1
|
Rodriguez G, Eren M, Haupfear I, Viola KL, Cline EN, Miyata T, Klein WL, Vaughan DE, Dong H. Pharmacological inhibition of plasminogen activator inhibitor-1 prevents memory deficits and reduces neuropathology in APP/PS1 mice. Psychopharmacology (Berl) 2023; 240:2641-2655. [PMID: 37700086 DOI: 10.1007/s00213-023-06459-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 08/28/2023] [Indexed: 09/14/2023]
Abstract
RATIONALE Extracellular proteolytic activity plays an important role in memory formation and the preservation of cognitive function. Previous studies have shown increased levels of plasminogen activator inhibitor-1 (PAI-1) in the brain of mouse models of Alzheimer's disease (AD) and plasma of AD patients, associated with memory and cognitive decline; however, the exact function of PAI-1 in AD onset and progression is largely unclear. OBJECTIVE In this study, we evaluated a novel PAI-1 inhibitor, TM5A15, on its ability to prevent or reverse memory deficits and decrease Aβ levels and plaque deposition in APP/PS1 mice. METHODS We administered TM5A15 mixed in a chow diet to 3-month and 9-month-old APP/PS1 mice before and after neuropathological changes were distinguishable. We then evaluated the effects of TM5A15 on memory function and neuropathology at 9 months and 18 months of age. RESULTS In the younger mice, 6 months of TM5A15 treatment protected against recognition and short-term working memory impairment. TM5A15 also decreased oligomer levels and amyloid plaques, and increased mBDNF expression in APP/PS1 mice at 9 months of age. In aged mice, 9 months of TM5A15 treatment did not significantly improve memory function nor decrease amyloid plaques. However, TM5A15 treatment showed a trend in decreasing oligomer levels in APP/PS1 mice at 18 months of age. CONCLUSION Our results suggest that PAI-1 inhibition could improve memory function and reduce the accumulation of amyloid levels in APP/PS1 mice. Such effects are more prominent when TM5A15 is administered before advanced AD pathology and memory deficits occur.
Collapse
Affiliation(s)
- Guadalupe Rodriguez
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, 303 East Chicago Avenue, Ward 7-103, Chicago, IL, 60611, USA
| | - Mesut Eren
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Isabel Haupfear
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, 303 East Chicago Avenue, Ward 7-103, Chicago, IL, 60611, USA
| | - Kirsten L Viola
- Department of Neurobiology, Northwestern University, 2205 Tech Drive, Hogan 4-160, Evanston, IL, 60208, USA
| | - Erika N Cline
- Department of Neurobiology, Northwestern University, 2205 Tech Drive, Hogan 4-160, Evanston, IL, 60208, USA
| | - Toshio Miyata
- Department of Molecular Medicine and Therapy, United Centers for Advanced Research and Translational Medicine, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - William L Klein
- Department of Neurobiology, Northwestern University, 2205 Tech Drive, Hogan 4-160, Evanston, IL, 60208, USA
| | - Douglas E Vaughan
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Hongxin Dong
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, 303 East Chicago Avenue, Ward 7-103, Chicago, IL, 60611, USA.
| |
Collapse
|
2
|
Qu F, Brough SC, Michno W, Madubata CJ, Hartmann GG, Puno A, Drainas AP, Bhattacharya D, Tomasich E, Lee MC, Yang D, Kim J, Peiris-Pagès M, Simpson KL, Dive C, Preusser M, Toland A, Kong C, Das M, Winslow MM, Pasca AM, Sage J. Crosstalk between small-cell lung cancer cells and astrocytes mimics brain development to promote brain metastasis. Nat Cell Biol 2023; 25:1506-1519. [PMID: 37783795 PMCID: PMC11230587 DOI: 10.1038/s41556-023-01241-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 08/25/2023] [Indexed: 10/04/2023]
Abstract
Brain metastases represent an important clinical problem for patients with small-cell lung cancer (SCLC). However, the mechanisms underlying SCLC growth in the brain remain poorly understood. Here, using intracranial injections in mice and assembloids between SCLC aggregates and human cortical organoids in culture, we found that SCLC cells recruit reactive astrocytes to the tumour microenvironment. This crosstalk between SCLC cells and astrocytes drives the induction of gene expression programmes that are similar to those found during early brain development in neurons and astrocytes. Mechanistically, the brain development factor Reelin, secreted by SCLC cells, recruits astrocytes to brain metastases. These astrocytes in turn promote SCLC growth by secreting neuronal pro-survival factors such as SERPINE1. Thus, SCLC brain metastases grow by co-opting mechanisms involved in reciprocal neuron-astrocyte interactions during brain development. Targeting such developmental programmes activated in this cancer ecosystem may help prevent and treat brain metastases.
Collapse
Affiliation(s)
- Fangfei Qu
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Siqi C Brough
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Wojciech Michno
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Chioma J Madubata
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Griffin G Hartmann
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Alyssa Puno
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Alexandros P Drainas
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Debadrita Bhattacharya
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Erwin Tomasich
- Department of Medicine I, Division of Oncology, Medical University of Vienna, Vienna, Austria
| | - Myung Chang Lee
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Dian Yang
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Jun Kim
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Maria Peiris-Pagès
- Cancer Research UK Cancer Biomarker Centre, Manchester, UK
- Cancer Research UK Manchester Institute, Manchester, UK
| | - Kathryn L Simpson
- Cancer Research UK Cancer Biomarker Centre, Manchester, UK
- Cancer Research UK Manchester Institute, Manchester, UK
| | - Caroline Dive
- Cancer Research UK Cancer Biomarker Centre, Manchester, UK
- Cancer Research UK Manchester Institute, Manchester, UK
| | - Matthias Preusser
- Department of Medicine I, Division of Oncology, Medical University of Vienna, Vienna, Austria
| | - Angus Toland
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Christina Kong
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Millie Das
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Department of Medicine, VA Palo Alto Health Care System, Palo Alto, CA, USA
| | - Monte M Winslow
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Anca M Pasca
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Julien Sage
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
3
|
Liu Y, Shu L, Jiang X, Zhang Y, Chen Q, Shen Y, Yang Y. The development of nasal polyps involves early middle meatus mucous remodeling via TGF-β1 mediated PAI-1 reduction. Braz J Otorhinolaryngol 2023; 89:366-373. [PMID: 36841712 PMCID: PMC10164765 DOI: 10.1016/j.bjorl.2023.01.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 12/14/2022] [Accepted: 01/28/2023] [Indexed: 02/16/2023] Open
Abstract
OBJECTIVE Our study aimed to elucidate the effect of PAI-1 (Plasminogen Activator Inhibitor-1) and t-PA (Tissue-type Plasminogen Activator) in tissue remodeling in nasal polyps patients. METHODS Samples were streamed as early Nasal Polyps (eNP, n=10) and inferior tissue from the same patient, mature Nasal Polyps (mNP, n=14), and Control group (n=15), respectively. Immunohistochemistry and immunofluorescence were applied to detect localization. Quantitative Real-Time Polymerase Chain Reaction (qRT-PCR) and Western blot were used to measure different levels among three groups. The mNP tissue was cultured in vitro and treated with TGF-β1 (Transforming Growth Factor-beta 1) activator, TGF-β1 inhibitor (SB431542), and PAI-1 inhibitor (TM5275); then Western blot, qRT-PCR, and ELISA were used to assess changes. RESULTS The immunohistochemistry and immunofluorescence showed that PAI-1 expression decreased in eNP and mNP, mainly in epithelium and glands. The transcriptional expression and protein level of TGF-β1/t-PA/PAI-1/Collagen1 were lower in eNP than IT while mNP group demonstrated lower mRNA expression and protein level of TGF-β1/t-PA/PAI-1/Collagen1 than Control group. In mNP tissue culture in vitro, TGF-β1 activator elevated t-PA, PAI-1, and Collagen1 with higher release of PAI-1 and Collagen1 in supernatant, whereas SB431542 suppressed above reactions; TM5275 lowered transcriptional and protein level of Collagen1 in supernatant. CONCLUSION Early Nasal polyps' formation in middle meatus mucous is related with fibrillation system PAI-1/t-PA and tissue remodeling; moreover, nasal polyps' development is regulated by TGF-β1-mediated PAI-1 reduction. LEVEL OF EVIDENCE 3b.
Collapse
Affiliation(s)
- Yijun Liu
- The First Affiliated Hospital of Chongqing Medical University, Department of Otorhinolaryngology, Chongqing, China
| | - Longlan Shu
- The First Affiliated Hospital of Chongqing Medical University, Department of Otorhinolaryngology, Chongqing, China
| | - Xiaocong Jiang
- The First Affiliated Hospital of Chongqing Medical University, Department of Otorhinolaryngology, Chongqing, China
| | - Yue Zhang
- The First Affiliated Hospital of Chongqing Medical University, Department of Otorhinolaryngology, Chongqing, China
| | - Qian Chen
- The First Affiliated Hospital of Chongqing Medical University, Department of Otorhinolaryngology, Chongqing, China
| | - Yang Shen
- The First Affiliated Hospital of Chongqing Medical University, Department of Otorhinolaryngology, Chongqing, China
| | - Yucheng Yang
- The First Affiliated Hospital of Chongqing Medical University, Department of Otorhinolaryngology, Chongqing, China.
| |
Collapse
|
4
|
Chen PC, Hsieh MH, Kuo WS, Wu LSH, Kao HF, Liu LF, Liu ZG, Jeng WY, Wang JY. Moonlighting glyceraldehyde-3-phosphate dehydrogenase (GAPDH) protein of Lactobacillus gasseri attenuates allergic asthma via immunometabolic change in macrophages. J Biomed Sci 2022; 29:75. [PMID: 36175886 PMCID: PMC9520948 DOI: 10.1186/s12929-022-00861-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 09/23/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The extra-intestinal effects of probiotics for preventing allergic diseases are well known. However, the probiotic components that interact with host target molecules and have a beneficial effect on allergic asthma remain unknown. Lactobacillus gasseri attenuates allergic airway inflammation through the activation of peroxisome proliferator- activated receptor γ (PPARγ) in dendritic cells. Therefore, we aimed to isolate and investigate the immunomodulatory effect of the PPARγ activation component from L. gasseri. METHODS Culture supernatants of L. gasseri were fractionated and screened for the active component for allergic asthma. The isolated component was subjected to in vitro functional assays and then cloned. The crystal structure of this component protein was determined using X-ray crystallography. Intrarectal inoculation of the active component-overexpressing Clear coli (lipopolysaccharide-free Escherichia coli) and intraperitoneal injection of recombinant component protein were used in a house dust mite (HDM)-induced allergic asthma mouse model to investigate the protective effect. Recombinant mutant component proteins were assayed, and their structures were superimposed to identify the detailed mechanism of alleviating allergic inflammation. RESULTS A moonlighting protein, glycolytic glyceraldehyde 3-phosphate dehydrogenase (GAPDH), LGp40, that has multifunctional effects was purified from cultured L. gasseri, and the crystal structure was determined. Both intrarectal inoculation of LGp40-overexpressing Clear coli and intraperitoneal administration of recombinant LGp40 protein attenuated allergic inflammation in a mouse model of allergic asthma. However, CDp40, GAPDH isolated from Clostridium difficile did not possess this anti-asthma effect. LGp40 redirected allergic M2 macrophages toward the M1 phenotype and impeded M2-prompted Th2 cell activation through glycolytic activity that induced immunometabolic changes. Recombinant mutant LGp40, without enzyme activity, showed no protective effect against HDM-induced airway inflammation. CONCLUSIONS We found a novel mechanism of moonlighting LGp40 in the reversal of M2-prompted Th2 cell activation through glycolytic activity, which has an important immunoregulatory role in preventing allergic asthma. Our results provide a new strategy for probiotics application in alleviating allergic asthma.
Collapse
Affiliation(s)
- Pei-Chi Chen
- Center for Allergy, Immunology, and Microbiome (A.I.M.), China Medical University Hospital, No. 2, Yuh-Der Road, Taichung City, 404, Taiwan.,Department of Nursing, National Tainan Junior College of Nursing, Tainan, Taiwan
| | - Miao-Hsi Hsieh
- Center for Allergy, Immunology, and Microbiome (A.I.M.), China Medical University Hospital, No. 2, Yuh-Der Road, Taichung City, 404, Taiwan
| | - Wen-Shuo Kuo
- Center for Allergy, Immunology, and Microbiome (A.I.M.), China Medical University Hospital, No. 2, Yuh-Der Road, Taichung City, 404, Taiwan.,School of Chemistry and Materials Science, Nanjing University of Information Science and Technology, Nanjing, China
| | - Lawrence Shih-Hsin Wu
- Center for Allergy, Immunology, and Microbiome (A.I.M.), China Medical University Hospital, No. 2, Yuh-Der Road, Taichung City, 404, Taiwan.,Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Hui-Fang Kao
- Department of Nursing, National Tainan Junior College of Nursing, Tainan, Taiwan
| | - Li-Fan Liu
- Institute of Gerontology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Zhi-Gang Liu
- Department of Respirology and Allergy, Third Affiliated Hospital of Shengzhen University, Shengzhen, China
| | - Wen-Yih Jeng
- University Center for Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan. .,Department of Biochemistry and Molecular Biology, National Cheng Kung University, No. 1, University Road, Tainan City, 701, Taiwan.
| | - Jiu-Yao Wang
- Center for Allergy, Immunology, and Microbiome (A.I.M.), China Medical University Hospital, No. 2, Yuh-Der Road, Taichung City, 404, Taiwan. .,Children's Hospital, China Medical University, Taichung, Taiwan.
| |
Collapse
|
5
|
Zhang F, Chen S, Yang T, Ao H, Zhai L, Li Q, Xing K, Liu Y, Liu H, Yu Y, Wang C. Novel DNA methylation markers of PRRSV-specific antibodies and their intergenerational transmission from pregnant sows to piglets. Gene 2021; 801:145831. [PMID: 34274485 DOI: 10.1016/j.gene.2021.145831] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 07/01/2021] [Accepted: 07/13/2021] [Indexed: 01/11/2023]
Abstract
The main strategy for preventing porcine reproductive and respiratory syndrome (PRRS) is vaccination. However, current commercial porcine reproductive and respiratory syndrome virus (PRRSV) vaccines have limited effectiveness and may even cause infections in pigs. The identification of stable molecular markers associated with immune responses to PRRSV vaccination in pigs provides a new approach for PRRS prevention. DNA methylation, the most stable epigenetic molecular marker related to PRRSV vaccination, has not been investigated. In the current research, we used whole genome bisulfite sequencing (WGBS) to investigate DNA methylation in pregnant sows that received PRRSV vaccination and their piglets with high and low PRRSV-specific antibody levels. By performing methylation data analysis and basing on our previous transcriptomic studies, we identified several differentially methylated genes (DMGs) that are involved in the pathways of inflammatory and immune responses. Among the DMGs, ISG15, MX1, SERPINE1, GNG11 and IFIT3 were common hub genes in the two generations. MX1 and GNG11 were located in quantitative trait loci related with PRRSV antibody titer and PRRSV susceptibility, respectively. These results suggest that PRRSV vaccination in sows induces DNA methylation changes in genes and DNA methylation changes occur through intergenerational transmission. The novel DNA methylation markers and target genes observed in our study provide new insights into the molecular mechanisms of immune responses to PRRSV vaccination across two pig generations.
Collapse
Affiliation(s)
- Fengxia Zhang
- National Engineering Laboratory for Animal Breeding, MOA Key Laboratory of Animal Genetics and Breeding, Department of Animal Genetics and Breeding, China Agricultural University, Beijing, China; Innovation Team of Pig Health Breeding, Institute of Animal Husbandry and Veterinary, Tianjin Academy of Agricultural Sciences, Tianjin, China
| | - Siqian Chen
- National Engineering Laboratory for Animal Breeding, MOA Key Laboratory of Animal Genetics and Breeding, Department of Animal Genetics and Breeding, China Agricultural University, Beijing, China
| | - Ting Yang
- National Engineering Laboratory for Animal Breeding, MOA Key Laboratory of Animal Genetics and Breeding, Department of Animal Genetics and Breeding, China Agricultural University, Beijing, China
| | - Hong Ao
- The State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Liwei Zhai
- National Engineering Laboratory for Animal Breeding, MOA Key Laboratory of Animal Genetics and Breeding, Department of Animal Genetics and Breeding, China Agricultural University, Beijing, China
| | - Qianjun Li
- Innovation Team of Pig Health Breeding, Institute of Animal Husbandry and Veterinary, Tianjin Academy of Agricultural Sciences, Tianjin, China
| | - Kai Xing
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - Yibing Liu
- National Engineering Laboratory for Animal Breeding, MOA Key Laboratory of Animal Genetics and Breeding, Department of Animal Genetics and Breeding, China Agricultural University, Beijing, China
| | - Huatao Liu
- National Engineering Laboratory for Animal Breeding, MOA Key Laboratory of Animal Genetics and Breeding, Department of Animal Genetics and Breeding, China Agricultural University, Beijing, China
| | - Ying Yu
- National Engineering Laboratory for Animal Breeding, MOA Key Laboratory of Animal Genetics and Breeding, Department of Animal Genetics and Breeding, China Agricultural University, Beijing, China.
| | - Chuduan Wang
- National Engineering Laboratory for Animal Breeding, MOA Key Laboratory of Animal Genetics and Breeding, Department of Animal Genetics and Breeding, China Agricultural University, Beijing, China.
| |
Collapse
|
6
|
The Serpin Superfamily and Their Role in the Regulation and Dysfunction of Serine Protease Activity in COPD and Other Chronic Lung Diseases. Int J Mol Sci 2021; 22:ijms22126351. [PMID: 34198546 PMCID: PMC8231800 DOI: 10.3390/ijms22126351] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/01/2021] [Accepted: 06/04/2021] [Indexed: 12/21/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a debilitating heterogeneous disease characterised by unregulated proteolytic destruction of lung tissue mediated via a protease-antiprotease imbalance. In COPD, the relationship between the neutrophil serine protease, neutrophil elastase, and its endogenous inhibitor, alpha-1-antitrypsin (AAT) is the best characterised. AAT belongs to a superfamily of serine protease inhibitors known as serpins. Advances in screening technologies have, however, resulted in many members of the serpin superfamily being identified as having differential expression across a multitude of chronic lung diseases compared to healthy individuals. Serpins exhibit a unique suicide-substrate mechanism of inhibition during which they undergo a dramatic conformational change to a more stable form. A limitation is that this also renders them susceptible to disease-causing mutations. Identification of the extent of their physiological/pathological role in the airways would allow further expansion of knowledge regarding the complexity of protease regulation in the lung and may provide wider opportunity for their use as therapeutics to aid the management of COPD and other chronic airways diseases.
Collapse
|
7
|
PAI-1 in Diabetes: Pathophysiology and Role as a Therapeutic Target. Int J Mol Sci 2021; 22:ijms22063170. [PMID: 33804680 PMCID: PMC8003717 DOI: 10.3390/ijms22063170] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/16/2021] [Accepted: 03/17/2021] [Indexed: 12/14/2022] Open
Abstract
Hypofibrinolysis is a key abnormality in diabetes and contributes to the adverse vascular outcome in this population. Plasminogen activator inhibitor (PAI)-1 is an important regulator of the fibrinolytic process and levels of this antifibrinolytic protein are elevated in diabetes and insulin resistant states. This review describes both the physiological and pathological role of PAI-1 in health and disease, focusing on the mechanism of action as well as protein abnormalities in vascular disease with special focus on diabetes. Attempts at inhibiting protein function, using different techniques, are also discussed including direct and indirect interference with production as well as inhibition of protein function. Developing PAI-1 inhibitors represents an alternative approach to managing hypofibrinolysis by targeting the pathological abnormality rather than current practice that relies on profound inhibition of the cellular and/or acellular arms of coagulation, and which can be associated with increased bleeding events. The review offers up-to-date knowledge on the mechanisms of action of PAI-1 together with the role of altering protein function to improve hypofirbinolysis. Developing PAI-1 inhibitors may form for the basis of future new class of antithrombotic agents that reduce vascular complications in diabetes.
Collapse
|
8
|
Baker SK, Strickland S. A critical role for plasminogen in inflammation. J Exp Med 2020; 217:133866. [PMID: 32159743 PMCID: PMC7144526 DOI: 10.1084/jem.20191865] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 12/10/2019] [Accepted: 02/12/2020] [Indexed: 02/06/2023] Open
Abstract
Plasminogen and its active form, plasmin, have diverse functions related to the inflammatory response in mammals. Due to these roles in inflammation, plasminogen has been implicated in the progression of a wide range of diseases with an inflammatory component. In this review, we discuss the functions of plasminogen in inflammatory regulation and how this system plays a role in the pathogenesis of diseases spanning organ systems throughout the body.
Collapse
Affiliation(s)
- Sarah K Baker
- Patricia and John Rosenwald Laboratory of Neurobiology and Genetics, The Rockefeller University, New York, NY
| | - Sidney Strickland
- Patricia and John Rosenwald Laboratory of Neurobiology and Genetics, The Rockefeller University, New York, NY
| |
Collapse
|
9
|
Athari SS. Targeting cell signaling in allergic asthma. Signal Transduct Target Ther 2019; 4:45. [PMID: 31637021 PMCID: PMC6799822 DOI: 10.1038/s41392-019-0079-0] [Citation(s) in RCA: 176] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 09/03/2019] [Accepted: 09/15/2019] [Indexed: 02/08/2023] Open
Abstract
Asthma is chronic inflammation of the airways characterized by airway hyper-responsiveness, wheezing, cough, and dyspnea. Asthma affects >350 million people worldwide. The Th2 immune response is a major contributor to the pathophysiology of asthma. Targeted therapy modulating cell signaling pathways can be a powerful strategy to design new drugs to treat asthma. The potential molecular pathways that can be targeted include IL-4-IL-13-JAK-STAT-MAP kinases, adiponectin-iNOS-NF-κB, PGD2-CRTH2, IFNs-RIG, Wnt/β-catenin-FAM13A, FOXC1-miR-PI3K/AKT, JNK-Gal-7, Nrf2-ROS, Foxp3-RORγt, CysLTR, AMP, Fas-FasL, PTHrP/PPARγ, PAI-1, FcɛRI-LAT-SLP-76, Tim-3-Gal-9, TLRs-MyD88, PAR2, and Keap1/Nrf2/ARE. Therapeutic drugs can be designed to target one or more of these pathways to treat asthma.
Collapse
Affiliation(s)
- Seyyed Shamsadin Athari
- Department of Immunology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| |
Collapse
|
10
|
Cho SH, Jo A, Casale T, Jeong SJ, Hong SJ, Cho JK, Holbrook JT, Kumar R, Smith LJ. Soy isoflavones reduce asthma exacerbation in asthmatic patients with high PAI-1-producing genotypes. J Allergy Clin Immunol 2019; 144:109-117.e4. [PMID: 30707970 PMCID: PMC6612283 DOI: 10.1016/j.jaci.2019.01.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Revised: 12/20/2018] [Accepted: 01/11/2019] [Indexed: 01/28/2023]
Abstract
BACKGROUND The 4G4G genotype of plasminogen activator inhibitor 1 (PAI-1) is associated with increased plasma PAI-1 levels and poor asthma control. Previous studies suggest that soy isoflavones can reduce PAI-1 levels. OBJECTIVE We sought to investigate PAI-1 genotype-specific differences of the soy isoflavone response in asthma outcomes. METHODS A PAI-1 functional polymorphism (rs1799768, 4G5G) was characterized in subjects with poorly controlled asthma enrolled in a randomized clinical trial of soy isoflavones (n = 265). Genotype-specific treatment responses on asthma outcomes were compared between soy isoflavones and placebo. Normal human bronchial epithelial cells were cultured with or without TGF-β1, genistein, or both, and PAI-1 levels were measured. RESULTS The 4G4G/4G5G genotype was associated with a greater risk for allergy-related worsened asthma symptoms and eczema at baseline compared with the 5G5G genotype. There was a significant interaction between the genotype and soy isoflavone intervention on oral corticosteroid use for asthma exacerbation (P = .005). In a subgroup analysis soy isoflavones significantly reduced the use of oral corticosteroids (number of events/person-year) by 4-fold compared with placebo in the 4G4G/4G5G genotype (0.2 vs 0.8; relative risk, 0.28; P < .001) but not in the 5G5G genotype. Soy isoflavones reduced plasma PAI-1 levels compared with placebo. Genistein treatment reduced TGF-β1-induced PAI-1 production in normal human bronchial epithelial cells. CONCLUSIONS This study demonstrates that soy isoflavone treatment provides a significant benefit in reducing the number of severe asthma exacerbations in asthmatic patients with the high PAI-1-producing genotype. PAI-1 polymorphisms can be used as a genetic biomarker for soy isoflavone-responsive patients with asthma.
Collapse
Affiliation(s)
- Seong H Cho
- Division of Allergy-Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Fla; Division of Rheumatology, Department of Internal Medicine, School of Medicine, Kyung Hee University, Seoul, Korea.
| | - Ara Jo
- Division of Allergy-Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Fla
| | - Thomas Casale
- Division of Allergy-Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Fla
| | - Su J Jeong
- Department of Statistics Support, Medical Science Research Institute, School of Medicine, Kyung Hee University, Seoul, Korea
| | - Seung-Jae Hong
- Division of Rheumatology, Department of Internal Medicine, School of Medicine, Kyung Hee University, Seoul, Korea
| | - Joong K Cho
- Division of Allergy-Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Fla
| | - Janet T Holbrook
- Center for Clinical Trials and Evidence Synthesis Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Md
| | - Rajesh Kumar
- Division of Allergy-Immunology, Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, Ill
| | - Lewis J Smith
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Ill
| |
Collapse
|
11
|
Liu Y, Zhang M, Lou L, Li L, Zhang Y, Chen W, Zhou W, Bai Y, Gao J. IRAK-M Associates with Susceptibility to Adult-Onset Asthma and Promotes Chronic Airway Inflammation. THE JOURNAL OF IMMUNOLOGY 2019; 202:899-911. [PMID: 30617222 DOI: 10.4049/jimmunol.1800712] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 11/30/2018] [Indexed: 01/21/2023]
Abstract
IL-1R-associated kinase (IRAK)-M regulates lung immunity during asthmatic airway inflammation. However, the regulatory effect of IRAK-M differs when airway inflammation persists. A positive association between IRAK-M polymorphisms with childhood asthma has been reported. In this study, we investigated the role of IRAK-M in the susceptibility to adult-onset asthma and in chronic airway inflammation using an animal model. Through genetic analysis of IRAK-M polymorphisms in a cohort of adult-onset asthma patients of Chinese Han ethnicity, we identified two IRAK-M single nucleotide polymorphisms, rs1624395 and rs1370128, genetically associated with adult-onset asthma. Functionally, the top-associated rs1624395, with an enhanced affinity to the transcription factor c-Jun, was associated with a higher expression of IRAK-M mRNA in blood monocytes. In contrast to the protective effect of IRAK-M in acute asthmatic inflammation, we found a provoking impact of IRAK-M on chronic asthmatic inflammation. Following chronic OVA stimulation, IRAK-M knockout (KO) mice presented with significantly less inflammatory cells, a lower Th2 cytokine level, a higher IFN-γ concentration, and increased percentage of Th1 cells in the lung tissue than wild type mice. Moreover, lung dendritic cells (DC) from OVA-treated IRAK-M KO mice expressed a higher percentage of costimulatory molecules PD-L1 and PD-L2. Mechanistically, in vitro TLR ligation led to a greater IFN-γ production by IRAK-M KO DCs than wild type DCs. These findings demonstrated a distinctive role of IRAK-M in maintaining chronic Th2 airway inflammation via inhibiting the DC-mediated Th1 activation and indicated a complex role for IRAK-M in the initiation and progression of experimental allergic asthma.
Collapse
Affiliation(s)
- Yi Liu
- Department of Respiratory Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China.,Department of Respiratory Medicine, Civil Aviation General Hospital, Beijing 100123, China
| | - Mingqiang Zhang
- Department of Respiratory Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Lili Lou
- Department of Respiratory Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Lun Li
- Department of Respiratory Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Youming Zhang
- Genomics Medicine Section, National Heart and Lung Institute, Imperial College London, London SW3 6LY, United Kingdom
| | - Wei Chen
- Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Weixun Zhou
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China; and
| | - Yan Bai
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115
| | - Jinming Gao
- Department of Respiratory Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China;
| |
Collapse
|
12
|
Buigues A, Ferrero H, Martínez J, Pellicer N, Pellicer A, Gómez R. Evaluation of PAI-1 in endometriosis using a homologous immunocompetent mouse model†. Biol Reprod 2018. [DOI: 10.1093/biolre/ioy057] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
- Anna Buigues
- Departamento de Pediatría, Obstetricia y Ginecología, Universidad de Valencia, Valencia, Spain
- Fundación Instituto Valenciano de Infertilidad (FIVI), Valencia, Spain
| | - Hortensia Ferrero
- Fundación Instituto Valenciano de Infertilidad (FIVI), Valencia, Spain
- Instituto de Investigación Sanitaria INCLIVA, Valencia, Spain
| | | | - Nuria Pellicer
- Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - Antonio Pellicer
- Fundación Instituto Valenciano de Infertilidad (FIVI), Valencia, Spain
- Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - Raúl Gómez
- Instituto de Investigación Sanitaria INCLIVA, Valencia, Spain
| |
Collapse
|
13
|
Jo A, Lee SH, Kim DY, Hong SJ, Teng MN, Kolliputi N, Lockey RF, Schleimer RP, Cho SH. Mast cell-derived plasminogen activator inhibitor type 1 promotes airway inflammation and remodeling in a murine model of asthma. J Allergy Clin Immunol 2018; 142:294-297.e5. [PMID: 29477725 DOI: 10.1016/j.jaci.2018.01.040] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 12/01/2017] [Accepted: 01/03/2018] [Indexed: 01/17/2023]
Affiliation(s)
- Ara Jo
- Division of Allergy-Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Fla
| | - Sun H Lee
- Division of Allergy-Immunology, Department of Medicine, Feinberg School of Medicine, Chicago, Ill
| | - Dong-Young Kim
- Division of Allergy-Immunology, Department of Medicine, Feinberg School of Medicine, Chicago, Ill
| | - Seung-Jae Hong
- Division of Allergy-Immunology, James A. Haley Veterans' Hospital, Tampa, Fla
| | - Michael N Teng
- Division of Allergy-Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Fla
| | - Narasaiah Kolliputi
- Division of Allergy-Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Fla
| | - Richard F Lockey
- Division of Allergy-Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Fla
| | - Robert P Schleimer
- Division of Allergy-Immunology, Department of Medicine, Feinberg School of Medicine, Chicago, Ill
| | - Seong H Cho
- Division of Allergy-Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Fla; Division of Allergy-Immunology, Department of Medicine, Feinberg School of Medicine, Chicago, Ill; Division of Allergy-Immunology, James A. Haley Veterans' Hospital, Tampa, Fla; Division of Rheumatology, Department of Internal Medicine, School of Medicine, Kyung Hee University, Seoul, Korea.
| |
Collapse
|
14
|
Hu C, Jiang J, Xun Q, Zhao B, Hu X, Deng P, Li Y. Inhibition of SERPINE2/protease nexin-1 by a monoclonal antibody attenuates airway remodeling in a murine model of asthma. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2017; 10:11838-11848. [PMID: 31966548 PMCID: PMC6966070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 11/09/2017] [Indexed: 06/10/2023]
Abstract
SERPINE2, also known as protease nexin-1 (PN-1), is a serine protease inhibitor produced by many cell types and has pleiotropic biological functions. It has been reported that SERPINE2/PN-1 is involved in tissue remodeling of fibrotic diseases including idiopathic pulmonary fibrosis and cardiac fibrosis. However, the potential role of SERPINE2/PN-1 in asthmatic airway remodeling has remained barely investigated so far. In this study, BALB/c male mice were sensitized and challenged by ovalbumin to generate murine models of airway remodeling. Anti-SERPINE2 monoclonal antibody was intraperitoneally injected into these mice during the ovalbumin challenge while IgG antibody was used as a vehicle control. The results revealed that the expression of SERPINE2/PN-1 was significantly upregulated in the lung extracts of ovalbumin-challenged mice, and this upregulation was inhibited by dexamethasone. Sustained ovalbumin stimulation increased the thickness of airway wall and α-SMA positive areas in lung, which was attenuated by the treatment with SERPINE2 antibody. In addition, SERPINE2 antibody partially blocked the phosphorylation of ERK, and reduced the upregulation of MMP-9 and TIMP-1 expressions in asthmatic mice. These findings suggest that SERPINE2/PN-1 may play a role in the pathologic development of airway remodeling. Monoclonal antibody against SERPINE2 may have the potential as an effective pharmacotherapy for asthmatic airway remodeling.
Collapse
Affiliation(s)
- Chengping Hu
- Department of Respiratory Medicine (Department of Respiratory and Critical Care Medicine), Key Cite of National Clinical Research Center for Respiratory Diseases, Xiangya Hospital, Central South University Changsha 410008, China
| | - Juan Jiang
- Department of Respiratory Medicine (Department of Respiratory and Critical Care Medicine), Key Cite of National Clinical Research Center for Respiratory Diseases, Xiangya Hospital, Central South University Changsha 410008, China
| | - Qiufen Xun
- Department of Respiratory Medicine (Department of Respiratory and Critical Care Medicine), Key Cite of National Clinical Research Center for Respiratory Diseases, Xiangya Hospital, Central South University Changsha 410008, China
| | - Bingrong Zhao
- Department of Respiratory Medicine (Department of Respiratory and Critical Care Medicine), Key Cite of National Clinical Research Center for Respiratory Diseases, Xiangya Hospital, Central South University Changsha 410008, China
| | - Xinyue Hu
- Department of Respiratory Medicine (Department of Respiratory and Critical Care Medicine), Key Cite of National Clinical Research Center for Respiratory Diseases, Xiangya Hospital, Central South University Changsha 410008, China
| | - Pengbo Deng
- Department of Respiratory Medicine (Department of Respiratory and Critical Care Medicine), Key Cite of National Clinical Research Center for Respiratory Diseases, Xiangya Hospital, Central South University Changsha 410008, China
| | - Yuanyuan Li
- Department of Respiratory Medicine (Department of Respiratory and Critical Care Medicine), Key Cite of National Clinical Research Center for Respiratory Diseases, Xiangya Hospital, Central South University Changsha 410008, China
| |
Collapse
|
15
|
Chen ZG, Meng P, Li HT, Li M, Yang LF, Yan Y, Li YT, Zou XL, Wang DY, Zhang TT. Thymic stromal lymphopoietin contribution to the recruitment of circulating fibrocytes to the lung in a mouse model of chronic allergic asthma. J Asthma 2017; 55:975-983. [PMID: 28972433 DOI: 10.1080/02770903.2017.1386213] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Objective: Fibrocyte localization to the airways and thymic stromal lymphopoietin (TSLP) overexpression in the lung are features of severe asthma. The aim of this study was to determine whether TSLP contributes to fibrocyte trafficking and airway remodeling in a mouse model of allergic asthma. Methods: We established a chronic asthma animal model by administering house dust mite (HDM) extracts intranasally for up to 5 consecutive weeks. Mouse anti-TSLP monoclonal antibody (mAb) was given intraperitoneally starting the 4th week. Fluorescence-labeled CD34/collagen I (Col I)-dual-positive fibrocytes were examined by confocal microscopy. The level of TGF-β1 in the bronchoalveolar lavage (BAL) fluid was determined by ELISA. Results: We found significantly increased levels of TSLP and TGF-β1 in the lung of the mice subjected to repeated allergen exposure, which was accompanied by increased number of fibrocytes in the sub-epithelial zone and the BAL fluid. However, blocking TSLP markedly decreased the production of TGF-β1, reduced the number of fibrocytes and subsequently prevented alterations of both airway and vascular structures. Conclusions: Our data suggested that TSLP might function in airway remodeling by promoting circulating fibrocyte recruitment to the lung in the mice subjected to chronic allergen exposure. These results provide a better rationale for targeting the interaction between TSLP and fibrocytes as a therapeutic approach for chronic allergic asthma.
Collapse
Affiliation(s)
- Zhuang-Gui Chen
- a Department of Pulmonary Diseases, The Third Affiliated Hospital of Sun Yat-Sen University , Institute of Respiratory Diseases of Sun Yat-Sen University , Guangzhou , China.,b Department of Pediatrics , The Third Affiliated Hospital of Sun Yat-Sen University , Guangzhou , China
| | - Ping Meng
- a Department of Pulmonary Diseases, The Third Affiliated Hospital of Sun Yat-Sen University , Institute of Respiratory Diseases of Sun Yat-Sen University , Guangzhou , China
| | - Hong-Tao Li
- a Department of Pulmonary Diseases, The Third Affiliated Hospital of Sun Yat-Sen University , Institute of Respiratory Diseases of Sun Yat-Sen University , Guangzhou , China
| | - Ming Li
- c Department of Pulmonary Diseases, The First Affiliated Hospital of Sun Yat-Sen University , Institute of Respiratory Diseases of Sun Yat-Sen University , Guangzhou , China
| | - Li-Fen Yang
- b Department of Pediatrics , The Third Affiliated Hospital of Sun Yat-Sen University , Guangzhou , China
| | - Yan Yan
- d Department of Otolaryngology, Yong Loo Lin School of Medicine , National University of Singapore , Singapore
| | - Ya-Ting Li
- b Department of Pediatrics , The Third Affiliated Hospital of Sun Yat-Sen University , Guangzhou , China
| | - Xiao-Ling Zou
- a Department of Pulmonary Diseases, The Third Affiliated Hospital of Sun Yat-Sen University , Institute of Respiratory Diseases of Sun Yat-Sen University , Guangzhou , China
| | - De-Yun Wang
- d Department of Otolaryngology, Yong Loo Lin School of Medicine , National University of Singapore , Singapore
| | - Tian-Tuo Zhang
- a Department of Pulmonary Diseases, The Third Affiliated Hospital of Sun Yat-Sen University , Institute of Respiratory Diseases of Sun Yat-Sen University , Guangzhou , China
| |
Collapse
|
16
|
Gombedza F, Kondeti V, Al-Azzam N, Koppes S, Duah E, Patil P, Hexter M, Phillips D, Thodeti CK, Paruchuri S. Mechanosensitive transient receptor potential vanilloid 4 regulates Dermatophagoides farinae-induced airway remodeling via 2 distinct pathways modulating matrix synthesis and degradation. FASEB J 2017; 31:1556-1570. [PMID: 28073835 DOI: 10.1096/fj.201601045r] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 12/19/2016] [Indexed: 12/21/2022]
Abstract
Contributions of mechanical signals to airway remodeling during asthma are poorly understood. Transient receptor potential vanilloid 4 (TRPV4), a mechanosensitive ion channel, has been implicated in cardiac and pulmonary fibrosis; however, its role in asthma remains elusive. Employing a Dermatophagoides farinae-induced asthma model, we report here that TRPV4-knockout mice were protected from D. farinae-induced airway remodeling. Furthermore, lung fibroblasts that were isolated from TRPV4-knockout mice showed diminished differentiation potential compared with wild-type mice. Fibroblasts from asthmatic lung exhibited increased TRPV4 activity and enhanced differentiation potential compared with normal human lung fibroblasts. Of interest, TGF-β1 treatment enhanced TRPV4 activation in a PI3K-dependent manner in normal human lung fibroblasts in vitro Mechanistically, TRPV4 modulated matrix remodeling in the lung via 2 distinct but dependent pathways: one enhances matrix deposition by fibrotic gene activation, whereas the other slows down matrix degradation by increased plasminogen activator inhibitor 1. Of importance, both pathways are regulated by Rho/myocardin-related transcription factor-A and contribute to fibroblast differentiation and matrix remodeling in the lung. Thus, our results support a unique role for TRPV4 in D. farinae-induced airway remodeling and warrant further studies in humans for it to be used as a novel therapeutic target in the treatment of asthma.-Gombedza, F., Kondeti, V., Al-Azzam, N., Koppes, S., Duah, E., Patil, P., Hexter, M., Phillips, D., Thodeti, C. K., Paruchuri, S. Mechanosensitive transient receptor potential vanilloid 4 regulates Dermatophagoides farinae-induced airway remodeling via 2 distinct pathways modulating matrix synthesis and degradation.
Collapse
Affiliation(s)
- Farai Gombedza
- Department of Chemistry, University of Akron, Akron, Ohio, USA; and
| | - Vinay Kondeti
- Department of Chemistry, University of Akron, Akron, Ohio, USA; and
| | - Nosayba Al-Azzam
- Department of Chemistry, University of Akron, Akron, Ohio, USA; and
| | - Stephanie Koppes
- Department of Chemistry, University of Akron, Akron, Ohio, USA; and
| | - Ernest Duah
- Department of Chemistry, University of Akron, Akron, Ohio, USA; and
| | - Prachi Patil
- Department of Chemistry, University of Akron, Akron, Ohio, USA; and
| | - Madison Hexter
- Department of Chemistry, University of Akron, Akron, Ohio, USA; and
| | - Daniel Phillips
- Department of Chemistry, University of Akron, Akron, Ohio, USA; and
| | - Charles K Thodeti
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, Ohio, USA
| | | |
Collapse
|
17
|
Yilmaz O, Yuksel H. Where does current and future pediatric asthma treatment stand? Remodeling and inflammation: Bird's eye view. Pediatr Pulmonol 2016; 51:1422-1429. [PMID: 27233079 DOI: 10.1002/ppul.23488] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 03/07/2016] [Accepted: 05/02/2016] [Indexed: 12/17/2022]
Abstract
Airway remodeling is the chronic outcome of inflammation in asthma and a point of intervention between pediatric and adult ages. Pediatric asthma has been of great interest in the efforts to find a valuable time to interrupt remodeling. Various experimental and clinical research have assessed the effect of current therapeutic modalities on airway remodeling in asthma and many new agents are being developed with promising results. The heterogeneity in the results of these studies may lie in the heterogeneity of pathogenesis leading to asthma and remodeling; underlying the need for individualized treatment of the unique pathogenetic characteristics of each child's asthma. The aim of this review is to summarize the evidence about the influence of current and future therapeutic modalities in the concept of inflammation and remodeling in pediatric asthma. Pediatr Pulmonol. 2016;51:1422-1429. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Ozge Yilmaz
- Department of Pediatric Allergy and Pulmonology, Celal Bayar University Medical Faculty, Manisa, Turkey
| | - Hasan Yuksel
- Department of Pediatric Allergy and Pulmonology, Celal Bayar University Medical Faculty, Manisa, Turkey
| |
Collapse
|
18
|
Elkhidir HS, Richards JB, Cromar KR, Bell CS, Price RE, Atkins CL, Spencer CY, Malik F, Alexander AL, Cockerill KJ, Haque IU, Johnston RA. Plasminogen activator inhibitor-1 does not contribute to the pulmonary pathology induced by acute exposure to ozone. Physiol Rep 2016; 4:4/18/e12983. [PMID: 27670409 PMCID: PMC5037925 DOI: 10.14814/phy2.12983] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 08/31/2016] [Indexed: 11/24/2022] Open
Abstract
Expression of plasminogen activator inhibitor (PAI)-1, the major physiological inhibitor of fibrinolysis, is increased in the lung following inhalation of ozone (O3), a gaseous air pollutant. PAI-1 regulates expression of interleukin (IL)-6, keratinocyte chemoattractant (KC), and macrophage inflammatory protein (MIP)-2, which are cytokines that promote lung injury, pulmonary inflammation, and/or airway hyperresponsiveness following acute exposure to O3 Given these observations, we hypothesized that PAI-1 contributes to the severity of the aforementioned sequelae by regulating expression of IL-6, KC, and MIP-2 following acute exposure to O3 To test our hypothesis, wild-type mice and mice genetically deficient in PAI-1 (PAI-1-deficient mice) were acutely exposed to either filtered room air or O3 (2 ppm) for 3 h. Four and/or twenty-four hours following cessation of exposure, indices of lung injury [bronchoalveolar lavage fluid (BALF) protein and epithelial cells], pulmonary inflammation (BALF IL-6, KC, MIP-2, macrophages, and neutrophils), and airway responsiveness to aerosolized acetyl-β-methylcholine chloride (respiratory system resistance) were measured in wild-type and PAI-1-deficient mice. O3 significantly increased indices of lung injury, pulmonary inflammation, and airway responsiveness in wild-type and PAI-1-deficient mice. With the exception of MIP-2, which was significantly lower in PAI-1-deficient as compared to wild-type mice 24 h following cessation of exposure to O3, no other genotype-related differences occurred subsequent to O3 exposure. Thus, following acute exposure to O3, PAI-1 neither regulates pulmonary expression of IL-6 and KC nor functionally contributes to any of the pulmonary pathological sequelae that arise from the noxious effects of inhaled O3.
Collapse
Affiliation(s)
- Hamza S Elkhidir
- Division of Critical Care Medicine, Department of Pediatrics, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, Texas
| | - Jeremy B Richards
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, College of Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Kevin R Cromar
- Department of Environmental Medicine, New York University School of Medicine, Tuxedo, New York
| | - Cynthia S Bell
- Division of Nephrology, Department of Pediatrics, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, Texas
| | - Roger E Price
- Comparative Pathology Laboratory, Center for Comparative Medicine, Baylor College of Medicine, Houston, Texas
| | - Constance L Atkins
- Division of Pulmonary Medicine, Department of Pediatrics, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, Texas
| | - Chantal Y Spencer
- Section of Pediatric Pulmonology, Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Farhan Malik
- Division of Critical Care Medicine, Department of Pediatrics, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, Texas
| | - Amy L Alexander
- Pediatric Research Center, Department of Pediatrics, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, Texas
| | - Katherine J Cockerill
- Pediatric Research Center, Department of Pediatrics, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, Texas
| | - Ikram U Haque
- Division of Critical Care Medicine, Department of Pediatrics, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, Texas
| | - Richard A Johnston
- Division of Critical Care Medicine, Department of Pediatrics, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, Texas Pediatric Research Center, Department of Pediatrics, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, Texas Department of Integrative Biology and Pharmacology, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, Texas
| |
Collapse
|
19
|
Rawson R, Yang T, Newbury RO, Aquino M, Doshi A, Bell B, Broide DH, Dohil R, Kurten R, Aceves SS. TGF-β1-induced PAI-1 contributes to a profibrotic network in patients with eosinophilic esophagitis. J Allergy Clin Immunol 2016; 138:791-800.e4. [PMID: 27212082 PMCID: PMC5014565 DOI: 10.1016/j.jaci.2016.02.028] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 12/29/2015] [Accepted: 02/11/2016] [Indexed: 01/07/2023]
Abstract
BACKGROUND Eosinophilic esophagitis (EoE) is an allergic disease of increasing worldwide incidence. Complications are due to tissue remodeling and involve TGF-β1-mediated fibrosis. Plasminogen activator inhibitor 1 (PAI-1/serpinE1) can be induced by TGF-β1, but its role in EoE is not known. OBJECTIVE We sought to understand the expression and role of PAI-1 in patients with EoE. METHODS We used esophageal biopsy specimens and plasma samples from control subjects and patients with EoE, primary human esophageal epithelial cells, and fibroblasts from patients with EoE in immunohistochemistry, quantitative PCR, and immunoassay experiments to understand the induction of PAI-1 by TGF-β1, the relationship between PAI-1 and esophageal fibrosis, and the role of PAI-1 in fibrotic gene expression. RESULTS PAI-1 expression was significantly increased in epithelial cells of biopsy specimens from patients with active EoE compared with that seen in biopsy specimens from patients with inactive EoE or control subjects (P < .001). Treatment of primary esophageal epithelial cells with recombinant TGF-β1 increased PAI-1 transcription, intracellular protein expression, and secretion. Esophageal PAI-1 expression correlated with basal zone hyperplasia, fibrosis, and markers of esophageal remodeling, including vimentin, TGF-β1, collagen I, fibronectin, and matrix metalloproteases, and plasma PAI-1 levels correlated with plasma TGF-β1 levels. PAI-1 inhibition significantly decreased baseline and TGF-β1-induced fibrotic gene expression. CONCLUSIONS PAI-1 expression is significantly increased in the epithelium in patients with EoE and reflects fibrosis, and its inhibition decreases TGF-β1-induced gene expression. Epithelial PAI-1 might serve as a marker of EoE severity and form part of a TGF-β1-induced profibrotic network.
Collapse
Affiliation(s)
- Renee Rawson
- Division of Allergy and Immunology, Departments of Pediatrics and Medicine, University of California, San Diego, La Jolla, and Rady Children's Hospital, San Diego, Calif; Center for Infection, Immunity, and Inflammation, Departments of Pediatrics and Medicine, University of California, San Diego, La Jolla, and Rady Children's Hospital, San Diego, Calif
| | - Tom Yang
- Division of Allergy and Immunology, Departments of Pediatrics and Medicine, University of California, San Diego, La Jolla, and Rady Children's Hospital, San Diego, Calif; Center for Infection, Immunity, and Inflammation, Departments of Pediatrics and Medicine, University of California, San Diego, La Jolla, and Rady Children's Hospital, San Diego, Calif
| | - Robert O Newbury
- Department of Pediatric Pathology, Departments of Pediatrics and Medicine, University of California, San Diego, La Jolla, and Rady Children's Hospital, San Diego, Calif
| | - Melissa Aquino
- Division of Allergy and Immunology, Departments of Pediatrics and Medicine, University of California, San Diego, La Jolla, and Rady Children's Hospital, San Diego, Calif
| | - Ashmi Doshi
- Division of Allergy and Immunology, Departments of Pediatrics and Medicine, University of California, San Diego, La Jolla, and Rady Children's Hospital, San Diego, Calif; Center for Infection, Immunity, and Inflammation, Departments of Pediatrics and Medicine, University of California, San Diego, La Jolla, and Rady Children's Hospital, San Diego, Calif
| | - Braxton Bell
- Division of Allergy and Immunology, Departments of Pediatrics and Medicine, University of California, San Diego, La Jolla, and Rady Children's Hospital, San Diego, Calif; Center for Infection, Immunity, and Inflammation, Departments of Pediatrics and Medicine, University of California, San Diego, La Jolla, and Rady Children's Hospital, San Diego, Calif
| | - David H Broide
- Division of Allergy and Immunology, Departments of Pediatrics and Medicine, University of California, San Diego, La Jolla, and Rady Children's Hospital, San Diego, Calif
| | - Ranjan Dohil
- Division of Pediatric Gastroenterology and Nutrition, Departments of Pediatrics and Medicine, University of California, San Diego, La Jolla, and Rady Children's Hospital, San Diego, Calif
| | - Richard Kurten
- Department of Physiology and Biophysics, University of Arkansas for Medical Sciences and Arkansas Children's Hospital Research Institute, Little Rock, Ark
| | - Seema S Aceves
- Division of Allergy and Immunology, Departments of Pediatrics and Medicine, University of California, San Diego, La Jolla, and Rady Children's Hospital, San Diego, Calif; Center for Infection, Immunity, and Inflammation, Departments of Pediatrics and Medicine, University of California, San Diego, La Jolla, and Rady Children's Hospital, San Diego, Calif.
| |
Collapse
|
20
|
Cho SH, Min JY, Kim DY, Oh SS, Torgerson DR, Pino-Yanes M, Hu D, Sen S, Huntsman S, Eng C, Farber HJ, Rodriguez-Cintron W, Rodriguez-Santana JR, Serebrisky D, Thyne SM, Borrell LN, Williams LK, DuPont W, Seibold MA, Burchard EG, Avila PC, Kumar R. Association of a PAI-1 Gene Polymorphism and Early Life Infections with Asthma Risk, Exacerbations, and Reduced Lung Function. PLoS One 2016; 11:e0157848. [PMID: 27556405 PMCID: PMC4996454 DOI: 10.1371/journal.pone.0157848] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 06/06/2016] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Plasminogen activator inhibitor-1 (PAI-1) is induced in airways by virus and may mediate asthmatic airway remodeling. We sought to evaluate if genetic variants and early life lower respiratory infections jointly affect asthma risk. METHODS We included Latino children, adolescents, and young adults aged 8-21 years (1736 subjects with physician-diagnosed asthma and 1747 healthy controls) from five U.S. centers and Puerto Rico after excluding subjects with incomplete clinical or genetic data. We evaluated the independent and joint effects of a PAI-1 gain of function polymorphism and bronchiolitis / Respiratory Syncytial Virus (RSV) or other lower respiratory infections (LRI) within the first 2 years of life on asthma risk, asthma exacerbations and lung function. RESULTS RSV infection (OR 9.9, 95%CI 4.9-20.2) and other LRI (OR 9.1, 95%CI 7.2-11.5) were independently associated with asthma, but PAI-1 genotype was not. There were joint effects on asthma risk for both genotype-RSV (OR 17.7, 95% CI 6.3-50.2) and genotype-LRI (OR 11.7, 95% CI 8.8-16.4). A joint effect of genotype-RSV resulted in a 3.1-fold increased risk for recurrent asthma hospitalizations. In genotype-respiratory infection joint effect analysis, FEV1% predicted and FEV1/FVC % predicted were further reduced in the genotype-LRI group (β -2.1, 95% CI -4.0 to -0.2; β -2.0, 95% CI -3.1 to -0.8 respectively). Similarly, lower FEV1% predicted was noted in genotype-RSV group (β -3.1, 95% CI -6.1 to -0.2) with a trend for lower FEV1/FVC % predicted. CONCLUSIONS A genetic variant of PAI-1 together with early life LRI such as RSV bronchiolitis is associated with an increased risk of asthma, morbidity, and reduced lung function in this Latino population.
Collapse
Affiliation(s)
- Seong H. Cho
- Division of Allergy-Immunology, Department of Medicine, Northwestern University, Chicago, Illinois, United States of America
- Division of Allergy-Immunology, Department of Internal Medicine, University of South Florida, Tampa, Florida, United States of America
| | - Jin-Young Min
- Department of Otolaryngology, Northwestern University, Chicago, Illinois, United States of America
| | - Dong Young Kim
- Division of Allergy-Immunology, Department of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Sam S. Oh
- Department of Medicine, University of California, San Francisco, California, United States of America
| | - Dara R. Torgerson
- Department of Medicine, University of California, San Francisco, California, United States of America
| | - Maria Pino-Yanes
- Department of Medicine, University of California, San Francisco, California, United States of America
| | - Donglei Hu
- Department of Medicine, University of California, San Francisco, California, United States of America
| | - Saunak Sen
- Division of Biostatistics, Department of Preventive Medicine, UTHSC, Memphis, Tennessee, United States of America
| | - Scott Huntsman
- Department of Medicine, University of California, San Francisco, California, United States of America
| | - Celeste Eng
- Department of Medicine, University of California, San Francisco, California, United States of America
| | - Harold J. Farber
- Department of Pediatrics, Section of Pulmonology, Baylor College of Medicine, Texas Children's Hospital, Houston, Texas, United States of America
| | | | | | - Denise Serebrisky
- Pediatric Pulmonary Division, Jacobi Medical Center, Bronx, New York, United States of America
| | - Shannon M. Thyne
- Department of Pediatrics, University of California, San Francisco, California, United States of America
| | - Luisa N. Borrell
- Department of Health Sciences, Lehman College, CUNY, New York, New York, United States of America
| | - L. Keoki Williams
- Department of Internal Medicine, Henry Ford Health System, Detroit, Michigan, United States of America
- Center for Health Policy and Health Services Research, Henry Ford Health System, Detroit, Michigan, United States of America
| | - William DuPont
- Department of Biostatistics, Vanderbilt University Medical School, Nashville, Tennessee, United States of America
| | - Max A. Seibold
- Center for Genes, Environment and Health, National Jewish Health, Denver, Colorado, United States of America
| | - Esteban G. Burchard
- Department of Medicine, University of California, San Francisco, California, United States of America
| | - Pedro C. Avila
- Division of Allergy-Immunology, Department of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Rajesh Kumar
- Division of Allergy-Immunology, Department of Pediatrics, Northwestern University, Chicago, Illinois, United States of America
- The Ann and Robert H. Lurie Children’s Hospital of Chicago, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
21
|
Adalimumab ameliorates OVA-induced airway inflammation in mice: Role of CD4(+) CD25(+) FOXP3(+) regulatory T-cells. Eur J Pharmacol 2016; 786:100-108. [PMID: 27262379 DOI: 10.1016/j.ejphar.2016.06.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Revised: 05/23/2016] [Accepted: 06/01/2016] [Indexed: 12/21/2022]
Abstract
Asthma is a chronic inflammatory heterogeneous disorder initiated by a dysregulated immune response which drives disease development in susceptible individuals. Though T helper 2 (TH2) biased responses are usually linked to eosinophilic asthma, other Th cell subsets induce neutrophilic airway inflammation which provokes the most severe asthmatic phenotypes. A growing evidence highlights the role of T regulatory (Treg) cells in damping abnormal Th responses and thus inhibiting allergy and asthma. Therefore, strategies to induce or augment Treg cells hold promise for treatment and prevention of allergic airway inflammation. Recently, the link between Tumor necrosis factor-α (TNF-α) and Treg has been uncovered, and TNF-α antagonists are increasingly used in many autoimmune diseases. Yet, their benefits in allergic airway inflammation is not clarified. We investigated the effect of Adalimumab, a TNF-α antagonist, on Ovalbumin (OVA)-induced allergic airway inflammation in CD1 mice and explored its impact on Treg cells. Our results showed that Adalimumab treatment attenuated the OVA-induced increase in serum IgE, TH2 and TH1 derived inflammatory cytokines (IL-4 and IFN-γ, respectively) in bronchoalveolar lavage (BAL) fluid, suppressed recruitment of inflammatory cells in BAL fluid and lung, and inhibited BAL fluid neutrophilia. It also ameliorated goblet cell metaplasia and bronchial fibrosis. Splenocytes flow cytometry revealed increased percentage of CD4(+) CD25(+) FOXP3(+) Treg cells by Adalimumab that was associated with increase in their suppressive activity as shown by elevated BAL fluid IL-10. We conclude that the beneficial effects of Adalimumab in this CD1 neutrophilic model of allergic airway inflammation are attributed to augmentation of Treg cell number and activity.
Collapse
|
22
|
Liu RM, Eldridge S, Watanabe N, Deshane J, Kuo HC, Jiang C, Wang Y, Liu G, Schwiebert L, Miyata T, Thannickal VJ. Therapeutic potential of an orally effective small molecule inhibitor of plasminogen activator inhibitor for asthma. Am J Physiol Lung Cell Mol Physiol 2015; 310:L328-36. [PMID: 26702150 DOI: 10.1152/ajplung.00217.2015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 12/19/2015] [Indexed: 11/22/2022] Open
Abstract
Asthma is one of the most common respiratory diseases. Although progress has been made in our understanding of airway pathology and many drugs are available to relieve asthma symptoms, there is no cure for chronic asthma. Plasminogen activator inhibitor 1 (PAI-1), a primary inhibitor of tissue-type and urokinase-type plasminogen activators, has pleiotropic functions besides suppression of fibrinolysis. In this study, we show that administration of TM5275, an orally effective small-molecule PAI-1 inhibitor, 25 days after ovalbumin (OVA) sensitization-challenge, significantly ameliorated airway hyperresponsiveness in an OVA-induced chronic asthma model. Furthermore, we show that TM5275 administration significantly attenuated OVA-induced infiltration of inflammatory cells (neutrophils, eosinophils, and monocytes), the increase in the levels of OVA-specific IgE and Th2 cytokines (IL-4 and IL-5), the production of mucin in the airways, and airway subepithelial fibrosis. Together, the results suggest that the PAI-1 inhibitor TM5275 may have therapeutic potential for asthma through suppressing eosinophilic allergic response and ameliorating airway remodeling.
Collapse
Affiliation(s)
- Rui-Ming Liu
- Division of Pulmonary, Allergy, and Critical Care, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama;
| | - Stephanie Eldridge
- Division of Pulmonary, Allergy, and Critical Care, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Nobuo Watanabe
- United Centers for Advanced Research and Translational Medicine, Tohoku University Graduate School of Medicine, Tohoku, Japan
| | - Jessy Deshane
- Division of Pulmonary, Allergy, and Critical Care, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Hui-Chien Kuo
- Department of Biostatistics, University of Alabama at Birmingham, Birmingham, Alabama; and
| | - Chunsun Jiang
- Division of Pulmonary, Allergy, and Critical Care, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Yong Wang
- Division of Pulmonary, Allergy, and Critical Care, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Gang Liu
- Division of Pulmonary, Allergy, and Critical Care, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Lisa Schwiebert
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Toshio Miyata
- United Centers for Advanced Research and Translational Medicine, Tohoku University Graduate School of Medicine, Tohoku, Japan
| | - Victor J Thannickal
- Division of Pulmonary, Allergy, and Critical Care, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
23
|
Kim DY, Cho SH, Takabayashi T, Schleimer RP. Chronic Rhinosinusitis and the Coagulation System. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2015; 7:421-30. [PMID: 26122502 PMCID: PMC4509654 DOI: 10.4168/aair.2015.7.5.421] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 02/02/2015] [Indexed: 12/16/2022]
Abstract
Chronic rhinosinusitis (CRS) is one of the most common chronic diseases in adults and severely affects quality of life in patients. Although various etiologic and pathogenic mechanisms of CRS have been proposed, the causes of CRS remain uncertain. Abnormalities in the coagulation cascade may play an etiologic role in many diseases, such as asthma and other inflammatory conditions. While studies on the relationship between asthma and dysregulated coagulation have been reported, the role of the coagulation system in the pathogenesis of CRS has only been considered following recent reports. Excessive fibrin deposition is seen in nasal polyp (NP) tissue from patients with chronic rhinosinusitis with nasal polyp (CRSwNP) and is associated with activation of thrombin, reduction of tissue plasminogen activator (t-PA) and upregulation of coagulation factor XIII-A (FXIII-A), all events that can contribute to fibrin deposition and crosslinking. These findings were reproduced in a murine model of NP that was recently established. Elucidation of the mechanisms of fibrin deposition may enhance our understanding of tissue remodeling in the pathophysiology of NP and provide new targets for the treatment of CRSwNP.
Collapse
Affiliation(s)
- Dong Young Kim
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA.; Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University College of Medicine, Seoul, Korea
| | - Seong H Cho
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA.; Division of Rheumatology, Department of Medicine, Kyung Hee University School of Medicine, Seoul, Korea
| | - Tetsuji Takabayashi
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA.; Division of Otorhinolaryngology Head and Neck Surgery, Department of Sensory and Locomotor Medicine, University of Fukui, Fukui, Japan
| | - Robert P Schleimer
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA.
| |
Collapse
|
24
|
IMD-4690, a novel specific inhibitor for plasminogen activator inhibitor-1, reduces allergic airway remodeling in a mouse model of chronic asthma via regulating angiogenesis and remodeling-related mediators. PLoS One 2015; 10:e0121615. [PMID: 25785861 PMCID: PMC4364779 DOI: 10.1371/journal.pone.0121615] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 02/02/2015] [Indexed: 12/13/2022] Open
Abstract
Plasminogen activator inhibitor (PAI)-1 is the principal inhibitor of plasminogen activators, and is responsible for the degradation of fibrin and extracellular matrix. IMD-4690 is a newly synthesized inhibitor for PAI-1, whereas the effect on allergic airway inflammation and remodeling is still unclear. We examined the in vivo effects by using a chronic allergen exposure model of bronchial asthma in mice. The model was generated by an immune challenge for 8 weeks with house dust mite antigen, Dermatophagoides pteronyssinus (Dp). IMD-4690 was intraperitoneally administered during the challenge. Lung histopathology, hyperresponsiveness and the concentrations of mediators in lung homogenates were analyzed. The amount of active PAI-1 in the lungs was increased in mice treated with Dp. Administration with IMD-4690 reduced an active/total PAI-1 ratio. IMD-4690 also reduced the number of bronchial eosinophils in accordance with the decreased expressions of Th2 cytokines in the lung homogenates. Airway remodeling was inhibited by reducing subepithelial collagen deposition, smooth muscle hypertrophy, and angiogenesis. The effects of IMD-4690 were partly mediated by the regulation of TGF-β, HGF and matrix metalloproteinase. These results suggest that PAI-1 plays crucial roles in airway inflammation and remodeling, and IMD-4690, a specific PAI-1 inhibitor, may have therapeutic potential for patients with refractory asthma due to airway remodeling.
Collapse
|
25
|
Inhibition of SERPINE1 Function Attenuates Wound Closure in Response to Tissue Injury: A Role for PAI-1 in Re-Epithelialization and Granulation Tissue Formation. J Dev Biol 2015. [DOI: 10.3390/jdb3010011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
|
26
|
Simone TM, Higgins SP, Archambeault J, Higgins CE, Ginnan RG, Singer H, Higgins PJ. A small molecule PAI-1 functional inhibitor attenuates neointimal hyperplasia and vascular smooth muscle cell survival by promoting PAI-1 cleavage. Cell Signal 2015; 27:923-33. [PMID: 25617690 DOI: 10.1016/j.cellsig.2015.01.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 01/15/2015] [Accepted: 01/15/2015] [Indexed: 11/26/2022]
Abstract
Plasminogen activator inhibitor-1 (PAI-1), the primary inhibitor of urokinase-and tissue-type plasminogen activators (uPA and tPA), is an injury-response gene implicated in the development of tissue fibrosis and cardiovascular disease. PAI-1 mRNA and protein levels were elevated in the balloon catheter-injured carotid and in the vascular smooth muscle cell (VSMC)-enriched neointima of ligated arteries. PAI-1/uPA complex formation and PAI-1 antiproteolytic activity can be inhibited, via proteolytic cleavage, by the small molecule antagonist tiplaxtinin which effectively increased the VSMC apoptotic index in vitro and attenuated carotid artery neointimal formation in vivo. In contrast to the active full-length serine protease inhibitor (SERPIN), elastase-cleaved PAI-1 (similar to tiplaxtinin) also promoted VSMC apoptosis in vitro and similarly reduced neointimal formation in vivo. The mechanism through which cleaved PAI-1 (CL-PAI-1) stimulates apoptosis appears to involve the TNF-α family member TWEAK (TNF-α weak inducer of apoptosis) and it's cognate receptor, fibroblast growth factor (FGF)-inducible 14 (FN14). CL-PAI-1 sensitizes cells to TWEAK-stimulated apoptosis while full-length PAI-1 did not, presumably due to its ability to down-regulate FN14 in a low density lipoprotein receptor-related protein 1 (LRP1)-dependent mechanism. It appears that prolonged exposure of VSMCs to CL-PAI-1 induces apoptosis by augmenting TWEAK/FN14 pro-apoptotic signaling. This work identifies a critical, anti-stenotic, role for a functionally-inactive (at least with regard to its protease inhibitory function) cleaved SERPIN. Therapies that promote the conversion of full-length to cleaved PAI-1 may have translational implications.
Collapse
Affiliation(s)
- Tessa M Simone
- Center for Cell Biology & Cancer Research, Albany Medical College, 47 New Scotland Avenue, Albany, NY 12208, United States.
| | - Stephen P Higgins
- Center for Cell Biology & Cancer Research, Albany Medical College, 47 New Scotland Avenue, Albany, NY 12208, United States.
| | - Jaclyn Archambeault
- Center for Cell Biology & Cancer Research, Albany Medical College, 47 New Scotland Avenue, Albany, NY 12208, United States.
| | - Craig E Higgins
- Center for Cell Biology & Cancer Research, Albany Medical College, 47 New Scotland Avenue, Albany, NY 12208, United States.
| | - Roman G Ginnan
- Center for Cardiovascular Sciences, Albany Medical College, 47 New Scotland Avenue, Albany, NY 12208, United States.
| | - Harold Singer
- Center for Cardiovascular Sciences, Albany Medical College, 47 New Scotland Avenue, Albany, NY 12208, United States.
| | - Paul J Higgins
- Center for Cell Biology & Cancer Research, Albany Medical College, 47 New Scotland Avenue, Albany, NY 12208, United States.
| |
Collapse
|
27
|
Simone TM, Higgins PJ. Small Molecule PAI-1 Functional Inhibitor Attenuates Vascular Smooth Muscle Cell Migration and Survival: Implications for the Therapy of Vascular Disease. NEW HORIZONS IN TRANSLATIONAL MEDICINE 2014; 2:16-19. [PMID: 25396216 PMCID: PMC4226527 DOI: 10.1016/j.nhtm.2014.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Affiliation(s)
- Tessa M Simone
- Center for Cell Biology & Cancer Research, Albany Medical College, Albany, New York 12208
| | - Paul J Higgins
- Center for Cell Biology & Cancer Research, Albany Medical College, Albany, New York 12208
| |
Collapse
|
28
|
Simone TM, Higgins SP, Higgins CE, Lennartz MR, Higgins PJ. Chemical Antagonists of Plasminogen Activator Inhibitor-1: Mechanisms of Action and Therapeutic Potential in Vascular Disease. J Mol Genet Med 2014; 8. [PMID: 26110015 PMCID: PMC4476021 DOI: 10.4172/1747-0862.1000125] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Affiliation(s)
- Tessa M Simone
- Center for Cell Biology & Cancer Research, Albany Medical College, Albany, New York 12208, USA
| | - Stephen P Higgins
- Center for Cell Biology & Cancer Research, Albany Medical College, Albany, New York 12208, USA
| | - Craig E Higgins
- Center for Cell Biology & Cancer Research, Albany Medical College, Albany, New York 12208, USA
| | - Michelle R Lennartz
- Center for Cell Biology & Cancer Research, Albany Medical College, Albany, New York 12208, USA
| | - Paul J Higgins
- Center for Cell Biology & Cancer Research, Albany Medical College, Albany, New York 12208, USA
| |
Collapse
|
29
|
Cho SH, Hong SJ, Chen H, Habib A, Cho D, Lee SH, Kang J, Ward T, Boushey HA, Schleimer RP, Avila PC. Plasminogen activator inhibitor-1 in sputum and nasal lavage fluids increases in asthmatic patients during common colds. J Allergy Clin Immunol 2013; 133:1465-7, 1467.e1-2. [PMID: 24373352 PMCID: PMC4004714 DOI: 10.1016/j.jaci.2013.11.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Revised: 10/04/2013] [Accepted: 11/13/2013] [Indexed: 11/25/2022]
Affiliation(s)
- Seong H Cho
- Division of Allergy-Immunology, Department of Medicine, Northwestern Feinberg School of Medicine, Chicago, Ill; Division of Rheumatology, Department of Medicine, Kyung Hee University School of Medicine, Seoul, Korea.
| | - Seung J Hong
- Division of Allergy-Immunology, Department of Medicine, Northwestern Feinberg School of Medicine, Chicago, Ill; Division of Rheumatology, Department of Medicine, Kyung Hee University School of Medicine, Seoul, Korea
| | - Haimei Chen
- Division of Allergy-Immunology, Department of Medicine, Northwestern Feinberg School of Medicine, Chicago, Ill
| | - Ali Habib
- Division of Allergy-Immunology, Department of Medicine, Northwestern Feinberg School of Medicine, Chicago, Ill
| | - David Cho
- Division of Allergy-Immunology, Department of Medicine, Northwestern Feinberg School of Medicine, Chicago, Ill
| | - Sun H Lee
- Division of Allergy-Immunology, Department of Medicine, Northwestern Feinberg School of Medicine, Chicago, Ill
| | - Joseph Kang
- Department of Preventive Medicine, Northwestern Feinberg School of Medicine, Chicago, Ill
| | - Theresa Ward
- Department of Medicine, Cardiovascular Research Institute, University of California at San Francisco, San Francisco, Calif
| | - Homer A Boushey
- Department of Medicine, Cardiovascular Research Institute, University of California at San Francisco, San Francisco, Calif
| | - Robert P Schleimer
- Division of Allergy-Immunology, Department of Medicine, Northwestern Feinberg School of Medicine, Chicago, Ill
| | - Pedro C Avila
- Division of Allergy-Immunology, Department of Medicine, Northwestern Feinberg School of Medicine, Chicago, Ill
| |
Collapse
|
30
|
Schuliga M, Westall G, Xia Y, Stewart AG. The plasminogen activation system: new targets in lung inflammation and remodeling. Curr Opin Pharmacol 2013; 13:386-93. [PMID: 23735578 DOI: 10.1016/j.coph.2013.05.014] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 05/14/2013] [Accepted: 05/14/2013] [Indexed: 11/26/2022]
Abstract
The plasminogen activation system (PAS) and the plasmin it forms have dual roles in chronic respiratory diseases including asthma, chronic obstructive pulmonary disease and interstitial lung disease. Whilst plasmin-mediated airspace fibrinolysis is beneficial, interstitial plasmin contributes to lung dysfunction because of its pro-inflammatory and tissue remodeling activities. Recent studies highlight the potential of fibrinolytic agents, including small molecule inhibitors of plasminogen activator inhibitor-1 (PAI-1), as treatments for chronic respiratory disease. Current data also suggest that interstitial urokinase plasminogen activator is an important mediator of lung inflammation and remodeling. However, further preclinical characterization of uPA as a drug target for lung disease is required. Here we review the concept of selectively targeting the contributions of PAS to treat chronic respiratory disease.
Collapse
Affiliation(s)
- Michael Schuliga
- Department of Pharmacol, University of Melbourne, Parkville, Victoria, Australia
| | | | | | | |
Collapse
|
31
|
Hsu J, Avila PC, Kern RC, Hayes MG, Schleimer RP, Pinto JM. Genetics of chronic rhinosinusitis: state of the field and directions forward. J Allergy Clin Immunol 2013; 131:977-93, 993.e1-5. [PMID: 23540616 PMCID: PMC3715963 DOI: 10.1016/j.jaci.2013.01.028] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Revised: 01/10/2013] [Accepted: 01/11/2013] [Indexed: 01/15/2023]
Abstract
The cause of chronic rhinosinusitis (CRS) remains unclear. Study of the genetic susceptibility to CRS might be a valuable strategy to understand the pathogenesis of this burdensome disorder. The purpose of this review is to critically evaluate the current literature regarding the genetics of CRS in a comprehensive fashion. The most promising findings from candidate gene studies include the cystic fibrosis transmembrane conductance regulator gene (CFTR), as well as genes involved in antigen presentation, innate and adaptive immune responses, tissue remodeling, and arachidonic acid metabolism. We also review the few hypothesis-independent genetic studies of CRS (ie, linkage analysis and pooling-based genome-wide association studies). Interpretation of the current literature is limited by challenges with study design, sparse replication, few functional correlates of associated polymorphisms, and inadequate examination of linkage disequilibrium or expression quantitative trait loci for reported associations. Given the relationship of CRS to other airway disorders with well-characterized genetic components (eg, asthma), study of the genetics of CRS deserves increased attention and investment, including the organization of large, detailed, and collaborative studies to advance knowledge of the mechanisms that underlie this disorder.
Collapse
Affiliation(s)
- Joy Hsu
- Division of Allergy-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL 60637, USA
| | | | | | | | | | | |
Collapse
|
32
|
Simone TM, Archambeault J, Higgins PJ. Small Molecule Targeting of PAI-1 Function: A New Therapeutic Approach for Treatment of Vascular Stenosis. J Mol Genet Med 2013; 7. [PMID: 24382978 PMCID: PMC3875289 DOI: 10.4172/1747-0862.1000059] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
- Tessa M Simone
- Center for Cell Biology & Cancer Research, Albany Medical College, Albany, New York 12208, USA
| | - Jaclyn Archambeault
- Center for Cell Biology & Cancer Research, Albany Medical College, Albany, New York 12208, USA
| | - Paul J Higgins
- Center for Cell Biology & Cancer Research, Albany Medical College, Albany, New York 12208, USA
| |
Collapse
|
33
|
Lederlin M, Ozier A, Dournes G, Ousova O, Girodet PO, Begueret H, Marthan R, Montaudon M, Laurent F, Berger P. In vivo micro-CT assessment of airway remodeling in a flexible OVA-sensitized murine model of asthma. PLoS One 2012; 7:e48493. [PMID: 23119036 PMCID: PMC3484051 DOI: 10.1371/journal.pone.0048493] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Accepted: 09/26/2012] [Indexed: 01/20/2023] Open
Abstract
Airway remodeling is a major pathological feature of asthma. Up to now, its quantification still requires invasive methods. In this study, we aimed at determining whether in vivo micro-computed tomography (micro-CT) is able to demonstrate allergen-induced airway remodeling in a flexible mouse model of asthma. Sixty Balb/c mice were challenged intranasally with ovalbumin or saline at 3 different endpoints (Days 35, 75, and 110). All mice underwent plethysmography at baseline and just prior to respiratory-gated micro-CT. Mice were then sacrificed to assess bronchoalveolar lavage and lung histology. From micro-CT images (voxel size = 46×46×46 µm), the numerical values of total lung attenuation, peribronchial attenuation (PBA), and PBA normalized by total lung attenuation were extracted. Each parameter was compared between OVA and control mice and correlation coefficients were calculated between micro-CT and histological data. As compared to control animals, ovalbumin-sensitized mice exhibited inflammation alone (Day 35), remodeling alone (Day 110) or both inflammation and remodeling (Day 75). Normalized PBA was significantly greater in mice exhibiting bronchial remodeling either alone or in combination with inflammation. Normalized PBA correlated with various remodeling markers such as bronchial smooth muscle size or peribronchial fibrosis. These findings suggest that micro-CT may help monitor remodeling non-invasively in asthmatic mice when testing new drugs targeting airway remodeling in pre-clinical studies.
Collapse
Affiliation(s)
- Mathieu Lederlin
- Univ. Bordeaux, Centre de Recherche Cardio-thoracique de Bordeaux, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Van De Craen B, Declerck PJ, Gils A. The Biochemistry, Physiology and Pathological roles of PAI-1 and the requirements for PAI-1 inhibition in vivo. Thromb Res 2012; 130:576-85. [DOI: 10.1016/j.thromres.2012.06.023] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Revised: 06/12/2012] [Accepted: 06/27/2012] [Indexed: 12/16/2022]
|
35
|
Yang C, Mo X, Lv J, Liu X, Yuan M, Dong M, Li L, Luo X, Fan X, Jin Z, Liu Z, Liu J. Lipopolysaccharide enhances FcεRI-mediated mast cell degranulation by increasing Ca2+ entry through store-operated Ca2+ channels: implications for lipopolysaccharide exacerbating allergic asthma. Exp Physiol 2012; 97:1315-27. [PMID: 22581748 DOI: 10.1113/expphysiol.2012.065854] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Lipopolysaccharide (LPS) can exacerbate asthma; however, the mechanisms are not fully understood. This study investigated the effect of LPS on antigen-stimulated mast cell degranulation and the underlying mechanisms. We found that LPS enhanced degranulation in RBL-2H3 cells and mouse peritoneal mast cells upon FcεRI activation, in a dose- and time-dependent manner. Parallel to the alteration of degranulation, LPS increased FcεRI-activated Ca(2+) mobilization, as well as Ca(2+) entry through store-operated calcium channels (SOCs) evoked by thapsigargin. Blocking Ca(2+) entry through SOCs completely abolished LPS enhancement of mast cell degranulation. Consistent with functional alteration of SOCs, LPS increased mRNA and protein levels of Orai1 and STIM1, two major subunits of SOCs, in a time-dependent manner. In addition, LPS increased the mRNA level of Toll-like receptor 4 (TLR4) in a time-dependent manner. Blocking TLR4 with Cli-095 inhibited LPS, increasing transcription and expression of SOC subunits. Concomitantly, the effect of LPS enhancement of Ca(2+) mobilization and mast cell degranulation was largely reduced by Cli-095. Administration of LPS (1 μg) in vivo aggravated airway hyperreactivity and inflammatory reactions in allergic asthmatic mice. Histamine levels in serum and bronchoalveolar lavage fluid were increased by LPS treatment. In addition, Ca(2+) mobilization was enhanced in peritoneal mast cells isolated from LPS-treated asthmatic mice. Taken together, these results imply that LPS enhances mast cell degranulation, which potentially contributes to LPS exacerbating allergic asthma. Lipopolysaccharide increases Ca(2+) entry through SOCs by upregulating transcription and expression of SOC subunits, mainly through interacting with TLR4 in mast cells, resulting in enhancement of mast cell degranulation upon antigen stimulation.
Collapse
Affiliation(s)
- Chengbin Yang
- State Key Laboratory of Respiratory Disease for Allergy, Shengzhen University, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Abstract
Asthma is a T lymphocyte-controlled disease of the airway wall caused by inflammation, overproduction of mucus and airway wall remodeling leading to bronchial hyperreactivity and airway obstruction. The airway epithelium is considered an essential controller of inflammatory, immune and regenerative responses to allergens, viruses and environmental pollutants that contribute to asthma pathogenesis. Epithelial cells express pattern recognition receptors that detect environmental stimuli and secrete endogenous danger signals, thereby activating dendritic cells and bridging innate and adaptive immunity. Improved understanding of the epithelium's function in maintaining the integrity of the airways and its dysfunction in asthma has provided important mechanistic insight into how asthma is initiated and perpetuated and could provide a framework by which to select new therapeutic strategies that prevent exacerbations and alter the natural course of the disease.
Collapse
|