1
|
Dorscheid D, Gauvreau GM, Georas SN, Hiemstra PS, Varricchi G, Lambrecht BN, Marone G. Airway epithelial cells as drivers of severe asthma pathogenesis. Mucosal Immunol 2025:S1933-0219(25)00029-7. [PMID: 40154790 DOI: 10.1016/j.mucimm.2025.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 01/31/2025] [Accepted: 03/19/2025] [Indexed: 04/01/2025]
Abstract
Our understanding of the airway epithelium's role in driving asthma pathogenesis has evolved over time. From being regarded primarily as a physical barrier that could be damaged via inflammation, the epithelium is now known to actively contribute to asthma development through interactions with the immune system. The airway epithelium contains multiple cell types with specialized functions spanning barrier action, mucociliary clearance, immune cell recruitment, and maintenance of tissue homeostasis. Environmental insults may cause direct or indirect injury to the epithelium leading to impaired barrier function, epithelial remodelling, and increased release of inflammatory mediators. In severe asthma, the epithelial barrier repair process is inhibited and the response to insults is exaggerated, driving downstream inflammation. Genetic and epigenetic mechanisms also maintain dysregulation of the epithelial barrier, adding to disease chronicity. Here, we review the role of the airway epithelium in severe asthma and how targeting the epithelium can contribute to asthma treatment.
Collapse
Affiliation(s)
- Del Dorscheid
- Centre for Heart Lung Innovation, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Gail M Gauvreau
- Division of Respirology, Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Steve N Georas
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Pieter S Hiemstra
- Department of Pulmonology, Leiden University Medical Center, Leiden, the Netherlands
| | - Gilda Varricchi
- Department of Translational Medical Sciences (DiSMeT) and Center for Basic and Clinical Immunology Research (CISI), School of Medicine, University of Naples Federico II, Naples, Italy; Institute of Experimental Endocrinology and Oncology (IEOS), National Research Council, Naples, Italy
| | - Bart N Lambrecht
- Center for Inflammation Research, Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium.
| | - Gianni Marone
- Department of Translational Medical Sciences (DiSMeT) and Center for Basic and Clinical Immunology Research (CISI), School of Medicine, University of Naples Federico II, Naples, Italy; Institute of Experimental Endocrinology and Oncology (IEOS), National Research Council, Naples, Italy.
| |
Collapse
|
2
|
Frey A, Lunding LP, Wegmann M. The Dual Role of the Airway Epithelium in Asthma: Active Barrier and Regulator of Inflammation. Cells 2023; 12:2208. [PMID: 37759430 PMCID: PMC10526792 DOI: 10.3390/cells12182208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/01/2023] [Accepted: 09/03/2023] [Indexed: 09/29/2023] Open
Abstract
Chronic airway inflammation is the cornerstone on which bronchial asthma arises, and in turn, chronic inflammation arises from a complex interplay between environmental factors such as allergens and pathogens and immune cells as well as structural cells constituting the airway mucosa. Airway epithelial cells (AECs) are at the center of these processes. On the one hand, they represent the borderline separating the body from its environment in order to keep inner homeostasis. The airway epithelium forms a multi-tiered, self-cleaning barrier that involves an unstirred, discontinuous mucous layer, the dense and rigid mesh of the glycocalyx, and the cellular layer itself, consisting of multiple, densely interconnected cell types. On the other hand, the airway epithelium represents an immunologically highly active tissue once its barrier has been penetrated: AECs play a pivotal role in releasing protective immunoglobulin A. They express a broad spectrum of pattern recognition receptors, enabling them to react to environmental stressors that overcome the mucosal barrier. By releasing alarmins-proinflammatory and regulatory cytokines-AECs play an active role in the formation, strategic orientation, and control of the subsequent defense reaction. Consequently, the airway epithelium is of vital importance to chronic inflammatory diseases, such as asthma.
Collapse
Affiliation(s)
- Andreas Frey
- Division of Mucosal Immunology and Diagnostics, Research Center Borstel, 23845 Borstel, Germany;
- Airway Research Center North (ARCN), German Center for Lung Research (DZL), 22927 Großhansdorf, Germany;
| | - Lars P. Lunding
- Airway Research Center North (ARCN), German Center for Lung Research (DZL), 22927 Großhansdorf, Germany;
- Division of Lung Immunology, Research Center Borstel, 23845 Borstel, Germany
| | - Michael Wegmann
- Airway Research Center North (ARCN), German Center for Lung Research (DZL), 22927 Großhansdorf, Germany;
- Division of Lung Immunology, Research Center Borstel, 23845 Borstel, Germany
| |
Collapse
|
3
|
Liu Y, Li P, Jiang T, Li Y, Wang Y, Cheng Z. Epidermal growth factor receptor in asthma: A promising therapeutic target? Respir Med 2023; 207:107117. [PMID: 36626942 DOI: 10.1016/j.rmed.2023.107117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 01/05/2023] [Accepted: 01/06/2023] [Indexed: 01/09/2023]
Abstract
Activation of the epidermal growth factor receptor (EGFR) pathway is involved in the pathogenesis of asthma. Although decades of intensive research have focused on the role of EGFR in asthma, the specific mechanisms and pathways of EGFR signaling remain unclear. Various reports have indicated that inhibition of EGFR improves the pathological features in asthma models. However, extending these experimental findings to clinical applications is difficult. Several measures can be adopted to promote clinical application of EGFR inhibitors. This review focuses on the role of EGFR in the pathogenesis of asthma and the development of a potentially novel therapeutic target for asthma.
Collapse
Affiliation(s)
- Ye Liu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Pengfei Li
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Tianci Jiang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Yue Li
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Yu Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| | - Zhe Cheng
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
4
|
Li F, Li M, Hu L, Zhu W, Cheng D. Identification of key modules and hub genes for eosinophilic asthma by weighted gene co-expression network analysis. J Asthma 2022; 60:1038-1049. [PMID: 36165511 DOI: 10.1080/02770903.2022.2128372] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
Objective: Eosinophilic asthma (EA) is one of the most important asthma phenotypes with distinct features. However, its genetic characteristics are not fully understood. This study aimed to investigate the transcriptome features and to identify hub genes of EA.Methods: Differentially expressed genes (DEGs) analysis, weighted gene coexpression network analysis (WGCNA) and protein-protein interaction (PPI) network analysis were performed to construct gene networks and to identify hub genes. Enrichment analyses were performed to investigate the biological processes, pathways and immune status of EA. The hub genes were validated in another dataset. The diagnostic value of the identified hub genes was assessed by receiver operator characteristic curve (ROC) analysis.Results: Compared with NEA, EA had a different gene expression pattern, in which 81 genes were differentially expressed. WGCNA identified two gene modules significantly associated with EA. Intersections of the DEGs and the genes in the modules associated with EA were mainly enriched in chemotaxis and signal transduction by GO and KEGG enrichment analyses. Single-sample gene set enrichment analysis indicated that EA had different immune infiltration and functions compared with NEA. Seven hub genes of EA were identified and validated, including CCL17, CCL26, CD1C, CXCL11, CXCL10, CCL22 and CCR7, all of which have diagnostic value for distinguishing EA from NEA (All AUC >0.7) .Conclusions: This study demonstrated the distinct gene expression patterns, biological processes and immune status of EA. Hub genes of EA were identified and validated. Our study could provide a framework of co-expression gene modules and potential therapeutic targets for EA.
Collapse
Affiliation(s)
- Fanmin Li
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China.,General Practice Department, The People's Hospital of Leshan, Leshan, China
| | - Min Li
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Lijia Hu
- Department of Ultrasound Imaging, The People's Hospital of Leshan, Leshan, China
| | - Wenye Zhu
- Department of Pharmacy, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Deyun Cheng
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
5
|
Sonntag T, Rapp M, Didier P, Lebeau L, Pons F, Casset A. Mucus-producing epithelial models for investigating the activity of gene delivery systems in the lung. Int J Pharm 2021; 614:121423. [PMID: 34958896 DOI: 10.1016/j.ijpharm.2021.121423] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 12/09/2021] [Accepted: 12/21/2021] [Indexed: 11/18/2022]
Abstract
Inhaled transfection particles have to penetrate the mucus layer lining the airways to successfully deliver their therapeutic nucleic acid payload to target cells in the underlying epithelium. However, the in vitro models used for evaluating gene carrier efficiency often disregard this viscous defensive barrier. In this study, the two mucus-secreting cell lines NCI-H292 and Calu-3 were selected to develop a series of epithelial models displaying gradual mucus production. In NCI-H292 models, a gradual increase in the MUC5AC mucin was obtained after cell exposure to inducers. In Calu-3 models, MUC5AC production increased as a function of culture duration (3, 7, 14 days) at the air-liquid interface (ALI). Six DOPC-derived cationic lipids were designed and their pDNA delivery activity was evaluated to validate these cellular models. The strongest impairment of the lipid delivery activity was observed in the Calu-3 14-d ALI model. The MUC5AC production in this model was the greatest and the mucus layer was 20 µm thick. The mucus exhibited a solid viscoelastic behaviour, and represented a major hindrance to lipoplex diffusion. The Calu-3 14-d ALI model will be highly useful for accurate evaluation of gene carriers intended for airway administration and characterization of their interactions with the mucus.
Collapse
Affiliation(s)
- Thomas Sonntag
- Laboratoire de Conception et Application de Molécules Bioactives, UMR 7199, CNRS-Université de Strasbourg, Faculté de Pharmacie, Illkirch, France
| | - Mickael Rapp
- Laboratoire de Conception et Application de Molécules Bioactives, UMR 7199, CNRS-Université de Strasbourg, Faculté de Pharmacie, Illkirch, France
| | - Pascal Didier
- Laboratoire de Bioimagerie et Pathologies, UMR 7021, CNRS-Université de Strasbourg, Faculté de Pharmacie, Illkirch, France
| | - Luc Lebeau
- Laboratoire de Conception et Application de Molécules Bioactives, UMR 7199, CNRS-Université de Strasbourg, Faculté de Pharmacie, Illkirch, France
| | - Françoise Pons
- Laboratoire de Conception et Application de Molécules Bioactives, UMR 7199, CNRS-Université de Strasbourg, Faculté de Pharmacie, Illkirch, France
| | - Anne Casset
- Laboratoire de Conception et Application de Molécules Bioactives, UMR 7199, CNRS-Université de Strasbourg, Faculté de Pharmacie, Illkirch, France.
| |
Collapse
|
6
|
Min SY, Park CH, Yu HW, Park YJ. Anti-Inflammatory and Anti-Allergic Effects of Saponarin and Its Impact on Signaling Pathways of RAW 264.7, RBL-2H3, and HaCaT Cells. Int J Mol Sci 2021; 22:ijms22168431. [PMID: 34445132 PMCID: PMC8395081 DOI: 10.3390/ijms22168431] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/02/2021] [Accepted: 08/03/2021] [Indexed: 12/27/2022] Open
Abstract
Saponarin{5-hydroxy-2-(4-hydroxyphenyl)-6-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]-7-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxychromen-4-one}, a flavone found in young green barley leaves, is known to possess antioxidant, antidiabetic, and hepatoprotective effects. In the present study, the anti-inflammatory, anti-allergic, and skin-protective effects of saponarin were investigated to evaluate its usefulness as a functional ingredient in cosmetics. In lipopolysaccharide-induced RAW264.7 (murine macrophage) cells, saponarin (80 μM) significantly inhibited cytokine expression, including tumor necrosis factor (TNF)-α, interleukin (IL)-1β, inducible nitric oxide synthase, and cyclooxygenase (COX)-2. Saponarin (80 μM) also inhibited the phosphorylation of extracellular signal-regulated kinase (ERK) and p38 involved in the mitogen-activated protein kinase signaling pathway in RAW264.7 cells. Saponarin (40 μM) significantly inhibited β-hexosaminidase degranulation as well as the phosphorylation of signaling effectors (Syk, phospholipase Cγ1, ERK, JNK, and p38) and the expression of inflammatory mediators (tumor necrosis factor [TNF]-α, IL-4, IL-5, IL-6, IL-13, COX-2, and FcεRIα/γ) in DNP-IgE- and DNP-BSA-stimulated RBL-2H3 (rat basophilic leukemia) cells. In addition, saponarin (100 μM) significantly inhibited the expression of macrophage-derived chemokine, thymus and activation-regulated chemokine, IL-33, thymic stromal lymphopoietin, and the phosphorylation of signaling molecules (ERK, p38 and signal transducer and activator of transcription 1 [STAT1]) in TNF-α- and interferon (IFN)-γ-stimulated HaCaT (human immortalized keratinocyte) cells. Saponarin (100 μM) also significantly induced the expression of hyaluronan synthase-3, aquaporin 3, and cathelicidin antimicrobial peptide (LL-37) in HaCaT cells, which play an important role as skin barriers. Saponarin remarkably inhibited the essential factors involved in the inflammatory and allergic responses of RAW264.7, RBL-2H3, and HaCaT cells, and induced the expression of factors that function as physical and chemical skin barriers in HaCaT cells. Therefore, saponarin could potentially be used to prevent and relieve immune-related skin diseases, including atopic dermatitis.
Collapse
|
7
|
O'Sullivan MJ, Jang JH, Panariti A, Bedrat A, Ijpma G, Lemos B, Park JA, Lauzon AM, Martin JG. Airway Epithelial Cells Drive Airway Smooth Muscle Cell Phenotype Switching to the Proliferative and Pro-inflammatory Phenotype. Front Physiol 2021; 12:687654. [PMID: 34295265 PMCID: PMC8290262 DOI: 10.3389/fphys.2021.687654] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 05/03/2021] [Indexed: 12/13/2022] Open
Abstract
The increased mass of airway smooth muscle (ASM) in the airways of asthmatic patients may contribute to the pathology of this disease by increasing the capacity for airway narrowing. Evidence for the airway epithelium as a participant in ASM remodeling is accruing. To investigate mechanisms by which airway epithelial cells induce ASM cell (ASMC) proliferation, we have employed a co-culture model to explore markers of ASMC proliferative phenotype. Co-culture with epithelial cells led to incorporation of bromodeoxyuridine into ASMCs, indicating augmented proliferation and an associated increase in mRNA of the pro-proliferative co-transcription factor Elk1. Although the mitogen heparin-binding epidermal growth factor (HB-EGF) was augmented in the co-culture supernatant, the ASMC epidermal growth factor receptor (EGFR), an effector of HB-EGF induced proliferation, did not mediate epithelial-induced proliferation. The co-culture increased the expression of ASMC mRNA for the pro-inflammatory cytokines IL-6 and IL-8 as well as the pro-proliferative microRNA miR-210. The transcriptional repressor Max-binding protein (Mnt), a putative target of miR-210, was transcriptionally repressed in co-cultured ASMCs. Together, these data indicate that the airway epithelium-induced proliferative phenotype of ASMCs is not driven by EGFR signaling, but rather may be dependent on miR210 targeting of tumor suppressor Mnt.
Collapse
Affiliation(s)
- M J O'Sullivan
- Meakins-Christie Laboratories, McGill University Health Centre, Montreal, QC, Canada.,T.H. Chan School of Public Health, Harvard University, Boston, MA, United States
| | - J H Jang
- Meakins-Christie Laboratories, McGill University Health Centre, Montreal, QC, Canada
| | - A Panariti
- Meakins-Christie Laboratories, McGill University Health Centre, Montreal, QC, Canada
| | - A Bedrat
- T.H. Chan School of Public Health, Harvard University, Boston, MA, United States
| | - G Ijpma
- Meakins-Christie Laboratories, McGill University Health Centre, Montreal, QC, Canada
| | - B Lemos
- T.H. Chan School of Public Health, Harvard University, Boston, MA, United States
| | - J A Park
- T.H. Chan School of Public Health, Harvard University, Boston, MA, United States
| | - A M Lauzon
- Meakins-Christie Laboratories, McGill University Health Centre, Montreal, QC, Canada
| | - J G Martin
- Meakins-Christie Laboratories, McGill University Health Centre, Montreal, QC, Canada
| |
Collapse
|
8
|
Catherine J, Roufosse F. What does elevated TARC/CCL17 expression tell us about eosinophilic disorders? Semin Immunopathol 2021; 43:439-458. [PMID: 34009399 PMCID: PMC8132044 DOI: 10.1007/s00281-021-00857-w] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 04/14/2021] [Indexed: 12/19/2022]
Abstract
Eosinophilic disorders encompass a large spectrum of heterogeneous diseases sharing the presence of elevated numbers of eosinophils in blood and/or tissues. Among these disorders, the role of eosinophils can vary widely, ranging from a modest participation in the disease process to the predominant perpetrator of tissue damage. In many cases, eosinophilic expansion is polyclonal, driven by enhanced production of interleukin-5, mainly by type 2 helper cells (Th2 cells) with a possible contribution of type 2 innate lymphoid cells (ILC2s). Among the key steps implicated in the establishment of type 2 immune responses, leukocyte recruitment toward inflamed tissues is particularly relevant. Herein, the contribution of the chemo-attractant molecule thymus and activation-regulated chemokine (TARC/CCL17) to type 2 immunity will be reviewed. The clinical relevance of this chemokine and its target, C-C chemokine receptor 4 (CCR4), will be illustrated in the setting of various eosinophilic disorders. Special emphasis will be put on the potential diagnostic, prognostic, and therapeutic implications related to activation of the TARC/CCL17-CCR4 axis.
Collapse
Affiliation(s)
- Julien Catherine
- Department of Internal Medicine, Hôpital Erasme, 808 Route de Lennik, 1070, Brussels, Belgium. .,Institute for Medical Immunology, Université Libre de Bruxelles, 6041 Gosselies, Brussels, Belgium.
| | - Florence Roufosse
- Department of Internal Medicine, Hôpital Erasme, 808 Route de Lennik, 1070, Brussels, Belgium.,Institute for Medical Immunology, Université Libre de Bruxelles, 6041 Gosselies, Brussels, Belgium
| |
Collapse
|
9
|
Epithelial barrier function properties of the 16HBE14o- human bronchial epithelial cell culture model. Biosci Rep 2021; 40:226530. [PMID: 32985670 PMCID: PMC7569203 DOI: 10.1042/bsr20201532] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 09/08/2020] [Accepted: 09/25/2020] [Indexed: 01/23/2023] Open
Abstract
The human bronchial epithelial cell line, 16HBE14o- (16HBE), is widely used as a model for respiratory epithelial diseases and barrier function. During differentiation, transepithelial electrical resistance (TER) increased to approximately 800 Ohms × cm2, while 14C-d-mannitol flux rates (Jm) simultaneously decreased. Tight junctions (TJs) were shown by diffusion potential studies to be anion-selective with PC1/PNa = 1.9. Transepithelial leakiness could be induced by the phorbol ester, protein kinase C (PKC) activator, 12-O-tetradecanoylphorbol-13-acetate (TPA), and the proinflammatory cytokine, tumor necrosis factor-α (TNF-α). Basal barrier function could not be improved by the micronutrients, zinc, or quercetin. Of methodological significance, TER was observed to be more variable and to spontaneously, significantly decrease after initial barrier formation, whereas Jm did not significantly fluctuate or increase. Unlike the strong inverse relationship between TER and Jm during differentiation, differentiated cell layers manifested no relationship between TER and Jm. There was also much greater variability for TER values compared with Jm. Investigating the dependence of 16HBE TER on transcellular ion conductance, inhibition of the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) chloride channel with GlyH-101 produced a large decrease in short-circuit current (Isc) and a slight increase in TER, but no significant change in Jm. A strong temperature dependence was observed not only for Isc, but also for TER. In summary, research utilizing 16HBE as a model in airway barrier function studies needs to be aware of the complexity of TER as a parameter of barrier function given the influence of CFTR-dependent transcellular conductance on TER.
Collapse
|
10
|
The Airway Epithelium-A Central Player in Asthma Pathogenesis. Int J Mol Sci 2020; 21:ijms21238907. [PMID: 33255348 PMCID: PMC7727704 DOI: 10.3390/ijms21238907] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 11/20/2020] [Accepted: 11/21/2020] [Indexed: 12/11/2022] Open
Abstract
Asthma is a chronic inflammatory airway disease characterized by variable airflow obstruction in response to a wide range of exogenous stimuli. The airway epithelium is the first line of defense and plays an important role in initiating host defense and controlling immune responses. Indeed, increasing evidence indicates a range of abnormalities in various aspects of epithelial barrier function in asthma. A central part of this impairment is a disruption of the airway epithelial layer, allowing inhaled substances to pass more easily into the submucosa where they may interact with immune cells. Furthermore, many of the identified susceptibility genes for asthma are expressed in the airway epithelium. This review focuses on the biology of the airway epithelium in health and its pathobiology in asthma. We will specifically discuss external triggers such as allergens, viruses and alarmins and the effect of type 2 inflammatory responses on airway epithelial function in asthma. We will also discuss epigenetic mechanisms responding to external stimuli on the level of transcriptional and posttranscriptional regulation of gene expression, as well the airway epithelium as a potential treatment target in asthma.
Collapse
|
11
|
Airway Epithelial Dysfunction in Asthma: Relevant to Epidermal Growth Factor Receptors and Airway Epithelial Cells. J Clin Med 2020; 9:jcm9113698. [PMID: 33217964 PMCID: PMC7698733 DOI: 10.3390/jcm9113698] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/11/2020] [Accepted: 11/13/2020] [Indexed: 12/20/2022] Open
Abstract
Airway epithelium plays an important role as the first barrier from external pathogens, including bacteria, viruses, chemical substances, and allergic components. Airway epithelial cells also have pivotal roles as immunological coordinators of defense mechanisms to transfer signals to immunologic cells to eliminate external pathogens from airways. Impaired airway epithelium allows the pathogens to remain in the airway epithelium, which induces aberrant immunological reactions. Dysregulated functions of asthmatic airway epithelium have been reported in terms of impaired wound repair, fragile tight junctions, and excessive proliferation, leading to airway remodeling, which contributes to aberrant airway responses caused by external pathogens. To maintain airway epithelium integrity, a family of epidermal growth factor receptors (EGFR) have pivotal roles in mechanisms of cell growth, proliferation, and differentiation. There are extensive studies focusing on the relation between EGFR and asthma pathophysiology, which describe airway remodeling, airway hypermucus secretion, as well as immunological responses of airway inflammation. Furthermore, the second EGFR family member, erythroblastosis oncogene B2 (ErbB2), has been recognized to be involved with impaired wound recovery and epithelial differentiation in asthmatic airway epithelium. In this review, the roles of the EGFR family in asthmatic airway epithelium are focused on to elucidate the pathogenesis of airway epithelial dysfunction in asthma.
Collapse
|
12
|
Post S, Heijink IH, Hesse L, Koo HK, Shaheen F, Fouadi M, Kuchibhotla VNS, Lambrecht BN, Van Oosterhout AJM, Hackett TL, Nawijn MC. Characterization of a lung epithelium specific E-cadherin knock-out model: Implications for obstructive lung pathology. Sci Rep 2018; 8:13275. [PMID: 30185803 PMCID: PMC6125431 DOI: 10.1038/s41598-018-31500-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 08/13/2018] [Indexed: 12/20/2022] Open
Abstract
The airway epithelium regulates responses to aeroallergens, acting as a physical and immunological barrier. In asthma, epithelial barrier function and the expression of adherens junction protein E-cadherin is compromised, but it is unknown whether this is cause or consequence of the disease. We hypothesized that airway epithelial loss of E-cadherin is a critical step in the development of manifestations of asthma. We generated a transgenic mouse model with conditional loss of E-cadherin in lung epithelial cells at birth and onwards. We observed normal lung development at the time of birth in mice lacking E-cadherin in the lung epithelium. However, E-cadherin deficiency led to progressive epithelial damage in mice growing into adulthood, as evidenced by airway epithelial denudation, decreased zonula occludens (ZO)-1 expression, loss of ciliated cells, and enlarged alveolar spaces. In addition, spontaneous goblet cell metaplasia with mucus production was observed. These epithelial changes were accompanied by elevated levels of the epithelial-derived chemokine CCL17, infiltration of eosinophils and dendritic cells, and mucus production. In conclusion, loss of E-cadherin induces features in the lung reminiscent of those observed in asthma, indicating that the disruption of E-cadherin-mediated cell-cell contacts may play a key role in the development of asthma manifestations.
Collapse
Affiliation(s)
- S Post
- University of Groningen, University Medical Center Groningen, Department of Pathology & Medical Biology, laboratory of Experimental Pulmonology and Inflammation Research (EXPIRE), Groningen, The Netherlands
- University of Groningen, University Medical Center Groningen, GRIAC Research Institute, Groningen, The Netherlands
- University of British Columbia, Centre for Heart and Lung Innovation, Department of Anesthesiology, Pharmacology and Therapeutics, St. Paul's Hospital, Vancouver, British Columbia, Canada
| | - I H Heijink
- University of Groningen, University Medical Center Groningen, Department of Pathology & Medical Biology, laboratory of Experimental Pulmonology and Inflammation Research (EXPIRE), Groningen, The Netherlands.
- University of Groningen, University Medical Center Groningen, GRIAC Research Institute, Groningen, The Netherlands.
- University of Groningen, University Medical Center Groningen, Department of Pulmonology, Groningen, The Netherlands.
| | - L Hesse
- University of Groningen, University Medical Center Groningen, Department of Pathology & Medical Biology, laboratory of Experimental Pulmonology and Inflammation Research (EXPIRE), Groningen, The Netherlands
- University of Groningen, University Medical Center Groningen, GRIAC Research Institute, Groningen, The Netherlands
| | - H K Koo
- University of British Columbia, Centre for Heart and Lung Innovation, Department of Anesthesiology, Pharmacology and Therapeutics, St. Paul's Hospital, Vancouver, British Columbia, Canada
| | - F Shaheen
- University of British Columbia, Centre for Heart and Lung Innovation, Department of Anesthesiology, Pharmacology and Therapeutics, St. Paul's Hospital, Vancouver, British Columbia, Canada
| | - M Fouadi
- University of British Columbia, Centre for Heart and Lung Innovation, Department of Anesthesiology, Pharmacology and Therapeutics, St. Paul's Hospital, Vancouver, British Columbia, Canada
| | - V N S Kuchibhotla
- University of Groningen, University Medical Center Groningen, Department of Pathology & Medical Biology, laboratory of Experimental Pulmonology and Inflammation Research (EXPIRE), Groningen, The Netherlands
- University of Groningen, University Medical Center Groningen, GRIAC Research Institute, Groningen, The Netherlands
| | - B N Lambrecht
- Laboratory of Immunoregulation and Mucosal Immunology, Department for Molecular Biomedical Research, Inflammation Research Centre (IRC), Ghent, Belgium
- Department of Pulmonary Medicine, Ghent University, Ghent, Belgium
- Department of Pulmonary Medicine, Erasmus University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - A J M Van Oosterhout
- University of Groningen, University Medical Center Groningen, Department of Pathology & Medical Biology, laboratory of Experimental Pulmonology and Inflammation Research (EXPIRE), Groningen, The Netherlands
- University of Groningen, University Medical Center Groningen, GRIAC Research Institute, Groningen, The Netherlands
| | - T L Hackett
- University of British Columbia, Centre for Heart and Lung Innovation, Department of Anesthesiology, Pharmacology and Therapeutics, St. Paul's Hospital, Vancouver, British Columbia, Canada
| | - M C Nawijn
- University of Groningen, University Medical Center Groningen, Department of Pathology & Medical Biology, laboratory of Experimental Pulmonology and Inflammation Research (EXPIRE), Groningen, The Netherlands
- University of Groningen, University Medical Center Groningen, GRIAC Research Institute, Groningen, The Netherlands
| |
Collapse
|
13
|
Kim B, Lee HJ, Im NR, Lee DY, Kim HK, Kang CY, Park IH, Lee SH, Lee HM, Lee SH, Baek SK, Kim TH. Decreased expression of CCL17 in the disrupted nasal polyp epithelium and its regulation by IL-4 and IL-5. PLoS One 2018; 13:e0197355. [PMID: 29746583 PMCID: PMC5945007 DOI: 10.1371/journal.pone.0197355] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 05/01/2018] [Indexed: 12/13/2022] Open
Abstract
Background In airway epithelium, thymus and activation-regulated chemokine (CCL17) and macrophage-derived chemokine (CCL22) are induced by defective epithelial barriers such as E-cadherin and attract the effector cells of Th2 immunity. However, the association between the epithelial barrier and CCL17 expression has not been studied in chronic rhinosinusitis with nasal polyp (CRSwNP). Thus, we aimed to evaluate the expression of CCL17 and its regulation by Th cytokines in nasal polyp (NP) epithelial cells. Methods The expression and distribution of CCL17, CCL22, E-cadherin and/or epidermal growth factor receptor (EGFR) were measured using real-time PCR, western blot, and immunohistochemistry and compared between normal ethmoid sinus epithelium and NP epithelium. In addition, the expression level of CCL17 was determined in cultured epithelial cells treated with IL-4, IL-5, IL-13, TNF-α, and IFN-γ. Results The expression of CCL17 was decreased in the NP epithelium compared to the epithelium of normal ethmoid sinus, whereas the expression of CCL22 was not decreased. E-cadherin was differentially distributed between the epithelium of normal ethmoid sinus and NP epithelium. EGFR was also decreased in NPs. Interestingly, the stimulation of cultured epithelial cells with Th2 cytokines, IL-4 and IL-5, resulted in an upregulation of CCL17 expression only in NP epithelial cells whereas the expression of CCL17 was increased in both normal epithelial cells and NP epithelial cells by Th1 cytokines. Conclusion Our results suggest that the decreased expression of CCL17 in defective NP epithelium may be closely connected to NP pathogenesis and can be differentially regulated by cytokines in the NP epithelium of patients with CRSwNP.
Collapse
Affiliation(s)
- Byoungjae Kim
- Department of Otorhinolaryngology-Head & Neck Surgery, College of Medicine, Korea University, Seoul, South Korea
- Neuroscience Research Institute, Korea University, College of Medicine, Seoul, Republic of Korea
| | - Hyun-Ji Lee
- Department of Otorhinolaryngology-Head & Neck Surgery, College of Medicine, Korea University, Seoul, South Korea
| | - Nu-Ri Im
- Department of Otorhinolaryngology-Head & Neck Surgery, College of Medicine, Korea University, Seoul, South Korea
| | - Doh Young Lee
- Department of Otorhinolaryngology-Head & Neck Surgery, College of Medicine, Korea University, Seoul, South Korea
| | - Ha Kyun Kim
- Department of Otorhinolaryngology-Head & Neck Surgery, College of Medicine, Korea University, Seoul, South Korea
| | - Cha Young Kang
- Department of Otorhinolaryngology-Head & Neck Surgery, College of Medicine, Korea University, Seoul, South Korea
| | - Il-Ho Park
- Department of Otorhinolaryngology-Head & Neck Surgery, College of Medicine, Korea University, Seoul, South Korea
| | - Seung Hoon Lee
- Department of Otorhinolaryngology-Head & Neck Surgery, College of Medicine, Korea University, Seoul, South Korea
| | - Heung-Man Lee
- Department of Otorhinolaryngology-Head & Neck Surgery, College of Medicine, Korea University, Seoul, South Korea
| | - Sang Hag Lee
- Department of Otorhinolaryngology-Head & Neck Surgery, College of Medicine, Korea University, Seoul, South Korea
| | - Seung-Kuk Baek
- Department of Otorhinolaryngology-Head & Neck Surgery, College of Medicine, Korea University, Seoul, South Korea
- * E-mail: (THK); (SKB)
| | - Tae Hoon Kim
- Department of Otorhinolaryngology-Head & Neck Surgery, College of Medicine, Korea University, Seoul, South Korea
- * E-mail: (THK); (SKB)
| |
Collapse
|
14
|
van den Berge M, Jonker MR, Miller-Larsson A, Postma DS, Heijink IH. Effects of fluticasone propionate and budesonide on the expression of immune defense genes in bronchial epithelial cells. Pulm Pharmacol Ther 2018; 50:47-56. [PMID: 29627483 DOI: 10.1016/j.pupt.2018.04.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 03/07/2018] [Accepted: 04/04/2018] [Indexed: 01/23/2023]
Abstract
BACKGROUND COPD patients have increased risk of pneumonia when treated with fluticasone propionate (FP), whereas this is generally not the case with budesonide (BUD) treatment. We hypothesized that BUD and FP differentially affect the expression of immune defense genes. METHODS Human bronchial epithelial 16HBE cells and air-liquid interface (ALI)-cultured primary bronchial epithelial cells (PBECs) were pre-treated with clinically equipotent concentrations of BUD or FP (0.16-16 nM BUD and 0.1-10 nM FP), and the expression of immune defense genes was studied at baseline and after exposure to rhinovirus (RV16). RESULTS Using microfluidic cards, we observed that both BUD and FP significantly suppressed CXCL8, IFNB1 and S100A8 mRNA expression in unstimulated 16HBE cells. Interestingly, BUD, but not FP, significantly increased lactotransferrin (LTF) expression. The difference between the effect of BUD and FP on LTF expression was statistically significant and confirmed by qPCR and at the protein level by western blotting. RV16 infection of ALI-cultured PBECs significantly increased the expression of CCL20, IFNB1 and S100A8, but not of LTF or CAMP/LL-37. In these RV16-exposed cells, LTF expression was again significantly higher upon pre-treatment with BUD than with FP. The same was observed for S100A8, but not for CCL20, IFNB1 or CAMP/LL-37 expression. CONCLUSIONS Treatment of human bronchial epithelial cells with BUD results in significantly higher expression of specific immune defense genes than treatment with FP. The differential regulation of these immune defense genes may help to explain the clinical observation that BUD and FP treatment differ with respect to the risk of developing pneumonia in COPD.
Collapse
Affiliation(s)
- M van den Berge
- University of Groningen, University Medical Centre Groningen, Department of Pulmonary Diseases, GRIAC Research Institute, Groningen, The Netherlands; University of Groningen, University Medical Centre Groningen, GRIAC Research Institute, Groningen, The Netherlands
| | - M R Jonker
- University of Groningen, University Medical Centre Groningen, Department of Pathology & Medical Biology, Experimental Pulmonology and Inflammation Research, Mölndal, Sweden
| | - A Miller-Larsson
- AstraZeneca Gothenburg, Department of Respiratory GMed, Mölndal, Sweden
| | - D S Postma
- University of Groningen, University Medical Centre Groningen, Department of Pulmonary Diseases, GRIAC Research Institute, Groningen, The Netherlands; University of Groningen, University Medical Centre Groningen, GRIAC Research Institute, Groningen, The Netherlands
| | - I H Heijink
- University of Groningen, University Medical Centre Groningen, Department of Pulmonary Diseases, GRIAC Research Institute, Groningen, The Netherlands; University of Groningen, University Medical Centre Groningen, GRIAC Research Institute, Groningen, The Netherlands; University of Groningen, University Medical Centre Groningen, Department of Pathology & Medical Biology, Experimental Pulmonology and Inflammation Research, Mölndal, Sweden.
| |
Collapse
|
15
|
Liu C, Zhang X, Xiang Y, Qu X, Liu H, Liu C, Tan M, Jiang J, Qin X. Role of epithelial chemokines in the pathogenesis of airway inflammation in asthma (Review). Mol Med Rep 2018; 17:6935-6941. [PMID: 29568899 DOI: 10.3892/mmr.2018.8739] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 02/23/2018] [Indexed: 11/06/2022] Open
Abstract
As the first barrier to the outside environment, airway epithelial cells serve a central role in the initiation and development of airway inflammation. Chemokines are the most direct and immediate cell factors for the recruitment and migration of inflammatory cells. The present review focused on the role of epithelial chemokines in the pathogenesis of airway inflammation in asthma. In addition to traditional CC family chemokines and CXC family chemokines, airway epithelial cells also express other chemokines, including thymic stromal lymphopoietin and interleukin‑33. By expressing and secreting chemokines, airway epithelial cells serve a key role in orchestrating airway inflammation in asthma.
Collapse
Affiliation(s)
- Chi Liu
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan 410008, P.R. China
| | - Xun Zhang
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan 410008, P.R. China
| | - Yang Xiang
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan 410008, P.R. China
| | - Xiangping Qu
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan 410008, P.R. China
| | - Huijun Liu
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan 410008, P.R. China
| | - Caixia Liu
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan 410008, P.R. China
| | - Meiling Tan
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan 410008, P.R. China
| | - Jianxin Jiang
- State Key Laboratory of Trauma, Institute of Surgery Research, Third Military Medical University, Chongqing 400042, P.R. China
| | - Xiaoqun Qin
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan 410008, P.R. China
| |
Collapse
|
16
|
Mukherjee M, Cingolani E, Pritchard DI, Bosquillon C. Enhanced expression of Organic Cation Transporters in bronchial epithelial cell layers following insults associated with asthma - Impact on salbutamol transport. Eur J Pharm Sci 2017; 106:62-70. [PMID: 28549677 DOI: 10.1016/j.ejps.2017.05.052] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 05/10/2017] [Accepted: 05/23/2017] [Indexed: 01/11/2023]
Abstract
Increasing evidence suggests Organic Cation Transporters (OCT) might facilitate the absorption of inhaled bronchodilators, including salbutamol, across the lung epithelium. This is essentially scarred and inflamed in asthma. Accordingly, the impact of epithelial insults relevant to asthma on OCT expression and salbutamol transport was evaluated in air-liquid interfaced layers of the human broncho-epithelial cell line Calu-3. These were physically injured and allowed to recover for 48h or exposed to the pro-inflammatory stimulant lipopolysaccharide (LPS) for 48h and the aeroallergen house dust mite (HDM) for 8h twice over 48h. Increases in transporter expression were measured following each treatment, with the protein levels of the OCTN2 subtype consistently raised by at least 50%. Interestingly, OCT upregulation upon LPS and HDM challenges were dependent on an inflammatory event occurring in the cell layers. Salbutamol permeability was higher in LPS exposed layers than in their untreated counterparts and in both cases, was sensitive to the OCT inhibitor tetraethylammonium. This study is the first to show epithelial injury, inflammation and allergen abuse upregulate OCT in bronchial epithelial cells, which might have an impact on the absorption of their substrates in diseased lungs.
Collapse
Affiliation(s)
- Manali Mukherjee
- School of Pharmacy, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| | - E Cingolani
- School of Pharmacy, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| | - D I Pritchard
- School of Pharmacy, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| | - C Bosquillon
- School of Pharmacy, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom.
| |
Collapse
|
17
|
Schwarze J, Fitch PM, Heimweg J, Errington C, Matsuda R, de Bruin HG, van den Berge M, van Oosterhout AJM, Heijink IH. Viral mimic poly-(I:C) attenuates airway epithelial T-cell suppressive capacity: implications for asthma. Eur Respir J 2016; 48:1785-1788. [PMID: 27824598 DOI: 10.1183/13993003.00841-2016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 08/22/2016] [Indexed: 01/22/2023]
Affiliation(s)
- Jürgen Schwarze
- University of Edinburgh, MRC Centre for Inflammation Research, Queen's Medical Research Institute, Edinburgh, UK
| | - Paul M Fitch
- University of Edinburgh, MRC Centre for Inflammation Research, Queen's Medical Research Institute, Edinburgh, UK
| | - Janneke Heimweg
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Experimental Pulmonology and Inflammation Research, Groningen, The Netherlands
| | - Claire Errington
- University of Edinburgh, MRC Centre for Inflammation Research, Queen's Medical Research Institute, Edinburgh, UK
| | - Reina Matsuda
- University of Edinburgh, MRC Centre for Inflammation Research, Queen's Medical Research Institute, Edinburgh, UK
| | - Harold G de Bruin
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Experimental Pulmonology and Inflammation Research, Groningen, The Netherlands
| | - Maarten van den Berge
- University of Groningen, University Medical Center Groningen, Department of Pulmonology, Groningen, The Netherlands.,University of Groningen, University Medical Center Groningen, GRIAC Research Institute, Groningen, The Netherlands
| | - Antoon J M van Oosterhout
- University of Groningen, University Medical Center Groningen, GRIAC Research Institute, Groningen, The Netherlands
| | - Irene H Heijink
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Experimental Pulmonology and Inflammation Research, Groningen, The Netherlands .,University of Groningen, University Medical Center Groningen, Department of Pulmonology, Groningen, The Netherlands.,University of Groningen, University Medical Center Groningen, GRIAC Research Institute, Groningen, The Netherlands
| |
Collapse
|
18
|
Chen YL, Chiang BL. Targeting TSLP With shRNA Alleviates Airway Inflammation and Decreases Epithelial CCL17 in a Murine Model of Asthma. MOLECULAR THERAPY. NUCLEIC ACIDS 2016; 5:e316. [PMID: 27138176 PMCID: PMC5014514 DOI: 10.1038/mtna.2016.29] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 03/19/2016] [Indexed: 11/09/2022]
Abstract
Airway epithelium defends the invasion from microorganisms and regulates immune responses in allergic asthma. Thymic stromal lymphopoietin (TSLP) from inflamed epithelium promotes maturation of dendritic cells (DCs) to prime Th2 responses via CCL17, which induces chemotaxis of CD4+ T cells to mediate inflammation. However, few studies have investigated the regulation of epithelial CCL17. In this study, we used shRNA against TSLP to clarify the role of TSLP in the airway inflammation and whether TSLP affects the airway inflammation via epithelial CCL17. Specific shTSLP was delivered by lentivirus and selected by the knockdown efficiency. Allergic mice were intratracheally pretreated with the lentivirus and followed by intranasal ovalbumin (OVA) challenges. The sera antibody levels, airway inflammation, airway hyper-responsiveness (AHR), cytokine levels in bronchoalveolar lavage fluids, and CCL17 expressions in lungs were determined. In vivo, TSLP attenuation reduced the AHR, decreased the airway inflammation, inhibited the maturations of DCs, and suppressed the migration of T cells. Furthermore, the expression of CCL17 was particularly decreased in bronchial epithelium. In vitro, CCL17 induction was regulated by TSLP. In conclusion, TSLP might coordinate airway inflammation partially via CCL17-mediated responses and this study provides the vital utility of TSLP to develop the therapeutic approach in allergic airway inflammation.
Collapse
Affiliation(s)
- Yi-Lien Chen
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Bor-Luen Chiang
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
19
|
Heijink IH, Jonker MR, de Vries M, van Oosterhout AJM, Telenga E, Ten Hacken NHT, Postma DS, van den Berge M. Budesonide and fluticasone propionate differentially affect the airway epithelial barrier. Respir Res 2016; 17:2. [PMID: 26739349 PMCID: PMC4704248 DOI: 10.1186/s12931-015-0318-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 12/23/2015] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND COPD patients have a higher risk of pneumonia when treated with fluticasone propionate (FP) than with placebo, and a lower risk with budesonide (BUD). We hypothesized that BUD and FP differentially affect the mucosal barrier in response to viral infection and/or cigarette smoke. METHODS We assessed protective effects of equivalent concentrations of BUD and FP on cytokine production and barrier function (electrical resistance) in human bronchial epithelial 16HBE cells and primary bronchial epithelial cells (PBECs) upon exposure to viral mimetic poly-(I:C) and/or cigarette smoke extract (CSE) or epidermal growth factor (EGF). RESULTS BUD and FP were equally effective in suppressing poly-(I:C)- and/or CSE-induced IL-8 secretion in 16HBE and PBECs. Poly-(I:C) substantially decreased electrical resistance in 16HBE cells and both BUD and FP fully counteracted this effect. However, FP hardly affected 16HBE barrier dysfunction induced by CSE with/without poly-(I:C), whereas BUD (16 nM) provided full protection, an effect likely mediated by affecting EGFR-downstream target GSK-3β. Similarly, BUD, but not FP, significantly improved CSE-induced barrier dysfunction in PBECs. Finally, BUD, but not FP, exerted a modest but significant protective effect against Streptococcus Pneumoniae-induced barrier dysfunction, and BUD, but not FP, prevented cellular adhesion and/or internalization of these bacteria induced by poly-(I:C) in 16HBE. CONCLUSIONS Collectively, both BUD and FP efficiently control epithelial pro-inflammatory responses and barrier function upon mimicry of viral infection. Of potential clinical relevance, BUD more effectively counteracted CSE-induced barrier dysfunction, reinforcing the epithelial barrier and potentially limiting access of pathogens upon smoking in vivo.
Collapse
Affiliation(s)
- I H Heijink
- Department of Pathology & Medical Biology, Experimental Pulmonology and Inflammation Research, University of Groningen, University Medical Center Groningen,, Hanzeplein 1, NL-9713 GZ, Groningen, The Netherlands. .,Department of Pulmonology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands. .,University of Groningen, University Medical Center Groningen, GRIAC Research Institute, Groningen, The Netherlands.
| | - M R Jonker
- Department of Pathology & Medical Biology, Experimental Pulmonology and Inflammation Research, University of Groningen, University Medical Center Groningen,, Hanzeplein 1, NL-9713 GZ, Groningen, The Netherlands
| | - M de Vries
- Department of Pathology & Medical Biology, Experimental Pulmonology and Inflammation Research, University of Groningen, University Medical Center Groningen,, Hanzeplein 1, NL-9713 GZ, Groningen, The Netherlands.,University of Groningen, University Medical Center Groningen, GRIAC Research Institute, Groningen, The Netherlands
| | - A J M van Oosterhout
- Department of Pathology & Medical Biology, Experimental Pulmonology and Inflammation Research, University of Groningen, University Medical Center Groningen,, Hanzeplein 1, NL-9713 GZ, Groningen, The Netherlands.,University of Groningen, University Medical Center Groningen, GRIAC Research Institute, Groningen, The Netherlands
| | - E Telenga
- Department of Pulmonology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.,University of Groningen, University Medical Center Groningen, GRIAC Research Institute, Groningen, The Netherlands
| | - N H T Ten Hacken
- Department of Pulmonology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.,University of Groningen, University Medical Center Groningen, GRIAC Research Institute, Groningen, The Netherlands
| | - D S Postma
- Department of Pulmonology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.,University of Groningen, University Medical Center Groningen, GRIAC Research Institute, Groningen, The Netherlands
| | - M van den Berge
- Department of Pulmonology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.,University of Groningen, University Medical Center Groningen, GRIAC Research Institute, Groningen, The Netherlands
| |
Collapse
|
20
|
Post S, Rozeveld D, Jonker MR, Bischoff R, van Oosterhout AJ, Heijink IH. ADAM10 mediates the house dust mite-induced release of chemokine ligand CCL20 by airway epithelium. Allergy 2015; 70:1545-52. [PMID: 26296735 DOI: 10.1111/all.12730] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/17/2015] [Indexed: 01/13/2023]
Abstract
BACKGROUND House dust mite (HDM) acts on the airway epithelium to induce airway inflammation in asthma. We previously showed that the ability of HDM to induce allergic sensitization in mice is related to airway epithelial CCL20 secretion. OBJECTIVE As a disintegrin and metalloprotease (ADAM)s have been implicated in chemokine shedding, we sought to determine their involvement in HDM-induced release of chemokines, including CCL20, by airway epithelial cells. METHODS We studied the effects of pharmacological ADAM inhibitors as well as ADAM10 and ADAM17 siRNA downregulation on chemokine release using (multiplex) ELISA in supernatants from HDM-exposed human bronchial epithelial 16HBE cells and primary normal human bronchial epithelial cells (NHBE) at 4-24 h. RESULTS House dust) mite markedly increased CCL20 levels in both 16HBE and NHBE cells (16-24 h). In 16HBE cells, the HDM-induced increase was observed as early as 4 h upon exposure and the use of specific inhibitors indicated the involvement of ADAM10/17-mediated shedding. siRNA knockdown of ADAM10, but not of ADAM17, significantly reduced the HDM-induced release of CCL20 in both 16HBE and NHBE cells. A similar effect was observed for HDM-induced CCL2, CCL5, and CXCL8 release in NHBE cells. The HDM-induced increase in CCL20 levels was not affected by protein synthesis inhibitor cycloheximide nor protein transport inhibitor monensin, indicating that HDM induces surface shedding of chemokines. CONCLUSION Our data show for the first time that ADAM10 activity contributes to HDM-induced shedding of chemokines, including CCL20. The ADAM10/CCL20 axis may be a target for novel therapeutic strategies in asthma.
Collapse
Affiliation(s)
- S. Post
- Department of Pathology & Medical Biology, Experimental Pulmonology and Inflammation Research; University of Groningen; University Medical Center Groningen; Groningen The Netherlands
- GRIAC Research Institute; University of Groningen; University Medical Center Groningen; Groningen The Netherlands
| | - D. Rozeveld
- Department of Pathology & Medical Biology, Experimental Pulmonology and Inflammation Research; University of Groningen; University Medical Center Groningen; Groningen The Netherlands
- GRIAC Research Institute; University of Groningen; University Medical Center Groningen; Groningen The Netherlands
| | - M. R Jonker
- Department of Pathology & Medical Biology, Experimental Pulmonology and Inflammation Research; University of Groningen; University Medical Center Groningen; Groningen The Netherlands
- GRIAC Research Institute; University of Groningen; University Medical Center Groningen; Groningen The Netherlands
| | - R. Bischoff
- Department of Pharmacy, Analytical Biochemistry; University of Groningen; Groningen The Netherlands
| | - A. J. van Oosterhout
- Department of Pathology & Medical Biology, Experimental Pulmonology and Inflammation Research; University of Groningen; University Medical Center Groningen; Groningen The Netherlands
- GRIAC Research Institute; University of Groningen; University Medical Center Groningen; Groningen The Netherlands
| | - I. H. Heijink
- Department of Pathology & Medical Biology, Experimental Pulmonology and Inflammation Research; University of Groningen; University Medical Center Groningen; Groningen The Netherlands
- GRIAC Research Institute; University of Groningen; University Medical Center Groningen; Groningen The Netherlands
- Department of Pulmonology; University of Groningen; University Medical Center Groningen; Groningen The Netherlands
| |
Collapse
|
21
|
Gandhi VD, Vliagoftis H. Airway epithelium interactions with aeroallergens: role of secreted cytokines and chemokines in innate immunity. Front Immunol 2015; 6:147. [PMID: 25883597 PMCID: PMC4382984 DOI: 10.3389/fimmu.2015.00147] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 03/18/2015] [Indexed: 11/13/2022] Open
Abstract
Airway epithelial cells are the first line of defense against the constituents of the inhaled air, which include allergens, pathogens, pollutants, and toxic compounds. The epithelium not only prevents the penetration of these foreign substances into the interstitium, but also senses their presence and informs the organism’s immune system of the impending assault. The epithelium accomplishes the latter through the release of inflammatory cytokines and chemokines that recruit and activate innate immune cells at the site of assault. These epithelial responses aim to eliminate the inhaled foreign substances and minimize their detrimental effects to the organism. Quite frequently, however, the innate immune responses of the epithelium to inhaled substances lead to chronic and high level release of pro-inflammatory mediators that may mediate the lung pathology seen in asthma. The interactions of airway epithelial cells with allergens will be discussed with particular focus on interactions-mediated epithelial release of cytokines and chemokines and their role in the immune response. As pollutants are other major constituents of inhaled air, we will also discuss how pollutants may alter the responses of airway epithelial cells to allergens.
Collapse
Affiliation(s)
- Vivek D Gandhi
- Pulmonary Research Group, Department of Medicine, University of Alberta , Edmonton, AB , Canada
| | - Harissios Vliagoftis
- Pulmonary Research Group, Department of Medicine, University of Alberta , Edmonton, AB , Canada
| |
Collapse
|
22
|
Hui CCK, Murphy DM, Neighbour H, Al-Sayegh M, O'Byrne S, Thong B, Denburg JA, Larché M. T cell-mediated induction of thymic stromal lymphopoietin in differentiated human primary bronchial epithelial cells. Clin Exp Allergy 2015; 44:953-64. [PMID: 24773145 DOI: 10.1111/cea.12330] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Revised: 04/14/2014] [Accepted: 04/14/2014] [Indexed: 01/07/2023]
Abstract
BACKGROUND Inhaled peptide challenge has been shown to induce T cell-mediated, isolated late asthmatic reaction (LAR), characterized by recruitment of CD4(+) T cells and increased levels of thymus and activation-regulated chemokine (TARC; CCL17). Epithelial-derived thymic stromal lymphopoietin (TSLP) has been shown to modulate dendritic cell function to promote TH 2 responses via CCL17 production. OBJECTIVES To elucidate the mechanisms involved in allergen-specific T cell-induced LAR and recruitment of CD4(+) T cells by examining the effects of T cell-derived factors on the induction of TSLP in primary bronchial epithelial cells (PBEC). METHODS PBEC grown at air-liquid interface from healthy individuals and patients with asthma were stimulated with double-stranded RNA (dsRNA) or supernatants from activated allergen-specific T cells. TSLP was measured in PBEC culture supernatants. Neutralizing antibodies and signalling inhibitors were used to examine the mechanisms responsible for the induction of epithelial-derived TSLP. The functional activity of PBEC-derived TSLP was measured using a bioassay involving the induction of CCL17 production from monocyte-derived dendritic cells (moDC). RESULTS Both dsRNA and allergen-specific T cells induced enhanced TSLP secretion from asthmatic PBEC compared to healthy PBEC. Activated PBEC culture supernatant induced TSLP-dependent CCL17 production from moDC in a manner related to clinical asthmatic status. IL-1β, IL-6, and CXCL8, rather than TH 2 cytokines (IL-4/5/13), appeared to be the principle mediators of allergen-specific T cell-dependent induction of epithelial-derived TSLP, which was regulated by the MEK, MAPK, and NFκB pathways. CONCLUSION AND CLINICAL RELEVANCE Our data reveal a novel effect of allergen-specific T cells as a positive regulator of TSLP production by epithelial cells, suggesting T cell-airway epithelium interactions that may lead to maintenance and amplification of allergic inflammation. TSLP is currently a candidate for therapeutic intervention in asthma, but the factors that drive TSLP expression (T cell-derived factors) may be equally relevant in the treatment of allergic inflammation.
Collapse
Affiliation(s)
- C C K Hui
- Division of Allergy & Clinical Immunology, Department of Medicine, McMaster University, Hamilton, ON, Canada
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Eom S, Kim Y, Kim M, Park D, Lee H, Lee YS, Choe J, Kim YM, Jeoung D. Transglutaminase II/microRNA-218/-181a loop regulates positive feedback relationship between allergic inflammation and tumor metastasis. J Biol Chem 2014; 289:29483-505. [PMID: 25202021 DOI: 10.1074/jbc.m114.603480] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The molecular mechanism of transglutaminase II (TGaseII)-mediated allergic inflammation remains largely unknown. TGaseII, induced by antigen stimulation, showed an interaction and co-localization with FcϵRI. TGaseII was necessary for in vivo allergic inflammation, such as triphasic cutaneous reaction, passive cutaneous anaphylaxis, and passive systemic anaphylaxis. TGaseII was necessary for the enhanced metastatic potential of B16F1 melanoma cells by passive systemic anaphylaxis. TGaseII was shown to be a secreted protein. Recombinant TGaseII protein increased the histamine release and β-hexosaminidase activity, and enhanced the metastatic potential of B16F1 mouse melanoma cells. Recombinant TGaseII protein induced the activation of EGF receptor and an interaction between EGF receptor and FcϵRI. Recombinant TGaseII protein displayed angiogenic potential accompanied by allergic inflammation. R2 peptide, an inhibitor of TGaseII, exerted negative effects on in vitro and in vivo allergic inflammation by regulating the expression of TGaseII and FcϵRI signaling. MicroRNA (miR)-218 and miR-181a, decreased during allergic inflammation, were predicted as negative regulators of TGaseII by microRNA array and TargetScan analysis. miR-218 and miR-181a formed a negative feedback loop with TGaseII and regulated the in vitro and in vivo allergic inflammation. TGaseII was necessary for the interaction between mast cells and macrophages during allergic inflammation. Mast cells and macrophages, activated during allergic inflammation, were responsible for the enhanced metastatic potential of tumor cells that are accompanied by allergic inflammation. In conclusion, the TGaseII/miR-218/-181a feedback loop can be employed for the development of anti-allergy therapeutics.
Collapse
Affiliation(s)
| | | | - Misun Kim
- From the Departments of Biochemistry and
| | | | - Hansoo Lee
- Biological Sciences, College of Natural Sciences, and
| | - Yun Sil Lee
- the College of Pharmacy, Ewha Womans University, Seoul 120-750, Korea
| | - Jongseon Choe
- Graduate School of Medicine, Kangwon National University, Chunchon 200-701, Korea, and
| | - Young Myeong Kim
- Graduate School of Medicine, Kangwon National University, Chunchon 200-701, Korea, and
| | | |
Collapse
|
24
|
Heijink IH, Nawijn MC, Hackett TL. Airway epithelial barrier function regulates the pathogenesis of allergic asthma. Clin Exp Allergy 2014; 44:620-30. [DOI: 10.1111/cea.12296] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- I. H. Heijink
- Department of Pathology and Medical Biology; Experimental Pulmonology and Inflammation Research; University Medical Center Groningen; University of Groningen; Groningen the Netherlands
- Department of Pulmonology; University Medical Center Groningen; University of Groningen; Groningen the Netherlands
- GRIAC Research Institute; University Medical Center Groningen; University of Groningen; Groningen the Netherlands
| | - M. C. Nawijn
- Department of Pathology and Medical Biology; Experimental Pulmonology and Inflammation Research; University Medical Center Groningen; University of Groningen; Groningen the Netherlands
- GRIAC Research Institute; University Medical Center Groningen; University of Groningen; Groningen the Netherlands
| | - T.-L. Hackett
- Centre for Heart Lung Innovation; St Paul's Hospital; University of British Columbia; Vancouver BC Canada
| |
Collapse
|
25
|
Hackett TL, de Bruin HG, Shaheen F, van den Berge M, van Oosterhout AJ, Postma DS, Heijink IH. Caveolin-1 controls airway epithelial barrier function. Implications for asthma. Am J Respir Cell Mol Biol 2014; 49:662-71. [PMID: 23742006 DOI: 10.1165/rcmb.2013-0124oc] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The molecular basis for airway epithelial fragility in asthma has remained unclear. We investigated whether the loss of caveolin-1, the major component of caveolae and a known stabilizer of adherens junctions, contributes to epithelial barrier dysfunction in asthma. We studied the expression of caveolin-1 and adhesion molecules E-cadherin and β-catenin in airway sections, and we cultured bronchial epithelial cells from patients with asthma and from healthy control subjects. To determine the functional role of caveolin-1, we investigated the effects of caveolin-1 up-regulation and down-regulation on E-cadherin expression, barrier function, and proallergic activity in the human bronchial epithelial cell lines 16HBE and BEAS-2B. The membrane expression of caveolin-1 was significantly lower in airway epithelia from patients with asthma than from subjects without asthma, and this lower expression was maintained in vitro upon air-liquid interface and submerged culturing. Importantly, reduced caveolin-1 expression was accompanied by a loss of junctional E-cadherin and β-catenin expression, disrupted epithelial barrier function, and increased levels of the proallergic cytokine thymic stromal lymphopoietin (TSLP). Furthermore, E-cadherin redistribution upon exposure to epidermal growth factor or house dust mite was paralleled by the internalization of caveolin-1 in 16HBE cells. These effects appear to be causally related, because the short, interfering RNA down-regulation of caveolin-1 resulted in the delocalization of E-cadherin and barrier dysfunction in 16HBE cells. Moreover, caveolin-1 overexpression improved barrier function and reduced TSLP expression in BEAS-2B cells. Together, our data demonstrate a crucial role for caveolin-1 in epithelial cell-cell adhesion, with important consequences for epithelial barrier function and the promotion of Th2 responses in asthma.
Collapse
Affiliation(s)
- Tillie-Louise Hackett
- 1 University of British Columbia James Hogg Research Centre, Heart and Lung Institute, St. Paul's Hospital, Vancouver, British Columbia, Canada; and
| | | | | | | | | | | | | |
Collapse
|
26
|
Winkler C, Witte L, Moraw N, Faulenbach C, Müller M, Holz O, Schaumann F, Hohlfeld JM. Impact of endobronchial allergen provocation on macrophage phenotype in asthmatics. BMC Immunol 2014; 15:12. [PMID: 24612750 PMCID: PMC4007705 DOI: 10.1186/1471-2172-15-12] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Accepted: 02/21/2014] [Indexed: 02/08/2023] Open
Abstract
Background The role of M2 polarized macrophages (MΦ) during the allergic airway inflammation has been discussed in various animal models. However, their presence and relevance during the chronic and acute phase of allergic airway inflammation in humans has not been fully elucidated so far. In the present study we phenotypically characterized macrophages with regard to M2 polarization in mice, a human in vitro and a human ex vivo model with primary lung cells after endobronchial provocation. Results Macrophages remained polarized beyond clearance of the acute allergic airway inflammation in mice. Alveolar macrophages of asthmatics revealed increased mRNA expression of CCL13, CCL17 and CLEC10A in response to allergen challenge as well as increased surface expression of CD86. Further, mRNA expression of CCL13, CCL17, and CLEC10A was increased in asthmatics at baseline compared to healthy subjects. The mRNA expression of CCL17 and CLEC10A correlated significantly with the degree of eosinophilia (each P < .01). Furthermore, macrophages from asthmatics released significant amounts of CCL17 protein in vitro which was also found increased in BAL fluid after allergen provocation. Conclusions This study supports previous findings of M2 macrophage polarization in asthmatic subjects during the acute course of the allergic inflammation and provides evidence for their contribution to the Th2 inflammation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jens M Hohlfeld
- Department of Respiratory Medicine, Hannover Medical School, Hannover, Germany.
| |
Collapse
|
27
|
Post S, Nawijn MC, Jonker MR, Kliphuis N, van den Berge M, van Oosterhout AJM, Heijink IH. House dust mite-induced calcium signaling instigates epithelial barrier dysfunction and CCL20 production. Allergy 2013; 68:1117-25. [PMID: 23915187 DOI: 10.1111/all.12202] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/02/2013] [Indexed: 02/04/2023]
Abstract
BACKGROUND House dust mite (HDM) affects the immunological and physical barrier function of airway epithelium, leading to allergic sensitization, airway remodeling, and eosinophilic inflammation in mouse models, although the mechanisms are still largely unknown. OBJECTIVE Given the implications for adenosine triphosphate (ATP)-dependent Ca(2+) signaling in allergic sensitization in mice, we sought to determine the role of intracellular Ca(2+) concentration ([Ca(2+)](i)) in HDM-induced barrier dysfunction and pro-inflammatory activity of bronchial epithelium. METHODS We investigated the effect of HDM on accumulation of [Ca(2+)](i) levels, barrier function, and CCL20 release in human bronchial epithelial 16HBE cells and primary bronchial epithelial cells (PBECs) from healthy subjects and asthma patients. Involvement of ATP-dependent activation of purinergic receptors and downstream Ca(2+) influx was studied, using the ATP hydrolyzing agent apyrase, the purinergic receptor agonist PPADS, the calcium chelator BAPTA-AM, and calpain inhibitors. RESULTS Asthma PBECs were more susceptible to HDM-induced barrier dysfunction, CCL20 secretion, and Ca(2+) influx than healthy PBECs. Furthermore, we show that the HDM-induced increase in CCL20 in PBECs and 16HBE cells and the HDM-induced barrier dysfunction in 16HBE cells are dependent on [Ca(2+)](i) accumulation. Additionally, we demonstrate that [Ca(2+)](i) accumulation is initiated partly through the activation of purinergic receptors, which contributes to HDM-induced epithelial barrier dysfunction by disruption of cell-cell contacts, but not CCL20 secretion. CONCLUSION Our data show for the first time that Ca(2+) signaling plays a crucial role in barrier dysfunction and the pro-inflammatory response of bronchial epithelium upon HDM exposure and may thus have important implications for the development of allergic asthma.
Collapse
Affiliation(s)
- S Post
- Department of Pathology and Medical Biology, Laboratory of Allergology and Pulmonary Diseases, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands; GRIAC Research Institute, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
28
|
Heijink I, van Oosterhout A, Kliphuis N, Jonker M, Hoffmann R, Telenga E, Klooster K, Slebos DJ, ten Hacken N, Postma D, van den Berge M. Oxidant-induced corticosteroid unresponsiveness in human bronchial epithelial cells. Thorax 2013; 69:5-13. [PMID: 23980116 DOI: 10.1136/thoraxjnl-2013-203520] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
BACKGROUND We hypothesised that increased oxidative stress, as present in the airways of asthma and chronic obstructive pulmonary disease (COPD) patients, induces epithelial damage and reduces epithelial responsiveness to suppressive effects of corticosteroids on proinflammatory cytokine production and barrier function. METHODS We induced oxidative stress by H2O2 and/or cigarette smoke extract (CSE) in human bronchial epithelial 16HBE cells and primary bronchial epithelial cells (PBEC) derived by brushings from asthma patients, COPD patients, and smoking and non-smoking control individuals. We investigated effects of budesonide on barrier function (electrical resistance) and TNF-α-induced proinflammatory cytokine production (IL-8/CXCL8, granulocyte macrophage-colony stimulating factor (GM-CSF)). RESULTS We observed that H2O2 and CSE reduce epithelial resistance. Budesonide significantly counteracted this effect, likely by protection against epidermal growth factor receptor-dependent cell-cell contact disruption. Furthermore, budesonide suppressed proinflammatory cytokine production. H2O2 pretreatment reduced this effect of budesonide on cytokine production in both 16HBE cells and PBECs. Importantly, PBECs from asthma and COPD patients were less sensitive to budesonide with respect to cytokine production and barrier function than PBECs from control subjects. CONCLUSIONS Together, our data indicate that budesonide suppresses epithelial proinflammatory responses and barrier dysfunction and that oxidative stress reduces these effects in airway epithelium from asthma and COPD patients. Therefore, restoration of corticosteroid responsiveness in asthma and COPD may act to improve the airway epithelial barrier.
Collapse
Affiliation(s)
- Irene Heijink
- Laboratory of Allergology & Pulmonary Diseases, Department of Pathology & Medical Biology, University of Groningen, University Medical Center Groningen, , Groningen, The Netherlands
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Gandhi VD, Davidson C, Asaduzzaman M, Nahirney D, Vliagoftis H. House Dust Mite Interactions with Airway Epithelium: Role in Allergic Airway Inflammation. Curr Allergy Asthma Rep 2013; 13:262-70. [DOI: 10.1007/s11882-013-0349-9] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
30
|
Ramakrishna L, de Vries VC, Curotto de Lafaille MA. Cross-roads in the lung: immune cells and tissue interactions as determinants of allergic asthma. Immunol Res 2012; 53:213-28. [PMID: 22447350 DOI: 10.1007/s12026-012-8296-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Allergic asthma is a chronic disease of the lung characterized by underlying Th2- and IgE-mediated inflammation, structural alterations of the bronchial wall, and airway hyperresponsiveness. Initial allergic sensitization and later development of chronic disease are determined by close interactions between lung structural cells and the resident and migratory immune cells in the lung. Epithelial cells play a crucial role in allergic sensitization by directly influencing dendritic cells induction of tolerant or effector T cells and production of type 2 cytokines by innate immune cells. During chronic disease, the bronchial epithelium, stroma, and smooth muscle become structurally and functionally altered, contributing to the perpetuation of tissue remodeling. Thus, targeting tissue-driven pathology in addition to inflammation may increase the effectiveness of asthma treatment.
Collapse
Affiliation(s)
- Lakshmi Ramakrishna
- Singapore Immunology Network, Agency for Science, Technology and Research, 8A Biomedical Grove, #4-06 Immunos, Singapore
| | | | | |
Collapse
|
31
|
Albrecht M, Arnhold M, Lingner S, Mahapatra S, Bruder D, Hansen G, Dittrich AM. IL-4 attenuates pulmonary epithelial cell-mediated suppression of T cell priming. PLoS One 2012; 7:e45916. [PMID: 23029313 PMCID: PMC3447776 DOI: 10.1371/journal.pone.0045916] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Accepted: 08/23/2012] [Indexed: 11/24/2022] Open
Abstract
We have previously shown that Th2-polarized airway inflammation facilitates sensitization towards new, protein antigens. In this context, we could demonstrate that IL-4 needs to act on cells of the hematopoetic and the structural compartment in order to facilitate sensitization towards new antigens. We thus aimed to elucidate possible mechanisms of action of IL-4 on structural cells choosing to analyze pulmonary epithelial cells as an important part of the lung's structural system. We used a co-culture system of DC- or APC-dependent in vitro priming of T cells, co-cultivated on a layer of cells of a murine pulmonary epithelial cell line (LA-4) pretreated with or without IL-4. Effects on T cell priming were analyzed via CFSE-dilution and flow cytometric assessment of activation status. Pulmonary epithelial cells suppressed T cell proliferation in vitro but this effect was attenuated by pre-treatment of the epithelial cells with IL-4. Transwell experiments suggest that epithelial-mediated suppression of T cell activation is mostly cell-contact dependent and leads to attenuation in an early naive T cell phenotype. Secretion of soluble factors like TARC, TSLP, GM-CSF and CCL20 by epithelial cells did not change after IL-4 treatment. However, analysis of co-stimulatory expression on pulmonary epithelial cells revealed that pre-treatment of epithelial cells with IL-4 changed expression GITR-L, suggesting a possible mechanism for the effects observed. Our studies provide new insight into the role of IL-4 during the early phases of pulmonary sensitization: The inhibitory activity of pulmonary epithelial cells in homeostasis is reversed in the presence of IL-4, which is secreted in the context of Th2-dominated allergic airway inflammation. This mechanism might serve to explain facilitated sensitization in the clinical context of polysensitization where due to a pre-existing sensitization increased levels of IL-4 in the airways might facilitate T cell priming towards new antigens.
Collapse
Affiliation(s)
- Melanie Albrecht
- Pediatric Pneumology, Allergology and Neonatology, Medical School Hannover, Hannover, Germany
| | - Markus Arnhold
- Pediatric Pneumology, Allergology and Neonatology, Medical School Hannover, Hannover, Germany
| | - Sandra Lingner
- Pediatric Pneumology, Allergology and Neonatology, Medical School Hannover, Hannover, Germany
| | - Subhashree Mahapatra
- Pediatric Pneumology, Allergology and Neonatology, Medical School Hannover, Hannover, Germany
| | - Dunja Bruder
- Immune Regulation Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
- Research Group Infection Immunology, Department of Medical Microbiology, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Gesine Hansen
- Pediatric Pneumology, Allergology and Neonatology, Medical School Hannover, Hannover, Germany
| | - Anna-Maria Dittrich
- Pediatric Pneumology, Allergology and Neonatology, Medical School Hannover, Hannover, Germany
- * E-mail:
| |
Collapse
|
32
|
Staples KJ, Hinks TSC, Ward JA, Gunn V, Smith C, Djukanović R. Phenotypic characterization of lung macrophages in asthmatic patients: overexpression of CCL17. J Allergy Clin Immunol 2012; 130:1404-12.e7. [PMID: 22981793 DOI: 10.1016/j.jaci.2012.07.023] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Revised: 06/15/2012] [Accepted: 07/10/2012] [Indexed: 01/08/2023]
Abstract
BACKGROUND Studies with monocyte-derived macrophages (MDMs) and animal models have suggested a role for alternatively activated (M2) macrophages in asthmatic inflammation, but in vivo evidence for this phenotype in human asthma is lacking. OBJECTIVE To characterize the phenotype of lung macrophages from asthmatic patients in relation to disease severity and treatment. METHODS M2 biomarkers were first identified by using MDMs exposed to T(H)2 cytokines and then used to phenotype sputum and bronchoalveolar lavage (BAL) macrophages from 12 healthy control subjects, 12 patients with mild asthma, and 14 patients with moderate asthma and to assess the effects of corticosteroids and phosphatidylinositol 3-kinase (PI3K) inhibitors. RESULTS Sputum macrophages from asthmatic patients expressed significantly more CCL17 mRNA but less CD163 than macrophages from healthy subjects. However, none of the other M2 biomarkers were differentially expressed in asthmatic patients, and ex vivo BAL cells spontaneously produced similar amounts of M2 cytokines/chemokines (IL-10, CCL17, and CCL22). CCL17 mRNA overexpression correlated weakly but significantly with sputum eosinophilia (P = .0252) and was also observed in macrophages from patients with moderate asthma treated with inhaled steroids, suggesting relative insensitivity to inhibition by corticosteroids. The PI3K inhibitor LY294002 inhibited basal CCL17 release from BAL cells and IL-4-stimulated release from MDMs. CONCLUSIONS This study does not support the existence in human asthma of the full M2 phenotype described to date but points to upregulation of CCL17 in both patients with mild and those with moderate asthma, providing a further source for this ligand of CCR4(+) cells that contributes to airways inflammation. CCL17 expression is corticosteroid resistant but suppressed by PI3K enzyme inhibitors.
Collapse
Affiliation(s)
- Karl J Staples
- Academic Unit of Clinical and Experimental Sciences, University of Southampton Faculty of Medicine, Sir Henry Wellcome Laboratories, Southampton General Hospital, Southampton, United Kingdom.
| | | | | | | | | | | |
Collapse
|
33
|
Xiong Y, Wang J, Wu F, Li J, Zhou L, Kong L. Effects of (±)-praeruptorin A on airway inflammation, airway hyperresponsiveness and NF-κB signaling pathway in a mouse model of allergic airway disease. Eur J Pharmacol 2012; 683:316-24. [PMID: 22449378 DOI: 10.1016/j.ejphar.2012.03.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2011] [Revised: 02/23/2012] [Accepted: 03/04/2012] [Indexed: 02/01/2023]
Abstract
The root of Peucedanum praeruptorum Dunn is a traditional Chinese medicine commonly used to treat asthma in China. (±)-praeruptorin A (PA) is the most abundant constituent of P. praeruptorum Dunn, the effects of which on asthma were investigated using a murine model of allergic airway disease. BALB/c mice were sensitized and challenged by ovalbumin to induce airway inflammation. PA was administered intragastrically before every OVA challenge. Airway responsiveness was measured by a lung function analysis system. The number of total leukocytes in bronchoalveolar lavage fluid was counted using a hemocytometer, and differential cell counts were determined using Diff-Quick-stained smears. Histopathology of lung tissue was analyzed by hematoxylin-eosin and Congo red staining. Levels of inflammatory mediators in bronchoalveolar lavage fluid and immunoglobulins in serum were measured by enzyme-linked immunosorbent assay. The expression of pulmonary eotaxin was detected by immunohistochemistry and reverse transcription polymerase chain reaction. The activation of NF-κB was evaluated by electrophoretic mobility shift assay and western blot analysis. Compared with model group, PA significantly reduced airway hyperresponsiveness and airway eosinophilic inflammation, improved pathologic lesion of the lungs, reduced levels of interleukin (IL)-4, IL-5, IL-13 and LTC₄ in bronchoalveolar lavage fluid and immunoglobulin (Ig) E in serum, and inhibited eotaxin protein and mRNA expression, IκBα degradation, NF-κB nuclear translocation, NF-κB DNA-binding activity and RelA/p65 phosphorylation in lung, which suggested that PA can significantly suppress OVA-induced airway inflammation and airway hyperresponsiveness in mice, showing great therapeutic potential for the treatment of allergic asthma.
Collapse
Affiliation(s)
- Youyi Xiong
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, 24 Tongjia Xiang, Nanjing 210009, Jiangsu, China
| | | | | | | | | | | |
Collapse
|
34
|
Abstract
The airway epithelial cell is the initial cell type impacted both by inhaled environmental factors, such as pathogens, allergens, and pollutants, and inhaled medications for airway diseases. As such, epithelial cells are now recognized to play a central role in the regulation of airway inflammatory status, structure, and function in normal and diseased airways. This article reviews our current knowledge regarding the roles of the epithelial cell in airway inflammation and host defense. The interactions of inhaled environmental factors and pathogens with epithelial cells are also discussed, with an emphasis on epithelial innate immune responses and contributions of epithelial cells to immune regulation. Recent evidence suggesting that epithelial cells play an active role in inducing several of the structural changes, collectively referred to airway remodeling, seen in the airways of asthmatic subjects is reviewed. Finally, the concept that the epithelium is a major target for the actions of a number of classes of inhaled medications is discussed, as are the potential mechanisms by which selected drugs may alter epithelial function.
Collapse
Affiliation(s)
- David Proud
- Department of Physiology and Pharmacology, University of Calgary Faculty of Medicine, Calgary, AB, Canada.
| | | |
Collapse
|
35
|
E-cadherin: gatekeeper of airway mucosa and allergic sensitization. Trends Immunol 2011; 32:248-55. [PMID: 21493142 DOI: 10.1016/j.it.2011.03.004] [Citation(s) in RCA: 159] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Revised: 03/04/2011] [Accepted: 03/08/2011] [Indexed: 12/25/2022]
Abstract
The airway epithelium plays a role in immune regulation during environmental challenge, which is intertwined with its barrier function and capacity to limit submucosal access of environmental factors. In asthma, mucosal barrier function is often compromised, with disrupted expression of the adhesion molecule E-cadherin. Recent progress suggests that E-cadherin contributes to the structural and immunological function of airway epithelium, through the regulation of epithelial junctions, proliferation, differentiation, and production of growth factors and proinflammatory mediators that can modulate the immune response. Here, we discuss this novel role for E-cadherin in mediating the crucial immunological decision between maintenance of tolerance versus induction of innate and adaptive immunity.
Collapse
|
36
|
Yang CJ, Liu YK, Liu CL, Shen CN, Kuo ML, Su CC, Tseng CP, Yen TC, Shen CR. Inhibition of acidic mammalian chitinase by RNA interference suppresses ovalbumin-sensitized allergic asthma. Hum Gene Ther 2010; 20:1597-606. [PMID: 19548841 DOI: 10.1089/hum.2008.092] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Asthma, a chronic helper T cell type 2-mediated inflammatory disease, is characterized by airway hyperresponsiveness and inflammation. Growing evidence suggests that increased expression of acidic mammalian chitinase (AMCase) may play a role in the pathogenesis of asthma. In the present study, we sought to develop an RNA interference approach to suppress allergic asthma in mice through silencing of AMCase expression. Mice sensitized with ovalbumin (OVA) were intratracheally administered a recombinant adeno-associated virus expressing short hairpin RNA (rAAV-shRNA) against AMCase. In OVA-sensitized mice, the development of allergic symptoms was significantly associated with elevated AMCase expression. After administration of rAAV-shRNA, there was a significant reduction of AMCase expression in the lung and in bronchoalveolar lavage fluid (BALF) cells of sensitized mice. Sensitized mice receiving rAAV-shRNA showed a significant improvement in allergic symptoms, including airway hyperresponsiveness (AHR), eosinophil infiltration, eotaxin, interleukin-13 secretion in BALF, and serum OVA-specific IgE level. Our data suggest the hyperexpression of AMCase in asthma can be suppressed by rAAV-mediated shRNA. Silencing AMCase expression by shRNA may be a promising therapeutic strategy in asthma.
Collapse
Affiliation(s)
- Ching-Jen Yang
- Department of Chemical and Materials Engineering, Chang Gung University, Taoyuan 333, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Novel biomarkers in asthma: chemokines and chitinase-like proteins. Curr Opin Allergy Clin Immunol 2009; 9:60-6. [PMID: 19532094 DOI: 10.1097/aci.0b013e32831f8ee0] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
PURPOSE OF REVIEW Allergic asthma is a frequent lung disease in Western civilizations and is characterized by airway inflammation and tissue remodeling. Without early diagnosis and specific treatment, asthma results in a loss of lung function, impaired quality of life and the risk to die from uncontrolled asthma attacks. Thus, there is a need for specific biomarkers to detect asthma as soon as possible and to initiate the correct clinical treatment. RECENT FINDINGS Recent studies have highlighted the potential role of the chemokine (C-C motif) ligand 17 and the chitinase-like protein YKL-40 as novel biomarkers in asthma. Patient studies suggest that these proteins could be useful to identify asthmatics, to characterize disease severity or both in patients with asthma. Functional studies indicate that these molecules are more than correlated epiphenomena and instead contribute in significant ways to asthma pathogenesis. SUMMARY Assessments of chemokine (C-C motif) ligand 17 and YKL-40 may allow physicians to more accurately diagnose and predict the course of asthma and thereby allow therapy to be appropriately tailored for a given patient.
Collapse
|
38
|
Current world literature. Curr Opin Allergy Clin Immunol 2009; 9:79-85. [PMID: 19106700 DOI: 10.1097/aci.0b013e328323adb4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
39
|
Yogo Y, Fujishima S, Inoue T, Saito F, Shiomi T, Yamaguchi K, Ishizaka A. Macrophage derived chemokine (CCL22), thymus and activation-regulated chemokine (CCL17), and CCR4 in idiopathic pulmonary fibrosis. Respir Res 2009; 10:80. [PMID: 19715610 PMCID: PMC2741459 DOI: 10.1186/1465-9921-10-80] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2009] [Accepted: 08/29/2009] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Idiopathic pulmonary fibrosis (IPF) is a chronically progressive interstitial lung disease of unknown etiology. Previously, we have demonstrated the selective upregulation of the macrophage-derived chemokine CCL22 and the thymus activation-regulated chemokine CCL17 among chemokines, in a rat model of radiation pneumonitis/pulmonary fibrosis and preliminarily observed an increase in bronchoalveolar (BAL) fluid CCL22 levels of IPF patients. METHODS We examined the expression of CCR4, a specific receptor for CCL22 and CCL17, in bronchoalveolar lavage (BAL) fluid cells, as well as the levels of CCL22 and CCL17, to elucidate their pathophysiological roles in pulmonary fibrosis. We also studied their immunohistochemical localization. RESULTS BAL fluid CCL22 and CCL17 levels were significantly higher in patients with IPF than those with collagen vascular diseases and healthy volunteers, and there was a significant correlation between the levels of CCL22 and CCL17 in patients with IPF. CCL22 levels in the BAL fluid did not correlate with the total cell numbers, alveolar lymphocytes, or macrophages in BAL fluid. However, the CCL22 levels significantly correlated with the numbers of CCR4-expressing alveolar macrophages. By immunohistochemical and immunofluorescence analysis, localization of CCL22 and CCR4 to CD68-positive alveolar macrophages as well as that of CCL17 to hyperplastic epithelial cells were shown. Clinically, CCL22 BAL fluid levels inversely correlated with DLco/VA values in IPF patients. CONCLUSION We speculated that locally overexpressed CCL22 may induce lung dysfunction through recruitment and activation of CCR4-positive alveolar macrophages.
Collapse
Affiliation(s)
- Yurika Yogo
- Division of Pulmonary Medicine, Department of Medicine, School of Medicine, Keio University, Tokyo, Japan
| | - Seitaro Fujishima
- Department of Emergency and Critical Care Medicine, School of Medicine, Keio University, Tokyo, Japan
| | - Takashi Inoue
- Division of Pulmonary Medicine, Department of Medicine, School of Medicine, Keio University, Tokyo, Japan
| | - Fumitake Saito
- Division of Pulmonary Medicine, Department of Medicine, School of Medicine, Keio University, Tokyo, Japan
| | - Takayuki Shiomi
- Department of Pathology, School of Medicine, Keio University, Tokyo, JapanSadakazu Aiso, Department of Anatomy, School of Medicine, Keio University, Tokyo, Japan
| | - Kazuhiro Yamaguchi
- Division of Pulmonary Medicine, Department of Medicine, School of Medicine, Keio University, Tokyo, Japan
| | - Akitoshi Ishizaka
- Division of Pulmonary Medicine, Department of Medicine, School of Medicine, Keio University, Tokyo, Japan
| |
Collapse
|
40
|
Nagai M, Okunishi I. The effect of wasabi rhizome extract on atopic dermatitis-like symptoms in HR-1 hairless mice. J Nutr Sci Vitaminol (Tokyo) 2009; 55:195-200. [PMID: 19436148 DOI: 10.3177/jnsv.55.195] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
We investigated the effect of wasabi rhizome extract on atopic dermatitis (AD) model mice. The wasabi extract was fed to the HR-1 hairless mice, which develop AD-like symptoms with a special diet (HR-AD diet). The extract was expected to reduce the symptoms induced. Wasabi rhizome-containing HR-AD diet (5% and 10%) reduced the scratching behavior, and the 10% wasabi rhizome HR-AD diet significantly reduced scratching behavior on days 28, 35 and 42. Plasma components (histamine, eotaxin, IgE and thymus and activation-regulated chemokine (TARC)) were decreased in the 10% wasabi rhizome HR-AD diet. In histopathological examinations (toluidine blue (T.B.), major basic protein (MBP), CD4, IL-4, IL-5, eotaxin, TARC and IgE), the wasabi rhizome-containing HR-AD diet (5% and 10%) significantly reduced the number of positive stained cells. These results suggested that the wasabi rhizome extract improved the AD-like symptoms of HR-1 hairless mice.
Collapse
|
41
|
Osterlund C, Grönlund H, Polovic N, Sundström S, Gafvelin G, Bucht A. The non-proteolytic house dust mite allergen Der p 2 induce NF-kappaB and MAPK dependent activation of bronchial epithelial cells. Clin Exp Allergy 2009; 39:1199-208. [PMID: 19486032 DOI: 10.1111/j.1365-2222.2009.03284.x] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
BACKGROUND House dust mites (HDM) are well-known as a source of indoor aeroallergens and for causing allergic airway diseases. Some proteolytic HDM allergens are known to activate respiratory epithelial cells to produce pro-inflammatory mediators, while there is limited knowledge regarding such activity among non-proteolytic HDM allergens. OBJECTIVE To investigate whether Der p 2, a major non-proteolytic allergen of Dermatophagoides pteronyssinus, activates respiratory epithelial cells to produce mediators involved in asthma pathogenesis and to elucidate the mechanism of such activation. METHODS The human bronchial epithelial cell line BEAS-2B, normal human bronchial epithelial (NHBE) cells and the alveolar epithelial cell line A549 were exposed to recombinant Der p 2. Following exposure, we analysed a panel of soluble mediators and cell adhesion receptors involved in asthma pathogenesis by promoting recruitment, survival and binding of inflammatory cells. The involvement of nuclear factor (NF)-kappaB and mitogen-activated protein kinases (MAPKs) was studied using specific inhibitors. RESULTS Der p 2 activated bronchial BEAS-2B and NHBE cells, but not alveolar A549 cells. In BEAS-2B cells Der p 2 induced dose-dependent up-regulation in both mRNA level and protein secretion of granulocyte-macrophage colony-stimulating factor, IL-6, IL-8, monocyte-chemotactic protein-1 and macrophage inflammatory protein-3alpha. Secretion as well as surface expression of intercellular adhesion molecule (ICAM)-1 was also up-regulated, which was associated with increased adhesion of monocytes to the epithelial cells. The release of cytokines and chemokines was regulated by NF-kappaB and MAPK activation in different ways, while expression of ICAM-1 was solely dependent on NF-kappaB activation. CONCLUSION These results show that Der p 2 activates respiratory epithelial cells, indicating that this non-proteolytic allergen, in addition to its immunogenic properties, can aggravate respiratory airway disease by adjuvant-like activation of the lung epithelium.
Collapse
Affiliation(s)
- C Osterlund
- Swedish Defence Research Agency, FOI CBRN Defence and Security, Umeå, Sweden.
| | | | | | | | | | | |
Collapse
|
42
|
Lalaker A, Nkrumah L, Lee WK, Ramanathan M, Lane AP. Chitin stimulates expression of acidic mammalian chitinase and eotaxin-3 by human sinonasal epithelial cells in vitro. Am J Rhinol Allergy 2009; 23:8-14. [PMID: 19379605 DOI: 10.2500/ajra.2009.23.3256] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Sinonasal epithelial cells participate in host defense by initiating innate immune mechanisms against potential pathogens. Antimicrobial innate mechanisms have been shown to involve Th1-like inflammatory responses. Although epithelial cells can also be induced by Th2 cytokines to express proeosinophilic mediators, no environmental agents have been identified that promote this effect. METHODS Human sinonasal epithelial cells from patients with chronic rhinosinusitis with nasal polyps (CRSwNPs) and controls were harvested and grown in primary culture. Cell cultures were exposed to a range of concentrations of chitin for 24 hours, and mRNA for acidic mammalian chitinase (AMCase), eotaxin-3, and thymic stromal-derived lymphopoietin (TSLP) were assessed. Other cultures were exposed to interleukin 4 (IL- 4) alone and in combination with dust-mite antigen (DMA) for 36 hours. Extracted mRNA and cell culture supernatant were analyzed for expression of AMCase and eotaxin-3. RESULTS Chitin induced a dose-dependent expression of AMCase and eotaxin-3 mRNA but not TSLP. Patients with recalcitrant CRSwNPs showed lower baseline expression of AMCase when compared with treatment-responsive CRSwNP and less induction of AMCase expression by chitin. DMA did not directly induce expression of AMCase or eotaxin-3. Expression of eotaxin-3 was stimulated by IL-4 and further enhanced with the addition of DMA. Levels of AMCase were not significantly affected by either IL-4 or DMA exposure. In some cases, the combination of IL-4 and DMA was able to induce AMCase expression in cell cultures not producing AMCase at baseline. CONCLUSION The abundant biopolymer chitin appears to be recognized by a yet uncharacterized receptor on sinonasal epithelial cells. Chitin stimulates production of AMCase and eotaxin-3, two pro-Th2 effector proteins. This finding suggests the existence of a novel innate immune pathway for local defense against chitin-containing organisms in the sinonasal tract. Dysregulation of this function could precipitate or exacerbate Th2 inflammation, potentially acting as an underlying factor in recalcitrant CRSwNP.
Collapse
Affiliation(s)
- Ashley Lalaker
- Department of Otolaryngology-Head and Neck Surgery, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | | | | | | |
Collapse
|
43
|
Heijink IH, Postma DS, Noordhoek JA, Broekema M, Kapus A. House dust mite-promoted epithelial-to-mesenchymal transition in human bronchial epithelium. Am J Respir Cell Mol Biol 2009; 42:69-79. [PMID: 19372245 DOI: 10.1165/rcmb.2008-0449oc] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The molecular basis of airway remodeling and loss of epithelial integrity in asthma is still undefined. We aimed to establish if exposure of human bronchial epithelium (16HBE cells) to asthma-related stimuli can induce epithelial-to-mesenchymal transition (EMT), a key process in tissue repair and remodeling associated with loss of intercellular contacts. We studied the effects of fibrogenic cytokine TGF-beta and protease-containing aeroallergen house dust mite (HDM) on mesenchymal and epithelial markers, cytoskeleton organization, and activation of beta-catenin-driven reporter TopFLASH. TGF-beta alone up-regulated vimentin and fibronectin, modestly down-regulated E-cadherin, but did not affect cytokeratin. HDM alone did not affect these markers, but promoted stress fibers. Importantly, when added to TGF-beta-primed epithelium, HDM induced E-cadherin internalization, enhanced beta-catenin-dependent transcription, and down-regulated cytokeratin. Regarding the underlying mechanisms, the stimuli together induced sustained myosin light chain phosphorylation, which was crucial for E-cadherin internalization and beta-catenin-dependent transcription. Previously, we showed that HDM signals through the epidermal growth factor receptor (EGFR). Accordingly, inhibition of EGFR prevented TGF-beta/HDM-induced mesenchymalization. TGF-beta facilitated uncoupling of EGFR from E-cadherin, its negative regulator, and prolonged EGFR signaling. Thus, we show that HDM promotes EMT in TGF-beta-primed epithelium. Analysis of primary epithelium appears consistent with this phenotypic change. We propose that TGF-beta secretion and dysregulated EGFR signaling may increase epithelial vulnerability to allergens and trigger the induction of EMT, a hitherto unrecognized contributor to airway remodeling in asthma.
Collapse
Affiliation(s)
- Irene H Heijink
- Department of Allergology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, Groningen, The Netherlands.
| | | | | | | | | |
Collapse
|
44
|
Hartl D, He CH, Koller B, Da Silva CA, Homer R, Lee CG, Elias JA. Acidic mammalian chitinase is secreted via an ADAM17/epidermal growth factor receptor-dependent pathway and stimulates chemokine production by pulmonary epithelial cells. J Biol Chem 2008; 283:33472-82. [PMID: 18824549 DOI: 10.1074/jbc.m805574200] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Acidic mammalian chitinase (AMCase) is expressed in an exaggerated fashion in epithelial cells at sites of pulmonary T helper cell type 2 inflammation and plays important roles in the pathogenesis of anti-parasite and asthma-like responses. However, the mechanisms that control epithelial cell AMCase secretion and its effector responses have not been adequately defined. To address these issues, we used in vivo and in vitro experimental systems to define the pathways of epithelial AMCase secretion and its epithelial regulatory effects. Here we demonstrate that, in murine T helper cell type 2 modeling systems, AMCase colocalizes with the epidermal growth factor receptor (EGFR) and ADAM17 (a membrane disintegrin and metallopeptidase 17) in lung epithelial cells. In vitro cotransfection experiments in A549 cells demonstrated that AMCase and EGFR physically interact with each other. Cotransfection of AMCase and EGFR also increased, whereas EGFR inhibition decreased AMCase secretion. Interestingly, AMCase secretion was not significantly altered by treatment with EGF but was significantly decreased when the upstream EGFR transactivator ADAM17 was inhibited. AMCase secretion was also decreased when the EGFR-downstream Ras was blocked. Transfected and recombinant AMCase induced epithelial cell production of CCL2, CCL17, and CXCL8. These studies demonstrate that lung epithelial cells secrete AMCase via an EGFR-dependent pathway that is activated by ADAM17 and mediates its effects via Ras. They also demonstrate that the AMCase that is secreted feeds back in an autocrine and/or paracrine fashion to stimulate pulmonary epithelial cell chemokine production.
Collapse
Affiliation(s)
- Dominik Hartl
- Section of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut 06520-8057, USA
| | | | | | | | | | | | | |
Collapse
|
45
|
Park SU, Shin JH, Shim JW, Kim DS, Jung HL, Park MS, Shim JY. Transforming growth factor-β promoted vascular endothelial growth factor release by human lung fibroblasts. KOREAN JOURNAL OF PEDIATRICS 2008. [DOI: 10.3345/kjp.2008.51.8.879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Sang Uk Park
- Department of Pediatrics, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Joo Hwa Shin
- Department of Pediatrics, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jae Won Shim
- Department of Pediatrics, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Deok Soo Kim
- Department of Pediatrics, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Hye Lim Jung
- Department of Pediatrics, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Moon Soo Park
- Department of Pediatrics, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jung Yeon Shim
- Department of Pediatrics, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|
46
|
Abstract
When allergen is inhaled it comes into contact with the epithelium of the respiratory tract. This contact triggers multiple events that can ultimately stimulate development of allergic asthma. Some allergens, like house dust mite, contain active proteolytic enzymes that break down tight epithelial cell junctions. Others act to enhance inflammation by stimulating epithelial cells to make proinflammatory cytokines and chemokines. Alterations in airways include mucous cell metaplasia and eosinophil recruitment. In this review, cell culture experiments as well as several animal models and human patient data are utilized to examine the mechanisms by which allergens alter the normal epithelial homeostasis. Environmental pollutants, such as ozone and environmental tobacco smoke, enhance allergen-mediated effects on epithelium.
Collapse
Affiliation(s)
- Laurel J Gershwin
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, CA 95616, USA.
| |
Collapse
|
47
|
Kato A, Schleimer RP. Beyond inflammation: airway epithelial cells are at the interface of innate and adaptive immunity. Curr Opin Immunol 2007; 19:711-20. [PMID: 17928212 DOI: 10.1016/j.coi.2007.08.004] [Citation(s) in RCA: 254] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2007] [Revised: 08/21/2007] [Accepted: 08/23/2007] [Indexed: 12/19/2022]
Abstract
It has become increasingly clear that airway epithelial cells are central participants in innate and adaptive immune responses as well as mucosal inflammation. Epithelial cells produce antimicrobial host defense molecules, proinflammatory cytokines and chemokines in response to activation via pathogen recognition receptors. Recruitment of immune cells including dendritic cells, T cells and B cells into the proximity of epithelium results in the enhancement of adaptive immunity through interactions with epithelial cells. Newly identified epithelial-derived cytokines, including TSLP, IL-33 and BAFF, help to shape the local accumulation and activation of Th2 responses and B cell immunoglobulin production. Epithelial cells are also downstream targets of molecules that activate IL-13R and EGFR and are responsible for mucus production in both protective immune responses and allergic airway inflammatory diseases. Improved understanding of epithelial immune and inflammatory responses will hopefully suggest new strategies for therapeutic intervention.
Collapse
Affiliation(s)
- Atsushi Kato
- Division of Allergy-Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.
| | | |
Collapse
|
48
|
Monick MM, Powers LS, Hassan I, Groskreutz D, Yarovinsky TO, Barrett CW, Castilow EM, Tifrea D, Varga SM, Hunninghake GW. Respiratory syncytial virus synergizes with Th2 cytokines to induce optimal levels of TARC/CCL17. THE JOURNAL OF IMMUNOLOGY 2007; 179:1648-58. [PMID: 17641031 PMCID: PMC4060898 DOI: 10.4049/jimmunol.179.3.1648] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Respiratory syncytial virus (RSV) is a ubiquitous virus that preferentially infects airway epithelial cells, causing asthma exacerbations and severe disease in immunocompromised hosts. Acute RSV infection induces inflammation in the lung. Thymus- and activation-regulated chemokine (TARC) recruits Th2 cells to sites of inflammation. We found that acute RSV infection of BALB/c mice increased TARC production in the lung. Immunization of BALB/c mice with individual RSV proteins can lead to the development of Th1- or Th2-biased T cell responses in the lung after RSV infection. We primed animals with a recombinant vaccinia virus expressing either the RSV fusion (F) protein or the RSV attachment (G) protein, inducing Th1- and Th2-biased pulmonary memory T cell responses, respectively. After RSV infection, TARC production significantly increased in the vaccinia virus G-primed animals only. These data suggest a positive feedback loop for TARC production between RSV infection and Th2 cytokines. RSV-infected lung epithelial cells cultured with IL-4 or IL-13 demonstrated a marked increase in the production of TARC. The synergistic effect of RSV and IL-4/IL-13 on TARC production reflected differential induction of NF kappa B and STAT6 by the two stimuli (both are in the TARC promoter). These findings demonstrate that RSV induces a chemokine TARC that has the potential to recruit Th2 cells to the lung.
Collapse
Affiliation(s)
- Martha M Monick
- Department of Internal Medicine, University of Iowa Carver College of Medicine and Veterans Administration Medical Center, Iowa City, IA 52242, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Sokolova E, Reiser G. A novel therapeutic target in various lung diseases: Airway proteases and protease-activated receptors. Pharmacol Ther 2007; 115:70-83. [PMID: 17532472 DOI: 10.1016/j.pharmthera.2007.04.002] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2007] [Accepted: 04/05/2007] [Indexed: 10/23/2022]
Abstract
Protease-activated receptors (PAR), which are G protein-coupled receptors, have 4 members, PAR-1 to PAR-4. PARs are activated by proteolysis of a peptide bond at the N-terminal domain of the receptor. PARs are widely distributed throughout the airways. Their activity is modulated by airway proteases of endogenous and exogenous origin, which can either activate or disable the receptors. The regulation of PAR activity by proteases is important under pathological conditions when the activity of proteases is increased. Moreover, various inflammatory mediators, such as cytokines, growth factors, or prostanoids, alter the PAR expression level. Elevated PAR levels are observed in various lung disorders, and their significance in the development of pathological situations in the lung is currently intensively investigated. Consequences of PAR activation can be either beneficial or deleterious, depending on the PAR subtype. PAR-1 has been shown to be an important player in the development of pulmonary fibrosis. Thus, PAR-1 represents an exciting target for clinical intervention in fibrotic diseases. PAR-2 contributes to allergic airway inflammation. However, the question whether the impact of PAR-2 is beneficial or deleterious is still under intensive discussion. Therefore, precise information concerning the participation of PAR-2 in various lesions is required. Moreover, it is necessary to generate selective PAR- and organ-targeted approaches for treating the diseases. A thorough understanding of PAR-induced cellular events and the consequences of receptor blockade may help in the development of novel therapeutic strategies targeted to prevent lung destruction and to avoid deterioration of conditions of patients with inflammatory or fibrotic lung diseases.
Collapse
Affiliation(s)
- Elena Sokolova
- Otto-von-Guericke-Universität Magdeburg, Medizinische Fakultät, Zentrum für Biochemie und Molekularbiologie, Institut für Neurobiochemie, Leipziger Strasse 44, D-39120, Magdeburg, Germany
| | | |
Collapse
|
50
|
Heijink IH, Kies PM, Kauffman HF, Postma DS, van Oosterhout AJM, Vellenga E. Down-Regulation of E-Cadherin in Human Bronchial Epithelial Cells Leads to Epidermal Growth Factor Receptor-Dependent Th2 Cell-Promoting Activity. THE JOURNAL OF IMMUNOLOGY 2007; 178:7678-85. [PMID: 17548604 DOI: 10.4049/jimmunol.178.12.7678] [Citation(s) in RCA: 131] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Airway epithelial cells are well-known producers of thymus- and activation-regulated chemokine (TARC), a Th2 cell-attracting chemokine that may play an important role in the development of allergic airway inflammation. However, the mechanism responsible for up-regulation of TARC in allergy is still unknown. In the asthmatic airways, loss of expression of the cell-cell contact molecule E-cadherin and reduced epithelial barrier function has been observed, which may be the result of an inadequate repair response. Because E-cadherin also suppressed multiple signaling pathways, we studied whether disruption of E-cadherin-mediated cell contact may contribute to increased proallergic activity of epithelial cells, e.g., production of the chemokine TARC. We down-regulated E-cadherin in bronchial epithelial cells by small interference RNA and studied effects on electrical resistance, signaling pathways, and TARC expression (by electric cell-substrate impedance sensing, immunodetection, immunofluorescent staining, and real-time PCR). Small interference RNA silencing of E-cadherin resulted in loss of E-cadherin-mediated junctions, enhanced phosphorylation of epidermal growth factor receptor (EGFR), and the downstream targets MEK/ERK-1/2 and p38 MAPK, finally resulting in up-regulation of TARC as well as thymic stromal lymphopoietin expression. The use of specific inhibitors revealed that the effect on TARC is mediated by EGFR-dependent activation of the MAPK pathways. In contrast to TARC, expression of the Th1/Treg cell-attracting chemokine RANTES was unaffected by E-cadherin down-regulation. In summary, we show that loss of E-cadherin-mediated epithelial cell-cell contact by damaging stimuli, e.g., allergens, may result in reduced suppression of EGFR-dependent signaling pathways and subsequent induction of Th2 cell-attracting molecule TARC. Thus, disruption of intercellular epithelial contacts may specifically promote Th2 cell recruitment in allergic asthma.
Collapse
Affiliation(s)
- Irene H Heijink
- Department of Allergology, University Medical Center, University of Groningen, Groningen, The Netherlands.
| | | | | | | | | | | |
Collapse
|