1
|
SERS-fluorescence dual-mode nanoprobe for the detection and imaging of Bax mRNA during apoptosis. Mikrochim Acta 2023; 190:130. [PMID: 36905455 DOI: 10.1007/s00604-023-05709-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 02/19/2023] [Indexed: 03/12/2023]
Abstract
A dual-mode nanoprobe was constructed to detect Bax messenger RNA (mRNA), consisting of gold nanotriangles (AuNTs), a Cy5-modified recognition sequence, and a thiol-modified DNA sequence. Bax mRNA is one of the key pro-apoptotic factors in the apoptosis pathway. Raman enhancement and fluorescence quenching of the signal group Cy5 were performed using AuNTs as substrates. The thiol-modified nucleic acid chain is partially complementary to the Cy5-modified nucleic acid chain to form a double strand and is linked to the AuNTs by the Au-S bond. When Bax mRNA is present, the Cy5-modified strand specifically binds to it to form a more stable duplex, making Cy5 far away from AuNTs, and SERS signal is weakened while fluorescence signal is enhanced. The nanoprobe can be used for the quantitative detection of Bax mRNA in vitro. Combined with the high sensitivity of SERS and the visualization of fluorescence, this method has good specificity and can be used for in situ imaging and dynamic monitoring of Bax mRNA during deoxynivalenol (DON) toxin-induced apoptosis of HepG2 cells. DON plays a pathogenic role mainly by inducing cell apoptosis. The results confirmed that the proposed dual-mode nanoprobe has good versatility in various human cell lines.
Collapse
|
2
|
Li C, Chen P, Khan IM, Wang Z, Zhang Y, Ma X. Fluorescence-Raman dual-mode quantitative detection and imaging of small-molecule thiols in cell apoptosis with DNA-modified gold nanoflowers. J Mater Chem B 2022; 10:571-581. [PMID: 34994374 DOI: 10.1039/d1tb02437j] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The monitoring of small-molecule thiols (especially glutathione) has attracted widespread attention due to their involvement in numerous physiological processes in living organisms and cells. In this work, a dual-mode nanosensor was designed to detect small-molecule thiols, which is based on the "on-off" switch of fluorescence resonance energy transfer (FRET) and surface-enhanced Raman scattering (SERS). Briefly, DNA was modified by Cy5 (signal probe) and disulfide bonds (recognition element). Gold nanoflowers (AuNFs) were used as the fluorescence-quenching and SERS-enhancing substrate. However, small-molecule thiols can cleave disulfide bonds and release short Cy5-labeled chains, causing the recovery of the fluorescence signal and a decrease of the SERS signal. The nanosensor showed a sensitive response to small-molecule thiols represented by GSH, with a linear range of 0.01-3 mM and a detection limit of 913 nM. In addition, it competed with other related biological interferences and presented good stability and better selectivity towards small-molecule thiols. Most importantly, the developed nanosensor had been successfully applied to in situ imaging and quantitative monitoring of the concentration of small-molecule thiols which changed during T-2 toxin-induced apoptosis in HeLa cells. Meanwhile, nanosensors are also versatile with their potential applications and can be easily extended to the detection and imaging of other human cell lines. The proposed method combines the dual advantages of fluorescence and SERS, which has broad prospects for in situ studies of physiological processes involving small-molecule thiols in biological systems.
Collapse
Affiliation(s)
- Chenbiao Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China. .,School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China.,Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Peifang Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China. .,School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China.,Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Imran Mahmood Khan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China. .,School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China.,Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Zhouping Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China. .,School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China.,Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China.,Key Laboratory of Meat Processing of Sichuan, Chengdu University, Chengdu 610106, China
| | - Yin Zhang
- Key Laboratory of Meat Processing of Sichuan, Chengdu University, Chengdu 610106, China
| | - Xiaoyuan Ma
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China. .,School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China.,Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
3
|
Mahdavi M, Asghari S, Rahnamay M, Dehghan G, Feizi MAH, Balalaie S. Cytotoxicity, oxidative stress, and apoptosis in K562 leukemia cells induced by an active compound from pyrano-pyridine derivatives. Hum Exp Toxicol 2018; 37:1105-1116. [DOI: 10.1177/0960327118756719] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Recent studies have reported the potential of pyrano-pyridine compounds in inhibiting cell growth and apoptosis induction in cancer cells. Here, we investigated the effect of new pyrano-pyridine derivatives on proliferation, oxidative damages, and apoptosis in K562 leukemia cells. Among different tested compounds, we found 8-(4-chlorobenzylidene)-2-amino-4-(4-chlorophenyl)-5, 6, 7, 8-tetrahydro-6-phenethyl-4H-pyrano-[3,2-c]pyridine-3-carbonitrile (4-CP.P) as the most effective compound with IC50 value of 20 μM. Gel electrophoresis, fluorescence microscopy, and flow cytometry analyses indicated the apoptosis induction ability of 4-CP.P in K562 cells. Further analyses revealed that 4-CP.P induces significant increase in cellular reactive oxygen species production, lipid peroxidation, protein oxidation, and total thiol depletion. Interestingly, while 4-CP.P significantly increased the activity of superoxide dismutase, it reduced the catalase activity in a time-dependent manner. These data propose that 4-CP.P treatment causes free radicals accumulation that ultimately leads to oxidative stress condition and apoptosis induction. Therefore, we report the 4-CP.P as a novel, potent compound as a chemotherapeutic agent in cancer treatment.
Collapse
Affiliation(s)
- M Mahdavi
- Department of Biology, Faculty of Natural Science, University of Tabriz, Tabriz, Iran
| | - S Asghari
- Department of Biology, Faculty of Natural Science, University of Tabriz, Tabriz, Iran
| | - M Rahnamay
- Department of Biology, Faculty of Natural Science, University of Tabriz, Tabriz, Iran
| | - G Dehghan
- Department of Biology, Faculty of Natural Science, University of Tabriz, Tabriz, Iran
| | - MAH Feizi
- Department of Biology, Faculty of Natural Science, University of Tabriz, Tabriz, Iran
| | - S Balalaie
- Department of Chemistry, Faculty of Science, K. N. Toosi University of Tech, Tehran, Iran
| |
Collapse
|
4
|
Tabakov VY, Veiko NN, Chestkov VV, Kostyuk SV. Thiol antioxidants increase the intracellular level of reactive oxygen species and prolifetaion of SP2/0 mouse myeloma cells in serum-free medium. ACTA ACUST UNITED AC 2017. [DOI: 10.1134/s1990519x17020067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
5
|
Diethyl maleate inhibits MCA+TPA transformed cell growth via modulation of GSH, MAPK, and cancer pathways. Chem Biol Interact 2014; 219:37-47. [DOI: 10.1016/j.cbi.2014.04.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Revised: 04/22/2014] [Accepted: 04/28/2014] [Indexed: 02/02/2023]
|
6
|
Yadav UCS, Ramana KV, Srivastava SK. Aldose reductase regulates acrolein-induced cytotoxicity in human small airway epithelial cells. Free Radic Biol Med 2013; 65:15-25. [PMID: 23770200 PMCID: PMC3830659 DOI: 10.1016/j.freeradbiomed.2013.06.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Revised: 05/24/2013] [Accepted: 06/05/2013] [Indexed: 10/26/2022]
Abstract
Aldose reductase (AR), a glucose-metabolizing enzyme, reduces lipid aldehydes and their glutathione conjugates with more than 1000-fold efficiency (Km aldehydes 5-30 µM) relative to glucose. Acrolein, a major endogenous lipid peroxidation product as well as a component of environmental pollutants and cigarette smoke, is known to be involved in various pathologies including atherosclerosis, airway inflammation, COPD, and age-related disorders, but the mechanism of acrolein-induced cytotoxicity is not clearly understood. We have investigated the role of AR in acrolein-induced cytotoxicity in primary human small airway epithelial cells (SAECs). Exposure of SAECs to varying concentrations of acrolein caused cell death in a concentration- and time-dependent manner. AR inhibition by fidarestat prevented the low-dose (5-10 µM) but not the high-dose (>10 µM) acrolein-induced SAEC death. AR inhibition protected SAECs from low-dose (5 µM) acrolein-induced cellular reactive oxygen species (ROS). Inhibition of acrolein-induced apoptosis by fidarestat was confirmed by decreased condensation of nuclear chromatin, DNA fragmentation, comet tail moment, and annexin V fluorescence. Further, fidarestat inhibited acrolein-induced translocation of the proapoptotic proteins Bax and Bad from the cytosol to the mitochondria and that of Bcl2 and BclXL from the mitochondria to the cytosol. Acrolein-induced cytochrome c release from mitochondria was also prevented by AR inhibition. The mitogen-activated protein kinases (MAPKs), such as extracellular signal-regulated kinases 1 and 2, stress-activated protein kinase/c-Jun NH2-terminal kinase, and p38MAPK, and c-Jun were transiently activated in airway epithelial cells by acrolein in a concentration- and time-dependent fashion, which was significantly prevented by AR inhibition. These results suggest that AR inhibitors could prevent acrolein-induced cytotoxicity in the lung epithelial cells.
Collapse
Affiliation(s)
- Umesh C S Yadav
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - K V Ramana
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Satish K Srivastava
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA.
| |
Collapse
|
7
|
Abstract
SIGNIFICANCE Glutathione (GSH) depletion is a central signaling event that regulates the activation of cell death pathways. GSH depletion is often taken as a marker of oxidative stress and thus, as a consequence of its antioxidant properties scavenging reactive species of both oxygen and nitrogen (ROS/RNS). RECENT ADVANCES There is increasing evidence demonstrating that GSH loss is an active phenomenon regulating the redox signaling events modulating cell death activation and progression. CRITICAL ISSUES In this work, we review the role of GSH depletion by its efflux, as an important event regulating alterations in the cellular redox balance during cell death independent from oxidative stress and ROS/RNS formation. We discuss the mechanisms involved in GSH efflux during cell death progression and the redox signaling events by which GSH depletion regulates the activation of the cell death machinery. FUTURE DIRECTIONS The evidence summarized here clearly places GSH transport as a central mechanism mediating redox signaling during cell death progression. Future studies should be directed toward identifying the molecular identity of GSH transporters mediating GSH extrusion during cell death, and addressing the lack of sensitive approaches to quantify GSH efflux.
Collapse
Affiliation(s)
- Rodrigo Franco
- Redox Biology Center, University of Nebraska-Lincoln, Lincoln, NE 68583, USA.
| | | |
Collapse
|
8
|
D’Agostini F, Fiallo P, Ghio M, De Flora S. Chemoprevention of doxorubicin-induced alopecia in mice by dietary administration of l-cystine and vitamin B6. Arch Dermatol Res 2012; 305:25-34. [DOI: 10.1007/s00403-012-1253-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Revised: 05/25/2012] [Accepted: 06/01/2012] [Indexed: 11/30/2022]
|
9
|
Abstract
Acrolein is a respiratory irritant that can be generated during cooking and is in environmental tobacco smoke. More plentiful in cigarette smoke than polycyclic aromatic hydrocarbons (PAH), acrolein can adduct tumor suppressor p53 (TP53) DNA and may contribute to TP53-mutations in lung cancer. Acrolein is also generated endogenously at sites of injury, and excessive breath levels (sufficient to activate metalloproteinases and increase mucin transcripts) have been detected in asthma and chronic obstructive pulmonary disease (COPD). Because of its reactivity with respiratory-lining fluid or cellular macromolecules, acrolein alters gene regulation, inflammation, mucociliary transport, and alveolar-capillary barrier integrity. In laboratory animals, acute exposures have lead to acute lung injury and pulmonary edema similar to that produced by smoke inhalation whereas lower concentrations have produced bronchial hyperreactivity, excessive mucus production, and alveolar enlargement. Susceptibility to acrolein exposure is associated with differential regulation of cell surface receptor, transcription factor, and ubiquitin-proteasome genes. Consequent to its pathophysiological impact, acrolein contributes to the morbidly and mortality associated with acute lung injury and COPD, and possibly asthma and lung cancer.
Collapse
Affiliation(s)
- Kiflai Bein
- Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA 15219-3130, USA.
| | | |
Collapse
|
10
|
Tran P, Webster T. Nanostructured selenium anti-cancer coatings for orthopedic applications. Nanomedicine (Lond) 2012. [DOI: 10.1533/9780857096449.2.180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
11
|
Inhibition of leukotriene C4 action reduces oxidative stress and apoptosis in cardiomyocytes and impedes remodeling after myocardial injury. J Mol Cell Cardiol 2011; 50:570-7. [DOI: 10.1016/j.yjmcc.2010.11.013] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2010] [Revised: 11/09/2010] [Accepted: 11/11/2010] [Indexed: 11/18/2022]
|
12
|
Chen WY, Hsieh YA, Tsai CI, Kang YF, Chang FR, Wu YC, Wu CC. Protoapigenone, a natural derivative of apigenin, induces mitogen-activated protein kinase-dependent apoptosis in human breast cancer cells associated with induction of oxidative stress and inhibition of glutathione S-transferase π. Invest New Drugs 2010; 29:1347-59. [DOI: 10.1007/s10637-010-9497-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2010] [Accepted: 07/13/2010] [Indexed: 11/24/2022]
|
13
|
Kandil S, Brennan L, McBean GJ. Glutathione depletion causes a JNK and p38MAPK-mediated increase in expression of cystathionine-γ-lyase and upregulation of the transsulfuration pathway in C6 glioma cells. Neurochem Int 2010; 56:611-9. [DOI: 10.1016/j.neuint.2010.01.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2009] [Accepted: 01/05/2010] [Indexed: 11/27/2022]
|
14
|
Vulimiri SV, Misra M, Hamm JT, Mitchell M, Berger A. Effects of mainstream cigarette smoke on the global metabolome of human lung epithelial cells. Chem Res Toxicol 2009; 22:492-503. [PMID: 19161311 DOI: 10.1021/tx8003246] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Metabolomics is a technology for identifying and quantifying numerous biochemicals across metabolic pathways. Using this approach, we explored changes in biochemical profiles of human alveolar epithelial carcinoma (A549) cells following in vitro exposure to mainstream whole smoke (WS) aerosol as well as to wet total particulate matter (WTPM) or gas/vapor phase (GVP), the two constituent phases of WS from 2R4F Kentucky reference cigarettes. A549 cells were exposed to WTPM or GVP (expressed as WTPM mass equivalent GVP volumes) at 0, 5, 25, or 50 microg/mL or to WS from zero, two, four, and six cigarettes for 1 or 24 h. Cell pellets were analyzed for perturbations in biochemical profiles, with named biochemicals measured, analyzed, and reported in a heat map format, along with biochemical and physiological interpretations (mSelect, Metabolon Inc.). Both WTPM and GVP exposures likely decreased glycolysis (based on decreased glycolytic intermediaries) and increased oxidative stress and cell damage. Alterations in the Krebs cycle and the urea cycle were unique to WTPM exposure, while induction of hexosamines and alterations in lipid metabolism were unique to GVP exposure. WS altered glutathione (GSH) levels, enhanced polyamine and pantothenate levels, likely increased beta-oxidation of fatty acids, and increased phospholipid degradation marked by an increase in phosphoethanolamine. GSH, glutamine, and pantothenate showed the most significant changes with cigarette smoke exposure in A549 cells based on principal component analysis. Many of the changed biochemicals were previously reported to be altered by cigarette exposure, but the global metabolomic approach offers the advantage of observing changes to hundreds of biochemicals in a single experiment and the possibility for new discoveries. The metabolomic approach may thus be used as a screening tool to evaluate conventional and novel tobacco products offering the potential to reduce risks of smoking.
Collapse
Affiliation(s)
- Suryanarayana V Vulimiri
- A. W. Spears Research Center, Lorillard Tobacco Company, 420 North English Street, Greensboro, North Carolina 27420, USA.
| | | | | | | | | |
Collapse
|
15
|
Mladenov M, Tanska V, Vitkovska T, Gjorgoski I, Dinevska-Kofkarovska S, Stafilov T, Hristov K, Duridanova D. Evidence for the influence of vitamin C on age- and heat exposure-dependent deterioration of biochemical function in rat's liver and kidney. J Therm Biol 2008. [DOI: 10.1016/j.jtherbio.2008.07.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
16
|
Mukwena NT, Al-Rubeai M. Apoptosis and its suppression in hepatocytes culture. Cytotechnology 2008; 46:79-95. [PMID: 19003264 DOI: 10.1007/s10616-005-8306-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2004] [Accepted: 05/18/2005] [Indexed: 11/25/2022] Open
Abstract
In order to achieve the goal of developing extracorporeal liver support devices, it is necessary to optimise bioprocess environment such that viability and function are maximised. Optimising culture medium composition and controlling the constitution of the cellular microenvironment within the bioreactor have for many years been considered vital to achieving these aims. Coupled to this is the need to understand apoptosis, the prime suspect in the demise of animal cultures, including those of hepatocytes. Results presented here show that absent nutrients including glucose and amino acids play a substantial part in the induction of apoptosis. The use of chemical apoptosis inhibitors was utilised to investigate key components of hepatic apoptosis where caspases, predominantly caspase 8, were implicated in staurosporine (STS)-induced HepZ apoptosis. Caspase 9 and 3 activation although recorded was of less significance. Interestingly, these results were not consistent with those of mitochondrial membrane depolarisation where inhibition of caspase activation appeared to drive depolarisation. Inhibition of mitochondrial permeability transition and use of anti-oxidants was unsuccessful in reducing apoptosis, caspase activation and mitochondrial membrane depolarisation. In further studies, the anti-apoptotic gene bcl-2 was over-expressed in HepZ, resulting in a cell line that was more robust and resistant to death induced by glucose and cystine deprivation and treatment with STS. Bcl-2 did not however show significant cytoprotectivity where apoptosis was stimulated by deprivation of glutamine and serum. Overall, results indicated that although apoptosis can be curbed by use of chemical inhibitors and genetic manipulation, their success is dependent on apoptotic stimuli.
Collapse
Affiliation(s)
- Nyaradzo T Mukwena
- Department of Chemical Engineering, University of Birmingham, Birmingham, B15 2TT, UK
| | | |
Collapse
|
17
|
Hypothiocyanous acid is a more potent inducer of apoptosis and protein thiol depletion in murine macrophage cells than hypochlorous acid or hypobromous acid. Biochem J 2008; 414:271-80. [PMID: 18459943 DOI: 10.1042/bj20080468] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Hypohalous acids are generated by activated leucocytes, via the formation of H(2)O(2) and the release of peroxidase enzymes (myeloperoxidase and eosinophil peroxidase). These species are important bactericidal agents, but HOCl (hypochlorous acid) and HOBr (hypobromous acid) have also been implicated in tissue damage in a number of inflammatory diseases. HOSCN (hypothiocyanous acid; cyanosulfenic acid) is a milder, more thiol-specific, oxidant than HOCl or HOBr and as such may be a more potent inducer of cellular dysfunction due to selective targeting of critical thiol residues on proteins. In the present study, HOCl and HOBr are shown to react rapidly with macrophage (J774A.1) cells, resulting in a greater extent of cell lysis compared with HOSCN. However, HOSCN induces apoptosis and necrosis with greater efficacy, and at lower concentrations, than HOCl or HOBr. Apoptosis occurs in conjunction with an increased release of cytochrome c into the cytosol, but no associated increase in caspase activity. Similarly, apoptosis is observed on treating the cells in the presence of a caspase inhibitor, suggesting that it is mediated by a caspase-independent pathway. HOSCN oxidized protein thiols more efficiently than either HOCl or HOBr. The greater efficacy of HOSCN in inducing apoptosis is attributed to selective damage to critical mitochondrial membrane protein thiol groups, resulting in increased permeability and subsequent leakage of cytochrome c into the cytosol. This induction of damage by HOSCN may be of critical importance in people with elevated levels of SCN(-) (thiocyanate ions) arising from cigarette smoking, and plays a role in the pathologies associated with this biological insult.
Collapse
|
18
|
Wang J, Mochizuki H, Todokoro M, Arakawa H, Morikawa A. Does leukotriene affect intracellular glutathione redox state in cultured human airway epithelial cells? Antioxid Redox Signal 2008; 10:821-8. [PMID: 18199004 DOI: 10.1089/ars.2007.1960] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Leukotrienes (LTs) are one of the most important mediators in the pathophysiology of asthma. We measured the intracellular amounts of reduced glutathione (GSH) and oxidized glutathione (GSSG) in cultured human airway epithelial cells. LTC 4 affects the GSH/GSSG ratio by activating signals to increase interleukin-8 (IL-8) production. Pretreatment with a reducing agent, glutathione monochrome ester (GSH-OEt), and with a leukotriene receptor antagonist, montelukast, significantly suppressed LTC(4)-induced time-dependent changes in the intracellular redox state, and also suppressed upregulation of IL-8 production by suppressing NF-kappaB activation. Our observations led to the hypothesis that LTC(4)-induced oxidative stress is likely to contribute to amplification of airway inflammation.
Collapse
Affiliation(s)
- Junying Wang
- Department of Pediatrics and Developmental Medicine, Gunma University Graduate School of Medicine, Gunma, Japan
| | | | | | | | | |
Collapse
|
19
|
Retinoids induced astrocytic differentiation with down regulation of telomerase activity and enhanced sensitivity to taxol for apoptosis in human glioblastoma T98G and U87MG cells. J Neurooncol 2007; 87:9-22. [PMID: 17987264 DOI: 10.1007/s11060-007-9485-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2007] [Accepted: 10/17/2007] [Indexed: 10/22/2022]
Abstract
We hypothesized that induction of differentiation with retinoid could increase sensitivity to microtubule-binding drug taxol (TXL) for apoptosis in human glioblastoma T98G and U87MG cells. Treatment of cells with 1 microM all-trans retinoic acid (ATRA) or 1 microM 13-cis retinoic acid (13-CRA) for 7 days induced astrocytic differentiation, overexpression of glial fibrillary acidic protein (GFAP), and also down regulated telomerase expression and activity, thereby increased sensitivity to TXL for apoptosis. Treatment of glioblastoma cells with TXL triggered production of reactive oxygen species (ROS), induced phosphorylation of p38 mitogen-activated protein kinase (MAPK), and activated the redox-sensitive c-Jun NH(2)-terminal kinase 1 (JNK1) pathway. Moreover, TXL activated Raf-1 kinase for phosphorylation and inactivation of anti-apoptotic Bcl-2 protein. The events of apoptosis included increase in expression of Bax, down regulation of Bcl-2 and baculoviral inhibitor-of-apoptosis protein (IAP) repeat containing (BIRC) proteins, mitochondrial release of cytochrome c and Smac into the cytosol, increase in intracellular free [Ca(2+)], and activation of calpain, caspase-9, and caspase-3. Increased activity of caspase-3 cleaved inhibitor of caspase-activated DNase (ICAD) to release and translocate CAD to the nucleus for DNA fragmentation. Involvement of stress signaling kinases and proteolytic activities of calpain and caspase-3 in apoptosis was confirmed by pretreating cells with specific inhibitors. Taken together, our results suggested that retinoid (ATRA or 13-CRA) induced astrocytic differentiation with down regulation of telomerase activity to increase sensitivity to TXL to enhance apoptosis in glioblastoma cells. Thus, combination of retinoid and TXL could be an effective therapeutic strategy for controlling the growth of glioblastoma.
Collapse
|
20
|
Salunga TL, Cui ZG, Shimoda S, Zheng HC, Nomoto K, Kondo T, Takano Y, Selmi C, Alpini G, Gershwin ME, Tsuneyama K. Oxidative stress-induced apoptosis of bile duct cells in primary biliary cirrhosis. J Autoimmun 2007; 29:78-86. [PMID: 17544621 DOI: 10.1016/j.jaut.2007.04.002] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2007] [Revised: 04/04/2007] [Accepted: 04/05/2007] [Indexed: 12/18/2022]
Abstract
There has been a relative paucity of effort at defining effector mechanisms of biliary damage in PBC. We hypothesize that biliary cells are destroyed secondary to the immunologic relationships of inflammation and biliary epithelial apoptosis and, in particular, that biliary damage is a result of reduced levels of glutathione-S-transferase (GST), the production of hypochlorous acid (HOCl) and its association with eosinophil peroxidase (EPO). To address this issue, we examined the expression of EPO and GST in PBC and control livers and demonstrated an increase of EPO within the portal areas of PBC. We also demonstrated that macrophages have evidence of phagocytosed EPO. Furthermore, we studied the influence of HOCl on apoptosis in cultured human biliary epithelial cells (BEC) as well as the associated activity of Bcl-2, Bax, p-JNK, JNK, p53, Fas and caspase-3. HOC1-induced apoptosis in BEC in a dose-dependent fashion increased the activity of caspase-3 and the expression of p53 and p-JNK. Pretreatment with l-buthionine-(S,R)-sulfoximine, a glutathione (GSH) inhibitor, potentiated the sensitivity of BEC to HOCl-induced apoptosis. We conclude that intracellular GSH reduction leads directly to BEC apoptosis. Modulation of these events will be critical to reduce immune-mediated destruction.
Collapse
Affiliation(s)
- Thucydides L Salunga
- Department of Pathology I, Faculty of Medicine, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Ihara A, Wada K, Yoneda M, Fujisawa N, Takahashi H, Nakajima A. Blockade of leukotriene B4 signaling pathway induces apoptosis and suppresses cell proliferation in colon cancer. J Pharmacol Sci 2007; 103:24-32. [PMID: 17220595 DOI: 10.1254/jphs.fp0060651] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
We investigated whether leukotriene B(4) (LTB(4)) and its signaling pathway play an important role in the progression of human colon cancer via a direct stimulation of cancer cell proliferation. Remarkable expression of LTB(4) receptor 1 (BLT1) in human colon cancer tissues was detected by immunohistochemistry, and Western blot analysis revealed the BLT1 expression in cultured human colon cancer cell lines, Caco2 and HT29. The 5-lipoxygenase inhibitor AA-861 and LTB(4)-receptor antagonist U75302 showed negative effects on survival and proliferation of both Caco2 and HT-29 cells. The inhibition of cell proliferation is due to the apoptosis because nuclear condensation and increased annexin V expression were observed in the cells treated with AA-861 and U75302. Knockdown of BLT1 by small interfering RNA caused the suppression of BLT1 protein, resulting in the inhibition of cancer cell proliferation. Blockade of BLT1 by the receptor antagonist significantly suppresses the LTB(4)-stimulated extracellular signal-regulated kinase (ERK) activation in colon cancer cells. These results indicate that the blockade of the LTB(4)-signaling pathway induces apoptosis via the inhibition of ERK activation in colon cancer cells. The LTB(4)-signaling pathway might be a new therapeutic target for colon cancer.
Collapse
Affiliation(s)
- Aya Ihara
- Department of Gastroenterology, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
| | | | | | | | | | | |
Collapse
|
22
|
Tanel A, Averill-Bates DA. Inhibition of acrolein-induced apoptosis by the antioxidant N-acetylcysteine. J Pharmacol Exp Ther 2007; 321:73-83. [PMID: 17204747 DOI: 10.1124/jpet.106.114678] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Acrolein is a highly electrophilic alpha,beta-unsaturated aldehyde to which humans are exposed in many situations. It is an environmental pollutant that is responsible for multiple respiratory diseases and has been implicated in neurodegenerative diseases such as Alzheimer's disease. The hypothesis of the study is that the antioxidant N-acetylcysteine (NAC), a precursor of glutathione, could protect cells against acrolein-induced apoptosis. Exposure of Chinese hamster ovary cells to a noncytotoxic dose of acrolein (4 fmol/cell) depleted intracellular glutathione to 45% of initial levels. NAC, which increased intracellular glutathione levels by 30%, afforded protection against acrolein-induced cytotoxicity (loss of cell proliferation) and apoptosis. NAC protected against apoptosis by diminishing acrolein-induced activation of the mitochondrial death pathway. NAC inhibited acrolein-induced Bad translocation from the cytosol to the mitochondria, as well as Bcl-2 translocation from mitochondria to the cytosol, as evaluated by Western blot analysis. However, NAC had no effect on acrolein-induced Bax translocation to mitochondria and cytochrome c liberation into the cytosol. Meanwhile, NAC inhibited depolarization of mitochondrial membrane potential, as evaluated by rhodamine fluorescence using flow cytometry. NAC also inhibited procaspase-9 processing, activation of enzymatic activity of caspase-9, -7, and -8, and poly(ADP-ribose) polymerase cleavage induced by acrolein. Inhibition of acrolein-induced apoptosis using NAC was confirmed morphologically by diminished condensation of nuclear chromatin, as evaluated by fluorescence microscopy. These findings suggest that NAC could be potentially useful as a protective agent for people exposed to acrolein.
Collapse
Affiliation(s)
- André Tanel
- Département des Sciences Biologiques, Université du Québec à Montréal, CP 8888, Succursale Centre Ville, Montréal, QC H3C 3P8, Canada
| | | |
Collapse
|
23
|
James AJ, Penrose JF, Cazaly AM, Holgate ST, Sampson AP. Human bronchial fibroblasts express the 5-lipoxygenase pathway. Respir Res 2006; 7:102. [PMID: 16872537 PMCID: PMC1550400 DOI: 10.1186/1465-9921-7-102] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2006] [Accepted: 07/27/2006] [Indexed: 11/16/2022] Open
Abstract
Background Fibroblasts are implicated in sub-epithelial fibrosis in remodeled asthmatic airways and contribute to airway inflammation by releasing cytokines and other mediators. Fibroblast activity is influenced by members of the leukotriene family of bronchoconstrictor and inflammatory mediators, but it is not known whether human bronchial fibroblasts can synthesize leukotrienes. Methods The expression of leukotriene biosynthetic enzymes and receptors was investigated in primary fibroblasts from the bronchi of normal and asthmatic adult subjects using RT-PCR, Western blotting, immunocytochemistry and flow cytometry. Results These techniques revealed that human bronchial fibroblasts from both subject groups constitutively express 5-lipoxygenase, its activating protein FLAP, the terminal enzymes leukotriene A4 hydrolase and leukotriene C4 synthase, and receptors for leukotriene B4 (BLT1) and cysteinyl-leukotrienes (CysLT1). Human bronchial fibroblasts generated immunoreactive leukotriene B4 and cysteinyl-leukotrienes spontaneously and in increased amounts after calcium-dependent activation. Flow cytometry showed that human bronchial fibroblasts transformed to a myofibroblast-like phenotype by culture with transforming growth factor-β1 expressed 320–400% more immunofluorescence for leukotriene C4 synthase and CysLT1 receptors, with 60–80% reductions in leukotriene A4 hydrolase and BLT1 receptors. Conclusion These results indicate that human bronchial fibroblasts may not only respond to exogenous leukotrienes but also generate leukotrienes implicated in narrowing, inflammation and remodeling of the asthmatic airway.
Collapse
Affiliation(s)
- Anna J James
- Division of Infection, Inflammation and Repair (IIR), University of Southampton, School of Medicine, Southampton General Hospital, Southampton, SO16 6YD, UK
| | - John F Penrose
- Division of Infection, Inflammation and Repair (IIR), University of Southampton, School of Medicine, Southampton General Hospital, Southampton, SO16 6YD, UK
| | - Angelica M Cazaly
- Division of Infection, Inflammation and Repair (IIR), University of Southampton, School of Medicine, Southampton General Hospital, Southampton, SO16 6YD, UK
| | - Stephen T Holgate
- Division of Infection, Inflammation and Repair (IIR), University of Southampton, School of Medicine, Southampton General Hospital, Southampton, SO16 6YD, UK
| | - Anthony P Sampson
- Division of Infection, Inflammation and Repair (IIR), University of Southampton, School of Medicine, Southampton General Hospital, Southampton, SO16 6YD, UK
| |
Collapse
|
24
|
Chen WY, Wu CC, Lan YH, Chang FR, Teng CM, Wu YC. Goniothalamin induces cell cycle-specific apoptosis by modulating the redox status in MDA-MB-231 cells. Eur J Pharmacol 2005; 522:20-9. [PMID: 16202990 DOI: 10.1016/j.ejphar.2005.08.047] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2005] [Revised: 08/16/2005] [Accepted: 08/26/2005] [Indexed: 10/25/2022]
Abstract
Goniothalamin, a natural occurring styryl-lactone, is a novel compound with putative anticancer activities. In the present study, the mechanism of action of goniothalamin was further investigated in human breast cancer MDA-MB-231 cells. Goniothalamin treatment of cells significantly induced cell cycle arrest at G(2)/M phase and apoptosis. By means of cell cycle synchronization, the G(2)/M phase cells proved to be the most sensitive fraction to goniothalamin-induced apoptosis. Cells treated with goniothalamin revealed an increase in intracellular reactive oxygen species and a decrease in intracellular free thiol contents. The disruption of intracellular redox balance caused by goniothalamin was associated an enhancement of cdc25C degradation. Furthermore, the antioxidant N-acetylcysteine and the glutathione synthesis inhibitor dl-buthionine-(S, R)-sulfoximine, inhibited and enhanced, respectively, the effects of goniothalamin on cell cycle arrest and apoptosis. Taken together, our result demonstrates for the first time that goniothalamin disrupts intracellular redox balance and induces cdc25C degradation, which in turn causes cell cycle arrest and cell death maximally at G(2)/M phase in MDA-MB-231 cells.
Collapse
Affiliation(s)
- Wen-Ying Chen
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung City, Taiwan
| | | | | | | | | | | |
Collapse
|
25
|
Rahman I. Regulation of glutathione in inflammation and chronic lung diseases. Mutat Res 2005; 579:58-80. [PMID: 16054171 DOI: 10.1016/j.mrfmmm.2005.02.025] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2004] [Accepted: 02/02/2005] [Indexed: 11/23/2022]
Abstract
Oxidant/antioxidant imbalance, a major cause of cell damage, is the hallmark for lung inflammation. Glutathione (GSH), a ubiquitous tripeptide thiol, is a vital intra- and extra-cellular protective antioxidant against oxidative stress, which plays a key role in the control of signaling and pro-inflammatory processes in the lungs. The rate-limiting enzyme in GSH synthesis is glutamylcysteine ligase (GCL). GSH is essential for development as GCL knock-out mouse died from apoptotic cell death. The promoter (5'-flanking) region of human GCL is regulated by activator protein-1 (AP-1) and antioxidant response element (ARE), and are modulated by oxidants, phenolic antioxidants, growth factors, inflammatory and anti-inflammatory agents in various cells. Recent evidences have indicated that Nrf2 protein, which binds to the erythroid transcription factor (NF-E2) binding sites, and its interaction with other oncoproteins such as c-Jun, Jun D, Fra1 and Maf play a key role in the regulation of GCL. Alterations in alveolar and lung GSH metabolism are widely recognized as a central feature of many chronic inflammatory lung diseases. Knowledge of the mechanisms of GSH regulation could lead to the pharmacological manipulation of the production and/or gene transfer of this important antioxidant in lung inflammation and injury. This article describes the role of AP-1 and ARE in the regulation of cellular GSH biosynthesis and assesses the potential protective and therapeutic role of glutathione in oxidant-induced lung injury and inflammation.
Collapse
Affiliation(s)
- Irfan Rahman
- Department of Environmental Medicine, Division of Lung Biology and Disease Program, University of Rochester Medical Center, Rochester, NY 14642, USA.
| |
Collapse
|
26
|
Tapio S, Danescu-Mayer J, Asmuss M, Posch A, Gomolka M, Hornhardt S. Combined effects of gamma radiation and arsenite on the proteome of human TK6 lymphoblastoid cells. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2005; 581:141-52. [PMID: 15725613 DOI: 10.1016/j.mrgentox.2004.11.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2004] [Revised: 11/18/2004] [Accepted: 11/29/2004] [Indexed: 01/21/2023]
Abstract
Arsenic present in drinking water and mining environments in some areas has been associated with an increased rate of skin and internal cancers. Contrary to the epidemiological evidence in humans, arsenic does not induce cancer in animal models, but is able to enhance the mutagenicity of other agents. In order to achieve a better understanding of the interaction between arsenic and ionising radiation, an investigation was conducted to detect differences at the proteome level of human TK6 lymphoblastoid cells exposed to these agents. Cells were exposed to either a single dose of 1-Gy 137Cs-gamma-rays or to 1 microM arsenite (As(III)) or to both agents in combination. Two-dimensional (2D) electrophoresis and matrix-assisted laser desorption/ionisation-time of flight (MALDI-TOF) were employed for the screening and identification of proteins, respectively. It proved possible to identify seven proteins with significantly affected abundance, three of which showed increased levels and the remaining four showed decreased levels under at least one of the exposure conditions. Following arsenite treatment or irradiation, a significant increase compared with that of the control was observed for glutathione (GSH) transferase omega 1 and proteasome subunit beta type 4 precursor. The combined exposure did not result in an induction of the enzymes. The expression of electron-transfer flavoprotein subunit alpha was found to be enhanced under all three-exposure conditions. Ubiquinol-cytochrome C reductase complex core protein I, adenine phosphoribosyl transferase and endoplasmic reticulum protein hERp29 showed decreased levels after irradiation or arsenite treatment, but not after the combined exposure. The level of serine/threonine protein phosphatase 1 alpha decreased with all treatments. The main conclusions are that both arsenite and gamma-radiation influence the levels of several proteins involved in major metabolic and regulatory pathways, either directly or by triggering the defence mechanisms of the cell. The combined effect of both exposures on the level of some essential proteins such as glutathione transferase, proteasome or serine/threonine phosphatase may contribute to the co-carcinogenic effect of arsenic.
Collapse
Affiliation(s)
- Soile Tapio
- Federal Office for Radiation Protection, Department of Radiation Protection and Health, Ingolstaedter Landstrasse 1, 85764 Neuherberg, Germany.
| | | | | | | | | | | |
Collapse
|
27
|
Vendelin J, Laitinen C, Vainio PJ, Nissinen E, Mäki T, Eklund KK. Novel sulfhydryl-reactive compounds orazipone and OR-1958 inhibit cytokine production and histamine release in rat and human mast cells. Int Immunopharmacol 2005; 5:177-84. [PMID: 15589479 DOI: 10.1016/j.intimp.2004.07.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2004] [Revised: 07/17/2004] [Accepted: 07/19/2004] [Indexed: 01/31/2023]
Abstract
Orazipone (OR-1384) and OR-1958 are novel anti-inflammatory sulfhydryl reactive compounds with potential applications in the treatment of chronic obstructive lung disease and colitis. Mast cells are potent immune system cells which can be found in abundant numbers in mucosa of lung and gut. We have studied whether the anti-inflammatory effect of these compounds could be mediated through inhibition of the function of mast cells and compared their effects with the glucocorticoid budesonide. Human mast cell line (HMC-1) cells were activated using a combination of a calcium ionophore and a phorbol ester and the production of cytokines was measured using ELISA assay. Tumour necrosis factor-alpha mRNA levels were assessed using a semiquantitative reverse transcriptase polymerase chain reaction assay. Histamine release was studied in rat peritoneal mast cells. Orazipone, OR-1958 and budesonide inhibited significantly and dose dependently tumour necrosis factor-alpha production in HMC-1 cells with IC50-values of 20, 10, and 0.25 microM, respectively. Polymerase chain reaction studies showed that OR-1958 attenuated the activation-induced increase of tumour necrosis factor-alpha mRNA in HMC-1 cells. OR-1958 and, to a lesser extent, orazipone inhibited dose dependently compound 48/80-induced histamine release from rat peritoneal mast cells in a reversible manner. In contrast, budesonide did not appreciably affect the histamine release. Both orazipone and OR-1958 inhibit efficiently mast cell functions and therefore could prove useful in the treatment of diseases associated with inappropriate mast cell activation.
Collapse
Affiliation(s)
- Johanna Vendelin
- Institute of Biomedicine, Department of Medical Chemistry, Finland
| | | | | | | | | | | |
Collapse
|
28
|
Song JY, Akhalaia M, Platonov A, Kim HD, Jung IS, Han YS, Yun YS. Effects of polysaccharide ginsan fromPanax ginseng on liver function. Arch Pharm Res 2004; 27:531-8. [PMID: 15202559 DOI: 10.1007/bf02980127] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Ginsan, a polysaccharide isolated from Panax ginseng, has been shown to be a potent immunomodulator, producing a variety of cytokines such as TNF-alpha, IL-1, IL-2, IL-6, IL-12, IFN-gamma and GM-CSF, and stimulating lymphoid cells to proliferate. In the present study, we analyzed some immune functions 1st-5th days after ginsan i.p. injection, including the level of non-protein thiols (NPSH) as antioxidants, heme oxygenase (HO) activity as a marker of oxidative stress, zoxazolamine-induced paralysis time and level of hepatic cytochrome P-450 (CYP450) as indices of drug metabolism system, and activities of serum aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP), total bilirubin, and albumin level as indicators of hepatotoxicity. Ginsan in the dose of 100 mg/kg caused marked elevation (1.7 to approximately 2 fold) of HO activity, decrease of total CYP450 level (by 20-34%), and prolongation of zoxazolamine-induced paralysis time (by 65-70%), and showed some differences between male and female mice. Ginsan treatment did not seem to cause hepatic injury, since serum AST, ALT, and ALP activities and levels of total bilirubin and albumin were not changed.
Collapse
Affiliation(s)
- Jie-Young Song
- Laboratory of Immunology, Korea Institute of Radiological & Medical Sciences, KAERI, 215-4, Gongneung-dong, Nowon-ku, Seoul 139-706, Korea
| | | | | | | | | | | | | |
Collapse
|
29
|
Haddad JJ. Redox and oxidant-mediated regulation of apoptosis signaling pathways: immuno-pharmaco-redox conception of oxidative siege versus cell death commitment. Int Immunopharmacol 2004; 4:475-93. [PMID: 15099526 DOI: 10.1016/j.intimp.2004.02.002] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2003] [Revised: 11/10/2003] [Accepted: 02/04/2004] [Indexed: 11/21/2022]
Abstract
The mechanisms controlling apoptosis remain largely obscure. Because apoptosis is an integral part of the developmental program and is frequently the end-result of a temporal course of cellular events, it is referred to as programmed cell death. While there is considerable variation in the signals and requisite cellular metabolic events necessary to induce apoptosis in diverse cell types, the morphological features associated with apoptosis are highly conserved. Free radicals, particularly reactive oxygen species (ROS), have been proposed as common mediators for apoptosis. Many agents that induce apoptosis are either oxidants or stimulators of cellular oxidative metabolism. Conversely, many inhibitors of apoptosis have antioxidant activities or enhance cellular antioxidant defenses. Mammalian cells, therefore, exist in a state of oxidative siege in which survival requires an optimum balance of oxidants and antioxidants. The respiratory tract is subjected to a variety of environmental stresses, including oxidizing agents, particulates and airborne microorganisms that, together, may injure structural and functional lung components and thereby jeopardize the primary lung function of gas exchange. To cope with this challenge, the lung has developed elaborate defense mechanisms that include inflammatory-immune pathways as well as efficient antioxidant defense systems. In the absence of adequate antioxidant defenses, the damage produced is detected by the cell leading to the activation of genes responsible for the regulation of apoptosis, conceivably through stress-responsive transcription factors. Oxidative stress, in addition, may cause a shift in cellular redox state, which thereby modifies the nature of the stimulatory signal and which results in cell death as opposed to proliferation. ROS/redox modifications, therefore, may disrupt signal transduction pathways, can be perceived as abnormal and, under some conditions, may trigger apoptosis.
Collapse
Affiliation(s)
- John J Haddad
- Severinghaus-Radiometer Research Laboratories, Department of Anesthesia and Perioperative Care, University of California, San Francisco, CA, USA.
| |
Collapse
|
30
|
Laifenfeld D, Karry R, Grauer E, Klein E, Ben-Shachar D. ATF2, a member of the CREB/ATF family of transcription factors, in chronic stress and consequent to antidepressant treatment: animal models and human post-mortem brains. Neuropsychopharmacology 2004; 29:589-97. [PMID: 14647483 DOI: 10.1038/sj.npp.1300357] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The regulation of gene expression has been implicated in the etiology and treatment of depression. Transcription factors serve as the intermediates between intracellular cascades and gene expression, and may therefore be involved in the pathophysiology and pharmacotherapy of depression. We and others have previously reported an increase in the phosphorylation of the transcription factor cAMP response element binding protein (CREB) by antidepressants, alongside brain region-specific alterations in pCREB by stress. In the present study, we examined the expression of another member of the CREB/ATF family of transcription factors, ATF2, in the brains of rats chronically treated with two different antidepressants, and in rats 4 months after their exposure to prolonged stress. ATF2 phosphorylation was decreased by antidepressants and increased at the aftermath of prolonged stress, specifically in the frontal cortex. We also examined ATF2 expression in the ventral parieto-occipital region of post-mortem human brains of normal controls, depressed, bipolar, and schizophrenic patients, obtained from the Stanley Foundation Brain Consortium. No alterations were observed in the levels of ATF2. However, in the depressed group, the pATF2 levels were higher in unmedicated compared to medicated patients, suggesting an antidepressant-induced reduction in pATF2. We discuss the possible role of ATF2 in depression, and propose that an interplay between ATF2 and CREB, and possibly other transcription factors, determines the final gene expression pattern in the etiology and treatment of depression.
Collapse
Affiliation(s)
- D Laifenfeld
- Laboratory of Psychobiology, The Department of Psychiatry, Rambam Medical Center and B. Rappaport Faculty of Medicine, Technion IIT, Haifa, Israel
| | | | | | | | | |
Collapse
|
31
|
Usatyuk PV, Vepa S, Watkins T, He D, Parinandi NL, Natarajan V. Redox regulation of reactive oxygen species-induced p38 MAP kinase activation and barrier dysfunction in lung microvascular endothelial cells. Antioxid Redox Signal 2003; 5:723-30. [PMID: 14588145 DOI: 10.1089/152308603770380025] [Citation(s) in RCA: 119] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Reactive oxygen species (ROS)-mediated compromise of endothelial barrier integrity has been implicated in a number of pulmonary disorders, including adult respiratory distress syndrome, pulmonary edema, and vasculitis. The mechanisms by which ROS increase endothelial permeability are unclear. We hypothesized that ROS-induced changes in cellular redox status (thiols) may contribute to endothelial barrier dysfunction. To test this hypothesis, we used N-acetylcysteine (NAC) and diamide to modulate intracellular levels of cellular glutathione (GSH) and investigated hydrogen peroxide (H(2)O(2))-mediated mitogen-activated protein kinase (MAPK) activation and transendothelial electrical resistance (TER). Exposure of bovine lung microvascular endothelial cells (BLMVECs) to H(2)O(2), in a dose- and time-dependent fashion, increased endothelial permeability. Pretreatment of BLMVECs with NAC (5 mM) for 1 h resulted in partial attenuation of H(2)O(2)-induced TER (a measure of increase in permeability) and GSH. Furthermore, treatment of BLMVECs with diamide, which is known to reduce the intracellular GSH, resulted in significant reduction in TER, which was prevented by NAC. To understand further the role of MAPKs in ROS-induced barrier dysfunction, we examined the role of extracellular signal-regulated kinase (ERK) and p38 MAPK on H(2)O(2)- and diamide-mediated permeability changes. Both H(2)O(2) and diamide, in a dose-dependent manner, activated ERK and p38 MAPK in BLMVECs. However, SB203580, an inhibitor of p38 MAPK, but not PD98059, blocked H(2)O(2)- and diamide-induced TER. Also, NAC prevented H(2)O(2)- and diamide-induced p38 MAPK, but not ERK activation. These results suggest a role for redox regulation of p38 MAPK in ROS-dependent endothelial barrier dysfunction.
Collapse
Affiliation(s)
- Peter V Usatyuk
- Department of Medicine, Division of Pulmonary and Critical Care, Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA
| | | | | | | | | | | |
Collapse
|
32
|
Carnevali S, Petruzzelli S, Longoni B, Vanacore R, Barale R, Cipollini M, Scatena F, Paggiaro P, Celi A, Giuntini C. Cigarette smoke extract induces oxidative stress and apoptosis in human lung fibroblasts. Am J Physiol Lung Cell Mol Physiol 2003; 284:L955-63. [PMID: 12547733 DOI: 10.1152/ajplung.00466.2001] [Citation(s) in RCA: 204] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Cigarette smoke is a mixture of chemicals having direct and/or indirect toxic effects on different lung cells. We investigated the effect of cigarette smoke on human lung fibroblasts (HFL-1) oxidation and apoptosis. Cells were exposed to various concentrations (1, 5, and 10%) of cigarette smoke extract (CSE) for 3 h, and oxidative stress and apoptosis were assessed by fluorescence-activated cell sorting and confocal laser fluorescence microscopy. Both oxidative stress and apoptosis exhibited a dose-response relationship with CSE concentrations. Lung fibroblasts also showed marked DNA fragmentation at the Comet assay after exposure to 10% CSE. Coincubation of HLF-1 cells with N-acetylcysteine (1 mM) during CSE exposure significantly reduced oxidative stress, apoptosis, and DNA fragmentation, whereas preincubation (3 h) with the glutathione-depleting agent buthionine sulfoximine (125 microM) produced a significant increase of oxidative stress. Cigarette smoke is a potent source of oxidative stress, DNA damage, and apoptosis for HFL-1 cells, and we speculate that this could contribute to the development of pulmonary emphysema in the lungs of smokers.
Collapse
Affiliation(s)
- Stefano Carnevali
- Pulmonary Unit, Cardiothoracic Department, Pharmacology Unit, University of Pisa, 56124 Pisa, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Coleman CA, Hull BE, McDougal JN, Rogers JV. The effect of m-xylene on cytotoxicity and cellular antioxidant status in rat dermal equivalents. Toxicol Lett 2003; 142:133-42. [PMID: 12765247 DOI: 10.1016/s0378-4274(03)00020-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Exposure of the skin to volatile organic chemicals (VOCs) can lead to irritation, inflammation and cytotoxicity. Since VOCs are used in industrial, commercial and military applications, concern is mounting with respect to VOC safe exposure limits. Although traditional toxicological assessment of VOCs has utilized animal models, the use of alternative in vitro models is becoming more widespread. We have previously developed a sealed exposure system that prevents chemical loss through evaporation and enables calculation of target cell chemical dose. The present study utilized this in vitro exposure method to assess m-xylene-induced cytotoxicity and antioxidant status in dermal equivalents (dermal fibroblasts in a collagen matrix). At the end of a 1- or 4-h exposure, cytotoxicity was measured using the MTT assay and the EC50 values determined were 1481 +/- 88 and 930 +/- 33, respectively. Decreases in cellular thiols and catalase activity were observed, which occurred in a time and dose-dependent manner. Treatment of dermal equivalents with the antioxidants N-acetylcysteine (NAC) and catalase provided some protection against m-xylene-induced cytotoxicity. When compared to m-xylene exposures, treatment with either 1.0 or 5.0 mM NAC led to increases in the EC50 values at 1 and 4 h. Increases in these EC50 values ranged from 1.22- to 1.32-fold at 1 h and 1.27- to 1.54-fold at 4 h. Although treatment with catalase (1000 U/ml) led to a 1.35-fold increase in cell viability at 1 h, no significant differences were observed at either 1 or 4 h when compared to dermal equivalents exposed to m-xylene alone. These results suggest that exposure to m-xylene leads to a time- and dose-dependent decrease in cellular antioxidants and that cellular thiols may provide protection against the cytotoxic properties of m-xylene.
Collapse
Affiliation(s)
- Clint A Coleman
- ManTech, 2856 G Street, Building 79, Wright-Patterson AFB, OH 45433, USA
| | | | | | | |
Collapse
|
34
|
Persinger RL, Poynter ME, Ckless K, Janssen-Heininger YMW. Molecular mechanisms of nitrogen dioxide induced epithelial injury in the lung. Mol Cell Biochem 2003. [PMID: 12162462 DOI: 10.1023/a:1015973530559] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The lung can be exposed to a variety of reactive nitrogen intermediates through the inhalation of environmental oxidants and those produced during inflammation. Reactive nitrogen species (RNS) include, nitrogen dioxide (.NO2) and peroxynitrite (ONOO-). Classically known as a major component of both indoor and outdoor air pollution, .NO2 is a toxic free radical gas. .NO2 can also be formed during inflammation by the decomposition of ONOO- or through peroxidase-catalyzed reactions. Due to their reactive nature, RNS may play an important role in disease pathology. Depending on the dose and the duration of administration, .NO, has been documented to cause pulmonary injury in both animal and human studies. Injury to the lung epithelial cells following exposure to .NO2 is characterized by airway denudation followed by compensatory proliferation. The persistent injury and repair process may contribute to airway remodeling, including the development of fibrosis. To better understand the signaling pathways involved in epithelial cell death by .NO2 or otherRNS, we routinely expose cells in culture to continuous gas-phase .NO2. Studies using the .NO2 exposure system revealed that lung epithelial cell death occurs in a density dependent manner. In wound healing experiments, .NO2 induced cell death is limited to cells localized in the leading edge of the wound. Importantly, .NO2-induced death does not appear to be dependent on oxidative stress per se. Potential cell signaling mechanisms will be discussed, which include the mitogen activated protein kinase, c-Jun N-terminal Kinase and the Fas/Fas ligand pathways. During periods of epithelial loss and regeneration that occur in diseases such as asthma or during lung development, epithelial cells in the lung may be uniquely susceptible to death. Understanding the molecular mechanisms of epithelial cell death associated with the exposure to .NO2 will be important in designing therapeutics aimed at protecting the lung from persistent injury and repair.
Collapse
Affiliation(s)
- Rebecca L Persinger
- Department of Environmental Health, School of Public Health and Community Medicine, University of Washington, Seattle, USA
| | | | | | | |
Collapse
|
35
|
Gout PW, Simms CR, Robertson MC. In vitro studies on the lymphoma growth-inhibitory activity of sulfasalazine. Anticancer Drugs 2003; 14:21-9. [PMID: 12544255 DOI: 10.1097/00001813-200301000-00004] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Sulfasalazine (SASP) is a novel, potent inhibitor of cellular cystine uptake mediated by the x(c)- cystine/glutamate antiporter. Lymphoid cells cannot synthesize cyst(e)ine and depend for growth on its uptake from their micro-environment. We previously showed that SASP (0.2 mM) can abrogate lymphoma cell proliferation in vitro by specifically inhibiting x(c)- -mediated cystine uptake. Intraperitoneal administration of SASP to Noble rats markedly suppressed Nb2-U17 rat lymphoma transplant growth, notably without major toxicity to the hosts. Since Nb2-U17 cells are x(c)- -deficient, the growth arrest was apparently not due to SASP-tumor cell interaction, but possibly to interference with x(c)- -mediated cysteine secretion by somatic cells. In this study we found that replication of x(c)- -deficient Nb2-11 lymphoma cells can be sustained in vitro, in the absence of cystine uptake enhancers, by co-culturing with IMR-90 fibroblasts known to secrete cysteine. SASP, at 0.15 and 0.2 mM, arrested replication of fibroblast-driven Nb2-11 cells by 93 and 100%, respectively, without impeding fibroblast proliferation. Addition of 2-mercapto-ethanol (60 microM), a cystine uptake enhancer, almost completely prevented this growth arrest, indicating that SASP specifically inhibited cysteine secretion by the fibroblasts, a process based on x(c)- -mediated cystine uptake. It is proposed that the lymphoma growth-inhibitory activity of SASP in vivo involves inhibition of cysteine secretion by tumor-associated somatic cells (macrophages, dendritic cells), leading to cysteine starvation of the tumor cells and apoptosis. The difference between the lymphoma cells and fibroblasts in sensitivity to SASP treatment is consistent with the marked antitumor effect of SASP lacking significant side effects.
Collapse
Affiliation(s)
- Peter W Gout
- Department of Cancer Endocrinology, British Columbia Cancer Agency, Vancouver, BC, Canada.
| | | | | |
Collapse
|
36
|
Biaglow JE, Lee I, Donahue J, Held K, Mieyal J, Dewhirst M, Tuttle S. Glutathione Depletion or Radiation Treatment Alters Respiration and Induces Apoptosis in R3230Ac Mammary Carcinoma. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2003; 530:153-64. [PMID: 14562713 DOI: 10.1007/978-1-4615-0075-9_15] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Glutathione depletion by L-buthionine sulfoximine inhibits the growth of Ehrlich mouse mammary carcinoma, R3230Ac rat mammary carcinoma and the PC3 human prostrate carcinoma cells, in vitro. Inhibition of growth occurs within the first 24 hours after exposure to the drug. The cell density does not increase over the initial cell density over 7 days. A549 human lung carcinoma and the DU145 human prostrate carcinoma cells show no inhibition of growth under the same treatment conditions. A comparative study of the R323OAc and A549 cells demonstrated a marked increase in apoptosis following L-BSO treatment in R3230Ac, which was dependent on L-BSO concentration and incubation time. L-BSO did not induce apoptosis in A549 cells at any of the concentrations tested. The incidence of apoptosis for R323OAc cells following exposure to 0.1 mM L-BSO was similar to the incidence of radiation-induced apoptosis observed after exposure to 10 Gy. Treatment with L-BSO or radiation alone inhibited O2 utilization in of R323Oac, while no effect on O2 utilization was observed in A549 cells. LBSO altered the bioreductive capacity of both the R323OAc and A549 cells. These results suggest that the ability of L-BSO to block mitochondrial O2 utilization may be involved in the apoptotic response in R3230Ac cells.
Collapse
Affiliation(s)
- John E Biaglow
- Departments of Biochemistry and Radiation Oncology, University of Pennsylvania Medical School, Philadelphia, Pa., USA
| | | | | | | | | | | | | |
Collapse
|
37
|
Ruiz E, Siow RCM, Bartlett SR, Jenner AM, Sato H, Bannai S, Mann GE. Vitamin C inhibits diethylmaleate-induced L-cystine transport in human vascular smooth muscle cells. Free Radic Biol Med 2003; 34:103-10. [PMID: 12498985 DOI: 10.1016/s0891-5849(02)01192-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Adaptive increases in intracellular glutathione (GSH) in response to oxidative stress are mediated by induction of L-cystine uptake via the anionic amino acid transport system x(c)(-). The recently cloned transporter xCT forms a heteromultimeric complex with the heavy chain of 4F2 cell surface antigen (4F2hc/CD98). Depletion of GSH by the electrophile diethylmaleate (DEM) induces the activity and expression of xCT in peritoneal macrophages. We here examine the effects of vitamin C on induction of xCT by DEM in human umbilical artery smooth muscle cells. DEM caused time- (3-24 h) and concentration- (25-100 microM) dependent increases in L-cystine transport, with GSH depleted by 50% after 6 h and restored to basal values after 24 h. xCT mRNA levels increased after 4 h DEM treatment with negligible changes detected for 4F2hc mRNA. DEM caused a rapid (5-30 min) phosphorylation of p38(MAPK). Inhibition of p38(MAPK) by SB203580 (10 microM) enhanced DEM-induced increases in L-cystine transport and GSH, whereas inhibition of p42/p44(MAPK) (PD98059, 10 microM) had no effect. Pretreatment of cells with vitamin C (100 microM, 24 h) attenuated DEM-induced adaptive increases in L-cystine transport and GSH levels. Inhibition of p38(MAPK), but not p42/p44(MAPK), reduced the cytoprotective action of vitamin C. Our findings suggest that DEM induces activation of xCT via intracellular signaling pathways involving p38(MAPK), and that vitamin C, in addition to its antioxidant properties, may modulate this signaling pathway to protect smooth muscle cells from injury.
Collapse
Affiliation(s)
- Emilio Ruiz
- Centre for Cardiovascular Biology and Medicine, GKT School of Biomedical Sciences, King's College, University of London, London, UK
| | | | | | | | | | | | | |
Collapse
|
38
|
Jungas T, Motta I, Duffieux F, Fanen P, Stoven V, Ojcius DM. Glutathione levels and BAX activation during apoptosis due to oxidative stress in cells expressing wild-type and mutant cystic fibrosis transmembrane conductance regulator. J Biol Chem 2002; 277:27912-8. [PMID: 12023951 DOI: 10.1074/jbc.m110288200] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cystic fibrosis is characterized by chronic inflammation and an imbalance in the concentrations of alveolar and lung oxidants and antioxidants, which result in cell damage. Modifications in lung glutathione concentrations are recognized as a salient feature of inflammatory lung diseases such as cystic fibrosis, and glutathione plays a major role in protection against oxidative stress and is important in modulation of apoptosis. The cystic fibrosis transmembrane conductance regulator (CFTR) is permeable to Cl(-), larger organic ions, and reduced and oxidized forms of glutathione, and the DeltaF508 CFTR mutation found in cystic fibrosis patients has been correlated with impaired glutathione transport in cystic fibrosis airway epithelia. Because intracellular glutathione protects against oxidative stress-induced apoptosis, we studied the susceptibility of epithelial cells (HeLa and IB3-1) expressing normal and mutant CFTR to apoptosis triggered by H(2)O(2). We find that cells with normal CFTR are more sensitive to oxidative stress-induced apoptosis than cells expressing defective CFTR. In addition, sensitivity to apoptosis could be correlated with glutathione levels, because depletion of intracellular glutathione results in higher levels of apoptosis, and glutathione levels decreased faster in cells expressing normal CFTR than in cells with defective CFTR during incubation with H(2)O(2). The pro-apoptotic BCL-2 family member, BAX, is also activated faster in cells expressing normal CFTR than in those with mutant CFTR under these conditions, and artificial glutathione depletion increases the extent of BAX activation. These results suggest that glutathione-dependent BAX activation in cells with normal CFTR represents an early step in oxidative stress-induced apoptosis of these cells.
Collapse
Affiliation(s)
- Thomas Jungas
- Unité de Biologie Moléculaire du Gène, INSERM U277, Université Paris 7, France
| | | | | | | | | | | |
Collapse
|
39
|
Abstract
It is well established that fatty acid metabolites of cyclooxygenase, lipoxygenase (LOX), and cytochrome P450 are implicated in essential aspects of cellular signaling including the induction of programmed cell death. Here we review the roles of enzymatic and non-enzymatic products of polyunsaturated fatty acids in controlling cell growth and apoptosis. Also, the spontaneous oxidation of polyunsaturated fatty acids yields reactive aldehydes and other products of lipid peroxidation that are potentially toxic to cells and may also signal apoptosis. Significant conflicting data in terms of the role of LOX enzymes are highlighted, prompting a re-evaluation of the relationship between LOX and prostate cancer cell survival. We include new data showing that LNCaP, PC3, and Du145 cells express much lower levels of 5-LOX mRNA and protein compared with normal prostate epithelial cells (NHP2) and primary prostate carcinoma cells (TP1). Although the 5-LOX activating protein inhibitor MK886 killed these cells, another 5-LOX inhibitor AA861 hardly showed any effect. These observations suggest that 5-LOX is unlikely to be a prostate cancer cell survival factor, implying that the mechanisms by which LOX inhibitors induce apoptosis are more complex than expected. This review also suggests several mechanisms involving peroxisome proliferator activated receptor activation, BCL proteins, thiol regulation, and mitochondrial and kinase signaling by which cell death may be produced in response to changes in non-esterified and non-protein bound fatty acid levels. Overall, this review provides a context within which the effects of fatty acids and fatty acid oxidation products on signal transduction pathways, particularly those involved in apoptosis, can be considered in terms of their overall importance relative to the much better studied protein or peptide signaling factors.
Collapse
Affiliation(s)
- Dean G Tang
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas, Austin 78712, USA
| | | | | | | |
Collapse
|
40
|
Nardini M, Finkelstein EI, Reddy S, Valacchi G, Traber M, Cross CE, van der Vliet A. Acrolein-induced cytotoxicity in cultured human bronchial epithelial cells. Modulation by alpha-tocopherol and ascorbic acid. Toxicology 2002; 170:173-85. [PMID: 11788155 DOI: 10.1016/s0300-483x(01)00540-6] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Acrolein is a highly reactive unsaturated hazardous air pollutant of human health concern, particularly as a component of cigarette smoke. In this study, the mechanisms of acrolein-induced cytotoxicity in human bronchial epithelial cells (HBE1) and the modulating effects of antioxidants were examined. Our results show that acrolein induces a cell death pathway in human bronchial epithelial cells, which retain key features of apoptosis, as indicated by phosphatidylserine (PS) externalization and DNA fragmentation. Acrolein-induced apoptosis was associated with depletion of cellular GSH and intracellular generation of oxidants. Supplementation of cells with either alpha-tocopherol or ascorbic acid was found to strongly inhibit acrolein-induced apoptosis and to prevent the increase in the generation of intracellular oxidants, although GSH depletion was unaffected. Moreover, recovery of cellular GSH levels after acrolein exposure was enhanced following either alpha-tocopherol or ascorbic acid supplementation. The intracellular generation of oxidants following acrolein exposure seems to be an important event triggering the apoptotic response in this model system.
Collapse
Affiliation(s)
- Mirella Nardini
- Istituto Nazionale di Ricerca per gli Alimenti e la Nutrizione, Via Ardeatina 546, 00178, Rome, Italy.
| | | | | | | | | | | | | |
Collapse
|
41
|
Filser JG, Kessler W, Csanády GA. Estimation of a possible tumorigenic risk of styrene from daily intake via food and ambient air. Toxicol Lett 2002; 126:1-18. [PMID: 11738266 DOI: 10.1016/s0378-4274(01)00420-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Concerns of a tumorigenic risk of styrene (ST) originate from the findings that styrene (ST) is metabolized to the genotoxic intermediate styrene-7,8-oxide (SO). Therefore, it was hypothesized that results of animal long-term studies with ST and SO together with the SO tissue burden are sufficient for conducting a 'worst case' estimate of the tumorigenic risk of ST. On this basis we predicted the excess human lifetime risk for lung tumors (p(EXL)) and the highest possible risk for other systemic tumors (p(HPS)) resulting from daily intake of ST via food and ambient air. As measures for p(EXL) the mean lifetime concentration of SO in the transitional zone of the lung and for p(HPS) the mean lifetime concentration of SO in blood were calculated using a physiological toxicokinetic model. For a daily oral intake of 12 microST, p(EXL) was obtained to be between 5x10(-9) and 2x10(-8) and p(HPS) to be between 7x10(-9) and 2x10(-8). Lifetime risks calculated for continuous exposure to 3 microg/m(3) ST in ambient air were between 8x10(-7) and 3x10(-6) (p(EXL)) and between 2x10(-8) and 4x10(-8) (p(HPS)). Although these values indicate very low risks, the actual risks are expected to be even by far smaller. This is discussed in detail for lung tumorigenesis.
Collapse
Affiliation(s)
- Johannes G Filser
- GSF-Institute of Toxicology, Ingolstaedter Landstrasse 1, D-85764, Neuherberg, Germany.
| | | | | |
Collapse
|
42
|
Maccarrone M, Battista N, Bari M, Finazzi-Agrò A. Lipoxygenase activity in altered gravity. ADVANCES IN SPACE BIOLOGY AND MEDICINE 2002; 8:1-17. [PMID: 12951691 DOI: 10.1016/s1569-2574(02)08013-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
Lipoxygenases are a family of enzymes which dioxygenate unsaturated fatty acids, thus initiating lipoperoxidation of membranes or the synthesis of signalling molecules, or inducing structural and metabolic changes in the cell. This activity is the basis for the critical role of lipoxygenases in a number of pathophysiological conditions, both in animals and plants. We review the effects of microgravity on the catalytic efficiency of purified soybean (Glycine max) lipoxygenase-1, as well as the modulation of the activity and expression of 5-lipoxygenase in human erythroleukemia K562 cells subjected to altered gravity. We also outline the molecular properties of the lipoxygenase family and discuss its possible involvement in space-related processes, such as apoptosis (programmed cell death) and immuno-depression. Finally, we discuss the modulation of cyclooxygenase activity and expression in K562 cells exposed to altered gravity, because cyclooxygenase catalyzes the oxidation of arachidonate through a pathway different from that catalyzed by lipoxygenase activity.
Collapse
Affiliation(s)
- Mauro Maccarrone
- Department of Experimental Medicine and Biochemical Sciences and Biomedical Space Center, University of Rome Tor Vergata, Rome, Italy
| | | | | | | |
Collapse
|
43
|
Hayter HL, Pettus BJ, Ito F, Obeid LM, Hannun YA. TNFalpha-induced glutathione depletion lies downstream of cPLA(2) in L929 cells. FEBS Lett 2001; 507:151-6. [PMID: 11684089 DOI: 10.1016/s0014-5793(01)02967-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Both glutathione (GSH) depletion and arachidonic acid (AA) generation have been shown to regulate sphingomyelin (SM) hydrolysis and are known components in tumor necrosis factor alpha (TNFalpha)-induced cell death. In addition, both have hypothesized direct roles in activation of N-sphingomyelinase (SMase); however, it is not known whether these are independent pathways of N-SMase regulation or linked components of a single ordered pathway. This study was aimed at differentiating these possibilities using L929 cells. Depletion of GSH with L-buthionin-(S,R)-sulfoximine (BSO) induced 50% hydrolysis of SM at 12 h. In addition, TNF induced a depletion of GSH, and exogenous addition of GSH blocked TNF-induced SM hydrolysis as well as TNF-induced cell death. Together, these results establish GSH upstream of SM hydrolysis and ceramide generation in L929 cells. We next analyzed the L929 variant, C12, which lacks both cytosolic phospholipase A(2) (cPLA(2)) mRNA and protein, in order to determine the relationship of cPLA(2) and GSH. TNF did not induce a significant drop in GSH levels in the C12 line. On the other hand, AA alone was capable of inducing a 60% depletion of GSH in C12 cells, suggesting that these cells remain responsive to AA distal to the site of cPLA(2). Furthermore, depleting GSH with BSO failed to effect AA release, but caused a drop in SM levels, showing that the defect in these cells was upstream of the GSH drop and SMase activation. When cPLA(2) was restored to the C12 line by expression of the cDNA, the resulting CPL4 cells regained sensitivity to TNF. Treatment of the CPL4 cells with TNF resulted in GSH levels dropping to levels near those of the wild-type L929 cells. These results demonstrate that GSH depletion following TNF treatment in L929 cells is dependent on intact cPLA(2) activity, and suggest a pathway in which activation of cPLA(2) is required for the oxidation and reduction of GSH levels followed by activation of SMases.
Collapse
Affiliation(s)
- H L Hayter
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | |
Collapse
|
44
|
Gout PW, Buckley AR, Simms CR, Bruchovsky N. Sulfasalazine, a potent suppressor of lymphoma growth by inhibition of the x(c)- cystine transporter: a new action for an old drug. Leukemia 2001; 15:1633-40. [PMID: 11587223 DOI: 10.1038/sj.leu.2402238] [Citation(s) in RCA: 454] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Although cyst(e)ine is nutritionally a non-essential amino acid, lymphoid cells cannot synthesize it, rendering their growth dependent on uptake of cyst(e)ine from their microenvironment. Accordingly, we previously suggested that the x(c)- plasma membrane cystine transporter provided a target for lymphoid cancer therapy. Its inhibition could lead to cyst(e)ine deficiency in lymphoma cells via reduction of both their cystine uptake and cysteine supply by somatic cells. In this study, using rat Nb2 lymphoma cultures, drugs were screened for growth arrest based on x(c)- inhibition. Sulfasalazine was fortuitously found to be a novel, potent inhibitor of the x(c)- transporter. It showed high rat lymphoma growth-inhibitory and lytic activity in vitro (IC50 = 0.16 mM), based specifically on inhibition of x(c)--mediated cystine uptake, in contrast to its colonic metabolites, sulfapyridine and 5-aminosalicylic acid. Sulfasalazine was even more effective against human non-Hodgkin's lymphoma (DoHH2) cultures. In rats (n = 13), sulfasalazine (i.p.) markedly inhibited growth of well-developed, rapidly growing rat Nb2 lymphoma transplants without apparent side-effects. Reduced, macrophage-mediated supply of cysteine was probably involved. In five rats, 90-100% tumor growth suppression, relative to controls, was obtained. The x(c)- cystine transporter represents a novel target for sulfasalazine-like drugs with high potential for application in therapy of lymphoblastic and other malignancies dependent on extracellular cyst(e)ine.
Collapse
Affiliation(s)
- P W Gout
- Department of Cancer Endocrinology, BC Cancer Agency, Vancouver, Canada
| | | | | | | |
Collapse
|
45
|
Aoshiba K, Yasuda K, Yasui S, Tamaoki J, Nagai A. Serine proteases increase oxidative stress in lung cells. Am J Physiol Lung Cell Mol Physiol 2001; 281:L556-64. [PMID: 11504681 DOI: 10.1152/ajplung.2001.281.3.l556] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Several serine proteases are directly cytotoxic. We investigated whether the cytotoxic effects of proteases are associated with increased levels of reactive oxygen species (ROS) in cells. We found that treatment of lung fibroblasts or bronchial epithelial cells with relatively high concentrations (0.1--100 U/ml) of neutrophil elastase, trypsin, and Pronase increased ROS levels in the mitochondria and cytoplasm. The protease-induced increase in ROS was associated with oxidative cellular injury as determined by generation of 8-hydroxy-2'-deoxyguanosine and malonaldehyde plus 4-hydroxyalkenal. The protease-induced increase in ROS was not merely due to cell detachment because the proteases also caused an increase in ROS in suspended cells, which precluded attachment to the extracellular matrix. The protease-induced increase in ROS appears to contribute to cytotoxicity because cell death induced by proteases was attenuated by treatment with catalase, a decomposer of H(2)O(2), and accelerated by treatment with aminotriazole, a catalase inhibitor. These results suggest that several proteases increase oxidative stress, indicating a direct interaction between proteases and ROS in mediating cytotoxicity.
Collapse
Affiliation(s)
- K Aoshiba
- First Department of Medicine, Tokyo Women's Medical University, Shinjuku-ku, Tokyo 162-8666, Japan.
| | | | | | | | | |
Collapse
|
46
|
Finkelstein EI, Nardini M, van der Vliet A. Inhibition of neutrophil apoptosis by acrolein: a mechanism of tobacco-related lung disease? Am J Physiol Lung Cell Mol Physiol 2001; 281:L732-9. [PMID: 11504702 DOI: 10.1152/ajplung.2001.281.3.l732] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Cigarette smoking is known to contribute to inflammatory diseases of the respiratory tract by promoting recruitment of inflammatory-immune cells such as neutrophils and perhaps by altering neutrophil functional properties. We investigated whether acrolein, a toxic unsaturated aldehyde found in cigarette smoke, could directly affect neutrophil function. Exposure of freshly isolated human neutrophils to acrolein markedly inhibited spontaneous neutrophil apoptosis as indicated by loss of membrane asymmetry and DNA fragmentation and induced increased neutrophil production of the chemokine interleukin-8 (IL-8). Acrolein (1--50 microM) was found to induce marked activation of extracellular signal-regulated kinase (ERK) and p38 mitogen-activated protein kinases (MAPKs), and inhibition of p38 MAPK activation by SB-203580 prevented acrolein-induced IL-8 release. However, inhibition of either ERK or p38 MAPK did not affect acrolein-dependent inhibition of apoptosis. Acrolein exposure prevented the activation of caspase-3, a crucial step in the execution of neutrophil apoptosis, presumably by direct inhibition of the enzyme. Our results indicate that acrolein may contribute to smoke-induced inflammatory processes in the lung by increasing neutrophil recruitment and reducing neutrophil clearance by apoptosis.
Collapse
Affiliation(s)
- E I Finkelstein
- Center for Comparative Respiratory Biology and Medicine, Department of Internal Medicine, School of Medicine, University of California, Davis, California 95616, USA
| | | | | |
Collapse
|
47
|
Maccarrone M, Melino G, Finazzi-Agrò A. Lipoxygenases and their involvement in programmed cell death. Cell Death Differ 2001; 8:776-84. [PMID: 11526430 DOI: 10.1038/sj.cdd.4400908] [Citation(s) in RCA: 112] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2001] [Revised: 05/09/2001] [Accepted: 05/10/2001] [Indexed: 01/31/2023] Open
Abstract
Lipoxygenases are a family of enzymes which dioxygenate unsaturated fatty acids, thus initiating lipoperoxidation of membranes and the synthesis of signaling molecules. Consequently, they induce structural and metabolic changes in the cell in a number of pathophysiological conditions. Recently, a pro-apoptotic effect of lipoxygenase, and of the hydroperoxides produced thereof, has been reported in different cells and tissues, leading to cell death. Anti-apoptotic effects of lipoxygenases have also been reported; however, this has often been based on the use of enzyme inhibitors. Here we review the characteristics of the lipoxygenase family and its involvement in the initiation of oxidative stress-induced apoptosis. Finally, we discuss the role of lipoxygenase activation in apoptosis of animal and plant cells, suggesting a common signal transduction pathway in cell death conserved through evolution of both kingdoms.
Collapse
Affiliation(s)
- M Maccarrone
- Department of Experimental Medicine and Biochemical Sciences, University of Rome Tor Vergata, Via di Tor Vergata 135, I-00133 Rome, Italy.
| | | | | |
Collapse
|
48
|
Hudson VM. Rethinking cystic fibrosis pathology: the critical role of abnormal reduced glutathione (GSH) transport caused by CFTR mutation. Free Radic Biol Med 2001; 30:1440-61. [PMID: 11390189 DOI: 10.1016/s0891-5849(01)00530-5] [Citation(s) in RCA: 125] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Though the cause of cystic fibrosis (CF) pathology is understood to be the mutation of the CFTR protein, it has been difficult to trace the exact mechanisms by which the pathology arises and progresses from the mutation. Recent research findings have noted that the CFTR channel is not only permeant to chloride anions, but other, larger organic anions, including reduced glutathione (GSH). This explains the longstanding finding of extracellular GSH deficit and dramatically reduced extracellular GSH:GSSG (glutathione disulfide) ratio found to be chronic and progressive in CF patients. Given the vital role of GSH as an antioxidant, a mucolytic, and a regulator of inflammation, immune response, and cell viability via its redox status in the human body, it is reasonable to hypothesize that this condition plays some role in the pathogenesis of CF. This hypothesis is advanced by comparing the literature on pathological phenomena associated with GSH deficiency to the literature documenting CF pathology, with striking similarities noted. Several puzzling hallmarks of CF pathology, including reduced exhaled NO, exaggerated inflammation with decreased immunocompetence, increased mucus viscoelasticity, and lack of appropriate apoptosis by infected epithelial cells, are better understood when abnormal GSH transport from epithelia (those without anion channels redundant to the CFTR at the apical surface) is added as an additional explanatory factor. Such epithelia should have normal levels of total glutathione (though perhaps with diminished GSH:GSSG ratio in the cytosol), but impaired GSH transport due to CFTR mutation should lead to progressive extracellular deficit of both total glutathione and GSH, and, hypothetically, GSH:GSSG ratio alteration or even total glutathione deficit in cells with redundant anion channels, such as leukocytes, lymphocytes, erythrocytes, and hepatocytes. Therapeutic implications, including alternative methods of GSH augmentation, are discussed.
Collapse
Affiliation(s)
- V M Hudson
- Brigham Young University, Provo, UT 84602, USA.
| |
Collapse
|
49
|
Saldeen J, Lee JC, Welsh N. Role of p38 mitogen-activated protein kinase (p38 MAPK) in cytokine-induced rat islet cell apoptosis. Biochem Pharmacol 2001; 61:1561-9. [PMID: 11377386 DOI: 10.1016/s0006-2952(01)00605-0] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The signaling pathways mediating nitric oxide production and apoptosis in pancreatic beta-cells are not fully understood. We investigated cytokine-induced protein phosphorylation events in insulin-producing cells and evaluated their role in inducible nitric oxide synthase (iNOS) induction and cell death. Interleukin-1beta (IL-1beta), but not interferon-gamma (IFN-gamma), induced phosphorylation of p38 mitogen-activated protein kinase, c-Jun NH2-terminal kinase, and mitogen- and stress-activated protein kinase 1 (MSK1) in rat insulin-producing RINm5F cells. This was paralleled by an increased phosphorylation of the transcription factors activating transcription factor-2 (ATF-2) and cAMP-responsive element-binding protein (CREB). The p38 inhibitor SB203580 prevented cytokine-induced phosphorylation of CREB and MSK1, but not of ATF-2. IFN-gamma induced the phosphorylation of signal transducer and activator of transcription 1. The combination of IL-1beta and IFN-gamma increased both apoptosis and necrosis in rat islet cells. SB203580, but not the extracellular signal-regulated kinase inhibitor PD98059, partially prevented cytokine-induced apoptosis, an effect that was not associated with reduced nitrite production or lowered iNOS expression. In conclusion, cytokine-induced p38 activation participates in beta-cell apoptosis, possibly by a nitric oxide-independent mechanism or by enhancing the sensitivity to nitric oxide.
Collapse
Affiliation(s)
- J Saldeen
- Department of Medical Cell Biology, Uppsla University, Biomedicum, P.O. Box 571, S-751 23 Uppsala, Sweden
| | | | | |
Collapse
|
50
|
Ishii T, Matsuse T, Igarashi H, Masuda M, Teramoto S, Ouchi Y. Tobacco smoke reduces viability in human lung fibroblasts: protective effect of glutathioneS-transferase P1. Am J Physiol Lung Cell Mol Physiol 2001; 280:L1189-95. [PMID: 11350797 DOI: 10.1152/ajplung.2001.280.6.l1189] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Cigarette smoking is thought to be a major risk factor in various lung diseases including lung cancer and emphysema. However, the direct effect of cigarette smoke on the viability of lung-derived cells has not been fully elucidated. In this study, we investigated the viability of human lung fibroblast-derived (HFL1) cells to different concentrations of cigarette smoke extract (CSE). CSE induced apoptosis at lower concentrations (10–25%) and necrosis at higher concentrations (50–100%). We also examined the effects of glutathione S-transferase P1 (GSTP1), one of the xenobiotic metabolizing and antioxidant enzymes in the lung, against the cytotoxicity of CSE. Our results indicated that the level of HFL1 cell death was decreased by transfection with a GSTP1 expression vector and was increased by GSTP1 antisense vector transfection. Therefore, transient overexpression and underexpression of GSTP1 appeared to inhibit and enhance the cytotoxic effects of CSE on HFL1 cells, suggesting that GSTP1 may have protective effects against cigarette smoke in the airway cells.
Collapse
Affiliation(s)
- T Ishii
- Department of Geriatric Medicine, University of Tokyo, Tokyo 113-8655, Japan
| | | | | | | | | | | |
Collapse
|