1
|
MORI-ICHIOKA A, SUNADA Y, KOIKEDA T, MATSUDA H, MATSUO S. Effect of applying Lactiplantibacillus plantarum subsp. plantarum N793 to the scalps of men and women with thinning hair: a randomized, double-blind, placebo-controlled, parallel-group study. BIOSCIENCE OF MICROBIOTA, FOOD AND HEALTH 2024; 43:192-203. [PMID: 38966052 PMCID: PMC11220327 DOI: 10.12938/bmfh.2023-056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 01/22/2024] [Indexed: 07/06/2024]
Abstract
Lactiplantibacillus plantarum subsp. plantarum N793 (N793) is a lactic acid bacterium (LAB) isolated from corn. We previously showed that N793 increases the level of keratinocyte growth factor, which is required for hair growth, in the culture supernatant of human follicle dermal papilla cells. Additionally, an open-label, single-arm study reported that applying a lotion containing N793 to the scalp for 24 weeks improved hair density in men and women with thinning hair. The present study was a double-blind, placebo-controlled, parallel-group study aimed at verifying the efficacy of N793 for thinning hair. A lotion containing N793, and a control lotion (placebo) were applied once daily for 24 weeks to 104 healthy Japanese men and women. Analysis of all participants revealed no difference in hair density between the N793 and placebo groups. However, an additional analysis limited to participants with relatively mild progression of thinning hair showed a significantly better hair density in the N793 group than in the placebo group. These findings suggest that topical application of N793 improves thinning hair in men and women when the condition's progression is relatively mild.
Collapse
Affiliation(s)
- Ayaka MORI-ICHIOKA
- Global Innovation Center, Nissin Foods Holdings Co., Ltd.,
2100 Tobukimachi, Hachioji-shi, Tokyo 192-0001, Japan
| | - Yosuke SUNADA
- Global Innovation Center, Nissin Foods Holdings Co., Ltd.,
2100 Tobukimachi, Hachioji-shi, Tokyo 192-0001, Japan
| | - Takashi KOIKEDA
- Shiba Palace Clinic, 1-9-10 Hamamatsucho, Minato-ku, Tokyo
105-0013, Japan
| | - Hideo MATSUDA
- Graduate School of Information Science and Technology, Osaka
University, 1-5 Yamadaoka, Suita-shi, Osaka 565-0871, Japan
| | - Shinji MATSUO
- Global Innovation Center, Nissin Foods Holdings Co., Ltd.,
2100 Tobukimachi, Hachioji-shi, Tokyo 192-0001, Japan
| |
Collapse
|
2
|
Justet A, Ghanem M, Boghanim T, Hachem M, Vasarmidi E, Jaillet M, Vadel A, Joannes A, Mordant P, Bonniaud P, Kolb M, Ling L, Cazes A, Mal H, Mailleux A, Crestani B. FGF19 is Downregulated in Idiopathic Pulmonary Fibrosis and Inhibits Lung Fibrosis in Mice. Am J Respir Cell Mol Biol 2022; 67:173-187. [PMID: 35549849 DOI: 10.1165/rcmb.2021-0246oc] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
IPF is a devastating lung disease with limited therapeutic possibilities. FGF19, an endocrine FGF, was recently shown to decrease liver fibrosis. To ask whether FGF19 had anti-fibrotic properties in the lung and decipher its effects on common features associated with lung fibrogenesis. We assessed, by Elisa, FGF19 levels in plasma and bronchoalveolar lavage fluids (BALF)obtained from controls and IPF patients. In vivo, using an intravenously administered adeno11 associated virus (AAV), we overexpressed FGF19 at the fibrotic phase of two experimental models of murine lung fibrosis and assessed its effect on lung morphology, lung collagen content, fibrosis markers and pro fibrotic mediator expression, at mRNA and protein levels. In vitro, we investigated whether FGF19 could modulate the TGFβ-induced differentiation of primary human lung fibroblast into myofibroblast and the apoptosis of murine alveolar type II cell. While FGF19 was not detected in BALF, FGF19 concentration was decreased in the plasma of IPF patients compared to controls. In vivo, the overexpression of FGF19 was associated with a marked decrease of lung fibrosis and fibrosis markers, with a decrease of pro fibrotic mediator expression and lung collagen content. In vitro, FGF19 decreased alveolar type 2 epithelial cell apoptosis through the decrease of the proapoptotic BIM protein expression and prevented TGF-ß induced myofibroblast differentiation through the inhibition of JNK phosphorylation. Altogether these data identify FGF19 as an anti-fibrotic molecule with a potential therapeutic interest in fibrotic lung disorders.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Audrey Joannes
- INSERM U1085, IRSET Institut de Recherche sur la Santé, l'Environnement et le Travail, Université de Rennes-1, Rennes, France
| | - Pierre Mordant
- Assistance Publique - Hopitaux de Paris, 26930, Bichat Hospital, Department of Vascular and Thoracic Sugery, Paris, France.,INSERM, U1152, Paris, France.,Universite Paris Diderot UFR de Medecine Site Xavier-Bichat, 60152, Paris, France
| | - Philippe Bonniaud
- CHU Dijon-Bourgogne, Service de Pneumologie et Soins Intensifs Respiratoires, Dijon, France
| | - Martin Kolb
- McMaster University, Hamilton, Ontario, Canada
| | - Lei Ling
- NGM Biopharmaceuticals Inc, 200841, San Francisco, California, United States
| | | | | | - Arnaud Mailleux
- Inserm U700, Faculté de Médecine Paris 7, site X. Bichat, Paris, France
| | - Bruno Crestani
- AP-HP, Hôpital Bichat, Service de Pneumologie A, DHU FIRE, Université Paris Diderot, Paris, France;
| |
Collapse
|
3
|
Radwan SM, Ghoneim D, Salem M, Saeed M, Saleh Y, Elhamy M, Wael K, Shokair O, Wahdan SA. Adipose Tissue-Derived Mesenchymal Stem Cells Protect Against Amiodarone-Induced Lung Injury in Rats. Appl Biochem Biotechnol 2020; 191:1027-1041. [PMID: 31950448 DOI: 10.1007/s12010-020-03227-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 01/08/2020] [Indexed: 02/04/2023]
Abstract
Pulmonary fibrosis (PF) is a progressive and irreversible lung disease, characterized by poor prognosis with limited treatment options. Mesenchymal stem cells (MSCs) are multi-potent cells having the ability to self-renew and differentiate into multiple tissues, thus considered a novel treatment option. The present study aimed to investigate the possible antifibrotic effect of undifferentiated adipose tissue-derived mesenchymal stem cell (AD-MSC) therapy on PF experimentally induced in rats using amiodarone (AMD). AMD (30 mg/kg) was given orally, once daily for 12 consecutive weeks to induce lung fibrosis. Following the confirmation of lung damage with histopathological examination, AD-MSCs (2 × 106 and 4 × 106 undifferentiated MSCs) were injected once intravenously, followed by 2 months for treatment. AMD induced focal fibroblastic cells proliferation in the peribronchiolar tissue, as well as in between the collapsed emphysematous alveoli. Also, AMD significantly increased serum and lung homogenate fibroblast growth factor-7 (FGF7), Clara cell protein-16 (CC16), and cytokeratin -19 (CK19) levels, as well as the expression of both iNOS and NFкB in the lung alveoli. Moreover, AMD caused excessive collagen deposition and increased alpha smooth muscle actin (α-SMA) expression. All findings significantly regressed on stem cell therapy in both doses, with superior effect of the high dose, providing evidence that adipose tissue-derived MSCs could be a promising approach for the treatment of PF. Graphical Abstract.
Collapse
Affiliation(s)
- Sara M Radwan
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Dalia Ghoneim
- Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Manar Salem
- Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Menna Saeed
- Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Yara Saleh
- Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | | | - Kholoud Wael
- Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Omnia Shokair
- Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Sara A Wahdan
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt.
| |
Collapse
|
4
|
Lee JU, Son JH, Shim EY, Cheong HS, Shin SW, Shin HD, Baek AR, Ryu S, Park CS, Chang HS, Park JS. Global DNA Methylation Pattern of Fibroblasts in Idiopathic Pulmonary Fibrosis. DNA Cell Biol 2019; 38:905-914. [DOI: 10.1089/dna.2018.4557] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
- Jong-Uk Lee
- Department of Interdisciplinary Program in Biomedical Science Major, Soonchunhyang University, Bucheon, Republic of Korea
| | - Ji-Hye Son
- Department of Interdisciplinary Program in Biomedical Science Major, Soonchunhyang University, Bucheon, Republic of Korea
| | - Eun-Young Shim
- Department of Interdisciplinary Program in Biomedical Science Major, Soonchunhyang University, Bucheon, Republic of Korea
| | - Hyun Sub Cheong
- Department of Genetic Epidemiology, SNP Genetics, Inc., Sogang University, Seoul, Republic of Korea
| | - Seung-Woo Shin
- Department of Interdisciplinary Program in Biomedical Science Major, Soonchunhyang University, Bucheon, Republic of Korea
| | - Hyoung Doo Shin
- Department of Genetic Epidemiology, SNP Genetics, Inc., Sogang University, Seoul, Republic of Korea
- Department of Life Science, Sogang University, Seoul, Republic of Korea
| | - Ae Rin Baek
- Division of Allergy and Respiratory Medicine, Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Bucheon, Republic of Korea
| | - Seongho Ryu
- Soonchunhyang Institute of Med-Bioscience (SIMS), Soonchunhyang University, Cheonan-Si, Republic of Korea
| | - Choon-Sik Park
- Department of Interdisciplinary Program in Biomedical Science Major, Soonchunhyang University, Bucheon, Republic of Korea
- Division of Allergy and Respiratory Medicine, Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Bucheon, Republic of Korea
| | - Hun Soo Chang
- Department of Interdisciplinary Program in Biomedical Science Major, Soonchunhyang University, Bucheon, Republic of Korea
| | - Jong-Sook Park
- Division of Allergy and Respiratory Medicine, Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Bucheon, Republic of Korea
| |
Collapse
|
5
|
Yang L, Liu X, Zhang N, Chen L, Xu J, Tang W. Investigation of circular RNAs and related genes in pulmonary fibrosis based on bioinformatics analysis. J Cell Biochem 2019; 120:11022-11032. [PMID: 30767300 PMCID: PMC6593700 DOI: 10.1002/jcb.28380] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 12/06/2018] [Indexed: 01/24/2023]
Abstract
Pulmonary fibrosis is a lethal inflammatory disease. In this study, we aimed to explore the potential-related circular RNAs (circRNAs) and genes that are associated with pulmonary fibrosis. Pulmonary fibrosis rat models were constructed and the fibrosis deposition was detected using hematoxylin and eosin and Masson staining. The differentially expressed circRNAs were obtained through RNA sequencing. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were further performed to uncover the key function and pathways in pulmonary fibrosis. The interaction networks between circRNAs and their downstream micro RNAs (miRNAs) and genes were constructed by Cytoscape Software. The quantitative polymerase chain reaction was performed to validate the expression of 10 candidate circRNAs and five of them were performed ringwise sequencing in pulmonary fibrosis rats. We further selected five candidate circRNAs target miRNAs and messenger RNAs and validated by real-time polymerase chain reaction. The pulmonary fibrosis models were successfully constructed according to the pathological examination. circRNAs were differentially expressed between the pulmonary fibrosis and normal pulmonary tissues. GO analysis verified that the differentially expressed circRNAs were significantly clustered in the cellular component, molecular function, and biological process. In the KEGG analysis, circRNAs were enriched in the following pathways: antigen processing and presentation, phagosome, PI3K-AKt signaling pathway, HTLV-I infection, and Herpes simplex infection. After validation in pulmonary fibrosis rat models, it was found that five of those circRNAs (chr9:113534327|113546234 [down], chr1:200648164|200672411 [down], chr5:150850432|150865550 [up], chr20:14319170|14326640 [down], and chr10:57634023|57634588 [down]) showed a relatively consistent trend with predictions. Validation of these circRNAs target miRNAs and genes showed that chr9:113534327|113546234, chr20:14319170|14326640, and chr10:57634023|57634588 were implicated in Notch1 activated transforming growth factor-β (TGF-β) signaling pathway. The study demonstrated that a series of circRNAs are differentially expressed in pulmonary fibrosis rats. These circRNAs, especially TGF-β- and Notch1-related circRNAs might play an important role in regulating pulmonary fibrogenesis.
Collapse
Affiliation(s)
- Liteng Yang
- Department of Respiratory MedicineShenzhen Luohu People's Hospital, The Third Affiliated Hospital of Shenzhen UniversityGuangdongShenzhenChina
| | - Xin Liu
- Department of Traditional Chinese Medicine, Zunyi Medical and Pharmaceutical CollegeGuizhouZunyiChina
| | - Ning Zhang
- Department of Respiratory MedicineShenzhen Luohu People's Hospital, The Third Affiliated Hospital of Shenzhen UniversityGuangdongShenzhenChina
| | - Lifang Chen
- Department of Respiratory MedicineShenzhen Luohu People's Hospital, The Third Affiliated Hospital of Shenzhen UniversityGuangdongShenzhenChina
| | - Jingyi Xu
- Department of Respiratory MedicineShenzhen Luohu People's Hospital, The Third Affiliated Hospital of Shenzhen UniversityGuangdongShenzhenChina
| | - Wencheng Tang
- Department of Respiratory MedicineShenzhen Luohu People's Hospital, The Third Affiliated Hospital of Shenzhen UniversityGuangdongShenzhenChina
| |
Collapse
|
6
|
Gui X, Qiu X, Tian Y, Xie M, Li H, Gao Y, Zhuang Y, Cao M, Ding H, Ding J, Zhang Y, Cai H. Prognostic value of IFN-γ, sCD163, CCL2 and CXCL10 involved in acute exacerbation of idiopathic pulmonary fibrosis. Int Immunopharmacol 2019; 70:208-215. [PMID: 30851700 DOI: 10.1016/j.intimp.2019.02.039] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 02/24/2019] [Accepted: 02/24/2019] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Acute exacerbation of idiopathic pulmonary fibrosis (AE-IPF) is of concern because of its propensity for rapid deterioration and high mortality. Its aetiology and mechanism are still unclear. The aims of this study were to clarify the pathophysiology differences between AE-IPF and stable IPF (S-IPF) by comparing the serum levels of various cytokines and chemokines in the two groups and to identify those involvement in the occurrence of acute exacerbation and associated with mortality. METHODS The study included 28 patients with AE-IPF, 32 patients with S-IPF, and 18 healthy control subjects. We measured the serum cytokine and chemokine levels in all cases by multiplex assay. Serum levels of cytokines and chemokines were compared between AE-IPF and S-IPF subjects. Logistic regression analysis was applied to identify the ability of these variables to predict acute exacerbation. Kaplan-Meier curves were used to analyse survival and Cox proportional hazard regression was used to identify predictors of survival. RESULTS Levels of several cytokines and chemokines were significantly higher in both patient groups with IPF (with the exception of interleukin-2 [IL-2], chemokine cc-motif ligand 3, and RANTES [regulation upon activation normal T-cell express sequence]) than in healthy controls. Serum IL-1β (p = 0.008) and interferon (IFN)-γ (p = 0.007) levels tended to be higher in patients with AE-IPF than in those with S-IPF. The concentration of chemokine cc-motif ligand (CCL) 2 was significantly higher in bronchoalveolar lavage fluid than in serum (p = 0.001). Higher C-reactive protein, lactate dehydrogenase, percent forced vital capacity, percent diffusing capacity of the lung for carbon monoxide, and IFN-γ values in the patients with IPF were correlated with acute exacerbation status, with respective odds ratios of 1.241 (p = 0.011), 1.050 (p = 0.004), 1.043 (p = 0.001), 0.927 (p = 0.014), and 0.929 (p = 0.020). Acute exacerbation status was associated with an increased risk of mortality (hazard ratio 0.107, 95% confidence interval 0.036-0.314; p < 0.001). Univariate Cox regression demonstrated an association of IFN-γ, CCL2, C-X-C motif chemokine 10 (CXCL10) and sCD163 levels with an increased mortality risk (p = 0.015, p = 0.002, p = 0.001, and p = 0.030, respectively). CONCLUSIONS Our data demonstrate that serum levels of some pro-inflammatory cytokines and macrophage chemokines are upregulated during acute exacerbations of IPF and that these exacerbations are associated with the serum IFN-γ level. Chemokines and protein such as sCD163, CCL2, and CXCL10 are associated with activation of macrophages and may have a serious impact on overall survival in patients with IPF.
Collapse
Affiliation(s)
- Xianhua Gui
- Department of Respiratory Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, No. 321 Zhongshan Road, Nanjing 210008, Jiangsu, PR China
| | - Xiaohua Qiu
- Department of Respiratory Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, No. 321 Zhongshan Road, Nanjing 210008, Jiangsu, PR China
| | - Yaqiong Tian
- Department of Respiratory Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, No. 321 Zhongshan Road, Nanjing 210008, Jiangsu, PR China
| | - Miaomiao Xie
- Department of Respiratory Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, No. 321 Zhongshan Road, Nanjing 210008, Jiangsu, PR China
| | - Hui Li
- Department of Respiratory Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, No. 321 Zhongshan Road, Nanjing 210008, Jiangsu, PR China
| | - Yujuan Gao
- Department of Respiratory Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, No. 321 Zhongshan Road, Nanjing 210008, Jiangsu, PR China
| | - Yi Zhuang
- Department of Respiratory Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, No. 321 Zhongshan Road, Nanjing 210008, Jiangsu, PR China
| | - Mengshu Cao
- Department of Respiratory Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, No. 321 Zhongshan Road, Nanjing 210008, Jiangsu, PR China
| | - Hui Ding
- Department of Respiratory Medicine, Yixing People Hospital, Affiliated Jiangsu University, No. 75 Tongzhenguan Road, Yixing 214200, Jiangsu, PR China
| | - Jingjing Ding
- Department of Respiratory Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, No. 321 Zhongshan Road, Nanjing 210008, Jiangsu, PR China.
| | - Yingwei Zhang
- Department of Respiratory Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, No. 321 Zhongshan Road, Nanjing 210008, Jiangsu, PR China.
| | - Hourong Cai
- Department of Respiratory Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, No. 321 Zhongshan Road, Nanjing 210008, Jiangsu, PR China.
| |
Collapse
|
7
|
Hosseinzadeh A, Javad-Moosavi SA, Reiter RJ, Hemati K, Ghaznavi H, Mehrzadi S. Idiopathic pulmonary fibrosis (IPF) signaling pathways and protective roles of melatonin. Life Sci 2018; 201:17-29. [PMID: 29567077 DOI: 10.1016/j.lfs.2018.03.032] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 03/13/2018] [Accepted: 03/15/2018] [Indexed: 12/19/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is characterized by the progressive loss of lung function due to tissue scarring. A variety of pro-inflammatory and pro-fibrogenic factors including interleukin‑17A, transforming growth factor β, Wnt/β‑catenin, vascular endothelial growth factor, platelet-derived growth factor, fibroblast growth factors, endotelin‑1, renin angiotensin system and impaired caveolin‑1 function are involved in the IPF pathogenesis. Current therapies for IPF have some limitations and this highlights the need for effective therapeutic agents to treat this fatal disease. Melatonin and its metabolites are broad-spectrum antioxidants that not only remove reactive oxygen and nitrogen species by radical scavenging but also up-regulate the expression and activity of endogenous antioxidants. Via these actions, melatonin and its metabolites modulate a variety of molecular pathways in different pathophysiological conditions. Herein, we review the signaling pathways involved in the pathophysiology of IPF and the potentially protective effects of melatonin on these pathways.
Collapse
Affiliation(s)
- Azam Hosseinzadeh
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| | | | - Russel J Reiter
- Department of Cellular and Structural Biology, UT Health, San Antonio, TX, USA
| | - Karim Hemati
- Department of Anesthesiology, Iran University of Medical Sciences, Tehran, Iran; Department of Anesthesiology, Ilam University of Medical Sciences, Ilam, Iran
| | - Habib Ghaznavi
- Department of Pharmacology, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Saeed Mehrzadi
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
8
|
Porcine CD14 gene silencing partially inhibited the bacterial immune response mediated by TLR4 signaling pathway. Gene 2017; 628:267-274. [PMID: 28734896 DOI: 10.1016/j.gene.2017.07.055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Revised: 04/26/2017] [Accepted: 07/19/2017] [Indexed: 02/06/2023]
Abstract
Cluster of differentiation antigen 14 (CD14) is the membrane receptor protein in Toll-like Receptor 4 (TLR4) signaling pathway, which plays an important regulation role in not only innate immune response but also adaptive immune response. In this study, the pig kidney epithelial cell (PK15) line with CD14 gene silencing mediated by lentivirus was established and cells of CD14-RNAi and NC group were exposed to three kinds of Escherichia coli (E. coli F18ab, E. coli F18ac and E. coli K88ac) and LPS. Then qPCR and western blot were used to detect expression levels of TLR4 signaling pathway-related genes. Finally, ELISA was used to detect the level of proinflammatory cytokines in the cell culture supernatant. The results showed that the expression level of TLR4 signaling pathway-related genes in the entire signal pathway had obvious increases when cells were exposed to the stimulation induced by E. coli and LPS. In addition, the expression levels of CD14-RNAi group were overall significantly lower than NC group (P<0.05 or P<0.01), which was the same with the release levels of proinflammatory cytokines. This study revealed that pig CD14 gene silencing partially inhibited immune response to E. coli F18 invasion mediated by TLR4 signaling pathway.
Collapse
|
9
|
Lee JU, Cheong HS, Shim EY, Bae DJ, Chang HS, Uh ST, Kim YH, Park JS, Lee B, Shin HD, Park CS. Gene profile of fibroblasts identify relation of CCL8 with idiopathic pulmonary fibrosis. Respir Res 2017; 18:3. [PMID: 28057004 PMCID: PMC5216573 DOI: 10.1186/s12931-016-0493-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 12/13/2016] [Indexed: 01/15/2023] Open
Abstract
Background Idiopathic pulmonary fibrosis (IPF) is characterized by the complex interaction of cells involved in chronic inflammation and fibrosis. Global gene expression of a homogenous cell population will identify novel candidate genes. Methods Gene expression of fibroblasts derived from lung tissues (8 IPF and 4 controls) was profiled, and ontology and functional pathway were analyzed in the genes exhibiting >2 absolute fold changes with p-values < 0.05. CCL8 mRNA and protein levels were quantified using real-time PCR and ELISA. CCL8 localization was evaluated by immunofluorescence staining. Results One hundred seventy eight genes differentially expressed and 15 genes exhibited >10-fold change. Among them, 13 were novel in relation with IPF. CCL8 expression was 22.8-fold higher in IPF fibroblasts. The levels of CCL8 mRNA and protein were 3 and 9-fold higher in 14 IPF fibroblasts than those in 10 control fibroblasts by real-time PCR and ELISA (p = 0.022 and p = 0.026, respectively). The CCL8 concentrations in BAL fluid was significantly higher in 86 patients with IPF than those in 41 controls, and other interstitial lung diseases including non-specific interstitial pneumonia (n = 22), hypersensitivity pneumonitis (n = 20) and sarcoidosis (n = 19) (p < 0.005, respectively). Cut-off values of 2.29 pg/mL and 0.43 pg/mL possessed 80.2 and 70.7% accuracy for the discrimination of IPF from NC and the other lung diseases, respectively. IPF subjects with CCL8 levels >28.61 pg/mL showed shorter survival compared to those with lower levels (p = 0.012). CCL8 was expressed by α-SMA-positive cells in the interstitium of IPF. Conclusions Transcriptome analysis identified several novel IPF-related genes. Among them, CCL8 is a candidate molecule for the differential diagnosis and prediction of survival. Electronic supplementary material The online version of this article (doi:10.1186/s12931-016-0493-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jong-Uk Lee
- Department of Interdisciplinary Program in Biomedical Science Major, Soonchunhyang Graduate School, Bucheon, Korea
| | - Hyun Sub Cheong
- Department of Genetic Epidemiology, SNP Genetics, Inc., Sogang University, Seoul, Korea
| | - Eun-Young Shim
- Department of Interdisciplinary Program in Biomedical Science Major, Soonchunhyang Graduate School, Bucheon, Korea
| | - Da-Jeong Bae
- Department of Interdisciplinary Program in Biomedical Science Major, Soonchunhyang Graduate School, Bucheon, Korea
| | - Hun Soo Chang
- Department of Interdisciplinary Program in Biomedical Science Major, Soonchunhyang Graduate School, Bucheon, Korea.,Division of Allergy and Respiratory Medicine, Department of Internal Medicine, Soonchunhyang, University Bucheon Hospital, Bucheon, Korea
| | - Soo-Taek Uh
- Division of Respiratory and Allergy Medicine, Department of Internal Medicine, Soonchunhyang University Seoul Hospital, 1174, Jung Dong, Wonmi-Gu, Bucheon, Gyeonggi Do, 420-021, Korea
| | - Young Hoon Kim
- Division of Respiratory Medicine, Department of Internal Medicine, Soonchunhyang University, Chunan Hospital, Cheonan, Korea
| | - Jong-Sook Park
- Division of Allergy and Respiratory Medicine, Department of Internal Medicine, Soonchunhyang, University Bucheon Hospital, Bucheon, Korea
| | - Bora Lee
- Department of Biostatistic Consulting, Soon Chun Hyang Medical Center, Bucheon, Korea
| | - Hyoung Doo Shin
- Department of Genetic Epidemiology, SNP Genetics, Inc., Sogang University, Seoul, Korea.,Department of Life Science, Sogang University, Seoul, Korea
| | - Choon-Sik Park
- Department of Interdisciplinary Program in Biomedical Science Major, Soonchunhyang Graduate School, Bucheon, Korea. .,Division of Allergy and Respiratory Medicine, Department of Internal Medicine, Soonchunhyang, University Bucheon Hospital, Bucheon, Korea.
| |
Collapse
|
10
|
Scheraga RG, Thompson C, Tulapurkar ME, Nagarsekar AC, Cowan M, Potla R, Sun J, Cai R, Logun C, Shelhamer J, Todd NW, Singh IS, Luzina IG, Atamas SP, Hasday JD. Activation of heat shock response augments fibroblast growth factor-1 expression in wounded lung epithelium. Am J Physiol Lung Cell Mol Physiol 2016; 311:L941-L955. [PMID: 27638903 DOI: 10.1152/ajplung.00262.2016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 09/08/2016] [Indexed: 12/29/2022] Open
Abstract
We previously showed that coincident exposure to heat shock (HS; 42°C for 2 h) and TNF-α synergistically induces apoptosis in mouse lung epithelium. We extended this work by analyzing HS effects on human lung epithelial responses to clinically relevant injury. Cotreatment with TNF-α and HS induced little caspase-3 and poly(ADP-ribose) polymerase cleavage in human small airway epithelial cells, A549 cells, and BEAS2B cells. Scratch wound closure rates almost doubled when A549 and BEAS2B cells and air-liquid interface cultures of human bronchial epithelial cells were heat shocked immediately after wounding. Microarray, qRT-PCR, and immunoblotting showed fibroblast growth factor 1 (FGF1) to be synergistically induced by HS and wounding. Enhanced FGF1 expression in HS/wounded A549 was blocked by inhibitors of p38 MAPK (SB203580) or HS factor (HSF)-1 (KNK-437) and in HSF1 knockout BEAS2B cells. PCR demonstrated FGF1 to be expressed from the two most distal promoters in wounded/HS cells. Wound closure in HS A549 and BEAS2B cells was reduced by FGF receptor-1/3 inhibition (SU-5402) or FGF1 depletion. Exogenous FGF1 accelerated A549 wound closure in the absence but not presence of HS. In the presence of exogenous FGF1, HS slowed wound closure, suggesting that it increases FGF1 expression but impairs FGF1-stimulated wound closure. Frozen sections from normal and idiopathic pulmonary fibrosis (IPF) lung were analyzed for FGF1 and HSP70 by immunofluorescence confocal microscopy and qRT-PCR. FGF1 and HSP70 mRNA levels were 7.5- and 5.9-fold higher in IPF than normal lung, and the proteins colocalized to fibroblastic foci in IPF lung. We conclude that HS signaling may have an important impact on gene expression contributing to lung injury, healing, and fibrosis.
Collapse
Affiliation(s)
- Rachel G Scheraga
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland.,Critical Care Section, National Heart, Lung, Blood Institute, Bethesda, Maryland
| | | | - Mohan E Tulapurkar
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| | - Ashish C Nagarsekar
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| | - Mark Cowan
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland.,Medicine and Research Services, Baltimore Veterans Affairs Medical Care System, Baltimore, Maryland
| | - Ratnakar Potla
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| | - Junfeng Sun
- Critical Care Section, National Heart, Lung, Blood Institute, Bethesda, Maryland
| | - Rongman Cai
- Critical Care Section, National Heart, Lung, Blood Institute, Bethesda, Maryland
| | - Carolea Logun
- Critical Care Section, National Heart, Lung, Blood Institute, Bethesda, Maryland
| | - James Shelhamer
- Critical Care Section, National Heart, Lung, Blood Institute, Bethesda, Maryland
| | - Nevins W Todd
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland.,Medicine and Research Services, Baltimore Veterans Affairs Medical Care System, Baltimore, Maryland
| | - Ishwar S Singh
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland.,Medicine and Research Services, Baltimore Veterans Affairs Medical Care System, Baltimore, Maryland
| | - Irina G Luzina
- Division of Rheumatology, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland.,Medicine and Research Services, Baltimore Veterans Affairs Medical Care System, Baltimore, Maryland
| | - Sergei P Atamas
- Division of Rheumatology, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland.,Medicine and Research Services, Baltimore Veterans Affairs Medical Care System, Baltimore, Maryland
| | - Jeffrey D Hasday
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland; .,Medicine and Research Services, Baltimore Veterans Affairs Medical Care System, Baltimore, Maryland
| |
Collapse
|
11
|
Selman M, López-Otín C, Pardo A. Age-driven developmental drift in the pathogenesis of idiopathic pulmonary fibrosis. Eur Respir J 2016; 48:538-52. [DOI: 10.1183/13993003.00398-2016] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 05/13/2016] [Indexed: 12/21/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive and usually lethal disease of unknown aetiology. A growing body of evidence supports that IPF represents an epithelial-driven process characterised by aberrant epithelial cell behaviour, fibroblast/myofibroblast activation and excessive accumulation of extracellular matrix with the subsequent destruction of the lung architecture. The mechanisms involved in the abnormal hyper-activation of the epithelium are unclear, but we propose that recapitulation of pathways and processes critical to embryological development associated with a tissue specific age-related stochastic epigenetic drift may be implicated. These pathways may also contribute to the distinctive behaviour of IPF fibroblasts. Genomic and epigenomic studies have revealed that wingless/Int, sonic hedgehog and other developmental signalling pathways are reactivated and deregulated in IPF. Moreover, some of these pathways cross-talk with transforming growth factor-β activating a profibrotic feedback loop. The expression pattern of microRNAs is also dysregulated in IPF and exhibits a similar expression profile to embryonic lungs. In addition, senescence, a process usually associated with ageing, which occurs early in alveolar epithelial cells of IPF lungs, likely represents a conserved programmed developmental mechanism. Here, we review the major developmental pathways that get twisted in IPF, and discuss the connection with ageing and potential therapeutic approaches.
Collapse
|
12
|
Oliveira LCFD, Danilucci TM, Chaves-Neto AH, Campanelli AP, Silva TCCD, Oliveira SHP. Tracheal Smooth Muscle Cells Stimulated by Stem Cell Factor-c-Kit Coordinate the Production of Transforming Growth Factor-β1 and Fibroblast Growth Factor-2 Mediated by Chemokine (C-C Motif) Ligand 3. J Interferon Cytokine Res 2016; 36:401-11. [PMID: 27123814 DOI: 10.1089/jir.2015.0102] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The aim of this study was to evaluate the mechanism involved in the stem cell factor (SCF)-induced production of fibroblast growth factor-2 (FGF-2), transforming growth factor-β1 (TGF-β1), and chemokine (C-C motif) ligand 3 (CCL3) in tracheal smooth muscle cells (tSMCs) and the signaling pathway involved in the process. tSMC primary cultures were stimulated with SCF and evaluated at 24 h. Cells treated with specific antibodies did not show any immunolabeling for cytokeratin or fibroblast activation protein, but were positive for α-smooth muscle actin, indicating the purity of the primary cell line. Western blot analysis showed constitutive phosphorylation of c-Kit, as well as increased total protein and phosphorylated c-Kit levels in tSMCs after SCF stimulation. Flow cytometry analysis also showed an increase in cell-surface c-Kit expression in the presence of SCF. SCF induced TGF-β mRNA expression in tSMCs, as well as the production of TGF-β1, CCL3, and FGF-2. Pretreatment with anti-CCL3 antibody blocked TGF-β1 expression and partially inhibited FGF-2 production. On the other hand, anti-c-Kit antibody blocked TGF-β1 expression and FGF-2 production. Thus, TGF-β1 and FGF-2 production were mediated by CCL3 production through c-Kit. Pretreatment with mitogen-activated protein kinase kinase 1, p38, and Jun N-terminal kinase inhibitors showed that the effects mediated by SCF were involved with the modulation of mitogen-activated protein kinase (MAPK) pathways. Development of inhibitors targeting CCL3 through MAPK activation could thus be an attractive strategy to inhibit tSMC activation during asthma.
Collapse
Affiliation(s)
- Luis Cezar Farias de Oliveira
- 1 Programa de Pós-graduação Multicêntrico em Ciências Fisiológicas-SBFis, Department of Basic Sciences, School of Dentistry of Araçatuba, Univ. Estadual Paulista-UNESP , Araçatuba, Brazil
| | - Taís Marolato Danilucci
- 1 Programa de Pós-graduação Multicêntrico em Ciências Fisiológicas-SBFis, Department of Basic Sciences, School of Dentistry of Araçatuba, Univ. Estadual Paulista-UNESP , Araçatuba, Brazil
| | - Antonio Hernandes Chaves-Neto
- 1 Programa de Pós-graduação Multicêntrico em Ciências Fisiológicas-SBFis, Department of Basic Sciences, School of Dentistry of Araçatuba, Univ. Estadual Paulista-UNESP , Araçatuba, Brazil
| | - Ana Paula Campanelli
- 2 Department of Biological Sciences, School of Dentistry of Bauru, São Paulo University-USP , Bauru, Brazil
| | - Tereza Cristina Cardoso da Silva
- 3 Laboratory of Animal Virology and Cell Culture, School of Medicine Veterinary of Araçatuba, Univ. Estadual Paulista-UNESP , Araçatuba, Brazil
| | - Sandra Helena Penha Oliveira
- 1 Programa de Pós-graduação Multicêntrico em Ciências Fisiológicas-SBFis, Department of Basic Sciences, School of Dentistry of Araçatuba, Univ. Estadual Paulista-UNESP , Araçatuba, Brazil
| |
Collapse
|
13
|
Schanaider A, Cotta-Pereira R, Silva PC, Macedo-Ramos H, Silva JD, Teixeira PAC, Pannain VLN, Rocco PRM, Baetas-da-Cruz W. Exogenous pulmonary surfactant prevents the development of intra-abdominal adhesions in rats. J Cell Mol Med 2016; 20:632-43. [PMID: 26828859 PMCID: PMC5114718 DOI: 10.1111/jcmm.12758] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Accepted: 11/14/2015] [Indexed: 01/29/2023] Open
Abstract
Intra-abdominal adhesions are major post-operative complications for which no effective means of prevention is available. We aimed to evaluate the efficacy of exogenous pulmonary surfactant administration in the prevention of post-operative abdominal adhesions. Rats were randomly assigned to undergo laparotomy (L) or gastroenterostomy (GE) and then treated with surfactant (groups L-S and GE-S, respectively). Intra-abdominal adhesions, collagen fibre content, metalloproteinase (MMP)-9, expression of growth factors (TGF-β, KGF and VEGF), type III procollagen (PCIII) and pro-caspase 3, as well as isolectin B4 and ED1-positive cells expressing MMP-9, were evaluated. Groups treated with surfactant (GE-S and L-S) exhibited fewer adhesions. A significant reduction in collagen fibre content was observed in GE-S compared to GE animals (P < 0.001). In situ and gelatin zymography analysis showed higher MMP-9 expression and activity in the GE-S group compared to the GE group (P < 0.05). ED1-positive cell counts were significantly higher in the GE-S group (P < 0.001) than in the GE group. Virtually all cells positive for ED1 were MMP-9+. Double-labelling of MMP-9 with IB4 showed no significant differences between GE-S and GE groups. TGF-β, KGF, PCIII and pro-caspase-3 mRNA expression decreased significantly in GE-S compared to GE animals (P < 0.05). Surfactant administration also reduced apoptosis in the GE-S group. These findings suggest that surfactant reduces the intra-abdominal adhesions triggered by laparotomy and gastrointestinal anastomosis, thus preventing fibrosis formation at the peritoneal surfaces. This preclinical study suggests an innovative treatment strategy for intra-abdominal adhesions with surfactant and to endorse its putative mechanism of action.
Collapse
Affiliation(s)
- Alberto Schanaider
- Postgraduate Program in Surgical Science, Department of Surgery, School of Medicine, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,Centre for Experimental Surgery, Department of Surgery, School of Medicine, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ricardo Cotta-Pereira
- Postgraduate Program in Surgical Science, Department of Surgery, School of Medicine, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Paulo C Silva
- Centre for Experimental Surgery, Department of Surgery, School of Medicine, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Hugo Macedo-Ramos
- Translational Laboratory in Molecular Physiology, Centre for Experimental Surgery, Department of Surgery, School of Medicine, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,Postgraduate Program in Biological Sciences - Physiology, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Johnatas D Silva
- Postgraduate Program in Biological Sciences - Physiology, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Pedro A C Teixeira
- Laboratory of Glycobiology, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Vera L N Pannain
- Department of Pathology, School of Medicine, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Patricia R M Rocco
- Postgraduate Program in Biological Sciences - Physiology, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Wagner Baetas-da-Cruz
- Postgraduate Program in Surgical Science, Department of Surgery, School of Medicine, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,Centre for Experimental Surgery, Department of Surgery, School of Medicine, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,Translational Laboratory in Molecular Physiology, Centre for Experimental Surgery, Department of Surgery, School of Medicine, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,Postgraduate Program in Biological Sciences - Physiology, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
14
|
MacKenzie B, Korfei M, Henneke I, Sibinska Z, Tian X, Hezel S, Dilai S, Wasnick R, Schneider B, Wilhelm J, El Agha E, Klepetko W, Seeger W, Schermuly R, Günther A, Bellusci S. Increased FGF1-FGFRc expression in idiopathic pulmonary fibrosis. Respir Res 2015; 16:83. [PMID: 26138239 PMCID: PMC4495640 DOI: 10.1186/s12931-015-0242-2] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Accepted: 06/24/2015] [Indexed: 01/04/2023] Open
Abstract
Background Recent clinical studies show that tyrosine kinase inhibitors slow the rate of lung function decline and decrease the number of acute exacerbations in patients with Idiopathic Pulmonary Fibrosis (IPF). However, in the murine bleomycin model of fibrosis, not all tyrosine kinase signaling is detrimental. Exogenous ligands Fibroblast Growth Factor (FGF) 7 and 10 improve murine lung repair and increase survival after injury via tyrosine kinase FGF receptor 2b-signaling. Therefore, the level and location of FGF/FGFR expression as well as the exogenous effect of the most highly expressed FGFR2b ligand, FGF1, was analyzed on human lung fibroblasts. Methods FGF ligand and receptor expression was evaluated in donor and IPF whole lung homogenates using western blotting and qPCR. Immunohistochemistry for FGF1 and FGFR1/2/3/4 were performed on human lung tissue. Lastly, the effects of FGF1, a potent, multi-FGFR ligand, were studied on primary cultures of IPF and non-IPF donor fibroblasts. Western blots for pro-fibrotic markers, proliferation, FACS for apoptosis, transwell assays and MetaMorph analyses on cell cultures were performed. Results Whole lung homogenate analyses revealed decreased FGFR b-isoform expression, and an increase in FGFR c-isoform expression. Of the FGFR2b-ligands, FGF1 was the most significantly increased in IPF patients; downstream targets of FGF-signaling, p-ERK1/2 and p-AKT were also increased. Immunohistochemistry revealed FGF1 co-localization within basal cell sheets, myofibroblast foci, and Surfactant protein-C positive alveolar epithelial type-II cells as well as co-localization with FGFR1, FGFR2, FGFR3, FGFR4 and myofibroblasts expressing the migratory marker Fascin. Both alone and in the presence of heparin, FGF1 led to increased MAPK-signaling in primary lung fibroblasts. While smooth muscle actin was unchanged, heparin + FGF1 decreased collagen production in IPF fibroblasts. In addition, FGF1 + heparin increased apoptosis and cell migration. The FGFR inhibitor (PD173074) attenuated these effects. Conclusions Strong expression of FGF1/FGFRs in pathogenic regions of IPF suggest that aberrant FGF1-FGFR signaling is increased in IPF patients and may contribute to the pathogenesis of lung fibrosis by supporting fibroblast migration and increased MAPK-signaling. Electronic supplementary material The online version of this article (doi:10.1186/s12931-015-0242-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- BreAnne MacKenzie
- German Center for Lung Research, Excellence Cluster Cardio-Pulmonary System, Universities of Giessen and Marburg Lung Center, Giessen, Hessen, Germany
| | - Martina Korfei
- German Center for Lung Research, Excellence Cluster Cardio-Pulmonary System, Universities of Giessen and Marburg Lung Center, Giessen, Hessen, Germany
| | - Ingrid Henneke
- German Center for Lung Research, Excellence Cluster Cardio-Pulmonary System, Universities of Giessen and Marburg Lung Center, Giessen, Hessen, Germany
| | - Zaneta Sibinska
- German Center for Lung Research, Excellence Cluster Cardio-Pulmonary System, Universities of Giessen and Marburg Lung Center, Giessen, Hessen, Germany
| | - Xia Tian
- German Center for Lung Research, Excellence Cluster Cardio-Pulmonary System, Universities of Giessen and Marburg Lung Center, Giessen, Hessen, Germany
| | - Stefanie Hezel
- German Center for Lung Research, Excellence Cluster Cardio-Pulmonary System, Universities of Giessen and Marburg Lung Center, Giessen, Hessen, Germany
| | - Salma Dilai
- German Center for Lung Research, Excellence Cluster Cardio-Pulmonary System, Universities of Giessen and Marburg Lung Center, Giessen, Hessen, Germany
| | - Roxana Wasnick
- German Center for Lung Research, Excellence Cluster Cardio-Pulmonary System, Universities of Giessen and Marburg Lung Center, Giessen, Hessen, Germany
| | - Beate Schneider
- German Center for Lung Research, Excellence Cluster Cardio-Pulmonary System, Universities of Giessen and Marburg Lung Center, Giessen, Hessen, Germany
| | - Jochen Wilhelm
- German Center for Lung Research, Excellence Cluster Cardio-Pulmonary System, Universities of Giessen and Marburg Lung Center, Giessen, Hessen, Germany
| | - Elie El Agha
- German Center for Lung Research, Excellence Cluster Cardio-Pulmonary System, Universities of Giessen and Marburg Lung Center, Giessen, Hessen, Germany
| | - Walter Klepetko
- Department of Thoracic Surgery, General Hospital University Vienna, Vienna, Austria
| | - Werner Seeger
- German Center for Lung Research, Excellence Cluster Cardio-Pulmonary System, Universities of Giessen and Marburg Lung Center, Giessen, Hessen, Germany.,German Center for Lung Research, Greifenstein, Germany
| | - Ralph Schermuly
- German Center for Lung Research, Excellence Cluster Cardio-Pulmonary System, Universities of Giessen and Marburg Lung Center, Giessen, Hessen, Germany.,German Center for Lung Research, Greifenstein, Germany
| | - Andreas Günther
- German Center for Lung Research, Excellence Cluster Cardio-Pulmonary System, Universities of Giessen and Marburg Lung Center, Giessen, Hessen, Germany.,German Center for Lung Research, Greifenstein, Germany.,AGAPLESION Lung Clinic Waldhof-Elgershausen, Greifenstein, Germany
| | - Saverio Bellusci
- German Center for Lung Research, Excellence Cluster Cardio-Pulmonary System, Universities of Giessen and Marburg Lung Center, Giessen, Hessen, Germany. .,German Center for Lung Research, Greifenstein, Germany. .,Developmental Biology Program, Division of Surgery, Saban Research Institute of Children's Hospital Los Angeles, University of Southern California Keck School of Medicine, Los Angeles, CA, USA. .,Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 18 Kremlyovskaya Street, Kazan, 420008, Russian Federation.
| |
Collapse
|
15
|
Xu X, Dai H, Wang C. Epithelium-dependent profibrotic milieu in the pathogenesis of idiopathic pulmonary fibrosis: current status and future directions. CLINICAL RESPIRATORY JOURNAL 2014; 10:133-41. [PMID: 25047066 DOI: 10.1111/crj.12190] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Revised: 06/24/2014] [Accepted: 07/20/2014] [Indexed: 12/24/2022]
Abstract
BACKGROUND AND AIM Idiopathic pulmonary fibrosis (IPF) is characterized by hyperplasia of type II alveolar epithelial cells, aggregation of activated (myo)fibroblasts and excessive deposition of extracellular matrix, which will ultimately lead to lung architecture destruction with no proven effective therapies. Despite a significant increase in our understanding on the etiology and pathogenesis of IPF, the real triggers that initiate epithelial cell injury and promote fibrosis evolution are still elusive. We wanted to discuss the evolution of hypothesis on IPF pathogenesis and to suggest some new directions which need to be further elucidated. METHODS We have done a literature search in PubMed database by using the term 'idiopathic pulmonary fibrosis' AND (pathogenesis OR inflammation OR wound healing OR apoptosis OR extracellular matrix OR animal model). RESULTS Inflammatory hypothesis had been the dominant idea for several decades which suggests that chronic inflammation drives the onset and advance of the fibrotic process. However, it is seriously challenged nowadays because lung tissues from IPF patients exhibit little inflammatory lesions. Also, anti-inflammation therapy failed to exert a beneficial effect to IPF patients. Furthermore, experimental lung fibrosis can be realized independent of inflammation. Today, modern paradigm suggests that IPF is mainly driven by the profibtic milieu formed by epithelial injury/ disability and dysregulated epithelial mesenchymal interaction. CONCLUSIONS Epithelium-dependent profibrotic milieu formation and mesenchymal activation is the current view on the pathogenesis of IPF. New evidence from more analogous animal models may emerge and shift our thinking to a new and more faithful concept in the future.
Collapse
Affiliation(s)
- Xuefeng Xu
- National Clinical Research Centre for Respiratory Medicine, Beijing Hospital, Beijing, China
| | - Huaping Dai
- Department of Respiratory and Critical Care Medicine, Beijing Key Laboratory of Respiratory and Pulmonary Circulation Disorders, Beijing Chao-Yang Hospital, Beijing Institute of Respiratory Medicine, Capital Medical University, Beijing, China
| | - Chen Wang
- National Clinical Research Centre for Respiratory Medicine, Beijing Hospital, Beijing, China.,Department of Respiratory and Critical Care Medicine, Beijing Key Laboratory of Respiratory and Pulmonary Circulation Disorders, Beijing Chao-Yang Hospital, Beijing Institute of Respiratory Medicine, Capital Medical University, Beijing, China
| |
Collapse
|
16
|
Borensztajn K, Crestani B, Kolb M. Idiopathic pulmonary fibrosis: from epithelial injury to biomarkers--insights from the bench side. ACTA ACUST UNITED AC 2013; 86:441-52. [PMID: 24356558 DOI: 10.1159/000357598] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is the most frequent fibrotic diffuse parenchymal lung disease. Its prognosis is devastating: >50% of the patients die within 3 years after diagnosis. Options for the treatment of IPF are limited and lung transplantation is the only 'curative' therapy. Currently, in the absence of validated indicators of disease progression/activity and diagnostic tools, the clinical management of IPF remains a major challenge. A better understanding of the pathogenesis of IPF is critical for the identification of new therapeutic targets as well as molecules that may serve as surrogate markers for clinically significant endpoints. The current paradigm on the mechanisms leading from a normal to a fibrotic lung postulates that chronic epithelial lesion leads to aberrant wound healing activation, which is characterized by deregulated fibroblast proliferation and activation together with an uncontrolled extracellular matrix synthesis. In this review, we shed light on the role of epithelial cell damage in the pathogenesis of fibrosis. Finally, we examine the markers of epithelial damage and their potential use as biomarkers and the future of this continuously expanding field.
Collapse
|
17
|
Abstract
Idiopathic pulmonary fibrosis is currently believed to be driven by alveolar epithelial cells, with abnormally activated alveolar epithelial cells accumulating in an attempt to repair injured alveolar epithelium (1). Thus, targeting the alveolar epithelium to prevent or inhibit the development of pulmonary fibrosis might be an interesting therapeutic option in this disease. Hepatocyte growth factor (HGF) is a growth factor for epithelial and endothelial cells, which is secreted by different cell types, especially fibroblasts and neutrophils. HGF has mitogenic, motogenic, and morphogenic properties and exerts an antiapoptotic action on epithelial and endothelial cells. HGF has also proangiogenic effect. In vitro, HGF inhibits epithelial-to-mesenchymal cell transition and promotes myofibroblast apoptosis. In vivo, HGF has antifibrotic properties demonstrated in experimental models of lung, kidney, heart, skin, and liver fibrosis. Hence, the modulation of HGF may be an attractive target for the treatment of lung fibrosis.
Collapse
|
18
|
The hedgehog system machinery controls transforming growth factor-β-dependent myofibroblastic differentiation in humans: involvement in idiopathic pulmonary fibrosis. THE AMERICAN JOURNAL OF PATHOLOGY 2012; 181:2126-37. [PMID: 23031257 DOI: 10.1016/j.ajpath.2012.08.019] [Citation(s) in RCA: 111] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Revised: 07/24/2012] [Accepted: 08/08/2012] [Indexed: 11/22/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a devastating disease of unknown cause. Key signaling developmental pathways are aberrantly expressed in IPF. The hedgehog pathway plays a key role during fetal lung development and may be involved in lung fibrogenesis. We determined the expression pattern of several Sonic hedgehog (SHH) pathway members in normal and IPF human lung biopsies and primary fibroblasts. The effect of hedgehog pathway inhibition was assayed by lung fibroblast proliferation and differentiation with and without transforming growth factor (TGF)-β1. We showed that the hedgehog pathway was reactivated in the IPF lung. Importantly, we deciphered the cross talk between the hedgehog and TGF-β pathway in human lung fibroblasts. TGF-β1 modulated the expression of key components of the hedgehog pathway independent of Smoothened, the obligatory signal transducer of the pathway. Smoothened was required for TGF-β1-induced myofibroblastic differentiation of control fibroblasts, but differentiation of IPF fibroblasts was partially resistant to Smoothened inhibition. Furthermore, functional hedgehog pathway machinery from the primary cilium, as well as GLI-dependent transcription in the nucleus, was required for the TGF-β1 effects on normal and IPF fibroblasts during myofibroblastic differentiation. These data identify the GLI transcription factors as potential therapeutic targets in lung fibrosis.
Collapse
|
19
|
Kiyohara H, Ishizaki Y, Suzuki Y, Katoh H, Hamada N, Ohno T, Takahashi T, Kobayashi Y, Nakano T. Radiation-induced ICAM-1 expression via TGF-β1 pathway on human umbilical vein endothelial cells; comparison between X-ray and carbon-ion beam irradiation. JOURNAL OF RADIATION RESEARCH 2011; 52:287-292. [PMID: 21343678 DOI: 10.1269/jrr.10061] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Adhesion of inflammatory cells to endothelial cells is considered to be involved in the process of radiation-induced damage and fibrosis. Intercellular adhesion molecule-1 (ICAM-1) and transforming growth factor-beta1 (TGF-β1) are thought to play important roles in this process. In this study, radiation-induced ICAM-1 expression on endothelial cells was investigated with the use of an inhibitor of TGF-β1 receptor kinase (SB431542) and the effects of X-ray and carbon-ion beam were compared. Cell cultures of human umbilical vein endothelial cells (HUVE cells) were incubated with TGF-β1 and irradiated with 140 KV X-ray. Next, HUVE cells were irradiated with X-ray and 220 MeV carbon-ion beam with or without SB431542. Immunofluorescence analysis was used to quantify ICAM-1 expression. The expression of ICAM-1 on HUVE cells was significantly increased by the stimulation with TGF-β1. Expression of ICAM-1 was increased by X-ray and carbon-ion beam irradiation and decreased significantly with SB431542 after both irradiations. The expression of ICAM-1 by 2 Gy of carbon-ion beam irradiation was 6.7 fold higher than that of non-irradiated cells, while 5 Gy of X-ray irradiation increased the expression of ICAM-1 by 2.5 fold. According to ICAM-1 expression, the effect of carbon-ion beam irradiation was about 2.2, 4.4 and 5.0 times greater than that of the same doses of X-ray irradiation (1, 2 and 5 Gy, respectively). The present results suggested that radiation-induced ICAM-1 expression on HUVE cells was, at least partially, regulated by TGF-β1. Carbon-ion beam induced significantly higher ICAM-1 expression than X-ray.
Collapse
Affiliation(s)
- Hiroki Kiyohara
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, Maebashi
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Panganiban RAM, Day RM. Hepatocyte growth factor in lung repair and pulmonary fibrosis. Acta Pharmacol Sin 2011; 32:12-20. [PMID: 21131996 DOI: 10.1038/aps.2010.90] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Pulmonary remodeling is characterized by the permanent and progressive loss of the normal alveolar architecture, especially the loss of alveolar epithelial and endothelial cells, persistent proliferation of activated fibroblasts, or myofibroblasts, and alteration of extracellular matrix. Hepatocyte growth factor (HGF) is a pleiotropic factor, which induces cellular motility, survival, proliferation, and morphogenesis, depending upon the cell type. In the adult, HGF has been demonstrated to play a critical role in tissue repair, including in the lung. Administration of HGF protein or ectopic expression of HGF has been demonstrated in animal models of pulmonary fibrosis to induce normal tissue repair and to prevent fibrotic remodeling. HGF-induced inhibition of fibrotic remodeling may occur via multiple direct and indirect mechanisms including the induction of cell survival and proliferation of pulmonary epithelial and endothelial cells, and the reduction of myofibroblast accumulation.
Collapse
|
21
|
Panganiban RAM, Day RM. Hepatocyte growth factor in lung repair and pulmonary fibrosis. Int J Radiat Biol 2010; 89:656-67. [PMID: 21131996 DOI: 10.3109/09553002.2012.711502] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Pulmonary remodeling is characterized by the permanent and progressive loss of the normal alveolar architecture, especially the loss of alveolar epithelial and endothelial cells, persistent proliferation of activated fibroblasts, or myofibroblasts, and alteration of extracellular matrix. Hepatocyte growth factor (HGF) is a pleiotropic factor, which induces cellular motility, survival, proliferation, and morphogenesis, depending upon the cell type. In the adult, HGF has been demonstrated to play a critical role in tissue repair, including in the lung. Administration of HGF protein or ectopic expression of HGF has been demonstrated in animal models of pulmonary fibrosis to induce normal tissue repair and to prevent fibrotic remodeling. HGF-induced inhibition of fibrotic remodeling may occur via multiple direct and indirect mechanisms including the induction of cell survival and proliferation of pulmonary epithelial and endothelial cells, and the reduction of myofibroblast accumulation.
Collapse
Affiliation(s)
- Ronald Allan M Panganiban
- Department of Pharmacology, Uniformed Services University of Health Sciences, Bethesda, MD 20852, USA
| | | |
Collapse
|
22
|
Yoneda K, Demitsu T, Nakai K, Moriue T, Ogawa W, Igarashi J, Kosaka H, Kubota Y. Activation of vascular endothelial growth factor receptor 2 in a cellular model of loricrin keratoderma. J Biol Chem 2010; 285:16184-94. [PMID: 20236940 DOI: 10.1074/jbc.m109.056424] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Loricrin is a major constituent of the epidermal cornified cell envelope. Recently, heterozygous loricrin gene mutations have been identified in two dominantly inherited skin diseases, Vohwinkel syndrome with ichthyosis and progressive symmetric erythrokeratoderma, collectively termed loricrin keratoderma. We generated stable HaCaT cell lines that express wild-type (WT) loricrin and a mutant form found in Vohwinkel syndrome with ichthyosis, using an ecdysone-inducible promoter system. The cells expressing the mutant loricrin grew more rapidly than those expressing WT loricrin after induction for 5 days. Confocal immunofluorescence microscopy revealed that phospho-Akt occurred in the nucleolus where the mutant loricrin was also located. The level of activity of Akt kinase was about nine times higher in cells with the mutant than in those with WT loricrin. ERK1/2, the epidermal growth factor receptor, vascular endothelial growth factor (VEGF) receptor 2 and Stat3 were all phosphorylated in cells with the mutant loricrin. The docking proteins, Gab1 and c-Cbl, were also tyrosine-phosphorylated in these cells. Furthermore, chromatin immunoprecipitation assays showed that Stat3 protein bound to the VEGF promoter in cells with the mutant. Thus, this study suggests that VEGF release and the subsequent activation of VEGF receptor 2 link loricrin gene mutations to rapid cell proliferation in a cellular model of loricrin keratoderma.
Collapse
Affiliation(s)
- Kozo Yoneda
- Department of Dermatology, Faculty of Medicine, Kagawa University, Kagawa 761-0793, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Abstract
PURPOSE OF REVIEW The lung in systemic sclerosis (scleroderma) is susceptible to fibrosis and the ensuing respiratory insufficiency contributes to significant morbidity and mortality in this disease. The lack of effective therapies for pulmonary fibrosis has spurred a re-evaluation of pathobiological paradigms and therapeutic strategies in scleroderma-associated interstitial lung disease and in idiopathic pulmonary fibrosis. The purpose of this review is to examine emerging new therapeutic targets that modulate pro-fibrotic phenotypes of tissue-resident cells and the associated aberrant tissue remodeling responses in fibrotic disorders. RECENT FINDINGS Progressive forms of tissue fibrosis, including scleroderma, are characterized by an accumulation of activated mesenchymal cells and their secreted extracellular matrix proteins in association with dysrepair of epithelial and endothelial cells. Recent studies suggest that emergence of cellular phenotypes that perpetuate loss of cellular homeostasis is characteristic of many fibrosis-related clinical syndromes. SUMMARY Therapeutic strategies that modulate the fate/phenotype of reparative structural cells, including epithelial, endothelial, and mesenchymal cells, offer new opportunities for the development of more effective drugs for the treatment of fibrosis.
Collapse
|
24
|
Pottier N, Maurin T, Chevalier B, Puisségur MP, Lebrigand K, Robbe-Sermesant K, Bertero T, Lino Cardenas CL, Courcot E, Rios G, Fourre S, Lo-Guidice JM, Marcet B, Cardinaud B, Barbry P, Mari B. Identification of keratinocyte growth factor as a target of microRNA-155 in lung fibroblasts: implication in epithelial-mesenchymal interactions. PLoS One 2009; 4:e6718. [PMID: 19701459 PMCID: PMC2726943 DOI: 10.1371/journal.pone.0006718] [Citation(s) in RCA: 168] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2009] [Accepted: 07/07/2009] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Epithelial-mesenchymal interactions are critical in regulating many aspects of vertebrate embryo development, and for the maintenance of homeostatic equilibrium in adult tissues. The interactions between epithelium and mesenchyme are believed to be mediated by paracrine signals such as cytokines and extracellular matrix components secreted from fibroblasts that affect adjacent epithelia. In this study, we sought to identify the repertoire of microRNAs (miRNAs) in normal lung human fibroblasts and their potential regulation by the cytokines TNF-alpha, IL-1beta and TGF-beta. METHODOLOGY/PRINCIPAL FINDINGS MiR-155 was significantly induced by inflammatory cytokines TNF-alpha and IL-1beta while it was down-regulated by TGF-beta. Ectopic expression of miR-155 in human fibroblasts induced modulation of a large set of genes related to "cell to cell signalling", "cell morphology" and "cellular movement". This was consistent with an induction of caspase-3 activity and with an increase in cell migration in fibroblasts tranfected with miR-155. Using different miRNA bioinformatic target prediction tools, we found a specific enrichment for miR-155 predicted targets among the population of down-regulated transcripts. Among fibroblast-selective targets, one interesting hit was keratinocyte growth factor (KGF, FGF-7), a member of the fibroblast growth factor (FGF) family, which owns two potential binding sites for miR-155 in its 3'-UTR. Luciferase assays experimentally validated that miR-155 can efficiently target KGF 3'-UTR. Site-directed mutagenesis revealed that only one out of the 2 potential sites was truly functional. Functional in vitro assays experimentally validated that miR-155 can efficiently target KGF 3'-UTR. Furthermore, in vivo experiments using a mouse model of lung fibrosis showed that miR-155 expression level was correlated with the degree of lung fibrosis. CONCLUSIONS/SIGNIFICANCE Our results strongly suggest a physiological function of miR-155 in lung fibroblasts. Altogether, this study implicates this miRNA in the regulation by mesenchymal cells of surrounding lung epithelium, making it a potential key player during tissue injury.
Collapse
Affiliation(s)
- Nicolas Pottier
- CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, UMR6097, Sophia Antipolis, France
- University of Nice Sophia-Antipolis, Nice, France
- EA2679, Faculté de Médecine H. Warembourg, Pôle Recherche, Lille, France
| | - Thomas Maurin
- CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, UMR6097, Sophia Antipolis, France
- University of Nice Sophia-Antipolis, Nice, France
| | - Benoit Chevalier
- CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, UMR6097, Sophia Antipolis, France
- University of Nice Sophia-Antipolis, Nice, France
| | - Marie-Pierre Puisségur
- CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, UMR6097, Sophia Antipolis, France
- University of Nice Sophia-Antipolis, Nice, France
| | - Kevin Lebrigand
- CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, UMR6097, Sophia Antipolis, France
- University of Nice Sophia-Antipolis, Nice, France
| | - Karine Robbe-Sermesant
- CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, UMR6097, Sophia Antipolis, France
- University of Nice Sophia-Antipolis, Nice, France
| | - Thomas Bertero
- CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, UMR6097, Sophia Antipolis, France
- University of Nice Sophia-Antipolis, Nice, France
| | | | - Elisabeth Courcot
- EA2679, Faculté de Médecine H. Warembourg, Pôle Recherche, Lille, France
| | - Géraldine Rios
- CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, UMR6097, Sophia Antipolis, France
- University of Nice Sophia-Antipolis, Nice, France
| | - Sandra Fourre
- CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, UMR6097, Sophia Antipolis, France
- University of Nice Sophia-Antipolis, Nice, France
| | | | - Brice Marcet
- CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, UMR6097, Sophia Antipolis, France
- University of Nice Sophia-Antipolis, Nice, France
| | - Bruno Cardinaud
- CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, UMR6097, Sophia Antipolis, France
- University of Nice Sophia-Antipolis, Nice, France
| | - Pascal Barbry
- CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, UMR6097, Sophia Antipolis, France
- University of Nice Sophia-Antipolis, Nice, France
- * E-mail: (PB); (BM)
| | - Bernard Mari
- CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, UMR6097, Sophia Antipolis, France
- University of Nice Sophia-Antipolis, Nice, France
- * E-mail: (PB); (BM)
| |
Collapse
|
25
|
Gupte VV, Ramasamy SK, Reddy R, Lee J, Weinreb PH, Violette SM, Guenther A, Warburton D, Driscoll B, Minoo P, Bellusci S. Overexpression of fibroblast growth factor-10 during both inflammatory and fibrotic phases attenuates bleomycin-induced pulmonary fibrosis in mice. Am J Respir Crit Care Med 2009; 180:424-36. [PMID: 19498056 DOI: 10.1164/rccm.200811-1794oc] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE Fibroblast growth factor-10 (FGF10) controls survival, proliferation, and differentiation of distal-alveolar epithelial progenitor cells during lung development. OBJECTIVES To test for the protective and regenerative effect of Fgf10 overexpression in a bleomycin-induced mouse model of pulmonary inflammation and fibrosis. METHODS In SP-C-rtTA; tet(O)Fgf10 double-transgenic mice, lung fibrosis was induced in 2-month-old transgenic mice by subcutaneous delivery of bleomycin (BLM), using an osmotic minipump for 1 week. Exogenous Fgf10 expression in the alveolar epithelium was induced for 7 days with doxycycline during the first, second, and third weeks after bleomycin pump implantation, and lungs were examined at 28 days. MEASUREMENTS AND MAIN RESULTS Fgf10 overexpression during Week 1 (inflammatory phase) resulted in increased survival and attenuated lung fibrosis score and collagen deposition. In these Fgf10-overexpressing mice, an increase in regulatory T cells and a reduction in both transforming growth factor-beta(1) and matrix metalloproteinase-2 activity were observed in bronchoalveolar lavage fluids whereas the number of surfactant protein C (SP-C)-positive, alveolar epithelial type II cells (AEC2) was markedly elevated. Analysis of SP-C and TUNEL (terminal deoxynucleotidyltransferase dUTP nick end labeling) double-positive cells and isolation of AEC2 from lungs overexpressing Fgf10 demonstrated increased AEC2 survival. Expression of Fgf10 during Weeks 2 and 3 (fibrotic phase) showed significant attenuation of the lung fibrosis score and collagen deposition. CONCLUSIONS In the bleomycin model of lung inflammation and fibrosis, Fgf10 overexpression during both the inflammatory and fibrotic phases results in a greatly reduced extent of lung fibrosis, suggesting that FGF10 may be useful as a novel approach to the treatment of pulmonary fibrosis.
Collapse
Affiliation(s)
- Varsha V Gupte
- Division of Surgery, Saban Research Institute of Children's Hospital Los Angeles, University of Southern California, Keck School of Medicine, Los Angeles, CA 90027, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Hoyles RK, Khan K, Shiwen X, Howat SL, Lindahl GE, Leoni P, du Bois RM, Wells AU, Black CM, Abraham DJ, Denton CP. Fibroblast-specific perturbation of transforming growth factor β signaling provides insight into potential pathogenic mechanisms of scleroderma-associated lung fibrosis: Exaggerated response to alveolar epithelial injury in a novel mouse model. ACTA ACUST UNITED AC 2008; 58:1175-88. [DOI: 10.1002/art.23379] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
27
|
Marchal-Sommé J, Uzunhan Y, Marchand-Adam S, Kambouchner M, Valeyre D, Crestani B, Soler P. Dendritic Cells Accumulate in Human Fibrotic Interstitial Lung Disease. Am J Respir Crit Care Med 2007; 176:1007-14. [PMID: 17717200 DOI: 10.1164/rccm.200609-1347oc] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
RATIONALE There is growing evidence that resident cells, such as fibroblasts and epithelial cells, can drive the persistent accumulation of dendritic cells (DCs) in chronically inflamed tissue, leading to the organization and the maintenance of ectopic lymphoid aggregates. This phenomenon, occurring through a chemokine-mediated retention mechanism, has been documented in various disorders, but not in fibrotic interstitial lung disorders in which the presence of organized lymphoid follicles has been documented. OBJECTIVES To characterize the distribution of DCs in fibrotic lung, and to analyze the expression of the main chemokines known to regulate DC recruitment. METHODS Lung resection tissue (lungs with idiopathic pulmonary fibrosis; n = 12; lungs with nonspecific interstitial pneumonia, n = 5; control lungs, n = 5) was snap-frozen for subsequent immunohistochemical techniques on serial sections and reverse transcriptase-polymerase chain reaction analysis. MEASUREMENTS AND MAIN RESULTS Results were similar in idiopathic pulmonary fibrosis and nonspecific interstitial pneumonia lungs, which were heavily infiltrated by immature DCs in established fibrosis and in areas of epithelial hyperplasia. Altered epithelial cells and fibroblasts, particularly in fibroblastic foci, frankly expressed all chemokines (CCL19, CCL20, CCL22, and CXCL12) susceptible to favor the recruitment of immune cells. Lymphoid follicles were infiltrated by maturing DCs, which could originate from the pool of DCs accumulating in their vicinity. CONCLUSIONS These findings suggest that resident cells in pulmonary fibrosis can sustain chronic inflammation by driving the accumulation of DCs with the potential to mature locally within ectopic lymphoid follicles. Future strategies should consider DCs or chemokines as therapeutic targets in the treatment of pulmonary fibrosis.
Collapse
Affiliation(s)
- Joëlle Marchal-Sommé
- Inserm, U 700, and Faculté de Médecine Paris-Nord, site Bichat, Université Paris 7, Paris, France
| | | | | | | | | | | | | |
Collapse
|
28
|
Zhou X, Hu H, Huynh MLN, Kotaru C, Balzar S, Trudeau JB, Wenzel SE. Mechanisms of tissue inhibitor of metalloproteinase 1 augmentation by IL-13 on TGF-beta 1-stimulated primary human fibroblasts. J Allergy Clin Immunol 2007; 119:1388-97. [PMID: 17418380 DOI: 10.1016/j.jaci.2007.02.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2006] [Revised: 02/02/2007] [Accepted: 02/05/2007] [Indexed: 11/23/2022]
Abstract
BACKGROUND TGF-beta induces expression of tissue inhibitor of metalloproteinase 1 (TIMP-1), a potent inhibitor of matrix metalloproteinases that controls extracellular matrix metabolism and deposition. IL-13 alone does not induce TIMP-1, but in combination with TGF-beta it augments TIMP-1 expression. Although these interactions have implications for remodeling in asthma, little is understood regarding the mechanisms controlling TIMP-1 product. OBJECTIVE To explore the role of Smads and mitogen-activated protein kinase kinase (MEK)-extracellular signal-regulated kinase (ERK) in the TIMP-1 augmentation by IL-13+TGF-beta1 in primary human airway fibroblasts. METHODS Real-time PCR, Western blot, ELISA, and transient transfection were used to evaluate the mechanisms of TIMP-1 augmentation. RESULTS IL-13 enhanced TGF-beta1-induced Smad-2 and Smad-3 phosphorylation, transient transfection with dominant-negative Smad-2 or Smad-3 decreased TIMP-1 mRNA expression in the presence of TGF-beta1 and IL-13+TGF-beta1 through inhibition of Smad-2 or Smad-3 phosphorylation. ERK phosphorylation was increased by IL-13 and IL-13+TGF-beta1. MEK-ERK inhibition decreased TIMP-1 mRNA/protein to a greater degree after IL-13+TGF-beta1 stimulation versus TGF-beta1 alone. MEK-ERK inhibition also significantly increased Akt phosphorylation under all conditions and decreased Smad-3 phosphorylation in the presence of IL-13+TGF-beta1. In contrast, phosphoinositide-3 kinase-Akt inhibition increased phosphorylation of ERK and Smads, leading to increased TIMP-1. CONCLUSION These results indicate that IL-13 augments TGF-beta1-induced TIMP-1 expression through increased Smad phosphorylation. These increases occur as TGF-beta1 downregulates IL-13-induced phosphoinositide-3 kinase activation while leaving the positive effect of IL-13-induced ERK on Smad signaling. CLINICAL IMPLICATIONS This augmentation of TGF-beta1-induced TIMP-1 by IL-13 could contribute to the fibrosis and airway remodeling seen in the presence of T(H)2 inflammation in asthma.
Collapse
Affiliation(s)
- Xiuxia Zhou
- University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | | | | | | | | | | | | |
Collapse
|
29
|
Horowitz JC, Thannickal VJ. Epithelial-mesenchymal interactions in pulmonary fibrosis. Semin Respir Crit Care Med 2007; 27:600-12. [PMID: 17195137 PMCID: PMC2225581 DOI: 10.1055/s-2006-957332] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Pulmonary fibrosis represents the sequelae of a variety of acute and chronic lung injuries of known and unknown etiologies. Tissue specimens obtained from patients with pulmonary fibrosis, regardless of the etiology, consistently show evidence of an ongoing wound-repair response. Epithelial-mesenchymal interactions have critical roles in normal lung development, tissue repair processes, and fibrosis. Current hypotheses propose that dysregulated function of, and impaired communication between, epithelial and mesenchymal cells prevent resolution of the wound-repair response and contribute to the pathobiology of pulmonary fibrosis. This hypothesis is supported by abundant evidence from patients, animal models, and cell-culture studies demonstrating abnormalities in epithelial cell and mesenchymal cell activities including proliferation, differentiation, and survival. This article reviews the aberrant epithelial and mesenchymal cellular phenotypes found in the context of pulmonary fibrosis and discusses the mechanisms that perpetuate these cellular phenotypes.
Collapse
Affiliation(s)
- Jeffrey C Horowitz
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Michigan Medical Center, Ann Arbor, Michigan 48109, USA.
| | | |
Collapse
|
30
|
Marchand-Adam S, Fabre A, Mailleux AA, Marchal J, Quesnel C, Kataoka H, Aubier M, Dehoux M, Soler P, Crestani B. Defect of Pro-Hepatocyte Growth Factor Activation by Fibroblasts in Idiopathic Pulmonary Fibrosis. Am J Respir Crit Care Med 2006; 174:58-66. [PMID: 16574935 DOI: 10.1164/rccm.200507-1074oc] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
RATIONALE AND OBJECTIVES Hepatocyte growth factor (HGF) protects against lung fibrosis in several animal models. Pro-HGF activation to HGF is subjected to regulation by its activator (HGFA), a serine protease, and HGFA-specific inhibitors (HAI-1 and HAI-2). Our hypothesis was that fibroblasts from patients with idiopathic pulmonary fibrosis (IPF) had an altered capacity to activate pro-HGF in vitro compared with control fibroblasts. METHODS We measured the kinetics of pro-HGF activation in human lung fibroblasts from control subjects and from patients with IPF by Western blot. HGFA, HAI-1, and HAI-2 expression was evaluated by immunohistochemistry, RNA protection assay, and Western blot. We evaluated the effect of TGF-beta(1) and PGE(2) on pro-HGF activation and HGFA, HAI-1, and HAI-2 expression. MAIN RESULTS Lung fibroblasts activated pro-HGF in vitro. Pro-HGF activation was inhibited by serine protease inhibitors, by an anti-HGFA antibody, as well as by HAI-1 and HAI-2. Pro-HGF activation by IPF fibroblasts was reduced compared with control fibroblasts. In IPF fibroblasts, HGFA expression was lower and HAI-1 and HAI-2 expression was higher compared with control fibroblasts. PGE(2) stimulated pro-HGF activation through increased expression of HGFA and decreased expression of its inhibitor HAI-2. In contrast, TGF-beta(1) reduced the ability of lung fibroblasts to activate pro-HGF through decreased expression of HGFA and increased expression of its inhibitors. CONCLUSIONS IPF fibroblasts have a low capacity to activate pro-HGF in vitro via a low level of HGFA expression and high levels of HAI-1 and HAI-2 expression, and PGE(2) is able to partially correct this defect.
Collapse
Affiliation(s)
- Sylvain Marchand-Adam
- Inserm Unit 700, Institut National de la Santé et de la Recherche Medicale, Faculté Xavier Bichat, Paris, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive, and usually fatal pulmonary disease for which there are no proven drug therapies. Anti-inflammatory and immunosuppressive agents have been largely ineffective. The precise relationship of IPF to other idiopathic interstitial pneumonias (IIPs) is not known, despite the observation that different histopathologic patterns of IIP may coexist in the same patient. We propose that these different histopathologic 'reaction' patterns may be determined by complex interactions between host and environmental factors that alter the local alveolar milieu. Recent paradigms in IPF pathogenesis have focused on dysregulated epithelial-mesenchymal interactions, an imbalance in T(H)1/T(H)2 cytokine profile and potential roles for aberrant angiogenesis. In this review, we discuss these evolving concepts in disease pathogenesis and emerging therapies designed to target pro-fibrogenic pathways in IPF.
Collapse
Affiliation(s)
| | - Victor J. Thannickal
- Address correspondence to: Victor J. Thannickal, M.D. Division of Pulmonary and Critical Care Medicine University of Michigan Medical Center 6301 MSRB III 1150 W. Medical Center Dr. Ann Arbor, Michigan 48109 United States of America Phone: 734−936−9371 Fax: 734−764−4556 e-mail:
| |
Collapse
|