1
|
Li W, Jia W, Yi X, Li P, Song C. The Significance of Fractional Exhaled Nitric Oxide, Fractional Nasal Exhaled Nitric Oxide and Lung Function Tests in Children with Moderate-to-Severe Allergic Rhinitis. Am J Rhinol Allergy 2025:19458924251313495. [PMID: 39814345 DOI: 10.1177/19458924251313495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/18/2025]
Abstract
PURPOSE Fractional nasal exhaled NO (FnNO), fractional exhaled NO (FeNO) and lung function tests were performed in children with moderate-to-severe persistent allergic rhinitis (AR) to investigate the significance of the above indices in the assessment and diagnosis of children with AR. METHODS A total of 135 children with persistent AR were selected and divided into moderate-to-severe and mild groups; serum total immunoglobulin E (IgE), peripheral blood eosinophil counts (EOS), FnNO, FeNO, and lung function tests were performed. RESULTS Children in the moderate-to-severe group had increased levels of FnNO and FeNO and decreased levels of forced expiratory flow at 75% of forced vital capacity as a percentage of the predicted value (FEF75%) and maximum mid-term expiratory flow as a percentage of the predicted value (MMEF%) . IgE in children with AR was positively correlated with FeNO and FnNO and negatively correlated with FEF75% . EOS was positively correlated with FnNO. FeNO was negatively correlated with FEF75% and forced expiratory flow at 50% of forced vital capacity as a percentage of the predicted value (FEF50%). FnNO was negatively correlated with FEF75%, FEF50%, and MMEF%. CONCLUSION FnNO, FeNO, and pulmonary function tests may help assess disease severity and level of disease control in children with persistent AR.
Collapse
Affiliation(s)
- Wanying Li
- Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, China
| | - Wanyu Jia
- Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, China
| | - Xiaowen Yi
- Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, China
| | - Peng Li
- Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, China
| | - Chunlan Song
- Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, China
| |
Collapse
|
2
|
Xu X, Yin J, Yang Y, Liu H, Yu J, Luo X, Zhang Y, Song X. Advances in co-pathogenesis of the united airway diseases. Respir Med 2024; 225:107580. [PMID: 38484897 DOI: 10.1016/j.rmed.2024.107580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 11/15/2023] [Revised: 02/02/2024] [Accepted: 02/22/2024] [Indexed: 03/19/2024]
Abstract
According to the concept of "united airway diseases", the airway is a single organ in which upper and lower airway diseases are commonly comorbid. A range of inflammatory factors have been found to play an important role in the chain reaction of upper and lower airway diseases. However, the amount of research on this concept remains limited. The underlying mechanism of the relationship between typical diseases of the united airway, such as asthma, allergic rhinitis, and chronic sinusitis, also needs to be further explored. This review highlights the interaction between upper and lower respiratory diseases gathered from epidemiological, histoembryology, neural mechanistic, microbiological, and clinical studies, revealing the relationship between the upper and lower respiratory tracts.
Collapse
Affiliation(s)
- Xinjun Xu
- Department of Otolaryngology, Head and Neck Surgery. Yantai Yuhuangding Hospital, Qingdao University, Yantai, China; Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, China
| | - Jiali Yin
- Department of Otolaryngology, Head and Neck Surgery. Yantai Yuhuangding Hospital, Qingdao University, Yantai, China; Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, China
| | - Yujuan Yang
- Department of Otolaryngology, Head and Neck Surgery. Yantai Yuhuangding Hospital, Qingdao University, Yantai, China; Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, China
| | - Huifang Liu
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, China; The 2nd School of Clinical Medicine of Binzhou Medical University, Yantai, Shandong, China
| | - Jingyi Yu
- Department of Otolaryngology, Head and Neck Surgery. Yantai Yuhuangding Hospital, Qingdao University, Yantai, China; Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, China
| | - Xianghuang Luo
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, China; School of Clinical Medicine, Weifang Medical University, Weifang, 261042, China
| | - Yu Zhang
- Department of Otolaryngology, Head and Neck Surgery. Yantai Yuhuangding Hospital, Qingdao University, Yantai, China; Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, China.
| | - Xicheng Song
- Department of Otolaryngology, Head and Neck Surgery. Yantai Yuhuangding Hospital, Qingdao University, Yantai, China; Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, China.
| |
Collapse
|
3
|
Russjan E. The Role of Peptides in Asthma-Obesity Phenotype. Int J Mol Sci 2024; 25:3213. [PMID: 38542187 PMCID: PMC10970696 DOI: 10.3390/ijms25063213] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/31/2024] [Revised: 03/08/2024] [Accepted: 03/10/2024] [Indexed: 01/04/2025] Open
Abstract
The co-occurrence of asthma and obesity is becoming an increasingly common health problem. It became clear that both diseases are closely related, since overweight/obesity are associated with an increased risk of asthma development, and more than half of the subjects with severe or difficult-to-treat asthma are obese. Currently, there are no specific guidelines for the treatment of this group of patients. The mechanisms involved in the asthma-obesity phenotype include low-grade chronic inflammation and changes in pulmonary physiology. However, genetic predispositions, gender differences, comorbid conditions, and gut microbiota also seem to be important. Regulatory peptides affect many processes related to the functioning of the respiratory tract and adipose tissue. Adipokines such as leptin, adiponectin, resistin, and the less studied omentin, chemerin, and visfatin, as well as the gastrointestinal hormones ghrelin, cholecystokinin, glucagon-like peptide-1, and neuropeptides, including substance P or neuropeptide Y, can play a significant role in asthma with obesity. The aim of this article is to provide a concise review of the contribution of particular peptides in inflammatory reactions, obesity, asthma, and a combination of both diseases, as well as emphasize their potential role in the effective treatment of the asthma-obesity phenotype in the future.
Collapse
Affiliation(s)
- Ewelina Russjan
- Department of Respiration Physiology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawińskiego 5 St., 02-106 Warsaw, Poland
| |
Collapse
|
4
|
Zhang J, Zhang C, Miao L, Meng Z, Gu N, Song G. Stigmasterol alleviates allergic airway inflammation and airway hyperresponsiveness in asthma mice through inhibiting substance-P receptor. PHARMACEUTICAL BIOLOGY 2023; 61:449-458. [PMID: 36788676 PMCID: PMC9930798 DOI: 10.1080/13880209.2023.2173252] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Academic Contribution Register] [Received: 07/12/2022] [Revised: 12/03/2022] [Accepted: 01/20/2023] [Indexed: 06/18/2023]
Abstract
CONTEXT Stigmasterol has significant anti-arthritis and anti-inflammatory effects, but its role in immune and inflammatory diseases is still unclear. OBJECTIVE The potential advantages of stigmasterol in asthma were explored in IL-13-induced BEAS-2B cells and asthmatic mice. MATERIALS AND METHODS The optimal target of stigmasterol was confirmed in asthma. After detecting the cytotoxicity of stigmasterol in BEAS-2B cells, 10 μg/mL and 20 μg/mL stigmasterol were incubated with the BEAS-2B cell model for 48 h, and anti-inflammation and antioxidative stress were verified. Asthmatic mice were induced by OVA and received 100 mg/kg stigmasterol for 7 consecutive days. After 28 days, lung tissues and BAL fluid were collected for the following study. To further verify the role of NK1-R, 0.1 μM WIN62577 (NK1-R specific antagonist), and 1 μM recombinant human NK1-R protein were applied. RESULTS NK1-R was the potential target of stigmasterol. When the concentration of stigmasterol is 20 μg/mL, the survival rate of BEAS-2B cells is about 98.4%, which is non-toxic. Stigmasterol exerted anti-inflammation and antioxidant stress in a dose-dependent manner and decreased NK1-R expression in IL-13-induced BEAS-2B. Meanwhile, in vivo assay also indicated the anti-inflammation and antioxidant stress of stigmasterol after OVA challenge. Stigmasterol inhibited inflammation infiltration and mucus hypersecretion, and NK1-R expression. DISCUSSION AND CONCLUSIONS The protective effect of stigmaterol on asthma and its underlying mechanism have been discussed in depth, providing a theoretical basis and more possibilities for its treatment of asthma.
Collapse
Affiliation(s)
- Jimei Zhang
- Department of Material supply, the Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| | - Chonghong Zhang
- Department of Material supply, the Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| | - Li Miao
- Department of Cardiology, First Ward, Yantai Yeda Hospital, Yantai, Shandong, China
| | - Zimin Meng
- Department of Cardiovascular medicine, Weihai Municipal Hospital, Weihai, Shandong, China
| | - Ning Gu
- Department of Cardiovascular medicine, Weihai Municipal Hospital, Weihai, Shandong, China
| | - Guifang Song
- Department of Cardiology, the Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| |
Collapse
|
5
|
Minagawa S, Araya J, Watanabe N, Fujimoto S, Watanabe J, Hara H, Numata T, Kuwano K, Matsuwaki Y. Real-life effectiveness of dupilumab in patients with mild to moderate bronchial asthma comorbid with CRSwNP. BMC Pulm Med 2022; 22:258. [PMID: 35764984 PMCID: PMC9241284 DOI: 10.1186/s12890-022-02046-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/16/2022] [Accepted: 06/20/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Dupilumab, an anti-IL-4α receptor antibody, is a new treatment for severe or refractory asthma. However, real-world evidence on the efficacy of dupilumab in patients with mild to moderate bronchial asthma is lacking. METHODS We retrospectively evaluated the effects of dupilumab in 62 patients who received dupilumab for eosinophilic sinusitis comorbid with asthma at a single centre in Japan. Type 2 inflammatory markers, ACT, respiratory function tests, and forced oscillation technique (FOT) were analysed before, three months after, and one year after dupilumab administration, mainly in patients with mild to moderate asthma. RESULTS FEV1, %FEV1, %FVC, treatment steps for asthma and ACT improved significantly after three months of dupilumab treatment. FeNO was markedly decreased, whereas IgE and eosinophil counts showed no significant changes. Pre- and post-treatment respiratory resistance (Rrs) and respiratory reactance (Xrs) correlated significantly with FEV1. Improvement in %FEV1 was associated with higher FeNO and higher serum IgE before dupilumab treatment. CONCLUSION Dupilumab treatment for sinusitis may improve respiratory functions, asthma symptoms, and asthma treatment reduction, even if the associated bronchial asthma is not severe.
Collapse
Affiliation(s)
- Shunsuke Minagawa
- Division of Respiratory Diseases, Department of Internal Medicine, The Jikei University School of Medicine, 3-25-8 Nishi-shinbashi, Minato-ku, Tokyo, 105-8461, Japan. .,Matsuwaki Clinic Shinagawa, 6-7-29 Kitashinagawa Shinagawa-ku, Tokyo, 140-0001, Japan.
| | - Jun Araya
- Division of Respiratory Diseases, Department of Internal Medicine, The Jikei University School of Medicine, 3-25-8 Nishi-shinbashi, Minato-ku, Tokyo, 105-8461, Japan
| | - Naoaki Watanabe
- Division of Respiratory Diseases, Department of Internal Medicine, The Jikei University School of Medicine, 3-25-8 Nishi-shinbashi, Minato-ku, Tokyo, 105-8461, Japan.,Matsuwaki Clinic Shinagawa, 6-7-29 Kitashinagawa Shinagawa-ku, Tokyo, 140-0001, Japan
| | - Shota Fujimoto
- Division of Respiratory Diseases, Department of Internal Medicine, The Jikei University School of Medicine, 3-25-8 Nishi-shinbashi, Minato-ku, Tokyo, 105-8461, Japan.,Matsuwaki Clinic Shinagawa, 6-7-29 Kitashinagawa Shinagawa-ku, Tokyo, 140-0001, Japan
| | - Junko Watanabe
- Division of Respiratory Diseases, Department of Internal Medicine, The Jikei University School of Medicine, 3-25-8 Nishi-shinbashi, Minato-ku, Tokyo, 105-8461, Japan.,Matsuwaki Clinic Shinagawa, 6-7-29 Kitashinagawa Shinagawa-ku, Tokyo, 140-0001, Japan
| | - Hiromichi Hara
- Division of Respiratory Diseases, Department of Internal Medicine, The Jikei University School of Medicine, 3-25-8 Nishi-shinbashi, Minato-ku, Tokyo, 105-8461, Japan
| | - Takanori Numata
- Division of Respiratory Diseases, Department of Internal Medicine, The Jikei University School of Medicine, 3-25-8 Nishi-shinbashi, Minato-ku, Tokyo, 105-8461, Japan
| | - Kazuyoshi Kuwano
- Division of Respiratory Diseases, Department of Internal Medicine, The Jikei University School of Medicine, 3-25-8 Nishi-shinbashi, Minato-ku, Tokyo, 105-8461, Japan
| | - Yoshinori Matsuwaki
- Matsuwaki Clinic Shinagawa, 6-7-29 Kitashinagawa Shinagawa-ku, Tokyo, 140-0001, Japan
| |
Collapse
|
6
|
Li M, Zhong X, Xu WT. Substance P promotes the progression of bronchial asthma through activating the PI3K/AKT/NF-κB pathway mediated cellular inflammation and pyroptotic cell death in bronchial epithelial cells. Cell Cycle 2022; 21:2179-2191. [PMID: 35726575 DOI: 10.1080/15384101.2022.2092166] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/03/2022] Open
Abstract
NOD-like receptor family pyrin domain containing three (NLRP3) inflammasome-mediated pyroptotic cell death and inflammation contribute to the pathogenesis of bronchial asthma, and it is reported that Substance P (SP) plays important role in the process, however, the detailed molecular mechanisms by which SP participates in the aggravation of bronchial asthma have not been fully studied. Here, our clinical data showed that SP and its receptor Neurokinin-1 receptor (NK1R) were significantly elevated in the plasma and peripheral blood mononuclear cell (PBMC) collected from patients with bronchial asthma, and further pre-clinical experiments evidenced that SP suppressed cell viability, accelerated lactate dehydrogenase (LDH) release, and upregulated ASC, Caspase-1, NLRP3, IL-1β and IL-18 to promote pyroptotic cell death and cellular inflammation in the human bronchial epithelial cells and asthmatic mice models in vitro and in vivo. Interestingly, SP-induced pyroptotic cell death was reversed by NK1R inhibitor L732138. Then, we uncovered the underlying mechanisms, and found that SP activated the downstream PI3K/AKT/NF-κB signal pathway in a NK1R-dependent manner, and blockage of this pathway by both PI3K inhibitor (LY294002) and NF-κB inhibitor (MG132) reversed SP-induced pyroptotic cell death and recovered cell viability in bronchial epithelial cells. Collectively, we concluded that SP interacted with its receptor NK1R to activate the PI3K/AKT/NF-κB pathway, which further triggered NLRP3-mediated pyroptotic cell death in the bronchial epithelial cells, resulting in the aggravation of bronchial asthma.
Collapse
Affiliation(s)
- Miao Li
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Xiao Zhong
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Wen-Ting Xu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
7
|
Geng S, Xie H, Chen L, Chen D, Lu S, Zhao N, Yang R, Wang Z, He S, Zhang H. Altered Expression of Substance P and NK1R in CCR3 + and CD123 +HLA-DR − Basophils Under Airway Allergic Conditions. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2022; 14:687-712. [DOI: 10.4168/aair.2022.14.6.687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 02/24/2022] [Revised: 08/11/2022] [Accepted: 08/16/2022] [Indexed: 11/27/2022]
Affiliation(s)
- Shiyang Geng
- Allergy and Clinical Immunology Research Centre, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Hua Xie
- Department of the PLA Center of Respiratory and Allergic Disease Diagnosing Management, General Hospital of Northern Theater Command, Shenyang, China
| | - Liping Chen
- Translational Medicine Research Centre, Shenyang Medical College, Shenyang, China
| | - Dong Chen
- Allergy and Clinical Immunology Research Centre, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
- Department of Otolaryngology Head and Neck Surgery, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Sijing Lu
- Allergy and Clinical Immunology Research Centre, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
- Department of Respiration, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Nan Zhao
- Allergy and Clinical Immunology Research Centre, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Ruiming Yang
- Allergy and Clinical Immunology Research Centre, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Zhao Wang
- Allergy and Clinical Immunology Research Centre, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Shaoheng He
- Allergy and Clinical Immunology Research Centre, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
- Translational Medicine Research Centre, Shenyang Medical College, Shenyang, China
| | - Huiyun Zhang
- Allergy and Clinical Immunology Research Centre, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
- Translational Medicine Research Centre, Shenyang Medical College, Shenyang, China
| |
Collapse
|
8
|
Fang Z, Yi F, Peng Y, Zhang JJ, Zhang L, Deng Z, Chen F, Li C, He Y, Huang C, Zhang Q, Lai K, Xie J. Inhibition of TRPA1 reduces airway inflammation and hyperresponsiveness in mice with allergic rhinitis. FASEB J 2021; 35:e21428. [PMID: 33774861 DOI: 10.1096/fj.201902627r] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/17/2019] [Revised: 12/18/2020] [Accepted: 01/22/2021] [Indexed: 12/26/2022]
Abstract
This study was conducted to investigate whether a transient receptor potential ankyrin 1 (TRPA1) antagonist (HC-030031) can reduce airway inflammation and hyperresponsiveness in a murine allergic rhinitis (AR) model. BALB/c mice were sensitized and challenged by ovalbumin (OVA) to induce AR. HC-030031 or vehicle was administrated to mice via intraperitoneal injection prior to OVA challenges. Nose-scratching events, histopathologic alterations of the airways, and bronchial hyperresponsiveness (BHR) were assessed. Differential cells and proinflammatory cytokines in the nasal lavage (NAL) and bronchoalveolar lavage (BAL) fluid were measured. Expressions of TRPA1 in nasal mucosa were examined by immunohistochemistry. TRPA1-expressing vagal neurons were labeled by immunofluorescent staining. HC-030031-treated AR mice had markedly reduced type-2 inflammation in nasal mucosa and ameliorated-nose-scratching events than AR mice received vehicle. HC-030031 treatment also dramatically reduced leucocyte numbers and IL-8 level in the BAL fluid, inhibited lower airway remodeling and fibrosis, and nearly abolished BHR. HC-0300031 treatment significantly inhibited the upregulated number of TRPA1 expressing nasal epithelial cells and TRPA1 expressing sensory neurons, leading to downregulation of SP in both upper and lower airways. Targeting TRPA1 may represent a promising strategy for treating AR and AR-related asthma.
Collapse
Affiliation(s)
- Zhangfu Fang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Fang Yi
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yang Peng
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Junfeng Jim Zhang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Global Health Institute, Nicholas School of the Environment, Duke University, Durham, NC, USA
| | - Liting Zhang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zheng Deng
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Fagui Chen
- Department of Respiratory Medicine, Shantou Central Hospital, Shantou, China
| | - Chenhui Li
- Department of Respiratory and Critical Care Medicine, Shenzhen People's Hospital, Shenzhen, China
| | - Yaowei He
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Chuqin Huang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Qingling Zhang
- Department of Allergy and Clinical Immunology, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Kefang Lai
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jiaxing Xie
- Department of Allergy and Clinical Immunology, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
9
|
Brodskaya TA, Nevzorova VA, Vasileva MS, Lavrenyuk VV. [Endothelium-related and neuro-mediated mechanisms of emphysema development in chronic obstructive pulmonary disease]. TERAPEVT ARKH 2020; 92:116-124. [PMID: 32598803 DOI: 10.26442/00403660.2020.03.000347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/26/2020] [Indexed: 11/22/2022]
Abstract
Emphysema is one of the main manifestations of chronic obstructive pulmonary disease (COPD), and smoking is one of the most significant risk factors. The results of studies in humans and animals show the vascular endothelium initiates and modulates the main pathological processes in COPD and smoking is an important factor initiating, developing and persisting inflammation and remodeling of blood vessels and tissues, including the destruction of small respiratory tracts with the development of lung tissue destruction and emphysema. The latest studies describe mechanisms not just associated with the endothelium, but specific neuro-mediated mechanisms. There is reason to believe that neuro-mediated and neuro-similar mechanisms associated and not related to endothelial dysfunction may play the significant role in the pathogenesis of COPD and emphysema formation. Information about components and mechanisms of neurogenic inflammation in emphysema development is fragmentary and not systematized in the literature. It is described that long-term tobacco smoking can initiate processes not only of cells and tissues damage, but also become a trigger for excessive release of neurotransmitters, which entails whole cascades of adverse reactions that have an effect on emphysema formation. With prolonged and/or intensive stimulation of sensor fibers, excessive release of neuropeptides is accompanied by a number of plastic and destructive processes due to a cascade of pathological reactions of neurogenic inflammation, the main participants of which are classical neuropeptides and their receptors. The most important consequences can be the maintenance and stagnation of chronic inflammation, activation of the mechanisms of destruction and remodeling, inadequate repair processes in response to damage, resulting in irreversible loss of lung tissue. For future research, there is interest to evaluate the possibilities of therapeutic and prophylactic effects on neuro-mediated mechanisms of endothelial dysfunction and damage emphysema in COPD and smoking development.
Collapse
|
10
|
Wang Z, Li M, Zhou Q, Shang Y. Protective effects of a neurokinin 1 receptor antagonist on airway epithelial mitochondria dysfunction in asthmatic mice via Nrf2/HO-1 activation. Int Immunopharmacol 2019; 77:105952. [PMID: 31677499 DOI: 10.1016/j.intimp.2019.105952] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/04/2019] [Revised: 09/11/2019] [Accepted: 09/30/2019] [Indexed: 12/21/2022]
Affiliation(s)
- Zhijia Wang
- Department of Paediatrics, Shengjing Hospital of China Medical University, Shenyang 110004, People's Republic of China
| | - Miao Li
- Department of Paediatrics, Shengjing Hospital of China Medical University, Shenyang 110004, People's Republic of China
| | - Qianlan Zhou
- Department of Paediatrics, Shengjing Hospital of China Medical University, Shenyang 110004, People's Republic of China
| | - Yunxiao Shang
- Department of Paediatrics, Shengjing Hospital of China Medical University, Shenyang 110004, People's Republic of China.
| |
Collapse
|
11
|
Regulation of Interaction between the Upper and Lower Airways in United Airway Disease. Med Sci (Basel) 2019; 7:medsci7020027. [PMID: 30754692 PMCID: PMC6410259 DOI: 10.3390/medsci7020027] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/12/2018] [Revised: 02/08/2019] [Accepted: 02/08/2019] [Indexed: 01/29/2023] Open
Abstract
The concept of united airway disease comprises allergic rhinitis (AR) with asthma, and eosinophilic chronic rhinosinusitis (ECRS) with asthma. It embodies a comprehensive approach to the treatment of upper and lower airway inflammation. The treatment of upper airway inflammation reduces asthma symptoms and decreases the dose of inhaled corticosteroids (ICS) necessary to treat asthma. However, little is known about the mechanisms of interaction between upper and lower airway inflammation. Here we review these mechanisms, focusing on neural modulation and introduce a novel therapeutic approach to united airway disease using a fine-particle ICS. Our understanding of the relationship between the upper and lower airways and its contribution to T helper 2 (Th2)-skewed disease, such as AR and/or ECRS with asthma, has led us to this novel therapeutic strategy for a comprehensive approach to the treatment of upper airway inflammation with asthma.
Collapse
|
12
|
Doyen V, Braun JJ, Lutz C, Khayath N, de Blay F. [The usefulness of nasal provocation tests for respiratory physicians]. Rev Mal Respir 2018; 35:788-795. [PMID: 30174237 DOI: 10.1016/j.rmr.2018.06.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/14/2016] [Accepted: 01/15/2018] [Indexed: 10/28/2022]
Abstract
Rhinitis and asthma are common diseases that are strongly linked from both the epidemiological and patho-physiological point of view. A precise aetiological diagnosis is required in order to optimize treatment. Nasal provocation tests (NPT) determine precisely the role of the allergen in the initiation of the symptoms of rhinitis particularly when the history does not produce convincing evidence of the clinical relevance of an allergen. It may also have important consequences for the choice of an allergenic immunotherapy. NPT are not standardized but simple methods based on international recommendations provide us with good diagnostic accuracy. In this paper, we will discuss the practical aspects of NPT as well as the clinical or research situations where they may be useful for the respiratory physician.
Collapse
Affiliation(s)
- V Doyen
- Clinique d'immuno-allergologie, CHU de Brugmann, université Libre de Bruxelles (ULB), 4, place Van Gehuchten, 1200 Bruxelles, Belgique.
| | - J-J Braun
- Service de pneumologie et d'allergologie, hôpitaux universitaires de Strasbourg, pôle de pathologie thoracique, NHC, 67000 Strasbourg, France; Service ORL-CCF, hôpital de Hautepierre, hôpitaux universitaires de Strasbourg, 67000 Strasbourg, France
| | - C Lutz
- Service de pneumologie et d'allergologie, hôpitaux universitaires de Strasbourg, pôle de pathologie thoracique, NHC, 67000 Strasbourg, France
| | - N Khayath
- Service de pneumologie et d'allergologie, hôpitaux universitaires de Strasbourg, pôle de pathologie thoracique, NHC, 67000 Strasbourg, France
| | - F de Blay
- Service de pneumologie et d'allergologie, hôpitaux universitaires de Strasbourg, pôle de pathologie thoracique, NHC, 67000 Strasbourg, France
| |
Collapse
|
13
|
Manorak W, Idahosa C, Gupta K, Roy S, Panettieri R, Ali H. Upregulation of Mas-related G Protein coupled receptor X2 in asthmatic lung mast cells and its activation by the novel neuropeptide hemokinin-1. Respir Res 2018; 19:1. [PMID: 29295703 PMCID: PMC5751818 DOI: 10.1186/s12931-017-0698-3] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/10/2017] [Accepted: 12/11/2017] [Indexed: 12/21/2022] Open
Abstract
Hemokinin-1 (HK-1) is a novel neuropeptide produced by human bronchial cells and macrophages and causes contraction of human bronchi ex vivo. It is also generated by antigen/IgE-activated murine mast cells (MCs) and contributes to experimental chronic allergic airway inflammation via the activation of the neurokinin receptor-1 (NK-1R) expressed on murine MCs. We found elevated MC numbers in the lungs of individuals who died from asthma (asthma) when compared to lungs of individuals who died from other causes (non-asthma). Mas-related G Protein coupled receptor X2 (MRGPRX2) is a novel G-protein coupled receptor (GPCR) that is expressed predominantly on human MCs. We detected low level of MRGPRX2 in non-asthma lung MCs but its expression was significantly upregulated in asthma lung MCs. HK-1 caused degranulation in a human MC line (LAD2) and RBL-2H3 cells stably expressing MRGPRX2 and this response was resistant to inhibition by an NK-1R antagonist. However, knockdown of MRGPRX2 in LAD2 cells resulted in substantial inhibition of HK-1-induced degranulation. These findings suggest that while HK-1 contributes to the development of experimental asthma in mice via NK-1R on murine MCs the effect of this neuropeptide on human bronchoconstriction likely reflects the activation of MRGPRX2 on lung MCs. Thus, development of selective MRGPRX2 antagonists could serve as novel target for the modulation of asthma.
Collapse
Affiliation(s)
- Wichayapha Manorak
- Department of Pathology, School of Dental Medicine, University of Pennsylvania, 240 South 40th Street, Philadelphia, PA, 19104-6030, USA
| | - Chizobam Idahosa
- Department of Oral Medicine, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Present Address: Departmentof Oral and Maxillofacial Pathology, Medicine and Surgery, Temple University Kornberg School of Dentistry, Philadelphia, PA, USA
| | - Kshitij Gupta
- Department of Pathology, School of Dental Medicine, University of Pennsylvania, 240 South 40th Street, Philadelphia, PA, 19104-6030, USA
| | - Saptarshi Roy
- Department of Pathology, School of Dental Medicine, University of Pennsylvania, 240 South 40th Street, Philadelphia, PA, 19104-6030, USA
| | - Reynold Panettieri
- Rutgers Institute for Translational Medicine and Science, Rutgers University, New Brunswick, NJ, USA
| | - Hydar Ali
- Department of Pathology, School of Dental Medicine, University of Pennsylvania, 240 South 40th Street, Philadelphia, PA, 19104-6030, USA.
| |
Collapse
|
14
|
Kaczyńska K, Zając D, Wojciechowski P, Kogut E, Szereda-Przestaszewska M. Neuropeptides and breathing in health and disease. Pulm Pharmacol Ther 2017; 48:217-224. [PMID: 29223509 DOI: 10.1016/j.pupt.2017.12.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 09/06/2017] [Revised: 11/20/2017] [Accepted: 12/05/2017] [Indexed: 12/18/2022]
Abstract
Regulatory neuropeptides control and regulate breathing in physiological and pathophysiological conditions. While they have been identified in the neurons of major respiratory areas, they can be active not only at the central level, but also at the periphery via chemoreceptors, vagal afferents, or locally within lungs and airways. Some neuropeptides, such as leptin or substance P, are respiratory stimulants; others, such as neurotensin, produce variable effects on respiration depending on the site of application. Some neuropeptides have been implicated in pathological states, such as obstructive sleep apnea or asthma. This article provides a concise review of the possible role and functions of several selected neuropeptides in the process of breathing in health and disease and in lung pathologies.
Collapse
Affiliation(s)
- Katarzyna Kaczyńska
- Laboratory of Respiration Physiology, Mossakowski Medical Research Centre Polish Academy of Sciences, Warsaw, Poland.
| | - Dominika Zając
- Laboratory of Respiration Physiology, Mossakowski Medical Research Centre Polish Academy of Sciences, Warsaw, Poland
| | - Piotr Wojciechowski
- Laboratory of Respiration Physiology, Mossakowski Medical Research Centre Polish Academy of Sciences, Warsaw, Poland
| | - Ewelina Kogut
- Laboratory of Respiration Physiology, Mossakowski Medical Research Centre Polish Academy of Sciences, Warsaw, Poland
| | | |
Collapse
|
15
|
Kulka M. Could substance P be an antiviral mediator and potential therapeutic target in the nose? J Allergy Clin Immunol 2017; 141:84-85. [PMID: 29146273 DOI: 10.1016/j.jaci.2017.11.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/28/2017] [Revised: 10/31/2017] [Accepted: 11/06/2017] [Indexed: 01/10/2023]
Affiliation(s)
- Marianna Kulka
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton and the National Institute for Nanotechnology, National Research Council Canada, Edmonton, Alberta, Canada.
| |
Collapse
|
16
|
Ali H. Emerging Roles for MAS-Related G Protein-Coupled Receptor-X2 in Host Defense Peptide, Opioid, and Neuropeptide-Mediated Inflammatory Reactions. Adv Immunol 2017; 136:123-162. [PMID: 28950944 DOI: 10.1016/bs.ai.2017.06.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 02/06/2023]
Abstract
Mast cells (MCs) are tissue-resident immune cells that contribute to host defense but are best known for their roles in allergic and inflammatory diseases. In humans, MCs are divided into two subtypes based on the protease content of their secretory granules. Thus, human lung MCs contain only tryptase and are known as MCT, whereas skin MCs contain both tryptase and chymase and are known as MCTC. Patients with severe asthma display elevated MCs in the lung, which undergo phenotypic change from MCT to MCTC. Although the human genome contains four Mas related G protein coupled receptor X (MRGPRX) genes, an important feature of MCTC is that they selectively express MRGPRX2. It is activated by antimicrobial host defense peptides such as human β-defensins and the cathelicidin LL-37 and likely contributes to host defense. MRGPRX2 is also a receptor for the neuropeptide substance P, major basic protein, eosinophil peroxidase, opioids, and many FDA-approved cationic drugs. Increased expression of MRGPRX2 or enhanced downstream signaling likely contributes to chronic inflammatory diseases such as rosacea, atopic dermatitis, chronic urticaria, and severe asthma. In this chapter, I will discuss the expression profile and function of MRGPRX1-4 and review the emerging roles of MRGPRX2 on host defense, chronic inflammatory diseases, and drug-induced pseudoallergic reactions. I will also examine the novel aspects of MRGPRX2 signaling in MCs as it related to degranulation and review the mechanisms of its regulation.
Collapse
Affiliation(s)
- Hydar Ali
- University of Pennsylvania School of Dental Medicine, Philadelphia, PA, United States.
| |
Collapse
|
17
|
Zhang Z, Zheng W, Xie H, Chai R, Wang J, Zhang H, He S. Up-regulated expression of substance P in CD8 + T cells and NK1R on monocytes of atopic dermatitis. J Transl Med 2017; 15:93. [PMID: 28460633 PMCID: PMC5412038 DOI: 10.1186/s12967-017-1196-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/14/2017] [Accepted: 04/25/2017] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Large numbers of CD8+ T cells were observed in atopic dermatitis (AD) skin, and monocytes from AD patients showed increased prostaglandin E2 production. However, little is known about the expression of substance P (SP) and its receptor NK1R in blood leukocytes of patients with AD. OBJECTIVE To explore the expression of SP and NK1R in leukocytes of AD and the influence of allergens on SP and NK1R expression. METHODS The expression levels of SP and NK1R in patients with AD were examined by flow cytometry, ELISA and a mouse AD model. RESULTS The plasma SP level was 4.9-fold higher in patients with AD than in HC subjects. Both the percentage of SP expression in the population and mean fluorescence intensity (MFI) of SP expression were elevated in CD8+ T cells in the blood of AD patients. However, both the CD14+NK1R+ population and MFI of NK1R expression on CD14+ cells were enhanced in the blood of AD patients. Allergens ASWE, HDME and PPE failed to up-regulate SP expression in CD8+ T cells. However, allergens ASWE and HDME both enhanced NK1R expression on CD14+ blood leukocytes regardless of AD or HC subjects. OVA-sensitized AD mice showed an elevated proportion and MFI of SP-expressing CD8+ T cells in the blood, which agrees with the SP expression situation in human AD blood. Injection of SP into mouse skin did not up-regulate NK1R expression on monocytes. CONCLUSIONS An elevated plasma SP level, up-regulated expression of SP and NK1R indicate that the SP/NK1R complex is important in the development of AD. Therefore, SP and NK1R antagonist or blocker agents may help to treat patients with AD. Trial registration Registration number: ChiCTR-BOC-16010279; Registration date: Dec., 28, 2016; retrospectively registered.
Collapse
Affiliation(s)
- Zenan Zhang
- Allergy and Clinical Immunology Research Centre, The First Affiliated Hospital of Jinzhou Medical University, No. 2, Section 5, Renmin Street, Guta District, Jinzhou, 121001, Liaoning, People's Republic of China
| | - Wenjiao Zheng
- Department of Laboratory Medicine, Zibo Mining Group Co., LTD. Central Hospital, Zibo, 255120, Shandong, China
| | - Hua Xie
- The PLA Center of Respiratory and Allergic Disease Diagnosing Management, General Hospital of Shenyang Military Area Command, Shenyang, 110840, Liaoning, China
| | - Ruonan Chai
- The PLA Center of Respiratory and Allergic Disease Diagnosing Management, General Hospital of Shenyang Military Area Command, Shenyang, 110840, Liaoning, China
| | - Junling Wang
- Allergy and Clinical Immunology Research Centre, The First Affiliated Hospital of Jinzhou Medical University, No. 2, Section 5, Renmin Street, Guta District, Jinzhou, 121001, Liaoning, People's Republic of China
| | - Huiyun Zhang
- Allergy and Clinical Immunology Research Centre, The First Affiliated Hospital of Jinzhou Medical University, No. 2, Section 5, Renmin Street, Guta District, Jinzhou, 121001, Liaoning, People's Republic of China
| | - Shaoheng He
- Allergy and Clinical Immunology Research Centre, The First Affiliated Hospital of Jinzhou Medical University, No. 2, Section 5, Renmin Street, Guta District, Jinzhou, 121001, Liaoning, People's Republic of China.
| |
Collapse
|
18
|
Zhu Z, Xie Y, Guan W, Gao Y, Huang R, Xia S, Jian W, Liang Z, Zheng J. Effects of leukotriene D 4 nasal challenge on bronchial responsiveness and inflammation in asthmatic patients with allergic rhinitis. J Thorac Dis 2017; 9:271-277. [PMID: 28275474 DOI: 10.21037/jtd.2017.02.36] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND In asthmatic patients with allergic rhinitis (AR), increased cysteinyl leukotrienes (CysLTs) production in the secretion of nasal mucosa has been associated with greater bronchial hyperresponsiveness (BHR) after nasal allergen challenge. However, the role of CysLTs in eliciting BHR after nasal allergen challenge has not been evaluated. The aim of this study is to evaluate the effect of LTD4 nasal challenge on BHR and inflammation in asthmatic patients with AR. METHODS In this self-controlled study, fifteen eligible consecutively recruited subjects underwent methacholine (Mch) bronchial provocation test before and 30 minutes after LTD4 nasal provocation test. The cumulative concentration of LTD4 inducing a 60% increase in nasal airway resistance (PC60NAR) was calculated. The mean values of cumulative doses inducing a 20% decrease in forced expiratory flow in one second (PD20FEV1) for Mch before and after nasal challenge were compared. Fractional exhaled nitric oxide (FeNO), differential inflammatory cell counts in nasal lavage and induced sputum before and after nasal challenge were compared. RESULTS House dust mites were the major allergens accounting for 10/15 (66.7%) of asthmatic patients with AR. The PC60NAR for LT was (8.39±3.48)×10-3 mg·mL-1. The PD20FEV1 before and after nasal challenge was 3.05±3.81 and 2.70±3.81 µmol, respectively (P=0.45). The percentages of eosinophils were (38.36±23.14)% and (45.70±24.86)% in nasal lavage, and (17.51±11.05)% and (24.29±16.52)% in induced sputum before and 24 hours after nasal challenge. The neutrophil counts were (60.64±23.14)% and (53.30±24.46)% in nasal lavage, and (53.83±23.27)% and (56.19±22.28)% in induced sputum before and 24 hours after nasal challenge. The values of FeNO were 40 [35] and 43 [30] ppb before and 24 hours after nasal challenge. No severe adverse effects were reported during the tests. CONCLUSIONS Although most asthmatic patients with AR were sensitive to LTD4 nasal challenge, LTD4 nasal provocation tests do not confer any major effect on BHR. LTD4 might not play a vital role in eliciting bronchial responsiveness induced by nasal allergen challenge.
Collapse
Affiliation(s)
- Zheng Zhu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center of Respiratory Disease, First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - Yanqing Xie
- State Key Laboratory of Respiratory Disease, National Clinical Research Center of Respiratory Disease, First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - Weijie Guan
- State Key Laboratory of Respiratory Disease, National Clinical Research Center of Respiratory Disease, First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - Yi Gao
- State Key Laboratory of Respiratory Disease, National Clinical Research Center of Respiratory Disease, First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - Rongquan Huang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center of Respiratory Disease, First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - Shu Xia
- State Key Laboratory of Respiratory Disease, National Clinical Research Center of Respiratory Disease, First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - Wenhua Jian
- State Key Laboratory of Respiratory Disease, National Clinical Research Center of Respiratory Disease, First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - Zhiyu Liang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center of Respiratory Disease, First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - Jinping Zheng
- State Key Laboratory of Respiratory Disease, National Clinical Research Center of Respiratory Disease, First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| |
Collapse
|
19
|
Devos FC, Boonen B, Alpizar YA, Maes T, Hox V, Seys S, Pollaris L, Liston A, Nemery B, Talavera K, Hoet PHM, Vanoirbeek JAJ. Neuro-immune interactions in chemical-induced airway hyperreactivity. Eur Respir J 2016; 48:380-92. [PMID: 27126687 DOI: 10.1183/13993003.01778-2015] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/28/2015] [Accepted: 03/02/2016] [Indexed: 01/07/2023]
Abstract
Asthma may be induced by chemical sensitisers, via mechanisms that are still poorly understood. This type of asthma is characterised by airway hyperreactivity (AHR) and little airway inflammation. Since potent chemical sensitisers, such as toluene-2,4-diisocyanate (TDI), are also sensory irritants, it is suggested that chemical-induced asthma relies on neuro-immune mechanisms.We investigated the involvement of transient receptor potential channels (TRP) A1 and V1, major chemosensors in the airways, and mast cells, known for their ability to communicate with sensory nerves, in chemical-induced AHR.In vitro intracellular calcium imaging and patch-clamp recordings in TRPA1- and TRPV1-expressing Chinese hamster ovarian cells showed that TDI activates murine TRPA1, but not TRPV1. Using an in vivo model, in which an airway challenge with TDI induces AHR in TDI-sensitised C57Bl/6 mice, we demonstrated that AHR does not develop, despite successful sensitisation, in Trpa1 and Trpv1 knockout mice, and wild-type mice pretreated with a TRPA1 blocker or a substance P receptor antagonist. TDI-induced AHR was also abolished in mast cell deficient Kit(Wsh) (/Wsh) mice, and in wild-type mice pretreated with the mast cell stabiliser ketotifen, without changes in immunological parameters.These data demonstrate that TRPA1, TRPV1 and mast cells play an indispensable role in the development of TDI-elicited AHR.
Collapse
Affiliation(s)
- Fien C Devos
- Centre for Environment and Health, Dept of Public Health and Primary Care, KU Leuven, Leuven, Belgium
| | - Brett Boonen
- Laboratory for Ion Channel Research and TRP Research Platform (TRPLe), Dept of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Yeranddy A Alpizar
- Laboratory for Ion Channel Research and TRP Research Platform (TRPLe), Dept of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Tania Maes
- Laboratory of Pneumology, Dept of Respiratory Medicine, Ghent University, Ghent, Belgium
| | - Valérie Hox
- Laboratory of Clinical Immunology, Dept of Microbiology and Immunology, KU Leuven, Leuven, Belgium
| | - Sven Seys
- Laboratory of Clinical Immunology, Dept of Microbiology and Immunology, KU Leuven, Leuven, Belgium
| | - Lore Pollaris
- Centre for Environment and Health, Dept of Public Health and Primary Care, KU Leuven, Leuven, Belgium
| | - Adrian Liston
- Laboratory of Genetics of Autoimmunity, Dept of Microbiology and Immunology, KU Leuven, Leuven, Belgium
| | - Benoit Nemery
- Centre for Environment and Health, Dept of Public Health and Primary Care, KU Leuven, Leuven, Belgium
| | - Karel Talavera
- Laboratory for Ion Channel Research and TRP Research Platform (TRPLe), Dept of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Peter H M Hoet
- Centre for Environment and Health, Dept of Public Health and Primary Care, KU Leuven, Leuven, Belgium
| | - Jeroen A J Vanoirbeek
- Centre for Environment and Health, Dept of Public Health and Primary Care, KU Leuven, Leuven, Belgium
| |
Collapse
|
20
|
Abstract
PURPOSE OF REVIEW Obesity has significant impact on asthma incidence and manifestations. The purpose of the review is to discuss recent observations regarding the association between obesity and asthma focusing on underlying mechanisms, clinical presentation, response to therapy and effect of weight reduction. RECENT FINDINGS Clinical and epidemiological studies indicate that obese patients with asthma may represent a unique phenotype, which is more difficult to control, less responsive to asthma medications and by that may have higher healthcare utilization. A number of common comorbidities have been linked to both obesity and asthma, and may, therefore, contribute to the obese-asthma phenotype. Furthermore, recently published studies indicate that even a modest weight reduction can improve clinical manifestations and outcome of asthma. SUMMARY Compared with normal-weight patients, obese and overweight patients with asthma have poorer asthma control and respond less to corticosteroid therapy. Future studies focusing on the mechanism underlying both obesity and asthma including the obese-asthma phenotype are required to better characterize the link between the conditions and target the management of this patient group.
Collapse
|
21
|
Zhuang J, Zhao L, Zang N, Xu F. Prenatal nicotinic exposure augments cardiorespiratory responses to activation of bronchopulmonary C-fibers. Am J Physiol Lung Cell Mol Physiol 2015; 308:L922-30. [PMID: 25747962 PMCID: PMC4421788 DOI: 10.1152/ajplung.00241.2014] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/28/2014] [Accepted: 03/01/2015] [Indexed: 12/26/2022] Open
Abstract
Rat pups prenatally exposed to nicotine (PNE) present apneic (lethal ventilatory arrest) responses during severe hypoxia. To clarify whether these responses are of central origin, we tested PNE effects on ventilation and diaphragm electromyography (EMGdi) during hypoxia in conscious rat pups. PNE produced apnea (lethal ventilatory arrest) identical to EMGdi silencing during hypoxia, indicating a central origin of this apneic response. We further asked whether PNE would sensitize bronchopulmonary C-fibers (PCFs), a key player in generating central apnea, with increase of the density and transient receptor potential cation channel subfamily V member 1 (TRPV1) expression of C-fibers/neurons in the nodose/jugular (N/J) ganglia and neurotrophic factors in the airways and lungs. We compared 1) ventilatory and pulmonary C-neural responses to right atrial bolus injection of capsaicin (CAP, 0.5 μg/kg), 2) bronchial substance P-immunoreactive (SP-IR) fiber density, 3) gene and protein expressions of TRPV1 in the ganglia, and 4) nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF) protein in bronchoalveolar lavage fluid (BALF) and TrkA and TrkB genes in the ganglia between control and PNE pups. PNE markedly strengthened the PCF-mediated apneic response to CAP via increasing pulmonary C-neural sensitivity. PNE also enhanced bronchial SP-IR fiber density and N/J ganglia neural TRPV1 expression associated with increased gene expression of TrkA in the N/G ganglia and decreased NGF and BDNF in BALF. Our results suggest that PNE enhances PCF sensitivity likely through increasing PCF density and TRPV1 expression via upregulation of neural TrkA and downregulation of pulmonary BDNF, which may contribute to the PNE-promoted central apnea (lethal ventilatory arrest) during hypoxia.
Collapse
Affiliation(s)
- Jianguo Zhuang
- Pathophysiology Program, Lovelace Respiratory Research Institute, Albuquerque, New Mexico
| | - Lei Zhao
- Pathophysiology Program, Lovelace Respiratory Research Institute, Albuquerque, New Mexico
| | - Na Zang
- Pathophysiology Program, Lovelace Respiratory Research Institute, Albuquerque, New Mexico
| | - Fadi Xu
- Pathophysiology Program, Lovelace Respiratory Research Institute, Albuquerque, New Mexico
| |
Collapse
|
22
|
Licari A, Caimmi S, Bosa L, Marseglia A, Marseglia GL, Caimmi D. Rhinosinusitis and asthma: a very long engagement. Int J Immunopathol Pharmacol 2015; 27:499-508. [PMID: 25572729 DOI: 10.1177/039463201402700405] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 02/04/2023] Open
Abstract
Upper and lower airways may be considered as a unique entity, interested by coexisting inflammatory processes that share common etiopathogenic mechanisms. Previous studies have strongly demonstrated a relationship between rhinosinusitis and asthma. This has led to the introduction of the concept of United Airways, which has also been included in the WHO document Allergic Rhinitis and its Impact on Asthma (ARIA); this concept has important consequences also on the treatment of these disorders. To better summarize the evident connection between upper and lower airway disease we decided to describe it as a multilayered construction, each level pointing out more deeply the relationship between these entities.
Collapse
Affiliation(s)
- A Licari
- Department of Pediatrics, Foundation IRCCS Policlinico San Matteo, University of Pavia, Italy
| | - S Caimmi
- Department of Pediatrics, Foundation IRCCS Policlinico San Matteo, University of Pavia, Italy
| | - L Bosa
- Department of Pediatrics, Foundation IRCCS Policlinico San Matteo, University of Pavia, Italy
| | - A Marseglia
- Department of Pediatrics, Foundation IRCCS Policlinico San Matteo, University of Pavia, Italy
| | - G L Marseglia
- Department of Pediatrics, Foundation IRCCS Policlinico San Matteo, University of Pavia, Italy
| | - D Caimmi
- Department of Pediatrics, Foundation IRCCS Policlinico San Matteo, University of Pavia, Italy
| |
Collapse
|
23
|
Xie J, Xi Y, Zhang Q, Chen G, Wei L, Lai K, Zhong N. An intratracheal challenge murine model of asthma: can bronchial inflammation affect the nose? ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2014; 7:76-82. [PMID: 25553266 PMCID: PMC4274473 DOI: 10.4168/aair.2015.7.1.76] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Received: 01/01/2014] [Accepted: 05/20/2014] [Indexed: 11/20/2022]
Abstract
PURPOSE Extensive data support the influence of the upper airway on lower airway inflammation and pathophysiology in allergic disease. However, few studies have focused on allergic inflammation in the nose after an isolated lower airway allergen challenge, a situation that can exist clinically when human subjects breathe primarily through the mouth, as occurs when nasally congested. This study used a mouse model to investigate whether upper airway inflammation and hyperresponsiveness were induced by an isolated lower airway allergen challenge. METHODS BALB/c mice were sensitized by systemic intraperitoneal injection of ovalbumin/saline and challenged with intratracheal ovalbumin/saline. Inflammation in the nose and lungs was assessed by cytology and histology of nasal tissues and bronchoalveolar lavage fluid (BALF), while nasal airway resistance and response were measured over 3 days post-challenge. RESULTS Intratracheal application of an allergen in anaesthetized mice resulted in exclusive deposition in the lower airway. Compared to control animals, ovalbumin-sensitized mice after challenge showed bronchial hyperreactivity and increased IL-5 in the serum BALF, as well as eosinophil infiltration in the lungs. However, nasal histology of the ovalbumin-sensitized mice showed no increase in eosinophil infiltration. The nasal lavage fluid revealed no increase in eosinophils or IL-5, and the nasal airway resistance did not increase after challenge either. CONCLUSIONS In a mouse allergy model, exclusive allergen challenge of the lower airway can elicit a pulmonary and systemic allergic response, but does not induce upper airway inflammatory or physiological responses.
Collapse
Affiliation(s)
- Jiaxing Xie
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yin Xi
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Qingling Zhang
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Guoqin Chen
- Department of Pathology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Luo Wei
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Kefang Lai
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Nanshan Zhong
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
24
|
Onaga T. Tachykinin: recent developments and novel roles in health and disease. Biomol Concepts 2014; 5:225-243. [PMID: 25372755 DOI: 10.1515/bmc-2014-0008] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/02/2014] [Accepted: 05/14/2014] [Indexed: 01/05/2025] Open
Abstract
Over 80 years has passed since the discovery of substance P (SP), and a variety of peptides of the tachykinin (TK) family have been found and investigated. SP, neurokinin A (NKA), and neurokinin B (NKB) are representative peptides in mammalian species. SP and NKA are major excitatory neurotransmitters in the peripheral nervous system, while NKB is primarily involved in the central nervous system (CNS). Moreover, TK peptides play roles not only as neurotransmitters but also as local factors and are involved in almost all aspects of the regulation of physiological functions and pathophysiological processes. The role of SP as a mediator of pain processing and inflammation in peripheral tissues in coordination with transient receptor potential channels is well established, while novel aspects of TKs in relation to hematopoiesis, venous thromboembolism, tendinopathy, and taste perception have been clarified. In the CNS, the NKB signaling system in the hypothalamus has been shown to play a crucial role in the regulation of gonadotropin hormone secretion and the onset of puberty, and molecular biological studies have elucidated novel prophylaxic activities of TKs against neurogenic movement disorders based on their molecular structure. This review provides an overview of the novel aspects of TKs reported around the world in the last 5 years, with particular focus on nociception, inflammation, hemopoiesis, gonadotropin secretion, and CNS diseases.
Collapse
|
25
|
Abstract
The united airway concept in which upper and lower respiratory conditions are present in one patient requires special consideration. There is some evidence linking chronic rhinosinusitis and asthma, but a good understanding of the pathophysiology and combined management is still lacking, a fact that leads to discussion. Bronchial asthma is more prevalent in patients who suffer chronic rhinosinusitis. On the other hand, patients with asthma have a greater prevalence of rhinosinusitis than patients without asthma. The effect of chronic rhinosinusitis in patients with or without nasal polyps on asthma treatment, whether medical or surgical, is controversial. Some studies show worsening, other trials improvement, and others no effect. Direct comparisons between surgical and medical treatments are few. Most of the current literature available about this intriguing combination does not provide a good level of evidence. Thus, randomized clinical trials should be performed to better understand the management when asthma and CRS occur together. This review aims to summarize the current state of this association regarding the effects of different types of treatment.
Collapse
|
26
|
Van Gerven L, Alpizar YA, Wouters MM, Hox V, Hauben E, Jorissen M, Boeckxstaens G, Talavera K, Hellings PW. Capsaicin treatment reduces nasal hyperreactivity and transient receptor potential cation channel subfamily V, receptor 1 (TRPV1) overexpression in patients with idiopathic rhinitis. J Allergy Clin Immunol 2014; 133:1332-9, 1339.e1-3. [DOI: 10.1016/j.jaci.2013.08.026] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/29/2013] [Revised: 07/29/2013] [Accepted: 08/19/2013] [Indexed: 01/02/2023]
|
27
|
Saeki M, Nishimura T, Mori A, Kaminuma O, Hiroi T. Antigen-induced mixed and separated inflammation in murine upper and lower airways. Allergol Int 2014; 63 Suppl 1:59-61. [PMID: 24809378 DOI: 10.2332/allergolint.13-le-0634] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Mayumi Saeki
- Allergy and Immunology Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Tomoe Nishimura
- Allergy and Immunology Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Akio Mori
- Clinical Research Center for Allergy and Rheumatology, National Hospital Organization, Sagamihara National Hospital, Kanagawa, Japan
| | - Osamu Kaminuma
- Allergy and Immunology Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Takachika Hiroi
- Allergy and Immunology Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| |
Collapse
|
28
|
Steinhoff MS, von Mentzer B, Geppetti P, Pothoulakis C, Bunnett NW. Tachykinins and their receptors: contributions to physiological control and the mechanisms of disease. Physiol Rev 2014; 94:265-301. [PMID: 24382888 DOI: 10.1152/physrev.00031.2013] [Citation(s) in RCA: 435] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 02/08/2023] Open
Abstract
The tachykinins, exemplified by substance P, are one of the most intensively studied neuropeptide families. They comprise a series of structurally related peptides that derive from alternate processing of three Tac genes and are expressed throughout the nervous and immune systems. Tachykinins interact with three neurokinin G protein-coupled receptors. The signaling, trafficking, and regulation of neurokinin receptors have also been topics of intense study. Tachykinins participate in important physiological processes in the nervous, immune, gastrointestinal, respiratory, urogenital, and dermal systems, including inflammation, nociception, smooth muscle contractility, epithelial secretion, and proliferation. They contribute to multiple diseases processes, including acute and chronic inflammation and pain, fibrosis, affective and addictive disorders, functional disorders of the intestine and urinary bladder, infection, and cancer. Neurokinin receptor antagonists are selective, potent, and show efficacy in models of disease. In clinical trials there is a singular success: neurokinin 1 receptor antagonists to treat nausea and vomiting. New information about the involvement of tachykinins in infection, fibrosis, and pruritus justifies further trials. A deeper understanding of disease mechanisms is required for the development of more predictive experimental models, and for the design and interpretation of clinical trials. Knowledge of neurokinin receptor structure, and the development of targeting strategies to disrupt disease-relevant subcellular signaling of neurokinin receptors, may refine the next generation of neurokinin receptor antagonists.
Collapse
|
29
|
Adriaensen GFJPM, Fokkens WJ. Chronic rhinosinusitis: an update on current pharmacotherapy. Expert Opin Pharmacother 2013; 14:2351-60. [DOI: 10.1517/14656566.2013.837450] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/05/2022]
|
30
|
Ramalho R, Almeida J, Beltrão M, Pirraco A, Costa R, Sokhatska O, Guardão L, Palmares C, Guimarães JT, Delgado L, Moreira A, Soares R. Substance P antagonist improves both obesity and asthma in a mouse model. Allergy 2013; 68:48-54. [PMID: 23176443 DOI: 10.1111/all.12052] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Accepted: 09/20/2012] [Indexed: 11/30/2022]
Abstract
BACKGROUND Evidence suggests a causal relationship between obesity and asthma; however, the underlying mechanisms remain unknown. Substance P (SP), involved in neurogenic inflammation by acting through its receptor NK1-R, seems to participate in obese-asthma phenotype in mice. OBJECTIVES To evaluate the effect of a selective substance P receptor antagonist on a mouse model of diet-induced obesity and asthma. METHODS Diet-induced obese Balb/c mice were sensitized and challenged with ovalbumin (OVA) and treated with a selective NK1-R antagonist or placebo. Serum glucose, insulin, IL-6, resistin, and OVA-specific IgE levels were quantified. A score for peribronchial inflammation in lung histology was used. Cells were counted in bronchoalveolar lavage fluid. Adipocyte sizes were measured. RESULTS Ovalbumin-obese mice treated with NK1-R antagonist had lower weight (P = 0.0002), reduced daily food intake (P = 0.0021), reduced daily energy intake (P = 0.0021), reduced surface adipocyte areas (P < 0.0001), lower serum glucose (P = 0.04), lower serum insulin (P = 0.03), lower serum IL-(P = 0.0022), lower serum resistin (P = 0.0043), lower serum OVA-specific IgE (P = 0.035), and lower peribronchial inflammation score (P < 0.0001) than nontreated OVA-obese mice. We observed an interaction between obesity, allergen sensitization, and treatment with NK1-R antagonist for metabolic and systemic biomarkers, and for allergen sensitization and bronchial inflammation, showing a synergy between these variables. CONCLUSION & CLINICAL RELEVANCE In an experimental model of obesity and asthma in mice, NK1-R blockade improved metabolic and systemic biomarkers, as well as allergen sensitization and bronchial inflammation. These positive effects support a common pathway in the obese-asthma phenotype and highlight SP as a target with potential clinical interest in the obese-asthma epidemics.
Collapse
Affiliation(s)
- R. Ramalho
- Immunology; Faculty of Medicine; University of Porto; Porto; Portugal
| | - J. Almeida
- Ciências Químicas e das Biomoléculas; Escola Superior de Tecnologia da Saúde do Porto; Instituto Politécnico do Porto; Porto; Portugal
| | - M. Beltrão
- Immunology; Faculty of Medicine; University of Porto; Porto; Portugal
| | - A. Pirraco
- Biochemistry (U38-FCT); Faculty of Medicine; University of Porto; Porto; Portugal
| | - R. Costa
- Biochemistry (U38-FCT); Faculty of Medicine; University of Porto; Porto; Portugal
| | - O. Sokhatska
- Immunology; Faculty of Medicine; University of Porto; Porto; Portugal
| | - L. Guardão
- Animal House Unit; Faculty of Medicine; University of Porto; Porto; Portugal
| | - C. Palmares
- Immunology; Faculty of Medicine; University of Porto; Porto; Portugal
| | | | | | | | - R. Soares
- Biochemistry (U38-FCT); Faculty of Medicine; University of Porto; Porto; Portugal
| |
Collapse
|
31
|
Ramalho R, Almeida J, Beltrão M, Pirraco A, Costa R, Sokhatska O, Guardão L, Palmares C, Guimarães JT, Delgado L, Moreira A, Soares R. Neurogenic inflammation in allergen-challenged obese mice: A missing link in the obesity-asthma association? Exp Lung Res 2012; 38:316-24. [PMID: 22734814 DOI: 10.3109/01902148.2012.699589] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/02/2023]
Abstract
AIM A number of studies have shown an association between obesity and asthma. Controversy remains on the mechanisms supporting this association. In this study we aimed to assess neurogenic inflammation in a model of diet-induced obesity and allergen-challenged mice. METHODS High fat diet-induced (HFD) obese Balb/c mice were sensitized and challenged with ovalbumin (OVA). Glucose, insulin, OVA-specific IgE and substance P (SP), and the main tachykinin involved in neurogenic inflammation, were quantified in sera. Cell counts were performed in bronchoalveolar lavage fluid (BALF). The extent of peribronchial infiltrates was estimated on lung tissue sections and inflammation was score based on inflammatory cell counts surrounding the bronchi. RESULTS Obesity per se and allergen-sensitization per se increased serum SP (P = .027, P = .004, respectively). Further increased was observed in obese-sensitized mice (P = .007). Obese-sensitized mice also showed higher insulin (P = .0016), OVA-specific IgE (P = .016), peribronchial inflammatory score (P = .045), and tendency for higher glycemia. The interaction of obesity and asthma on SP levels was confirmed (P = .005, R(2) = 0.710). SP was positively correlated with metabolic (glycemia, r = 0.539, P = .007) and allergic inflammation parameters (BALF eosinophils, r = 0.445, P = 0.033; BALF mast cells, r = 0.574, P = .004; peribronchial inflammation score, r = 0.661, P < .001; and OVA-specific IgE, r = 0.714, P < .001). CONCLUSIONS Our findings provide support to the neurogenic inflammation link between obesity and asthma in mice. These two conditions independently increased SP and the presence of both pathologies further increased this level. Neurogenic inflammation may be a previously unrecognized mechanism beyond the obese-asthma phenotype. Further studies are need to confirm this role of SP in human obesity-asthma association.
Collapse
Affiliation(s)
- Renata Ramalho
- Department of Immunology, Faculty of Medicine, University of Porto, Porto, Portugal.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Nassini R, Pedretti P, Moretto N, Fusi C, Carnini C, Facchinetti F, Viscomi AR, Pisano AR, Stokesberry S, Brunmark C, Svitacheva N, McGarvey L, Patacchini R, Damholt AB, Geppetti P, Materazzi S. Transient receptor potential ankyrin 1 channel localized to non-neuronal airway cells promotes non-neurogenic inflammation. PLoS One 2012; 7:e42454. [PMID: 22905134 PMCID: PMC3419223 DOI: 10.1371/journal.pone.0042454] [Citation(s) in RCA: 181] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/13/2012] [Accepted: 07/06/2012] [Indexed: 02/06/2023] Open
Abstract
Background The transient receptor potential ankyrin 1 (TRPA1) channel, localized to airway sensory nerves, has been proposed to mediate airway inflammation evoked by allergen and cigarette smoke (CS) in rodents, via a neurogenic mechanism. However the limited clinical evidence for the role of neurogenic inflammation in asthma or chronic obstructive pulmonary disease raises an alternative possibility that airway inflammation is promoted by non-neuronal TRPA1. Methodology/Principal Findings By using Real-Time PCR and calcium imaging, we found that cultured human airway cells, including fibroblasts, epithelial and smooth muscle cells express functional TRPA1 channels. By using immunohistochemistry, TRPA1 staining was observed in airway epithelial and smooth muscle cells in sections taken from human airways and lung, and from airways and lung of wild-type, but not TRPA1-deficient mice. In cultured human airway epithelial and smooth muscle cells and fibroblasts, acrolein and CS extract evoked IL-8 release, a response selectively reduced by TRPA1 antagonists. Capsaicin, agonist of the transient receptor potential vanilloid 1 (TRPV1), a channel co-expressed with TRPA1 by airway sensory nerves, and acrolein or CS (TRPA1 agonists), or the neuropeptide substance P (SP), which is released from sensory nerve terminals by capsaicin, acrolein or CS), produced neurogenic inflammation in mouse airways. However, only acrolein and CS, but not capsaicin or SP, released the keratinocyte chemoattractant (CXCL-1/KC, IL-8 analogue) in bronchoalveolar lavage (BAL) fluid of wild-type mice. This effect of TRPA1 agonists was attenuated by TRPA1 antagonism or in TRPA1-deficient mice, but not by pharmacological ablation of sensory nerves. Conclusions Our results demonstrate that, although either TRPV1 or TRPA1 activation causes airway neurogenic inflammation, solely TRPA1 activation orchestrates an additional inflammatory response which is not neurogenic. This finding suggests that non-neuronal TRPA1 in the airways is functional and potentially capable of contributing to inflammatory airway diseases.
Collapse
Affiliation(s)
- Romina Nassini
- Department of Preclinical and Clinical Pharmacology, University of Florence, Florence, Italy
| | - Pamela Pedretti
- Department of Preclinical and Clinical Pharmacology, University of Florence, Florence, Italy
- Pharmacology Department, Chiesi Farmaceutici SpA, Parma, Italy
| | - Nadia Moretto
- Pharmacology Department, Chiesi Farmaceutici SpA, Parma, Italy
| | - Camilla Fusi
- Department of Preclinical and Clinical Pharmacology, University of Florence, Florence, Italy
| | - Chiara Carnini
- Pharmacology Department, Chiesi Farmaceutici SpA, Parma, Italy
| | | | | | | | - Susan Stokesberry
- Centre for Infection and Immunity, Queen's University Belfast, Belfast, United Kingdom
| | - Charlott Brunmark
- AstraZeneca Research & Development Innovative Medicines Respiratory & Inflammation, Mölndal, Sweden
- Truly Translational Sweden AB, Lund, Sweden
| | - Naila Svitacheva
- AstraZeneca Research & Development Innovative Medicines Respiratory & Inflammation, Mölndal, Sweden
- Disease Pharmacology LEO Pharma A/S, Ballerup, Denmark
| | - Lorcan McGarvey
- Centre for Infection and Immunity, Queen's University Belfast, Belfast, United Kingdom
| | | | - Anders B. Damholt
- AstraZeneca Research & Development Innovative Medicines Respiratory & Inflammation, Mölndal, Sweden
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Pierangelo Geppetti
- Department of Preclinical and Clinical Pharmacology, University of Florence, Florence, Italy
- Headache Center, University of Florence, Florence, Italy
- * E-mail:
| | - Serena Materazzi
- Department of Preclinical and Clinical Pharmacology, University of Florence, Florence, Italy
| |
Collapse
|
33
|
Van Gerven L, Boeckxstaens G, Jorissen M, Fokkens W, Hellings PW. Short-time cold dry air exposure: a useful diagnostic tool for nasal hyperresponsiveness. Laryngoscope 2012; 122:2615-20. [PMID: 22865676 DOI: 10.1002/lary.23495] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/20/2012] [Revised: 04/18/2012] [Accepted: 05/11/2012] [Indexed: 01/08/2023]
Abstract
OBJECTIVES/HYPOTHESIS Demonstration of nasal hyperreactivity (NHR) in allergic and nonallergic rhinitis remains a diagnostic challenge because of the lack of a clinically attractive protocol with high sensitivity and specificity. Our aim was to evaluate the feasibility of a shortened cold dry air (CDA) provocation protocol for the diagnosis of NHR in patients with allergic rhinitis (AR) and idiopathic rhinitis (IR). STUDY DESIGN Twelve AR patients, 12 IR patients, and 12 controls were exposed to air at -10°C and <10% humidity for 15 minutes. METHODS Nasal symptoms were subjectively evaluated by visual analogue scale (VAS), and nasal obstruction was objectively measured by peak nasal inspiratory flow (PNIF) before and after CDA exposure. NHR was defined as a drop in PNIF larger than 20% from baseline upon CDA challenge. RESULTS Nasal CDA exposure induced nasal obstruction in AR and IR patients but not in controls. The VAS for nasal obstruction increased significantly in IR patients (post-CDA: 9.1 cm [6.9, 9.7] vs. pre-CDA: 5.5 cm [5.0, 8.9], P = .004) as well as in AR patients (post-CDA: 5.0 cm [1.3, 6.6] vs. pre-CDA: 0.8 cm [0.0, 1.7], P = .001). PNIF values showed a significant decrease in the AR (post-CDA: 50.0 L/min [37.5, 97.5] vs. pre-CDA: 95.0 L/min [52.5, 127.5], P = .002) and IR (post-CDA: 75.0 L/min [47.5, 102.5] vs. pre-CDA: 100.0 L/min [67.5, 130.0], P = .002) group after CDA provocation, which was not observed in the controls (P = 1.000). The sensitivity and specificity of CDA provocation for diagnosis of NHR were 66.7% and 100%, respectively, for both IR and AR. In contrast to nasal obstruction, rhinorrhea and sneezing were not induced by CDA exposure. CONCLUSIONS This study demonstrates that a short nasal CDA exposure is a reliable method for the diagnosis of NHR in rhinitis patients, with a high sensitivity and specificity.
Collapse
Affiliation(s)
- Laura Van Gerven
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospitals Leuven, Leuven, Belgium
| | | | | | | | | |
Collapse
|
34
|
Bobic S, Seys S, De Vooght V, Callebaut I, Hox V, Dooms C, Vinckier S, Jonckx B, Saint-Remy JM, Stassen JM, Bullens DMA, Ceuppens JL, Carmeliet P, Hellings PW. Placental growth factor contributes to bronchial neutrophilic inflammation and edema in allergic asthma. Am J Respir Cell Mol Biol 2012; 46:781-9. [PMID: 22268141 DOI: 10.1165/rcmb.2011-0152oc] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/15/2022] Open
Abstract
Placental growth factor (PlGF) and its receptor vascular endothelial growth factor receptor 1 (VEGFR1) play an important role in pathological conditions related to angiogenesis, vascular leakage, and inflammation. This study investigated their contributions to inflammation and the formation of edema in allergic asthma. The expression of PlGF and VEGFR1 was measured in induced sputum of patients with asthma (n = 11) and healthy subjects (n = 11), and in bronchial biopsies of house dust mite (HDM)-allergic patients stimulated with HDM allergens. The effects of the endonasal administration of human PlGF-2 and PlGF deficiency on inflammation and edema were evaluated in a murine model of allergic asthma. The migration of human neutrophils in response to hPlGF-2 was tested in vitro. The expression of PlGF and VEGFR1 was significantly higher in the sputum of patients with asthma, and in Der p 1-induced PlGF in biopsies from HDM-allergic patients. PlGF was increased in the bronchi of ovalbumin (OVA)-challenged mice compared with control mice (65 ± 17 pg/mg versus 18 ± 1 pg/mg, respectively; P < 0.01), and VEGFR1 was expressed in bronchial epithelium, endothelium (control mice), and inflammatory cells (OVA-challenged mice). The endonasal instillation of hPlGF-2 in wild-type, OVA-challenged mice led to an increase in bronchial neutrophils, lung tissue wet/dry ratio, and IL-17. PlGF-deficient mice showed lower numbers of BAL-infiltrating neutrophils, a reduced lung wet/dry ratio, and lower production of IL-17, macrophage inflammatory protein-2, and granulocyte chemotactic protein-2/LPS-induced chemokine compared with wild-type, OVA-challenged mice. hPlGF-2 induced the migration of human neutrophils in vitro in a VEGFR1-dependent way. PlGF and its receptor VEGFR1 are up-regulated in allergic asthma and play a proinflammatory role by inducing tissue edema, and increasing tissue neutrophilia and the production of IL-17.
Collapse
Affiliation(s)
- Sonja Bobic
- Department of Otorhinolaryngology and Head and Neck Surgery, Catholic University Hospitals, Kapucijnevoer 33, Leuven, Belgium
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|