1
|
Yuan L, Xiao D, Yang R, Ge L, Wan Y, Jiang L. Screening of liothyronine network pharmacology role in the treatment of ischemic stroke and molecular mechanism. ENVIRONMENTAL TOXICOLOGY 2024; 39:1641-1649. [PMID: 38018869 DOI: 10.1002/tox.24056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/06/2023] [Accepted: 11/12/2023] [Indexed: 11/30/2023]
Abstract
OBJECTIVE The present study aimed to elucidate mechanisms of liothyronine on the treatment of ischemic stroke (IS). METHODS Differential analysis based on R limma package was used to identify differentially expressed genes, which were then mapped into the connectivity map database for identification of liothyronine associated with IS. Tumor necrosis factor (TNF) signaling pathway was verified through pathway enrichment analysis via Enrichr online. Ischemia stroke mouse model was built up for further analysis. Infarct area and regional cerebral blood flow (rCBF) were measured by 2, 3, 5-triphenyltetrazolium chloride and laser Doppler flowmetry, respectively. Light microscope was used for the evaluation of body weight and dark neurons. Serum TXB2 , 6-Keto-PGF1a , TNF-α, and interleukin-6 (IL-6) levels in mice were measured using enzyme-linked immuno sorbent assay. In addition, relative protein expression levels of brain-derived neurotrophic factor, nestin, and Sox2 were detected by Western blot analysis. RESULTS Liothyronine with a negative connectivity was identified as one promising treatment for IS through TNF signaling pathway. The experimental results showed that liothyronine treatment significantly meliorated infarct area and the number of dark neurons in IS mice. Liothyronine greatly ameliorated the expression levels of TXB2 and 6-Keto-PGF1a . Besides, rCBF and body weight change of IS mice were increased gradually with increase of drug concentration. Based on pathway enrichment analysis, anti-inflammatory response (TNF-α and IL-6) relevant to TNF signaling pathway was identified, which was further validated in vitro. Furthermore, proteins as neural stem cell markers made a difference with liothyronine treatment. CONCLUSION Liothyronine may be a novel therapeutic component to exploit an effective medicine for the treatment of IS.
Collapse
Affiliation(s)
- Li Yuan
- Department of Neurology, Institute of Neurology, Ruijin Hospital LuWan Branch, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Dongdong Xiao
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Rumei Yang
- Nursing Department, Ruijin Hospital LuWan Branch, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Lei Ge
- Special Ward, Ruijin Hospital LuWan Branch, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yuye Wan
- Department of Neurology, Institute of Neurology, Ruijin Hospital LuWan Branch, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Lianglei Jiang
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
2
|
Elinoff JM, Mazer AJ, Cai R, Lu M, Graninger G, Harper B, Ferreyra GA, Sun J, Solomon MA, Danner RL. Meta-analysis of blood genome-wide expression profiling studies in pulmonary arterial hypertension. Am J Physiol Lung Cell Mol Physiol 2019; 318:L98-L111. [PMID: 31617731 DOI: 10.1152/ajplung.00252.2019] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Inflammatory cell infiltrates are a prominent feature of aberrant vascular remodeling in pulmonary arterial hypertension (PAH), suggesting that immune effector cells contribute to disease progression. Genome-wide blood expression profiling studies have attempted to better define this inflammatory component of PAH pathobiology but have been hampered by small sample sizes, methodological differences, and very little gene-level reproducibility. The current meta-analysis (seven studies; 156 PAH patients/110 healthy controls) was performed to assess the comparability of data across studies and to possibly derive a generalizable transcriptomic signature. Idiopathic (IPAH) compared with disease-associated PAH (APAH) displayed highly similar expression profiles with no differentially expressed genes, even after substantially relaxing selection stringency. In contrast, using a false discovery rate of ≤1% and I2 < 40% (low-to-moderate heterogeneity across studies) both IPAH and APAH differed markedly from healthy controls with the combined PAH cohort yielding 1,269 differentially expressed, unique gene transcripts. Bioinformatic analyses, including gene-set enrichment, which uses all available data independent of gene selection thresholds, identified interferon, mammalian target of rapamycin/p70S6K, stress kinase, and Toll-like receptor signaling as enriched mechanisms within the PAH gene signature. Enriched biological functions and diseases included tumorigenesis, autoimmunity, antiviral response, and cell death consistent with prevailing theories of PAH pathogenesis. Although otherwise indistinguishable, APAH (predominantly PAH due to systemic sclerosis) had a somewhat stronger interferon profile than IPAH. Meta-analysis defined a robust and generalizable transcriptomic signature in the blood of PAH patients that can help inform the identification of biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Jason M Elinoff
- Critical Care Medicine Department, Clinical Center, and National Institutes of Health, Bethesda, Maryland
| | - Adrien J Mazer
- Critical Care Medicine Department, Clinical Center, and National Institutes of Health, Bethesda, Maryland
| | - Rongman Cai
- Critical Care Medicine Department, Clinical Center, and National Institutes of Health, Bethesda, Maryland
| | - Mengyun Lu
- Critical Care Medicine Department, Clinical Center, and National Institutes of Health, Bethesda, Maryland
| | - Grace Graninger
- Critical Care Medicine Department, Clinical Center, and National Institutes of Health, Bethesda, Maryland
| | - Bonnie Harper
- Critical Care Medicine Department, Clinical Center, and National Institutes of Health, Bethesda, Maryland
| | - Gabriela A Ferreyra
- Critical Care Medicine Department, Clinical Center, and National Institutes of Health, Bethesda, Maryland
| | - Junfeng Sun
- Critical Care Medicine Department, Clinical Center, and National Institutes of Health, Bethesda, Maryland
| | - Michael A Solomon
- Critical Care Medicine Department, Clinical Center, and National Institutes of Health, Bethesda, Maryland.,Cardiovascular Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Robert L Danner
- Critical Care Medicine Department, Clinical Center, and National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
3
|
Shi K, Ge MN, Chen XQ. Coordinated DNA Methylation and Gene Expression Data for Identification of the Critical Genes Associated with Childhood Atopic Asthma. J Comput Biol 2019; 27:109-120. [PMID: 31460781 DOI: 10.1089/cmb.2019.0194] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Asthma is a chronic inflammatory disorder of airways that involves in many cells and factors. This study aimed to screen critical genes and miRNAs involved in childhood atopic asthma. DNA methylation and gene expression data (access numbers GSE65163 and GSE65204) were downloaded from Gene Expression Omnibus (GEO) database, which included 72 atopic asthmatic subject samples and 69 healthy samples. The differentially expressed genes (DEGs) with DNA methylation changes were identified, followed by Gene Ontology (GO) function and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis. Gene coexpression network and miRNA-target gene regulatory networks were then constructed. Besides, we screened critical drug molecules that have high correlation with atopic asthma in children. A total of 146 critical DEGs with DNA methylation changes were screened from atopic asthmatic samples compared with healthy control samples. GO and KEGG pathway enrichment analysis showed that the critical genes were mainly related to 20 GO terms and 13 KEGG pathways. In the coexpression network, tumor necrosis factor (TNF) and major histocompatibility complex, class II, DP alpha 1 (HLA-DPA1) were identified that were significantly related to immune response process. Analysis of miRNA-target gene network showed that hsa-miR-148b had the highest number of target genes(degree = 21). Besides, we found that Alsterpaullone had a correlation value closest to -1 (correlation = -0.884, p = 0.0031), which indicated that the agent might be considered as a potential agent that antagonized to asthma. The dysregulation of TNF, HLA-DPA1, and miR-148b might be related to the immune response of childhood atopic asthma.
Collapse
Affiliation(s)
- Ke Shi
- Department of Pediatrics and No. 904th Hospital of the Joint Logistics Support Force of PLA, Wuxi, China
| | - Meng-Na Ge
- Department of Pharmacy, No. 904th Hospital of the Joint Logistics Support Force of PLA, Wuxi, China
| | - Xiao-Qiao Chen
- Department of Pediatrics and No. 904th Hospital of the Joint Logistics Support Force of PLA, Wuxi, China
| |
Collapse
|
4
|
Keenan AB, Wojciechowicz ML, Wang Z, Jagodnik KM, Jenkins SL, Lachmann A, Ma'ayan A. Connectivity Mapping: Methods and Applications. Annu Rev Biomed Data Sci 2019. [DOI: 10.1146/annurev-biodatasci-072018-021211] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Connectivity mapping resources consist of signatures representing changes in cellular state following systematic small-molecule, disease, gene, or other form of perturbations. Such resources enable the characterization of signatures from novel perturbations based on similarity; provide a global view of the space of many themed perturbations; and allow the ability to predict cellular, tissue, and organismal phenotypes for perturbagens. A signature search engine enables hypothesis generation by finding connections between query signatures and the database of signatures. This framework has been used to identify connections between small molecules and their targets, to discover cell-specific responses to perturbations and ways to reverse disease expression states with small molecules, and to predict small-molecule mimickers for existing drugs. This review provides a historical perspective and the current state of connectivity mapping resources with a focus on both methodology and community implementations.
Collapse
Affiliation(s)
- Alexandra B. Keenan
- Department of Pharmacological Sciences and Mount Sinai Center for Bioinformatics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Megan L. Wojciechowicz
- Department of Pharmacological Sciences and Mount Sinai Center for Bioinformatics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Zichen Wang
- Department of Pharmacological Sciences and Mount Sinai Center for Bioinformatics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Kathleen M. Jagodnik
- Department of Pharmacological Sciences and Mount Sinai Center for Bioinformatics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Sherry L. Jenkins
- Department of Pharmacological Sciences and Mount Sinai Center for Bioinformatics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Alexander Lachmann
- Department of Pharmacological Sciences and Mount Sinai Center for Bioinformatics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Avi Ma'ayan
- Department of Pharmacological Sciences and Mount Sinai Center for Bioinformatics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
5
|
Pang C, Gu Y, Ding Y, Ma C, Yv W, Wang Q, Meng B. Several genes involved in the JAK-STAT pathway may act as prognostic markers in pancreatic cancer identified by microarray data analysis. Medicine (Baltimore) 2018; 97:e13297. [PMID: 30557977 PMCID: PMC6320066 DOI: 10.1097/md.0000000000013297] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
PURPOSE This study aimed to identify the underlying mechanisms in pancreatic cancer (PC) carcinogenesis and those as potential prognostic biomarkers, which can also be served as new therapeutic targets of PC. METHODS Differentially expressed genes (DEGs) were identified between PC tumor tissues and adjacent normal tissue samples from a public GSE62452 dataset, followed by functional and pathway enrichment analysis. Then, protein-protein interaction (PPI) network was constructed and prognosis-related genes were screened based on genes in the PPI network, before which prognostic gene-related miRNA regulatory network was constructed. Functions of the prognostic gene in the network were enriched before which Kaplan-Meier plots were calculated for significant genes. Moreover, we predicted related drug molecules based on target genes in the miRNA regulatory network. Furthermore, another independent GSE60979 dataset was downloaded to validate the potentially significant genes. RESULTS In the GSE62452 dataset, 1017 significant DEGs were identified. Twenty-six important prognostic-related genes were found using multivariate Cox regression analysis. Through pathway enrichment analysis and miRNA regulatory analysis, we found that the 5 genes, such as Interleukin 22 Receptor Subunit Alpha 1 (IL22RA1), BCL2 Like 1 (BCL2L1), STAT1, MYC Proto-Oncogene (MYC), and Signal Transducer And Activator Of Transcription 2 (STAT2), involved in the Jak-STAT signaling pathway were significantly associated with prognosis. Moreover, the expression change of these 5 genes was further validated using another microarray dataset. Additionally, we identified camptothecin as an effective drug for PC. CONCLUSION IL22RA1, BCL2L1, STAT1, MYC, and STAT2 involved in the Jak-STAT signaling pathway may be significantly associated with prognosis of PC.
Collapse
|
6
|
Wattacheril J, Rose KL, Hill S, Lanciault C, Murray CR, Washington K, Williams B, English W, Spann M, Clements R, Abumrad N, Flynn CR. Non-alcoholic fatty liver disease phosphoproteomics: A functional piece of the precision puzzle. Hepatol Res 2017; 47:1469-1483. [PMID: 28258704 PMCID: PMC5583035 DOI: 10.1111/hepr.12885] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 01/27/2017] [Accepted: 02/28/2017] [Indexed: 12/24/2022]
Abstract
BACKGROUND Molecular signaling events associated with the necroinflammatory changes in nonalcoholic steatohepatitis (NASH) are not well understood. AIMS To understand the molecular basis of NASH, we evaluated reversible phosphorylation events in hepatic tissue derived from Class III obese subjects by phosphoproteomic means with the aim of highlighting key regulatory pathways that distinguish NASH from non-alcoholic fatty liver disease (also known as simple steatosis; SS). MATERIALS & METHODS Class III obese subjects undergoing bariatric surgery underwent liver biopsy (eight normal patients, eight with simple steatosis, and eight NASH patients). Our strategy was unbiased, comparing global differences in liver protein reversible phosphorylation events across the 24 subjects. RESULTS Of the 3078 phosphorylation sites assigned (2465 phosphoserine, 445 phosphothreonine, 165 phosphotyrosine), 53 were altered by a factor of 2 among cohorts, and of those, 12 were significantly increased or decreased by ANOVA (P < 0.05). DISCUSSION Statistical analyses of canonical signaling pathways identified carbohydrate metabolism and RNA post-transcriptional modification among the most over-represented networks. CONCLUSION Collectively, these results raise the possibility of abnormalities in carbohydrate metabolism as an important trigger for the development of NASH, in parallel with already established abnormalities in lipid metabolism.
Collapse
Affiliation(s)
- Julia Wattacheril
- Center for Liver Disease and Transplantation, College of Physicians and Surgeons, Columbia University Medical Center, New York, New York, United States of America
| | - Kristie L. Rose
- Mass Spectrometry Research Center, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Salisha Hill
- Mass Spectrometry Research Center, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Christian Lanciault
- Department of Pathology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Clark R. Murray
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Kay Washington
- Department of Pathology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Brandon Williams
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Wayne English
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Matthew Spann
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Ronald Clements
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Naji Abumrad
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Charles Robb Flynn
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America,Corresponding author: Charles Flynn, PhD, Assistant Professor, Department of Surgery, Vanderbilt University, MRBIV Room 8465A, 2213 Garland Ave, Nashville, TN 37232,
| |
Collapse
|
7
|
Huang S, Feng C, Chen L, Huang Z, Zhou X, Li B, Wang LL, Chen W, Lv FQ, Li TS. Molecular Mechanisms of Mild and Severe Pneumonia: Insights from RNA Sequencing. Med Sci Monit 2017; 23:1662-1673. [PMID: 28381820 PMCID: PMC5390720 DOI: 10.12659/msm.900782] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND This study aimed to uncover the molecular mechanisms underlying mild and severe pneumonia by use of mRNA sequencing (RNA-seq). MATERIAL AND METHODS RNA was extracted from the peripheral blood of patients with mild pneumonia, severe pneumonia, and healthy controls. Sequencing was performed on the HiSeq4000 platform. After filtering, clean reads were mapped to the human reference genome hg19. Differentially expressed genes (DEGs) were identified between the control group and the mild or severe group. A transcription factor-gene network was constructed for each group. Biological process (BP) terms enriched by DEGs in the network were analyzed and these genes were also mapped to the Connectivity map to search for small-molecule drugs. RESULTS A total of 199 and 560 DEGs were identified from the mild group and severe group, respectively. A transcription factor-gene network consisting of 215 nodes and another network consisting of 451 nodes were constructed in the mild group and severe group, respectively, and 54 DEGs (e.g., S100A9 and S100A12) were found to be common, with consistent differential expression changes in the 2 groups. Genes in the transcription factor-gene network for the mild group were mainly enriched in 13 BP terms, especially defense and inflammatory response (e.g., S100A8) and spermatogenesis, while the top BP terms enriched by genes in the severe group include response to oxidative stress (CCL5), wound healing, and regulation of cell differentiation (CCL5), and of the cellular protein metabolic process. CONCLUSIONS S100A9 and S100A12 may have a role in the pathogenesis of pneumonia: S100A9 and CXCL1 may contribute solely in mild pneumonia, and CCL5 and CXCL11 may contribute in severe pneumonia.
Collapse
Affiliation(s)
- Sai Huang
- Department of Emergency, General Hospital of The People's Liberation Army (PLA), Beijing, China (mainland).,Department of Hematology, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China (mainland)
| | - Cong Feng
- Department of Emergency, General Hospital of The People's Liberation Army (PLA), Beijing, China (mainland)
| | - Li Chen
- Department of Emergency, General Hospital of The People's Liberation Army (PLA), Beijing, China (mainland)
| | - Zhi Huang
- Electrical and Computer Engineering, Purdue University, Indianapolis, IN, USA
| | - Xuan Zhou
- Department of Emergency, General Hospital of The People's Liberation Army (PLA), Beijing, China (mainland)
| | - Bei Li
- Department of Emergency, General Hospital of The People's Liberation Army (PLA), Beijing, China (mainland)
| | - Li-Li Wang
- Department of Emergency, General Hospital of The People's Liberation Army (PLA), Beijing, China (mainland)
| | - Wei Chen
- Department of Emergency, General Hospital of The People's Liberation Army (PLA), Beijing, China (mainland)
| | - Fa-Qin Lv
- Department of Ultrasound, General Hospital of The People's Liberation Army (PLA), Beijing, China (mainland)
| | - Tan-Shi Li
- Department of Emergency, General Hospital of The People's Liberation Army (PLA), Beijing, China (mainland)
| |
Collapse
|
8
|
Frump AL, Datta A, Ghose S, West J, de Caestecker MP. Genotype-phenotype effects of Bmpr2 mutations on disease severity in mouse models of pulmonary hypertension. Pulm Circ 2017; 6:597-607. [PMID: 28090303 DOI: 10.1086/688930] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
More than 350 mutations in the type-2 BMP (bone morphogenetic protein) receptor, BMPR2, have been identified in patients with heritable pulmonary arterial hypertension (HPAH). However, only 30% of BMPR2 mutation carriers develop PAH, and we cannot predict which of these carriers will develop clinical disease. One possibility is that the nature of the BMPR2 mutation affects disease severity. This hypothesis has been difficult to test clinically, given the rarity of HPAH and the complexity of the confounding genetic and environmental risk factors. To test this hypothesis, therefore, we evaluated the susceptibility to experimental pulmonary hypertension (PH) of mice carrying different HPAH-associated Bmpr2 mutations on otherwise identical genetic backgrounds. Mice with Bmpr2ΔEx4-5 mutations (Bmpr2+/-), in which the mutant protein is not expressed, develop less severe PH in response to hypoxia or hypoxia with vascular endothelial growth factor receptor inhibition than mice with an extracellular-domain Bmpr2ΔEx2 mutation (Bmpr2ΔEx2/+), in which the mutant protein is expressed. This was associated with a marked decrease in stabilizing phosphorylation of threonine 495 endothelial nitric oxide synthase (pThr495 eNOS) in Bmpr2ΔEx2/+ compared to wild-type and Bmpr2+/- mouse lungs. These findings provide the first experimental evidence that BMPR2 mutation types influence the severity of HPAH and suggest that patients with BMPR2 mutations who express mutant BMPR2 proteins by escaping non-sense-mediated messenger RNA decay (NMD- mutations) will develop more severe disease than HPAH patients with NMD+ mutations who do not express BMPR2 mutant proteins. Since decreased levels of pThr495 eNOS are associated with increased eNOS uncoupling, our data also suggest that this effect may result from defects in eNOS function.
Collapse
Affiliation(s)
- Andrea L Frump
- Department of Cell and Developmental Biology, Vanderbilt University, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Arunima Datta
- Division of Nephrology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Sampa Ghose
- Division of Nephrology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - James West
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Mark P de Caestecker
- Department of Cell and Developmental Biology, Vanderbilt University, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Division of Nephrology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
9
|
Patient-Specific iPSC-Derived Endothelial Cells Uncover Pathways that Protect against Pulmonary Hypertension in BMPR2 Mutation Carriers. Cell Stem Cell 2016; 20:490-504.e5. [PMID: 28017794 DOI: 10.1016/j.stem.2016.08.019] [Citation(s) in RCA: 158] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 07/11/2016] [Accepted: 08/19/2016] [Indexed: 01/15/2023]
Abstract
In familial pulmonary arterial hypertension (FPAH), the autosomal dominant disease-causing BMPR2 mutation is only 20% penetrant, suggesting that genetic variation provides modifiers that alleviate the disease. Here, we used comparison of induced pluripotent stem cell-derived endothelial cells (iPSC-ECs) from three families with unaffected mutation carriers (UMCs), FPAH patients, and gender-matched controls to investigate this variation. Our analysis identified features of UMC iPSC-ECs related to modifiers of BMPR2 signaling or to differentially expressed genes. FPAH-iPSC-ECs showed reduced adhesion, survival, migration, and angiogenesis compared to UMC-iPSC-ECs and control cells. The "rescued" phenotype of UMC cells was related to an increase in specific BMPR2 activators and/or a reduction in inhibitors, and the improved cell adhesion could be attributed to preservation of related signaling. The improved survival was related to increased BIRC3 and was independent of BMPR2. Our findings therefore highlight protective modifiers for FPAH that could help inform development of future treatment strategies.
Collapse
|
10
|
Identification of multiple ACVRL1 mutations in patients with pulmonary arterial hypertension by targeted exome capture. Clin Sci (Lond) 2016; 130:1559-69. [PMID: 27316748 DOI: 10.1042/cs20160247] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 06/17/2016] [Indexed: 11/17/2022]
Abstract
Pulmonary artery hypertension (PAH) is characterized as sustained elevation of pressure in the pulmonary vascular system that is attributable to a variety of causes. More than a dozen genes have previously been proposed as being associated with PAH. To examine potential mutations of these genes in patients with PAH, we developed a targeted exome kit containing 22 PAH-associated genes for genetic screens of 80 unrelated patients with PAH. As a result, we identified 16 different mutations in the BMPR2 gene and four different mutations in ACVRL1, the gene for activin receptor-like kinase-1 (ACVRL1). However, no deleterious mutations were found in the remaining 20 genes. In the present study, we provided detailed characterization of the ACVRL1 mutations in four pedigrees, including two novel missense mutations (c.676G>A, p.V226M; c.955G>C, p.G319R) and two recurrent mutations (c.1231C>T, p.R411W; c.1450C>T, p.R484W). Furthermore, we showed that markedly reduced Smad1/5 phosphorylation levels and reduced activities of luciferase reporters in each of the four ACVRL1 mutant-transfected NIH-3T3 cells. Therefore, our findings demonstrated that missense mutations of ACVRL1 identified in the present study significantly affected the bone morphogenetic protein 9 (BMP-9) pathway, implicating PAH pathogenesis. Detailed genotype–phenotype correlation analysis revealed initial symptoms of hereditary haemorrhagic telangiectasia (HHT) in some of the patients, suggesting the importance of sequencing molecular markers for early identification and intervention of individuals at risk for PAH and potential HHT. We developed a customized exome sequencing system to identify mutations in these PAH-associated genes, and found two novel missense mutations and two recurrent mutations in the ACVRL1 gene in four unrelated Chinese families; we also determined hypomorphic alleles using functional studies.
Collapse
|
11
|
Bryant AJ, Robinson LJ, Moore CS, Blackwell TR, Gladson S, Penner NL, Burman A, McClellan LJ, Polosukhin VV, Tanjore H, McConaha ME, Gleaves LA, Talati MA, Hemnes AR, Fessel JP, Lawson WE, Blackwell TS, West JD. Expression of mutant bone morphogenetic protein receptor II worsens pulmonary hypertension secondary to pulmonary fibrosis. Pulm Circ 2015; 5:681-90. [PMID: 26697175 DOI: 10.1086/683811] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Pulmonary fibrosis is often complicated by pulmonary hypertension (PH), and previous studies have shown a potential link between bone morphogenetic protein receptor II (BMPR2) and PH secondary to pulmonary fibrosis. We exposed transgenic mice expressing mutant BMPR2 and control mice to repetitive intraperitoneal injections of bleomycin for 4 weeks. The duration of transgene activation was too short for mutant BMPR2 mice to develop spontaneous PH. Mutant BMPR2 mice had increased right ventricular systolic pressure compared to control mice, without differences in pulmonary fibrosis. We found increased hypoxia-inducible factor (HIF)1-α stabilization in lungs of mutant-BMPR2-expressing mice compared to controls following bleomycin treatment. In addition, expression of the hypoxia response element protein connective tissue growth factor was increased in transgenic mice as well as in a human pulmonary microvascular endothelial cell line expressing mutant BMPR2. In mouse pulmonary vascular endothelial cells, mutant BMPR2 expression resulted in increased HIF1-α and reactive oxygen species production following exposure to hypoxia, both of which were attenuated with the antioxidant TEMPOL. These data suggest that expression of mutant BMPR2 worsens secondary PH through increased HIF activity in vascular endothelium. This pathway could be therapeutically targeted in patients with PH secondary to pulmonary fibrosis.
Collapse
Affiliation(s)
- Andrew J Bryant
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA ; Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Linda J Robinson
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Christy S Moore
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Thomas R Blackwell
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Santhi Gladson
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Niki L Penner
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Ankita Burman
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Lucas J McClellan
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Vasiliy V Polosukhin
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Harikrishna Tanjore
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Melinda E McConaha
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Linda A Gleaves
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Megha A Talati
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Anna R Hemnes
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Joshua P Fessel
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - William E Lawson
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA ; Department of Veterans Affairs Medical Center, Nashville, Tennessee, USA
| | - Timothy S Blackwell
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA ; Department of Cell and Developmental Biology and Department of Cancer Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - James D West
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| |
Collapse
|
12
|
Liu D, Morrell NW. Genetics and the molecular pathogenesis of pulmonary arterial hypertension. Curr Hypertens Rep 2014; 15:632-7. [PMID: 24078385 DOI: 10.1007/s11906-013-0393-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Mutations in the bone morphogenetic protein type II receptor (BMPR-II) gene (BMPR2) have been recognized to cause heritable PAH (HPAH). Recent studies focused on novel BMPR2 mutations in the Asian population and provided evidence for genotype-phenotype correlations. A candidate gene strategy has suggested additional mutations in SMAD, TBX4 and TSP1 in PAH. A genome-wide association study (GWAS) identified an association at the CBLN2 locus with PAH. Studies have addressed the role of additional factors required for disease penetrance. The unbalance between TGF β1 and BMPRII signaling may stimulate inflammatory cytokine expression and leukocyte extravasation. Epigenetics, including DNA methylation and microRNAs, appear to play a role in the development of PAH. Next-generation sequencing with advances in bioinformatics will provide further insights into the underlying genetic and epigenetic architecture underlying the pathobiology of PAH.
Collapse
|
13
|
West J, Austin E, Fessel JP, Loyd J, Hamid R. Rescuing the BMPR2 signaling axis in pulmonary arterial hypertension. Drug Discov Today 2014; 19:1241-5. [PMID: 24794464 DOI: 10.1016/j.drudis.2014.04.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Accepted: 04/24/2014] [Indexed: 01/10/2023]
Abstract
Pulmonary arterial hypertension (PAH) is a lethal disorder characterized by pulmonary arterial remodeling, increased right ventricular systolic pressure (RVSP), vasoconstriction and inflammation. The heritable form of PAH (HPAH) is usually (>80%) caused by mutations in the bone morphogenic protein receptor 2 (BMPR2) gene. Existing treatments for PAH typically focus on the end-stage sequelae of the disease, but do not address underlying mechanisms of vascular obstruction and blood flow and thus, in the long run, have limited effect because they treat the symptoms rather than the cause. Over the past decade, improved understanding of the molecular mechanisms behind the disease has enabled us to consider several novel therapeutic pathways. These include approaches directed toward BMPR2 gene expression, alternative splicing, downstream BMP signaling, metabolic pathways and the role of estrogens and estrogenic compounds in BMP signaling. It is likely that, ultimately, only one or two of these pathways will generate meaningful treatment options, however the potential benefits to PAH patients are still likely to be significant.
Collapse
Affiliation(s)
- James West
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| | - Eric Austin
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Joshua P Fessel
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - James Loyd
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Rizwan Hamid
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| |
Collapse
|
14
|
Soubrier F, Chung WK, Machado R, Grünig E, Aldred M, Geraci M, Loyd JE, Elliott CG, Trembath RC, Newman JH, Humbert M. Genetics and genomics of pulmonary arterial hypertension. J Am Coll Cardiol 2014; 62:D13-21. [PMID: 24355637 DOI: 10.1016/j.jacc.2013.10.035] [Citation(s) in RCA: 227] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Accepted: 10/22/2013] [Indexed: 12/24/2022]
Abstract
Major discoveries have been obtained within the last decade in the field of hereditary predisposition to pulmonary arterial hypertension (PAH). Among them, the identification of bone morphogenetic protein receptor type 2 (BMPR2) as the major predisposing gene and activin A receptor type II-like kinase-1 (ACVRL1, also known as ALK1) as the major gene when PAH is associated with hereditary hemorrhagic telangiectasia. The mutation detection rate for the known genes is approximately 75% in familial PAH, but the mutation shortfall remains unexplained even after careful molecular investigation of these genes. To identify additional genetic variants predisposing to PAH, investigators harnessed the power of next-generation sequencing to successfully identify additional genes that will be described in this report. Furthermore, common genetic predisposing factors for PAH can be identified by genome-wide association studies and are detailed in this paper. The careful study of families and routine genetic diagnosis facilitated natural history studies based on large registries of PAH patients to be set up in different countries. These longitudinal or cross-sectional studies permitted the clinical characterization of PAH in mutation carriers to be accurately described. The availability of molecular genetic diagnosis has opened up a new field for patient care, including genetic counseling for a severe disease, taking into account that the major predisposing gene has a highly variable penetrance between families. Molecular information can be drawn from the genomic study of affected tissues in PAH, in particular, pulmonary vascular tissues and cells, to gain insight into the mechanisms leading to the development of the disease. High-throughput genomic techniques, on the basis of next-generation sequencing, now allow the accurate quantification and analysis of ribonucleic acid, species, including micro-ribonucleic acids, and allow for a genome-wide investigation of epigenetic or regulatory mechanisms, which include deoxyribonucleic acid methylation, histone methylation, and acetylation, or transcription factor binding.
Collapse
Affiliation(s)
- Florent Soubrier
- Genetics Department, Hospital Pitié-Salpêtrière, Assistance Publique Hôpitaux de Paris (APHP), Unité Mixte de Recherche en Sante (UMRS) 956 Institut National de la Sante et de la Recherche Medicale INSERM, Université Pierre et Marie Curie Paris 06 (UPMC), and Institute of Cardiometabolism and Nutrition (ICAN), Paris, France.
| | - Wendy K Chung
- Departments of Pediatrics and Medicine, Columbia University Medical Center, New York, New York
| | - Rajiv Machado
- University of Lincoln, School of Life Sciences, Lincoln, United Kingdom
| | - Ekkehard Grünig
- Centre for Pulmonary Hypertension at University Hospital Heidelberg, Heidelberg, Germany
| | - Micheala Aldred
- Genomic Medicine Institute, Cleveland Clinic, Cleveland, Ohio
| | - Mark Geraci
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Denver, Aurora, Colorado
| | - James E Loyd
- Pulmonary Hypertension Center, Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University Medical Center North, Nashville, Tennessee
| | - C Gregory Elliott
- Departments of Medicine at Intermountain Medical Center and the University of Utah, Salt Lake City, Utah
| | - Richard C Trembath
- Division of Genetics and Molecular Medicine, Kings College, London, United Kingdom
| | - John H Newman
- Pulmonary Hypertension Center, Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University Medical Center North, Nashville, Tennessee
| | - Marc Humbert
- Centre de Référence de l'Hypertension Pulmonaire Sévère, Service de Pneumologie, Hôpital de Bicêtre, APHP, Le Kremlin Bicêtre, Université Paris-Sud, Faculté de Médecine, Le Kremlin Bicêtre; Département Hospitalo-Universitaire (DHU) thorax Innovation, AP-HP, Le Kremlin Bicêtre; UMR_S 999, INSERM and Université Paris-Sud, LabEx LERMIT, Centre Chirurgical Marie Lannelongue, Le Plessis Robinson, France
| |
Collapse
|
15
|
Wilkins MR, Wharton J, Gladwin MT. Update in Pulmonary Vascular Diseases 2012. Am J Respir Crit Care Med 2013; 188:23-8. [DOI: 10.1164/rccm.201303-0470up] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
|
16
|
West J, Loyd JE, Hamid R. Potential Interventions Against BMPR2-Related Pulmonary Hypertension. ACTA ACUST UNITED AC 2012. [DOI: 10.21693/1933-088x-11.1.25] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
For more than 60 years, researchers have sought to understand the molecular basis of idiopathic pulmonary arterial hypertension (PAH). Recognition of the heritable form of the disease led to the creation of patient registries in the 1980s and 1990s, and discovery of BMPR2 as the cause of roughly 80% of heritable PAH in 2000. With discovery of the disease gene came opportunity for intervention, with focus on 2 alternative approaches. First, it may be possible to correct the effects of BMPR2 mutation directly through interventions targeted at correction of trafficking defects, increasing expression of the unmutated allele, and correction of splicing defects. Second, therapeutic interventions are being targeted at the signaling consequences of BMPR2 mutation. In particular, therapies targeting cytoskeletal and metabolic defects caused by BMPR2 mutation are currently in trials, or will be ready for human trials in the near future. Translation of these findings into therapies is the culmination of decades of research, and holds great promise for treatment of the underlying molecular bases of disease.
Collapse
Affiliation(s)
- James West
- Vanderbilt University Medical Center, Department of Medicine, Nashville, Tennessee
| | - James E. Loyd
- Vanderbilt University Medical Center, Department of Medicine, Nashville, Tennessee
| | - Rizwan Hamid
- Vanderbilt University Medical Center, Departments of Genetics and Pediatrics, Nashville, Tennessee
| |
Collapse
|