of jaagsiekte sheep retrovirus capsid protein in neoplastic and normal cells of the lung in nine naturally occurring and 12 experimentally induced cases of ovine pulmonary adenocarcinoma. Overall, 82% of tumor cells had ultrastructural features consistent with alveolar type II cells, 7% of tumor cells had features of Clara cells, and 11% of tumor cells were insufficiently differentiated to classify. The proportion of the neoplastic cell phenotypes varied within tumors, and no tumor consisted of a morphologically uniform cell population. To further characterize the neoplastic cell population, sections of tumors were immunostained with antibodies to surfactant protein A, surfactant protein C, and Clara cell 10-kd protein. Overall, surfactant proteins A and C were expressed in 70% and 80% of tumor cells, respectively, whereas Clara cell 10-kd protein was expressed in 17% of tumor cells. Jaagsiekte sheep retrovirus capsid protein was detected in 71% of tumor cells and in macrophages (5/21 tumors examined) and in nonneoplastic alveolar and bronchiolar cells (6/14 tumors). Expression of this viral protein in neoplastic cells, classified morphologically and by immunophenotyping primarily as of the alveolar type II lineage, implies an important role for specific virus-cell interactions in the pathogenesis of ovine pulmonary adenocarcinoma.
Collapse
Affiliation(s)
- J A Platt
- Department of Pathology, Colorado State University, Fort Collins 80523, USA.
| | | | | | | |
Collapse
|
32
|
Mason RJ, Lewis MC, Edeen KE, McCormick-Shannon K, Nielsen LD, Shannon JM. Maintenance of surfactant protein A and D secretion by rat alveolar type II cells in vitro. Am J Physiol Lung Cell Mol Physiol 2002; 282:L249-58. [PMID: 11792629 DOI: 10.1152/ajplung.00027.2001] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Secretion of surfactant proteins A and D (SP-A and SP-D) has been difficult to study in vitro because a culture system for maintaining surfactant secretion has been difficult to establish. We evaluated several growth factors, corticosteroids, rat serum, and a fibroblast feeder layer for the ability to produce and maintain a polarized epithelium of type II cells that secretes SP-A and SP-D into the apical medium. Type II cells were plated on a filter insert coated with an extracellular matrix and were cultured at an air-liquid interface. Keratinocyte growth factor (KGF) stimulated type II cell proliferation and secretion of SP-A and SP-D more than fibroblast growth factor-10 (FGF-10), hepatocyte growth factor (HGF), or heparin-binding epidermal-like growth factor (HB-EGF). Cells cultured in the presence of KGF and rat serum with or without fibroblasts had high surfactant protein mRNA levels and exhibited a high level of SP-A and SP-D secretion. Dexamethasone inhibited type II cell proliferation but increased expression of SP-B. In the presence of KGF, rat serum, and dexamethasone, the mRNAs for the surfactant proteins were maintained at high levels. Secretion of SP-A and SP-D was found to be independent of phospholipid secretion.
Collapse
Affiliation(s)
- Robert J Mason
- Department of Medicine, National Jewish Medical and Research Center, Denver, Colorado 80206, USA.
| | | | | | | | | | | |
Collapse
|
33
|
Ochs M, Johnen G, Müller KM, Wahlers T, Hawgood S, Richter J, Brasch F. Intracellular and intraalveolar localization of surfactant protein A (SP-A) in the parenchymal region of the human lung. Am J Respir Cell Mol Biol 2002; 26:91-8. [PMID: 11751208 DOI: 10.1165/ajrcmb.26.1.4570] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Although it is clearly established that surfactant protein A (SP-A) is secreted by type II pneumocytes as a component of pulmonary surfactant, its secretion pathway as well as its subcellular localization in the human lung are uncertain. We therefore studied the intracellular and intra-alveolar localization of SP-A in eight adult human lungs by immunohistochemistry and immunoelectron microscopy. Only type II pneumocytes could be identified as SP-A positive cells within the parenchymal region. SP-A was localized mainly in small vesicles and multivesicular bodies close to the apical plasma membrane. Only few lamellar bodies were weakly labeled at their outer membranes. Stereologic analysis showed this weak signal to be due to specific labeling. In the alveolar space, lamellar body-like surfactant forms in close proximity to tubular myelin were labeled for SP-A at their periphery. The strongest SP-A labeling was found over tubular myelin figures. Labeling for SP-A was also found in close association with the surface film and unilamellar vesicles. Our results support the hypothesis that, in the human lung, SP-A is mainly secreted into the alveolar space via an alternative pathway that largely bypasses the lamellar bodies. After secretion, the outer membranes of unwinding lamellar bodies become enriched with SP-A when tubular myelin formation is initiated. SP-A may also be involved in the transition of tubular myelin into the surface film.
Collapse
Affiliation(s)
- Matthias Ochs
- Department of Anatomy, Division of Electron Microscopy, University of Göttingen, Göttingen, Germany
| | | | | | | | | | | | | |
Collapse
|
34
|
Gobran LI, Rooney SA. Regulation of SP-B and SP-C secretion in rat type II cells in primary culture. Am J Physiol Lung Cell Mol Physiol 2001; 281:L1413-9. [PMID: 11704537 DOI: 10.1152/ajplung.2001.281.6.l1413] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Secretion of lung surfactant phospholipids is a highly regulated process. A variety of physiological and pharmacological agents stimulate surfactant phospholipid secretion in isolated type II cells. Although the lipid and hydrophobic protein components of surfactant are believed to be secreted together by exocytosis of lamellar body contents, regulation of surfactant protein (SP) B and SP-C secretion has not previously been examined. To address the question of whether secretion of SP-B and SP-C is stimulated by the same agonists that stimulate phospholipid secretion, we measured secretion of all four SPs under the same conditions used to measure phosphatidylcholine secretion. Freshly isolated rat type II cells were cultured overnight and exposed to known surfactant phospholipid secretagogues for 2.5 h, after which the amounts of SP-A, SP-B, SP-C, and SP-D in the medium were measured with immunoblotting. Secretion of SP-B and SP-C was stimulated three- to fivefold by terbutaline, 5'-(N-ethylcarboxyamido)adenosine, ATP, 12-O-tetradecanoylphorbol 13-acetate, and ionomycin. Similar to their effects on phospholipid secretion, the stimulatory effects of the agonists were abolished by Ro 31-8220. Secretion of SP-A and SP-D was not stimulated by the secretagogues tested. We conclude that secretion of the phospholipid and hydrophobic protein components of surfactant is similarly regulated, whereas secretion of the hydrophilic proteins is regulated differently.
Collapse
Affiliation(s)
- L I Gobran
- Division of Perinatal Medicine, Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut 06510, USA
| | | |
Collapse
|
35
|
Abstract
Lung surfactant is synthesized in the alveolar type II cell. Its lipids and hydrophobic proteins (SP-B and SP-C) are stored in lamellar bodies and secreted by regulated exocytosis. In contrast, the hydrophilic proteins (SP-A and SP-D) appear to be secreted independently of lamellar bodies. Regulation of surfactant secretion is mediated by at least three distinct signaling mechanisms: activation of adenylate cyclase with formation of cAMP and activation of cAMP-dependent protein kinase; activation of protein kinase C; and a Ca(2+)-regulated mechanism that likely results in the activation of Ca(2+)-calmodulin-dependent protein kinase. These signaling mechanisms are activated by a variety of agonists, some of which may have a physiological role. ATP is one such agent and it activates all three signaling mechanisms. There is increasing information on the identity of several of the signaling proteins involved in surfactant secretion although others remain to be established. In particular the identity of the phospholipase C, protein kinase C and phospholipase D isomers expressed in the type II cell and/or involved in surfactant secretion has been established. Distal steps in the secretory pathway beyond protein kinase activation as well as the physiological regulation of surfactant secretion, are major issues that need to be addressed.
Collapse
Affiliation(s)
- S A Rooney
- Division of Perinatal Medicine, Department of Pediatrics, Yale University School of Medicine, P.O. Box 208064, New Haven, CT 06520-8064, USA.
| |
Collapse
|
36
|
Abstract
Lung surfactant covers and stabilizes a large, delicate surface at the interface between the host and the environment. The surfactant system is placed at risk by a number of environmental challenges such as inflammation, infection, or oxidant stress, and perhaps not surprisingly, it demonstrates adaptive changes in metabolism in response to alterations in the alveolar microenvironment. Recent experiments have shown that certain components of the surfactant system are active participants in the regulation of the alveolar response to a wide variety of environmental challenges. These components are capable not only of maintaining a low interfacial surface tension but also of amplifying or dampening inflammatory responses. These observations suggest that regulatory molecules are capable of both sensing the environment of the alveolus and providing feedback to the cells regulating surfactant synthesis, secretion, alveolar conversion, and clearance. In this review we examine the evidence from in vitro systems and gene-targeted mice that two surfactant-associated collectins (SP-A and SP-D) may serve in these roles and help modify surfactant homeostasis as part of a coordinated host response to environmental challenges.
Collapse
Affiliation(s)
- S Hawgood
- Cardiovascular Research Institute and Department of Pediatrics, University of California San Francisco, San Francisco, California 94143-0734, USA.
| | | |
Collapse
|
37
|
Gurel O, Ikegami M, Chroneos ZC, Jobe AH. Macrophage and type II cell catabolism of SP-A and saturated phosphatidylcholine in mouse lungs. Am J Physiol Lung Cell Mol Physiol 2001; 280:L1266-72. [PMID: 11350807 DOI: 10.1152/ajplung.2001.280.6.l1266] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Type II cells and macrophages are the major cells involved in the alveolar clearance and catabolism of surfactant. We measured type II cell and macrophage contributions to the catabolism of saturated phosphatidylcholine and surfactant protein A (SP-A) in mice. We used intratracheally administered SP-A labeled with residualizing125I-dilactitol-tyramine, radiolabeled dipalmitoylphosphatidylcholine ([3H]DPPC), and its degradation-resistant analog [14C]DPPC-ether. At 15 min and 7, 19, 29, and 48 h after intratracheal injection, the mice were killed; alveolar lavage was then performed to recover macrophages and surfactant. Type II cells and macrophages not recovered by the lavage were subsequently isolated by enzymatic digestion of the lung. Radioactivity was measured in total lung, lavage fluid macrophages, alveolar washes, type II cells, and lung digest macrophages. Approximately equal amounts of125I-dilactitol-tyramine-SP-A and [14C]DPPC-ether associated with the macrophages (lavage fluid plus lung digest) and type II cells when corrected for the efficiency of type II cell isolation. Eighty percent of the macrophage-associated radiolabel was recovered from lung digest macrophages. We conclude that macrophages and type II cells contribute equally to saturated phosphatidylcholine and SP-A catabolism in mice.
Collapse
Affiliation(s)
- O Gurel
- Division of Pulmonary Biology, Children's Hospital Medical Center, Cincinnati, Ohio 45229, USA.
| | | | | | | |
Collapse
|
38
|
Conkright JJ, Bridges JP, Na CL, Voorhout WF, Trapnell B, Glasser SW, Weaver TE. Secretion of surfactant protein C, an integral membrane protein, requires the N-terminal propeptide. J Biol Chem 2001; 276:14658-64. [PMID: 11278984 DOI: 10.1074/jbc.m011770200] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Proteolytic processing of surfactant protein C (SP-C) proprotein in multivesicular bodies of alveolar type II cells results in a 35-residue mature peptide, consisting of a transmembrane domain and a 10-residue extramembrane domain. SP-C mature peptide is stored in lamellar bodies (a lysosomal-like organelle) and secreted with surfactant phospholipids into the alveolar space. This study was designed to identify the peptide domain of SP-C required for sorting and secretion of this integral membrane peptide. Deletion analyses in transiently transfected PC12 cells and isolated mouse type II cells suggested the extramembrane domain of mature SP-C was cytosolic and sufficient for sorting to the regulated secretory pathway. Intratracheal injection of adenovirus encoding SP-C mature peptide resulted in secretion into the alveolar space of wild type mice but not SP-C (-/-) mice. SP-C secretion in null mice was restored by the addition of the N-terminal propeptide. The cytosolic domain, consisting of the N- terminal propeptide and extramembrane domain of mature SP-C peptide, supported secretion of the transmembrane domain of platelet-derived growth factor receptor. Collectively, these studies indicate that the N-terminal propeptide of SP-C is required for intracellular sorting and secretion of SP-C.
Collapse
Affiliation(s)
- J J Conkright
- Division of Pulmonary Biology, Children's Hospital Medical Center, Cincinnati, Ohio 45229-3039, USA
| | | | | | | | | | | | | |
Collapse
|
39
|
Osanai K, Iguchi M, Takahashi K, Nambu Y, Sakuma T, Toga H, Ohya N, Shimizu H, Fisher JH, Voelker DR. Expression and localization of a novel Rab small G protein (Rab38) in the rat lung. THE AMERICAN JOURNAL OF PATHOLOGY 2001; 158:1665-75. [PMID: 11337364 PMCID: PMC1891947 DOI: 10.1016/s0002-9440(10)64122-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The Rab small G protein family participates in intracellular vesicle transport, including exocytosis and endocytosis. The cDNA encoding a novel Rab-related small G protein (Rab38) has been cloned from rat lung cDNA library and recorded in GenBank (accession no. M94043). However, the expression and localization of the protein in the lung remains primarily unknown. We produced polyhistidine-tagged recombinant Rab38 and a polyclonal antibody with a synthetic peptide. Immunohistochemistry demonstrated that the protein is specifically localized in alveolar type II cells and in bronchial epithelial cells. In situ hybridization using a digoxygenin-labeled RNA riboprobe clearly showed that the mRNA of the protein is localized in alveolar type II cells and bronchial epithelial cells, especially terminal airway epithelial cells. Western blot and reverse transcriptase-polymerase chain reaction showed distinct expression of the protein and mRNA in isolated alveolar type II cells, but not in alveolar macrophages. The native protein was predominantly hydrophobic and was enriched in a high-density vesicle fraction but was barely detectable in nuclear and lamellar body fractions in alveolar type II cells. Immunofluorescence cytochemistry performed on cultured alveolar type II cells showed that Rab38 distributed extensively in the cytoplasm with a distribution pattern similar to endoplasmic reticulum rather than other subcellular organelles. These results suggest that this novel rab small G protein (Rab38) mediates vesicular transport in terminal airway epithelium.
Collapse
Affiliation(s)
- K Osanai
- Department of Internal Medicine, Division of Respiratory Disease, Kanazawa Medical University, Ishikawa, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Osanai K, Mason RJ, Voelker DR. Pulmonary surfactant phosphatidylcholine transport bypasses the brefeldin A sensitive compartment of alveolar type II cells. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1531:222-9. [PMID: 11325613 DOI: 10.1016/s1388-1981(01)00104-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Brefeldin A (BFA) causes disassembly of the Golgi apparatus and blocks protein transport to this organelle from the endoplasmic reticulum. However, there still remains considerable ambiguity regarding the involvement of the Golgi apparatus in glycerolipid transport pathways. We examined the effects of BFA upon the intracellular translocation of phosphatidylcholine in alveolar type II cells, that synthesize, transport, store and secrete large amounts of phospholipid for regulated exocytosis. BFA at concentrations as high as 10 microg/ml failed to alter the assembly of phosphatidylcholine into lamellar bodies, the specialized storage organelles for pulmonary surfactant. The same concentration of BFA was also ineffective at altering the secretion of newly synthesized phosphatidylcholine from alveolar type II cells. In contrast, concentrations of the drug of 2.5 microg/ml completely arrested newly synthesized lysozyme secretion from the same cells, indicating that BFA readily blocked protein transport processes in alveolar type II cells. The disassembly of the Golgi apparatus in alveolar type II cells following BFA treatment was also demonstrated by showing the redistribution of the resident Golgi protein MG-160 to the endoplasmic reticulum. These results indicate that intracellular transport of phosphatidylcholine along the secretory pathway in alveolar type II cells proceeds via a BFA insensitive route and does not require a functional Golgi apparatus.
Collapse
Affiliation(s)
- K Osanai
- National Jewish Medical and Research Center, 1400 Jackson St., Denver, CO 80206, USA
| | | | | |
Collapse
|
41
|
Shannon JM, Pan T, Nielsen LD, Edeen KE, Mason RJ. Lung fibroblasts improve differentiation of rat type II cells in primary culture. Am J Respir Cell Mol Biol 2001; 24:235-44. [PMID: 11245622 DOI: 10.1165/ajrcmb.24.3.4302] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Epithelial-mesenchymal interactions mediate prenatal lung morphogenesis and differentiation, yet little is known about their effects in the adult. In this study we have examined the influence of cocultured lung fibroblasts on rat alveolar type II cell differentiation in primary culture. Type II cells that were co-cultured with lung fibroblasts showed significant increases in messenger RNA (mRNA) levels of surfactant protein (SP)-A, SP-B, SP-C, and SP-D. Metabolic labeling and immunohistochemistry demonstrated that these mRNAs were translated and processed. Addition of 10(-7) M dexamethasone (DEX) to cocultures antagonized the effects of the fibroblasts on SP-A and SP-C, but significantly augmented the effects on SP-B; expression of SP-D was unaffected. Coculture of type II cells with lung fibroblasts also increased acetate incorporation into phospholipids 10-fold, which was antagonized by DEX. Keratinocyte growth factor (KGF) mimicked the effects of lung fibroblasts on SP gene expression, but KGF neutralizing antibodies only partially reduced the effects of lung fibroblasts. KGF increased acetate incorporation into surfactant phospholipids, and the addition of DEX augmented this response. Together, our observations suggest that epithelial--mesenchymal interactions affect type II cell differentiation in the adult lung, and that these effects are partially mediated by KGF.
Collapse
Affiliation(s)
- J M Shannon
- Department of Medicine, National Jewish Medical and Research Center, Denver, Colorado, USA.
| | | | | | | | | |
Collapse
|
42
|
Fehrenbach H. Alveolar epithelial type II cell: defender of the alveolus revisited. Respir Res 2001; 2:33-46. [PMID: 11686863 PMCID: PMC59567 DOI: 10.1186/rr36] [Citation(s) in RCA: 527] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2000] [Revised: 12/05/2000] [Accepted: 12/06/2000] [Indexed: 01/13/2023] Open
Abstract
In 1977, Mason and Williams developed the concept of the alveolar epithelial type II (AE2) cell as a defender of the alveolus. It is well known that AE2 cells synthesise, secrete, and recycle all components of the surfactant that regulates alveolar surface tension in mammalian lungs. AE2 cells influence extracellular surfactant transformation by regulating, for example, pH and [Ca2+] of the hypophase. AE2 cells play various roles in alveolar fluid balance, coagulation/fibrinolysis, and host defence. AE2 cells proliferate, differentiate into AE1 cells, and remove apoptotic AE2 cells by phagocytosis, thus contributing to epithelial repair. AE2 cells may act as immunoregulatory cells. AE2 cells interact with resident and mobile cells, either directly by membrane contact or indirectly via cytokines/growth factors and their receptors, thus representing an integrative unit within the alveolus. Although most data support the concept, the controversy about the character of hyperplastic AE2 cells, reported to synthesise profibrotic factors, proscribes drawing a definite conclusion today.
Collapse
Affiliation(s)
- H Fehrenbach
- Institute of Pathology, University Clinics Carl Gustav Carus, Technical University of Dresden, Germany.
| |
Collapse
|
43
|
Davidson KG, Bersten AD, Barr HA, Dowling KD, Nicholas TE, Doyle IR. Lung function, permeability, and surfactant composition in oleic acid-induced acute lung injury in rats. Am J Physiol Lung Cell Mol Physiol 2000; 279:L1091-102. [PMID: 11076799 DOI: 10.1152/ajplung.2000.279.6.l1091] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Although acute lung injury (ALI) is associated with inflammation and surfactant dysfunction, the precise sequence of these changes remains poorly described. We used oleic acid to study the pathogenesis of ALI in spontaneously breathing anesthetized rats. We found that lung pathology can occur far more rapidly than previously appreciated. Lung neutrophils were increased approximately threefold within 5 min, and surfactant composition was dramatically altered within 15 min. Alveolar cholesterol increased by approximately 200%, and even though disaturated phospholipids increased by approximately 30% over 4 h, the disaturated phospholipid-to-total phospholipid ratio fell. Although the alveolocapillary barrier was profoundly disrupted after just 15 min, with marked elevations in lung fluid ((99m)Tc-labeled diethylenetriamine pentaacetic acid) and (125)I-labeled albumin flux, the lung rapidly began to regain its sieving properties. Despite the restoration in lung permeability, the animals remained hypoxic even though minute ventilation was increased approximately twofold and static compliance progressively deteriorated. This study highlights that ALI can set in motion a sequence of events continuing the respiratory failure irrespective of the alveolar surfactant pool size and the status of the alveolocapillary barrier.
Collapse
Affiliation(s)
- K G Davidson
- Department of Human Physiology, School of Medicine, Flinders University of South Australia, Australia
| | | | | | | | | | | |
Collapse
|
44
|
Kasahara Y, Tuder RM, Taraseviciene-Stewart L, Le Cras TD, Abman S, Hirth PK, Waltenberger J, Voelkel NF. Inhibition of VEGF receptors causes lung cell apoptosis and emphysema. J Clin Invest 2000; 106:1311-9. [PMID: 11104784 PMCID: PMC387249 DOI: 10.1172/jci10259] [Citation(s) in RCA: 827] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Pulmonary emphysema, a significant global health problem, is characterized by a loss of alveolar structures. Because VEGF is a trophic factor required for the survival of endothelial cells and is abundantly expressed in the lung, we hypothesized that chronic blockade of VEGF receptors could induce alveolar cell apoptosis and emphysema. Chronic treatment of rats with the VEGF receptor blocker SU5416 led to enlargement of the air spaces, indicative of emphysema. The VEGF receptor inhibitor SU5416 induced alveolar septal cell apoptosis but did not inhibit lung cell proliferation. Viewed by angiography, SU5416-treated rat lungs showed a pruning of the pulmonary arterial tree, although we observed no lung infiltration by inflammatory cells or fibrosis. SU5416 treatment led to a decrease in lung expression of VEGF receptor 2 (VEGFR-2), phosphorylated VEGFR-2, and Akt-1 in the complex with VEGFR-2. Treatment with the caspase inhibitor Z-Asp-CH(2)-DCB prevented SU5416-induced septal cell apoptosis and emphysema development. These findings suggest that VEGF receptor signaling is required for maintenance of the alveolar structures and, further, that alveolar septal cell apoptosis contributes to the pathogenesis of emphysema.
Collapse
Affiliation(s)
- Y Kasahara
- Division of Pulmonary Sciences and Critical Care Medicine, Pulmonary Hypertension Center, Department of Medicine, University of Colorado Health Sciences Center, Denver, USA
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Ruano ML, García-Verdugo I, Miguel E, Pérez-Gil J, Casals C. Self-aggregation of surfactant protein A. Biochemistry 2000; 39:6529-37. [PMID: 10828969 DOI: 10.1021/bi000188z] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Environmental factors of physiological relevance such as pH, calcium, ionic strength, and temperature can affect the state of self-aggregation of surfactant protein A (SP-A). We have studied the secondary structure of different SP-A aggregates and analyzed their fluorescence characteristics. (a) We found that self-aggregation of SP-A can be Ca(2+)-dependent. The concentration of Ca(2+) needed for half-maximal self-association (K(a)(Ca)()2+) depended on the presence of salts. Thus, at low ionic strength, K(a)(Ca)()2+ was 2.3 mM, whereas at physiological ionic strength, K(a)(Ca)()2+ was 2.35 microM. Circular dichroism and fluorescence measurements of Ca(2+)-dependent SP-A aggregates indicated that those protein aggregates formed in the absence of NaCl are structurally different from those formed in its presence. (b) We found that self-aggregation of SP-A can be pH-dependent. Self-aggregation of SP-A induced by H(+) was highly influenced by the presence of salts, which reduced the extent of self-association of the protein. The presence of both salts and Ca(2+) attenuated even more the effects of acidic media on SP-A self-aggregation. (c) We found that self-aggregation of SP-A can be temperature-dependent. At 20 degrees C, SP-A underwent self-aggregation at physiological but not at low ionic strength, in the presence of EDTA. All of these aggregates were dissociated by either adding EDTA (a), increasing the pH to neutral pH (b), or increasing the temperature to 37 degrees C (c). Dissociation of Ca(2+)-induced protein aggregates at low ionic strength was accompanied by an irreversible loss of both SP-A secondary structure and SP-A-dependent lipid aggregation properties. On the other hand, temperature-dependent experiments indicated that a structurally intact collagen-like domain was required for either Ca(2+)- or Ca(2+)/Na(+)-induced SP-A self-aggregation but not for H(+)-induced protein aggregation.
Collapse
Affiliation(s)
- M L Ruano
- Department of Biochemistry and Molecular Biology, Faculty of Biology, Complutense University of Madrid, Spain
| | | | | | | | | |
Collapse
|
46
|
Traebert M, Hattenhauer O, Murer H, Kaissling B, Biber J. Expression of type II Na-P(i) cotransporter in alveolar type II cells. THE AMERICAN JOURNAL OF PHYSIOLOGY 1999; 277:L868-73. [PMID: 10564169 DOI: 10.1152/ajplung.1999.277.5.l868] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Type II Na-P(i) cotransporters (type IIa and type IIb) represent apically located Na-P(i) cotransporters in epithelia of proximal tubules (type IIa) and small intestine (type IIb). Here we provide evidence that the type IIb (but not the type IIa) Na-P(i) cotransporter is also expressed in the lung. With the use of immunohistochemistry, location of the type IIb protein was found exclusively in the apical membrane of type II cells of the alveolar epithelium. Such a location of the type IIb cotransporter suggests an involvement in the reuptake of phosphate necessary for the synthesis of surfactant. A possible regulation of the abundance of the type IIb cotransporter in the lung was studied after adaptation of mice to a low-P(i) diet. After a chronic adaptation to a low-P(i) diet, no changes in the type IIb protein and the type IIb transcript were observed. These results exclude dietary intake of phosphate as a regulatory factor of the type IIb Na-P(i) cotransporter in alveolar type II cells.
Collapse
Affiliation(s)
- M Traebert
- Institute of Anatomy, University of Zurich, CH-8057 Zurich, Switzerland
| | | | | | | | | |
Collapse
|