1
|
Bu X, Wang M, Yuan J, Song J, Luan G, Yu J, Wang Y, Li Y, Wang C, Zhang L. SerpinB3/B4 Abates Epithelial Cell-Derived CXCL8/IL-8 Expression in Chronic Rhinosinusitis with Nasal Polyps. J Immunol Res 2024; 2024:8553447. [PMID: 38550710 PMCID: PMC10978078 DOI: 10.1155/2024/8553447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 01/30/2024] [Accepted: 02/22/2024] [Indexed: 04/02/2024] Open
Abstract
Background Serine proteinase inhibitors, clade B, member 3 (SerpinB3) and B4 are highly similar in amino acid sequences and associated with inflammation regulation. We investigated SerpinB3 and B4 expression and their roles in chronic rhinosinusitis with nasal polyps (CRSwNP). Methods The expression of SerpinB3 and B4 in nasal mucosa tissues, brush cells, and secretions from CRSwNP patients was measured, and their regulation by inflammatory cytokines were investigated. Their functions were also analyzed using air-liquid interface (ALI)-cultured primary human nasal epithelial cells (HNECs) and transcriptomic analysis. Results Both SerpinB3 and B4 expression was higher in nasal mucosa, brush cells, and secretions from eosinophilic (E) CRSwNP and nonECRSwNP patients than in healthy controls. Immunofluorescence staining indicated that SerpinB3 and B4 were primarily expressed in epithelial cells and their expression was higher in CRSwNP patients. SerpinB3 and B4 expression was upregulated by interleukin-4 (IL-4), IL-5, IL-6, and IL-17a. Transcriptomic analysis identified differentially expressed genes (DEGs) in response to recombinant SerpinB3 and B4 stimulation. Both the DEGs of SerpinB3 and B4 were associated with disease genes of nasal polyps and inflammation in DisGeNET database. Pathway enrichment indicated that downregulated DEGs of SerpinB3 and B4 were both enriched in cytokine-cytokine receptor interactions, with CXCL8 as the hub gene in the protein-protein interaction networks. Furthermore, CXCL8/IL-8 expression was downregulated by recombinant SerpinB3 and B4 protein in ALI-cultured HNECs, and upregulated when knockdown of SerpinB3/B4. Conclusion SerpinB3/B4 expression is upregulated in nasal mucosa of CRSwNP patients. SerpinB3/B4 may play an anti-inflammatory role in CRSwNP by inhibiting the expression of epithelial cell-derived CXCL8/IL-8.
Collapse
Affiliation(s)
- Xiangting Bu
- Department of Otolaryngology, Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing 100730, China
- Beijing Key Laboratory of Nasal Diseases, Beijing Laboratory of Allergic Diseases, Beijing Institute of Otolaryngology, Beijing 100005, China
| | - Ming Wang
- Department of Otolaryngology, Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing 100730, China
- Beijing Key Laboratory of Nasal Diseases, Beijing Laboratory of Allergic Diseases, Beijing Institute of Otolaryngology, Beijing 100005, China
| | - Jing Yuan
- Department of Otolaryngology, Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing 100730, China
- Beijing Key Laboratory of Nasal Diseases, Beijing Laboratory of Allergic Diseases, Beijing Institute of Otolaryngology, Beijing 100005, China
| | - Jing Song
- Department of Otolaryngology, Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing 100730, China
- Beijing Key Laboratory of Nasal Diseases, Beijing Laboratory of Allergic Diseases, Beijing Institute of Otolaryngology, Beijing 100005, China
| | - Ge Luan
- Department of Otolaryngology, Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing 100730, China
- Beijing Key Laboratory of Nasal Diseases, Beijing Laboratory of Allergic Diseases, Beijing Institute of Otolaryngology, Beijing 100005, China
| | - Jiaqi Yu
- Department of Otolaryngology, Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing 100730, China
- Beijing Key Laboratory of Nasal Diseases, Beijing Laboratory of Allergic Diseases, Beijing Institute of Otolaryngology, Beijing 100005, China
| | - Yang Wang
- Department of Otolaryngology, Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing 100730, China
- Beijing Key Laboratory of Nasal Diseases, Beijing Laboratory of Allergic Diseases, Beijing Institute of Otolaryngology, Beijing 100005, China
| | - Ying Li
- Department of Otolaryngology, Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing 100730, China
- Beijing Key Laboratory of Nasal Diseases, Beijing Laboratory of Allergic Diseases, Beijing Institute of Otolaryngology, Beijing 100005, China
| | - Chengshuo Wang
- Department of Otolaryngology, Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing 100730, China
- Beijing Key Laboratory of Nasal Diseases, Beijing Laboratory of Allergic Diseases, Beijing Institute of Otolaryngology, Beijing 100005, China
| | - Luo Zhang
- Department of Otolaryngology, Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing 100730, China
- Beijing Key Laboratory of Nasal Diseases, Beijing Laboratory of Allergic Diseases, Beijing Institute of Otolaryngology, Beijing 100005, China
- Department of Allergy, Beijing TongRen Hospital, Capital Medical University, Beijing 100730, China
| |
Collapse
|
2
|
Liu J, Gao T, Zhou B, Xu X, Zhai X, Yao Q, Chen X, Liu L, Cui W, Wu X. Fast green FCF prevents postoperative cognitive dysfunction via the downregulation of the P2X4 receptor in mice. Int Immunopharmacol 2023; 121:110462. [PMID: 37301120 DOI: 10.1016/j.intimp.2023.110462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/23/2023] [Accepted: 06/05/2023] [Indexed: 06/12/2023]
Abstract
Postoperative cognitive dysfunction (POCD) is a decline in cognitive function affecting the mental health of aged patients after surgery. The pathological mechanisms underlying POCD have not yet been clarified. The overexpression of the P2X4 receptor in the central nervous system (CNS) was reported to be associated with the onset of POCD. Fast green FCF (FGF), a widely used food dye, could decrease the expression of the P2X4 receptor in the CNS. This study aimed to explore whether FGF could prevent POCD via the down-regulation of CNS P2X4 receptor. Exploratory laparotomy under the anesthesia of fentanyl and droperidol was carried to establish an animal model of POCD in 10-12-months-olds mice. FGF significantly attenuated cognitive impairments and down-regulated the expression of the P2X4 receptor induced by surgery in mice. Moreover, the blockade of CNS P2X4 receptor by intrahippocampal injection of 5-BDBD induced cognitive-enhancing effects on POCD mice. In addition, the effects of FGF were abolished by ivermectin, which is a positive allosteric modulator of the P2X4 receptor. FGF also inhibited M1 polarization of microglia cells, decreased the phosphorylation of nuclear factor-κB (NF-κB), and reduced the production of pro-inflammatory cytokines. These results suggested that FGF produced anti-POCD cognitive-enhancing effects via down-regulation of the P2X4 receptor-associated neuroinflammation, providing a support that FGF might be a potential treatment for POCD.
Collapse
Affiliation(s)
- Jun Liu
- The First Affiliated Hospital of Ningbo University, Ningbo 315010, China
| | - Tao Gao
- University-Town Hospital of Chongqing Medical University, Chongqing 401331, China
| | - Bin Zhou
- The First Affiliated Hospital of Ningbo University, Ningbo 315010, China
| | - Xiaoxiao Xu
- The First Affiliated Hospital of Ningbo University, Ningbo 315010, China
| | - Xiaojie Zhai
- The First Affiliated Hospital of Ningbo University, Ningbo 315010, China
| | - Qinghuan Yao
- The First Affiliated Hospital of Ningbo University, Ningbo 315010, China
| | - Xiaowei Chen
- Translational Medicine Center of Pain, Emotion and Cognition, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo 315211, China
| | - Lin Liu
- Ningbo Women & Children's Hospital, Ningbo 315012, China
| | - Wei Cui
- The First Affiliated Hospital of Ningbo University, Ningbo 315010, China; Translational Medicine Center of Pain, Emotion and Cognition, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo 315211, China; Ningbo Kangning Hospital, Ningbo 315211, China
| | - Xiang Wu
- The First Affiliated Hospital of Ningbo University, Ningbo 315010, China
| |
Collapse
|
3
|
Schneider S, Merfort I, Idzko M, Zech A. Blocking P2X purinoceptor 4 signalling alleviates cigarette smoke induced pulmonary inflammation. Respir Res 2022; 23:148. [PMID: 35676684 PMCID: PMC9175376 DOI: 10.1186/s12931-022-02072-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 05/27/2022] [Indexed: 12/31/2022] Open
Abstract
Background Chronic obstructive pulmonary disease (COPD) is associated with elevated ATP levels in the extracellular space. Once released, ATP serves as danger signal modulating immune responses by activating purinergic receptors. Accordingly, purinergic signalling has been implicated in respiratory inflammation associated with cigarette smoke exposure. However, the role of P2X4-signalling has not been fully elucidated yet.
Methods Here, we analysed the P2X4 mRNA expression in COPD patients as well as cigarette smoke-exposed mice. Furthermore, P2X4-signalling was blocked by either using a specific antagonist or genetic depletion of P2rx4 in mice applied to an acute and prolonged model of cigarette smoke exposure. Finally, we inhibited P2X4-signalling in macrophages derived from THP-1 before stimulation with cigarette smoke extract. Results COPD patients exhibited an increased P2X4 mRNA expression in cells isolated from the bronchoalveolar lavage fluid and peripheral mononuclear cells. Similarly, P2rx4 expression was elevated in lung tissue of mice exposed to cigarette smoke. Blocking P2X4-signalling in mice alleviated cigarette smoke induced airway inflammation as well as lung parenchyma destruction. Additionally, human macrophages derived from THP-1 cells released reduced concentrations of proinflammatory cytokines in response to cigarette smoke extract stimulation when P2X4 was inhibited. Conclusion Taken together, we provide evidence that P2X4-signalling promotes innate immunity in the immunopathologic responses induced by cigarette smoke exposure. Supplementary Information The online version contains supplementary material available at 10.1186/s12931-022-02072-z.
Collapse
|
4
|
Kountz TS, Biyasheva A, Schleimer RP, Prakriya M. Extracellular Nucleotides and Histamine Suppress TLR3- and RIG-I-Mediated Release of Antiviral IFNs from Human Airway Epithelial Cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:2390-2402. [PMID: 35459743 PMCID: PMC9444327 DOI: 10.4049/jimmunol.2101085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 03/03/2022] [Indexed: 05/17/2023]
Abstract
Respiratory viruses stimulate the release of antiviral IFNs from the airway epithelium. Previous studies have shown that asthmatic patients show diminished release of type I and type III IFNs from bronchial epithelia. However, the mechanism of this suppression is not understood. In this study, we report that extracellular nucleotides and histamine, which are elevated in asthmatic airways, strongly inhibit release of type I and type III IFNs from human bronchial airway epithelial cells (AECs). Specifically, ATP, UTP, and histamine all inhibited the release of type I and type III IFNs from AECs induced by activation of TLR3, retinoic acid-inducible gene I (RIG-I), or cyclic GMP-AMP synthase-STING. This inhibition was at least partly mediated by Gq signaling through purinergic P2Y2 and H1 receptors, but it did not involve store-operated calcium entry. Pharmacological blockade of protein kinase C partially reversed inhibition of IFN production. Conversely, direct activation of protein kinase C with phorbol esters strongly inhibited TLR3- and RIG-I-mediated IFN production. Inhibition of type I and type III IFNs by ATP, UTP, histamine, and the proteinase-activated receptor 2 (PAR2) receptor agonist SLIGKV also occurred in differentiated AECs grown at an air-liquid interface, indicating that the suppression is conserved following mucociliary differentiation. Importantly, histamine and, more strikingly, ATP inhibited type I IFN release from human airway cells infected with live influenza A virus or rhinovirus 1B. These results reveal an important role for extracellular nucleotides and histamine in attenuating the induction of type I and III IFNs from AECs and help explain the molecular basis of the suppression of IFN responses in asthmatic patients.
Collapse
Affiliation(s)
- Timothy S Kountz
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL; and
| | - Assel Biyasheva
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Robert P Schleimer
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Murali Prakriya
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL; and
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL
| |
Collapse
|
5
|
Kountz TS, Jairaman A, Kountz CD, Stauderman KA, Schleimer RP, Prakriya M. Differential Regulation of ATP- and UTP-Evoked Prostaglandin E 2 and IL-6 Production from Human Airway Epithelial Cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2021; 207:1275-1287. [PMID: 34389624 PMCID: PMC8816324 DOI: 10.4049/jimmunol.2100127] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 07/07/2021] [Indexed: 11/19/2022]
Abstract
The airway epithelial cells (AECs) lining the conducting passageways of the lung secrete a variety of immunomodulatory factors. Among these, PGE2 limits lung inflammation and promotes bronchodilation. By contrast, IL-6 drives intense airway inflammation, remodeling, and fibrosis. The signaling that differentiates the production of these opposing mediators is not understood. In this study, we find that the production of PGE2 and IL-6 following stimulation of human AECs by the damage-associated molecular pattern extracellular ATP shares a common requirement for Ca2+ release-activated Ca2+ (CRAC) channels. ATP-mediated synthesis of PGE2 required activation of metabotropic P2Y2 receptors and CRAC channel-mediated cytosolic phospholipase A2 signaling. By contrast, ATP-evoked synthesis of IL-6 occurred via activation of ionotropic P2X receptors and CRAC channel-mediated calcineurin/NFAT signaling. In contrast to ATP, which elicited the production of both PGE2 and IL-6, the uridine nucleotide, UTP, stimulated PGE2 but not IL-6 production. These results reveal that human AECs employ unique receptor-specific signaling mechanisms with CRAC channels as a signaling nexus to regulate release of opposing immunomodulatory mediators. Collectively, our results identify P2Y2 receptors, CRAC channels, and P2X receptors as potential intervention targets for airway diseases.
Collapse
Affiliation(s)
- Timothy S Kountz
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Amit Jairaman
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Candace D Kountz
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL
| | | | - Robert P Schleimer
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Murali Prakriya
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL;
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL
| |
Collapse
|
6
|
Erratum: A P2X Ion Channel-Triggered NF-κB Pathway Enhances TNF-α-Induced IL-8 Expression in Airway Epithelial Cells. Am J Respir Cell Mol Biol 2020; 63:546. [PMID: 33000973 PMCID: PMC7528915 DOI: 10.1165/rcmb.v63erratum1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
7
|
Willam A, Aufy M, Tzotzos S, El-Malazi D, Poser F, Wagner A, Unterköfler B, Gurmani D, Martan D, Iqbal SM, Fischer B, Fischer H, Pietschmann H, Czikora I, Lucas R, Lemmens-Gruber R, Shabbir W. TNF Lectin-Like Domain Restores Epithelial Sodium Channel Function in Frameshift Mutants Associated with Pseudohypoaldosteronism Type 1B. Front Immunol 2017; 8:601. [PMID: 28611771 PMCID: PMC5447021 DOI: 10.3389/fimmu.2017.00601] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 05/08/2017] [Indexed: 11/28/2022] Open
Abstract
Previous in vitro studies have indicated that tumor necrosis factor (TNF) activates amiloride-sensitive epithelial sodium channel (ENaC) current through its lectin-like (TIP) domain, since cyclic peptides mimicking the TIP domain (e.g., solnatide), showed ENaC-activating properties. In the current study, the effects of TNF and solnatide on individual ENaC subunits or ENaC carrying mutated glycosylation sites in the α-ENaC subunit were compared, revealing a similar mode of action for TNF and solnatide and corroborating the previous assumption that the lectin-like domain of TNF is the relevant molecular structure for ENaC activation. Accordingly, TNF enhanced ENaC current by increasing open probability of the glycosylated channel, position N511 in the α-ENaC subunit being identified as the most important glycosylation site. TNF significantly increased Na+ current through ENaC comprising only the pore forming subunits α or δ, was less active in ENaC comprising only β-subunits, and showed no effect on ENaC comprising γ-subunits. TNF did not increase the membrane abundance of ENaC subunits to the extent observed with solnatide. Since the α-subunit is believed to play a prominent role in the ENaC current activating effect of TNF and TIP, we investigated whether TNF and solnatide can enhance αβγ-ENaC current in α-ENaC loss-of-function frameshift mutants. The efficacy of solnatide has been already proven in pathological conditions involving ENaC in phase II clinical trials. The frameshift mutations αI68fs, αT169fs, αP197fs, αE272fs, αF435fs, αR438fs, αY447fs, αR448fs, αS452fs, and αT482fs have been reported to cause pseudohypoaldosteronism type 1B (PHA1B), a rare, life-threatening, salt-wasting disease, which hitherto has been treated only symptomatically. In a heterologous expression system, all frameshift mutants showed significantly reduced amiloride-sensitive whole-cell current compared to wild type αβγ-ENaC, whereas membrane abundance varied between mutants. Solnatide restored function in α-ENaC frameshift mutants to current density levels of wild type ENaC or higher despite their lacking a binding site for solnatide, previously located to the region between TM2 and the C-terminus of the α-subunit. TNF similarly restored current density to wild type levels in the mutant αR448fs. Activation of βγ-ENaC may contribute to this moderate current enhancement, but whatever the mechanism, experimental data indicate that solnatide could be a new strategy to treat PHA1B.
Collapse
Affiliation(s)
- Anita Willam
- Department of Pharmacology and Toxicology, University of Vienna, Vienna, Austria.,APEPTICO GmbH, Vienna, Austria
| | - Mohammed Aufy
- Department of Pharmacology and Toxicology, University of Vienna, Vienna, Austria
| | | | - Dina El-Malazi
- Department of Pharmacology and Toxicology, University of Vienna, Vienna, Austria
| | - Franziska Poser
- Department of Pharmacology and Toxicology, University of Vienna, Vienna, Austria
| | - Alina Wagner
- Department of Pharmacology and Toxicology, University of Vienna, Vienna, Austria
| | - Birgit Unterköfler
- Department of Pharmacology and Toxicology, University of Vienna, Vienna, Austria
| | - Didja Gurmani
- Department of Pharmacology and Toxicology, University of Vienna, Vienna, Austria
| | - David Martan
- Department of Pharmacology and Toxicology, University of Vienna, Vienna, Austria
| | | | | | | | | | - Istvan Czikora
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Rudolf Lucas
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Rosa Lemmens-Gruber
- Department of Pharmacology and Toxicology, University of Vienna, Vienna, Austria
| | - Waheed Shabbir
- Department of Pharmacology and Toxicology, University of Vienna, Vienna, Austria.,APEPTICO GmbH, Vienna, Austria
| |
Collapse
|
8
|
Pinto MCX, Kihara AH, Goulart VAM, Tonelli FMP, Gomes KN, Ulrich H, Resende RR. Calcium signaling and cell proliferation. Cell Signal 2015; 27:2139-49. [PMID: 26275497 DOI: 10.1016/j.cellsig.2015.08.006] [Citation(s) in RCA: 140] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 08/04/2015] [Accepted: 08/10/2015] [Indexed: 12/17/2022]
Abstract
Cell proliferation is orchestrated through diverse proteins related to calcium (Ca(2+)) signaling inside the cell. Cellular Ca(2+) influx that occurs first by various mechanisms at the plasma membrane, is then followed by absorption of Ca(2+) ions by mitochondria and endoplasmic reticulum, and, finally, there is a connection of calcium stores to the nucleus. Experimental evidence indicates that the fluctuation of Ca(2+) from the endoplasmic reticulum provides a pivotal and physiological role for cell proliferation. Ca(2+) depletion in the endoplasmatic reticulum triggers Ca(2+) influx across the plasma membrane in an phenomenon called store-operated calcium entries (SOCEs). SOCE is activated through a complex interplay between a Ca(2+) sensor, denominated STIM, localized in the endoplasmic reticulum and a Ca(2+) channel at the cell membrane, denominated Orai. The interplay between STIM and Orai proteins with cell membrane receptors and their role in cell proliferation is discussed in this review.
Collapse
Affiliation(s)
- Mauro Cunha Xavier Pinto
- Departamento de Bioquímica e Imunologia, Instituto de Ciência Biológicas, Univtreersidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, 31270-901 Belo Horizonte, MG, Brazil; Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Presyes 748, 05508-000 São Paulo, SP, Brazil; Instituto Nanocell, Rua Santo Antônio, 420, 35500-041 Divinópolis, MG, Brazil
| | - Alexandre Hiroaki Kihara
- Universidade Federal do ABC, Centro de Matemática, Computação e Cognição, Rua Arcturus (Jd Antares), 09606-070, São Bernardo do Campo, SP, Brazil
| | - Vânia A M Goulart
- Departamento de Bioquímica e Imunologia, Instituto de Ciência Biológicas, Univtreersidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, 31270-901 Belo Horizonte, MG, Brazil; Instituto Nanocell, Rua Santo Antônio, 420, 35500-041 Divinópolis, MG, Brazil
| | - Fernanda M P Tonelli
- Departamento de Bioquímica e Imunologia, Instituto de Ciência Biológicas, Univtreersidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, 31270-901 Belo Horizonte, MG, Brazil; Instituto Nanocell, Rua Santo Antônio, 420, 35500-041 Divinópolis, MG, Brazil
| | - Katia N Gomes
- Departamento de Bioquímica e Imunologia, Instituto de Ciência Biológicas, Univtreersidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, 31270-901 Belo Horizonte, MG, Brazil
| | - Henning Ulrich
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Presyes 748, 05508-000 São Paulo, SP, Brazil
| | - Rodrigo R Resende
- Departamento de Bioquímica e Imunologia, Instituto de Ciência Biológicas, Univtreersidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, 31270-901 Belo Horizonte, MG, Brazil; Instituto Nanocell, Rua Santo Antônio, 420, 35500-041 Divinópolis, MG, Brazil.
| |
Collapse
|
9
|
Kobayashi Y, Kovacs-Nolan J, Matsui T, Mine Y. The Anti-atherosclerotic Dipeptide, Trp-His, Reduces Intestinal Inflammation through the Blockade of L-Type Ca2+ Channels. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:6041-6050. [PMID: 26079480 DOI: 10.1021/acs.jafc.5b01682] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Trp-His, the anti-atherosclerotic dipeptide, exerted an antiproliferative effect on vascular smooth muscle cells by L-type Ca(2+) channel blocker-like effect. The beneficial potential by the blockade of Ca(2+) channels on chronic intestinal inflammation, including inflammatory bowel disease (IBD), is unclear. Trp-His (100 or 250 mg/kg body weight/day) was administered for 14 days to BALB/c mice, and 5% dextran sodium sulfate (DSS) was administered to induce colitis in the last 7 days. Trp-His reduced DSS-induced typical colitis symptoms and cytokine expression in the colon. Trp-His inhibited interleukin (IL)-8 secretion in tumor necrosis factor (TNF)-α-stimulated HT-29 cells. The inhibitory effect of Trp-His, as well as that of Ca(2+) channel blockers, was impaired by the presence of Ca(2+) channel agonist Bay K 8644. The TNF-α-induced activation of mitogen-activated protein kinases (MAPKs) and IκBα were decreased by Trp-His. These results indicated that the anti-inflammatory effect of Trp-His may be involved in the blockade of L-type Ca(2+) channels.
Collapse
Affiliation(s)
- Yutaro Kobayashi
- †Department of Food Science, University of Guelph, Guelph, Ontario N1G 2W1, Canada
- §Division of Bioresources and Bioenvironmental Sciences, Faculty of Agriculture, Graduate School, Kyushu University, Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan
| | | | - Toshiro Matsui
- §Division of Bioresources and Bioenvironmental Sciences, Faculty of Agriculture, Graduate School, Kyushu University, Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan
| | - Yoshinori Mine
- †Department of Food Science, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| |
Collapse
|
10
|
Yao Y, Levings MK, Steiner TS. ATP conditions intestinal epithelial cells to an inflammatory state that promotes components of DC maturation. Eur J Immunol 2012; 42:3310-21. [PMID: 22987503 DOI: 10.1002/eji.201142213] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Revised: 08/02/2012] [Accepted: 09/07/2012] [Indexed: 12/23/2022]
Abstract
Intestinal epithelial cells (IECs) normally promote the development of gut resident tolerogenic dendritic cells (DCs) and regulatory T cells, but how this process is altered in inflammatory bowel disease is not well characterized. Recently, we published that the cell injury signal ATP modulates IEC chemokine responses to the TLR5 ligand flagellin and exacerbates colitis in the presence of flagellin. We hypothesized that ATP switches these IECs from tolerogenic to proinflammatory, enhancing DC activation and immune responses to commensal antigens. Here, we report that ATP enhanced murine IEC production of KC, IL-6, TGF-β, and thymic stromal lymphopoietin in response to TLR1/2 stimulation by Pam(3) CSK(4) (PAM). Moreover, supernatants from IECs stimulated with ATP+PAM enhanced expression of CD80 on bone marrow derived dendritic cells, and increased their production of IL-12, IL-6, IL-23, TGF-β, and aldh1a2, suggesting a Th1/Th17 polarizing environment. DCs conditioned by stressed IECs stimulated an enhanced recall response to flagellin and supported the expansion of IFN-γ(+) and IL-17(+) memory T cells. Lastly, colonic administration of nonhydrolysable ATP increased production of IL-6 and Cxcl1 (KC) by IECs. These findings indicate that ATP influences the response of IECs to TLR ligands and biases the maturation of DCs to become inflammatory.
Collapse
Affiliation(s)
- Yu Yao
- Department of Medicine, University of British Columbia and Vancouver Coastal Health Research Institute, Vancouver, BC, Canada
| | | | | |
Collapse
|
11
|
Burnstock G, Brouns I, Adriaensen D, Timmermans JP. Purinergic signaling in the airways. Pharmacol Rev 2012; 64:834-68. [PMID: 22885703 DOI: 10.1124/pr.111.005389] [Citation(s) in RCA: 123] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Evidence for a significant role and impact of purinergic signaling in normal and diseased airways is now beyond dispute. The present review intends to provide the current state of knowledge of the involvement of purinergic pathways in the upper and lower airways and lungs, thereby differentiating the involvement of different tissues, such as the epithelial lining, immune cells, airway smooth muscle, vasculature, peripheral and central innervation, and neuroendocrine system. In addition to the vast number of well illustrated functions for purinergic signaling in the healthy respiratory tract, increasing data pointing to enhanced levels of ATP and/or adenosine in airway secretions of patients with airway damage and respiratory diseases corroborates the emerging view that purines act as clinically important mediators resulting in either proinflammatory or protective responses. Purinergic signaling has been implicated in lung injury and in the pathogenesis of a wide range of respiratory disorders and diseases, including asthma, chronic obstructive pulmonary disease, inflammation, cystic fibrosis, lung cancer, and pulmonary hypertension. These ostensibly enigmatic actions are based on widely different mechanisms, which are influenced by the cellular microenvironment, but especially the subtypes of purine receptors involved and the activity of distinct members of the ectonucleotidase family, the latter being potential protein targets for therapeutic implementation.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Autonomic Neuroscience Centre, University College Medical School, Royal Free Campus, London, UK.
| | | | | | | |
Collapse
|
12
|
Théâtre E, Frederix K, Guilmain W, Delierneux C, Lecut C, Bettendorff L, Bours V, Oury C. Overexpression of CD39 in mouse airways promotes bacteria-induced inflammation. THE JOURNAL OF IMMUNOLOGY 2012; 189:1966-74. [PMID: 22802412 DOI: 10.4049/jimmunol.1102600] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In airways, the ecto-nucleoside triphosphate diphosphohydrolase CD39 plays a central role in the regulation of physiological mucosal nucleotide concentrations and likely contributes to the control of inflammation because accelerated ATP metabolism occurs in chronic inflammatory lung diseases. We sought to determine whether constant elevated CD39 activity in lung epithelia is sufficient to cause inflammation and whether this affects the response to acute LPS or Pseudomonas aeruginosa exposure. We generated transgenic mice overexpressing human CD39 under the control of the airway-specific Clara cell 10-kDa protein gene promoter. Transgenic mice did not develop any spontaneous lung inflammation. However, intratracheal instillation of LPS resulted in accelerated recruitment of neutrophils to the airways of transgenic mice. Macrophage clearance was delayed, and the amounts of CD8(+) T and B cells were augmented. Increased levels of keratinocyte chemoattractant, IL-6, and RANTES were produced in transgenic lungs. Similarly, higher numbers of neutrophils and macrophages were found in the lungs of transgenic mice infected with P. aeruginosa, which correlated with improved bacteria clearance. The transgenic phenotype was partially and differentially restored by coinstillation of P2X(1) or P2X(7) receptor antagonists or of caffeine with LPS. Thus, a chronic increase of epithelial CD39 expression and activity promotes airway inflammation in response to bacterial challenge by enhancing P1 and P2 receptor activation.
Collapse
Affiliation(s)
- Emilie Théâtre
- Interdisciplinary Cluster of Applied Genoproteomics-Inflammation, Infection, Immunity, Unit of Human Genetics, Laboratory of Thrombosis and Haemostasis, University of Liège, Liège 4000, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Abstract
The immune and inflammatory responses initiated by the interaction of a pathogen with airway surfaces constitute vital mechanisms to eradicate an infection. Sentinel dendritic cells embedded in the mucosa migrate to the lymph nodes to induce immune responses, whereas epithelial cells release chemokines to recruit inflammatory cells engaged in the active destruction of the intruder. All immune and inflammatory cells are regulated by customized purinergic networks of receptors and ectonucleotidases. The general concept is that bacterial products induce ATP release, which activates P2 receptors to initiate an inflammatory response, and is terminated by the conversion of ATP into adenosine (ADO) to initiate P1 receptor-mediated negative feedback responses. However, this chapter exposes a far more complex purinergic regulation of critical functions, such as the differentiation of naive lymphocytes and the complex maturation and secretion of pro-cytokines (i.e. IL-1β) by the "inflammasome". This material also reconciles decades of research by exposing the specificity and plasticity of the signaling network expressed by each immune and inflammatory cell, which changes through cell differentiation and in response to infectious or inflammatory mediators. By the end of this chapter, the reader will have a new appreciation for this aspect of airway defenses, and several leads in terms of therapeutic applications for the treatment of chronic respiratory diseases.
Collapse
|
14
|
Ivison SM, Himmel ME, Mayer M, Yao Y, Kifayet A, Levings MK, Steiner TS. The stress signal extracellular ATP modulates antiflagellin immune responses in intestinal epithelial cells. Inflamm Bowel Dis 2011; 17:319-33. [PMID: 20722064 DOI: 10.1002/ibd.21428] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2010] [Accepted: 06/17/2010] [Indexed: 12/11/2022]
Abstract
BACKGROUND Although intestinal epithelial cells (IECs) are continually exposed to commensal microbes, under healthy conditions they contribute to intestinal homeostasis while keeping inflammatory responses in check. In response to invading pathogens, however, IECs respond vigorously by producing inflammatory mediators. To better understand the signals that regulate the inflammatory responses of IECs, we investigated whether the danger signal ATP (which is released from injured cells) could alter responses to bacterial products. METHODS We measured chemokine production from Caco-2 cells stimulated with the Toll-like receptor 5 agonist flagellin with or without ATP. ATP increased flagellin-induced IL-8 secretion but reduced CCL20 secretion via distinct signaling pathways. RESULTS ATP-enhanced IL-8 production was only partly blocked by the P(2) receptor antagonist suramin and required activation of NF-κB while ATP-mediated reduction of CCL20 was completely blocked by suramin and required activation of ERK1/2. The effects of ATP on both chemokines required extracellular calcium but not phospholipase C, implicating P(2) X receptor involvement. To investigate how ATP alters IEC responses to bacterial products in vivo, mice receiving dextran sodium sulfate were given intrarectal flagellin with or without ATP. Addition of ATP to flagellin caused greater weight loss and increased antiflagellin antibody titers, as well as decreased colonic interferon gamma (IFN-γ) and higher antiflagellin IgG1/IgG2 ratios, which indicate decreased Th1 polarization. CONCLUSIONS Together, these data indicate that stress, in the form of extracellular ATP, reshapes both the inflammatory response of flagellin-stimulated IECs and downstream adaptive immunity, representing a possible strategy by which these cells differentiate between commensal and pathogenic bacteria.
Collapse
Affiliation(s)
- Sabine M Ivison
- Division of Infectious Diseases, Department of Medicine, University of British Columbia, Vancouver, BC, Canada.
| | | | | | | | | | | | | |
Collapse
|
15
|
Alonso MT, García-Sancho J. Nuclear Ca(2+) signalling. Cell Calcium 2010; 49:280-9. [PMID: 21146212 DOI: 10.1016/j.ceca.2010.11.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2010] [Revised: 10/30/2010] [Accepted: 11/08/2010] [Indexed: 10/18/2022]
Abstract
Ca(2+) signalling is important for controlling gene transcription. Changes of the cytosolic Ca(2+) ([Ca(2+)](C)) may promote migration of transcription factors or transcriptional regulators to the nucleus. Changes of the nucleoplasmic Ca(2+) ([Ca(2+)](N)) can also regulate directly gene expression. [Ca(2+)](N) may change by propagation of [Ca(2+)](C) changes through the nuclear envelope or by direct release of Ca(2+) inside the nucleus. In the last case nuclear and cytosolic signalling can be dissociated. Phosphatidylinositol bisphosphate, phospholipase C and cyclic ADP-ribosyl cyclase are present inside the nucleus. Inositol trisphosphate receptors (IP(3)R) and ryanodine receptors (RyR) have also been found in the nucleus and can be activated by agonists. Furthermore, nuclear location of the synthesizing enzymes and receptors may be atypical, not associated to the nuclear envelope or other membranes. The possible role of nuclear subdomains such as speckles, nucleoplasmic reticulum, multi-macromolecular complexes and nuclear nanovesicles is discussed.
Collapse
Affiliation(s)
- Maria Teresa Alonso
- Instituto de Biología y Genética Molecular (IBGM), Universidad de Valladolid y Consejo Superior de Investigaciones Científicas (CSIC), c/Sanz y Forés 3, 47003 Valladolid, Spain
| | | |
Collapse
|
16
|
Cicko S, Lucattelli M, Müller T, Lommatzsch M, De Cunto G, Cardini S, Sundas W, Grimm M, Zeiser R, Dürk T, Zissel G, Boeynaems JM, Sorichter S, Ferrari D, Di Virgilio F, Virchow JC, Lungarella G, Idzko M. Purinergic receptor inhibition prevents the development of smoke-induced lung injury and emphysema. THE JOURNAL OF IMMUNOLOGY 2010; 185:688-97. [PMID: 20519655 DOI: 10.4049/jimmunol.0904042] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Extracellular ATP acts as a "danger signal" and can induce inflammation by binding to purinergic receptors. Chronic obstructive pulmonary disease is one of the most common inflammatory diseases associated with cigarette smoke inhalation, but the underlying mechanisms are incompletely understood. In this study, we show that endogenous pulmonary ATP levels are increased in a mouse model of smoke-induced acute lung inflammation and emphysema. ATP neutralization or nonspecific P2R-blockade markedly reduced smoke-induced lung inflammation and emphysema. We detected an upregulation the purinergic receptors subtypes on neutrophils (e.g., P2Y2R), macrophages, and lung tissue from animals with smoke-induced lung inflammation. By using P2Y(2)R deficient ((-/-)) animals, we show that ATP induces the recruitment of blood neutrophils to the lungs via P2Y(2)R. Moreover, P2Y(2)R deficient animals had a reduced pulmonary inflammation following acute smoke-exposure. A series of experiments with P2Y(2)R(-/-) and wild type chimera animals revealed that P2Y(2)R expression on hematopoietic cell plays the pivotal role in the observed effect. We demonstrate, for the first time, that endogenous ATP contributes to smoke-induced lung inflammation and then development of emphysema via activation of the purinergic receptor subtypes, such as P2Y(2)R.
Collapse
Affiliation(s)
- Sanja Cicko
- Department of Pulmonary Medicine, University Hospital, Freiburg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
McGrath-Morrow SA, Collaco JM, Crawford TO, Carson KA, Lefton-Greif MA, Zeitlin P, Lederman HM. Elevated serum IL-8 levels in ataxia telangiectasia. J Pediatr 2010; 156:682-4.e1. [PMID: 20171651 DOI: 10.1016/j.jpeds.2009.12.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2009] [Revised: 10/14/2009] [Accepted: 12/04/2009] [Indexed: 11/18/2022]
Abstract
Serum interleukin (IL)-8 levels were measured in 50 patients with ataxia telangiectasia (A-T) and 22 without A-T. In a cross-sectional study, the geometric mean of IL-8 level was significantly higher in the patients with A-T (P <.0001). Elevated serum IL-8 levels in patients with A-T suggest that systemic inflammation may contribute to the disease phenotype.
Collapse
Affiliation(s)
- Sharon A McGrath-Morrow
- Division of Pediatric Pulmonology, The Johns Hopkins Medical Institutions, Baltimore, MD, USA.
| | | | | | | | | | | | | |
Collapse
|
18
|
Adler KB, Matalon S. Highlights of the December Issue. Am J Respir Cell Mol Biol 2009. [DOI: 10.1165/rcmb.2009-2012ed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|