1
|
Tran PNT, Limothai U, Dinhuzen J, Tachaboon S, Sukmark T, Dokpong C, Roytrakul S, Haake DA, Srisawat N. MicroRNA biomarkers and host response pathways in severe pulmonary hemorrhagic syndrome due to leptospirosis: A multi-omics study. J Infect 2025; 90:106400. [PMID: 39793739 DOI: 10.1016/j.jinf.2024.106400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 12/08/2024] [Accepted: 12/23/2024] [Indexed: 01/13/2025]
Abstract
BACKGROUND Severe pulmonary hemorrhagic syndrome (SPHS) remains a fatal complication of leptospirosis with poorly understood mechanisms and an urgent need for effective biomarkers. METHODS A nested case-control analysis was conducted using blood specimens from two previous Thai leptospirosis cohorts. Candidate microRNAs were initially discovered through a global profiling of 798 serum microRNAs in five SPHS and seven non-SPHS patients, and then validated using real-time polymerase chain reactions in 168 patients. Pathways enriched from microRNA targets were compared to those from an integrated transcriptomic-proteomic analysis. Proteins pertaining to the key resulting pathway were measured to validate significance and reveal correlation with microRNA biomarkers. RESULTS Serum microRNA profiling revealed a total of 81 significantly expressed microRNAs, of which seven were selected for further validation in the whole cohort of 168 leptospirosis patients, including 28 in SPHS and 140 nonSPHS groups. Among the selected microRNAs, miR-5010-3p and miR-147b-3p had significantly higher expression in SPHS group compared to nonSPHS group, with consistently higher expression after adjusting for age, sex, days of illness, comorbidity, smoking status or recruitment site. The two had area under the curve (AUC) values of 0.76 (95% CI: 0.67-0.85) and 0.70 (95% CI: 0.56-0.81) for discriminating SPHS, respectively. These microRNAs also exhibited consistent AUC values in patients tested before chest radiograph shadows manifested. Combination of miR-5010-3p with miR-548ai and miR-224-5p, as selected by Bayesian Model Averaging algorithm, substantially boosts the AUC value to 0.86 (95% CI: 0.77-0.94). The miRNA biomarkers also enhanced the predictive values of a previously validated clinical model, increasing AUC value from 0.87 to 0.92 with a significant reclassification net index. Multi-omics pathway analysis incorporating microRNA targets and transcriptomic-proteomic data suggested TNF signaling as among the key pathways. In validation, seven out of ten pathway proteins were significantly different between groups, with principal components correlated with severity and miR-5010-3p. CONCLUSIONS MiR-5010-3p and miR-147b-3p are novel biomarkers with good predictability and potential relevance with TNF signaling pathway, an important host response mechanism in leptospirosis SPHS.
Collapse
Affiliation(s)
- Phu Nguyen Trong Tran
- Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Excellence Center for Critical Care Nephrology, King Chulalongkorn Memorial Hospital, Bangkok, Thailand; Department of Internal Medicine, Faculty of Medicine, Can Tho University of Medicine and Pharmacy, Can Tho, Vietnam
| | - Umaporn Limothai
- Excellence Center for Critical Care Nephrology, King Chulalongkorn Memorial Hospital, Bangkok, Thailand; Tropical Medicine Cluster, Chulalongkorn University, Bangkok, Thailand
| | - Janejira Dinhuzen
- Excellence Center for Critical Care Nephrology, King Chulalongkorn Memorial Hospital, Bangkok, Thailand; Tropical Medicine Cluster, Chulalongkorn University, Bangkok, Thailand
| | - Sasipha Tachaboon
- Excellence Center for Critical Care Nephrology, King Chulalongkorn Memorial Hospital, Bangkok, Thailand; Tropical Medicine Cluster, Chulalongkorn University, Bangkok, Thailand
| | | | | | - Sittiruk Roytrakul
- National Center for Genetic Engineering and Biotechnology (BIOTEC), Pathum Thani, Thailand
| | - David A Haake
- Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA, USA; The David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Nattachai Srisawat
- Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Excellence Center for Critical Care Nephrology, King Chulalongkorn Memorial Hospital, Bangkok, Thailand; Tropical Medicine Cluster, Chulalongkorn University, Bangkok, Thailand; Division of Nephrology, Department of Medicine, Faculty of Medicine, King Chulalongkorn Memorial Hospital, Bangkok, Thailand; Center for Critical Care Nephrology, The CRISMA Center, Department of Critical Care Medicine, University of Pittsburgh, School of Medicine, Pittsburgh, PA, USA; Academy of Science, Royal Society of Thailand, Bangkok, Thailand.
| |
Collapse
|
2
|
Wang S, Chen H, Li Z, Xu G, Bao X. Hyperbaric oxygen-induced acute lung injury: A mouse model study on pathogenic characteristics and recovery dynamics. Front Physiol 2024; 15:1474933. [PMID: 39493864 PMCID: PMC11527661 DOI: 10.3389/fphys.2024.1474933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 10/09/2024] [Indexed: 11/05/2024] Open
Abstract
Oxygen is an essential substance for the maintenance of human life. It is also widely used in clinical and diving medicine. Although oxygen is crucial for survival, too much oxygen can be harmful. Excessive oxygen inhalation in a short period of time can lead to injury, and the lung is one of the main target organs. Acute lung injury (ALI) induced by hyperbaric oxygen (HBO) is notably more severe than that caused by normobaric oxygen, yet systematic research on such injury and its regression is scarce. In this study, two independent experiments were designed. In the first experiment, mice were exposed to 2 atmospheres absolute (ATA), ≥95% oxygen for 2, 4, 6, and 8 h. Changes in lung histopathology, inflammation and expression of chemokines, alveolar-capillary barrier, and 8-OHdG were detected before and after the exposure. In the second experiment, these parameters were measured at 0 h, 12 h, and 24 h following 6 h of exposure to 2 ATA of ≥95% oxygen. Research indicates that ALI induced by HBO is characterized histologically by alveolar expansion, atelectasis, inflammatory cell infiltration, and hemorrhage. At 2 ATA, significant changes in the alveolar-capillary barrier were observed after more than 95% oxygen exposure for 4 h, as evidenced by increased Evans blue (EB) extravasation (p = 0.0200). After 6 h of HBO exposure, lung tissue pathology scores, 8-OHdG levels, and inflammatory and chemotactic factors (such as Il6, CCL2, CCL3, CXCL5, and CXCL10), intercellular adhesion molecule 1 (ICAM1), and vascular cell adhesion molecule 1 (VCAM1) were significantly elevated. Compared to lung injury caused by normobaric oxygen, the onset time of injury was significantly shortened. Additionally, it was observed that these markers continued to increase after leaving the HBO environment, peaking at 12 h and starting to recover at 24 h, indicating that the peak of inflammatory lung injury occurs within 12 h post-exposure, with recovery beginning at 24 h. This contradicts the common belief that lung injury is alleviated upon removal from a high-oxygen environment. However, EB levels, which reflect damage to the alveolar-capillary barrier, and VE-Cadherin (VE-Cad), tight junction protein 1 (ZO-1), ICAM1, and VCAM1 remained significantly altered 24 h after leaving the HBO environment. This suggests that the alveolar-capillary barrier is the most sensitive and slowest recovering part of the lung injury induced by HBO. These findings can provide insights into the pathogenesis and progression of lung injury caused by HBO and offer references for identifying corresponding intervention targets.
Collapse
Affiliation(s)
- Shu Wang
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Department of Diving and Hyperbaric Medicine, Naval Medical Center, Shanghai, China
| | - Hong Chen
- Cadre Diagnosis and Treatment Department, The General Hospital of the People’s Liberation Army, Beijing, China
| | - Zhi Li
- The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Guangxu Xu
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiaochen Bao
- Department of Diving and Hyperbaric Medicine, Naval Medical Center, Shanghai, China
| |
Collapse
|
3
|
Lee HS, Ryu YJ, Lee MJ. Protective effect of recombinant interleukin-10 on newborn rat lungs exposed to short-term sublethal hyperoxia. Clin Exp Pediatr 2024; 67:540-549. [PMID: 39327683 PMCID: PMC11471917 DOI: 10.3345/cep.2024.01221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/19/2024] [Accepted: 09/19/2024] [Indexed: 09/28/2024] Open
Abstract
BACKGROUND Lung injury imposed by hyperoxia is the main cause of bronchopulmonary dysplasia in newborns. These injuries are generated from the early stage of hyperoxia through the main biologic effects of cell death and inflammatory response. Interleukin (IL)-10 is a potent anti-inflammatory cytokine that may have the inhibitory effects on these biologic actions induced by hyperoxia. PURPOSE Based on our former in vitro studies investigating the effect of recombinant IL-10 (rIL-10) on protecting cultured alveolar type II cells exposed to short-term hyperoxia, we performed the in vivo study to investigate the effect of rIL-10 in newborn rats aged P4 exposed to hyperoxia. METHODS Rats were classified into 3 groups; the control group exposed to normoxia for 24 hours; the hyperoxia group exposed to 65% hyperoxia for 24 hours; and the IL10 group treated with intratracheal instillation of rIL-10 prior to exposure to 65% hyperoxia for 24 hours. Following each treatment, the rats were euthanized. Individual lobes of the right lung were prepared for hematoxyling and eosin (H&E) staining and immunohistochemical staining for thyroid transcription factor-1 (TTF1). Bronchoalveolar lavage (BAL) was performed in the left lung to analyze cell counts and cytokines. RESULTS The IL10 group showed preserved air spaces similar to the control group, with decreased cellularity compared to the hyperoxia group, whereas the hyperoxia group showed markedly reduced air spaces with increased cellularity compared to the IL10 group. And, the IL10 group showed more TTF1-positive cells, which represented alveolar type II cells, compared to the hyperoxia group. Inflammatory cells, such as neutrophils and lymphocytes and proinflammatory cytokines of tumor necrosis factor-α, IL-1α, IL-8, and macrophage inflammatory protein-1α were significantly lower in BAL fluid of the IL10 group compared to the hyperoxia group. CONCLUSION These results indicate that rIL-10 may be a promising pharmaceutical measure for protecting newborn lungs from injury induced at the early stage of hyper oxia.
Collapse
Affiliation(s)
- Hyeon-Soo Lee
- Department of Pediatrics, Uijeongbu Eulji Medical Center, Eulji University College of Medicine, Uijeongbu, Korea
| | - Young-Joon Ryu
- Clinical Pathology, Kangwon National University Hospital, Kangwon National University School of Medicine, Chuncheon, Korea
| | - Min-Jae Lee
- College of Veterinary Medicine, Kangwon National University, Chuncheon, Korea
| |
Collapse
|
4
|
Toya S, Struyf S, Huerta L, Morris P, Gavioli E, Minnella EM, Cesta MC, Allegretti M, Proost P. A narrative review of chemokine receptors CXCR1 and CXCR2 and their role in acute respiratory distress syndrome. Eur Respir Rev 2024; 33:230172. [PMID: 39048127 PMCID: PMC11267298 DOI: 10.1183/16000617.0172-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 05/15/2024] [Indexed: 07/27/2024] Open
Abstract
Acute respiratory distress syndrome (ARDS) is a severe form of acute respiratory failure characterised by extensive inflammatory injury to the alveolocapillary barrier leading to alveolar oedema, impaired gas exchange and, ultimately, hypoxaemia necessitating the use of supplemental oxygen combined with some degree of positive airway pressure. Although much heterogeneity exists regarding the aetiology, localisation and endotypic characterisation of ARDS, what remains largely undisputed is the role of the innate immune system, and in particular of neutrophils, in precipitating and propagating lung injury. Activated neutrophils, recruited to the lung through chemokine gradients, promote injury by releasing oxidants, proteases and neutrophil extracellular traps, which ultimately cause platelet aggregation, microvascular thrombosis and cellular death. Among various neutrophilic chemoattractants, interleukin-8/C-X-C motif ligand 8 and related chemokines, collectively called ELR+ chemokines, acting on neutrophils through the G protein-coupled receptors CXCR1 and CXCR2, are pivotal in orchestrating the neutrophil activation status and chemotaxis in the inflamed lung. This allows efficient elimination of infectious agents while at the same time minimising collateral damage to host tissue. Therefore, understanding how CXCR1 and CXCR2 receptors are regulated is important if we hope to effectively target them for therapeutic use in ARDS. In the following narrative review, we provide an overview of the role of ELR+ chemokines in acute lung injury (ALI) and ARDS, we summarise the relevant regulatory pathways of their cognisant receptors CXCR1/2 and highlight current preclinical and clinical evidence on the therapeutic role of CXCR1 and CXCR2 inhibition in animal models of ALI, as well as in ARDS patients.
Collapse
Affiliation(s)
| | - Sofie Struyf
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Leuven, Belgium
| | - Luis Huerta
- Keck School of Medicine of USC, Department of Medicine, Pulmonary and Critical Care Medicine, Los Angeles, CA, USA
| | - Peter Morris
- The University of Alabama at Birmingham, Department of Medicine, Pulmonary, Allergy, and Critical Care Medicine, Birmingham, AL, USA
| | | | | | | | | | - Paul Proost
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Leuven, Belgium
| |
Collapse
|
5
|
Zeng H, Zhou Y, Liu Z, Liu W. MiR-21-5p modulates LPS-induced acute injury in alveolar epithelial cells by targeting SLC16A10. Sci Rep 2024; 14:11160. [PMID: 38750066 PMCID: PMC11096310 DOI: 10.1038/s41598-024-61777-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 05/09/2024] [Indexed: 05/18/2024] Open
Abstract
Sepsis is a systemic inflammatory response syndrome resulting from the invasion of the human body by bacteria and other pathogenic microorganisms. One of its most prevalent complications is acute lung injury, which places a significant medical burden on numerous countries and regions due to its high morbidity and mortality rates. MicroRNA (miRNA) plays a critical role in the body's inflammatory response and immune regulation. Recent studies have focused on miR-21-5p in the context of acute lung injury, but its role appears to vary in different models of this condition. In the LPS-induced acute injury model of A549 cells, there is differential expression, but the specific mechanism remains unclear. Therefore, our aim is to investigate the changes in the expression of miR-21-5p and SLC16A10 in a type II alveolar epithelial cell injury model induced by LPS and explore the therapeutic effects of their targeted regulation. A549 cells were directly stimulated with 10 µg/ml of LPS to construct a model of LPS-induced cell injury. Cells were collected at different time points and the expression of interleukin 1 beta (IL-1β), tumor necrosis factor-α (TNF-α) and miR-21-5p were measured by RT-qPCR and western blot. Then miR-21-5p mimic transfection was used to up-regulate the expression of miR-21-5p in A549 cells and the expression of IL-1β and TNF-α in each group of cells was measured by RT-qPCR and western blot. The miRDB, TargetScan, miRWalk, Starbase, Tarbase and miR Tarbase databases were used to predict the miR-21-5p target genes and simultaneously, the DisGeNet database was used to search the sepsis-related gene groups. The intersection of the two groups was taken as the core gene. Luciferase reporter assay further verified SLC16A10 as the core gene with miR-21-5p. The expression of miR-21-5p and SLC16A10 were regulated by transfection or inhibitors in A549 cells with or without LPS stimulation. And then the expression of IL-1β and TNF-α in A549 cells was tested by RT-qPCR and western blot in different groups, clarifying the role of miR-21-5p-SLC16A10 axis in LPS-induced inflammatory injury in A549 cells. (1) IL-1β and TNF-α mRNA and protein expression significantly increased at 6, 12, and 24 h after LPS stimulation as well as the miR-21-5p expression compared with the control group (P < 0.05). (2) After overexpression of miR-21-5p in A549 cells, the expression of IL-1β and TNF-α was significantly reduced after LPS stimulation, suggesting that miR-21-5p has a protection against LPS-induced injury. (3) The core gene set, comprising 51 target genes of miR-21-5p intersecting with the 1448 sepsis-related genes, was identified. This set includes SLC16A10, TNPO1, STAT3, PIK3R1, and FASLG. Following a literature review, SLC16A10 was selected as the ultimate target gene. Dual luciferase assay results confirmed that SLC16A10 is indeed a target gene of miR-21-5p. (4) Knocking down SLC16A10 expression by siRNA significantly reduced the expression of IL-1β and TNF-α in A549 cells after LPS treatment (P < 0.05). (5) miR-21-5p inhibitor increased the expression levels of IL-1β and TNF-α in A549 cells after LPS stimulation (P < 0.05). In comparison to cells solely transfected with miR-21-5p inhibitor, co-transfection of miR-21-5p inhibitor and si-SLC6A10 significantly reduced the expression of IL-1β and TNF-α (P < 0.05). MiR-21-5p plays a protective role in LPS-induced acute inflammatory injury of A549 cells. By targeting SLC16A10, it effectively mitigates the inflammatory response in A549 cells induced by LPS. Furthermore, SLC16A10 holds promise as a potential target for the treatment of acute lung injury.
Collapse
Affiliation(s)
- Huanan Zeng
- Emergency Department, The First Hospital of China Medical University, No.155 of North Street Nanjing, Heping District, Shenyang, 110001, Liaoning, China
| | - Yuqing Zhou
- Emergency Department, The First Hospital of China Medical University, No.155 of North Street Nanjing, Heping District, Shenyang, 110001, Liaoning, China
| | - Zhi Liu
- Emergency Department, The First Hospital of China Medical University, No.155 of North Street Nanjing, Heping District, Shenyang, 110001, Liaoning, China.
| | - Wei Liu
- Emergency Department, The First Hospital of China Medical University, No.155 of North Street Nanjing, Heping District, Shenyang, 110001, Liaoning, China.
| |
Collapse
|
6
|
Quin C, DeJong EN, Cook EK, Luo YZ, Vlasschaert C, Sadh S, McNaughton AJ, Buttigieg MM, Breznik JA, Kennedy AE, Zhao K, Mewburn J, Dunham-Snary KJ, Hindmarch CC, Bick AG, Archer SL, Rauh MJ, Bowdish DM. Neutrophil-mediated innate immune resistance to bacterial pneumonia is dependent on Tet2 function. J Clin Invest 2024; 134:e171002. [PMID: 38573824 PMCID: PMC11142737 DOI: 10.1172/jci171002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 03/27/2024] [Indexed: 04/06/2024] Open
Abstract
Individuals with clonal hematopoiesis of indeterminate potential (CHIP) are at increased risk of aging related health conditions and all-cause mortality, but whether CHIP affects risk of infection is much less clear. Using UK Biobank data, we revealed a positive association between CHIP and incident pneumonia in 438,421 individuals. We show that inflammation enhanced pneumonia risk, as CHIP carriers with a hypomorphic IL6 receptor polymorphism were protected. To better characterize the pathways of susceptibility, we challenged hematopoietic Tet Methylcytosine Dioxygenase 2-knockout (Tet2-/-) and floxed control mice (Tet2fl/fl) with Streptococcus pneumoniae. As with human CHIP carriers, Tet2-/- mice had hematopoietic abnormalities resulting in the expansion of inflammatory monocytes and neutrophils in peripheral blood. Yet, these cells were insufficient in defending against S. pneumoniae and resulted in increased pathology, impaired bacterial clearance, and higher mortality in Tet2-/- mice. We delineated the transcriptional landscape of Tet2-/- neutrophils and found that, while inflammation-related pathways were upregulated in Tet2-/- neutrophils, migration and motility pathways were compromised. Using live-imaging techniques, we demonstrated impairments in motility, pathogen uptake, and neutrophil extracellular trap (NET) formation by Tet2-/- neutrophils. Collectively, we show that CHIP is a risk factor for bacterial pneumonia related to innate immune impairments.
Collapse
Affiliation(s)
- Candice Quin
- Department of Medicine, Faculty of Health Sciences, McMaster University, Hamilton, Ontario, Canada
- Firestone Institute for Respiratory Health, St. Joseph’s Healthcare, Hamilton, Ontario, Canada
- Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, United Kingdom
| | - Erica N. DeJong
- Department of Medicine, Faculty of Health Sciences, McMaster University, Hamilton, Ontario, Canada
- Firestone Institute for Respiratory Health, St. Joseph’s Healthcare, Hamilton, Ontario, Canada
| | - Elina K. Cook
- Department of Pathology and Molecular Medicine, Faculty of Health Sciences
| | - Yi Zhen Luo
- Department of Pathology and Molecular Medicine, Faculty of Health Sciences
| | | | - Sanathan Sadh
- Department of Pathology and Molecular Medicine, Faculty of Health Sciences
| | | | - Marco M. Buttigieg
- Department of Pathology and Molecular Medicine, Faculty of Health Sciences
| | - Jessica A. Breznik
- Department of Medicine, Faculty of Health Sciences, McMaster University, Hamilton, Ontario, Canada
- Firestone Institute for Respiratory Health, St. Joseph’s Healthcare, Hamilton, Ontario, Canada
| | - Allison E. Kennedy
- Department of Medicine, Faculty of Health Sciences, McMaster University, Hamilton, Ontario, Canada
- Firestone Institute for Respiratory Health, St. Joseph’s Healthcare, Hamilton, Ontario, Canada
| | - Kevin Zhao
- Department of Medicine, Faculty of Health Sciences, McMaster University, Hamilton, Ontario, Canada
- Firestone Institute for Respiratory Health, St. Joseph’s Healthcare, Hamilton, Ontario, Canada
| | | | | | - Charles C.T. Hindmarch
- Department of Medicine
- Queen’s CardioPulmonary Unit, Queen’s University, Kingston, Ontario, Canada
| | - Alexander G. Bick
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Stephen L. Archer
- Department of Medicine
- Queen’s CardioPulmonary Unit, Queen’s University, Kingston, Ontario, Canada
| | - Michael J. Rauh
- Department of Pathology and Molecular Medicine, Faculty of Health Sciences
| | - Dawn M.E. Bowdish
- Department of Medicine, Faculty of Health Sciences, McMaster University, Hamilton, Ontario, Canada
- Firestone Institute for Respiratory Health, St. Joseph’s Healthcare, Hamilton, Ontario, Canada
| |
Collapse
|
7
|
Nascimento M, Huot-Marchand S, Fanny M, Straube M, Le Bert M, Savigny F, Apetoh L, Van Snick J, Trovero F, Chamaillard M, Quesniaux VFJ, Ryffel B, Gosset P, Gombault A, Riteau N, Sokol H, Couillin I. NLRP6 controls pulmonary inflammation from cigarette smoke in a gut microbiota-dependent manner. Front Immunol 2023; 14:1224383. [PMID: 38146368 PMCID: PMC10749332 DOI: 10.3389/fimmu.2023.1224383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 11/20/2023] [Indexed: 12/27/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a major health issue primarily caused by cigarette smoke (CS) and characterized by breathlessness and repeated airway inflammation. NLRP6 is a cytosolic innate receptor controlling intestinal inflammation and orchestrating the colonic host-microbial interface. However, its roles in the lungs remain largely unexplored. Using CS exposure models, our data show that airway inflammation is strongly impaired in Nlrp6-deficient mice with drastically fewer recruited neutrophils, a key cell subset in inflammation and COPD. We found that NLRP6 expression in lung epithelial cells is important to control airway and lung tissue inflammation in an inflammasome-dependent manner. Since gut-derived metabolites regulate NLRP6 inflammasome activation in intestinal epithelial cells, we investigated the link between NLRP6, CS-driven lung inflammation, and gut microbiota composition. We report that acute CS exposure alters gut microbiota in both wild-type (WT) and Nlrp6-deficient mice and that antibiotic treatment decreases CS-induced lung inflammation. In addition, gut microbiota transfer from dysbiotic Nlrp6-deficient mice to WT mice decreased airway lung inflammation in WT mice, highlighting an NLRP6-dependent gut-to-lung axis controlling pulmonary inflammation.
Collapse
Affiliation(s)
- Mégane Nascimento
- University of Orleans and Centre National de Recherche scientifique (CNRS), Experimental and Molecular Immunology and Neurogenetics (INEM)-UMR7355, Orleans, France
| | - Sarah Huot-Marchand
- University of Orleans and Centre National de Recherche scientifique (CNRS), Experimental and Molecular Immunology and Neurogenetics (INEM)-UMR7355, Orleans, France
| | - Manoussa Fanny
- University of Orleans and Centre National de Recherche scientifique (CNRS), Experimental and Molecular Immunology and Neurogenetics (INEM)-UMR7355, Orleans, France
| | - Marjolène Straube
- Sorbonne Université, Institut National de la Recherche Médicale (INSERM), Centre de Recherche Saint-Antoine (CRSA), Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Saint Antoine, Service de Gastroenterologie, Paris, France
| | - Marc Le Bert
- University of Orleans and Centre National de Recherche scientifique (CNRS), Experimental and Molecular Immunology and Neurogenetics (INEM)-UMR7355, Orleans, France
| | - Florence Savigny
- University of Orleans and Centre National de Recherche scientifique (CNRS), Experimental and Molecular Immunology and Neurogenetics (INEM)-UMR7355, Orleans, France
| | | | | | | | - Mathias Chamaillard
- Univ. Lille, Institut National de la Recherche Médicale (INSERM), U1003 - Laboratoire de physiologie cellulaire (PHYCEL) - Physiologie Cellulaire, Lille, France
| | - Valérie F. J. Quesniaux
- University of Orleans and Centre National de Recherche scientifique (CNRS), Experimental and Molecular Immunology and Neurogenetics (INEM)-UMR7355, Orleans, France
| | - Bernhard Ryffel
- University of Orleans and Centre National de Recherche scientifique (CNRS), Experimental and Molecular Immunology and Neurogenetics (INEM)-UMR7355, Orleans, France
| | - Philippe Gosset
- Institut PASTEUR INSERM U1019, Centre National de Recherche (CNRS) Unité Mixte de Recherche (UMR) 8204, Lille, France
| | - Aurélie Gombault
- University of Orleans and Centre National de Recherche scientifique (CNRS), Experimental and Molecular Immunology and Neurogenetics (INEM)-UMR7355, Orleans, France
| | - Nicolas Riteau
- University of Orleans and Centre National de Recherche scientifique (CNRS), Experimental and Molecular Immunology and Neurogenetics (INEM)-UMR7355, Orleans, France
| | - Harry Sokol
- Sorbonne Université, Institut National de la Recherche Médicale (INSERM), Centre de Recherche Saint-Antoine (CRSA), Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Saint Antoine, Service de Gastroenterologie, Paris, France
- Institut national de la recherche agronomique (INRA), UMR1319 Micalis, AgroParisTech, Jouy-en-Josas, France
- Paris Centre for Microbiome Medicine (PaCeMM) FHU, Paris, France
| | - Isabelle Couillin
- University of Orleans and Centre National de Recherche scientifique (CNRS), Experimental and Molecular Immunology and Neurogenetics (INEM)-UMR7355, Orleans, France
| |
Collapse
|
8
|
Silva FALS, Chang HP, Incorvia JAC, Oliveira MJ, Sarmento B, Santos SG, Magalhães FD, Pinto AM. 2D Nanomaterials and Their Drug Conjugates for Phototherapy and Magnetic Hyperthermia Therapy of Cancer and Infections. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2306137. [PMID: 37963826 DOI: 10.1002/smll.202306137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/26/2023] [Indexed: 11/16/2023]
Abstract
Photothermal therapy (PTT) and magnetic hyperthermia therapy (MHT) using 2D nanomaterials (2DnMat) have recently emerged as promising alternative treatments for cancer and bacterial infections, both important global health challenges. The present review intends to provide not only a comprehensive overview, but also an integrative approach of the state-of-the-art knowledge on 2DnMat for PTT and MHT of cancer and infections. High surface area, high extinction coefficient in near-infra-red (NIR) region, responsiveness to external stimuli like magnetic fields, and the endless possibilities of surface functionalization, make 2DnMat ideal platforms for PTT and MHT. Most of these materials are biocompatible with mammalian cells, presenting some cytotoxicity against bacteria. However, each material must be comprehensively characterized physiochemically and biologically, since small variations can have significant biological impact. Highly efficient and selective in vitro and in vivo PTTs for the treatment of cancer and infections are reported, using a wide range of 2DnMat concentrations and incubation times. MHT is described to be more effective against bacterial infections than against cancer therapy. Despite the promising results attained, some challenges remain, such as improving 2DnMat conjugation with drugs, understanding their in vivo biodegradation, and refining the evaluation criteria to measure PTT or MHT effects.
Collapse
Affiliation(s)
- Filipa A L S Silva
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculdade de Engenharia, Universidade do Porto, Porto, 4200-180, Portugal
- ALiCE - Associate Laboratory in Chemical Engineering, Faculdade de Engenharia, Universidade do Porto, Porto, 4200-180, Portugal
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, Porto, 4200-180, Portugal
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, Porto, 4200-180, Portugal
| | - Hui-Ping Chang
- Department of Electrical and Computer Engineering, University of Texas at Austin, Austin, TX, 78712, USA
| | - Jean Anne C Incorvia
- Department of Electrical and Computer Engineering, University of Texas at Austin, Austin, TX, 78712, USA
| | - Maria J Oliveira
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, Porto, 4200-180, Portugal
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, Porto, 4200-180, Portugal
| | - Bruno Sarmento
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, Porto, 4200-180, Portugal
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, Porto, 4200-180, Portugal
- IUCS - CESPU, Rua Central de Gandra 1317, Gandra, 4585-116, Portugal
| | - Susana G Santos
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, Porto, 4200-180, Portugal
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, Porto, 4200-180, Portugal
| | - Fernão D Magalhães
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculdade de Engenharia, Universidade do Porto, Porto, 4200-180, Portugal
- ALiCE - Associate Laboratory in Chemical Engineering, Faculdade de Engenharia, Universidade do Porto, Porto, 4200-180, Portugal
| | - Artur M Pinto
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculdade de Engenharia, Universidade do Porto, Porto, 4200-180, Portugal
- ALiCE - Associate Laboratory in Chemical Engineering, Faculdade de Engenharia, Universidade do Porto, Porto, 4200-180, Portugal
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, Porto, 4200-180, Portugal
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, Porto, 4200-180, Portugal
| |
Collapse
|
9
|
Chen C, Chang TT, Chen JW. Mechanistic role of CXCL5 in cardiovascular disease, diabetes mellitus, and kidney disease. Life Sci 2023; 330:122018. [PMID: 37567498 DOI: 10.1016/j.lfs.2023.122018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/30/2023] [Accepted: 08/07/2023] [Indexed: 08/13/2023]
Abstract
Chemokines, by modulating inflammation process, could contribute to the development of cardiovascular disease, diabetes mellitus (DM), and kidney disease. Chemokine CXC motif ligand 5 (CXCL5) is one of the inducible chemokines that may be involved in various inflammatory diseases. Given the bidirectional promiscuity characteristics of the chemokine system, the mechanistic roles of CXCL5 should be further explored in each specific disease. In this article, we sought to review the recent evidence on the differential effects of CXCL5 and their potential mechanisms in cardiovascular disease, DM, and renal disease individually. Future study is still required to verify if CXCL5 could be a novel therapeutic target in these diseases.
Collapse
Affiliation(s)
- Ching Chen
- Department and Institute of Pharmacology, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Ting-Ting Chang
- Department and Institute of Pharmacology, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Biomedical Industry Ph.D. Program, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| | - Jaw-Wen Chen
- Department and Institute of Pharmacology, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Division of Cardiology, Department of Medicine and Department of Research, Taipei Medical University Hospital, Taipei, Taiwan; Cardiovascular Research Center, Taipei Medical University Hospital and Taipei Medical University, Taipei, Taiwan; Cardiovascular Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| |
Collapse
|
10
|
Elhadad S, Redmond D, Huang J, Tan A, Laurence J. MASP2 inhibition by narsoplimab suppresses endotheliopathies characteristic of transplant-associated thrombotic microangiopathy: in vitro and ex vivo evidence. Clin Exp Immunol 2023; 213:252-264. [PMID: 37191586 PMCID: PMC10361744 DOI: 10.1093/cei/uxad055] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/17/2023] [Accepted: 05/15/2023] [Indexed: 05/17/2023] Open
Abstract
Transplant-associated thrombotic microangiopathy (TA-TMA) is an endotheliopathy complicating up to 30% of allogeneic hematopoietic stem cell transplants (alloHSCT). Positive feedback loops among complement, pro-inflammatory, pro-apoptotic, and coagulation cascade likely assume dominant roles at different disease stages. We hypothesized that mannose-binding lectin-associated serine protease 2 (MASP2), principal activator of the lectin complement system, is involved in the microvascular endothelial cell (MVEC) injury characteristic of TA-TMA through pathways that are susceptible to suppression by anti-MASP2 monoclonal antibody narsoplimab. Pre-treatment plasmas from 8 of 9 TA-TMA patients achieving a complete TMA response in a narsoplimab clinical trial activated caspase 8, the initial step in apoptotic injury, in human MVEC. This was reduced to control levels following narsoplimab treatment in 7 of the 8 subjects. Plasmas from 8 individuals in an observational TA-TMA study, but not 8 alloHSCT subjects without TMA, similarly activated caspase 8, which was blocked in vitro by narsoplimab. mRNA sequencing of MVEC exposed to TA-TMA or control plasmas with and without narsoplimab suggested potential mechanisms of action. The top 40 narsoplimab-affected transcripts included upregulation of SerpinB2, which blocks apoptosis by inactivating procaspase 3; CHAC1, which inhibits apoptosis in association with mitigation of oxidative stress responses; and pro-angiogenesis proteins TM4SF18, ASPM, and ESM1. Narsoplimab also suppressed transcripts encoding pro-apoptotic and pro-inflammatory proteins ZNF521, IL1R1, Fibulin-5, aggrecan, SLC14A1, and LOX1, and TMEM204, which disrupts vascular integrity. Our data suggest benefits to narsoplimab use in high-risk TA-TMA and provide a potential mechanistic basis for the clinical efficacy of narsoplimab in this disorder.
Collapse
Affiliation(s)
- Sonia Elhadad
- Department of Medicine, Division of Hematology and Medical Oncology, Weill Cornell Medicine, New York, NY, USA
| | - David Redmond
- Division of Regenerative Medicine, Hartman Institute for Therapeutic Organ Regeneration, Ansary Stem Cell Institute, New York, NY, USA
| | - Jenny Huang
- Division of Regenerative Medicine, Hartman Institute for Therapeutic Organ Regeneration, Ansary Stem Cell Institute, New York, NY, USA
| | - Adrian Tan
- Genomics Resources Core Facility, Weill Cornell Medicine, New York, NY, USA
| | - Jeffrey Laurence
- Department of Medicine, Division of Hematology and Medical Oncology, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
11
|
Ge S, Hu J, Gao S, Ren J, Zhu G. LncRNA NEAT1: A novel regulator associated with the inflammatory response in acute respiratory distress syndrome. Gene 2023:147582. [PMID: 37353041 DOI: 10.1016/j.gene.2023.147582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/31/2023] [Accepted: 06/19/2023] [Indexed: 06/25/2023]
Abstract
BACKGROUND Acute respiratory distress syndrome (ARDS) is a life-threatening condition with an unfavorable prognosis. As the pathogenesis of ARDS remains unclear, we aimed to identify the core genes associated with ARDS and the mechanisms by which competing endogenous RNAs (ceRNAs) regulate the disease's progression. METHODS Three mRNA microarray datasets (GSE17355, GSE48787, and GSE130936), derived from the Gene Expression Omnibus (GEO) database, were selected. Common differentially expressed genes (DEGs) related to acute lung injury (ALI) were identified and subjected to enrichment analysis. Then, hub genes were figured out through the protein-protein interaction (PPI) network and functional analysis, and targeted miRNAs and lncRNAs were predicted. Finally, the ceRNA networks associated with ALI were constructed and validated experimentally. RESULTS A total of 155 upregulated and 93 downregulated DEGs were identified in the three datasets. The TNF signaling pathway and IL-17 signaling pathway were the most enriched pathways. Then, eleven DEGs enriched in the IL-17 signaling pathway were selected as the hub genes. Three miRNAs (mmu-mir-155-5p, mmu-mir-21a-5p, and mmu-mir-122-5p), which were located in the lung tissue and predicted to bind the hub genes at the same time, and two lncRNAs (Neat1 and Tug1), which have binding sites for the aforementioned miRNAs, were filtered. With qPCR verification, we identified a ceRNA network composed of NEAT1, miR-21-5p, MMP9, and CXCL5. NEAT1 knockdown promoted the migration and reduced the expression of pro-inflammatory factor and reactive oxygen species (ROS) in lung epithelial cells. We eventually confirmed that NEAT1/miR-21-5p/CXCL5/MMP9 played a pivotal role in regulating the inflammatory response in ALI. CONCLUSION The IL-17 signaling pathway is of great importance in the pathogenesis of ARDS. NEAT1/miR-21-5p is involved in the inflammation of ALI by regulating CXCL5 and MMP9.
Collapse
Affiliation(s)
- Shanhui Ge
- Department of Respiratory and Critical Care Medicine, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Jiaxin Hu
- Department of Respiratory and Critical Care Medicine, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Shijuan Gao
- Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing Anzhen Hospital, Capital Medical University
| | - Jianwei Ren
- Department of Respiratory and Critical Care Medicine, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Guangfa Zhu
- Department of Respiratory and Critical Care Medicine, Beijing Anzhen Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
12
|
Gibb M, Sayes CM. An In Vitro Alveolar Model Allows for the Rapid Assessment of Particles for Respiratory Sensitization Potential. Int J Mol Sci 2023; 24:10104. [PMID: 37373252 DOI: 10.3390/ijms241210104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/01/2023] [Accepted: 05/09/2023] [Indexed: 06/29/2023] Open
Abstract
Dust, both industrial and household, contains particulates that can reach the most distal aspects of the lung. Silica and nickel compounds are two such particulates and have known profiles of poor health outcomes. While silica is well-characterized, nickel compounds still need to be fully understood for their potential to cause long-term immune responses in the lungs. To assess these hazards and decrease animal numbers used in testing, investigations that lead to verifiable in vitro methods are needed. To understand the implications of these two compounds reaching the distal aspect of the lungs, the alveoli, an architecturally relevant alveolar model consisting of epithelial cells, macrophages, and dendritic cells in a maintained submerged system, was utilized for high throughput testing. Exposures include crystalline silica (SiO2) and nickel oxide (NiO). The endpoints measured included mitochondrial reactive oxygen species and cytostructural changes assessed via confocal laser scanning microscopy; cell morphology evaluated via scanning electron microscopy; biochemical reactions assessed via protein arrays; transcriptome assessed via gene arrays, and cell surface activation markers evaluated via flow cytometry. The results showed that, compared to untreated cultures, NiO increased markers for dendritic cell activation, trafficking, and antigen presentation; oxidative stress and cytoskeletal changes, and gene and cytokine expression of neutrophil and other leukocyte chemoattractants. The chemokines and cytokines CCL3, CCL7, CXCL5, IL-6, and IL-8 were identified as potential biomarkers of respiratory sensitization.
Collapse
Affiliation(s)
- Matthew Gibb
- Institute of Biomedical Studies, Baylor University, Waco, TX 76798, USA
| | - Christie M Sayes
- Institute of Biomedical Studies, Baylor University, Waco, TX 76798, USA
- Department of Environmental Science, Baylor University, Waco, TX 76798, USA
| |
Collapse
|
13
|
An HS, Lee J, Lee SJ, Jeong EA, Shin HJ, Kim KE, Roh GS. Lipocalin-2 deletion attenuates lipopolysaccharide-induced acute lung inflammation via downregulating chemotaxis-related genes. Biochem Biophys Res Commun 2023; 652:14-21. [PMID: 36806084 DOI: 10.1016/j.bbrc.2023.02.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 02/12/2023] [Indexed: 02/18/2023]
Abstract
Lipocalin-2 (LCN2) is an acute phase protein used as a biomarker for acute lung injury (ALI). Although the innate immune functions of LCN2 have been studied, how LCN2 contributes to ALI induced by lipopolysaccharide (LPS) remains unknown. In this study, we investigated the effect of LCN2 deletion on LPS-induced ALI using RNA-sequencing. LPS-treated LCN2 knockout (KO) mice had a decreased histopathological score and reduced neutrophil and macrophage infiltration in lung tissue compared with LPS-treated WT mice. RNA-sequencing analysis identified 38 differentially expressed genes (DEGs), including Cxcl5, Cxcl13, Xcl1, Saa1, and Cd14. In particular, Gene Ontology analysis of DEGs revealed a significant reduction in the inflammatory response, neutrophil chemotaxis, and chemokine-mediated signaling in LPS-treated LCN2KO mice compared with LPS-treated WT mice. Thus, these results suggest that LCN2 deletion alleviates LPS-induced ALI and that LCN2 may be involved in chemotaxis-related gene expression.
Collapse
Affiliation(s)
- Hyeong Seok An
- Department of Anatomy & Convergence Medical Science, College of Medicine, Institute of Health Sciences, Gyeongsang National University, Jinju, 52727, Republic of Korea
| | - Jaewoong Lee
- Department of Anatomy & Convergence Medical Science, College of Medicine, Institute of Health Sciences, Gyeongsang National University, Jinju, 52727, Republic of Korea
| | - So Jeong Lee
- Department of Anatomy & Convergence Medical Science, College of Medicine, Institute of Health Sciences, Gyeongsang National University, Jinju, 52727, Republic of Korea
| | - Eun Ae Jeong
- Department of Anatomy & Convergence Medical Science, College of Medicine, Institute of Health Sciences, Gyeongsang National University, Jinju, 52727, Republic of Korea
| | - Hyun Joo Shin
- Department of Anatomy & Convergence Medical Science, College of Medicine, Institute of Health Sciences, Gyeongsang National University, Jinju, 52727, Republic of Korea
| | - Kyung Eun Kim
- Department of Anatomy & Convergence Medical Science, College of Medicine, Institute of Health Sciences, Gyeongsang National University, Jinju, 52727, Republic of Korea
| | - Gu Seob Roh
- Department of Anatomy & Convergence Medical Science, College of Medicine, Institute of Health Sciences, Gyeongsang National University, Jinju, 52727, Republic of Korea.
| |
Collapse
|
14
|
Christenson JL, Williams MM, Richer JK. The underappreciated role of resident epithelial cell populations in metastatic progression: contributions of the lung alveolar epithelium. Am J Physiol Cell Physiol 2022; 323:C1777-C1790. [PMID: 36252127 PMCID: PMC9744653 DOI: 10.1152/ajpcell.00181.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 10/17/2022] [Accepted: 10/17/2022] [Indexed: 12/14/2022]
Abstract
Metastatic cancer is difficult to treat and is responsible for the majority of cancer-related deaths. After cancer cells initiate metastasis and successfully seed a distant site, resident cells in the tissue play a key role in determining how metastatic progression develops. The lung is the second most frequent site of metastatic spread, and the primary site of metastasis within the lung is alveoli. The most abundant cell type in the alveolar niche is the epithelium. This review will examine the potential contributions of the alveolar epithelium to metastatic progression. It will also provide insight into other ways in which alveolar epithelial cells, acting as immune sentinels within the lung, may influence metastatic progression through their various interactions with cells in the surrounding microenvironment.
Collapse
Affiliation(s)
- Jessica L Christenson
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Michelle M Williams
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Jennifer K Richer
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| |
Collapse
|
15
|
An in vitro alveolar model allows for the rapid assessment of chemical respiratory sensitization with modifiable biomarker endpoints. Chem Biol Interact 2022; 368:110232. [DOI: 10.1016/j.cbi.2022.110232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/07/2022] [Accepted: 10/21/2022] [Indexed: 11/23/2022]
|
16
|
Do T, Synan L, Ali G, Gappa-Fahlenkamp H. 3D tissue-engineered lung models to study immune responses following viral infections of the small airways. Stem Cell Res Ther 2022; 13:464. [PMID: 36071442 PMCID: PMC9449944 DOI: 10.1186/s13287-022-03134-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 08/12/2022] [Indexed: 11/10/2022] Open
Abstract
Small airway infections caused by respiratory viruses are some of the most prevalent causes of illness and death. With the recent worldwide pandemic due to the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), there is currently a push in developing models to better understand respiratory diseases. Recent advancements have made it possible to create three-dimensional (3D) tissue-engineered models of different organs. The 3D environment is crucial to study physiological, pathophysiological, and immunomodulatory responses against different respiratory conditions. A 3D human tissue-engineered lung model that exhibits a normal immunological response against infectious agents could elucidate viral and host determinants. To create 3D small airway lung models in vitro, resident epithelial cells at the air-liquid interface are co-cultured with fibroblasts, myeloid cells, and endothelial cells. The air-liquid interface is a key culture condition to develop and differentiate airway epithelial cells in vitro. Primary human epithelial and myeloid cells are considered the best 3D model for studying viral immune responses including migration, differentiation, and the release of cytokines. Future studies may focus on utilizing bioreactors to scale up the production of 3D human tissue-engineered lung models. This review outlines the use of various cell types, scaffolds, and culture conditions for creating 3D human tissue-engineered lung models. Further, several models used to study immune responses against respiratory viruses, such as the respiratory syncytial virus, are analyzed, showing how the microenvironment aids in understanding immune responses elicited after viral infections.
Collapse
Affiliation(s)
- Taylor Do
- Edward Bartlett Chair, School of Chemical Engineering, Oklahoma State University, 420 Engineering North, Stillwater, OK, 74078, USA
| | - Lilly Synan
- Edward Bartlett Chair, School of Chemical Engineering, Oklahoma State University, 420 Engineering North, Stillwater, OK, 74078, USA
| | - Gibran Ali
- Edward Bartlett Chair, School of Chemical Engineering, Oklahoma State University, 420 Engineering North, Stillwater, OK, 74078, USA
| | - Heather Gappa-Fahlenkamp
- Edward Bartlett Chair, School of Chemical Engineering, Oklahoma State University, 420 Engineering North, Stillwater, OK, 74078, USA.
| |
Collapse
|
17
|
Nishida C, Tomonaga T, Izumi H, Wang KY, Higashi H, Ishidao T, Takeshita JI, Ono R, Sumiya K, Fujii S, Mochizuki S, Sakurai K, Yamasaki K, Yatera K, Morimoto Y. Inflammogenic effect of polyacrylic acid in rat lung following intratracheal instillation. Part Fibre Toxicol 2022; 19:8. [PMID: 35062982 PMCID: PMC8780717 DOI: 10.1186/s12989-022-00448-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 01/06/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Some organic chemicals are known to cause allergic disorders such as bronchial asthma and hypersensitivity pneumonitis, and it has been considered that they do not cause irreversible pulmonary fibrosis. It has recently been reported, however, that cross-linked acrylic acid-based polymer, an organic chemical, might cause serious interstitial lung diseases, including pulmonary fibrosis. We investigated whether or not intratracheal instillation exposure to cross-linked polyacrylic acid (CL-PAA) can cause lung disorder in rats.
Methods
Male F344 rats were intratracheally instilled with dispersed CL-PAA at low (0.2 mg/rat) and high (1.0 mg/rat) doses, and were sacrificed at 3 days, 1 week, 1 month, 3 months and 6 months after exposure to examine inflammatory and fibrotic responses and related gene expressions in the lungs. Rat lungs exposed to crystalline silica, asbestos (chrysotile), and NiO and CeO2 nanoparticles were used as comparators.
Results
Persistent increases in total cell count, neutrophil count and neutrophil percentage, and in the concentration of the cytokine-induced neutrophil chemoattractant (CINC)-1, CINC-2 and C-X-C motif chemokine 5 (CXCL5), which correlated with lung tissue gene expression, were observed in bronchoalveolar lavage fluid (BALF) from 3 days until at least 1 month following CL-PAA intratracheal instillation. Persistent increases in heme oxygenase-1 (HO-1) in the lung tissue were also observed from 3 days to 6 months after exposure. Histopathological findings of the lungs demonstrated that extensive inflammation at 3 days was greater than that in exposure to silica, NiO nanoparticles and CeO2 nanoparticles, and equal to or greater than that in asbestos (chrysotile) exposure, and the inflammation continued until 1 month. Fibrotic changes also progressed after 1 month postexposure.
Conclusion
Our results suggested that CL-PAA potentially causes strong neutrophil inflammation in the rat and human lung.
Collapse
|
18
|
Guo L, Li N, Yang Z, Li H, Zheng H, Yang J, Chen Y, Zhao X, Mei J, Shi H, Worthen GS, Liu L. Role of CXCL5 in Regulating Chemotaxis of Innate and Adaptive Leukocytes in Infected Lungs Upon Pulmonary Influenza Infection. Front Immunol 2021; 12:785457. [PMID: 34868067 PMCID: PMC8637413 DOI: 10.3389/fimmu.2021.785457] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 11/01/2021] [Indexed: 12/24/2022] Open
Abstract
Respirovirus such as influenza virus infection induces pulmonary anti-viral immune response, orchestration of innate and adaptive immunity restrain viral infection, otherwise causes severe diseases such as pneumonia. Chemokines regulate leukocyte recruitment to the inflammation site. One chemokine CXCL5, plays a scavenging role to regulate pulmonary host defense against bacterial infection, but its role in pulmonary influenza virus infection is underdetermined. Here, using an influenza (H1N1) infected CXCL5-/- mouse model, we found that CXCL5 not only responds to neutrophil infiltration into infected lungs at the innate immunity stage, but also affects B lymphocyte accumulation in the lungs by regulating the expression of the B cell chemokine CXCL13. Inhibition of CXCL5-CXCR2 axis markedly induces CXCL13 expression in CD64+CD44hiCD274hi macrophages/monocytes in infected lungs, and in vitro administration of CXCL5 to CD64+ alveolar macrophages suppresses CXCL13 expression via the CXCL5-CXCR2 axis upon influenza challenge. CXCL5 deficiency leads to increased B lymphocyte accumulation in infected lungs, contributing to an enhanced B cell immune response and facilitating induced bronchus-associated lymphoid tissue formation in the infected lungs during the late infection and recovery stages. These data highlight multiple regulatory roles of CXCL5 in leukocyte chemotaxis during pulmonary influenza infection.
Collapse
Affiliation(s)
- Lei Guo
- Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, China.,Yunnan Key Laboratory of Children's Major Disease Research, Yunnan Medical Research Center for Pediatric Diseases, Kunming Children's Hospital, Kunming, China
| | - Nan Li
- Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, China
| | - Zening Yang
- Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, China
| | - Heng Li
- Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, China
| | - Huiwen Zheng
- Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, China
| | - Jinxi Yang
- Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, China
| | - Yanli Chen
- Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, China
| | - Xin Zhao
- Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, China
| | - Junjie Mei
- Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, China
| | - Haijing Shi
- Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, China
| | - G Scott Worthen
- Division of Neonatology, Department of Pediatrics, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Longding Liu
- Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, China
| |
Collapse
|
19
|
Danielsen PH, Bendtsen KM, Knudsen KB, Poulsen SS, Stoeger T, Vogel U. Nanomaterial- and shape-dependency of TLR2 and TLR4 mediated signaling following pulmonary exposure to carbonaceous nanomaterials in mice. Part Fibre Toxicol 2021; 18:40. [PMID: 34717665 PMCID: PMC8557558 DOI: 10.1186/s12989-021-00432-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 10/12/2021] [Indexed: 12/18/2022] Open
Abstract
Background Pulmonary exposure to high doses of engineered carbonaceous nanomaterials (NMs) is known to trigger inflammation in the lungs paralleled by an acute phase response. Toll-like receptors (TLRs), particularly TLR2 and TLR4, have recently been discussed as potential NM-sensors, initiating inflammation. Using Tlr2 and Tlr4 knock out (KO) mice, we addressed this hypothesis and compared the pattern of inflammation in lung and acute phase response in lung and liver 24 h after intratracheal instillation of three differently shaped carbonaceous NMs, spherical carbon black (CB), multi-walled carbon nanotubes (CNT), graphene oxide (GO) plates and bacterial lipopolysaccharide (LPS) as positive control.
Results The LPS control confirmed a distinct TLR4-dependency as well as a pronounced contribution of TLR2 by reducing the levels of pulmonary inflammation to 30 and 60% of levels in wild type (WT) mice. At the doses chosen, all NM caused comparable neutrophil influxes into the lungs of WT mice, and reduced levels were only detected for GO-exposed Tlr2 KO mice (35%) and for CNT-exposed Tlr4 KO mice (65%). LPS-induced gene expression was strongly TLR4-dependent. CB-induced gene expression was unaffected by TLR status. Both GO and MWCNT-induced Saa1 expression was TLR4-dependent. GO-induced expression of Cxcl2, Cxcl5, Saa1 and Saa3 were TLR2-dependent. NM-mediated hepatic acute phase response in terms of liver gene expression of Saa1 and Lcn2 was shown to depend on TLR2 for all three NMs. TLR4, in contrast, was only relevant for the acute phase response caused by CNTs, and as expected by LPS. Conclusion TLR2 and TLR4 signaling was not involved in the acute inflammatory response caused by CB exposure, but contributed considerably to that of GO and CNTs, respectively. The strong involvement of TLR2 in the hepatic acute phase response caused by pulmonary exposure to all three NMs deserves further investigations. Supplementary Information The online version contains supplementary material available at 10.1186/s12989-021-00432-z.
Collapse
Affiliation(s)
| | | | | | - Sarah Søs Poulsen
- National Research Centre for the Working Environment, Copenhagen, Denmark
| | - Tobias Stoeger
- Comprehensive Pneumology Center (CPC)/Institute of Lung Biology and Disease (ILBD) Helmholtz Zentrum München, Neuherberg, Germany
| | - Ulla Vogel
- National Research Centre for the Working Environment, Copenhagen, Denmark. .,DTU Food, Technical University of Denmark, Kgs. Lyngby, Denmark.
| |
Collapse
|
20
|
Effah CY, Drokow EK, Agboyibor C, Ding L, He S, Liu S, Akorli SY, Nuamah E, Sun T, Zhou X, Liu H, Xu Z, Feng F, Wu Y, Zhang X. Neutrophil-Dependent Immunity During Pulmonary Infections and Inflammations. Front Immunol 2021; 12:689866. [PMID: 34737734 PMCID: PMC8560714 DOI: 10.3389/fimmu.2021.689866] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 09/23/2021] [Indexed: 01/08/2023] Open
Abstract
Rapid recruitment of neutrophils to an inflamed site is one of the hallmarks of an effective host defense mechanism. The main pathway through which this happens is by the innate immune response. Neutrophils, which play an important part in innate immune defense, migrate into lungs through the modulation actions of chemokines to execute a variety of pro-inflammatory functions. Despite the importance of chemokines in host immunity, little has been discussed on their roles in host immunity. A holistic understanding of neutrophil recruitment, pattern recognition pathways, the roles of chemokines and the pathophysiological roles of neutrophils in host immunity may allow for new approaches in the treatment of infectious and inflammatory disease of the lung. Herein, this review aims at highlighting some of the developments in lung neutrophil-immunity by focusing on the functions and roles of CXC/CC chemokines and pattern recognition receptors in neutrophil immunity during pulmonary inflammations. The pathophysiological roles of neutrophils in COVID-19 and thromboembolism have also been summarized. We finally summarized various neutrophil biomarkers that can be utilized as prognostic molecules in pulmonary inflammations and discussed various neutrophil-targeted therapies for neutrophil-driven pulmonary inflammatory diseases.
Collapse
Affiliation(s)
| | - Emmanuel Kwateng Drokow
- Department of Radiation Oncology, Zhengzhou University People’s Hospital & Henan Provincial People’s Hospital, Zhengzhou, China
| | - Clement Agboyibor
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Lihua Ding
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Sitian He
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Shaohua Liu
- General ICU, Henan Key Laboratory of Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Senyo Yao Akorli
- College of Agriculture and Natural Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Emmanuel Nuamah
- College of Agriculture and Natural Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Tongwen Sun
- General ICU, Henan Key Laboratory of Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaolei Zhou
- Department of Respiratory, Henan Provincial Chest Hospital, Zhengzhou, China
| | - Hong Liu
- Department of Respiratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhiwei Xu
- Department of Respiratory and Critical Care Medicine, People’s Hospital of Zhengzhou University & Henan Provincial People’s Hospital, Zhengzhou, China
| | - Feifei Feng
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Yongjun Wu
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Xiaoju Zhang
- Department of Respiratory and Critical Care Medicine, People’s Hospital of Zhengzhou University & Henan Provincial People’s Hospital, Zhengzhou, China
| |
Collapse
|
21
|
Hsa-miR-605 regulates the proinflammatory chemokine CXCL5 in complex regional pain syndrome. Biomed Pharmacother 2021; 140:111788. [PMID: 34062414 DOI: 10.1016/j.biopha.2021.111788] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/05/2021] [Accepted: 05/25/2021] [Indexed: 01/03/2023] Open
Abstract
Complex regional pain syndrome (CRPS) is a chronic pain condition characterized by inflammation and debilitating pain. CRPS patients with pain refractory to more conventional analgesics can be treated with subanesthetic doses of ketamine. Our previous studies found that poor responders to ketamine had a 22-fold downregulation of the miRNA hsa-miR-605 in blood prior to ketamine treatment. Hence, we sought to investigate the functional significance of miR-605 downregulation and its impact on target gene expression, as investigating target mRNAs of differentially expressed miRNAs can provide important insights on aberrant gene expression that may contribute to disease etiology. Using a bioinformatics prediction, we identified that miR-605 can target the proinflammatory chemokine CXCL5, which plays a role in leukocyte recruitment and activation. We hypothesized that downregulation of miR-605 in poor responders to ketamine could increase CXCL5 expression and thereby contribute to inflammation in these patients. We confirmed that miR-605 regulates CXCL5 by using a miRNA mimic and inhibitor in human primary endothelial cells. Inhibition of miR-605 increased CXCL5 secretion and migration of human monocytic cells, thereby demonstrating a functional impact of miR-605 on chemotaxis. Additionally, CXCL5 mRNA was upregulated in whole blood from poor responders to ketamine, and CXCL5 protein was increased in plasma from CRPS patients. Thus, our studies suggest that miR-605 regulation of CXCL5 can regulate inflammation.
Collapse
|
22
|
Improved Spatial Memory And Neuroinflammatory Profile Changes in Aged Rats Submitted to Photobiomodulation Therapy. Cell Mol Neurobiol 2021; 42:1875-1886. [PMID: 33704604 DOI: 10.1007/s10571-021-01069-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 02/23/2021] [Indexed: 01/11/2023]
Abstract
Recent evidences have shown the therapeutic potential of transcranial photobiomodulation on traumatic brain injury and Alzheimer's disease. Despite the promising benefits in the brain, little is known about the laser's effects in the absence of pathological conditions. We submitted young (4 months old) and aged (20 months old) rats to transcranial low-level laser and evaluated their exploratory activity and habituation in open field, anxiety in elevated plus maze, spatial memory in Barnes maze, and aversive memory in a step-down inhibitory avoidance task. Additionally, the levels of a panel of inflammatory cytokines and chemokines were quantified in two different brain regions: the cerebral cortex and the hippocampus. Young and aged rats submitted to transcranial laser exhibited better cognitive performance in Barnes maze than did control rats. Transcranial laser therapy decreased cortical levels of GM-CSF, IL-10, MCP-1, LIX, and TNFα in young rats and IL-5 in aged rats. High levels of IL-6, IL-10, and TNF-alpha were found in the cerebral cortex of aged rats submitted to transcranial laser. In the hippocampus, a decrease in IP-10 and fractalkine levels was observed in the aged rats from the laser group when compared to the aged rats from the control group. Our data indicate that transcranial photobiomodulation improves spatial learning and memory and alters the neuroinflammatory profile of young and aged rats' brains.
Collapse
|
23
|
Lin WC, Fessler MB. Regulatory mechanisms of neutrophil migration from the circulation to the airspace. Cell Mol Life Sci 2021; 78:4095-4124. [PMID: 33544156 PMCID: PMC7863617 DOI: 10.1007/s00018-021-03768-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 12/22/2020] [Accepted: 01/16/2021] [Indexed: 02/07/2023]
Abstract
The neutrophil, a short-lived effector leukocyte of the innate immune system best known for its proteases and other degradative cargo, has unique, reciprocal physiological interactions with the lung. During health, large numbers of ‘marginated’ neutrophils reside within the pulmonary vasculature, where they patrol the endothelial surface for pathogens and complete their life cycle. Upon respiratory infection, rapid and sustained recruitment of neutrophils through the endothelial barrier, across the extravascular pulmonary interstitium, and again through the respiratory epithelium into the airspace lumen, is required for pathogen killing. Overexuberant neutrophil trafficking to the lung, however, causes bystander tissue injury and underlies several acute and chronic lung diseases. Due in part to the unique architecture of the lung’s capillary network, the neutrophil follows a microanatomic passage into the distal airspace unlike that observed in other end-organs that it infiltrates. Several of the regulatory mechanisms underlying the stepwise recruitment of circulating neutrophils to the infected lung have been defined over the past few decades; however, fundamental questions remain. In this article, we provide an updated review and perspective on emerging roles for the neutrophil in lung biology, on the molecular mechanisms that control the trafficking of neutrophils to the lung, and on past and ongoing efforts to design therapeutics to intervene upon pulmonary neutrophilia in lung disease.
Collapse
Affiliation(s)
- Wan-Chi Lin
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, NIH, 111 T.W. Alexander Drive, P.O. Box 12233, MD D2-01, Research Triangle Park, NC, 27709, USA
| | - Michael B Fessler
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, NIH, 111 T.W. Alexander Drive, P.O. Box 12233, MD D2-01, Research Triangle Park, NC, 27709, USA.
| |
Collapse
|
24
|
Adams W, Espicha T, Estipona J. Getting Your Neutrophil: Neutrophil Transepithelial Migration in the Lung. Infect Immun 2021; 89:IAI.00659-20. [PMID: 33526562 DOI: 10.1128/iai.00659-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Neutrophil transepithelial migration is a fundamental process that facilitates the rapid trafficking of neutrophils to inflammatory foci and occurs across a diverse range of tissues. For decades there has been widespread interest in understanding the mechanisms that drive this migratory process in response to different pathogens and organ systems. This has led to the successful integration of key findings on neutrophil transepithelial migration from the intestines, lungs, liver, genitourinary tract, and other tissues into a single, cohesive model. However, recent studies have identified organ specific differences in neutrophil transepithelial migration. These findings support a model where the tissue in concert with the pro-inflammatory stimuli dictate a unique collection of signals that drive neutrophil trafficking. This review focuses on the mechanisms that drive neutrophil transepithelial migration in response to microbial infection of a single organ, the lung. Herein we provide a detailed analysis of the adhesion molecules and chemoattractants that contribute to the recruitment of neutrophil into the airways. We also highlight important advances in experimental models for studying neutrophil transepithelial migration in the lung over the last decade.
Collapse
Affiliation(s)
- Walter Adams
- Department of Biological Sciences, San Jose State University, San Jose, CA 95192 USA
| | - Taylor Espicha
- Department of Biological Sciences, San Jose State University, San Jose, CA 95192 USA
| | - Janine Estipona
- Department of Biological Sciences, San Jose State University, San Jose, CA 95192 USA
| |
Collapse
|
25
|
Maxwell AJ, Ding J, You Y, Dong Z, Chehade H, Alvero A, Mor Y, Draghici S, Mor G. Identification of key signaling pathways induced by SARS-CoV2 that underlie thrombosis and vascular injury in COVID-19 patients. J Leukoc Biol 2021; 109:35-47. [PMID: 33242368 PMCID: PMC7753679 DOI: 10.1002/jlb.4covr0920-552rr] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 11/05/2020] [Accepted: 11/05/2020] [Indexed: 12/19/2022] Open
Abstract
The SARS-CoV-2 pandemic has led to hundreds of thousands of deaths and billions of dollars in economic damage. The immune response elicited from this virus is poorly understood. An alarming number of cases have arisen where COVID-19 patients develop complications on top of the symptoms already associated with SARS, such as thrombosis, injuries of vascular system, kidney, and liver, as well as Kawasaki disease. In this review, a bioinformatics approach was used to elucidate the immune response triggered by SARS-CoV-2 infection in primary human lung epithelial and transformed human lung alveolar. Additionally, examined the potential mechanism behind several complications that have been associated with COVID-19 and determined that a specific cytokine storm is leading to excessive neutrophil recruitment. These neutrophils are directly leading to thrombosis, organ damage, and complement activation via neutrophil extracellular trap release.
Collapse
Affiliation(s)
- Anthony J Maxwell
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics, Gynecology, Wayne State University, Detroit, Michigan, USA
| | - Jiahui Ding
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics, Gynecology, Wayne State University, Detroit, Michigan, USA
| | - Yuan You
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics, Gynecology, Wayne State University, Detroit, Michigan, USA
| | - Zhong Dong
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics, Gynecology, Wayne State University, Detroit, Michigan, USA
| | - Hussein Chehade
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics, Gynecology, Wayne State University, Detroit, Michigan, USA
| | - Ayesha Alvero
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics, Gynecology, Wayne State University, Detroit, Michigan, USA
| | - Yechiel Mor
- Department of Internal Medicine Wayne State University, Detroit, Michigan, USA
| | - Sorin Draghici
- Department of Computer Science, Wayne State University, Detroit, Michigan, USA
| | - Gil Mor
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics, Gynecology, Wayne State University, Detroit, Michigan, USA
| |
Collapse
|
26
|
Schirm S, Ahnert P, Berger S, Nouailles G, Wienhold SM, Müller-Redetzky H, Suttorp N, Loeffler M, Witzenrath M, Scholz M. A biomathematical model of immune response and barrier function in mice with pneumococcal lung infection. PLoS One 2020; 15:e0243147. [PMID: 33270742 PMCID: PMC7714238 DOI: 10.1371/journal.pone.0243147] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 11/16/2020] [Indexed: 11/19/2022] Open
Abstract
Pneumonia is one of the leading causes of death worldwide. The course of the disease is often highly dynamic with unforeseen critical deterioration within hours in a relevant proportion of patients. Besides antibiotic treatment, novel adjunctive therapies are under development. Their additive value needs to be explored in preclinical and clinical studies and corresponding therapy schedules require optimization prior to introduction into clinical practice. Biomathematical modeling of the underlying disease and therapy processes might be a useful aid to support these processes. We here propose a biomathematical model of murine immune response during infection with Streptococcus pneumoniae aiming at predicting the outcome of different treatment schedules. The model consists of a number of non-linear ordinary differential equations describing the dynamics and interactions of the pulmonal pneumococcal population and relevant cells of the innate immune response, namely alveolar- and inflammatory macrophages and neutrophils. The cytokines IL-6 and IL-10 and the chemokines CCL2, CXCL1 and CXCL5 are considered as major mediators of the immune response. We also model the invasion of peripheral blood monocytes, their differentiation into macrophages and bacterial penetration through the epithelial barrier causing blood stream infections. We impose therapy effects on this system by modelling antibiotic therapy and treatment with the novel C5a-inactivator NOX-D19. All equations are derived by translating known biological mechanisms into equations and assuming appropriate response kinetics. Unknown model parameters were determined by fitting the predictions of the model to time series data derived from mice experiments with close-meshed time series of state parameters. Parameter fittings resulted in a good agreement of model and data for the experimental scenarios. The model can be used to predict the performance of alternative schedules of combined antibiotic and NOX-D19 treatment. We conclude that we established a comprehensive biomathematical model of pneumococcal lung infection, immune response and barrier function in mice allowing simulations of new treatment schedules. We aim to validate the model on the basis of further experimental data. We also plan the inclusion of further novel therapy principles and the translation of the model to the human situation in the near future.
Collapse
Affiliation(s)
- Sibylle Schirm
- Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig, Leipzig, Germany
| | - Peter Ahnert
- Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig, Leipzig, Germany
| | - Sarah Berger
- Division of Pulmonary Inflammation, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Geraldine Nouailles
- Division of Pulmonary Inflammation, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Sandra-Maria Wienhold
- Division of Pulmonary Inflammation, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Holger Müller-Redetzky
- Division of Pulmonary Inflammation, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Department of Infectious Diseases and Respiratory Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Norbert Suttorp
- Department of Infectious Diseases and Respiratory Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Markus Loeffler
- Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig, Leipzig, Germany
| | - Martin Witzenrath
- Division of Pulmonary Inflammation, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Department of Infectious Diseases and Respiratory Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Markus Scholz
- Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig, Leipzig, Germany
- LIFE Research Center of Civilization Diseases, University of Leipzig, Leipzig, Germany
- * E-mail:
| |
Collapse
|
27
|
Predictive Biomarkers for the Ranking of Pulmonary Toxicity of Nanomaterials. NANOMATERIALS 2020; 10:nano10102032. [PMID: 33076408 PMCID: PMC7602652 DOI: 10.3390/nano10102032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 10/06/2020] [Accepted: 10/09/2020] [Indexed: 01/09/2023]
Abstract
We analyzed the mRNA expression of chemokines in rat lungs following intratracheal instillation of nanomaterials in order to find useful predictive markers of the pulmonary toxicity of nanomaterials. Nickel oxide (NiO) and cerium dioxide (CeO2) as nanomaterials with high pulmonary toxicity, and titanium dioxide (TiO2) and zinc oxide (ZnO) as nanomaterials with low pulmonary toxicity, were administered into rat lungs (0.8 or 4 mg/kg BW). C-X-C motif chemokine 5 (CXCL5), C-C motif chemokine 2 (CCL2), C-C motif chemokine 7 (CCL7), C-X-C motif chemokine 10 (CXCL10), and C-X-C motif chemokine 11 (CXCL11) were selected using cDNA microarray analysis at one month after instillation of NiO in the high dose group. The mRNA expression of these five genes were evaluated while using real-time quantitative polymerase chain reaction (RT-qPCR) from three days to six months after intratracheal instillation. The receiver operating characteristic (ROC) results showed a considerable relationship between the pulmonary toxicity ranking of nanomaterials and the expression of CXCL5, CCL2, and CCL7 at one week and one month. The expression levels of these three genes also moderately or strongly correlated with inflammation in the lung tissues. Three chemokine genes can be useful as predictive biomarkers for the ranking of the pulmonary toxicity of nanomaterials.
Collapse
|
28
|
Silveira Serra D, Matias de Sousa A, Costa da Silva Andrade L, de Lima Gondim F, Evangelista de Ávila Dos Santos J, Moura de Oliveira ML, Torres Ávila Pimenta A. Effects of fixed oil of Caryocar coriaceum Wittm. Seeds on the respiratory system of rats in a short-term secondhand-smoke exposure model. JOURNAL OF ETHNOPHARMACOLOGY 2020; 252:112633. [PMID: 32001275 DOI: 10.1016/j.jep.2020.112633] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 01/21/2020] [Accepted: 01/23/2020] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Pequi fruit are obtained from the pequi tree (Caryocar coriaceum), from which the pulp and nut are used in order to extract an oil that is commonly used in popular medicine as an antiinflammatory agent, particularly for the treatment of colds, bronchitis and bronchopulmonary infections. Making use of the fixed oil of Caryocar coriaceum (FOCC), an attractive alternative for the treatment of diseases caused by exposure to environmental tobacco smoke. AIM OF THE STUDY To evaluate whether oral intake FOCC provides beneficial effects in the respiratory system of rats submitted to a short-term secondhand smoke (SHS) exposure model. MATERIALS AND METHODS The experiments were performed on Wistar rats divided into 4 groups; in the SHS + O and SHS + T groups, the animals were pretreated orally with 0.5 mL of FOCC (SHS + O) or vehicle (Tween-80 [1%] solution) (SHS + T). Immediately after pretreatment, the animals were submitted to the SHS exposure protocol, for a total period of 14 days. Exposures were performed 6 times per day, with a duration of 40 min per exposure (5 cigarettes per exposure), followed by a 1-h interval between subsequent exposures. In the AA + O and AA + T groups, animals were submitted to daily oral pretreatment with 0.5 mL of FOCC (AA + O) or vehicle (AA + T). These animals were then subjected to the aforementioned exposure protocol, but using ambient air. After the exposure period, we investigated the effects of FOCC in respiratory mechanics in vivo (Newtonian resistance -RN, tissue elastance -H, tissue resistance -G, static compliance -CST, inspiratory capacity -IC, PV loop area) histopathology and lung parenchymal morphometry in vitro (polymorphonuclear cells -PMN, mean alveolar diameter -Lm, bronchoconstriction index -BCI), temporal evolution of subjects' masses, and percent composition of the FOCC. RESULTS Regarding the body mass of the animals, the results demonstrated an average body mass gain of 10.5 g for the animals in the AA + T group, and 15.5 g for those in the AA + O group. On the other hand, the body mass of animals in the SHS + T and SHS + O suffered an average loss of 14.4 and 4.75 g, respectively. Regarding respiratory system analyzes, our results demonstrated significant changes in all respiratory mechanics variables and lung parenchyma morphometry analyzed for the SHS + T group when compared to the AA + T group (p < 0,05), confirming the establishment of pulmonary injury induced by SHS exposure. We also observed that rats pretreated orally with FOCC (SHS + O) showed improvement in all variables when compared to the SHS + T group (p < 0,05), thus demonstrating the effectiveness of FOCC in preventing lung damage induced by short-term SHS exposure. CONCLUSION In conclusion, our results demonstrate that FOCC was able to prevent lung injury in rats submitted to short-term SHS exposure.
Collapse
Affiliation(s)
- Daniel Silveira Serra
- Center of Technological Sciences, State University of Ceará, Av. Dr. Silas Munguba, 1700, 60714-903, Fortaleza-Ceará, Ceará, Brazil.
| | | | | | | | | | - Mona Lisa Moura de Oliveira
- Center of Technological Sciences, State University of Ceará, Av. Dr. Silas Munguba, 1700, 60714-903, Fortaleza-Ceará, Ceará, Brazil
| | | |
Collapse
|
29
|
Chen J, Dai L, Wang T, He J, Wang Y, Wen F. The elevated CXCL5 levels in circulation are associated with lung function decline in COPD patients and cigarette smoking-induced mouse model of COPD. Ann Med 2019; 51:314-329. [PMID: 31269827 PMCID: PMC7877878 DOI: 10.1080/07853890.2019.1639809] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Introduction: C-X-C motif chemokine 5 is primarily chemotactic for neutrophils and previously shown to increase in the bronchoalveolar lavage fluid of patients with chronic obstructive pulmonary disease. However, whether C-X-C motif chemokine 5 levels correlate with lung function decline in patients or mouse model of chronic obstructive pulmonary disease was not clear. Methods: The mouse model was induced by cigarette smoke exposure. Plasma/serum and bronchoalveolar lavage fluid were obtained from patients and mouse model of chronic obstructive pulmonary disease; C-X-C motif chemokine 5 levels were assessed and correlated with lung functions and granulocyte-colony stimulating factor levels, respectively. Results: The C-X-C motif chemokine 5 levels increased and correlated to granulocyte-colony stimulating factor levels in both plasma/serum and bronchoalveolar lavage fluid obtained from patients and mouse model of chronic obstructive pulmonary disease. Circulating levels of C-X-C motif chemokine 5 correlated to lung functions decline in patients and mouse model. Conclusions: Granulocyte-colony stimulating factor might coordinate with C-X-C motif chemokine 5 in the pathogenesis of neutrophilic inflammation in chronic obstructive pulmonary disease. Circulating C-X-C motif chemokine 5 might serve as a potential blood-based biomarker to add additional modest predictive value on the preliminary screening and diagnosis of chronic obstructive pulmonary disease. Key messages Circulating C-X-C motif chemokine 5 might serve as a potential blood-based biomarker to add additional modest predictive value on the preliminary screening and diagnosis of COPD. Granulocyte-colony stimulating factor might coordinate with C-X-C motif chemokine 5 in the pathogenesis of neutrophilic inflammation in chronic obstructive pulmonary disease.
Collapse
Affiliation(s)
- Jun Chen
- Division of Pulmonary Diseases, State Key Laboratory of Biotherapy, West China Hospital, West China School of Medicine, Sichuan University , Chengdu , China.,Department of Respiratory and Critical Care Medicine, West China Hospital, West China School of Medicine, Sichuan University , Chengdu , China
| | - Luqi Dai
- Division of Pulmonary Diseases, State Key Laboratory of Biotherapy, West China Hospital, West China School of Medicine, Sichuan University , Chengdu , China.,Department of Respiratory and Critical Care Medicine, West China Hospital, West China School of Medicine, Sichuan University , Chengdu , China
| | - Tao Wang
- Division of Pulmonary Diseases, State Key Laboratory of Biotherapy, West China Hospital, West China School of Medicine, Sichuan University , Chengdu , China.,Department of Respiratory and Critical Care Medicine, West China Hospital, West China School of Medicine, Sichuan University , Chengdu , China
| | - Junyun He
- Department of Respiratory Medicine, Hospital of Chengdu office of People's Government of Tibetan Autonomous Region of China , Chengdu , China
| | - Yashu Wang
- Department of Clinical Laboratory, Xinjiang Provincial Corps Hospital Chinese People's Armed Police Forces , Urumqi , China
| | - Fuqiang Wen
- Division of Pulmonary Diseases, State Key Laboratory of Biotherapy, West China Hospital, West China School of Medicine, Sichuan University , Chengdu , China.,Department of Respiratory and Critical Care Medicine, West China Hospital, West China School of Medicine, Sichuan University , Chengdu , China
| |
Collapse
|
30
|
Alveolar type 2 progenitor cells for lung injury repair. Cell Death Discov 2019; 5:63. [PMID: 30774991 PMCID: PMC6368612 DOI: 10.1038/s41420-019-0147-9] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 12/24/2018] [Accepted: 01/02/2019] [Indexed: 12/19/2022] Open
Abstract
Alveolar type 2 progenitor cells (AT2) seem closest to clinical translation, specifying the evidence that AT2 may satisfactorily control the immune response to decrease lung injury by stabilizing host immune-competence and a classic and crucial resource for lung regeneration and repair. AT2 establish potential in benefiting injured lungs. However, significant discrepancies linger in our understanding vis-à-vis the mechanisms for AT2 as a regime for stem cell therapy as well as essential guiding information for clinical trials, including effectiveness in appropriate pre-clinical models, safety, mostly specifications for divergent lung injury patients. These important gaps shall be systematically investigated prior to the vast therapeutic perspective of AT2 cells for pulmonary diseases can be considered. This review focused on AT2 cells homeostasis, pathophysiological changes in the pathogenesis of lung injury, physiological function of AT2 cells, apoptosis of AT2 cells in lung diseases, the role of AT2 cells in repairing processes after lung injury, mechanism of AT2 cells activation promote repairing processes after lung injury, and potential therapy of lung disease by utilizing the AT2 progenitor cells. The advancement remains to causally connect the molecular and cellular alteration of AT2 cells to lung injury and repair. Conclusively, it is identified that AT2 cells can convert into AT1 cells; but, the comprehensive cellular mechanisms involved in this transition are unrevealed. Further investigation is mandatory to determine new strategies to prevent lung injury.
Collapse
|
31
|
CXCL1 regulates neutrophil homeostasis in pneumonia-derived sepsis caused by Streptococcus pneumoniae serotype 3. Blood 2019; 133:1335-1345. [PMID: 30723078 DOI: 10.1182/blood-2018-10-878082] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 02/03/2019] [Indexed: 12/22/2022] Open
Abstract
Neutrophil migration to the site of bacterial infection is a critical step in host defense. Exclusively produced in the bone marrow, neutrophil release into the blood is tightly controlled. Although the chemokine CXCL1 induces neutrophil influx during bacterial infections, its role in regulating neutrophil recruitment, granulopoiesis, and neutrophil mobilization in response to lung infection-induced sepsis is unclear. Here, we used a murine model of intrapulmonary Streptococcus pneumoniae infection to investigate the role of CXCL1 in host defense, granulopoiesis, and neutrophil mobilization. Our results demonstrate that CXCL1 augments neutrophil influx to control bacterial growth in the lungs, as well as bacterial dissemination, resulting in improved host survival. This was shown in Cxcl1 -/- mice, which exhibited defective amplification of early neutrophil precursors in granulocytic compartments, and CD62L- and CD49d-dependent neutrophil release from the marrow. Administration of recombinant CXCL2 and CXCL5 after infection rescues the impairments in neutrophil-dependent host defense in Cxcl1 -/- mice. Taken together, these findings identify CXCL1 as a central player in host defense, granulopoiesis, and mobilization of neutrophils during Gram-positive bacterial pneumonia-induced sepsis.
Collapse
|
32
|
Abstract
Acute kidney injury (AKI) is a severe and frequent condition in hospitalized patients. Currently, no efficient therapy of AKI is available. Therefore, efforts focus on early prevention and potentially early initiation of renal replacement therapy to improve the outcome in AKI. The detection of AKI in hospitalized patients implies the need for early, accurate, robust, and easily accessible biomarkers of AKI evolution and outcome prediction because only a narrow window exists to implement the earlier-described measures. Even more challenging is the multifactorial origin of AKI and the fact that the changes of molecular expression induced by AKI are difficult to distinguish from those of the diseases associated or causing AKI as shock or sepsis. During the past decade, a considerable number of protein biomarkers for AKI have been described and we expect from recent advances in the field of omics technologies that this number will increase further in the future and be extended to other sorts of biomolecules, such as RNAs, lipids, and metabolites. However, most of these biomarkers are poorly defined by their AKI-associated molecular context. In this review, we describe the state-of-the-art tissue and biofluid proteomic and metabolomic technologies and new bioinformatics approaches for proteomic and metabolomic pathway and molecular interaction analysis. In the second part of the review, we focus on AKI-associated proteomic and metabolomic biomarkers and briefly outline their pathophysiological context in AKI.
Collapse
|
33
|
Govaere O, Cockell S, Van Haele M, Wouters J, Van Delm W, Van den Eynde K, Bianchi A, van Eijsden R, Van Steenbergen W, Monbaliu D, Nevens F, Roskams T. High-throughput sequencing identifies aetiology-dependent differences in ductular reaction in human chronic liver disease. J Pathol 2019; 248:66-76. [PMID: 30584802 DOI: 10.1002/path.5228] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 11/27/2018] [Accepted: 12/23/2018] [Indexed: 12/15/2022]
Abstract
Ductular reaction (DR) represents the activation of hepatic progenitor cells (HPCs) and has been associated with features of advanced chronic liver disease; yet it is not clear whether these cells contribute to disease progression and how the composition of their micro-environment differs depending on the aetiology. This study aimed to identify HPC-associated signalling pathways relevant in different chronic liver diseases using a high-throughput sequencing approach. DR/HPCs were isolated using laser microdissection from patient samples diagnosed with HCV or primary sclerosing cholangitis (PSC), as models for hepatocellular or biliary regeneration. Key signals were validated at the protein level for a cohort of 56 patients (20 early and 36 advanced stage). In total, 330 genes were significantly differentially expressed between the HPCs in HCV and PSC. Recruitment and homing of inflammatory cells were distinctly different depending on the aetiology. HPCs in PSC were characterised by a response to oxidative stress (e.g. JUN, VNN1) and neutrophil-attractant chemokines (CXCL5, CXCL6, IL-8), whereas HPCs in HCV were identified by T- and B-lymphocyte infiltration. Moreover, we found that communication between HPCs and macrophages was aetiology driven. In PSC, a high frequency of CCL28-positive macrophages was observed in the portal infiltrate, already in early disease in the absence of advanced fibrosis, while in HCV, HPCs showed a strong expression of the macrophage scavenger receptor MARCO. Interestingly, DR/HPCs in PSC showed more deposition of ECM (e.g. FN1, LAMC2, collagens) compared to HCV, where an increase of pro-invasive genes (e.g. PDGFRA, IGF2) was observed. Additionally, endothelial cells in the vicinity of DR/HPCs showed differential immunopositivity (e.g. IGF2 and INHBA expression). In conclusion, our data shine light on the role of DR/HPCs in immune signalling, fibrogenesis and angiogenesis in chronic liver disease. Copyright © 2018 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Olivier Govaere
- Department of Imaging and Pathology, KU Leuven and University Hospitals Leuven, Leuven, Belgium.,Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Simon Cockell
- Bioinformatics Support Unit, Newcastle University, Newcastle upon Tyne, UK
| | - Matthias Van Haele
- Department of Imaging and Pathology, KU Leuven and University Hospitals Leuven, Leuven, Belgium
| | - Jasper Wouters
- VIB Center for Brain and Disease Research, KU Leuven, Leuven, Belgium.,Department of Human Genetics, KU Leuven, Leuven, Belgium
| | | | - Kathleen Van den Eynde
- Department of Imaging and Pathology, KU Leuven and University Hospitals Leuven, Leuven, Belgium
| | - Arianna Bianchi
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| | | | | | - Diethard Monbaliu
- Department of Abdominal Transplant Surgery, KU Leuven and University Hospitals Leuven, Leuven, Belgium
| | - Frederik Nevens
- Department of Hepatology, KU Leuven and University Hospitals Leuven, Leuven, Belgium
| | - Tania Roskams
- Department of Imaging and Pathology, KU Leuven and University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
34
|
Umezawa K, Nagano T, Kobayashi K, Dokuni R, Katsurada M, Yamamoto M, Yoshikawa Y, Kataoka T, Nishimura Y. Phospholipase Cε plays a crucial role in neutrophilic inflammation accompanying acute lung injury through augmentation of CXC chemokine production from alveolar epithelial cells. Respir Res 2019; 20:9. [PMID: 30634975 PMCID: PMC6330467 DOI: 10.1186/s12931-019-0975-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Accepted: 01/02/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND We have shown that phospholipase Cε (PLCε), an effector of Ras and Rap1 small GTPases, plays pivotal roles in inflammation and inflammation-associated carcinogenesis by augmenting proinflammatory cytokine production from epithelial cells of various organs. The purpose of this study is to analyze its role in neutrophilic alveolar inflammation accompanying acute lung injury (ALI), focusing on that in alveolar epithelial cells (AECs), which are known to make a major contribution to the pathogenesis of ALI. METHODS We examine the effect of the PLCε genotypes on the development of ALI induced by intratracheal administration of lipopolysaccharide (LPS) to PLCε wild-type (PLCε+/+) and knockout (PLCεΔX/ΔX) mice. Pathogenesis of ALI is analyzed by histological examination of lung inflammation and measurements of the levels of various cytokines, in particular neutrophil-attracting chemokines such as Cxcl5, by quantitative reverse transcription-polymerase chain reaction and immunostaining. Primary cultures of AECs, established from PLCε+/+ and PLCεΔX/ΔX mice, are used to analyze the roles of PLCε, protein kinase D (PKD) and nuclear factor-κB (NF-κB) in augmentation of LPS-induced Cxcl5 expression. RESULTS Compared to PLCε+/+ mice, PLCεΔX/ΔX mice exhibit marked alleviation of lung inflammation as shown by great reduction in lung wet/dry weight ratios, accumulation of inflammatory cells in the alveolar space and thickening of alveolar walls as well as the number of neutrophils and the protein concentration in bronchoalveolar lavage fluid. Also, LPS-induced expression of the CXC family of chemokines, in particular Cxcl5, is substantially diminished in the total lung and AECs of PLCεΔX/ΔX mice. Moreover, LPS-induced Cxcl5 expression in primary cultured AECs is markedly suppressed on the PLCεΔX/ΔX background (p < 0.05 versus PLCε+/+ AECs), which is accompanied by the reduction in phosphorylation of inhibitor κB (IκB), PKD and nuclear translocation of NF-κB p65. Also, it is suppressed by the treatment with inhibitors of PKD and IκB kinase, suggesting the involvement of the PLCε-PKD-IκB-NF-κB pathway. CONCLUSIONS PLCε-mediated augmentation of the production of the CXC family of chemokines, in particular Cxcl5, in AECs plays a crucial role in neutrophilic alveolar inflammation accompanying ALI, suggesting that PLCε may be a potential molecular target for the treatment of acute respiratory distress syndrome.
Collapse
Affiliation(s)
- Kanoko Umezawa
- Division of Respiratory Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Tatsuya Nagano
- Division of Respiratory Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan.
| | - Kazuyuki Kobayashi
- Division of Respiratory Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Ryota Dokuni
- Division of Respiratory Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Masahiro Katsurada
- Division of Respiratory Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Masatsugu Yamamoto
- Division of Respiratory Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Yoko Yoshikawa
- Division of Molecular Biology, Department of Biochemistry and Molecular and Biology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Tohru Kataoka
- Division of Molecular Biology, Department of Biochemistry and Molecular and Biology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan.,Kobe University Incubation Center, 1-5-6 Miyakojima Minami-cho, Chuo-ku, Kobe, 650-0047, Japan
| | - Yoshihiro Nishimura
- Division of Respiratory Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| |
Collapse
|
35
|
Abstract
Pneumonia is a type of acute lower respiratory infection that is common and severe. The outcome of lower respiratory infection is determined by the degrees to which immunity is protective and inflammation is damaging. Intercellular and interorgan signaling networks coordinate these actions to fight infection and protect the tissue. Cells residing in the lung initiate and steer these responses, with additional immunity effectors recruited from the bloodstream. Responses of extrapulmonary tissues, including the liver, bone marrow, and others, are essential to resistance and resilience. Responses in the lung and extrapulmonary organs can also be counterproductive and drive acute and chronic comorbidities after respiratory infection. This review discusses cell-specific and organ-specific roles in the integrated physiological response to acute lung infection, and the mechanisms by which intercellular and interorgan signaling contribute to host defense and healthy respiratory physiology or to acute lung injury, chronic pulmonary disease, and adverse extrapulmonary sequelae. Pneumonia should no longer be perceived as simply an acute infection of the lung. Pneumonia susceptibility reflects ongoing and poorly understood chronic conditions, and pneumonia results in diverse and often persistent deleterious consequences for multiple physiological systems.
Collapse
Affiliation(s)
- Lee J Quinton
- Pulmonary Center, Boston University School of Medicine , Boston, Massachusetts
| | - Allan J Walkey
- Pulmonary Center, Boston University School of Medicine , Boston, Massachusetts
| | - Joseph P Mizgerd
- Pulmonary Center, Boston University School of Medicine , Boston, Massachusetts
| |
Collapse
|
36
|
Ghimire L, Paudel S, Jin L, Baral P, Cai S, Jeyaseelan S. NLRP6 negatively regulates pulmonary host defense in Gram-positive bacterial infection through modulating neutrophil recruitment and function. PLoS Pathog 2018; 14:e1007308. [PMID: 30248149 PMCID: PMC6171945 DOI: 10.1371/journal.ppat.1007308] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 10/04/2018] [Accepted: 08/29/2018] [Indexed: 12/27/2022] Open
Abstract
Gram-positive bacteria, including Staphylococcus aureus are endemic in the U.S., which cause life-threatening necrotizing pneumonia. Neutrophils are known to be critical for clearance of S. aureus infection from the lungs and extrapulmonary organs. Therefore, we investigated whether the NLRP6 inflammasome regulates neutrophil-dependent host immunity during pulmonary S. aureus infection. Unlike their wild-type (WT) counterparts, NLRP6 knockout (KO) mice were protected against pulmonary S. aureus infection as evidenced by their higher survival rate and lower bacterial burden in the lungs and extrapulmonary organs. In addition, NLRP6 KO mice displayed increased neutrophil recruitment following infection, and when neutrophils were depleted the protective effect was lost. Furthermore, neutrophils from the KO mice demonstrated enhanced intracellular bacterial killing and increased NADPH oxidase-dependent ROS production. Intriguingly, we found higher NK cell-mediated IFN-γ production in KO mouse lungs, and treatment with IFN-γ was found to enhance the bactericidal ability of WT and KO neutrophils. The NLRP6 KO mice also displayed decreased pyroptosis and necroptosis in the lungs following infection. Blocking of pyroptosis and necroptosis in WT mice resulted in increased survival, reduced bacterial burden in the lungs, and attenuated cytokine production. Taken together, these novel findings show that NLRP6 serves as a negative regulator of neutrophil-mediated host defense during Gram-positive bacterial infection in the lungs through regulating both neutrophil influx and function. These results also suggest that blocking NLRP6 to augment neutrophil-associated bacterial clearance should be considered as a potential therapeutic intervention strategy for treatment of S. aureus pneumonia.
Collapse
MESH Headings
- Animals
- CD4-Positive T-Lymphocytes/immunology
- Female
- Host-Pathogen Interactions/immunology
- Humans
- Inflammasomes/immunology
- Interferon-gamma/biosynthesis
- Killer Cells, Natural/immunology
- Lung/immunology
- Lung/microbiology
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Neutrophil Infiltration/immunology
- Pneumonia, Necrotizing/immunology
- Pneumonia, Necrotizing/microbiology
- Pneumonia, Staphylococcal/immunology
- Pneumonia, Staphylococcal/microbiology
- Pyroptosis/immunology
- Reactive Oxygen Species/metabolism
- Receptors, Cell Surface/deficiency
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/immunology
- Staphylococcus aureus/immunology
- Up-Regulation
Collapse
Affiliation(s)
- Laxman Ghimire
- Lung Biology Laboratory, Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University (LSU), Baton Rouge, LA, United States of America
| | - Sagar Paudel
- Lung Biology Laboratory, Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University (LSU), Baton Rouge, LA, United States of America
| | - Liliang Jin
- Lung Biology Laboratory, Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University (LSU), Baton Rouge, LA, United States of America
| | - Pankaj Baral
- Lung Biology Laboratory, Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University (LSU), Baton Rouge, LA, United States of America
| | - Shanshan Cai
- Lung Biology Laboratory, Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University (LSU), Baton Rouge, LA, United States of America
| | - Samithamby Jeyaseelan
- Lung Biology Laboratory, Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University (LSU), Baton Rouge, LA, United States of America
- Section of Pulmonary and Critical Care, Department of Medicine, LSU Health Science Center, New Orleans, LA, United States of America
| |
Collapse
|
37
|
Pariollaud M, Gibbs JE, Hopwood TW, Brown S, Begley N, Vonslow R, Poolman T, Guo B, Saer B, Jones DH, Tellam JP, Bresciani S, Tomkinson NC, Wojno-Picon J, Cooper AW, Daniels DA, Trump RP, Grant D, Zuercher W, Willson TM, MacDonald AS, Bolognese B, Podolin PL, Sanchez Y, Loudon AS, Ray DW. Circadian clock component REV-ERBα controls homeostatic regulation of pulmonary inflammation. J Clin Invest 2018. [PMID: 29533925 PMCID: PMC5983347 DOI: 10.1172/jci93910] [Citation(s) in RCA: 134] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Recent studies reveal that airway epithelial cells are critical pulmonary circadian pacemaker cells, mediating rhythmic inflammatory responses. Using mouse models, we now identify the rhythmic circadian repressor REV-ERBα as essential to the mechanism coupling the pulmonary clock to innate immunity, involving both myeloid and bronchial epithelial cells in temporal gating and determining amplitude of response to inhaled endotoxin. Dual mutation of REV-ERBα and its paralog REV-ERBβ in bronchial epithelia further augmented inflammatory responses and chemokine activation, but also initiated a basal inflammatory state, revealing a critical homeostatic role for REV-ERB proteins in the suppression of the endogenous proinflammatory mechanism in unchallenged cells. However, REV-ERBα plays the dominant role, as deletion of REV-ERBβ alone had no impact on inflammatory responses. In turn, inflammatory challenges cause striking changes in stability and degradation of REV-ERBα protein, driven by SUMOylation and ubiquitination. We developed a novel selective oxazole-based inverse agonist of REV-ERB, which protects REV-ERBα protein from degradation, and used this to reveal how proinflammatory cytokines trigger rapid degradation of REV-ERBα in the elaboration of an inflammatory response. Thus, dynamic changes in stability of REV-ERBα protein couple the core clock to innate immunity.
Collapse
Affiliation(s)
- Marie Pariollaud
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Julie E Gibbs
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Thomas W Hopwood
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Sheila Brown
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Nicola Begley
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Ryan Vonslow
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Toryn Poolman
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Baoqiang Guo
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Ben Saer
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - D Heulyn Jones
- Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow, United Kingdom
| | - James P Tellam
- Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow, United Kingdom
| | - Stefano Bresciani
- Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow, United Kingdom
| | - Nicholas Co Tomkinson
- Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow, United Kingdom
| | - Justyna Wojno-Picon
- Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow, United Kingdom.,GlaxoSmithKline R&D, Stevenage, United Kingdom
| | - Anthony Wj Cooper
- Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow, United Kingdom.,GlaxoSmithKline R&D, Stevenage, United Kingdom
| | | | - Ryan P Trump
- Molecular Discovery Research, GlaxoSmithKline, Research Triangle Park, North Carolina, USA
| | - Daniel Grant
- Molecular Discovery Research, GlaxoSmithKline, Research Triangle Park, North Carolina, USA.,Novartis AG, East Hannover, New Jersey, USA
| | - William Zuercher
- Molecular Discovery Research, GlaxoSmithKline, Research Triangle Park, North Carolina, USA.,Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Timothy M Willson
- Molecular Discovery Research, GlaxoSmithKline, Research Triangle Park, North Carolina, USA.,Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Andrew S MacDonald
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Brian Bolognese
- Stress and Repair Discovery Performance Unit, Respiratory Therapy Area, GlaxoSmithKline, King of Prussia, Pennsylvania, USA
| | - Patricia L Podolin
- Stress and Repair Discovery Performance Unit, Respiratory Therapy Area, GlaxoSmithKline, King of Prussia, Pennsylvania, USA
| | - Yolanda Sanchez
- Stress and Repair Discovery Performance Unit, Respiratory Therapy Area, GlaxoSmithKline, King of Prussia, Pennsylvania, USA
| | - Andrew Si Loudon
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - David W Ray
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
38
|
Rajarathnam K, Sepuru KM, Joseph PRB, Sawant KV, Brown AJ. Glycosaminoglycan Interactions Fine-Tune Chemokine-Mediated Neutrophil Trafficking: Structural Insights and Molecular Mechanisms. J Histochem Cytochem 2018; 66:229-239. [PMID: 29290145 PMCID: PMC5958375 DOI: 10.1369/0022155417739864] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 10/10/2017] [Indexed: 01/01/2023] Open
Abstract
Circulating neutrophils, rapidly recruited in response to microbial infection, form the first line in host defense. Humans express ~50 chemokines, of which a subset of seven chemokines, characterized by the conserved "Glu-Leu-Arg" motif, mediate neutrophil recruitment. Neutrophil-activating chemokines (NACs) share similar structures, exist as monomers and dimers, activate the CXCR2 receptor on neutrophils, and interact with tissue glycosaminoglycans (GAGs). Considering cellular assays have shown that NACs have similar CXCR2 activity, the question has been and remains, why do humans express so many NACs? In this review, we make the case that NACs are not redundant and that distinct GAG interactions determine chemokine-specific in vivo functions. Structural studies have shown that the GAG-binding interactions of NACs are distinctly different, and that conserved and specific residues in the context of structure determine geometries that could not have been predicted from sequences alone. Animal studies indicate recruitment profiles of monomers and dimers are distinctly different, monomer-dimer equilibrium regulates recruitment, and that recruitment profiles vary between chemokines and between tissues, providing evidence that GAG interactions orchestrate neutrophil recruitment. We propose in vivo GAG interactions impact several chemokine properties including gradients and lifetime, and that these interactions fine-tune and define the functional response of each chemokine that can vary between different cell and tissue types for successful resolution of inflammation.
Collapse
Affiliation(s)
- Krishna Rajarathnam
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas
- Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, Texas
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas
| | - Krishna Mohan Sepuru
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas
- Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, Texas
| | - Prem Raj B Joseph
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas
- Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, Texas
| | - Kirti V Sawant
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas
- Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, Texas
| | - Aaron J Brown
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas
- Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, Texas
| |
Collapse
|
39
|
Crotty Alexander LE, Drummond CA, Hepokoski M, Mathew D, Moshensky A, Willeford A, Das S, Singh P, Yong Z, Lee JH, Vega K, Du A, Shin J, Javier C, Tian J, Brown JH, Breen EC. Chronic inhalation of e-cigarette vapor containing nicotine disrupts airway barrier function and induces systemic inflammation and multiorgan fibrosis in mice. Am J Physiol Regul Integr Comp Physiol 2018; 314:R834-R847. [PMID: 29384700 DOI: 10.1152/ajpregu.00270.2017] [Citation(s) in RCA: 151] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Electronic (e)-cigarettes theoretically may be safer than conventional tobacco. However, our prior studies demonstrated direct adverse effects of e-cigarette vapor (EV) on airway cells, including decreased viability and function. We hypothesize that repetitive, chronic inhalation of EV will diminish airway barrier function, leading to inflammatory protein release into circulation, creating a systemic inflammatory state, ultimately leading to distant organ injury and dysfunction. C57BL/6 and CD-1 mice underwent nose only EV exposure daily for 3-6 mo, followed by cardiorenal physiological testing. Primary human bronchial epithelial cells were grown at an air-liquid interface and exposed to EV for 15 min daily for 3-5 days before functional testing. Daily inhalation of EV increased circulating proinflammatory and profibrotic proteins in both C57BL/6 and CD-1 mice: the greatest increases observed were in angiopoietin-1 (31-fold) and EGF (25-fold). Proinflammatory responses were recapitulated by daily EV exposures in vitro of human airway epithelium, with EV epithelium secreting higher IL-8 in response to infection (227 vs. 37 pg/ml, respectively; P < 0.05). Chronic EV inhalation in vivo reduced renal filtration by 20% ( P = 0.017). Fibrosis, assessed by Masson's trichrome and Picrosirius red staining, was increased in EV kidneys (1.86-fold, C57BL/6; 3.2-fold, CD-1; P < 0.05), heart (2.75-fold, C57BL/6 mice; P < 0.05), and liver (1.77-fold in CD-1; P < 0.0001). Gene expression changes demonstrated profibrotic pathway activation. EV inhalation altered cardiovascular function, with decreased heart rate ( P < 0.01), and elevated blood pressure ( P = 0.016). These data demonstrate that chronic inhalation of EV may lead to increased inflammation, organ damage, and cardiorenal and hepatic disease.
Collapse
Affiliation(s)
- Laura E Crotty Alexander
- Pulmonary Critical Care Section, Department of Medicine, Veterans Affairs San Diego Healthcare System, San Diego, California.,Division of Pulmonary Critical Care and Sleep Medicine, Department of Medicine, University of California , San Diego, California
| | | | - Mark Hepokoski
- Pulmonary Critical Care Section, Department of Medicine, Veterans Affairs San Diego Healthcare System, San Diego, California.,Division of Pulmonary Critical Care and Sleep Medicine, Department of Medicine, University of California , San Diego, California
| | - Denzil Mathew
- Pulmonary Critical Care Section, Department of Medicine, Veterans Affairs San Diego Healthcare System, San Diego, California
| | - Alex Moshensky
- Pulmonary Critical Care Section, Department of Medicine, Veterans Affairs San Diego Healthcare System, San Diego, California.,Division of Pulmonary Critical Care and Sleep Medicine, Department of Medicine, University of California , San Diego, California
| | - Andrew Willeford
- Department of Pharmacology, University of California , San Diego, California
| | - Soumita Das
- Department of Pathology, University of California , San Diego, California
| | - Prabhleen Singh
- Division of Nephrology and Hypertension, Department of Medicine, University of California , San Diego, California.,Nephrology Section, Department of Medicine, Veterans Affairs San Diego Healthcare System, San Diego, California
| | - Zach Yong
- Pulmonary Critical Care Section, Department of Medicine, Veterans Affairs San Diego Healthcare System, San Diego, California.,Division of Pulmonary Critical Care and Sleep Medicine, Department of Medicine, University of California , San Diego, California
| | - Jasmine H Lee
- Division of Physiology, Department of Medicine, University of California , San Diego, California
| | - Kevin Vega
- Department of Pathology, University of California , San Diego, California
| | - Ashley Du
- Pulmonary Critical Care Section, Department of Medicine, Veterans Affairs San Diego Healthcare System, San Diego, California.,Division of Pulmonary Critical Care and Sleep Medicine, Department of Medicine, University of California , San Diego, California
| | - John Shin
- Pulmonary Critical Care Section, Department of Medicine, Veterans Affairs San Diego Healthcare System, San Diego, California.,Division of Pulmonary Critical Care and Sleep Medicine, Department of Medicine, University of California , San Diego, California
| | - Christian Javier
- Pulmonary Critical Care Section, Department of Medicine, Veterans Affairs San Diego Healthcare System, San Diego, California.,Division of Pulmonary Critical Care and Sleep Medicine, Department of Medicine, University of California , San Diego, California
| | - Jiang Tian
- Division of Cardiovascular Medicine and Center for Hypertension and Personalized Medicine, University of Toledo , Toledo, Ohio.,Department of Medicine, College of Medicine and Life Sciences, University of Toledo , Toledo, Ohio
| | - Joan Heller Brown
- Department of Pharmacology, University of California , San Diego, California
| | - Ellen C Breen
- Division of Physiology, Department of Medicine, University of California , San Diego, California
| |
Collapse
|
40
|
Layhadi JA, Turner J, Crossman D, Fountain SJ. ATP Evokes Ca 2+ Responses and CXCL5 Secretion via P2X 4 Receptor Activation in Human Monocyte-Derived Macrophages. THE JOURNAL OF IMMUNOLOGY 2017; 200:1159-1168. [PMID: 29255078 DOI: 10.4049/jimmunol.1700965] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 11/16/2017] [Indexed: 01/08/2023]
Abstract
Leukocytes sense extracellular ATP, a danger-associated molecular pattern, released during cellular stress and death, via activation of cell surface P2X and P2Y receptors. Here, we investigate P2 receptor expression in primary human monocyte-derived macrophages and receptors that mediate ATP-evoked intracellular [Ca2+]i signals and cytokine production in response to ATP concentrations that exclude P2X7 receptor activation. Expression of P2X1, P2X4, P2X5, P2X7, P2Y1, P2Y2, P2Y4, P2Y6, P2Y11, and P2Y13 was confirmed by quantitative RT-PCR and immunocytochemistry. ATP elicited intracellular Ca2+ responses in a concentration-dependent fashion (EC50 = 11.4 ± 2.9 μM, n = 3). P2Y11 and P2Y13 activations mediated the amplitude of [Ca2+]i response, whereas P2X4 activation, but not P2X1 or P2X7, determined the duration of Ca2+ response during a sustained phase. ATP mediated gene induction of CXCL5, a proinflammatory chemokine. P2X4 antagonism (PSB-12062 or BX430) inhibited ATP-mediated induction of CXCL5 gene expression and secretion of CXCL5 by primary macrophage. Inhibition of CXCL5 secretion by P2X4 antagonists was lost in the absence of extracellular Ca2+ Reciprocally, positive allosteric modulation of P2X4 (ivermectin) augmented ATP-mediated CXCL5 secretion. P2X7, P2Y11, or P2Y13 receptor did not contribute to CXCL5 secretion. Together, the data reveals a role for P2X4 in determining the duration of ATP-evoked Ca2+ responses and CXCL5 secretion in human primary macrophage.
Collapse
Affiliation(s)
- Janice A Layhadi
- School of Biological Sciences, University of East Anglia, Norwich, Norfolk NR4 7TJ, United Kingdom
| | - Jeremy Turner
- Elsie Bertram Diabetes Centre, Norfolk and Norwich University Hospital, Norwich NR4 7UY, United Kingdom; and
| | - David Crossman
- School of Medicine, University of St Andrews, St Andrews KY16 9TF, United Kingdom
| | - Samuel J Fountain
- School of Biological Sciences, University of East Anglia, Norwich, Norfolk NR4 7TJ, United Kingdom;
| |
Collapse
|
41
|
Ravi S, Schuck RN, Hilliard E, Lee CR, Dai X, Lenhart K, Willis MS, Jensen BC, Stouffer GA, Patterson C, Schisler JC. Clinical Evidence Supports a Protective Role for CXCL5 in Coronary Artery Disease. THE AMERICAN JOURNAL OF PATHOLOGY 2017; 187:2895-2911. [PMID: 29153655 PMCID: PMC5718092 DOI: 10.1016/j.ajpath.2017.08.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 06/19/2017] [Accepted: 08/22/2017] [Indexed: 12/31/2022]
Abstract
Our goal was to measure the association of CXCL5 and molecular phenotypes associated with coronary atherosclerosis severity in patients at least 65 years old. CXCL5 is classically defined as a proinflammatory chemokine, but its role in chronic inflammatory diseases, such as coronary atherosclerosis, is not well defined. We enrolled individuals who were at least 65 years old and undergoing diagnostic cardiac catheterization. Coronary artery disease (CAD) severity was quantified in each subject via coronary angiography by calculating a CAD score. Circulating CXCL5 levels were measured from plasma, and both DNA genotyping and mRNA expression levels in peripheral blood mononuclear cells were quantified via microarray gene chips. We observed a negative association of CXCL5 levels with CAD at an odds ratio (OR) of 0.46 (95% CI, 0.27-0.75). Controlling for covariates, including sex, statin use, hypertension, hyperlipidemia, obesity, self-reported race, smoking, and diabetes, the OR was not significantly affected [OR, 0.54 (95% CI, 0.31-0.96)], consistent with a protective role for CXCL5 in coronary atherosclerosis. We also identified 18 genomic regions with expression quantitative trait loci of genes correlated with both CAD severity and circulating CXCL5 levels. Our clinical findings are consistent with the emerging link between chemokines and atherosclerosis and suggest new therapeutic targets for CAD.
Collapse
Affiliation(s)
- Saranya Ravi
- McAllister Heart Institute, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Robert N Schuck
- Division of Pharmacotherapy and Experimental Therapeutics, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Eleanor Hilliard
- McAllister Heart Institute, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Craig R Lee
- McAllister Heart Institute, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; Division of Pharmacotherapy and Experimental Therapeutics, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Xuming Dai
- McAllister Heart Institute, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; Eshelman School of Pharmacy, the Division of Cardiology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Kaitlin Lenhart
- McAllister Heart Institute, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Monte S Willis
- McAllister Heart Institute, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; Department of Pathology and Laboratory Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Brian C Jensen
- McAllister Heart Institute, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; Eshelman School of Pharmacy, the Division of Cardiology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - George A Stouffer
- McAllister Heart Institute, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; Eshelman School of Pharmacy, the Division of Cardiology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Cam Patterson
- Presbyterian Hospital/Weill-Cornell Medical Center, New York, New York
| | - Jonathan C Schisler
- McAllister Heart Institute, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; Department of Pathology and Laboratory Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.
| |
Collapse
|
42
|
Smith KJ, Boyer JA, Muku GE, Murray IA, Gowda K, Desai D, Amin SG, Glick AB, Perdew GH. Editor's Highlight: Ah Receptor Activation Potentiates Neutrophil Chemoattractant (C-X-C Motif) Ligand 5 Expression in Keratinocytes and Skin. Toxicol Sci 2017; 160:83-94. [PMID: 28973351 PMCID: PMC5837612 DOI: 10.1093/toxsci/kfx160] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Chemokines are components of the skin microenvironment, which enable immune cell chemotaxis. Traditionally, transcription factors involved in inflammatory signaling (eg, NFκB) are important mediators of chemokine expression. To what extent xenobiotics and their associated receptors control chemokine expression is poorly understood. The aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor known to mediate physiological responses in the skin through the regulation of genes involved in xenobiotic metabolism, epidermal differentiation, and immunity. Here, we demonstrate that AHR activation within primary mouse keratinocytes regulates the expression of a neutrophil directing chemokine (C-X-C motif) ligand 5 (Cxcl5). AHR-mediated regulation of Cxcl5 is because of direct transcriptional activity upon treatment with AHR agonists such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Additionally, AHR mediates enhanced induction of Cxcl5 upon exposure to an agonist and the inflammatory cytokine interleukin 1 beta. This synergy is confined primarily to keratinocytes, as dermal fibroblasts did not achieve the same level of combinatorial induction. AHR-specific antagonists were able to reduce basal and induced levels of Cxcl5, demonstrating the potential for pharmacological intervention. Exposure of C57BL/6 J mice to ultraviolet (UV) light followed by topical treatment with the AHR agonist formylindolo(3,2-b)carbazole (FICZ) significantly induced Cxcl5 expression in skin compared with UV alone, and this response was absent in Ahr-/- mice. These results establish AHR as an important mediator of Cxcl5, with implications for the treatment of inflammatory skin diseases.
Collapse
Affiliation(s)
- Kayla J. Smith
- The Graduate Program in Biochemistry, Microbiology, and Molecular Biology, Department of Biochemistry and Molecular Biology
| | - Jacob A. Boyer
- Department of Veterinary and Biomedical Sciences, Center for Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, Pennsylvania 16802
| | - Gulsum E. Muku
- Department of Veterinary and Biomedical Sciences, Center for Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, Pennsylvania 16802
| | - Iain A. Murray
- Department of Veterinary and Biomedical Sciences, Center for Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, Pennsylvania 16802
| | - Krishne Gowda
- Department of Pharmacology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033
| | - Dhimant Desai
- Department of Pharmacology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033
| | - Shantu G. Amin
- Department of Pharmacology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033
| | - Adam B. Glick
- Department of Veterinary and Biomedical Sciences, Center for Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, Pennsylvania 16802
| | - Gary H. Perdew
- Department of Veterinary and Biomedical Sciences, Center for Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, Pennsylvania 16802
| |
Collapse
|
43
|
Cytosolic Phospholipase A 2α Promotes Pulmonary Inflammation and Systemic Disease during Streptococcus pneumoniae Infection. Infect Immun 2017; 85:IAI.00280-17. [PMID: 28808157 DOI: 10.1128/iai.00280-17] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 08/02/2017] [Indexed: 02/07/2023] Open
Abstract
Pulmonary infection by Streptococcus pneumoniae is characterized by a robust alveolar infiltration of neutrophils (polymorphonuclear cells [PMNs]) that can promote systemic spread of the infection if not resolved. We previously showed that 12-lipoxygenase (12-LOX), which is required to generate the PMN chemoattractant hepoxilin A3 (HXA3) from arachidonic acid (AA), promotes acute pulmonary inflammation and systemic infection after lung challenge with S. pneumoniae As phospholipase A2 (PLA2) promotes the release of AA, we investigated the role of PLA2 in local and systemic disease during S. pneumoniae infection. The group IVA cytosolic isoform of PLA2 (cPLA2α) was activated upon S. pneumoniae infection of cultured lung epithelial cells and was critical for AA release from membrane phospholipids. Pharmacological inhibition of this enzyme blocked S. pneumoniae-induced PMN transepithelial migration in vitro Genetic ablation of the cPLA2 isoform cPLA2α dramatically reduced lung inflammation in mice upon high-dose pulmonary challenge with S. pneumoniae The cPLA2α-deficient mice also suffered no bacteremia and survived a pulmonary challenge that was lethal to wild-type mice. Our data suggest that cPLA2α plays a crucial role in eliciting pulmonary inflammation during pneumococcal infection and is required for lethal systemic infection following S. pneumoniae lung challenge.
Collapse
|
44
|
Sodhi CP, Wohlford-Lenane C, Yamaguchi Y, Prindle T, Fulton WB, Wang S, McCray PB, Chappell M, Hackam DJ, Jia H. Attenuation of pulmonary ACE2 activity impairs inactivation of des-Arg 9 bradykinin/BKB1R axis and facilitates LPS-induced neutrophil infiltration. Am J Physiol Lung Cell Mol Physiol 2017; 314:L17-L31. [PMID: 28935640 DOI: 10.1152/ajplung.00498.2016] [Citation(s) in RCA: 260] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Angiotensin-converting enzyme 2 (ACE2) is a terminal carboxypeptidase with important functions in the renin-angiotensin system and plays a critical role in inflammatory lung diseases. ACE2 cleaves single-terminal residues from several bioactive peptides such as angiotensin II. However, few of its substrates in the respiratory tract have been identified, and the mechanism underlying the role of ACE2 in inflammatory lung disease has not been fully characterized. In an effort to identify biological targets of ACE2 in the lung, we tested its effects on des-Arg9 bradykinin (DABK) in airway epithelial cells on the basis of the hypothesis that DABK is a biological substrate of ACE2 in the lung and ACE2 plays an important role in the pathogenesis of acute lung inflammation partly through modulating DABK/bradykinin receptor B1 (BKB1R) axis signaling. We found that loss of ACE2 function in mouse lung in the setting of endotoxin inhalation led to activation of the DABK/BKB1R axis, release of proinflammatory chemokines such as C-X-C motif chemokine 5 (CXCL5), macrophage inflammatory protein-2 (MIP2), C-X-C motif chemokine 1 (KC), and TNF-α from airway epithelia, increased neutrophil infiltration, and exaggerated lung inflammation and injury. These results indicate that a reduction in pulmonary ACE2 activity contributes to the pathogenesis of lung inflammation, in part because of an impaired ability to inhibit DABK/BKB1R axis-mediated signaling, resulting in more prompt onset of neutrophil infiltration and more severe inflammation in the lung. Our study identifies a biological substrate of ACE2 within the airways, as well as a potential new therapeutic target for inflammatory diseases.
Collapse
Affiliation(s)
- Chhinder P Sodhi
- Division of Pediatric Surgery, Department of Surgery, Johns Hopkins University , Baltimore, Maryland
| | | | - Yukihiro Yamaguchi
- Division of Pediatric Surgery, Department of Surgery, Johns Hopkins University , Baltimore, Maryland
| | - Thomas Prindle
- Division of Pediatric Surgery, Department of Surgery, Johns Hopkins University , Baltimore, Maryland
| | - William B Fulton
- Division of Pediatric Surgery, Department of Surgery, Johns Hopkins University , Baltimore, Maryland
| | - Sanxia Wang
- Division of Pediatric Surgery, Department of Surgery, Johns Hopkins University , Baltimore, Maryland
| | - Paul B McCray
- Department of Pediatrics, Carver College of Medicine, The University of Iowa , Iowa City, Iowa
| | - Mark Chappell
- Hypertension and Vascular Research Center, Wake Forest School of Medicine , Winston-Salem, North Carolina
| | - David J Hackam
- Division of Pediatric Surgery, Department of Surgery, Johns Hopkins University , Baltimore, Maryland
| | - Hongpeng Jia
- Division of Pediatric Surgery, Department of Surgery, Johns Hopkins University , Baltimore, Maryland
| |
Collapse
|
45
|
Diminished neutrophil extracellular trap (NET) formation is a novel innate immune deficiency induced by acute ethanol exposure in polymicrobial sepsis, which can be rescued by CXCL1. PLoS Pathog 2017; 13:e1006637. [PMID: 28922428 PMCID: PMC5626520 DOI: 10.1371/journal.ppat.1006637] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 10/03/2017] [Accepted: 09/08/2017] [Indexed: 12/20/2022] Open
Abstract
Polymicrobial sepsis is the result of an exaggerated host immune response to bacterial pathogens. Animal models and human studies demonstrate that alcohol intoxication is a key risk factor for sepsis-induced mortality. Multiple chemokines, such as CXCL1, CXCL2 and CXCL5 are critical for neutrophil recruitment and proper function of neutrophils. However, it is not quite clear the mechanisms by which acute alcohol suppresses immune responses and whether alcohol-induced immunosuppression can be rescued by chemokines. Thus, we assessed whether acute ethanol challenge via gavage diminishes antibacterial host defense in a sepsis model using cecal ligation and puncture (CLP) and whether this immunosuppression can be rescued by exogenous CXCL1. We found acute alcohol intoxication augments mortality and enhances bacterial growth in mice following CLP. Ethanol exposure impairs critical antibacterial functions of mouse and human neutrophils including reactive oxygen species production, neutrophil extracellular trap (NET) formation, and NET-mediated killing in response to both Gram-negative (E. coli) and Gram-positive (Staphylococcus aureus) pathogens. As compared with WT (C57Bl/6) mice, CXCL1 knockout mice display early mortality following acute alcohol exposure followed by CLP. Recombinant CXCL1 (rCXCL1) in acute alcohol challenged CLP mice increases survival, enhances bacterial clearance, improves neutrophil recruitment, and enhances NET formation (NETosis). Recombinant CXCL1 (rCXCL1) administration also augments bacterial killing by alcohol-treated and E. coli- and S. aureus-infected neutrophils. Taken together, our data unveils novel mechanisms underlying acute alcohol-induced dysregulation of the immune responses in polymicrobial sepsis, and CXCL1 is a critical mediator to rescue alcohol-induced immune dysregulation in polymicrobial sepsis. Sepsis is still a leading cause of morbidity and mortality in critically ill patients. Multiple organ failure and mortality in sepsis is caused by uncontrolled activation of the immune system. This results in impaired ability to control bacterial colonization and dissemination along with excessive inflammation-induced pathology. Neutrophils are critical innate immune cells that provide the first line of defense against sepsis through their ability to rapidly migrate to the site of infection and restrict bacterial multiplication and dissemination. Alcohol intoxication is a key risk factor for sepsis-induced mortality. However, the mechanisms by which acute alcohol suppresses immune responses in sepsis and whether alcohol-induced immunosuppression in sepsis can be rescued by chemokines remain elusive. We found that acute alcohol intoxication augments mortality and enhances bacterial growth in septic mice. Alcohol exposure also impairs critical antibacterial functions of mouse and human neutrophils. Recombinant neutrophil chemokine (CXCL1) in acute alcohol challenged septic mice increases neutrophil-dependent host protection. Therefore, our study provides novel mechanisms underlying acute alcohol-induced dysregulation of the immune responses in sepsis which can be rescued by CXCL1.
Collapse
|
46
|
Anas AA, Claushuis TAM, Mohan RA, Christoffels VM, Aidinis V, Florquin S, Van't Veer C, Hou B, de Vos AF, van der Poll T. Epithelial Myeloid-Differentiation Factor 88 Is Dispensable during Klebsiella Pneumonia. Am J Respir Cell Mol Biol 2017; 56:648-656. [PMID: 28187270 DOI: 10.1165/rcmb.2016-0190oc] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Klebsiella pneumoniae is a common cause of pneumonia. Previous studies have documented an important role for Toll-like receptors (TLRs) expressed by myeloid cells in the recognition of K. pneumoniae and the initiation of a protective immune response. Lung epithelial cells also express TLRs and can participate in innate immune defense. The aim of this study was to examine the role of the common TLR adaptor protein myeloid-differentiation factor (MyD) 88 in lung epithelium during host defense against K. pneumoniae-induced pneumonia. To this end, we first crossed mice expressing cre recombinase under the control of the surfactant protein C (SftpCcre) or the club cell 10 kD (CC10cre) promoter with reporter mice to show that SftpCcre mice mainly express cre in type II alveolar cells, whereas CC10cre mice express cre almost exclusively in bronchiolar epithelial cells. We then generated mice with cell-targeted deletion of MyD88 in type II alveolar (SftpCcre-MyD88-lox) and bronchiolar epithelial (CC10cre-MyD88-lox) cells, and infected them with K. pneumoniae via the airways. Bacterial growth and dissemination were not affected by the loss of MyD88 in SftpCcre-MyD88-lox or CC10cre-MyD88-lox mice compared with control littermates. Furthermore, inflammatory responses induced by K. pneumoniae in the lung were not dependent on MyD88 expression in type II alveolar or bronchiolar epithelial cells. These results indicate that MyD88 expression in two distinct lung epithelial cell types does not contribute to host defense during pneumonia caused by a common human gram-negative pathogen.
Collapse
Affiliation(s)
- Adam A Anas
- 1 Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands.,2 Center of Experimental and Molecular Medicine
| | - Theodora A M Claushuis
- 1 Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands.,2 Center of Experimental and Molecular Medicine
| | - Rajiv A Mohan
- 1 Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands.,3 Department of Anatomy, Embryology, and Physiology, and
| | - Vincent M Christoffels
- 1 Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands.,3 Department of Anatomy, Embryology, and Physiology, and
| | - Vassilis Aidinis
- 4 Division of Immunology, Biomedical Sciences Research Center Alexander Flemming, Athens, Greece
| | - Sandrine Florquin
- 1 Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands.,5 Department of Pathology
| | - Cornelis Van't Veer
- 1 Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands.,2 Center of Experimental and Molecular Medicine
| | - Baidong Hou
- 6 Institute of Biophysics, Chaoyang District, Beijing, China; and
| | - Alex F de Vos
- 1 Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands.,2 Center of Experimental and Molecular Medicine
| | - Tom van der Poll
- 1 Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands.,2 Center of Experimental and Molecular Medicine.,7 Division of Infectious Diseases, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
47
|
Abstract
Leptospirosis is globally widespread neglected disease, affecting most mammalian species. Clinical signs can be confused with other diseases which make the diagnosis and treatment difficult. Chemokines and cytokines are known for their role in the inflammatory and immune response to infections. The profile determination of chemokines' expressions in the course of infection may elucidate the defense mechanisms of the host and support the search for effective treatment strategies. We investigated the mechanisms of innate immunity through the comparison of chemokines induced during infection with L. interrogans in mice with different levels of susceptibility. We used lung and spleen tissues samples of mice from C3H/HeJ, C3H/HePas and Balb/c, respectively sensitive, intermediate susceptibility and resistant to the pathogen. The inoculation of L. interrogans in C3H/HeJ mice led a comparatively smaller change in chemokines expression in both spleen and lung tissues. In samples from spleens and lungs of C3H/HePas and Balb/c the higher increases occurred on CXCL9, CXCL16, CXCL5, CCL8 and CCL5 in Balb/c. Given the same genetic background, the differences in the responses of C3H/HePas compared to C3H/HeJ mice strongly suggest the role of chemokines for the survival of parental strain. Therefore, the greatest increase in CXC chemokines appears to be efficient to induce migration of cells to the secondary lymphoid organs and affected tissues, which is important to control infection. Overall, CXC chemokines are important for the activation and attraction of T cell and may influence the course and control of the infection in resistant Balb/c mice.
Collapse
|
48
|
Abstract
PURPOSE OF REVIEW Pneumonia is a common disease that becomes severe in a subset of patients, dependent on host biology including mechanisms of immune resistance and tissue resilience. This review emphasizes discoveries in pneumonia biology from 2016, highlighting questions and directions that are especially pressing or newly emerging. RECENT FINDINGS Novel cell-cell interactions mediating innate immune responses against microbes in the lung have been elucidated, between distinct leukocyte subtypes as well as between leukocytes and the structural cells of the lung. Adaptive immunity has received growing attention for determining the outcome of pneumonia, particularly the lung resident memory cells that arise from repeated prior respiratory infections and direct heterotypic recall responses. New tissue resilience components have been identified that contribute to anti-inflammatory, proresolution, tissue-protective, and reparative regeneration pathways in the infected lung. SUMMARY Recent findings will direct research into fundamental mechanisms of lung protection. Over the longer term, manipulating these pathways has implications for clinical practice, as strategies to bolster resistance and resilience have potential to ameliorate severe pneumonia.
Collapse
Affiliation(s)
- Joseph P. Mizgerd
- Professor of Medicine, Microbiology, and Biochemistry, Director, Pulmonary Center, Boston University School of Medicine, 72 E. Concord Street, Boston, MA 02118, Phone 617-638-5201, Fax 617-638-5227,
| |
Collapse
|
49
|
Karadjian G, Fercoq F, Pionnier N, Vallarino-Lhermitte N, Lefoulon E, Nieguitsila A, Specht S, Carlin LM, Martin C. Migratory phase of Litomosoides sigmodontis filarial infective larvae is associated with pathology and transient increase of S100A9 expressing neutrophils in the lung. PLoS Negl Trop Dis 2017; 11:e0005596. [PMID: 28486498 PMCID: PMC5438187 DOI: 10.1371/journal.pntd.0005596] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 05/19/2017] [Accepted: 04/25/2017] [Indexed: 01/22/2023] Open
Abstract
Filarial infections are tropical diseases caused by nematodes of the Onchocercidae family such as Mansonella perstans. The infective larvae (L3) are transmitted into the skin of vertebrate hosts by blood-feeding vectors. Many filarial species settle in the serous cavities including M. perstans in humans and L. sigmodontis, a well-established model of filariasis in mice. L. sigmodontis L3 migrate to the pleural cavity where they moult into L4 around day 9 and into male and female adult worms around day 30. Little is known of the early phase of the parasite life cycle, after the L3 is inoculated in the dermis by the vector and enters the afferent lymphatic vessels and before the moulting processes in the pleural cavity. Here we reveal a pulmonary phase associated with lung damage characterized by haemorrhages and granulomas suggesting L3 reach the lung via pulmonary capillaries and damage the endothelium and parenchyma by crossing them to enter the pleural cavity. This study also provides evidence for a transient inflammation in the lung characterized by a very early recruitment of neutrophils associated with high expression levels of S100A8 and S100A9 proteins.
Collapse
Affiliation(s)
- Gregory Karadjian
- Unité Molécules de Communication et Adaptation des Microorganismes (MCAM, UMR 7245), Sorbonne Universités, Muséum national d’Histoire naturelle, CNRS, Paris, France
| | - Frédéric Fercoq
- Unité Molécules de Communication et Adaptation des Microorganismes (MCAM, UMR 7245), Sorbonne Universités, Muséum national d’Histoire naturelle, CNRS, Paris, France
| | - Nicolas Pionnier
- Unité Molécules de Communication et Adaptation des Microorganismes (MCAM, UMR 7245), Sorbonne Universités, Muséum national d’Histoire naturelle, CNRS, Paris, France
| | - Nathaly Vallarino-Lhermitte
- Unité Molécules de Communication et Adaptation des Microorganismes (MCAM, UMR 7245), Sorbonne Universités, Muséum national d’Histoire naturelle, CNRS, Paris, France
| | - Emilie Lefoulon
- Unité Molécules de Communication et Adaptation des Microorganismes (MCAM, UMR 7245), Sorbonne Universités, Muséum national d’Histoire naturelle, CNRS, Paris, France
| | - Adélaïde Nieguitsila
- Unité Molécules de Communication et Adaptation des Microorganismes (MCAM, UMR 7245), Sorbonne Universités, Muséum national d’Histoire naturelle, CNRS, Paris, France
| | - Sabine Specht
- Institute for Medical Microbiology, Immunology & Parasitology (IMMIP), University Hospital of Bonn, Bonn, Germany
| | - Leo M. Carlin
- Inflammation, Repair and Development, National Heart & Lung Institute, Imperial College London, London, United Kingdom
| | - Coralie Martin
- Unité Molécules de Communication et Adaptation des Microorganismes (MCAM, UMR 7245), Sorbonne Universités, Muséum national d’Histoire naturelle, CNRS, Paris, France
| |
Collapse
|
50
|
Pechous RD. With Friends Like These: The Complex Role of Neutrophils in the Progression of Severe Pneumonia. Front Cell Infect Microbiol 2017; 7:160. [PMID: 28507954 PMCID: PMC5410563 DOI: 10.3389/fcimb.2017.00160] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 04/12/2017] [Indexed: 01/12/2023] Open
Abstract
Pneumonia is a leading cause of death from infection in the United States and across the globe. During pulmonary infection, clear resolution of host inflammatory responses occurs in the absence of appreciable lung damage. Neutrophils are the first wave of leukocytes to arrive in the lung upon infection. After activation, neutrophils traffic from the vasculature via transendothelial migration through the lung interstitium and into the alveolar space. Successful pulmonary immunity requires neutrophil-mediated killing of invading pathogens by phagocytosis and release of a myriad of antimicrobial molecules, followed by resolution of inflammation, neutrophil apoptosis, and clearing of dead or dying neutrophils by macrophages. In addition to their antimicrobial role, it is becoming clear that neutrophils are also important modulators of innate and adaptive immune responses, primarily through the release of cytokines and recruitment of additional waves of neutrophils into the airways. Though typically essential to combating severe pneumonia, neutrophil influx into the airways is a double-edged sword: Overzealous neutrophil activation can cause severe tissue damage as a result of the release of toxic agents including proteases, cationic polypeptides, cytokines, and reactive oxygen species (ROS) aimed at killing invading microbes. In extreme cases, the damage caused by neutrophils and other innate immune mediators become the primary source of morbidity and mortality. Here, we review the complex role of neutrophils during severe pneumonia by highlighting specific molecules and processes that contribute to pulmonary immunity, but can also drive progression of severe disease. Depending on the identity of the infectious agent, enhancing or suppressing neutrophil-mediated responses may be key to effectively treating severe and typically lethal pneumonia.
Collapse
Affiliation(s)
- Roger D Pechous
- Department of Microbiology and Immunology, University of Arkansas for Medical SciencesLittle Rock, AR, USA
| |
Collapse
|