1
|
He A, He L, Chen T, Li X, Cao C. Biomechanical Properties and Cellular Responses in Pulmonary Fibrosis. Bioengineering (Basel) 2024; 11:747. [PMID: 39199705 PMCID: PMC11351367 DOI: 10.3390/bioengineering11080747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/09/2024] [Accepted: 07/16/2024] [Indexed: 09/01/2024] Open
Abstract
Pulmonary fibrosis is a fatal lung disease affecting approximately 5 million people worldwide, with a 5-year survival rate of less than 50%. Currently, the only available treatments are palliative care and lung transplantation, as there is no curative drug for this condition. The disease involves the excessive synthesis of the extracellular matrix (ECM) due to alveolar epithelial cell damage, leading to scarring and stiffening of the lung tissue and ultimately causing respiratory failure. Although multiple factors contribute to the disease, the exact causes remain unclear. The mechanical properties of lung tissue, including elasticity, viscoelasticity, and surface tension, are not only affected by fibrosis but also contribute to its progression. This paper reviews the alteration in these mechanical properties as pulmonary fibrosis progresses and how cells in the lung, including alveolar epithelial cells, fibroblasts, and macrophages, respond to these changes, contributing to disease exacerbation. Furthermore, it highlights the importance of developing advanced in vitro models, based on hydrogels and 3D bioprinting, which can accurately replicate the mechanical and structural properties of fibrotic lungs and are conducive to studying the effects of mechanical stimuli on cellular responses. This review aims to summarize the current understanding of the interaction between the progression of pulmonary fibrosis and the alterations in mechanical properties, which could aid in the development of novel therapeutic strategies for the disease.
Collapse
Affiliation(s)
- Andong He
- Department of Engineering Mechanics, Zhejiang University, Hangzhou 310028, China
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Respiratory Disease of Ningbo, The First Affiliated Hospital of Ningbo University, 59 Liuting Road, Ningbo 315010, China
- Center for Medical and Engineering Innovation, Central Laboratory, The First Affiliated Hospital of Ningbo University, Ningbo 315010, China
| | - Lizhe He
- Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou 310028, China
| | - Tianwei Chen
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Xuejin Li
- Department of Engineering Mechanics, Zhejiang University, Hangzhou 310028, China
| | - Chao Cao
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Respiratory Disease of Ningbo, The First Affiliated Hospital of Ningbo University, 59 Liuting Road, Ningbo 315010, China
| |
Collapse
|
2
|
Zhang J, Li Y, Zhu F, Guo X, Huang Y. Time-/dose- series transcriptome data analysis and traditional Chinese medicine treatment of pneumoconiosis. Int J Biol Macromol 2024; 267:131515. [PMID: 38614165 DOI: 10.1016/j.ijbiomac.2024.131515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 04/07/2024] [Accepted: 04/09/2024] [Indexed: 04/15/2024]
Abstract
Pneumoconiosis' pathogenesis is still unclear and specific drugs for its treatment are lacking. Analysis of series transcriptome data often uses a single comparison method, and there are few reports on using such data to predict the treatment of pneumoconiosis with traditional Chinese medicine (TCM). Here, we proposed a new method for analyzing series transcriptomic data, series difference analysis (SDA), and applied it to pneumoconiosis. By comparison with 5 gene sets including existing pneumoconiosis-related genes and gene set functional enrichment analysis, we demonstrated that the new method was not inferior to two existing traditional analysis methods. Furthermore, based on the TCM-drug target interaction network, we predicted the TCM corresponding to the common pneumoconiosis-related genes obtained by multiple methods, and combined them with the high-frequency TCM for its treatment obtained through literature mining to form a new TCM formula for it. After feeding it to pneumoconiosis modeling mice for two months, compared with the untreated group, the coat color, mental state and tissue sections of the mice in the treated group were markedly improved, indicating that the new TCM formula has a certain efficacy. Our study provides new insights into method development for series transcriptomic data analysis and treatment of pneumoconiosis.
Collapse
Affiliation(s)
- Jifeng Zhang
- Key Laboratory of Industrial Dust Prevention and Control & Occupational Health and Safety, Ministry of Education, Anhui University of Science and Technology, Huainan, Anhui 232001, China; School of Biological Engineering & Institute of Digital Ecology and Health, Huainan Normal University, Huainan, China
| | - Yaobin Li
- Key Laboratory of Industrial Dust Prevention and Control & Occupational Health and Safety, Ministry of Education, Anhui University of Science and Technology, Huainan, Anhui 232001, China.
| | - Fenglin Zhu
- Key Laboratory of Industrial Dust Prevention and Control & Occupational Health and Safety, Ministry of Education, Anhui University of Science and Technology, Huainan, Anhui 232001, China
| | - Xiaodi Guo
- School of Biological Engineering & Institute of Digital Ecology and Health, Huainan Normal University, Huainan, China
| | - Yuqing Huang
- School of Biological Engineering & Institute of Digital Ecology and Health, Huainan Normal University, Huainan, China
| |
Collapse
|
3
|
Yang G, Yang Y, Liu Y, Liu X. Regulation of alveolar macrophage death in pulmonary fibrosis: a review. Apoptosis 2023; 28:1505-1519. [PMID: 37707713 PMCID: PMC10618387 DOI: 10.1007/s10495-023-01888-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/25/2023] [Indexed: 09/15/2023]
Abstract
Pulmonary fibrosis (PF) is a disease in which excessive extracellular matrix (ECM) accumulation occurs in pulmonary mesenchyme, which induces the destruction of alveolar structures and poor prognosis. Macrophage death is responsible for ECM accumulation after alveolar epithelial injury in PF. Depending on the local micro-environments, macrophages can be polarized to either classically activated (M1) or alternatively activated (M2) macrophage phenotypes. In general, M1 macrophages can promote inflammation and sterilization, stop the continuous damage process and prevent excessive repair, while M2 macrophages are anti-inflammatory and promote tissue repair, and excessive M2 macrophage activity may inhibit the absorption and degradation of ECM. Emerging evidence has revealed that death forms such as pyroptosis mediated by inflammasome affect polarization direction and ultimately lead to the development of PF. Pharmacological manipulation of macrophages death signals may serve as a logical therapeutic strategy for PF. This review will focus on the current state of knowledge regarding the regulation and underlying mechanisms of macrophages and their mediators in the influence of macrophage death on the development of PF. We expect to provide help in developing effective therapeutic strategies in clinical settings.
Collapse
Affiliation(s)
- Ganghao Yang
- Department of Respiratory and Critical Medicine, University of Electronic Science and Technology of China Sichuan Provincial People's Hospital, Sichuan Academy of Medical Sciences and Sichuan People's Hospital, Chengdu, Sichuan, China
| | - Yang Yang
- Department of Respiratory and Critical Medicine, University of Electronic Science and Technology of China Sichuan Provincial People's Hospital, Sichuan Academy of Medical Sciences and Sichuan People's Hospital, Chengdu, Sichuan, China
| | - Yiping Liu
- Department of Respiratory and Critical Medicine, University of Electronic Science and Technology of China Sichuan Provincial People's Hospital, Sichuan Academy of Medical Sciences and Sichuan People's Hospital, Chengdu, Sichuan, China
| | - Xiaoshu Liu
- Department of Respiratory and Critical Medicine, University of Electronic Science and Technology of China Sichuan Provincial People's Hospital, Sichuan Academy of Medical Sciences and Sichuan People's Hospital, Chengdu, Sichuan, China.
- Department of Respiratory and Critical Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuai Fu Yuan Street, Dong Cheng District, Beijing, 100730, China.
| |
Collapse
|
4
|
Zhang Y, Wu Z, Lu S, Lin M, Yue X, Wang Z, Cai B. Time-Series Expression Profile Analysis of Post-Traumatic Joint Contracture in Rats at the Early Stages of the Healing Process. J Inflamm Res 2023; 16:1169-1181. [PMID: 36945316 PMCID: PMC10024884 DOI: 10.2147/jir.s400557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 03/09/2023] [Indexed: 03/17/2023] Open
Abstract
Objective This study aimed to characterize the gene expression profile at the early stages of the healing process of post-traumatic joint contracture (PTJC). Methods Twelve rats were used for PTJC model establishment and were divided into four groups according to the sampling time: S0d, S3d, S7d and S2w. Transcriptome sequencing was performed on fibrotic joint capsule samples in four groups followed by bioinformatics analyses including differentially expressed genes (DEGs) screening, Short Time-series Expression Miner (STEM) analysis, network construction, and pathway analysis. Five important genes were validated by qRT-PCR. Results A total of 1171, 1052 and 793 DEGs were screened in S3d vs S0d, S7d vs S0d, and S2w vs S0d comparison groups, respectively. A total of 383 overlapping genes were screened out, which were significantly enriched in some inflammatory functions and pathways. Through STEM analysis, three clusters were identified, including 105, 57 and 57 DEGs, respectively. Then, based on the cluster genes, 10 genes, such as Il6, Timp1, Cxcl1, Cxcr4 and Mmp3, were further selected after PPI and pathway analyses. The expression levels of Il6, Timp1, Cxcl1, Cxcr4 and Mmp3 were validated by qRT-PCR. Conclusion The present study screened out several genes with significant changes in expression levels at the early stages of the healing process in PTJC, such as Il6, Timp1, Cxcl1, Cxcr4 and Mmp3. Our study offers a valuable contribution to the understanding pathomechanism of PTJC.
Collapse
Affiliation(s)
- Yuxin Zhang
- Department of Rehabilitation Medicine, Hainan Western Central Hospital, Danzhou, Hainan, People’s Republic of China
- Department of Rehabilitation Medicine, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
- Department of Oral Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, Shanghai, People’s Republic of China
- Correspondence: Yuxin Zhang; Bin Cai, Department of Rehabilitation Medicine, Hainan Western Central Hospital, No. 2, Fubo East Road, Nada Town, Danzhou, Hainan, 571700, People’s Republic of China, Tel +86-21-53315248, Email ;
| | - Zhigang Wu
- Department of Rehabilitation Medicine, Hainan Western Central Hospital, Danzhou, Hainan, People’s Republic of China
| | - Shenji Lu
- Department of Rehabilitation Medicine, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Minghui Lin
- Department of Rehabilitation Medicine, Hainan Western Central Hospital, Danzhou, Hainan, People’s Republic of China
| | - Xiaokun Yue
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Zengguang Wang
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Bin Cai
- Department of Rehabilitation Medicine, Hainan Western Central Hospital, Danzhou, Hainan, People’s Republic of China
- Department of Rehabilitation Medicine, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| |
Collapse
|
5
|
Fu S, Tang X, Xu Y, Song X, Qian X, Hu Y, Zhang M. Analysis of the Potential Relationship between Aging and Pulmonary Fibrosis Based on Transcriptome. LIFE (BASEL, SWITZERLAND) 2022; 12:life12121961. [PMID: 36556326 PMCID: PMC9788318 DOI: 10.3390/life12121961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/19/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is an age-related interstitial lung disease with a high incidence in the elderly. Although many reports have shown that senescence can initiate pulmonary fibrosis, the relationship between aging and pulmonary fibrosis has not been explained systematically. In our study, young and old rats were intratracheally instilled with bleomycin (1 mg/kg), and the basic pathological indexes were determined using a commercial kit, hematoxylin, and eosin (H&E) and Masson's Trichrome staining, immunohistochemistry, immunohistofluorescence, and q-PCR. Then, the lung tissues of rats were sequenced by next-generation sequencing for transcriptome analysis. Bioinformatics was performed to analyze the possible differences in the mechanism of pulmonary fibrosis between aged and young rats. Finally, the related cytokines were determined by q-PCR and ELISA. The results indicate that pulmonary fibrosis in old rats is more serious than that in young rats under the same conditions. Additionally, transcriptomic and bioinformatics analysis with experimental validation indicate that the differences in pulmonary fibrosis between old and young rats are mainly related to the differential expression of cytokines, extracellular matrix (ECM), and other important signaling pathways. In conclusion, aging mainly affects pulmonary fibrosis through the ECM-receptor interaction, immune response, and chemokines.
Collapse
Affiliation(s)
- San Fu
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Xiaoyan Tang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Yiming Xu
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Xianrui Song
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Xiuhui Qian
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Yingying Hu
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Mian Zhang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
- Correspondence: ; Tel.: +86-25-8618-513
| |
Collapse
|
6
|
Modulation of Fibroblast Activity via Vitamin D3 Is Dependent on Tumor Type—Studies on Mouse Mammary Gland Cancer. Cancers (Basel) 2022; 14:cancers14194585. [PMID: 36230508 PMCID: PMC9559296 DOI: 10.3390/cancers14194585] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 09/07/2022] [Accepted: 09/20/2022] [Indexed: 11/25/2022] Open
Abstract
Simple Summary This study, which was conducted in healthy mice and mice bearing three mouse mammary gland cancers—4T1, 67NR, and E0771—showed that the divergent effects of vitamin D3 supplementation (5000 IU) or deficiency (100 IU of vitamin D3) observed in healthy mice led to the formation of various body microenvironments depending on the mouse strain. Developing tumors themselves modified the microenvironments by producing higher concentrations of osteopontin, SDF-1 (4T1), TGF-β (4T1 and E0771), CCL2, VEGF, FGF23 (E0771), and IL-6 (67NR), which influences the response to vitamin D3 supplementation/deficiency and calcitriol administration and leads to enhanced/decreased activation of lung fibroblasts and modulation of tumor tissue blood flow. Abstract Vitamin D3 and its analogs are known to modulate the activity of fibroblasts under various disease conditions. However, their impact on cancer-associated fibroblasts (CAFs) is yet to be fully investigated. The aim of this study was to characterize CAFs and normal fibroblasts (NFs) from the lung of mice bearing 4T1, 67NR, and E0771 cancers and healthy mice fed vitamin-D3-normal (1000 IU), -deficient (100 IU), and -supplemented (5000 IU) diets. The groups receiving control (1000 IU) and deficient diets (100 IU) were gavaged with calcitriol (+cal). In the 4T1-bearing mice from the 100 IU+cal group, increased NFs activation (increased α-smooth muscle actin, podoplanin, and tenascin C (TNC)) with a decreased blood flow in the tumor was observed, whereas the opposite effect was observed in the 5000 IU and 100 IU groups. CAFs from the 5000 IU group of E0771-bearing mice were activated with increased expression of podoplanin, platelet-derived growth factor receptor β, and TNC. In the 100 IU+cal group of E0771-bearing mice, a decreased blood flow was recorded with decreased expression of fibroblast growth factor 23 (FGF23) and C-C motif chemokine ligand 2 (CCL2) in tumors and increased expression of TNC on CAFs. In the 67NR model, the impact of vitamin D3 on blood flow or CAFs and lung NFs was not observed despite changes in plasma and/or tumor tissue concentrations of osteopontin (OPN), CCL2, transforming growth factor-β, vascular endothelial growth factor, and FGF23. In healthy mice, divergent effects of vitamin D3 supplementation/deficiency were observed, which lead to the creation of various body microenvironments depending on the mouse strain. Tumors developing in such microenvironments themselves modified the microenvironments by producing, for example, higher concentrations of OPN and stromal-cell-derived factor 1 (4T1), which influences the response to vitamin D3 supplementation/deficiency and calcitriol administration.
Collapse
|
7
|
Malkova A, Zinchenko Y, Starshinova A, Kudlay D, Kudryavtsev I, Glushkova A, Yablonskiy P, Shoenfeld Y. Sarcoidosis: Progression to the chronic stage and pathogenic based treatment (narrative review). Front Med (Lausanne) 2022; 9:963435. [PMID: 36148463 PMCID: PMC9486475 DOI: 10.3389/fmed.2022.963435] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 08/03/2022] [Indexed: 11/13/2022] Open
Abstract
Many factors confirm the autoimmune nature of sarcoidosis and help in determining the strategy of patient management and treatment initiation. However, the causes and the mechanisms of disease progression that result in fibrosis and insufficiency of the affected organ remain unclear. This narrative review aims to analyse the mechanisms and biomarkers of sarcoidosis progression, as well as the pathogenetic basis of sarcoidosis therapy. The following characteristics of progressive chronic sarcoidosis were revealed: the disease develops in patients with a genetic predisposition (SNP in genes GREM1, CARD15, TGF-β3, HLA-DQB1*06:02, HLA-DRB1*07/14/15), which contributes either the decreased ability of antigen elimination or autoimmune inflammation. Various prognostic biomarkers of disease progression (decreased levels of neopterin, elastase, sIL-2R, chitotriosidase, glycoprotein Krebs von den Lungen, Th17 cell count, reduced quantity of TNF-α in peripheral blood or bronchoalveolar lavage fluid) have been described and can potentially be used to determine the group of patients who will benefit from the use of corticosteroids/cytostatic drugs/biologics.
Collapse
Affiliation(s)
- Anna Malkova
- Laboratory of the Mosaic of Autoimmunity, St. Petersburg State University, Saint Petersburg, Russia
| | - Yulia Zinchenko
- Phthisiopulmonology Department, St. Petersburg Research Institute of Phthisiopulmonology, Saint Petersburg, Russia
| | - Anna Starshinova
- Almazov National Medical Research Centre, Saint Petersburg, Russia
- *Correspondence: Anna Starshinova ;
| | - Dmitriy Kudlay
- Department of Pharmacology, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
- Laboratory of Personalized Medicine and Molecular Immunology, NRC Institute of Immunology FMBA of Russia, Moscow, Russia
| | - Igor Kudryavtsev
- Department of Immunology, Institution of Experimental Medicine, Saint Petersburg, Russia
| | - Anzhela Glushkova
- V.M. Bekhterev National Research Medical Center for Psychiatry and Neurology, Saint Petersburg, Russia
| | - Piotr Yablonskiy
- Laboratory of the Mosaic of Autoimmunity, St. Petersburg State University, Saint Petersburg, Russia
- Phthisiopulmonology Department, St. Petersburg Research Institute of Phthisiopulmonology, Saint Petersburg, Russia
| | - Yehuda Shoenfeld
- Laboratory of the Mosaic of Autoimmunity, St. Petersburg State University, Saint Petersburg, Russia
- Sackler Faculty of Medicine, Ariel University, Ariel, Israel
- Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Tel-Hashomer, Israel
| |
Collapse
|
8
|
Cao J, Li L, Xiong L, Wang C, Chen Y, Zhang X. Research on the mechanism of berberine in the treatment of COVID-19 pneumonia pulmonary fibrosis using network pharmacology and molecular docking. PHYTOMEDICINE PLUS : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 2:100252. [PMID: 35403089 PMCID: PMC8895682 DOI: 10.1016/j.phyplu.2022.100252] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 02/24/2022] [Accepted: 03/02/2022] [Indexed: 05/14/2023]
Abstract
Purpose Pulmonary fibrosis caused by COVID-19 pneumonia is a serious complication of COVID-19 infection, there is a lack of effective treatment methods clinically. This article explored the mechanism of action of berberine in the treatment of COVID-19 (Corona Virus Disease 2019, COVID-19) pneumonia pulmonary fibrosis with the help of the network pharmacology and molecular docking. Methods We predicted the role of berberine protein targets with the Pharmmapper database and the 3D structure of berberine in the Pubchem database. And GeneCards database was used in order to search disease target genes and screen common target genes. Then we used STRING web to construct PPI interaction network of common target protein. The common target genes were analyzed by GO and KEGG by DAVID database. The disease-core target gene-drug network was established and molecular docking was used for prediction. We also analyzed the binding free energy and simulates molecular dynamics of complexes. Results Berberine had 250 gene targets, COVID-19 pneumonia pulmonary fibrosis had 191 gene targets, the intersection of which was 23 in common gene targets. Molecular docking showed that berberine was associated with CCl2, IL-6, STAT3 and TNF-α. GO and KEGG analysis reveals that berberine mainly plays a vital role by the signaling pathways of influenza, inflammation and immune response. Conclusion Berberine acts on TNF-α, STAT3, IL-6, CCL2 and other targets to inhibit inflammation and the activation of fibrocytes to achieve the purpose of treating COVID-19 pneumonia pulmonary fibrosis.
Collapse
Key Words
- ARDS, acute respiratory distress syndrome
- BP, biological process
- Berberine
- CC, cellular component
- CCL2, chemokine ligand2
- COVID-19
- COVID-19 pneumonia
- COVID-19, corona virus disease 2019
- ECM, extracellular matrix
- EMT, epithelial-mesenchymal cell transformation
- FOXM1, forkhead box M1
- Fsp1, fibroblast-specific protein 1
- GO, gene ontology
- HIF-1, hypoxia inducible factor
- IBD, inflammatory bowel disease
- IL-12, interleukin 12
- IL-6, interleukin 6
- JAK, Janus kinase
- KEGG, Kyoto encyclopedia of genes and genomes
- LR-MSCs, mesenchymal stem cells
- MF, molecular function
- MMP14, matrix metalloproteinase 14
- MMP7, matrix metalloproteinase 7
- Molecular docking
- NF-κB, nuclear transcription factor
- NOS, nitric oxide synthase
- Network pharmacology
- OTUB1, deubiquitinase
- PAI-1, plasminogen activator inhibitor 1
- PPI, protein-protein interaction
- Pulmonary fibrosis
- STAT3, transcription activator
- TGF-β, transforming growth factor-β
- TNF-α, tumor necrosis factor-α
- sIL-6R, interleukin 6 receptor
- α-SMA, α-smooth muscle actin
Collapse
Affiliation(s)
- Junfeng Cao
- Clinical Laboratory Medicine, Chengdu Medical College, Chengdu, China
| | - Lianglei Li
- Center for Experimental Technology of Preclinical Medicine, Chengdu Medical College, No.783 Xindu Road, Xindu District, Chengdu, Sichuan 610500, China
| | - Li Xiong
- Clinical Laboratory Medicine, Chengdu Medical College, Chengdu, China
| | - Chaochao Wang
- Clinical Laboratory Medicine, Chengdu Medical College, Chengdu, China
| | - Yijun Chen
- Clinical Laboratory Medicine, Chengdu Medical College, Chengdu, China
| | - Xiao Zhang
- Center for Experimental Technology of Preclinical Medicine, Chengdu Medical College, No.783 Xindu Road, Xindu District, Chengdu, Sichuan 610500, China
| |
Collapse
|
9
|
Molecular pathways and role of epigenetics in the idiopathic pulmonary fibrosis. Life Sci 2022; 291:120283. [PMID: 34998839 DOI: 10.1016/j.lfs.2021.120283] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 12/19/2021] [Accepted: 12/27/2021] [Indexed: 12/12/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a fatal lung disease with unknown etiological factors that can progress to other dangerous diseases like lung cancer. Environmental and genetic predisposition are the two major etiological or risk factors involved in the pathology of the IPF. Among the environmental risk factors, smoking is one of the major causes for the development of IPF. Epigenetic pathways like nucleosomes remodeling, DNA methylation, histone modifications and miRNA mediated genes play a crucial role in development of IPF. Mutations in the genes make the epigenetic factors as important drug targets in IPF. Transcriptional changes due to environmental factors are also involved in the progression of IPF. The mutations in human telomerase reverse transcriptase (hTERT) have shown decreased life expectancy in IPF patients. The TERT-gene is highly expressed in chronic smokers and makes the role of epigenetics evident. Drug like nintedanib acts through vascular endothelial growth factor receptors (VEGFR), while drug pirfenidone acts through transforming growth factor (TGF), which is useful in IPF. Gefitinib, a tyrosine kinase inhibitor of EGFR, is useful as an anti-fibrosis agent in preclinical models. Newer drugs such as Celgene-CC90001 and FibroGen-FG-3019 are currently under investigations acts through the modulating epigenetic mechanisms. Thus, the study on epigenetics opens a wide window for the discovery of newer drugs. This study provides an elementary analysis of multiple regulators of epigenetics and their roles associated with the pathology of IPF. Further, this review also includes epigenetic drugs under development in preclinical and clinical stages.
Collapse
|
10
|
Identification of Impacted Pathways and Transcriptomic Markers as Potential Mediators of Pulmonary Fibrosis in Transgenic Mice Expressing Human IGFBP5. Int J Mol Sci 2021; 22:ijms222212609. [PMID: 34830489 PMCID: PMC8619832 DOI: 10.3390/ijms222212609] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/15/2021] [Accepted: 11/18/2021] [Indexed: 11/16/2022] Open
Abstract
Pulmonary fibrosis is a serious disease characterized by extracellular matrix (ECM) component overproduction and remodeling. Insulin-like growth factor-binding protein 5 (IGFBP5) is a conserved member of the IGFBP family of proteins that is overexpressed in fibrotic tissues and promotes fibrosis. We used RNA sequencing (RNAseq) to identify differentially expressed genes (DEGs) between primary lung fibroblasts (pFBs) of homozygous (HOMO) transgenic mice expressing human IGFBP5 (hIGFBP5) and wild type mice (WT). The results of the differential expression analysis showed 2819 DEGs in hIGFBP5 pFBs. Functional enrichment analysis confirmed the pro-fibrotic character of IGFBP5 and revealed its impact on fundamental signaling pathways, including cytokine–cytokine receptor interaction, focal adhesion, AGE-RAGE signaling, calcium signaling, and neuroactive ligand-receptor interactions, to name a few. Noticeably, 7% of the DEGs in hIGFBP5-expressing pFBs are receptors and integrins. Furthermore, hub gene analysis revealed 12 hub genes including Fpr1, Bdkrb2, Mchr1, Nmur1, Cnr2, P2ry14, and Ptger3. Validation assays were performed to complement the RNAseq data. They confirmed significant differences in the levels of the corresponding proteins in cultured pFBs. Our study provides new insights into the molecular mechanism(s) of IGFBP5-associated pulmonary fibrosis through possible receptor interactions that drive fibrosis and tissue remodeling.
Collapse
|
11
|
Kovalchuk A, Wang B, Li D, Rodriguez-Juarez R, Ilnytskyy S, Kovalchuk I, Kovalchuk O. Fighting the storm: could novel anti-TNFα and anti-IL-6 C. sativa cultivars tame cytokine storm in COVID-19? Aging (Albany NY) 2021; 13:1571-1590. [PMID: 33465050 PMCID: PMC7880317 DOI: 10.18632/aging.202500] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 11/13/2020] [Indexed: 12/12/2022]
Abstract
The main aspects of severe COVID-19 disease pathogenesis include hyper-induction of proinflammatory cytokines, also known as 'cytokine storm', that precedes acute respiratory distress syndrome (ARDS) and often leads to death. COVID-19 patients often suffer from lung fibrosis, a serious and untreatable condition. There remains no effective treatment for these complications. Out of all cytokines, TNFα and IL-6 play crucial roles in cytokine storm pathogenesis and are likely responsible for the escalation in disease severity. These cytokines also partake in the molecular pathogenesis of fibrosis. Therefore, new approaches are urgently needed, that can efficiently and swiftly downregulate TNFα, IL-6, and the inflammatory cytokine cascade, in order to curb inflammation and prevent fibrosis, and lead to disease remission. Cannabis sativa has been proposed to modulate gene expression and inflammation and is under investigation for several potential therapeutic applications against autoinflammatory diseases and cancer. Here, we hypothesized that the extracts of novel C. sativa cultivars may be used to downregulate the expression of pro-inflammatory cytokines and pathways involved in inflammation and fibrosis. Initially, to analyze the anti-inflammatory effects of novel C. sativa cultivars, we used a well-established full thickness human 3D skin artificial EpiDermFTTM tissue model, whereby tissues were exposed to UV to induce inflammation and then treated with extracts of seven new cannabis cultivars. We noted that out of seven studied extracts of novel C. sativa cultivars, three (#4, #8 and #14) were the most effective, causing profound and concerted down-regulation of COX2, TNFα, IL-6, CCL2, and other cytokines and pathways related to inflammation and fibrosis. These data were further confirmed in the WI-38 lung fibroblast cell line model. Most importantly, one of the tested extracts had no effect at all, and one exerted effect that may be deleterious, signifying that careful cannabis cultivar selection must be based on thorough pre-clinical studies. The observed pronounced inhibition of TNFα and IL-6 is the most important finding, because these molecules are currently considered to be the main targets in COVID-19 cytokine storm and ARDS pathogenesis. Novel anti-TNFα and anti-IL-6 cannabis extracts can be useful additions to the current anti-inflammatory regimens to treat COVID-19, as well as various rheumatological diseases and conditions, and 'inflammaging' - the inflammatory underpinning of aging and frailty.
Collapse
Affiliation(s)
- Anna Kovalchuk
- Pathway Research Inc., Lethbridge, AB T1K7X8, Canada
- University of Calgary, Cumming School of Medicine, Calgary, AB T2N 1N4, Canada
| | - Bo Wang
- Pathway Research Inc., Lethbridge, AB T1K7X8, Canada
- University of Lethbridge, Lethbridge, AB T1K3M4, Canada
| | - Dongping Li
- Pathway Research Inc., Lethbridge, AB T1K7X8, Canada
- University of Lethbridge, Lethbridge, AB T1K3M4, Canada
| | - Rocio Rodriguez-Juarez
- Pathway Research Inc., Lethbridge, AB T1K7X8, Canada
- University of Lethbridge, Lethbridge, AB T1K3M4, Canada
| | - Slava Ilnytskyy
- Pathway Research Inc., Lethbridge, AB T1K7X8, Canada
- University of Lethbridge, Lethbridge, AB T1K3M4, Canada
| | - Igor Kovalchuk
- Pathway Research Inc., Lethbridge, AB T1K7X8, Canada
- University of Lethbridge, Lethbridge, AB T1K3M4, Canada
| | - Olga Kovalchuk
- Pathway Research Inc., Lethbridge, AB T1K7X8, Canada
- University of Lethbridge, Lethbridge, AB T1K3M4, Canada
| |
Collapse
|
12
|
Sharma D, Arora S, Banerjee A, Singh J. Improved insulin sensitivity in obese-diabetic mice via chitosan Nanomicelles mediated silencing of pro-inflammatory Adipocytokines. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2021; 33:102357. [PMID: 33460779 DOI: 10.1016/j.nano.2020.102357] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 12/22/2020] [Accepted: 12/22/2020] [Indexed: 12/13/2022]
Abstract
Obesity induced chronic low-level inflammation is strongly associated with the development of insulin resistance and progression of type-2 diabetes. Systemic treatment with anti-inflammatory therapeutics requires high doses and is associated with serious adverse effects owing to generalized suppression of the immune system. Here we study localized knockdown of pro-inflammatory adipocytokines in adipose tissue macrophages (ATMs) and adipocytes using RNA interference for the treatment of insulin resistance. Chitosan nanomicelles conjugated to ATM and adipocyte targeting ligands were used to transfect short hairpin RNA (shRNA) against tumor necrosis factor-α (TNFα) and monocyte chemoattractant protein-1 (MCP-1). Subcutaneous administration of nanomicellar/pDNA polyplexes in obese-diabetic mice resulted in decreased concentration of pro-inflammatory cytokines TNFα, MCP-1, IL-6, and IL-1β along with increased concentration of insulin-sensitizing adipokine adiponectin. Downregulation of inflammatory cytokines resulted in improved insulin sensitivity and glucose tolerance for up to six-weeks following single dose, compared to untreated obese-diabetic mice.
Collapse
Affiliation(s)
- Divya Sharma
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health Professions, North Dakota State University, Fargo, ND, USA
| | - Sanjay Arora
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health Professions, North Dakota State University, Fargo, ND, USA
| | - Amrita Banerjee
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health Professions, North Dakota State University, Fargo, ND, USA
| | - Jagdish Singh
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health Professions, North Dakota State University, Fargo, ND, USA.
| |
Collapse
|
13
|
Mousapasandi A, Herbert C, Thomas P. Potential use of biomarkers for the clinical evaluation of sarcoidosis. J Investig Med 2021; 69:jim-2020-001659. [PMID: 33452128 DOI: 10.1136/jim-2020-001659] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/29/2020] [Indexed: 12/20/2022]
Abstract
Sarcoidosis is a systemic granulomatous disease of unknown etiology and pathogenesis with a heterogeneous clinical presentation. In the appropriate clinical and radiological context and with the exclusion of other diagnoses, the disease is characterized by the pathological presence of non-caseating epithelioid cell granulomas. Sarcoidosis is postulated to be a multifactorial disease caused by chronic antigenic stimulation. The immunopathogenesis of sarcoidosis encompasses a complex interaction between the host, genetic factors and postulated environmental and infectious triggers, which result in granuloma development.The exact pathogenesis of the disease has yet to be elucidated, but some of the inflammatory pathways that play a key role in disease progression and outcomes are becoming apparent, and these may form the logical basis for selecting potential biomarkers.Biomarkers are biological molecules that are altered pathologically. To date, there exists no single reliable biomarker for the evaluation of sarcoidosis, either diagnostically or prognostically but new candidates are emerging. A diagnosis of sarcoidosis ideally requires a biopsy confirming non-caseating granulomas, but the likelihood of progression that requires intervention remains unpredictable. These challenging aspects could be potentially resolved by incorporating biomarkers into clinical practice for both diagnosis and monitoring disease activity.This review outlines the current knowledge on sarcoidosis with an emphasis on pulmonary sarcoidosis, and delineates the understanding surrounding the implication of biomarkers for the clinical evaluation of sarcoidosis.
Collapse
Affiliation(s)
- Amir Mousapasandi
- School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Cristan Herbert
- School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Paul Thomas
- School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
- Department of Respiratory Medicine, Prince of Wales' Hospital and Prince of Wales' Clinical School, University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
14
|
Matteucci C, Minutolo A, Balestrieri E, Petrone V, Fanelli M, Malagnino V, Ianetta M, Giovinazzo A, Barreca F, Di Cesare S, De Marco P, Miele MT, Toschi N, Mastino A, Sinibaldi Vallebona P, Bernardini S, Rogliani P, Sarmati L, Andreoni M, Grelli S, Garaci E. Thymosin Alpha 1 Mitigates Cytokine Storm in Blood Cells From Coronavirus Disease 2019 Patients. Open Forum Infect Dis 2020; 8:ofaa588. [PMID: 33506065 PMCID: PMC7798699 DOI: 10.1093/ofid/ofaa588] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 12/03/2020] [Indexed: 12/12/2022] Open
Abstract
Background Coronavirus disease 2019 (COVID-19) is characterized by immune-mediated lung injury and complex alterations of the immune system, such as lymphopenia and cytokine storm, that have been associated with adverse outcomes underlining a fundamental role of host response in severe acute respiratory syndrome coronavirus 2 infection and the pathogenesis of the disease. Thymosin alpha 1 (Tα1) is one of the molecules used in the management of COVID-19, because it is known to restore the homeostasis of the immune system during infections and cancer. Methods In this study, we captured the interconnected biological processes regulated by Tα1 in CD8+ T cells under inflammatory conditions. Results Genes associated with cytokine signaling and production were upregulated in blood cells from patients with COVID-19, and the ex vivo treatment with Tα1-mitigated cytokine expression, and inhibited lymphocyte activation in a CD8+ T-cell subset specifically. Conclusion These data suggest the potential role of Tα1 in modulating the immune response homeostasis and the cytokine storm in vivo.
Collapse
Affiliation(s)
- Claudia Matteucci
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Antonella Minutolo
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Emanuela Balestrieri
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Vita Petrone
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Marialaura Fanelli
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Vincenzo Malagnino
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy.,Infectious Diseases Clinic, Policlinic of Tor Vergata, Rome, Italy
| | - Marco Ianetta
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy.,Infectious Diseases Clinic, Policlinic of Tor Vergata, Rome, Italy
| | | | - Filippo Barreca
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy.,Infectious Diseases Clinic, Policlinic of Tor Vergata, Rome, Italy
| | - Silvia Di Cesare
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy.,Unit of Immune and Infectious Diseases, Academic Department of Pediatrics, Bambino Gesù Childrens' Hospital-Scientific Institute for Research and Healthcare (IRCCS), Rome, Italy
| | - Patrizia De Marco
- Respiratory Medicine Unit, University Hospital Policlinico Tor Vergata, Rome, Italy
| | - Martino Tony Miele
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Nicola Toschi
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy.,Athinoula A. Martinos Center for Biomedical Imaging, Harvard Medical School, Boston, Massachusetts, USA
| | - Antonio Mastino
- Institute of Translational Pharmacology, National Research Council, Rome, Italy.,Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Paola Sinibaldi Vallebona
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy.,Institute of Translational Pharmacology, National Research Council, Rome, Italy
| | - Sergio Bernardini
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Paola Rogliani
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy.,Respiratory Medicine Unit, University Hospital Policlinico Tor Vergata, Rome, Italy
| | - Loredana Sarmati
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy.,Infectious Diseases Clinic, Policlinic of Tor Vergata, Rome, Italy
| | - Massimo Andreoni
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy.,Infectious Diseases Clinic, Policlinic of Tor Vergata, Rome, Italy
| | - Sandro Grelli
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy.,Virology Unit, Policlinic of Tor Vergata, Rome, Italy
| | - Enrico Garaci
- University San Raffaele, Rome, Italy.,IRCCS San Raffaele Pisana, Rome, Italy
| |
Collapse
|
15
|
Mao K, Geng W, Liao Y, Luo P, Zhong H, Ma P, Xu J, Zhang S, Tan Q, Jin Y. Identification of robust genetic signatures associated with lipopolysaccharide-induced acute lung injury onset and astaxanthin therapeutic effects by integrative analysis of RNA sequencing data and GEO datasets. Aging (Albany NY) 2020; 12:18716-18740. [PMID: 32969837 PMCID: PMC7585091 DOI: 10.18632/aging.104042] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 08/19/2020] [Indexed: 01/24/2023]
Abstract
Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are life-threatening clinical conditions predominantly arising from uncontrolled inflammatory reactions. It has been found that the administration of astaxanthin (AST) can exert protective effects against lipopolysaccharide (LPS)-induced ALI; however, the robust genetic signatures underlying LPS induction and AST treatment remain obscure. Here we performed a statistical meta-analysis of five publicly available gene expression datasets from LPS-induced ALI mouse models, conducted RNA-sequencing (RNA-seq) to screen differentially expressed genes (DEGs) in response to LPS administration and AST treatment, and integrative analysis to determine robust genetic signatures associated with LPS-induced ALI onset and AST administration. Both the meta-analyses and our experimental data identified a total of 198 DEGs in response to LPS administration, and 11 core DEGs (Timp1, Ly6i, Cxcl13, Irf7, Cxcl5, Ccl7, Isg15, Saa3, Saa1, Tgtp1, and Gbp11) were identified to be associated with AST therapeutic effects. Further, the 11 core DEGs were verified by quantitative real-time PCR (qRT-PCR) and immunohistochemistry (IHC), and functional enrichment analysis revealed that these genes are primarily associated with neutrophils and chemokines. Collectively, these findings unearthed the robust genetic signatures underlying LPS administration and the molecular targets of AST for ameliorating ALI/ARDS which provide directions for further research.
Collapse
Affiliation(s)
- Kaimin Mao
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Pulmonary Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei, China
| | - Wei Geng
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Pulmonary Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei, China
| | - Yuhan Liao
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Pulmonary Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei, China
| | - Ping Luo
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei, China
| | - Hua Zhong
- College of Life Sciences, Wuhan University, Hubei Province, Wuhan, 430072, China
| | - Pei Ma
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Pulmonary Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei, China
| | - Juanjuan Xu
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Pulmonary Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei, China
| | - Shuai Zhang
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Pulmonary Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei, China
| | - Qi Tan
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Pulmonary Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei, China
| | - Yang Jin
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Pulmonary Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei, China
| |
Collapse
|
16
|
Qiang L, Yang S, Cui YH, He YY. Keratinocyte autophagy enables the activation of keratinocytes and fibroblastsand facilitates wound healing. Autophagy 2020; 17:2128-2143. [PMID: 32866426 DOI: 10.1080/15548627.2020.1816342] [Citation(s) in RCA: 108] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Macroautophagy/autophagy is a cellular catabolic process that is implicated in several physiological and pathological processes. However, the role of epidermal autophagy in wound healing remains unknown. Here, using mice with genetic ablation of the essential Atg5 (autophagy related 5) or Atg7 (autophagy related 7) in their epidermis to inhibit autophagy, we show that keratinocyte autophagy regulates wound healing in mice. Wounding induces the expression of autophagy genes in mouse skin. Epidermis-specific autophagy deficiency inhibits wound closure, re-epithelialization, keratinocyte proliferation and differentiation, dermal granulation tissue formation, and infiltration of immune cells including macrophages, neutrophils, and mast cells, while it does not affect angiogenesis. Using cytokine array screening, we found that autophagy deficiency inhibits the transcription and production of the cytokine CCL2/MCP-1 by TNF. At the molecular level, TNF induces autophagic flux and the expression of autophagy genes through NFKB in epidermal keratinocytes. TNF promotes CCL2 transcription through the autophagy-AMPK-BRAF-MAPK1/3/ERK-activator protein 1 (AP1) pathway. Indeed, treating mice with recombinant CCL2 can reverse the effect of autophagy deficiency in keratinocytes. At the cellular level, we found that CCL2 induction via autophagy in keratinocytes is required not only for keratinocyte migration and proliferation but also for dermal fibroblast activation. Our findings demonstrate a critical role of epidermal autophagy in wound healing in vivo and elucidate a critical molecular machinery coordinating keratinocyte-fibroblast interaction in skin repair.Abbreviations: ACTA2/α-SMA: actin alpha 2, smooth muscle; ACTB: β-actin; ADGRE1: adhesion G protein-coupled receptor E1; AMPK: AMP-activated protein kinase; AP1: activator protein 1; AP1-RE: AP1 response element; ATG: autophagy-related; ATG16L1: autophagy related 16 like 1; BECN1: beclin 1; BRAF: B-Raf proto-oncogene, serine/threonine kinase; C5: complement C5; CCL2/MCP-1: C-C motif chemokine ligand 2; CCL3: C-C motif chemokine ligand 3; CK: cytokeratin; cKO: conditional knockout; CRTC1: CREB-regulated transcription coactivator 1; CXCL1: C-X-C motif chemokine ligand 1; CXCL2: C-X-C motif chemokine ligand 2; ECM: extracellular matrix; EGF: epidermal growth factor; FGF7: fibroblast growth factor 7; GABARAPL2: GABA type A receptor associated protein like 2; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; HBEGF: heparin binding EGF like growth factor; HPRT1: hypoxanthine phosphoribosyltransferase 1; IHC: immunohistochemical; IL1B: interleukin 1 beta; KRT10: keratin 10; KRT14: keratin 14; MAP1LC3B/LC3B-I/II: microtubule-associated protein 1 light chain 3 beta; MAPK1/3/ERK: mitogen-activated protein kinase 1/3; MKI67/Ki-67: marker of proliferation; MPO: myeloperoxidase; NFKB: NF-kappa B, nuclear factor kappa-light-chain-enhancer of activated B cells; NFKB-RE: NFKB response element; PDGF: platelet-derived growth factor; PECAM1: platelet and endothelial cell adhesion molecule 1; PRKAA1: protein kinase AMP-activated catalytic subunit alpha 1; RELA/p65: RELA proto-oncogene, NFKB subunit; shCON: small hairpin negative control; siNC: negative control; siRNA: small interfering RNA; SP1: sp1 transcription factor; SQSTM1/p62: sequestosome 1; TGFA: transforming growth factor alpha; TGFB1: transforming growth factor beta 1; TIMP1: TIMP metallopeptidase inhibitor 1; TNF/TNF-alpha: tumor necrosis factor; TREM1: triggering receptor expressed on myeloid cells 1; WT: wild-type.
Collapse
Affiliation(s)
- Lei Qiang
- Department of Medicine, Section of Dermatology, University of Chicago, Chicago, IL, USA.,School of Basic Medicine and Clinical Pharmacy, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Seungwon Yang
- Department of Medicine, Section of Dermatology, University of Chicago, Chicago, IL, USA
| | - Yan-Hong Cui
- Department of Medicine, Section of Dermatology, University of Chicago, Chicago, IL, USA
| | - Yu-Ying He
- Department of Medicine, Section of Dermatology, University of Chicago, Chicago, IL, USA
| |
Collapse
|
17
|
Xu J, Yang J, Chen J, Zhang X, Wu Y, Hart A, Nyga A, Shelton JC. Activation of synovial fibroblasts from patients at revision of their metal-on-metal total hip arthroplasty. Part Fibre Toxicol 2020; 17:42. [PMID: 32854727 PMCID: PMC7450933 DOI: 10.1186/s12989-020-00374-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 08/12/2020] [Indexed: 12/20/2022] Open
Abstract
Background The toxicity of released metallic particles generated in metal-on-metal (MoM) total hip arthroplasty (THA) using cobalt chromium (CoCr) has raised concerns regarding their safety amongst both surgeons and the public. Soft tissue changes such as pseudotumours and metallosis have been widely observed following the use of these implants, which release metallic by-products due to both wear and corrosion. Although activated fibroblasts, the dominant cell type in soft tissues, have been linked to many diseases, the role of synovial fibroblasts in the adverse reactions caused by CoCr implants remains unknown. To investigate the influence of implants manufactured from CoCr, the periprosthetic synovial tissues and synovial fibroblasts from patients with failed MoM THA, undergoing a revision operation, were analysed and compared with samples from patients undergoing a primary hip replacement, in order to elucidate histological and cellular changes. Results Periprosthetic tissue from patients with MoM implants was characterized by marked fibrotic changes, notably an increase in collagen content from less than 20% to 45–55%, an increase in α-smooth muscle actin positive cells from 4 to 9% as well as immune cells infiltration. Primary cell culture results demonstrated that MoM synovial fibroblasts have a decreased apoptosis rate from 14 to 6% compared to control synovial fibroblasts. In addition, synovial fibroblasts from MoM patients retained higher contractility and increased responsiveness to chemotaxis in matrix contraction. Their mechanical properties at a single cell level increased as observed by a 60% increase in contraction force and higher cell stiffness (3.3 kPa in MoM vs 2.18 kPa in control), as measured by traction force microscopy and atomic force microscopy. Further, fibroblasts from MoM patients promoted immune cell invasion by secreting monocyte chemoattractant protein 1 (MCP-1, CCL2) and induced monocyte differentiation, which could also be associated with excess accumulation of synovial macrophages. Conclusion Synovial fibroblasts exposed in vivo to MoM THA implants that release CoCr wear debris displayed dramatic phenotypic alteration and functional changes. These findings unravelled an unexpected effect of the CoCr alloy and demonstrated an important role of synovial fibroblasts in the undesired tissue reactions caused by MoM THAs.
Collapse
Affiliation(s)
- Jing Xu
- Department of Paediatric Orthopaedics, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200092, China.,Institute of Bioengineering, School of Engineering and Materials Science, Queen Mary University of London, London, UK
| | - Junyao Yang
- Institute of Bioengineering, School of Engineering and Materials Science, Queen Mary University of London, London, UK.,Cardiovascular Division, Faculty of Life Science and Medicine, King's College London, London, SE5 9NU, UK
| | - Jian Chen
- Department of Spine Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200092, China
| | - Xiaoli Zhang
- Institute of Bioengineering, School of Engineering and Materials Science, Queen Mary University of London, London, UK
| | - Yuanhao Wu
- Institute of Bioengineering, School of Engineering and Materials Science, Queen Mary University of London, London, UK
| | - Alister Hart
- Institute of Orthopaedics & Musculoskeletal Science, Royal National Orthopaedic Hospital, University College London, Stanmore, HA7 4AP, UK
| | - Agata Nyga
- Research Department of Surgical Biotechnology, Division of Surgery and Interventional Sciences, University College London, London, NW3 2QG, UK. .,Current affiliation: MRC LMB, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge, CB2 0QH, UK.
| | - Julia C Shelton
- Institute of Bioengineering, School of Engineering and Materials Science, Queen Mary University of London, London, UK.
| |
Collapse
|
18
|
Intrahepatic biliary strictures after liver transplantation are morphologically similar to primary sclerosing cholangitis but immunologically distinct. Eur J Gastroenterol Hepatol 2020; 32:276-284. [PMID: 31895887 DOI: 10.1097/meg.0000000000001649] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
OBJECTIVE Biliary strictures are an important cause of morbidity and mortality in primary hepatic disease and after liver transplantation (LT). We aimed to characterize inflammatory cytokines in biliary fluids in biliary strictures to investigate their immunological origin. METHODS We conducted a retrospective study on 72 patients with strictures after LT, eight patients with primary sclerosing cholangitis (PSC) and 15 patients with secondary sclerosing cholangitis (SSC). We measured cytokines interleukin (IL)-2, -4, -6, -10, -17, monocyte chemoattractant protein (MCP)-1, fibroblast growth factor (FGF)-2 and interferon (IFN)-γ as well as biochemical components such as protein and phospholipids in biliary fluid obtained from endoscopic retrograde cholangiography (ERC). Cell viability assays were performed on human cholangiocytes (H69) after being treated with IL-6, IL-4 and IFN-γ. RESULTS Bile of patients with diffuse strictures after LT or due to SSC showed low values of all measured cytokines except for IL-6 levels, which were largely elevated in patients with diffuse strictures after LT. Patients high in biliary IL-6 showed an increase in profibrotic markers FGF-2 and MCP-1. In contrast, PSC bile was dominated by a Th1/Th17 profile with elevated IL-2, IL-17 and IFN-γ. In LT patients with biliary strictures, biliary IL-6 negatively predicted retransplantation-free survival after ERC. CONCLUSION PSC patients showed a biliary Th1/Th17 cytokine profile, while SSC and diffuse strictures showed low values of cytokines except IL-6. In diffuse intrahepatic strictures after LT, biliary IL-6 is strongly associated with retransplantation-free survival after ERC.
Collapse
|
19
|
Koyama K, Goto H, Morizumi S, Kagawa K, Nishimura H, Sato S, Kawano H, Toyoda Y, Ogawa H, Homma S, Nishioka Y. The Tyrosine Kinase Inhibitor TAS-115 Attenuates Bleomycin-induced Lung Fibrosis in Mice. Am J Respir Cell Mol Biol 2019; 60:478-487. [PMID: 30540913 DOI: 10.1165/rcmb.2018-0098oc] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The signaling pathways of growth factors, including platelet-derived growth factor, can be considered specific targets for overcoming the poor prognosis of idiopathic pulmonary fibrosis. Nintedanib, the recently approved multiple kinase inhibitor, has shown promising antifibrotic effects in patients with idiopathic pulmonary fibrosis; however, its efficacy is still limited, and in some cases, treatment discontinuation is necessary owing to toxicities such as gastrointestinal disorders. Therefore, more effective agents with less toxicity are still needed. TAS-115 is a novel multiple tyrosine kinase inhibitor that preferably targets platelet-derived growth factor receptor (PDGFR), vascular endothelial growth factor receptor, and c-FMS in addition to other molecules. In this study, we evaluated the antifibrotic effect of TAS-115 on pulmonary fibrosis in vitro and in vivo. TAS-115 inhibited the phosphorylation of PDGFR on human lung fibroblast cell line MRC-5 cells and suppressed their platelet-derived growth factor-induced proliferation and migration. Furthermore, TAS-115 inhibited the phosphorylation of c-FMS, a receptor of macrophage colony-stimulating factor, in murine bone marrow-derived macrophages and decreased the production of CCL2, another key molecule for inducing pulmonary fibrosis, under the stimulation of macrophage colony-stimulating factor. Importantly, the inhibitory effects of TAS-115 on both PDGFR and c-FMS were 3- to 10-fold higher than those of nintedanib. In a mouse model of bleomycin-induced pulmonary fibrosis, TAS-115 significantly inhibited the development of pulmonary fibrosis and the collagen deposition in bleomycin-treated lungs. These data suggest that strong inhibition of PDGFR and c-FMS by TAS-115 may be a promising strategy for overcoming the intractable pathogenesis of pulmonary fibrosis.
Collapse
Affiliation(s)
- Kazuya Koyama
- 1 Department of Respiratory Medicine and Rheumatology and.,2 Department of Respiratory Medicine, Toho University Graduate School of Medicine, Tokyo, Japan
| | - Hisatsugu Goto
- 1 Department of Respiratory Medicine and Rheumatology and
| | - Shun Morizumi
- 1 Department of Respiratory Medicine and Rheumatology and
| | - Kozo Kagawa
- 1 Department of Respiratory Medicine and Rheumatology and
| | | | - Seidai Sato
- 1 Department of Respiratory Medicine and Rheumatology and
| | - Hiroshi Kawano
- 1 Department of Respiratory Medicine and Rheumatology and
| | - Yuko Toyoda
- 1 Department of Respiratory Medicine and Rheumatology and
| | - Hirohisa Ogawa
- 3 Department of Molecular and Environmental Pathology, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan; and
| | - Sakae Homma
- 2 Department of Respiratory Medicine, Toho University Graduate School of Medicine, Tokyo, Japan
| | | |
Collapse
|
20
|
Pekkala S, Keskitalo A, Kettunen E, Lensu S, Nykänen N, Kuopio T, Ritvos O, Hentilä J, Nissinen TA, Hulmi JJ. Blocking Activin Receptor Ligands Is Not Sufficient to Rescue Cancer-Associated Gut Microbiota-A Role for Gut Microbial Flagellin in Colorectal Cancer and Cachexia? Cancers (Basel) 2019; 11:cancers11111799. [PMID: 31731747 PMCID: PMC6896205 DOI: 10.3390/cancers11111799] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 11/08/2019] [Accepted: 11/10/2019] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) and cachexia are associated with the gut microbiota and microbial surface molecules. We characterized the CRC-associated microbiota and investigated whether cachexia affects the microbiota composition. Further, we examined the possible relationship between the microbial surface molecule flagellin and CRC. CRC cells (C26) were inoculated into mice. Activin receptor (ACVR) ligands were blocked, either before tumor formation or before and after, to increase muscle mass and prevent muscle loss. The effects of flagellin on C26-cells were studied in vitro. The occurrence of similar phenomena were studied in murine and human tumors. Cancer modulated the gut microbiota without consistent effects of blocking the ACVR ligands. However, continued treatment for muscle loss modified the association between microbiota and weight loss. Several abundant microbial taxa in cancer were flagellated. Exposure of C26-cells to flagellin increased IL6 and CCL2/MCP-1 mRNA and IL6 excretion. Murine C26 tumors expressed more IL6 and CCL2/MCP-1 mRNA than C26-cells, and human CRC tumors expressed more CCL2/MCP-1 than healthy colon sites. Additionally, flagellin decreased caspase-1 activity and the production of reactive oxygen species, and increased cytotoxicity in C26-cells. Conditioned media from flagellin-treated C26-cells deteriorated C2C12-myotubes and decreased their number. In conclusion, cancer increased flagellated microbes that may promote CRC survival and cachexia by inducing inflammatory proteins such as MCP-1. Cancer-associated gut microbiota could not be rescued by blocking ACVR ligands.
Collapse
Affiliation(s)
- Satu Pekkala
- Faculty of Sport and Health Sciences, University of Jyväskylä, 40620 Jyväskylä, Finland; (E.K.); (S.L.); (J.H.); (T.A.N.); (J.J.H.)
- Correspondence: ; Tel.: +358-45-358-2898
| | - Anniina Keskitalo
- Institute of Biomedicine, Faculty of Medicine, University of Turku, 20500 Turku, Finland;
- Department of Clinical Microbiology, Turku University Hospital, 20500 Turku, Finland
| | - Emilia Kettunen
- Faculty of Sport and Health Sciences, University of Jyväskylä, 40620 Jyväskylä, Finland; (E.K.); (S.L.); (J.H.); (T.A.N.); (J.J.H.)
| | - Sanna Lensu
- Faculty of Sport and Health Sciences, University of Jyväskylä, 40620 Jyväskylä, Finland; (E.K.); (S.L.); (J.H.); (T.A.N.); (J.J.H.)
| | - Noora Nykänen
- Department of Pathology, Central Finland Health Care District, Keskussairaalantie 19, 40620 Jyväskylä, Finland; (N.N.); (T.K.)
| | - Teijo Kuopio
- Department of Pathology, Central Finland Health Care District, Keskussairaalantie 19, 40620 Jyväskylä, Finland; (N.N.); (T.K.)
- Department of Biological and Environmental Science, University of Jyväskylä, 40620 Jyväskylä, Finland
| | - Olli Ritvos
- Department of Physiology, Faculty of Medicine, University of Helsinki, 00100 Helsinki, Finland;
| | - Jaakko Hentilä
- Faculty of Sport and Health Sciences, University of Jyväskylä, 40620 Jyväskylä, Finland; (E.K.); (S.L.); (J.H.); (T.A.N.); (J.J.H.)
| | - Tuuli A. Nissinen
- Faculty of Sport and Health Sciences, University of Jyväskylä, 40620 Jyväskylä, Finland; (E.K.); (S.L.); (J.H.); (T.A.N.); (J.J.H.)
| | - Juha J. Hulmi
- Faculty of Sport and Health Sciences, University of Jyväskylä, 40620 Jyväskylä, Finland; (E.K.); (S.L.); (J.H.); (T.A.N.); (J.J.H.)
| |
Collapse
|
21
|
Hassanin AAI, Tavera-Garcia M, Moorthy B, Zhou GD, Ramos KS. Lung genotoxicity of benzo(a)pyrene in vivo involves reactivation of LINE-1 retrotransposon and early reprogramming of oncogenic regulatory networks. Am J Physiol Lung Cell Mol Physiol 2019; 317:L816-L822. [PMID: 31596105 DOI: 10.1152/ajplung.00304.2019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Several lines of evidence have implicated long interspersed nuclear element-1 (LINE-1) retroelement in the onset and progression of lung cancer. Retrotransposition-dependent mechanisms leading to DNA mobilization give rise to insertion mutations and DNA deletions, whereas retrotransposition-independent mechanisms disrupt epithelial programming and differentiation. Previous work by our group established that tobacco carcinogens such as benzo(a)pyrene (BaP) reactivate LINE-1 in bronchial epithelial cells through displacement of nucleosome remodeling and deacetylase (NuRD) corepressor complexes and interference with retinoblastoma-regulated epigenetic signaling. Whether LINE-1 in coordination with other genes within its regulatory network contributes to the in vivo genotoxic response to BaP remains largely unknown. Evidence is presented here that intratracheal instillation of ORFeusLSL mice with BaP alone or in combination with adenovirus (adeno)-CRE recombinase is genotoxic to the lung and associated with activation of the human LINE-1 transgene present in these mice. LINE-1 reactivation modulated the expression of genes involved in oncogenic signaling, and these responses were most pronounced in female mice compared with males and synergized by adeno-CRE recombinase. This is the first report linking LINE-1 and genes within its oncogenic regulatory network with early sexually dimorphic responses of the lung in vivo.
Collapse
Affiliation(s)
- A A I Hassanin
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Arizona College of Medicine, Tucson, Arizona.,Department of Animal Wealth Development, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - M Tavera-Garcia
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Arizona College of Medicine, Tucson, Arizona
| | - B Moorthy
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - G D Zhou
- Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, Texas
| | - K S Ramos
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Arizona College of Medicine, Tucson, Arizona.,Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, Texas
| |
Collapse
|
22
|
van Caam A, Vonk M, van den Hoogen F, van Lent P, van der Kraan P. Unraveling SSc Pathophysiology; The Myofibroblast. Front Immunol 2018; 9:2452. [PMID: 30483246 PMCID: PMC6242950 DOI: 10.3389/fimmu.2018.02452] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Accepted: 10/04/2018] [Indexed: 12/31/2022] Open
Abstract
Systemic sclerosis (SSc) is a severe auto-immune disease, characterized by vasculopathy and fibrosis of connective tissues. SSc has a high morbidity and mortality and unfortunately no disease modifying therapy is currently available. A key cell in the pathophysiology of SSc is the myofibroblast. Myofibroblasts are fibroblasts with contractile properties that produce a large amount of pro-fibrotic extracellular matrix molecules such as collagen type I. In this narrative review we will discuss the presence, formation, and role of myofibroblasts in SSc, and how these processes are stimulated and mediated by cells of the (innate) immune system such as mast cells and T helper 2 lymphocytes. Furthermore, current novel therapeutic approaches to target myofibroblasts will be highlighted for future perspective.
Collapse
Affiliation(s)
- Arjan van Caam
- Experimental Rheumatology, Radboudumc, Nijmegen, Netherlands
| | - Madelon Vonk
- Department of Rheumatology, Radboudumc, Nijmegen, Netherlands
| | | | - Peter van Lent
- Experimental Rheumatology, Radboudumc, Nijmegen, Netherlands
| | | |
Collapse
|
23
|
Yu CW, Cheng KC, Chen LC, Lin MX, Chang YC, Hwang-Verslues WW. Pro-inflammatory cytokines IL-6 and CCL2 suppress expression of circadian gene Period2 in mammary epithelial cells. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2018; 1861:1007-1017. [PMID: 30343691 DOI: 10.1016/j.bbagrm.2018.09.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Revised: 08/27/2018] [Accepted: 09/11/2018] [Indexed: 10/28/2022]
Abstract
Chronic inflammation is known to contribute to tumor initiation and cancer progression. In breast tissue, the core circadian gene Period (PER)2 plays a critical role in mammary gland development and possesses tumor suppressor function. Interleukin (IL)-6 and C-C motif chemokine ligand (CCL) 2 are among the most abundant cytokines in the inflammatory microenvironment. We found that acute stimulation by IL-6/CCL2 reduced PER2 expression in non-tumorigenic breast epithelial cells. Longer term exposure to IL-6/CCL2 suppressed PER2 to an even lower level. IL-6 activated STAT3/NFκB p50 signaling to recruit HDAC1 to the PER2 promoter. CCL2 activated the PI3K/AKT pathway to promote ELK-1 cytoplasm-to-nucleus translocation, recruit HDAC1 to the proximal PER2 promoter and facilitate DNMT3-EZH2-PER2 promoter association. Ectopic expression of PER2 inhibited IL-6 or CCL2 induced mammosphere forming ability and reduced sphere size indicating that PER2 repression in breast epithelial cells can be crucial to activate tumorigenesis in an inflammatory microenvironment. The diminished expression of PER2 can be observed over a time scale of hours to weeks following IL-6/CCL2 stimulation suggesting that PER2 suppression occurs in the early stage of the interaction between an inflammatory microenvironment and normal breast epithelial cells. These data show new mechanisms by which mammary cells interact with a cancerous microenvironment and provide additional evidence that PER2 expression contributes to breast tumorigenesis.
Collapse
Affiliation(s)
- Chan-Wei Yu
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Kuo-Chih Cheng
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Ling-Chih Chen
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan; Graduate Institute of Life Science, National Defense Medical Center, Taipei 114, Taiwan
| | - Meng-Xuan Lin
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan; Graduate Institute of Life Science, National Defense Medical Center, Taipei 114, Taiwan
| | - Yi-Cheng Chang
- Graduate Institute of Medical Genomics and Proteomics, National Taiwan University, Taipei 100, Taiwan; Department of Medicine, National Taiwan University Hospital, Taipei 100, Taiwan; Institute of Biomedical Science, Academia Sinica, Taipei 115, Taiwan
| | - Wendy W Hwang-Verslues
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan; Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan.
| |
Collapse
|
24
|
Bickelhaupt S, Erbel C, Timke C, Wirkner U, Dadrich M, Flechsig P, Tietz A, Pföhler J, Gross W, Peschke P, Hoeltgen L, Katus HA, Gröne HJ, Nicolay NH, Saffrich R, Debus J, Sternlicht MD, Seeley TW, Lipson KE, Huber PE. Effects of CTGF Blockade on Attenuation and Reversal of Radiation-Induced Pulmonary Fibrosis. J Natl Cancer Inst 2017; 109:3064590. [PMID: 28376190 DOI: 10.1093/jnci/djw339] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 12/22/2016] [Indexed: 01/08/2023] Open
Abstract
Background Radiotherapy is a mainstay for the treatment of lung cancer that can induce pneumonitis or pulmonary fibrosis. The matricellular protein connective tissue growth factor (CTGF) is a central mediator of tissue remodeling. Methods A radiation-induced mouse model of pulmonary fibrosis was used to determine if transient administration of a human antibody to CTGF (FG-3019) started at different times before or after 20 Gy thoracic irradiation reduced acute and chronic radiation toxicity. Mice (25 mice/group; 10 mice/group in a confirmation study) were examined by computed tomography, histology, gene expression changes, and for survival. In vitro experiments were performed to directly study the interaction of CTGF blockade and radiation. All statistical tests were two-sided. Results Administration of FG-3019 prevented (∼50%-80%) or reversed (∼50%) lung remodeling, improved lung function, improved mouse health, and rescued mice from lethal irradiation ( P < .01). Importantly, when antibody treatment was initiated at 16 weeks after thoracic irradiation, FG-3019 reversed established lung remodeling and restored lung function. CTGF blockade abrogated M2 polarized macrophage influx, normalized radiation-induced gene expression changes, and reduced myofibroblast abundance and Osteopontin expression. Conclusion These results indicate that blocking CTGF attenuates radiation-induced pulmonary remodeling and can reverse the process after initiation. CTGF has a central role in radiation-induced fibrogenesis, and FG-3019 may benefit patients with radiation-induced pulmonary fibrosis or patients with other forms or origin of chronic fibrotic diseases.
Collapse
Affiliation(s)
- Sebastian Bickelhaupt
- Departments of Molecular and Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Departments of Radiation Oncology, University Hospital Center, Heidelberg, Germany
| | - Christian Erbel
- Departments of Cardiology, University Hospital Center, Heidelberg, Germany
| | - Carmen Timke
- Departments of Molecular and Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Departments of Radiation Oncology, University Hospital Center, Heidelberg, Germany
| | - Ute Wirkner
- Departments of Molecular and Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Monika Dadrich
- Departments of Molecular and Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Paul Flechsig
- Departments of Molecular and Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Alexandra Tietz
- Departments of Molecular and Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Johanna Pföhler
- Departments of Molecular and Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Wolfgang Gross
- Departments of Experimental Surgery, University Hospital Center, Heidelberg, Germany
| | - Peter Peschke
- Departments of Molecular and Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Line Hoeltgen
- Departments of Molecular and Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Hugo A Katus
- Departments of Cardiology, University Hospital Center, Heidelberg, Germany
| | - Hermann-Josef Gröne
- Departments of Molecular Pathology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Nils H Nicolay
- Departments of Radiation Oncology, University Hospital Center, Heidelberg, Germany
| | - Rainer Saffrich
- Departments of Hematology and Oncology, University Hospital Center, Heidelberg, Germany
| | - Jürgen Debus
- Departments of Radiation Oncology, University Hospital Center, Heidelberg, Germany
| | - Mark D Sternlicht
- Departments of Molecular Biology, FibroGen, Inc., San Francisco, CA, USA
| | - Todd W Seeley
- Departments of Molecular Biology, FibroGen, Inc., San Francisco, CA, USA
| | | | - Peter E Huber
- Departments of Molecular and Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Departments of Radiation Oncology, University Hospital Center, Heidelberg, Germany
| |
Collapse
|
25
|
Wang HJ, Cheng JH, Chuang YC. Potential applications of low-energy shock waves in functional urology. Int J Urol 2017; 24:573-581. [PMID: 28697536 DOI: 10.1111/iju.13403] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 05/23/2017] [Indexed: 12/21/2022]
Abstract
A shock wave, which carries energy and can propagate through a medium, is a type of continuous transmitted sonic wave with a frequency of 16 Hz-20 MHz. It is accompanied by processes involving rapid energy transformations. The energy associated with shock waves has been harnessed and used for various applications in medical science. High-energy extracorporeal shock wave therapy is the most successful application of shock waves, and has been used to disintegrate urolithiasis for 30 years. At lower energy levels, however, shock waves have enhanced expression of vascular endothelial growth factor, endothelial nitric oxide synthase, proliferating cell nuclear antigen, chemoattractant factors and recruitment of progenitor cells; shock waves have also improved tissue regeneration. Low-energy shock wave therapy has been used clinically with musculoskeletal disorders, ischemic cardiovascular disorders and erectile dysfunction, through the mechanisms of neovascularization, anti-inflammation and tissue regeneration. Furthermore, low-energy shock waves have been proposed to temporarily increase tissue permeability and facilitate intravesical drug delivery. The present review article provides information on the basics of shock wave physics, mechanisms of action on the biological system and potential applications in functional urology.
Collapse
Affiliation(s)
- Hung-Jen Wang
- Department of Urology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Center for Shock Wave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Jai-Hong Cheng
- Center for Shock Wave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Division of Medical Research, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Yao-Chi Chuang
- Department of Urology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Center for Shock Wave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| |
Collapse
|
26
|
Kolahian S, Fernandez IE, Eickelberg O, Hartl D. Immune Mechanisms in Pulmonary Fibrosis. Am J Respir Cell Mol Biol 2016; 55:309-22. [DOI: 10.1165/rcmb.2016-0121tr] [Citation(s) in RCA: 176] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
27
|
Fang WB, Yao M, Brummer G, Acevedo D, Alhakamy N, Berkland C, Cheng N. Targeted gene silencing of CCL2 inhibits triple negative breast cancer progression by blocking cancer stem cell renewal and M2 macrophage recruitment. Oncotarget 2016; 7:49349-49367. [PMID: 27283985 PMCID: PMC5226513 DOI: 10.18632/oncotarget.9885] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 05/20/2016] [Indexed: 12/14/2022] Open
Abstract
Triple negative breast cancers are an aggressive subtype of breast cancer, characterized by the lack of estrogen receptor, progesterone receptor and Her2 expression. Triple negative breast cancers are non-responsive to conventional anti-hormonal and Her2 targeted therapies, making it necessary to identify new molecular targets for therapy. The chemokine CCL2 is overexpressed in invasive breast cancers, and regulates breast cancer progression through multiple mechanisms. With few approaches to target CCL2 activity, its value as a therapeutic target is unclear. In these studies, we developed a novel gene silencing approach that involves complexing siRNAs to TAT cell penetrating peptides (Ca-TAT) through non-covalent calcium cross-linking. Ca-TAT/siRNA complexes penetrated 3D collagen cultures of breast cancer cells and inhibited CCL2 expression more effectively than conventional antibody neutralization. Ca-TAT/siRNA complexes targeting CCL2 were delivered to mice bearing MDA-MB-231 breast tumor xenografts. In vivo CCL2 gene silencing inhibited primary tumor growth and metastasis, associated with a reduction in cancer stem cell renewal and recruitment of M2 macrophages. These studies are the first to demonstrate that targeting CCL2 expression in vivo may be a viable therapeutic approach to treating triple negative breast cancer.
Collapse
Affiliation(s)
- Wei Bin Fang
- Department of Pathology and Laboratory, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Min Yao
- Department of Pathology and Laboratory, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Gage Brummer
- Department of Pathology and Laboratory, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Diana Acevedo
- Department of Pathology and Laboratory, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Nabil Alhakamy
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS 66045, USA
| | - Cory Berkland
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS 66045, USA
| | - Nikki Cheng
- Department of Pathology and Laboratory, University of Kansas Medical Center, Kansas City, KS 66160, USA
| |
Collapse
|
28
|
Louzao-Martinez L, Vink A, Harakalova M, Asselbergs FW, Verhaar MC, Cheng C. Characteristic adaptations of the extracellular matrix in dilated cardiomyopathy. Int J Cardiol 2016; 220:634-46. [PMID: 27391006 DOI: 10.1016/j.ijcard.2016.06.253] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 05/31/2016] [Accepted: 06/26/2016] [Indexed: 12/20/2022]
Abstract
Dilated cardiomyopathy (DCM) is a relatively common heart muscle disease characterized by the dilation and thinning of the left ventricle accompanied with left ventricular systolic dysfunction. Myocardial fibrosis is a major feature in DCM and therefore it is inevitable that corresponding extracellular matrix (ECM) changes are involved in DCM onset and progression. Increasing our understanding of how ECM adaptations are involved in DCM could be important for the development of future interventions. This review article discusses the molecular adaptations in ECM composition and structure that have been reported in both animal and human studies of DCM. Furthermore, we provide a transcriptome-based catalogue of ECM genes that are associated with DCM, generated by using NCBI Gene Expression Omnibus database sets for DCM. Based on this in silico analysis, many novel ECM components involved in DCM are identified and discussed in this review. With the information gathered, we propose putative pathways of ECM adaptations in onset and progression of DCM.
Collapse
Affiliation(s)
- Laura Louzao-Martinez
- Department of Nephrology and Hypertension, Division of Internal Medicine and Dermatology, University Medical Center Utrecht, The Netherlands; Netherlands Heart Institute, University Medical Center Utrecht, The Netherlands
| | - Aryan Vink
- Department of Pathology, University Medical Center Utrecht, The Netherlands
| | - Magdalena Harakalova
- Netherlands Heart Institute, University Medical Center Utrecht, The Netherlands; Department of Pathology, University Medical Center Utrecht, The Netherlands; Department of Cardiology, Division of Heart and Lungs, University Medical Center Utrecht, The Netherlands
| | - Folkert W Asselbergs
- Netherlands Heart Institute, University Medical Center Utrecht, The Netherlands; Department of Cardiology, Division of Heart and Lungs, University Medical Center Utrecht, The Netherlands; Institute of Cardiovascular Science, Faculty of Population Health Sciences, University College London, United Kingdom
| | - Marianne C Verhaar
- Department of Nephrology and Hypertension, Division of Internal Medicine and Dermatology, University Medical Center Utrecht, The Netherlands
| | - Caroline Cheng
- Department of Nephrology and Hypertension, Division of Internal Medicine and Dermatology, University Medical Center Utrecht, The Netherlands; Department of Cardiology, Thoraxcenter, Division of Experimental Cardiology, Erasmus University Medical Center Rotterdam, The Netherlands.
| |
Collapse
|
29
|
Izykowski N, Kuehnel M, Hussein K, Mitschke K, Gunn M, Janciauskiene S, Haverich A, Warnecke G, Laenger F, Maus U, Jonigk D. Organizing pneumonia in mice and men. J Transl Med 2016; 14:169. [PMID: 27282780 PMCID: PMC4901413 DOI: 10.1186/s12967-016-0933-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 06/01/2016] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Organizing pneumonia is a reaction pattern and an inflammatory response to acute lung injuries, and is characterized by intraluminal plugs of granulation tissue in distal airspaces. In contrast to other fibrotic pulmonary diseases, organizing pneumonia is generally responsive to corticosteroids. However, some patients do not respond to treatment, leading to respiratory failure and potentially death (up to 15 % of patients). In order to devise new therapeutic strategies, a better understanding of the disease's pathomechanisms is warranted. We previously generated a mouse model overexpressing CCL2, which generates organizing pneumonia-like changes, morphologically comparable to human patients. In this study, we investigated whether the histopathological similarities of human and murine pulmonary organizing pneumonia lesions also involve similar molecular pathways. METHODS We analyzed the similarities and differences of fibrosis-associated gene expression in individual compartments from patients with organizing pneumonia and transgenic (CCL2) mice using laser-assisted microdissection, real-time PCR and immunohistochemistry. RESULTS Gene expression profiling of human and murine organizing pneumonia lesions showed in part comparable expression levels of pivotal genes, notably of TGFB1/Tgfb1, TIMP1/Timp1, TIMP2/Timp2, COL3A1/Col3a1, CXCL12/Cxcl12, MMP2/Mmp2 and IL6/Il6. Hence, the transgenic CCL2 mouse model shows not only pathogenomic and morphological features of human organizing pneumonia but also a similar inflammatory profile. CONCLUSIONS We suggest that the CCL2-overexpressing transgenic mouse model (CCL2 Tg mice) is suitable for further investigation of fibrotic pulmonary remodeling, particularly of organizing pneumonia pathogenesis and for the search for novel therapeutic strategies.
Collapse
Affiliation(s)
- Nicole Izykowski
- Institute of Pathology, Hannover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany. .,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Hannover, Germany. .,German Center for Lung Research (Deutsches Zentrum für Lungenforschung, DZL), Bad Nauheim, Germany.
| | - Mark Kuehnel
- Institute of Pathology, Hannover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Hannover, Germany.,German Center for Lung Research (Deutsches Zentrum für Lungenforschung, DZL), Bad Nauheim, Germany
| | - Kais Hussein
- Institute of Pathology, Hannover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany
| | - Kristin Mitschke
- Institute of Pathology, Hannover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany
| | - Michael Gunn
- Department of Immunology, Duke University Medical Center, Durham, NC, USA
| | - Sabina Janciauskiene
- Department of Experimental Pneumology, Hannover Medical School, Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Hannover, Germany.,German Center for Lung Research (Deutsches Zentrum für Lungenforschung, DZL), Bad Nauheim, Germany
| | - Axel Haverich
- Department of Thoracic Surgery, Hannover Medical School, Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Hannover, Germany.,German Center for Lung Research (Deutsches Zentrum für Lungenforschung, DZL), Bad Nauheim, Germany
| | - Gregor Warnecke
- Department of Thoracic Surgery, Hannover Medical School, Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Hannover, Germany.,German Center for Lung Research (Deutsches Zentrum für Lungenforschung, DZL), Bad Nauheim, Germany
| | - Florian Laenger
- Institute of Pathology, Hannover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Hannover, Germany.,German Center for Lung Research (Deutsches Zentrum für Lungenforschung, DZL), Bad Nauheim, Germany
| | - Ulrich Maus
- Department of Experimental Pneumology, Hannover Medical School, Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Hannover, Germany.,German Center for Lung Research (Deutsches Zentrum für Lungenforschung, DZL), Bad Nauheim, Germany
| | - Danny Jonigk
- Institute of Pathology, Hannover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Hannover, Germany.,German Center for Lung Research (Deutsches Zentrum für Lungenforschung, DZL), Bad Nauheim, Germany
| |
Collapse
|
30
|
Cardiac Stem Cell Secretome Protects Cardiomyocytes from Hypoxic Injury Partly via Monocyte Chemotactic Protein-1-Dependent Mechanism. Int J Mol Sci 2016; 17:ijms17060800. [PMID: 27231894 PMCID: PMC4926334 DOI: 10.3390/ijms17060800] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 05/10/2016] [Accepted: 05/12/2016] [Indexed: 12/20/2022] Open
Abstract
Cardiac stem cells (CSCs) were known to secrete diverse paracrine factors leading to functional improvement and beneficial left ventricular remodeling via activation of the endogenous pro-survival signaling pathway. However, little is known about the paracrine factors secreted by CSCs and their roles in cardiomyocyte survival during hypoxic condition mimicking the post-myocardial infarction environment. We established Sca-1+/CD31- human telomerase reverse transcriptase-immortalized CSCs (Sca-1+/CD31- CSCs(hTERT)), evaluated their stem cell properties, and paracrine potential in cardiomyocyte survival during hypoxia-induced injury. Sca-1+/CD31- CSCs(hTERT) sustained proliferation ability even after long-term culture exceeding 100 population doublings, and represented multi-differentiation potential into cardiomyogenic, endothelial, adipogenic, and osteogenic lineages. Dominant factors secreted from Sca-1+/CD31- CSCs(hTERT) were EGF, TGF-β1, IGF-1, IGF-2, MCP-1, HGF R, and IL-6. Among these, MCP-1 was the most predominant factor in Sca-1+/CD31- CSCs(hTERT) conditioned medium (CM). Sca-1+/CD31- CSCs(hTERT) CM increased survival and reduced apoptosis of HL-1 cardiomyocytes during hypoxic injury. MCP-1 silencing in Sca-1+/CD31- CSCs(hTERT) CM resulted in a significant reduction in cardiomyocyte apoptosis. We demonstrated that Sca-1+/CD31- CSCs(hTERT) exhibited long-term proliferation capacity and multi-differentiation potential. Sca-1+/CD31- CSCs(hTERT) CM protected cardiomyocytes from hypoxic injury partly via MCP-1-dependent mechanism. Thus, they are valuable sources for in vitro and in vivo studies in the cardiovascular field.
Collapse
|
31
|
Wettlaufer SH, Scott JP, McEachin RC, Peters-Golden M, Huang SK. Reversal of the Transcriptome by Prostaglandin E2 during Myofibroblast Dedifferentiation. Am J Respir Cell Mol Biol 2016; 54:114-27. [PMID: 26098591 DOI: 10.1165/rcmb.2014-0468oc] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Myofibroblasts, the major effector cells in pathologic fibrosis, derive from the differentiation of fibroblasts driven by mediators such as transforming growth factor-β1 (TGF-β1) and biomechanical signals. Although the myofibroblast has traditionally been considered a terminally differentiated cell, the lipid mediator prostaglandin E2 (PGE2) has been shown to not only prevent but also reverse myofibroblast differentiation, as characterized by the ability of PGE2 to diminish expression of collagen I and α-smooth muscle actin in established myofibroblasts. Here, we use microarrays to examine the extent of transcriptomic changes that occur during TGF-β1-induced differentiation and PGE2-induced dedifferentiation of myofibroblasts. Normal primary human adult lung fibroblasts were cultured for 24 hours with or without TGF-β1 and treated for 48 hours with PGE2. Gene expression levels were assessed from total RNA on the Affymetrix U219 microarray. TGF-β1 up-regulated 588 genes and down-regulated 689 genes compared with control cells. PGE2 reversed the expression of 363 (62%) of the TGF-β1-up-regulated genes and 345 (50%) of the TGF-β1-down-regulated genes. Genes up-regulated by TGF-β1 and reversed by PGE2 were enriched in annotations for Cell Adhesion, Contractile Fiber, and Actin Binding, whereas genes down-regulated by TGF-β1 but subsequently reversed by PGE2 were enriched in annotations for Glycoprotein, Polysaccharide Binding, and Regulation of Cell Migration. Surprisingly, the genes whose expression was affected by PGE2 differed between TGF-β1-induced myofibroblasts and undifferentiated fibroblasts. These data demonstrate the capacity of PGE2 to effect marked global alterations in the transcriptomic program of differentiated myofibroblasts and emphasize the considerable plasticity of these cells.
Collapse
Affiliation(s)
- Scott H Wettlaufer
- 1 Division of Pulmonary and Critical Care Medicine in the Department of Internal Medicine and
| | - Jacob P Scott
- 1 Division of Pulmonary and Critical Care Medicine in the Department of Internal Medicine and
| | - Richard C McEachin
- 2 Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan
| | - Marc Peters-Golden
- 1 Division of Pulmonary and Critical Care Medicine in the Department of Internal Medicine and
| | - Steven K Huang
- 1 Division of Pulmonary and Critical Care Medicine in the Department of Internal Medicine and
| |
Collapse
|
32
|
Rangarajan S, Locy ML, Luckhardt TR, Thannickal VJ. Targeted Therapy for Idiopathic Pulmonary Fibrosis: Where To Now? Drugs 2016; 76:291-300. [PMID: 26729185 PMCID: PMC4939080 DOI: 10.1007/s40265-015-0523-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is an aging-associated, recalcitrant lung disease with historically limited therapeutic options. The recent approval of two drugs, pirfenidone and nintedanib, by the US Food and Drug Administration in 2014 has heralded a new era in its management. Both drugs have demonstrated efficacy in phase III clinical trials by retarding the rate of progression of IPF; neither drug appears to be able to completely arrest disease progression. Advances in the understanding of IPF pathobiology have led to an unprecedented expansion in the number of potential therapeutic targets. Drugs targeting several of these are under investigation in various stages of clinical development. Here, we provide a brief overview of the drugs that are currently approved and others in phase II clinical trials. Future therapeutic opportunities that target novel pathways, including some that are associated with the biology of aging, are examined. A multi-targeted approach, potentially with combination therapies, and identification of individual patients (or subsets of patients) who may respond more favourably to specific agents are likely to be more effective.
Collapse
Affiliation(s)
- Sunad Rangarajan
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, 1900 University Blvd THT 422, Birmingham, AL, 35294-2180, USA
| | - Morgan L Locy
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, 1900 University Blvd THT 422, Birmingham, AL, 35294-2180, USA
| | - Tracy R Luckhardt
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, 1900 University Blvd THT 422, Birmingham, AL, 35294-2180, USA
| | - Victor J Thannickal
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, 1900 University Blvd THT 422, Birmingham, AL, 35294-2180, USA.
| |
Collapse
|
33
|
Silasi-Mansat R, Zhu H, Georgescu C, Popescu N, Keshari RS, Peer G, Lupu C, Taylor FB, Pereira HA, Kinasewitz G, Lambris JD, Lupu F. Complement inhibition decreases early fibrogenic events in the lung of septic baboons. J Cell Mol Med 2015; 19:2549-63. [PMID: 26337158 PMCID: PMC4627561 DOI: 10.1111/jcmm.12667] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2015] [Accepted: 07/03/2015] [Indexed: 01/09/2023] Open
Abstract
Acute respiratory distress syndrome (ARDS) induced by severe sepsis can trigger persistent inflammation and fibrosis. We have shown that experimental sepsis in baboons recapitulates ARDS progression in humans, including chronic inflammation and long-lasting fibrosis in the lung. Complement activation products may contribute to the fibroproliferative response, suggesting that complement inhibitors are potential therapeutic agents. We have been suggested that treatment of septic baboons with compstatin, a C3 convertase inhibitor protects against ARDS-induced fibroproliferation. Baboons challenged with 109 cfu/kg (LD50) live E. coli by intravenous infusion were treated or not with compstatin at the time of challenge or 5 hrs thereafter. Changes in the fibroproliferative response at 24 hrs post-challenge were analysed at both transcript and protein levels. Gene expression analysis showed that sepsis induced fibrotic responses in the lung as early as 24 hrs post-bacterial challenge. Immunochemical and biochemical analysis revealed enhanced collagen synthesis, induction of profibrotic factors and increased cell recruitment and proliferation. Specific inhibition of complement with compstatin down-regulated sepsis-induced fibrosis genes, including transforming growth factor-beta (TGF-β), connective tissue growth factor (CTGF), tissue inhibitor of metalloproteinase 1 (TIMP1), various collagens and chemokines responsible for fibrocyte recruitment (e.g. chemokine (C-C motif) ligand 2 (CCL2) and 12 (CCL12)). Compstatin decreased the accumulation of myofibroblasts and proliferating cells, reduced the production of fibrosis mediators (TGF-β, phospho-Smad-2 and CTGF) and inhibited collagen deposition. Our data demonstrate that complement inhibition effectively attenuates collagen deposition and fibrotic responses in the lung after severe sepsis. Inhibiting complement could prove an attractive strategy for preventing sepsis-induced fibrosis of the lung.
Collapse
Affiliation(s)
- Robert Silasi-Mansat
- Programs in Cardiovascular Biology, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Hua Zhu
- Programs in Cardiovascular Biology, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Constantin Georgescu
- Programs in Clinical Immunology, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Narcis Popescu
- Programs in Cardiovascular Biology, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Ravi S Keshari
- Programs in Cardiovascular Biology, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Glenn Peer
- Department of Medicine, Pulmonary and Critical Care Division, Oklahoma University Health Sciences Center, Oklahoma City, OK, USA
| | - Cristina Lupu
- Programs in Cardiovascular Biology, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Fletcher B Taylor
- Programs in Cardiovascular Biology, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA.,Department of Pathology, Oklahoma University Health Sciences Center, Oklahoma City, OK, USA
| | - Heloise Anne Pereira
- Department of Pathology, Oklahoma University Health Sciences Center, Oklahoma City, OK, USA.,Department of Pharmaceutical Sciences, Oklahoma University Health Sciences Center, Oklahoma City, OK, USA.,Department of Cell Biology, Oklahoma University Health Sciences Center, Oklahoma City, OK, USA
| | - Gary Kinasewitz
- Department of Medicine, Pulmonary and Critical Care Division, Oklahoma University Health Sciences Center, Oklahoma City, OK, USA
| | - John D Lambris
- Department of Pathology and Laboratory Medicine, School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Florea Lupu
- Programs in Cardiovascular Biology, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA.,Department of Pathology, Oklahoma University Health Sciences Center, Oklahoma City, OK, USA.,Department of Cell Biology, Oklahoma University Health Sciences Center, Oklahoma City, OK, USA
| |
Collapse
|
34
|
Horiguchi M, Oiso Y, Sakai H, Motomura T, Yamashita C. Pulmonary administration of phosphoinositide 3-kinase inhibitor is a curative treatment for chronic obstructive pulmonary disease by alveolar regeneration. J Control Release 2015; 213:112-119. [DOI: 10.1016/j.jconrel.2015.07.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 06/11/2015] [Accepted: 07/02/2015] [Indexed: 11/25/2022]
|
35
|
Fischer S, Mueller W, Schulte M, Kiefer J, Hirche C, Heimer S, Köllensperger E, Germann G, Reichenberger MA. Multiple extracorporeal shock wave therapy degrades capsular fibrosis after insertion of silicone implants. ULTRASOUND IN MEDICINE & BIOLOGY 2015; 41:781-789. [PMID: 25619782 DOI: 10.1016/j.ultrasmedbio.2014.10.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 10/22/2014] [Accepted: 10/24/2014] [Indexed: 06/04/2023]
Abstract
Capsular fibrosis is the most frequent long-term complication after insertion of silicone devices. Today, mainly direct immunostimulation and subclinical infection are held responsible for inducing and maintaining inflammatory reactions, which lead to overwhelming extracellular matrix formation. Extracorporeal shock waves (ESWs) are capable of inhibiting inflammatory processes and revealing antibacterial capacity. In our previous study, we observed decelerated capsule development after application of a single shock wave immediately after surgery. The purpose of this study was to evaluate the effects of multiple ESWT after insertion of silicone implants in the same rodent model. Therefore, silicone prostheses were inserted into a submuscular pocket in 12 additional male Lewis rats, and shock waves were administered over a 14-d interval. At 35 d (n = 6) and 100 d (n = 6) after insertion, silicone implants and surrounding capsule tissue were removed and prepared for histologic and immunohistochemical analysis, as well as polymerase chain reaction (Ccl2, CD68, transforming growth factor β1, matrix metalloproteinase 2). Compared with the control group, multiple ESWT had no effect on day 35, but resulted in a significantly thinner capsule on day 100 (825.8 ± 313.2 vs. 813.3 ± 47.9, p = 0.759, and 1062.3 ± 151.9 vs. 495.4 ± 220.4, p < 0.001, respectively). The capsule was even thinner than after a single shock wave application, which had been found to result in thinner capsules at every time point in our previous study. This active degradation of the fibrous envelope caused by multiple ESWs was accompanied by synergistic alterations in pro- and anti-fibrotic proteins (transforming growth factor β1 and matrix metalloproteinase 2, respectively). In conclusion, after insertion of silicone devices, single ESWT is capable of decelerating capsule formation in contrast to multiple ESWT, which degrades fibrotic tissue. These findings seem to be associated with inhibition of inflammation and beneficial effects on pro- and anti-fibrotic proteins.
Collapse
Affiliation(s)
- Sebastian Fischer
- BG Trauma Centre Ludwigshafen, Clinic for Hand, Plastic and Reconstructive Surgery, Burn Centre, Hand and Plastic Surgery of the University of Heidelberg, Heidelberg, Germany.
| | - Wolf Mueller
- University Hospital Leipzig, Department of Neuropathology, University of Leipzig, Leipzig, Germany
| | - Matthias Schulte
- BG Trauma Centre Ludwigshafen, Clinic for Hand, Plastic and Reconstructive Surgery, Burn Centre, Hand and Plastic Surgery of the University of Heidelberg, Heidelberg, Germany
| | - Jurij Kiefer
- BG Trauma Centre Ludwigshafen, Clinic for Hand, Plastic and Reconstructive Surgery, Burn Centre, Hand and Plastic Surgery of the University of Heidelberg, Heidelberg, Germany
| | - Christoph Hirche
- BG Trauma Centre Ludwigshafen, Clinic for Hand, Plastic and Reconstructive Surgery, Burn Centre, Hand and Plastic Surgery of the University of Heidelberg, Heidelberg, Germany
| | - Sina Heimer
- ETHIANUM-Clinic for Plastic and Reconstructive Surgery, Aesthetic and Preventive Medicine at Heidelberg University Hospital, Heidelberg, Germany
| | - Eva Köllensperger
- ETHIANUM-Clinic for Plastic and Reconstructive Surgery, Aesthetic and Preventive Medicine at Heidelberg University Hospital, Heidelberg, Germany
| | - Günter Germann
- ETHIANUM-Clinic for Plastic and Reconstructive Surgery, Aesthetic and Preventive Medicine at Heidelberg University Hospital, Heidelberg, Germany
| | - Matthias A Reichenberger
- ETHIANUM-Clinic for Plastic and Reconstructive Surgery, Aesthetic and Preventive Medicine at Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|
36
|
Moore BB. Following the path of CCL2 from prostaglandins to periostin in lung fibrosis. Am J Respir Cell Mol Biol 2014; 50:848-52. [PMID: 24605795 DOI: 10.1165/rcmb.2014-0075ps] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Without question, the greatest and most humbling honor of my scientific career was to learn that I was nominated for the American Thoracic Society Recognition Award for Scientific Accomplishments. On the occasion of this award, as I look back on the progress made in the last 15 years, I am pleased by the scientific insights; however, I am also saddened that we still have no internationally recognized efficacious therapy. This perspective will highlight the areas my laboratory has addressed regarding the pathogenesis of idiopathic pulmonary fibrosis in hopes of identifying new therapeutic targets.
Collapse
Affiliation(s)
- Bethany B Moore
- Departments of Internal Medicine and Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan
| |
Collapse
|
37
|
Kalderén C, Stadler C, Forsgren M, Kvastad L, Johansson E, Sydow-Bäckman M, Svensson Gelius S. CCL2 mediates anti-fibrotic effects in human fibroblasts independently of CCR2. Int Immunopharmacol 2014; 20:66-73. [PMID: 24583146 DOI: 10.1016/j.intimp.2014.02.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Revised: 02/02/2014] [Accepted: 02/12/2014] [Indexed: 02/06/2023]
Abstract
CCL2 is known for its major role as a chemoattractant of monocytes for immunological surveillance and to site of inflammation. CCL2 acts mainly through the G-protein-coupled receptor CCR2 but has also been described to mediate its effects independently of this receptor in vitro and in vivo. Emerging pieces of evidence indicate that the CCL2/CCR2 axis is involved in fibrotic diseases, such as increased plasma levels of CCL2 and the presence of CCL2-hyperresponsive fibroblasts explanted from patients with systemic sclerosis and idiopathic pulmonary fibrosis. One of the profibrotic key mediators is the myofibroblast characterized by overexpression of α-smooth muscle actin and collagen I. However, the correlation between the CCL2/CCR2 axis and the activation of fibroblasts is not yet fully understood. We have screened human fibroblasts of various origins, human pulmonary fibroblasts (HPF), human fetal lung fibroblasts (HFL-1) and primary preadipocytes (SPF-1) in regard to CCL2 stimulated fibrotic responses. Surprisingly we found that CCL2 mediates anti-fibrotic effects independently of CCR2 in human fibroblasts of different origins.
Collapse
Affiliation(s)
- Christina Kalderén
- Swedish Orphan Biovitrum AB, Stockholm, Sweden; Division of Translational Medicine and Chemical Biology, Science for Life Laboratory, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden.
| | - Charlotte Stadler
- Science for Life Laboratory, Royal Institute of Technology (KTH), Stockholm, Sweden
| | | | - Linda Kvastad
- Science for Life Laboratory, Royal Institute of Technology (KTH), Stockholm, Sweden
| | - Elin Johansson
- Science for Life Laboratory, Royal Institute of Technology (KTH), Stockholm, Sweden
| | | | | |
Collapse
|
38
|
Kashpur O, LaPointe D, Ambady S, Ryder EF, Dominko T. FGF2-induced effects on transcriptome associated with regeneration competence in adult human fibroblasts. BMC Genomics 2013; 14:656. [PMID: 24066673 PMCID: PMC3849719 DOI: 10.1186/1471-2164-14-656] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Accepted: 09/24/2013] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Adult human fibroblasts grown in low oxygen and with FGF2 supplementation have the capacity to tip the healing outcome of skeletal muscle injury - by favoring regeneration response in vivo over scar formation. Here, we compare the transcriptomes of control adult human dermal fibroblasts and induced regeneration-competent (iRC) fibroblasts to identify transcriptional changes that may be related to their regeneration competence. RESULTS We identified a unique gene-expression profile that characterizes FGF2-induced iRC fibroblast phenotype. Significantly differentially expressed genes due to FGF2 treatment were identified and analyzed to determine overrepresented Gene Ontology terms. Genes belonging to extracellular matrix components, adhesion molecules, matrix remodelling, cytoskeleton, and cytokines were determined to be affected by FGF2 treatment. CONCLUSIONS Transcriptome analysis comparing control adult human fibroblasts with FGF2-treated fibroblasts identified functional groups of genes that reflect transcriptional changes potentially contributing to their regeneration competence. This comparative transcriptome analysis should contribute new insights into genes that characterize cells with greater regenerative potential.
Collapse
Affiliation(s)
- Olga Kashpur
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609, USA.
| | | | | | | | | |
Collapse
|
39
|
Amniotic fluid stem cells inhibit the progression of bleomycin-induced pulmonary fibrosis via CCL2 modulation in bronchoalveolar lavage. PLoS One 2013; 8:e71679. [PMID: 23967234 PMCID: PMC3742516 DOI: 10.1371/journal.pone.0071679] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Accepted: 07/02/2013] [Indexed: 02/06/2023] Open
Abstract
The potential for amniotic fluid stem cell (AFSC) treatment to inhibit the progression of fibrotic lung injury has not been described. We have previously demonstrated that AFSC can attenuate both acute and chronic-fibrotic kidney injury through modification of the cytokine environment. Fibrotic lung injury, such as in Idiopathic Pulmonary Fibrosis (IPF), is mediated through pro-fibrotic and pro-inflammatory cytokine activity. Thus, we hypothesized that AFSC treatment might inhibit the progression of bleomycin-induced pulmonary fibrosis through cytokine modulation. In particular, we aimed to investigate the effect of AFSC treatment on the modulation of the pro-fibrotic cytokine CCL2, which is increased in human IPF patients and is correlated with poor prognoses, advanced disease states and worse fibrotic outcomes. The impacts of intravenous murine AFSC given at acute (day 0) or chronic (day 14) intervention time-points after bleomycin injury were analyzed at either day 3 or day 28 post-injury. Murine AFSC treatment at either day 0 or day 14 post-bleomycin injury significantly inhibited collagen deposition and preserved pulmonary function. CCL2 expression increased in bleomycin-injured bronchoalveolar lavage (BAL), but significantly decreased following AFSC treatment at either day 0 or at day 14. AFSC were observed to localize within fibrotic lesions in the lung, showing preferential targeting of AFSC to the area of fibrosis. We also observed that MMP-2 was transiently increased in BAL following AFSC treatment. Increased MMP-2 activity was further associated with cleavage of CCL2, rendering it a putative antagonist for CCL2/CCR2 signaling, which we surmise is a potential mechanism for CCL2 reduction in BAL following AFSC treatment. Based on this data, we concluded that AFSC have the potential to inhibit the development or progression of fibrosis in a bleomycin injury model during both acute and chronic remodeling events.
Collapse
|
40
|
Dolan JM, Meng H, Sim FJ, Kolega J. Differential gene expression by endothelial cells under positive and negative streamwise gradients of high wall shear stress. Am J Physiol Cell Physiol 2013; 305:C854-66. [PMID: 23885059 DOI: 10.1152/ajpcell.00315.2012] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Flow impingement at arterial bifurcations causes high frictional force [or wall shear stress (WSS)], and flow acceleration and deceleration in the branches create positive and negative streamwise gradients in WSS (WSSG), respectively. Intracranial aneurysms tend to form in regions with high WSS and positive WSSG. However, little is known about the responses of endothelial cells (ECs) to either positive or negative WSSG under high WSS conditions. We used cDNA microarrays to profile gene expression in cultured ECs exposed to positive or negative WSSG for 24 h in a flow chamber where WSS varied between 3.5 and 28.4 Pa. Gene ontology and biological pathway analysis indicated that positive WSSG favored proliferation, apoptosis, and extracellular matrix processing while decreasing expression of proinflammatory genes. To determine if similar responses occur in vivo, we examined EC proliferation and expression of the matrix metalloproteinase ADAMTS1 under high WSS and WSSG created at the basilar terminus of rabbits after bilateral carotid ligation. Precise hemodynamic conditions were determined by computational fluid dynamic simulations from three-dimensional angiography and mapped on immunofluorescence staining for the proliferation marker Ki-67 and ADAMTS1. Both proliferation and ADAMTS1 were significantly higher in ECs under positive WSSG than in adjacent regions of negative WSSG. Our results indicate that WSSG elicits distinct EC gene expression profiles and particular biological pathways including increased cell proliferation and matrix processing. Such EC responses may be important in understanding the mechanisms of intracranial aneurysm initiation at regions of high WSS and positive WSSG.
Collapse
Affiliation(s)
- Jennifer M Dolan
- Toshiba Stroke and Vascular Research Center, University at Buffalo, State University of New York, Buffalo, New York
| | | | | | | |
Collapse
|
41
|
The anti-cancer property of proteins extracted from Gynura procumbens (Lour.) Merr. PLoS One 2013; 8:e68524. [PMID: 23874655 PMCID: PMC3708952 DOI: 10.1371/journal.pone.0068524] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Accepted: 05/29/2013] [Indexed: 12/22/2022] Open
Abstract
Gynura procumbens (Lour.) Merr. belongs to the Asteraceae Family. The plant is a well-known traditional herb in South East Asia and it is widely used to treat inflammation, kidney discomfort, high cholesterol level, diabetic, cancer and high blood pressure. Our earlier study showed the presence of valuable plant defense proteins, such as peroxidase, thaumatin-like proteins and miraculin in the leaf of G. procumbens. However, the effects of these defense proteins on cancers have never been determined previously. In the present study, we investigated the bioactivity of gel filtration fractionated proteins of G. procumbens leaf extract. The active protein fraction, SN-F11/12, was found to inhibit the growth of a breast cancer cell line, MDA-MB-231, at an EC50 value of 3.8 µg/mL. The mRNA expressions of proliferation markers, Ki67 and PCNA, were reduced significantly in the MDA-MB-23 cells treated with SN-F11/12. The expression of invasion marker, CCL2, was also found reduced in the treated MDA-MB-231 cells. All these findings highlight the anti-cancer property of SN-F11/12, therefore, the proteins in this fraction can be a potential chemotherapeutic agent for breast cancer treatment.
Collapse
|
42
|
Amini AA, Nair LS. Evaluation of the bioactivity of recombinant human lactoferrins toward murine osteoblast-like cells for bone tissue engineering. Tissue Eng Part A 2013; 19:1047-55. [PMID: 23270517 DOI: 10.1089/ten.tea.2012.0227] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Lactoferrin (LF), which belongs to the iron-binding transferrin family, is an important regulator of the levels of free iron in the body fluids. LF has raised significant interest as a bioactive protein due to its wide array of physiological effects on many different cell types, including osteoblasts and osteoclasts. The glycoprotein's degree of iron saturation has a pivotal influence on its physical structure. The objective of this study is to investigate the biological effects of apo (low iron saturation), pis (partially iron saturated), and holo (high iron saturation) recombinant human LF (rhLF) on MC3T3-E1 cells to identify the suitable candidate for bone tissue engineering application. Our studies demonstrated a dose-dependent mitogenic response of MC3T3 to rhLF treatment irrespective of the iron concentration. Furthermore, rhLF induced the cells to produce transcription factors, chemokines, and cytokines as determined by β-catenin activation, phosphorylation of Akt, vascular endothelial growth factor, and interleukin (IL-6) expression. The iron saturation of rhLF did not have any significant effect on these biological activities of MC3T3 cells. In addition, the overall pattern of gene regulation in MC3T3-E1 cells upon rhLF treatment was followed by a global microarray analysis. Among the 45,200 genes tested, only 251 genes were found to be regulated by rhLFs of different iron concentrations. Of these, the transferrin receptor (Tfrc) was the only gene differentially regulated by the iron saturated and iron depleted (apo) rhLFs. In conclusion, the study demonstrated that rhLF is a bioactive protein and that the iron saturation of rhLF may not play a significant role in modulating osteoblast functions.
Collapse
Affiliation(s)
- Ashley A Amini
- School of Dental Medicine, University of Connecticut Health Center Farmington, Connecticut, USA
| | | |
Collapse
|
43
|
Patterson KC, Hogarth K, Husain AN, Sperling AI, Niewold TB. The clinical and immunologic features of pulmonary fibrosis in sarcoidosis. Transl Res 2012; 160:321-31. [PMID: 22683422 PMCID: PMC3910531 DOI: 10.1016/j.trsl.2012.03.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Revised: 03/14/2012] [Accepted: 03/16/2012] [Indexed: 10/28/2022]
Abstract
Sarcoidosis is a multisystem, granulomatous disease that most often affects the lungs. The clinical course is highly variable; many patients undergo spontaneous remission, but up to a third of patients progresses to a chronic disease course. The development of pulmonary fibrosis (PF) in a subset of patients with chronic disease has a negative impact on morbidity and mortality. While sarcoidosis-associated PF can be progressive, it is often referred to as "burnt out" disease, a designation reflecting inactive granulomatous inflammation. The immune mechanisms of sarcoidosis-associated PF are not well understood. It is not clear if fibrotic processes are active from the onset of sarcoidosis in predisposed individuals, or whether a profibrotic state develops as a response to ongoing inflammation. Transforming growth factor β (TGF-β) is an important profibrotic cytokine, and in sarcoidosis, distinct genotypes of TGF-β have been identified in those with PF. The overall cytokine profile in sarcoidosis-associated PF has not been well characterized, although a transition from a T helper 1 to a T helper 2 signature has been proposed. Macrophages have important regulatory interactions with fibroblasts, and the role of alveolar macrophages in sarcoidosis-associated PF is a compelling target for further study. Elucidating the natural history of sarcoidosis-associated PF will inform our understanding of the fundamental derangements, and will enhance prognostication and the development of therapeutic strategies.
Collapse
Affiliation(s)
- Karen C Patterson
- Section of Pulmonary and Critical Care, University of Chicago, Chicago, Ill.
| | | | | | | | | |
Collapse
|
44
|
Todd NW, Luzina IG, Atamas SP. Molecular and cellular mechanisms of pulmonary fibrosis. FIBROGENESIS & TISSUE REPAIR 2012; 5:11. [PMID: 22824096 PMCID: PMC3443459 DOI: 10.1186/1755-1536-5-11] [Citation(s) in RCA: 300] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Accepted: 06/28/2012] [Indexed: 12/22/2022]
Abstract
Pulmonary fibrosis is a chronic lung disease characterized by excessive accumulation of extracellular matrix (ECM) and remodeling of the lung architecture. Idiopathic pulmonary fibrosis is considered the most common and severe form of the disease, with a median survival of approximately three years and no proven effective therapy. Despite the fact that effective treatments are absent and the precise mechanisms that drive fibrosis in most patients remain incompletely understood, an extensive body of scientific literature regarding pulmonary fibrosis has accumulated over the past 35 years. In this review, we discuss three broad areas which have been explored that may be responsible for the combination of altered lung fibroblasts, loss of alveolar epithelial cells, and excessive accumulation of ECM: inflammation and immune mechanisms, oxidative stress and oxidative signaling, and procoagulant mechanisms. We discuss each of these processes separately to facilitate clarity, but certainly significant interplay will occur amongst these pathways in patients with this disease.
Collapse
Affiliation(s)
- Nevins W Todd
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA.
| | | | | |
Collapse
|
45
|
Motaln H, Gruden K, Hren M, Schichor C, Primon M, Rotter A, Lah TT. Human Mesenchymal Stem Cells Exploit the Immune Response Mediating Chemokines to Impact the Phenotype of Glioblastoma. Cell Transplant 2012; 21:1529-45. [DOI: 10.3727/096368912x640547] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
In contrast to the application of human mesenchymal stem cells (hMSCs) in regenerative medicine, only a limited number of studies are addressing their use in anticancer therapy. As the latter may represent a new hope to improve the survival of patients with glioblastoma multiformae (GBM), the most common and malignant form of the brain tumors, we aimed to investigate the interactions of hMSCs and GBM cells under in vitro conditions. Four hMSC clones and three different GBM cell lines were used to study their mutual paracrine interactions in cocultures compared to their monocultures, where cells were grown under the same experimental conditions. The effects on cell growth, proliferation, and invasion in Matrigel were quantified. Further, bioinformatics tools were used to relate these results to the data obtained from cytokine macroarrays and cDNA microarrays that revealed proteins and genes significantly involved in cellular cross-talk. We showed that hMSCs are responsible for the impairment of GBM cell invasion and growth, possibly via induction of their senescence. On the other hand, GBM cells inversely affected some of these characteristics in hMSCs. We found CCL2/MCP-1 to be the most significantly regulated chemokine during hMSC and U87-MG paracrine signaling in addition to several chemokines that may account for changed cocultured cells' phenotype by affecting genes associated with proliferation ( Pmepa-1, NF-κ B, IL-6, IL-1b), invasion ( EphB2, Sod2, Pcdh18, Col7A1, Gja1, Mmp1/2), and senescence ( Kiaa1199, SerpinB2). As we functionally confirmed the role of CCL2/MCP-1 in GBM cell invasion we thereby propose a novel mechanism of CCL2/MCP-1 antimigratory effects on GBM cells, distinct from its immunomodulatory role. Significant alterations of GBM phenotype in the presence of hMSCs should encourage the studies on the naive hMSC use for GBM treatment.
Collapse
Affiliation(s)
- Helena Motaln
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Kristina Gruden
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Matjaž Hren
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
- Bioinstrumentation Laboratory, Centre of Excellence for Biosensors, Instrumentation and Process Control, Solkan, Slovenia
| | - Christian Schichor
- Tumorbiological Laboratory, Neurosurgical Department, Ludwig-Maximilians-University, Munich, Germany
| | - Monika Primon
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Ana Rotter
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Tamara T. Lah
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Ljubljana, Slovenia
| |
Collapse
|
46
|
Khoo BY, Miswan N, Balaram P, Nadarajan K, Elstner E. Modification of MCF-10A cells with pioglitazone and serum-rich growth medium increases soluble factors in the conditioned medium, likely reducing BT-474 cell growth. Int J Mol Sci 2012; 13:5607-5627. [PMID: 22754319 PMCID: PMC3382796 DOI: 10.3390/ijms13055607] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Revised: 04/25/2012] [Accepted: 04/28/2012] [Indexed: 01/27/2023] Open
Abstract
In the present study, we aimed to preincubate MCF-10A cells with pioglitazone and/or serum-rich growth media and to determine adhesive and non-adhesive interactions of the preincubated MCF-10A cells with BT-474 cells. For this purpose, the MCF-10A cells were preincubated with pioglitazone and/or serum-rich growth media, at appropriate concentrations, for 1 week. The MCF-10A cells preincubated with pioglitazone and/or serum-rich growth media were then co-cultured adhesively and non-adhesively with BT-474 cells for another week. Co-culture of BT-474 cells with the preincubated MCF-10A cells, both adhesively and non-adhesively, reduced the growth of the cancer cells. The inhibitory effect of the preincubated MCF-10A cells against the growth of BT-474 cells was likely produced by increasing levels of soluble factors secreted by the preincubated MCF-10A cells into the conditioned medium, as immunoassayed by ELISA. However, only an elevated level of a soluble factor distinguished the conditioned medium collected from the MCF-10A cells preincubated with pioglitazone and serum-rich growth medium than that with pioglitazone alone. This finding was further confirmed by the induction of the soluble factor transcript expression in the preincubated MCF-10A cells, as determined using real-time PCR, for the above phenomenon. Furthermore, modification of the MCF-10A cells through preincubation did not change the morphology of the cells, indicating that the preincubated cells may potentially be injected into mammary fat pads to reduce cancer growth in patients or to be used for others cell-mediated therapy.
Collapse
Affiliation(s)
- Boon Yin Khoo
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, 11800 USM, Penang, Malaysia; E-Mails: (N.M.); (P.B.); (K.N.)
- Division of Oncology and Haematology, Charité Campus Mitte, Humboldt University of Berlin, 10117 Berlin, Germany; E-Mail:
- Author to whom correspondence should be addressed; E-Mails: or ; Tel.: +604-653-481-9; Fax: +604-653-480-3
| | - Noorizan Miswan
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, 11800 USM, Penang, Malaysia; E-Mails: (N.M.); (P.B.); (K.N.)
| | - Prabha Balaram
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, 11800 USM, Penang, Malaysia; E-Mails: (N.M.); (P.B.); (K.N.)
| | - Kalpanah Nadarajan
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, 11800 USM, Penang, Malaysia; E-Mails: (N.M.); (P.B.); (K.N.)
| | - Elena Elstner
- Division of Oncology and Haematology, Charité Campus Mitte, Humboldt University of Berlin, 10117 Berlin, Germany; E-Mail:
| |
Collapse
|
47
|
Hasegawa Y, Takahashi N, Forrest ARR, Shin JW, Kinoshita Y, Suzuki H, Hayashizaki Y. CC chemokine ligand 2 and leukemia inhibitory factor cooperatively promote pluripotency in mouse induced pluripotent cells. Stem Cells 2011; 29:1196-205. [PMID: 21681859 DOI: 10.1002/stem.673] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The pluripotency of mouse embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) can be maintained by feeder cells, which secrete leukemia inhibitory factor (LIF). We found that feeder cells provide a relatively low concentration (25 unit/ml) of LIF, which is insufficient to maintain the ESCs/iPSCs pluripotency in feeder free conditions. To identify additional factors involved in the maintenance of pluripotency, we carried out a global transcript expression profiling of mouse iPSCs cultured on feeder cells and in feeder-free (LIF-treated) conditions. This identified 17 significantly differentially expressed genes (adjusted p value <0.05) including seven chemokines overexpressed in iPSCs grown on feeder cells. Ectopic expression of these chemokines in iPSCs revealed that CC chemokine ligand 2 (Ccl2) induced the key transcription factor genes for pluripotency, Klf4, Nanog, Sox2, and Tbx3. Furthermore, addition of recombinant Ccl2 protein drastically increased the number of Nanog-green fluorescent protein-positive iPSCs grown in low-LIF feeder free conditions. We further revealed that pluripotency promotion by Ccl2 is mediated by activating the Stat3-pathway followed by Klf4 upregulation. We demonstrated that Ccl2-mediated increased pluripotency is independent of phosphoinositide 3-kinase and mitogen-activated protein kinase pathways and that Tbx3 may be upregulated by Klf4. Overall, Ccl2 cooperatively activates the Stat3-pathway with LIF in feeder-free conditions to maintain pluripotency for ESCs/iPSCs.
Collapse
Affiliation(s)
- Yuki Hasegawa
- RIKEN Omics Science Center, RIKEN Yokohama Institute, Tsurumi-ku, Yokohama, Kanagawa, Japan
| | | | | | | | | | | | | |
Collapse
|
48
|
Libreros S, Garcia-Areas R, Shibata Y, Carrio R, Torroella-Kouri M, Iragavarapu-Charyulu V. Induction of proinflammatory mediators by CHI3L1 is reduced by chitin treatment: decreased tumor metastasis in a breast cancer model. Int J Cancer 2011; 131:377-86. [PMID: 21866546 DOI: 10.1002/ijc.26379] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Accepted: 08/08/2011] [Indexed: 12/19/2022]
Abstract
Disseminated metastasis accounts for over 90% of breast cancer deaths. Recently, elevated serum levels of a glycoprotein known as chitinase-3 like-protein-1 (CHI3L1) has been correlated with poor prognosis and shorter survival of patients with metastatic breast cancer. In this study, we show that there are increased levels of CHI3L1 in plasma of tumor-bearing mice and that both tumor cells and immune cells express and secrete CHI3L1. However, the biological and physiological functions of CHI3L1 are still unclear. We demonstrate that while CHI3L1 has an inhibitory role in the expression of interferon-gamma (IFN-γ), CHI3L1 up-regulates pro-inflammatory mediators, C-chemokine ligand 2 (CCL2), chemokine CX motif ligand 2 (CXCL2) and matrix metalloproteinase-9 (MMP-9) all of which contribute to tumor growth and metastasis. We found that in vitro inhibition of CHI3L1 by siRNA suppressed the production of CCL2, CXCL2 and MMP-9 by macrophages. In vivo treatment of mammary tumor-bearing mice with chitin (β-(1-4)-poly-N-acetyl D-glucosamine), a TH(1) adjuvant and a ligand for CHI3L1, promoted immune effector functions with increased production of IFN-γ and decreased CCL2, CXCL2 and MMP-9 expression. In vivo administration of chitin to mammary tumor-bearing mice significantly decreased lung metastasis. These studies show that CHI3L1 plays a role in tumor progression and that chitin can inhibit the pleiotropic effects of CHI3L1 giving support to the idea that CHI3L1 is a useful therapeutic target for treatment of breast cancer.
Collapse
Affiliation(s)
- Stephania Libreros
- Department of Biomedical Sciences, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL 33431-0991, USA
| | | | | | | | | | | |
Collapse
|
49
|
Agarwal SK, Wu M, Livingston CK, Parks DH, Mayes MD, Arnett FC, Tan FK. Toll-like receptor 3 upregulation by type I interferon in healthy and scleroderma dermal fibroblasts. Arthritis Res Ther 2011; 13:R3. [PMID: 21223583 PMCID: PMC3241348 DOI: 10.1186/ar3221] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2010] [Revised: 12/08/2010] [Accepted: 01/11/2011] [Indexed: 01/26/2023] Open
Abstract
Introduction Increased levels of genes in the type I interferon (IFN) pathway have been observed in patients with systemic sclerosis (SSc), or scleroderma. How type I IFN regulates the dermal fibroblast and its participation in the development of dermal fibrosis is not known. We hypothesized that one mechanism by which type I IFN may contribute to dermal fibrosis is through upregulation of specific Toll-like receptors (TLRs) on dermal fibroblasts. Therefore, we investigated the regulation of TLR expression on dermal fibroblasts by IFN. Methods The expression of TLRs was assessed in cultured dermal fibroblasts from control and SSc patients stimulated with IFNα2. The ability of IFNα2 to regulate TLR-induced interleukin (IL)-6 and CC chemokine ligand 2 production was also assessed. Immunohistochemical analyses were performed to determine whether TLR3 was expressed in skin biopsies in the bleomycin-induced skin fibrosis model and in patients with SSc. Results IFNα2 increased TLR3 expression on human dermal fibroblasts, which resulted in enhanced TLR3-induced IL-6 production. SSc fibroblasts have an augmented TLR3 response to IFNα2 relative to control fibroblasts. Pretreatment of fibroblasts with transforming growth factor (TGF)-β increased TLR3 induction by IFNα2, but coincubation of TGF-β did not alter TLR3 induction by IFN. Furthermore, IFNα2 inhibits but does not completely block the induction of connective tissue growth factor and collagen expression by TGF-βin fibroblasts. TLR3 expression was observed in dermal fibroblasts and inflammatory cells from skin biopsies from patients with SSc as well as in the bleomycin-induced skin fibrosis model. Conclusions Type I IFNs can increase the inflammatory potential of dermal fibroblasts through the upregulation of TLR3.
Collapse
Affiliation(s)
- Sandeep K Agarwal
- Division of Rheumatology and Clinical Immunogenetics, Department of Internal Medicine, The University of Texas Health Science Center at Houston, 6431 Fannin Avenue, Houston, TX 77030, USA.
| | | | | | | | | | | | | |
Collapse
|
50
|
Booth AJ, Bishop DK. TGF-beta, IL-6, IL-17 and CTGF direct multiple pathologies of chronic cardiac allograft rejection. Immunotherapy 2010; 2:511-20. [PMID: 20636005 DOI: 10.2217/imt.10.33] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Cardiac transplantation is an effective treatment for heart failure refractive to therapy. Although immunosuppressive therapeutics have increased first year survival rates, chronic rejection remains a significant barrier to long-term graft survival. Chronic rejection manifests as patchy interstitial fibrosis, vascular occlusion and progressive loss of graft function. Recent evidence from experimental and patient studies suggests that the development of cardiomyocyte hypertrophy is another hallmark of chronic cardiac allograft rejection. This pathologic hypertrophy is tightly linked to the immune cytokine IL-6, which promotes facets of chronic rejection in concert with TGF-beta and IL-17. These factors potentiate downstream mediators, such as CTGF, which promote the fibrosis associated with the disease. In this article, we summarize contemporary findings that have revealed several elements involved in the induction and progression of chronic rejection of cardiac allografts. Further efforts to elucidate the interplay between these factors may direct the development of targeted therapies for this disease.
Collapse
Affiliation(s)
- Adam J Booth
- Division of Pulmonary & Critical Care, Department of Internal Medicine, University of Michigan Medical Center, 6240 MSRBIII/0624, 1150 W Medical Center Drive, Ann Arbor, MI 48109, USA.
| | | |
Collapse
|