1
|
DING L, ZHANG Q, SUN Y, KONG Y, SONG Y, WANG Y. Untargeted serum metabonomic reveals alleviated ovalbumin-induced asthma by Baijin Pingchuan through primary bile acid biosynthesis. J TRADIT CHIN MED 2024; 44:1187-1193. [PMID: 39617704 PMCID: PMC11589559 DOI: 10.19852/j.cnki.jtcm.2024.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 11/27/2023] [Indexed: 12/17/2024]
Abstract
OBJECTIVE To investigate the effect of baijinpingchuan (, BJPC) on the asthma rat model and identify differential metabolites and disturbed metabolic pathways. METHODS The rats were categorized into six groups: control, dexamethasone (DEX), ovalbumin (OVA), and low-, median-, and high-dose BJPC. The rats, except for the control group, were initially treated with OVA to develop the asthma model, which was then activated using DEX, OVA, and low-, median-, and high-dose BJPC. Enzyme-linked immunosorbent assay kit was used to detect the expression of interleukin (IL)-33, IL-25, thymic stromal lymphopoietin (TSLP), and transforming growth factor-beta 1 (TGF-β1). Hematoxylin and eosin staining were performed to observe the pathological condition of the lung. Untargeted serum metabonomic analysis was conducted to identify differential metabolites and disturbed metabolic pathways. RESULTS High-dose BJPC significantly inhibited the expression of IL-33, IL-25, TSLP, and TGF-β1 (P < 0.0001). Further, high-dose BJPC improved inflammatory cell infiltration, which plays a similar role in asthma as DEX. OVA-induced and BJPC-treated rats were identified through 17 differential metabolites, especially cholic acid. Furthermore, primary bile acid biosynthesis was a significantly differential pathway in the mechanism of BJPC for treating asthma. CONCLUSIONS BJPC plays an anti-inflammation role in asthma, which might be a promising therapy through mediating primary bile acid biosynthesis.
Collapse
Affiliation(s)
- Lizhong DING
- Department of Pediatrics, the Affiliated hospital to Changchun University of Chinese Medicine, Changchun 130017, China
| | - Qiang ZHANG
- Department of Pediatrics, the Affiliated hospital to Changchun University of Chinese Medicine, Changchun 130017, China
| | - Yingying SUN
- Department of Pediatrics, the Affiliated hospital to Changchun University of Chinese Medicine, Changchun 130017, China
| | - Yibu KONG
- Department of Pediatrics, the Affiliated hospital to Changchun University of Chinese Medicine, Changchun 130017, China
| | - Yongfu SONG
- Department of Pediatrics, the Affiliated hospital to Changchun University of Chinese Medicine, Changchun 130017, China
| | - Yongji WANG
- Department of Pediatrics, the Affiliated hospital to Changchun University of Chinese Medicine, Changchun 130017, China
| |
Collapse
|
2
|
Wang Y, Mou YK, Liu WC, Wang HR, Song XY, Yang T, Ren C, Song XC. Genetically Predicted Immune Cell-Mediated Effect of Lipid Metabolism on Allergic Diseases: A Two-Step, Mediation Mendelian Randomization Study. Int Arch Allergy Immunol 2024:1-15. [PMID: 39541965 DOI: 10.1159/000542036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Accepted: 10/09/2024] [Indexed: 11/17/2024] Open
Abstract
INTRODUCTION An increasing number of studies have demonstrated that dynamic changes in lipid species can affect allergic diseases; however, the causal relationship and mediating role of immune cells remain unclear. METHODS We conducted a bidirectional two-sample mendelian randomization (MR) analysis using genome-wide association study (GWAS) data on 179 lipid species (n = 7,174) and three types of allergic diseases including allergic rhinitis (AR) (n = 370,158), allergic asthma (n = 219,753), and allergic conjunctivitis (n = 377,277). The principal model used was the inverse variance-weighted approach, and a series of sensitivity analyses were conducted to ensure the robustness of the results. We used a two-step MR approach to assess whether the causal effect was mediated by immune cells (n = 3,757). RESULTS Sterol ester and sphingomyelin played pathogenic roles in allergic asthma, AR, and allergic conjunctivitis; however, the effective subtypes differed. Among them, CD45RA- CD4+ mature T cells and CCR2 on CD14+ CD16+ monocytes affected the promoting impact of sterol ester's metabolism on allergic asthma and AR with different mediating proportions, while the role of sphingomyelin may not involve the immune cells. Moreover, we observed that HLA-DR on CD33- HLA DR+ myeloid cells, CD11b on CD66b++ myeloid cells, and IgD+ CD38- B cells played the most mediating effect of phosphatidylethanolamine (O-18:2_20:4) in allergic asthma, phosphatidylinositol (16:0_18:1) in AR, and phosphatidylethanolamine (18:0_18:2) in allergic conjunctivitis. CONCLUSION This MR study provides evidence for specific lipid species associated with the risk of allergic diseases, especially sterol esters, and identifies the immune cells that mediate this causal relationship.
Collapse
Affiliation(s)
- Yao Wang
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Laboratory of Otorhinolaryngology, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Yantai, China
| | - Ya-Kui Mou
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Laboratory of Otorhinolaryngology, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Yantai, China
| | - Wan-Chen Liu
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Laboratory of Otorhinolaryngology, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Yantai, China
| | - Han-Rui Wang
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Laboratory of Otorhinolaryngology, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Yantai, China
| | - Xiao-Yu Song
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Laboratory of Otorhinolaryngology, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Yantai, China
| | - Ting Yang
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Laboratory of Otorhinolaryngology, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Yantai, China
| | - Chao Ren
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Laboratory of Otorhinolaryngology, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Yantai, China
- Department of Rehabilitation, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Department of Neurology, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Department of Clinical Medical Research Center, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
| | - Xi-Cheng Song
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Laboratory of Otorhinolaryngology, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Yantai, China
| |
Collapse
|
3
|
Albers GJ, Michalaki C, Ogger PP, Lloyd AF, Causton B, Walker SA, Caldwell A, Halket JM, Sinclair LV, Forde SH, McCarthy C, Hinks TSC, Lloyd CM, Byrne AJ. Airway macrophage glycolysis controls lung homeostasis and responses to aeroallergen. Mucosal Immunol 2024:S1933-0219(24)00105-3. [PMID: 39426627 DOI: 10.1016/j.mucimm.2024.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 09/25/2024] [Accepted: 10/01/2024] [Indexed: 10/21/2024]
Abstract
The lungs represent a dynamic microenvironment where airway macrophages (AMs) are the major lung-resident macrophages. AMs dictate the balance between tissue homeostasis and immune activation and thus have contradictory functions by maintaining tolerance and tissue homeostasis, as well as initiating strong inflammatory responses. Emerging evidence has highlighted the connection between macrophage function and cellular metabolism. However, the functional importance of these processes in tissue-resident specialized macrophage populations such as those found in the airways, remain poorly elucidated. Here, we reveal that glycolysis is a fundamental pathway in AMs which regulates both lung homeostasis and responses to inhaled allergen. Using macrophage specific targeting in vivo, and multi-omics approaches, we determined that glycolytic activity in AMs is necessary to restrain type 2 (T2) immunity during homeostasis. Exposure to a range of common aeroallergens, including house dust mite (HDM), drove AM-glycolysis and furthermore, AM-specific inhibition of glycolysis altered inflammation in the airways and HDM-driven airway metabolic adaptations in vivo. Additionally, allergen sensitised asthmatics had profound metabolic changes in the airways, compared to non-sensitised asthmatic controls. Finally, we found that allergen driven AM-glycolysis in mice was TLR2 dependent. Thus, our findings demonstrate a direct relationship between glycolysis in AMs, AM-mediated homeostatic processes, and T2 immune responses in the lungs. These data suggest that glycolysis is essential for the plasticity of AMs. Depending on the immunological context, AM-glycolysis is required to exert homeostatic activity but once activated by allergen, AM-glycolysis influences inflammatory responses. Thus, precise modulation of glycolytic activity in AMs is essential for preserving lung homeostasis and regulating airway inflammation.
Collapse
Affiliation(s)
- Gesa J Albers
- National Heart and Lung Institute, Imperial College London, London, UK
| | | | - Patricia P Ogger
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Amy F Lloyd
- Cell Signalling and Immunology, University of Dundee, Dundee, UK
| | - Benjamin Causton
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Simone A Walker
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Anna Caldwell
- Dept. of Nutritional Sciences, School of Life Course & Population Health Sciences, King's College London, London, UK; Department of Nutritional Sciences, KIng's College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, UK
| | - John M Halket
- Department of Nutritional Sciences, KIng's College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, UK
| | - Linda V Sinclair
- Cell Signalling and Immunology, University of Dundee, Dundee, UK
| | - Sarah H Forde
- Conway Institute and School of Medicine, University College Dublin, Dublin, Ireland
| | - Cormac McCarthy
- Conway Institute and School of Medicine, University College Dublin, Dublin, Ireland
| | - Timothy S C Hinks
- Respiratory Medicine Unit, Nuffield Department of Medicine and National Institute for Health Research Oxford Biomedical Research Centre, University of Oxford, Oxford, UK; Clinical and Experimental Sciences, University of Southampton Faculty of Medicine, Sir Henry Wellcome Laboratories, and the NIHR Southampton Respiratory Biomedical Research Unit, Southampton University Hospital, Southampton, UK
| | - Clare M Lloyd
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Adam J Byrne
- National Heart and Lung Institute, Imperial College London, London, UK; Conway Institute and School of Medicine, University College Dublin, Dublin, Ireland.
| |
Collapse
|
4
|
Huang P, Xiang T, Wang Q, Han L, Zheng S, Zhang D, Huang F, Duan B, Li J, Li H, Huang T. Protective effect of Xixin-Ganjiang herb pair for warming the lungs to dissolve phlegm in chronic obstructive pulmonary disease rats based on integrated network pharmacology and metabolomics. Biomed Chromatogr 2024; 38:e5851. [PMID: 38449348 DOI: 10.1002/bmc.5851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 01/21/2024] [Accepted: 02/03/2024] [Indexed: 03/08/2024]
Abstract
Xixin-Ganjiang herb pair (XGHP) is a classic combination for warming the lungs to dissolve phlegm and is often used to treat a variety of chronic lung diseases; it can treat the syndrome of cold phlegm obstruction of lungs. First, ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) was used to examine the composition of XGHP, and network pharmacology was used to predict its potential core targets and signaling pathways in the current study. Second, a rat model of chronic obstructive pulmonary disease (COPD) was established for assessing the anti-COPD activity of XGHP, and metabolomics was used to explore the biomarkers and metabolic pathways. Finally, the sample was validated using molecular docking and Western blotting. The integration of metabolomics and network pharmacology results identified 11 targets, 3 biomarkers, 3 pathways, and 2 metabolic pathways. Western blotting showed that XGHP effectively regulated the expression of core proteins via multiple signaling pathways (downregulation of toll-like receptor 4 [TLR4] and upregulation of serine/threonine-protein kinase 1 [p-AKT1] and nitric oxide synthase 3 [NOS3]). Molecular docking results showed that the 10 potentially active components of XGHP have good affinity with tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), matrix metalloproteinase 9 (MMP-9), TLR4, p-AKT1, and NOS3. Our findings suggest that XGHP may regulate glucolipid metabolism, improve energy supply, and inhibit inflammatory responses (TNF-α, IL-6, and MMP-9) via the PI3K-Akt signaling pathway and HIF-1 signaling pathway in the management of COPD.
Collapse
Affiliation(s)
- Ping Huang
- Department of Rehabilitation Medicine, General Hospital of Central Theater Command, Wuhan, China
- College of Basic Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Ting Xiang
- Department of Rehabilitation Medicine, General Hospital of Central Theater Command, Wuhan, China
| | - Qiong Wang
- College of Basic Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Lintao Han
- Pharmacy School, Hubei University of Chinese Medicine, Wuhan, China
- Key Laboratory of Traditional Chinese Medicine Resource and Prescription, Ministry of Education, Wuhan, China
| | - Sili Zheng
- Pharmacy School, Hubei University of Chinese Medicine, Wuhan, China
| | - Dongning Zhang
- Pharmacy School, Hubei University of Chinese Medicine, Wuhan, China
| | - Fang Huang
- College of Basic Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Bailu Duan
- College of Basic Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Jingjing Li
- College of Basic Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Huamao Li
- Department of Rehabilitation Medicine, General Hospital of Central Theater Command, Wuhan, China
| | - Tao Huang
- Department of Orthopedics, Wuhan Red Cross Hospital, Wuhan, China
| |
Collapse
|
5
|
Wang R, Sui X, Dong X, Hu L, Li Z, Yu H, Li C, Ji G, Wang S. Integration of metabolomics and transcriptomics reveals the therapeutic mechanism underlying Chelidonium majus L. in the treatment of allergic asthma. Chin Med 2024; 19:65. [PMID: 38671520 PMCID: PMC11055330 DOI: 10.1186/s13020-024-00932-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 04/07/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND Chelidonium majus is a well-known traditional Chinese medicine, and has been reported of the effect in relieving cough and asthma. However, the mechanism of action is still unknown. METHODS Asthmatic SD rats were first sensitized and established through ovalbumin (OVA) motivation. Subsequently, Hematoxylin and eosin (H&E) staining, Masson's trichrome (Masson) staining, Periodic acid-Schiff (PAS) staining and inflammatory cytokines assay of interleukin (IL)-4, IL-6, IL-17 were implemented to evaluate the protective effects of Chelidonium majus on asthma. Then, the effects of Chelidonium majus and their molecular mechanisms of action on asthma were detected based on the integration of transcriptomics and metabolomics analyses. RESULTS After administration with Chelidonium majus, the histological injuries of inflammation, collagen deposition and mucus secretion in lungs were attenuated and the serum inflammatory cytokines perturbations were also converted. Furthermore, integrated analysis revealed that after Chelidonium majus treatment, 7 different expression genes (DEGs) (Alox15, P4ha1, Pla2g16, Pde3a, Nme1, Entpd8 and Adcy9) and 9 metabolic biomarkers (ADP, Xanthosine, Hypoxanthine, Inosine, prostaglandin E2 (PGE2), prostaglandin F2a (PGF2a), phosphatidylserine, Creatine and LysoPC (10:0)) were discovered to be connected with the enrichment metabolic pathways, including Purine metabolism, Arachidonic acid metabolism, Arginine and proline metabolism and Glycerophospholipid metabolism. The obtained metabolic biomarkers and DEGs were mainly related to energy metabolism and inflammation, and may be potential therapeutic targets. CONCLUSION Chelidonium majus relieved OVA-induced asthma in rats by regulating the Alox15, P4ha1, Pla2g16, Pde3a, Nme1, Entpd8 and Adcy9 genes expression to restore the disorders in energy metabolism and inflammation.
Collapse
Affiliation(s)
- Renguang Wang
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Xintong Sui
- Jilin Zhong Ke Bio-Engineering Co., Ltd, Changchun, 130012, China
| | - Xin Dong
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, 130117, China
- Jilin Zhong Ke Bio-Engineering Co., Ltd, Changchun, 130012, China
| | - Liming Hu
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Zhimeng Li
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Hang Yu
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Cuicui Li
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Guoxin Ji
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Shumin Wang
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, 130117, China.
| |
Collapse
|
6
|
Shen Q, Yu H, Liu Y, Li G, An T. Combined exposure of MAHs and PAHs enhanced amino acid and lipid metabolism disruption in epithelium leading asthma risk. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 343:123261. [PMID: 38159626 DOI: 10.1016/j.envpol.2023.123261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 12/16/2023] [Accepted: 12/28/2023] [Indexed: 01/03/2024]
Abstract
Monoaromatic hydrocarbons (MAHs) and polycyclic aromatic hydrocarbons (PAHs) are ubiquitous air pollutants from industry, with multiple adverse effects on respiratory system. However, the underlying mechanisms of their mixture to induce asthma is still unclear. Here, we examined mixture of 8 MAHs, mixture of 16 PAHs and a total mixture (MIX) on human bronchial epithelial (16-HBE) cells. Exposure to MIX resulted in increased expressions of asthma alarm cytokines (TSLP, IL-25 and IL-33), indicating potential asthma risk. Exposure to MIX led to significant upregulation of transcriptional level of oxidative stress and inflammation biomarkers through aryl hydrocarbon receptor activation, including SOD-2, NQO-1, IL-1β, IL-6 and IL-8 with 3.1, 19.9, 3.5, 23.4, 18.7, 28.1-fold change, indicated asthma related epithelial cell lesions. A total of 25, 49 and 59 differential metabolites were identified in cells response to MAH, PAH and MIX exposure, respectively, and enrichment analysis demonstrated MIX exposure disturbing alanine, aspartate and glutamate metabolism, glutathione metabolism, methionine metabolism and sphingolipid metabolism, involved in antioxidative defense and inflammation response. Combined exposure of MAHs and PAHs may result in increased toxic risks, and provide evidence to asthma onset and deterioration.
Collapse
Affiliation(s)
- Qianyong Shen
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China; Guangdong Engineering Technology Research Center for Photocatalytic Technology Integration and Equipment, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Hang Yu
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China; Guangdong Engineering Technology Research Center for Photocatalytic Technology Integration and Equipment, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Yalin Liu
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China; Guangdong Engineering Technology Research Center for Photocatalytic Technology Integration and Equipment, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Guiying Li
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China; Guangdong Engineering Technology Research Center for Photocatalytic Technology Integration and Equipment, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Taicheng An
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China; Guangdong Engineering Technology Research Center for Photocatalytic Technology Integration and Equipment, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China.
| |
Collapse
|
7
|
Barosova R, Baranovicova E, Hanusrichterova J, Mokra D. Metabolomics in Animal Models of Bronchial Asthma and Its Translational Importance for Clinics. Int J Mol Sci 2023; 25:459. [PMID: 38203630 PMCID: PMC10779398 DOI: 10.3390/ijms25010459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/17/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024] Open
Abstract
Bronchial asthma is an extremely heterogenous chronic respiratory disorder with several distinct endotypes and phenotypes. These subtypes differ not only in the pathophysiological changes and/or clinical features but also in their response to the treatment. Therefore, precise diagnostics represent a fundamental condition for effective therapy. In the diagnostic process, metabolomic approaches have been increasingly used, providing detailed information on the metabolic alterations associated with human asthma. Further information is brought by metabolomic analysis of samples obtained from animal models. This article summarizes the current knowledge on metabolomic changes in human and animal studies of asthma and reveals that alterations in lipid metabolism, amino acid metabolism, purine metabolism, glycolysis and the tricarboxylic acid cycle found in the animal studies resemble, to a large extent, the changes found in human patients with asthma. The findings indicate that, despite the limitations of animal modeling in asthma, pre-clinical testing and metabolomic analysis of animal samples may, together with metabolomic analysis of human samples, contribute to a novel way of personalized treatment of asthma patients.
Collapse
Affiliation(s)
- Romana Barosova
- Department of Physiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia; (R.B.); (J.H.)
| | - Eva Baranovicova
- Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia;
| | - Juliana Hanusrichterova
- Department of Physiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia; (R.B.); (J.H.)
- Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia;
| | - Daniela Mokra
- Department of Physiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia; (R.B.); (J.H.)
| |
Collapse
|
8
|
Barosova R, Baranovicova E, Adamcakova J, Prso K, Hanusrichterova J, Mokra D. Sex differences in plasma metabolites in a guinea pig model of allergic asthma. Physiol Res 2023; 72:S499-S508. [PMID: 38165754 PMCID: PMC10861256 DOI: 10.33549/physiolres.935218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 09/11/2023] [Indexed: 02/01/2024] Open
Abstract
Sex seems to be a contributing factor in the pathogenesis of bronchial asthma. This study aimed to find sex-related differences in metabolome measured by hydrogen-1 nuclear magnetic resonance ((1)H NMR) spectroscopy in healthy and ovalbumin (OVA)-sensitized guinea pigs. Adult male and female animals were divided into controls and OVA-sensitized groups. OVA-sensitization was performed by OVA systemic and inhalational administration within 14 days; on day 15, animals were killed by anesthetic overdose followed by exsanguination. Blood was taken and differential white blood cell count was measured. Left lung was saline-lavaged and differential cell count in the bronchoalveolar lavage fluid (BALF) was measured. After blood centrifugation, plasma was processed for (1)H NMR analysis. Metabolomic data was evaluated by principal component analysis (PCA). Eosinophil counts elevated in the BALF confirming eosinophil-mediated inflammation in OVA-sensitized animals of both sexes. Sex differences for lactate, glucose, and citrate were found in controls, where these parameters were lower in males than in females. In OVA-sensitized males higher glucose and lower pyruvate were found compared to controls. OVA-sensitized females showed lower lactate, glucose, alanine, 3-hydroxy-butyrate, creatine, pyruvate, and succinate concentrations compared to controls. In OVA-sensitized animals, lactate concentration was lower in males. Data from females (healthy and OVA-sensitized) were generally more heterogeneous. Significant sex differences in plasma concentrations of metabolites were found in both healthy and OVA-sensitized animals suggesting that sex may influence the metabolism and may thereby contribute to different clinical picture of asthma in males and females.
Collapse
Affiliation(s)
- R Barosova
- Department of Physiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovak Republic.
| | | | | | | | | | | |
Collapse
|
9
|
Jie XL, Luo ZR, Yu J, Tong ZR, Li QQ, Wu JH, Tao Y, Feng PS, Lan JP, Wang P. Pi-Pa-Run-Fei-Tang alleviates lung injury by modulating IL-6/JAK2/STAT3/IL-17 and PI3K/AKT/NF-κB signaling pathway and balancing Th17 and Treg in murine model of OVA-induced asthma. JOURNAL OF ETHNOPHARMACOLOGY 2023; 317:116719. [PMID: 37268260 DOI: 10.1016/j.jep.2023.116719] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/23/2023] [Accepted: 05/30/2023] [Indexed: 06/04/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Pi-Pa-Run-Fei-Tang (PPRFT) is an empirical TCM prescription for treating asthma. However, the underlying mechanisms of PPRFT in asthma treatment have yet to be elucidated. Recent advances have revealed that some natural components could ameliorate asthma injury by affecting host metabolism. Untargeted metabolomics can be used to better understand the biological mechanisms underlying asthma development and identify early biomarkers that can help advance treatment. AIM OF THE STUDY The aim of this study was to verification the efficacy of PPRFT in the treatment of asthma and to preliminarily explore its mechanism. MATERIALS AND METHODS A mouse asthma model was built by OVA induction. Inflammatory cell in BALF was counted. The level of IL-6, IL-1β, and TNF-α in BALF were measured. The levels of IgE in the serum and EPO, NO, SOD, GSH-Px, and MDA in the lung tissue were measured. Furthermore, pathological damage to the lung tissues was detected to evaluate the protective effects of PPRFT. The serum metabolomic profiles of PPRFT in asthmatic mice were determined by GC-MS. The regulatory effects on mechanism pathways of PPRFT in asthmatic mice were explored via immunohistochemical staining and western blotting analysis. RESULTS PPRFT displayed lung-protective effects through decreasing oxidative stress, airway inflammation, and lung tissue damage in OVA-induced mice, which was demonstrated by decreasing inflammatory cell levels, IL-6, IL-1β, and TNF-α levels in BALF, and IgE levels in serum, decreasing EPO, NO, and MDA levels in lung tissue, elevating SOD and GSH-Px levels in lung tissue and lung histopathological changes. In addition, PPRFT could regulate the imbalance in Th17/Treg cell ratios, suppress RORγt, and increase the expression of IL-10 and Foxp3 in the lung. Moreover, PPRFT treatment led to decreased expression of IL-6, p-JAK2/Jak2, p-STAT3/STAT3, IL-17, NF-κB, p-AKT/AKT, and p-PI3K/PI3K. Serum metabolomics analysis revealed that 35 metabolites were significantly different among different groups. Pathway enrichment analysis indicated that 31 pathways were involved. Moreover, correlation analysis and metabolic pathway analysis identified three key metabolic pathways: galactose metabolism; tricarboxylic acid cycle; and glycine, serine, and threonine metabolism. CONCLUSION This research indicated that PPRFT treatment not only attenuates the clinical symptoms of asthma but is also involved in regulating serum metabolism. The anti-asthmatic activity of PPRFT may be associated with the regulatory effects of IL-6/JAK2/STAT3/IL-17 and PI3K/AKT/NF-κB mechanistic pathways.
Collapse
Affiliation(s)
- Xiao-Lu Jie
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Zi-Rui Luo
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Jin Yu
- Hangzhou Zhongmei Huadong Pharmaceutical Co., Ltd., Hangzhou, 310014, China
| | - Zhe-Ren Tong
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Qiao-Qiao Li
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Jia-Hui Wu
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Yi Tao
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Pei-Shi Feng
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Ji-Ping Lan
- Experiment Center for Teaching & Learning Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Ping Wang
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, China.
| |
Collapse
|
10
|
Deng R, Li J, Wu H, Wang M. Mechanistic insight into the adjuvant effect of co-exposure to ultrafine carbon black and high humidity on allergic asthma. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:9653-9667. [PMID: 37794280 DOI: 10.1007/s10653-023-01764-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 09/18/2023] [Indexed: 10/06/2023]
Abstract
Respiratory diseases continue to be a major global concern, with allergies and asthma often discussed as critical areas of study. While the role of environmental risk factors, such as non-allergenic pollutants and high humidity, in asthma induction is often mentioned, there is still a lack of thorough research on their co-exposure. This study aims to investigate the adjuvant effect of ultrafine carbon black (30-50 nm) and high humidity (70% relative humidity) on the induction of allergic asthma. A mouse model of asthma was established using ovalbumin, and airway hyperresponsiveness, remodeling, and inflammation were measured as the endpoint effects of asthma. The mediating role of the oxidative stress pathway and the transient receptor potential vanilloid 1 pathway in asthma induction was validated using pathway inhibitors vitamin E and capsaicin, respectively. Co-exposure to ultrafine carbon black and high humidity had a significant impact on metabolic pathways in the lung, including aminoacyl-tRNA biosynthesis, glycerophospholipid metabolism, and ATP-binding cassette transporters. However, administering vitamin E and capsaicin altered the effects of co-exposure on the lung metabolome. These results offer new insights into the health risk assessment of co-exposure to environmental risk factors and provide an important reference point for the prevention and treatment of allergic asthma.
Collapse
Affiliation(s)
- Rui Deng
- Joint International Research Laboratory of Green Buildings and Built Environments (Ministry of Education), School of Civil Engineering, Chongqing University, Chongqing, 400045, China.
| | - Jia Li
- The Center for Clinical Molecular Medical Detection, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Haiping Wu
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Mingpu Wang
- Joint International Research Laboratory of Green Buildings and Built Environments (Ministry of Education), School of Civil Engineering, Chongqing University, Chongqing, 400045, China
| |
Collapse
|
11
|
Multi-Omics Analysis of Lung Tissue Demonstrates Changes to Lipid Metabolism during Allergic Sensitization in Mice. Metabolites 2023; 13:metabo13030406. [PMID: 36984845 PMCID: PMC10054742 DOI: 10.3390/metabo13030406] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/24/2023] [Accepted: 03/02/2023] [Indexed: 03/12/2023] Open
Abstract
Allergy and asthma pathogenesis are associated with the dysregulation of metabolic pathways. To understand the effects of allergen sensitization on metabolic pathways, we conducted a multi-omics study using BALB/cJ mice sensitized to house dust mite (HDM) extract or saline. Lung tissue was used to perform untargeted metabolomics and transcriptomics while both lung tissue and plasma were used for targeted lipidomics. Following statistical comparisons, an integrated pathway analysis was conducted. Histopathological changes demonstrated an allergic response in HDM-sensitized mice. Untargeted metabolomics showed 391 lung tissue compounds were significantly different between HDM and control mice (adjusted p < 0.05); with most compounds mapping to glycerophospholipid and sphingolipid pathways. Several lung oxylipins, including 14-HDHA, 8-HETE, 15-HETE, 6-keto-PGF1α, and PGE2 were significantly elevated in HDM-sensitized mice (p < 0.05). Global gene expression analysis showed upregulated calcium channel, G protein–signaling, and mTORC1 signaling pathways. Genes related to oxylipin metabolism such as Cox, Cyp450s, and cPla2 trended upwards. Joint analysis of metabolomics and transcriptomics supported a role for glycerophospholipid and sphingolipid metabolism following HDM sensitization. Collectively, our multi-omics results linked decreased glycerophospholipid and sphingolipid compounds and increased oxylipins with allergic sensitization; concurrent upregulation of associated gene pathways supports a role for bioactive lipids in the pathogenesis of allergy and asthma.
Collapse
|
12
|
Ji L, Huang P, Wang Q, Li X, Li Y. Modulation of the biological network of lumbar spinal stenosis by Tongdu Huoxue Decoction based on clinical metabolomics. Front Mol Biosci 2023; 10:1074500. [PMID: 37025656 PMCID: PMC10070985 DOI: 10.3389/fmolb.2023.1074500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 03/13/2023] [Indexed: 04/08/2023] Open
Abstract
Objective: To explore the clinical efficacy and metabolic mechanism of Tongdu Huoxue Decoction (THD) in treating lumbar spinal stenosis (LSS). Methods: A total of 40 LSS patients and 20 healthy participants were recruited from January 2022 to June 2022. The patients' pre- and post-treatment visual analogue scale (VAS) and Japanese Orthopaedic Association (JOA) scores were recorded. ELISA kits were used to assess pre- and post-treatment levels of serum Interleukin-1beta (IL-1β), Alpha tumour necrosis factor (TNF-α) and prostaglandin E2 (PGE2). Finally, the patients' pre- and post-treatment and healthy human sera were subjected to extensively targeted metabolomics using Ultra Performance Liquid Chromatography (UPLC) to identify potential differential metabolites and metabolic pathways using multivariate statistical analysis. Results: Compared to the pre-treatment (group A), the patients' VAS scores decreased significantly (p < 0.05), while JOA scores increased significantly (p < 0.05) post-treatment (group B), indicating that THD could effectively improve the pain and lumbar spine function of LSS patients. Moreover, THD could effectively inhibit the expression of IL-1β, TNF-α and PGE2-associated inflammatory factors in serum. Regarding metabolomics, the levels of 41 differential metabolites were significantly different in the normal group (group NC) compared to group A, and those were significantly restored after treatment with THD, including chenodeoxycholic acid 3-sulfate, taurohyodeoxycholic acid, 3,5-Dihydroxy-4-methoxybenzoic acid, pinocembrin. These biomarkers are mainly involved in purine metabolism, steroid hormone biosynthesis and amino acid metabolism. Conclusion: This clinical trial demonstrated that THD is effective in improving pain, lumbar spine function and serum levels of inflammation in patients with LSS. Moreover, its mechanism of action is related to the regulation of purine metabolism, steroid hormone biosynthesis and the expression of key biomarkers in the metabolic pathway of amino acid metabolism.
Collapse
Affiliation(s)
- Luhong Ji
- Hubei University of Chinese Medicine, Wuhan, Hubei, China
| | - Ping Huang
- Hubei University of Chinese Medicine, Wuhan, Hubei, China
- Department of Rehabilitation Medicine, Central Theater General Hospital, Wuhan, Hubei, China
| | - Qiong Wang
- Hubei University of Chinese Medicine, Wuhan, Hubei, China
| | - Xugui Li
- Hubei 672 Orthopaedic Hospital of Integrated Traditional Chinese and Western Medicine, Wuhan, Hubei, China
- *Correspondence: Xugui Li, ; Ying Li,
| | - Ying Li
- Hubei University of Chinese Medicine, Wuhan, Hubei, China
- *Correspondence: Xugui Li, ; Ying Li,
| |
Collapse
|
13
|
Wang M, Deng R. Effects of carbon black nanoparticles and high humidity on the lung metabolome in Balb/c mice with established allergic asthma. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:65100-65111. [PMID: 35484453 DOI: 10.1007/s11356-022-20349-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 04/15/2022] [Indexed: 06/14/2023]
Abstract
In respiratory diseases, the induction of allergic asthma has gradually aroused public concerns. Co-exposures of environmental risk factors such as nanoparticles and high humidity could play important roles in the development of allergic asthma. However, the relevant researches are still lacking and the involved mechanisms, especially metabolic changes, remain unclear. We took the lead in studying the combined induction effect and underlying mechanisms of carbon black nanoparticles (CB NPs) and high humidity on allergic asthma. In this work, murine models of allergic asthma were established with ovalbumin under the single and combined exposures of 15 μg/kg CB NPs and 90% relative humidity. The two risk factors, particularly their co-exposure, exhibited adjuvant effect on airway hyperresponsiveness, remodeling, and inflammation in Balb/c mice. Untargeted metabolomics identified the potential biomarkers in lung for asthma occurrence and for asthma exacerbation caused by CB NPs and high humidity. The significantly dysregulated metabolic pathways in asthmatic mice were proposed, and the disturbed metabolic pathways under the exposures of CB NPs and/or high humidity were mainly implicated in asthma symptoms. This work sheds light on the understanding for health risks of NP pollutions and high environmental humidity and contributes to useful biomarker identification and asthma control.
Collapse
Affiliation(s)
- Mingpu Wang
- School of Civil Engineering, Chongqing University, Chongqing, 400045, China
| | - Rui Deng
- School of Civil Engineering, Chongqing University, Chongqing, 400045, China.
| |
Collapse
|
14
|
Chandler JD, Esther CR. Metabolomics of airways disease in cystic fibrosis. Curr Opin Pharmacol 2022; 65:102238. [PMID: 35649321 PMCID: PMC10068587 DOI: 10.1016/j.coph.2022.102238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 03/31/2022] [Accepted: 04/13/2022] [Indexed: 12/30/2022]
Abstract
While discovery metabolomic studies have identified many potential biomarkers of cystic fibrosis (CF) airways disease, relatively few have been validated. We review the recent literature to identify the most promising metabolomic findings as those repeatedly observed over multiple studies. Reproducible metabolomic findings include increased airway amino acids and small peptides in CF airways, as well as changes in phospholipids and sphingolipids. Other commonly altered pathways include adenosine metabolism, polyamine synthesis, and oxidative stress. These pathways represent potential biomarkers and therapeutic targets, though findings require reevaluation in the era of highly effective modulator therapies. Analysis of airway biomarkers in exhaled breath holds promise for non-invasive detection, though technical challenges will need to be overcome.
Collapse
Affiliation(s)
- Joshua D Chandler
- Pediatrics, Division of Pulmonary, Allergy & Immunology, Cystic Fibrosis, and Sleep Medicine, Emory University, Atlanta, GA, USA; Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Charles R Esther
- Pediatric Pulmonology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
15
|
Lee Y, Chen H, Chen W, Qi Q, Afshar M, Cai J, Daviglus ML, Thyagarajan B, North KE, London SJ, Boerwinkle E, Celedón JC, Kaplan RC, Yu B. Metabolomic Associations of Asthma in the Hispanic Community Health Study/Study of Latinos. Metabolites 2022; 12:metabo12040359. [PMID: 35448546 PMCID: PMC9028429 DOI: 10.3390/metabo12040359] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/02/2022] [Accepted: 04/12/2022] [Indexed: 12/17/2022] Open
Abstract
Asthma disproportionally affects Hispanic and/or Latino backgrounds; however, the relation between circulating metabolites and asthma remains unclear. We conducted a cross-sectional study associating 640 individual serum metabolites, as well as twelve metabolite modules, with asthma in 3347 Hispanic/Latino background participants (514 asthmatics, 15.36%) from the Hispanic/Latino Community Health Study/Study of Latinos. Using survey logistic regression, per standard deviation (SD) increase in 1-arachidonoyl-GPA (20:4) was significantly associated with 32% high odds of asthma after accounting for clinical risk factors (p = 6.27 × 10−5), and per SD of the green module, constructed using weighted gene co-expression network, was suggestively associated with 25% high odds of asthma (p = 0.006). In the stratified analyses by sex and Hispanic and/or Latino backgrounds, the effect of 1-arachidonoyl-GPA (20:4) and the green module was predominantly observed in women (OR = 1.24 and 1.37, p < 0.001) and people of Cuban and Puerto-Rican backgrounds (OR = 1.25 and 1.27, p < 0.01). Mutations in Fatty Acid Desaturase 2 (FADS2) affected the levels of 1-arachidonoyl-GPA (20:4), and Mendelian Randomization analyses revealed that high genetically regulated 1-arachidonoyl-GPA (20:4) levels were associated with increased odds of asthma (p < 0.001). The findings reinforce a molecular basis for asthma etiology, and the potential causal effect of 1-arachidonoyl-GPA (20:4) on asthma provides an opportunity for future intervention.
Collapse
Affiliation(s)
- Yura Lee
- Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (Y.L.); (H.C.); (E.B.)
| | - Han Chen
- Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (Y.L.); (H.C.); (E.B.)
| | - Wei Chen
- Department of Pediatrics, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15224, USA; (W.C.); (J.C.C.)
| | - Qibin Qi
- Department of Epidemiology & Population Health, Albert Einstein College of Medicine, Bronx, NY 10461, USA;
| | - Majid Afshar
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI 53726, USA; (M.A.); (R.C.K.)
| | - Jianwen Cai
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27516, USA;
| | - Martha L. Daviglus
- Institute of Minority Health Research, University of Illinois College of Medicine, Chicago, IL 60612, USA;
| | - Bharat Thyagarajan
- Department of Laboratory Medicine and Pathology, University of Minnesota, MMC 609, 420 Delaware Street, Minneapolis, MN 55455, USA;
| | - Kari E. North
- Department of Epidemiology and Carolina Center for Genome Sciences, School of Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA;
| | - Stephanie J. London
- Department of Health and Human Services, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA;
| | - Eric Boerwinkle
- Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (Y.L.); (H.C.); (E.B.)
| | - Juan C. Celedón
- Department of Pediatrics, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15224, USA; (W.C.); (J.C.C.)
- Division of Pulmonary Medicine, Children’s Hospital of Pittsburgh of UPMC, Pittsburgh, PA 15224, USA
| | - Robert C. Kaplan
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI 53726, USA; (M.A.); (R.C.K.)
| | - Bing Yu
- Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (Y.L.); (H.C.); (E.B.)
- Correspondence:
| |
Collapse
|
16
|
Bain CC, MacDonald AS. The impact of the lung environment on macrophage development, activation and function: diversity in the face of adversity. Mucosal Immunol 2022; 15:223-234. [PMID: 35017701 PMCID: PMC8749355 DOI: 10.1038/s41385-021-00480-w] [Citation(s) in RCA: 96] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/04/2021] [Accepted: 12/18/2021] [Indexed: 02/04/2023]
Abstract
The last decade has been somewhat of a renaissance period for the field of macrophage biology. This renewed interest, combined with the advent of new technologies and development of novel model systems to assess different facets of macrophage biology, has led to major advances in our understanding of the diverse roles macrophages play in health, inflammation, infection and repair, and the dominance of tissue environments in influencing all of these areas. Here, we discuss recent developments in our understanding of lung macrophage heterogeneity, ontogeny, metabolism and function in the context of health and disease, and highlight core conceptual advances and key unanswered questions that we believe should be focus of work in the coming years.
Collapse
Affiliation(s)
- Calum C Bain
- The University of Edinburgh Centre for Inflammation Research, Queen's Medical Research Institute, Edinburgh Bioquarter, Edinburgh, EH16 4TJ, UK.
| | - Andrew S MacDonald
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, M13 9NT, UK.
| |
Collapse
|
17
|
Wilde MJ, Siddiqui S. Endotyping Asthma - Profiling the Metabolic Dimension? Am J Respir Crit Care Med 2021; 205:261-263. [PMID: 34914570 PMCID: PMC8886991 DOI: 10.1164/rccm.202111-2605ed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Michael J Wilde
- University of Plymouth, 6633, School of Geography, Earth and Environmental Sciences (Faculty of Science and Engineering), Plymouth, Devon, United Kingdom of Great Britain and Northern Ireland
| | - Salman Siddiqui
- Institute for Lung Health/University of Leicester, Infection, Immunity and Inflammation, Leicester, United Kingdom of Great Britain and Northern Ireland;
| |
Collapse
|
18
|
Metabonomics analysis of postharvest citrus response to Penicillium digitatum infection. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112371] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
19
|
De Paepe E, Van Gijseghem L, De Spiegeleer M, Cox E, Vanhaecke L. A Systematic Review of Metabolic Alterations Underlying IgE-Mediated Food Allergy in Children. Mol Nutr Food Res 2021; 65:e2100536. [PMID: 34648231 DOI: 10.1002/mnfr.202100536] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 08/10/2021] [Indexed: 12/24/2022]
Abstract
SCOPE Immunoglobulin E-mediated food allergies (IgE-FA) are characterized by an ever-increasing prevalence, currently reaching up to 10.4% of children in the European Union. Metabolomics has the potential to provide a deeper understanding of the pathogenic mechanisms behind IgE-FA. METHODS AND RESULTS In this work, literature is systematically searched using Web of Science, PubMed, Scopus, and Embase, from January 2010 until May 2021, including human and animal metabolomic studies on multiple biofluids (urine, blood, feces). In total, 15 studies on IgE-FA are retained and a dataset of 277 potential biomarkers is compiled for in-depth pathway mapping. Decreased indoleamine 2,3-dioxygenase-1 (IDO- 1) activity is hypothesized due to altered plasma levels of tryptophan and its metabolites in IgE-FA children. In feces of children prior to IgE-FA, aberrant metabolization of sphingolipids and histidine is noted. Decreased fecal levels of (branched) short chain fatty acids ((B)SCFAs) compel a shift towards aerobic glycolysis and suggest dysbiosis, associated with an immune system shift towards T-helper 2 (Th2) responses. During animal anaphylaxis, a similar switch towards glycolysis is observed, combined with increased ketogenic pathways. Additionally, altered histidine, purine, pyrimidine, and lipid pathways are observed. CONCLUSION To conclude, this work confirms the unprecedented opportunities of metabolomics and supports the in-depth pathophysiological qualification in the quest towards improved diagnostic and prognostic biomarkers for IgE-FA.
Collapse
Affiliation(s)
- Ellen De Paepe
- Department of Translational Physiology, Infectiology and Public Health, Laboratory of Chemical Analysis, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
| | - Lynn Van Gijseghem
- Department of Translational Physiology, Infectiology and Public Health, Laboratory of Chemical Analysis, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
| | - Margot De Spiegeleer
- Department of Translational Physiology, Infectiology and Public Health, Laboratory of Chemical Analysis, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
| | - Eric Cox
- Department of Translational Physiology, Infectiology and Public Health, Laboratory of Immunology, Ghent University, Ghent, Belgium
| | - Lynn Vanhaecke
- Department of Translational Physiology, Infectiology and Public Health, Laboratory of Chemical Analysis, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium.,Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Northern Ireland, Belfast, UK
| |
Collapse
|
20
|
Wang X, Xing M, Zhang Z, Deng L, Han Y, Wang C, Fan R. Using UPLC-QTOF/MS and multivariate analysis to explore the mechanism of Bletilla Striata improving PM 2.5-induced lung impairment. Anal Biochem 2021; 631:114310. [PMID: 34280371 DOI: 10.1016/j.ab.2021.114310] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/12/2021] [Accepted: 07/16/2021] [Indexed: 02/06/2023]
Abstract
Exposure to fine particulate matter (PM2.5) is closely related to lung diseases and has become more and more harmful to public health. The traditional Chinese medicine of Bletilla Striata has the effect of clearing and nourishing the lungs in clinics. The purpose of the study is using metabolomics methods to explore the mechanism of PM2.5-induced lung injury and Bletilla Striata's therapeutic effect. In this article, we used an Ultra Performance Liquid Chromatography-Quadrupole Time-of-Flight Mass Spectrometry (UPLC-QTOF/MS) method to identify the potential biomarkers. The results showed that there were 18 differential metabolites in the plasma and urine of rats with PM2.5-induced lung injury, involving the glycerophospholipid metabolism pathway, the tryptophan metabolism pathway, and the purine metabolism pathway, etc. After the administration, Bletilla Striata changed the levels of 21 metabolites, and partly corrected the changes in the level of metabolites caused by PM2.5. The results indicated that Bletilla Striata could exert a good therapeutic effect by reversing the levels of some biomarkers in the rats with PM2.5-induced lung impairment.
Collapse
Affiliation(s)
- Xinyue Wang
- Department of Health Inspection, College of Public Health, Shenyang Medical College, Shenyang, Liaoning Province, 11034, China
| | - Meiqi Xing
- Department of Health Inspection, College of Public Health, Shenyang Medical College, Shenyang, Liaoning Province, 11034, China
| | - Ze Zhang
- Department of Health Inspection, College of Public Health, Shenyang Medical College, Shenyang, Liaoning Province, 11034, China
| | - Lili Deng
- Department of Health Inspection, College of Public Health, Shenyang Medical College, Shenyang, Liaoning Province, 11034, China
| | - Yumo Han
- Department of Health Inspection, College of Public Health, Shenyang Medical College, Shenyang, Liaoning Province, 11034, China
| | - Chen Wang
- Department of Health Inspection, College of Public Health, Shenyang Medical College, Shenyang, Liaoning Province, 11034, China
| | - Ronghua Fan
- Department of Health Inspection, College of Public Health, Shenyang Medical College, Shenyang, Liaoning Province, 11034, China.
| |
Collapse
|
21
|
Thurm C, Schraven B, Kahlfuss S. ABC Transporters in T Cell-Mediated Physiological and Pathological Immune Responses. Int J Mol Sci 2021; 22:ijms22179186. [PMID: 34502100 PMCID: PMC8431589 DOI: 10.3390/ijms22179186] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/22/2021] [Accepted: 08/23/2021] [Indexed: 12/19/2022] Open
Abstract
ATP-binding cassette (ABC) transporters represent a heterogeneous group of ATP-dependent transport proteins, which facilitate the import and/or export of various substrates, including lipids, sugars, amino acids and peptides, ions, and drugs. ABC transporters are involved in a variety of physiological processes in different human tissues. More recent studies have demonstrated that ABC transporters also regulate the development and function of different T cell populations, such as thymocytes, Natural Killer T cells, CD8+ T cells, and CD4+ T helper cells, including regulatory T cells. Here, we review the current knowledge on ABC transporters in these T cell populations by summarizing how ABC transporters regulate the function of the individual cell types and how this affects the immunity to viruses and tumors, and the course of autoimmune diseases. Furthermore, we provide a perspective on how a better understanding of the function of ABC transporters in T cells might provide promising novel avenues for the therapy of autoimmunity and to improve immunity to infection and cancer.
Collapse
Affiliation(s)
- Christoph Thurm
- Institute of Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany; (C.T.); (B.S.)
| | - Burkhart Schraven
- Institute of Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany; (C.T.); (B.S.)
- Health Campus Immunology, Infectiology and Inflammation (GCI-3), Medical Faculty, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany
| | - Sascha Kahlfuss
- Institute of Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany; (C.T.); (B.S.)
- Health Campus Immunology, Infectiology and Inflammation (GCI-3), Medical Faculty, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany
- Institute of Medical Microbiology and Hospital Hygiene, Medical Faculty, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany
- Correspondence:
| |
Collapse
|
22
|
Ghosh N, Choudhury P, Joshi M, Bhattacharyya P, Roychowdhury S, Banerjee R, Chaudhury K. Global metabolome profiling of exhaled breath condensates in male smokers with asthma COPD overlap and prediction of the disease. Sci Rep 2021; 11:16664. [PMID: 34404870 PMCID: PMC8370999 DOI: 10.1038/s41598-021-96128-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 07/30/2021] [Indexed: 02/07/2023] Open
Abstract
Asthma-chronic obstructive pulmonary disease (COPD) overlap, termed as ACO, is a complex heterogeneous disease characterised by persistent airflow limitation, which manifests features of both asthma and COPD. These patients have a worse prognosis, in terms of more frequent and severe exacerbations, more frequent symptoms, worse quality of life, increased comorbidities and a faster lung function decline. In absence of clear diagnostic or therapeutic guidelines, ACO presents as a challenge to clinicians. The present study aims to investigate whether ACO patients have a distinct exhaled breath condensate (EBC) metabolic profile in comparison to asthma and COPD. A total of 132 age and BMI matched male smokers were recruited in the exploratory phase which consisted of (i) controls = 33 (ii) asthma = 34 (iii) COPD = 30 and (iv) ACO = 35. Using nuclear magnetic resonance (NMR) metabolomics, 8 metabolites (fatty acid, propionate, isopropanol, lactate, acetone, valine, methanol and formate) were identified to be significantly dysregulated in ACO subjects when compared to both, asthma and COPD. The expression of these dysregulated metabolites were further validated in a fresh patient cohort consisting of (i) asthma = 32 (ii) COPD = 32 and (iii) ACO = 40, which exhibited a similar expression pattern. Multivariate receiver operating characteristic (ROC) curves generated using these metabolites provided a robust ACO classification model. The findings were also integrated with previously identified serum metabolites and inflammatory markers to develop a robust predictive model for differentiation of ACO. Our findings suggest that NMR metabolomics of EBC holds potential as a platform to identify robust, non-invasive biomarkers for differentiating ACO from asthma and COPD.
Collapse
Affiliation(s)
- Nilanjana Ghosh
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Priyanka Choudhury
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Mamata Joshi
- National Facility for High-Field NMR, Tata Institute of Fundamental Research, Mumbai, India
| | | | | | - Rintu Banerjee
- Department of Agricultural and Food Engineering, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Koel Chaudhury
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India.
| |
Collapse
|
23
|
Metabolomics in asthma: A platform for discovery. Mol Aspects Med 2021; 85:100990. [PMID: 34281719 DOI: 10.1016/j.mam.2021.100990] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 06/21/2021] [Accepted: 07/06/2021] [Indexed: 12/28/2022]
Abstract
Asthma, characterized by airway hyperresponsiveness, inflammation and remodeling, is a chronic airway disease with complex etiology. Severe asthma is characterized by frequent exacerbations and poor therapeutic response to conventional asthma therapy. A clear understanding of cellular and molecular mechanisms of asthma is critical for the discovery of novel targets for optimal therapeutic control of asthma. Metabolomics is emerging as a powerful tool to elucidate novel disease mechanisms in a variety of diseases. In this review, we summarize the current status of knowledge in asthma metabolomics at systemic and cellular levels. The findings demonstrate that various metabolic pathways, related to energy metabolism, macromolecular biosynthesis and redox signaling, are differentially modulated in asthma. Airway smooth muscle cell plays pivotal roles in asthma by contributing to airway hyperreactivity, inflammatory mediator release and remodeling. We posit that metabolomic profiling of airway structural cells, including airway smooth muscle cells, will shed light on molecular mechanisms of asthma and airway hyperresponsiveness and help identify novel therapeutic targets.
Collapse
|
24
|
Application of Metabolomics in Pediatric Asthma: Prediction, Diagnosis and Personalized Treatment. Metabolites 2021; 11:metabo11040251. [PMID: 33919626 PMCID: PMC8072856 DOI: 10.3390/metabo11040251] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 04/07/2021] [Accepted: 04/15/2021] [Indexed: 12/16/2022] Open
Abstract
Asthma in children remains a significant public health challenge affecting 5–20% of children in Europe and is associated with increased morbidity and societal healthcare costs. The high variation in asthma incidence among countries may be attributed to differences in genetic susceptibility and environmental factors. This respiratory disorder is described as a heterogeneous syndrome of multiple clinical manifestations (phenotypes) with varying degrees of severity and airway hyper-responsiveness, which is based on patient symptoms, lung function and response to pharmacotherapy. However, an accurate diagnosis is often difficult due to diversities in clinical presentation. Therefore, identifying early diagnostic biomarkers and improving the monitoring of airway dysfunction and inflammatory through non-invasive methods are key goals in successful pediatric asthma management. Given that asthma is caused by the interaction between genes and environmental factors, an emerging approach, metabolomics—the systematic analysis of small molecules—can provide more insight into asthma pathophysiological mechanisms, enable the identification of early biomarkers and targeted personalized therapies, thus reducing disease burden and societal cost. The purpose of this review is to present evidence on the utility of metabolomics in pediatric asthma through the analysis of intermediate metabolites of biochemical pathways that involve carbohydrates, amino acids, lipids, organic acids and nucleotides and discuss their potential application in clinical practice. Also, current challenges on the integration of metabolomics in pediatric asthma management and needed next steps are critically discussed.
Collapse
|
25
|
Healey DCC, Cephus JY, Barone SM, Chowdhury NU, Dahunsi DO, Madden MZ, Ye X, Yu X, Olszewski K, Young K, Gerriets VA, Siska PJ, Dworski R, Hemler J, Locasale JW, Poyurovsky MV, Peebles RS, Irish JM, Newcomb DC, Rathmell JC. Targeting In Vivo Metabolic Vulnerabilities of Th2 and Th17 Cells Reduces Airway Inflammation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2021; 206:1127-1139. [PMID: 33558372 PMCID: PMC7946768 DOI: 10.4049/jimmunol.2001029] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 01/12/2021] [Indexed: 12/17/2022]
Abstract
T effector cells promote inflammation in asthmatic patients, and both Th2 and Th17 CD4 T cells have been implicated in severe forms of the disease. The metabolic phenotypes and dependencies of these cells, however, remain poorly understood in the regulation of airway inflammation. In this study, we show the bronchoalveolar lavage fluid of asthmatic patients had markers of elevated glucose and glutamine metabolism. Further, peripheral blood T cells of asthmatics had broadly elevated expression of metabolic proteins when analyzed by mass cytometry compared with healthy controls. Therefore, we hypothesized that glucose and glutamine metabolism promote allergic airway inflammation. We tested this hypothesis in two murine models of airway inflammation. T cells from lungs of mice sensitized with Alternaria alternata extract displayed genetic signatures for elevated oxidative and glucose metabolism by single-cell RNA sequencing. This result was most pronounced when protein levels were measured in IL-17-producing cells and was recapitulated when airway inflammation was induced with house dust mite plus LPS, a model that led to abundant IL-4- and IL-17-producing T cells. Importantly, inhibitors of the glucose transporter 1 or glutaminase in vivo attenuated house dust mite + LPS eosinophilia, T cell cytokine production, and airway hyperresponsiveness as well as augmented the immunosuppressive properties of dexamethasone. These data show that T cells induce markers to support metabolism in vivo in airway inflammation and that this correlates with inflammatory cytokine production. Targeting metabolic pathways may provide a new direction to protect from disease and enhance the effectiveness of steroid therapy.
Collapse
Affiliation(s)
- Diana C Contreras Healey
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Jacqueline Y Cephus
- Department of Medicine, Division of Pulmonary and Critical Care, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Sierra M Barone
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232
| | - Nowrin U Chowdhury
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Debolanle O Dahunsi
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Matthew Z Madden
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Xiang Ye
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Xuemei Yu
- Kadmon Corporation, New York, NY 10016
| | | | - Kirsten Young
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Valerie A Gerriets
- Department of Basic Science, California Northstate University College of Medicine, Elk Grove, CA 95757
| | - Peter J Siska
- Internal Medicine III, University Hospital Regensburg, 93042 Regensburg, Germany
| | - Ryszard Dworski
- Department of Medicine, Division of Pulmonary and Critical Care, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Jonathan Hemler
- Department of Pediatrics, University of Virginia, Charlottesville, VA 22904
| | - Jason W Locasale
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27710; and
| | | | - R Stokes Peebles
- Department of Medicine, Division of Pulmonary and Critical Care, Vanderbilt University Medical Center, Nashville, TN 37232
- Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Jonathan M Irish
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232
- Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Dawn C Newcomb
- Department of Medicine, Division of Pulmonary and Critical Care, Vanderbilt University Medical Center, Nashville, TN 37232
- Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Jeffrey C Rathmell
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232;
- Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN 37232
| |
Collapse
|
26
|
Lipid metabolism and identification of biomarkers in asthma by lipidomic analysis. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1866:158853. [PMID: 33160078 DOI: 10.1016/j.bbalip.2020.158853] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 10/18/2020] [Accepted: 10/21/2020] [Indexed: 12/21/2022]
Abstract
BACKGROUND Lipids participate in many important biological functions through energy storage, material transport, signal transduction, and molecular recognition processes. Studies have reported that asthmatic patients have abnormal lipid metabolism. However, there are limited studies on the characterization of lipid metabolism in asthmatic patients by lipidomics. METHODS We characterized the plasma lipid profile of 28 healthy controls and 33 outpatients with asthma (18 mild, 15 moderate) by liquid chromatography mass spectrometry/mass spectrometry-based lipidomics. RESULTS We determined 1338 individual lipid species in the plasma. Significant changes were identified in ten lipid species in asthmatic patients than in healthy controls (all P < 0.05). Phosphatidylethanolamine (PE) (18:1p/22:6), PE (20:0/18:1), PE (38:1), sphingomyelin (SM) (d18:1/18:1), and triglyceride (TG) (16:0/16:0/18:1) positively correlated with the severity of asthma (all P < 0.05). Phosphatidylinositol (PI) (16:0/20:4), TG (17:0/18:1/18:1), phosphatidylglycerol (PG) (44:0), ceramide (Cer) (d16:0/27:2), and lysophosphatidylcholine (LPC) (22:4) negatively correlated with the severity of asthma (all P < 0.05). Correlation analysis showed a significant correlation between all ten lipid species (all P < 0.05). From the area under the curve of the receiver operating characteristic curve analysis, PE (38:1) was the major lipid metabolite that distinguished asthmatic patients from healthy controls, and may be considered a potential lipid biomarker. PE (20:0/18:1) and TG (16:0/16:0/18:1) might be related to IgE levels in asthmatic patients. CONCLUSIONS Our results indicated the presence of abnormal lipid metabolism, which correlated with the severity and IgE levels in asthmatic patients.
Collapse
|
27
|
Sarandi E, Thanasoula M, Anamaterou C, Papakonstantinou E, Geraci F, Papamichael MM, Itsiopoulos C, Tsoukalas D. Metabolic profiling of organic and fatty acids in chronic and autoimmune diseases. Adv Clin Chem 2020; 101:169-229. [PMID: 33706889 DOI: 10.1016/bs.acc.2020.06.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Metabolomics is a powerful tool of omics that permits the simultaneous identification of metabolic perturbations in several autoimmune and chronic diseases. Several parameters can affect a metabolic profile, from the population characteristics to the selection of the analytical method. In the current chapter, we summarize the main analytical methods and results of the metabolic profiling of fatty and organic acids performed in human metabolomic studies for asthma, COPD, psoriasis and Hashimoto's thyroiditis. We discuss the most significant metabolic alterations associated with these diseases, after comparison of either a single patient's group with healthy controls or several patient's subgroups of different disease severity and phenotype with healthy controls or of a patient's group before and after treatment. Finally, we present critical metabolic patterns that are associated with each disease and their potency for the unraveling of disease pathogenesis, prediction, diagnosis, patient stratification and treatment selection.
Collapse
Affiliation(s)
- Evangelia Sarandi
- Metabolomic Medicine Clinic, Athens, Greece; Laboratory of Toxicology and Forensic Sciences, Medical School, University of Crete, Heraklion, Greece
| | - Maria Thanasoula
- Metabolomic Medicine Clinic, Athens, Greece; European Institute of Nutritional Medicine, E.I.Nu.M, Rome, Italy
| | | | | | - Francesco Geraci
- European Institute of Nutritional Medicine, E.I.Nu.M, Rome, Italy
| | - Maria Michelle Papamichael
- Department of Rehabilitation, Nutrition & Sport, La Trobe University, School of Allied Health, Melbourne, VIC, Australia
| | - Catherine Itsiopoulos
- Department of Rehabilitation, Nutrition & Sport, La Trobe University, School of Allied Health, Melbourne, VIC, Australia
| | - Dimitris Tsoukalas
- Metabolomic Medicine Clinic, Athens, Greece; European Institute of Nutritional Medicine, E.I.Nu.M, Rome, Italy.
| |
Collapse
|
28
|
Bazzano M, Laghi L, Zhu C, Magi GE, Tesei B, Laus F. Respiratory metabolites in bronchoalveolar lavage fluid (BALF) and exhaled breath condensate (EBC) can differentiate horses affected by severe equine asthma from healthy horses. BMC Vet Res 2020; 16:233. [PMID: 32641035 PMCID: PMC7346432 DOI: 10.1186/s12917-020-02446-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 06/24/2020] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND The use of an untargeted metabolomic approach to investigate biofluids of respiratory origin is of increasing interest in human and veterinary lung research. Considering the high incidence of equine asthma (> 14%) within horse population and the importance of this animal model for human disease, we aimed to investigate the metabolomic profile of bronchoalveolar lavage fluid (BALF) and exhaled breath condensate (EBC) in healthy and asthmatic horses. RESULTS On the basis of clinical, endoscopic and BALF cytology findings, 6 horses with severe asthma (Group A) and 6 healthy horses (Group C) were included in the study. 1H-NMR analysis was used to identified metabolites in BALF and EBC samples. Metabolomic analysis allowed to identify and quantify 12 metabolites in BALF and seven metabolites in EBC. Among respiratory metabolites, myo-inositol, formate, glycerol and isopropanol in BALF, and methanol and ethanol in EBC, differed between groups (p < 0.05). CONCLUSIONS The application of metabolomic studies to investigate equine asthma using minimally invasive diagnostic methods, such as EBC metabolomics, provided promising results. According to our research, the study of selective profiles of BALF and EBC metabolites might be useful for identifying molecules like myo-inositol and methanol as possible biomarkers for airways diseases in horses.
Collapse
Affiliation(s)
- Marilena Bazzano
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Circonvallazione 93/95, 62024, Matelica, MC, Italy.
| | - Luca Laghi
- Department of Agro-Food Science and Technology, Centre of Foodomics, University of Bologna, Bologna, Italy
| | - Chenglin Zhu
- Department of Agro-Food Science and Technology, Centre of Foodomics, University of Bologna, Bologna, Italy
| | - Gian Enrico Magi
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Circonvallazione 93/95, 62024, Matelica, MC, Italy
| | - Beniamino Tesei
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Circonvallazione 93/95, 62024, Matelica, MC, Italy
| | - Fulvio Laus
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Circonvallazione 93/95, 62024, Matelica, MC, Italy
| |
Collapse
|
29
|
Ghosh N, Choudhury P, Kaushik SR, Arya R, Nanda R, Bhattacharyya P, Roychowdhury S, Banerjee R, Chaudhury K. Metabolomic fingerprinting and systemic inflammatory profiling of asthma COPD overlap (ACO). Respir Res 2020; 21:126. [PMID: 32448302 PMCID: PMC7245917 DOI: 10.1186/s12931-020-01390-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 05/10/2020] [Indexed: 12/13/2022] Open
Abstract
Background Asthma-COPD overlap (ACO) refers to a group of poorly studied and characterised patients reporting with disease presentations of both asthma and COPD, thereby making both diagnosis and treatment challenging for the clinicians. They exhibit a higher burden in terms of both mortality and morbidity in comparison to patients with only asthma or COPD. The pathophysiology of the disease and its existence as a unique disease entity remains unclear. The present study aims to determine whether ACO has a distinct metabolic and immunological mediator profile in comparison to asthma and COPD. Methods Global metabolomic profiling using two different groups of patients [discovery (D) and validation (V)] were conducted. Serum samples obtained from moderate and severe asthma [n = 34(D); n = 32(V)], moderate and severe COPD [n = 30(D); 32(V)], ACO patients [n = 35(D); 40(V)] and healthy controls [n = 33(D)] were characterized using gas chromatography mass spectrometry (GC-MS). Multiplexed analysis of 25 immunological markers (IFN-γ (interferon gamma), TNF-α (tumor necrosis factor alpha), IL-12p70 (interleukin 12p70), IL-2, IL-4, IL-5, IL-13, IL-10, IL-1α, IL-1β, TGF-β (transforming growth factor), IL-6, IL-17E, IL-21, IL-23, eotaxin, GM-CSF (granulocyte macrophage-colony stimulating factor), IFN-α (interferon alpha), IL-18, NGAL (neutrophil gelatinase-associated lipocalin), periostin, TSLP (thymic stromal lymphopoietin), MCP-1 (monocyte chemoattractant protein- 1), YKL-40 (chitinase 3 like 1) and IL-8) was also performed in the discovery cohort. Results Eleven metabolites [serine, threonine, ethanolamine, glucose, cholesterol, 2-palmitoylglycerol, stearic acid, lactic acid, linoleic acid, D-mannose and succinic acid] were found to be significantly altered in ACO as compared with asthma and COPD. The levels and expression trends were successfully validated in a fresh cohort of subjects. Thirteen immunological mediators including TNFα, IL-1β, IL-17E, GM-CSF, IL-18, NGAL, IL-5, IL-10, MCP-1, YKL-40, IFN-γ, IL-6 and TGF-β showed distinct expression patterns in ACO. These markers and metabolites exhibited significant correlation with each other and also with lung function parameters. Conclusions The energy metabolites, cholesterol and fatty acids correlated significantly with the immunological mediators, suggesting existence of a possible link between the inflammatory status of these patients and impaired metabolism. The present findings could be possibly extended to better define the ACO diagnostic criteria, management and tailoring therapies exclusively for the disease.
Collapse
Affiliation(s)
- Nilanjana Ghosh
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Priyanka Choudhury
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Sandeep Rai Kaushik
- Translational Health Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Rakesh Arya
- Translational Health Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Ranjan Nanda
- Translational Health Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | | | | | - Rintu Banerjee
- Department of Agricultural and Food Engineering, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Koel Chaudhury
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India.
| |
Collapse
|
30
|
Liu S, Huang Q, Wu Y, Song Y, Dong W, Chu M, Yang D, Zhang X, Zhang J, Chen C, Zhao B, Shen H, Guo X, Deng F. Metabolic linkages between indoor negative air ions, particulate matter and cardiorespiratory function: A randomized, double-blind crossover study among children. ENVIRONMENT INTERNATIONAL 2020; 138:105663. [PMID: 32203810 DOI: 10.1016/j.envint.2020.105663] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 03/07/2020] [Accepted: 03/12/2020] [Indexed: 06/10/2023]
Abstract
BACKGROUND Ionization air purifiers, which purify particulate matter (PM) by producing vast number of negative air ions (NAI), are widely used. Recent study implied that ionization air purification could bring respiratory benefits but deterioration of heart rate variability (HRV). However, its underlying molecular mechanisms remain unclear. OBJECTIVES To explore the molecular linkages between indoor NAI, decreased PM and the cardiorespiratory effect after purification. METHODS Urine samples were collected from 44 healthy children three times of each study period (real and sham purification) in an existing randomized, double-blind crossover study. Ultra-high performance liquid chromatography/mass spectrometry was conducted in metabolomics analysis, the associations between indoor NAI, decreased PM and the cardiorespiratory function were investigated via the meet-in-metabolite approach (MIMA) based on statistical and metabolic pathway analysis. Mixed-effect models were used to establish associations between exposure, health parameters and metabolites. RESULTS Twenty-eight and fourteen metabolites were identified with significant correlations to NAI and PM, respectively. Besides, eight and eighteen metabolites were separately associated with respiratory function and HRV. The increased NAI and decreased PM improved respiratory function mainly with eight pathways, promoting energy production, anti-inflammation and anti-oxidation capacity. Decreased PM ameliorated HRV with six main pathways, increasing energy production and anti-inflammation capacity while increased NAI deteriorated HRV with five main pathways, lowering energy generation and anti-oxidation capacity. CONCLUSIONS Increased NAI and decreased PM ameliorated respiratory function by increasing energy production, improving anti-inflammation and anti-oxidation capacity. Decreased PM improved cardiac autonomic function by increasing energy production and anti-inflammation capacity, while these benefits were overcast by massive NAI via lowering energy generation and anti-oxidation capacity with different metabolic pathways.
Collapse
Affiliation(s)
- Shan Liu
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China
| | - Qingyu Huang
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Yan Wu
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Yi Song
- Institute of Child and Adolescent Health, School of Public Health, Peking University, Beijing 100191, China
| | - Wei Dong
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China
| | - Mengtian Chu
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China
| | - Di Yang
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China
| | - Xi Zhang
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Jie Zhang
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Chen Chen
- Department of Building Science, School of Architecture, Tsinghua University, Beijing 100084, China
| | - Bin Zhao
- Department of Building Science, School of Architecture, Tsinghua University, Beijing 100084, China
| | - Heqing Shen
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Xinbiao Guo
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China
| | - Furong Deng
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China
| |
Collapse
|
31
|
Jiang F, Yuan L, Shu N, Wang W, Liu Y, Xu YJ. Foodomics Revealed the Effects of Extract Methods on the Composition and Nutrition of Peanut Oil. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:1147-1156. [PMID: 31917573 DOI: 10.1021/acs.jafc.9b06819] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Processing technology has a significant effect on the functional quality of vegetable oil, but the exact mechanism is not yet very well known so far. The purpose of this study was to investigate the effects of extract methods on the composition and nutrition of peanut oil. Peanut oil was prepared by cold pressing, hot pressing, and enzyme-assisted aqueous extraction, and their trace components were determined by liquid chromatography-mass spectrometry (LC-MS). Serum and liver samples from Sprague-Dawley (SD) rats fed with different extract oils were profiled by gas chromatography-mass spectrometry (GC-MS) and LC-MS. The component analysis showed that different process technologies cause differentiation of trace active ingredients. Metabolomics analysis revealed that a high-fat diet causes serum and hepatic metabolic disorders, which can be ameliorated by hot-pressed and hydroenzymatic peanut oil, including downregulation of partial amino acids, fatty acids, phospholipids, and carbohydrates in cold-pressed peanut oil as well as the upregulation of palmitic acid, uric acid, and pyrimidine in enzyme-assisted aqueous oils. Canonical correspondence analysis (CCA) uncovered strong associations between specific metabolic alterations and peanut oil trace components. The data obtained in this study offers a new insight on the roles of oil processing.
Collapse
Affiliation(s)
- Fan Jiang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province , Jiangnan University , 1800 Lihu Road , Wuxi 214122 , Jiangsu , People's Republic of China
| | - Liyang Yuan
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province , Jiangnan University , 1800 Lihu Road , Wuxi 214122 , Jiangsu , People's Republic of China
| | - Nanxi Shu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province , Jiangnan University , 1800 Lihu Road , Wuxi 214122 , Jiangsu , People's Republic of China
| | - Wuliang Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province , Jiangnan University , 1800 Lihu Road , Wuxi 214122 , Jiangsu , People's Republic of China
| | - Yuanfa Liu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province , Jiangnan University , 1800 Lihu Road , Wuxi 214122 , Jiangsu , People's Republic of China
| | - Yong-Jiang Xu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province , Jiangnan University , 1800 Lihu Road , Wuxi 214122 , Jiangsu , People's Republic of China
| |
Collapse
|
32
|
Dexamethasone-Induced Perturbations in Tissue Metabolomics Revealed by Chemical Isotope Labeling LC-MS analysis. Metabolites 2020; 10:metabo10020042. [PMID: 31973046 PMCID: PMC7074358 DOI: 10.3390/metabo10020042] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 01/19/2020] [Accepted: 01/20/2020] [Indexed: 12/15/2022] Open
Abstract
Dexamethasone (Dex) is a synthetic glucocorticoid (GC) drug commonly used clinically for the treatment of several inflammatory and immune-mediated diseases. Despite its broad range of indications, the long-term use of Dex is known to be associated with specific abnormalities in several tissues and organs. In this study, the metabolomic effects on five different organs induced by the chronic administration of Dex in the Sprague–Dawley rat model were investigated using the chemical isotope labeling liquid chromatography-mass spectrometry (CIL LC-MS) platform, which targets the amine/phenol submetabolomes. Compared to controls, a prolonged intake of Dex resulted in significant perturbations in the levels of 492, 442, 300, 186, and 105 metabolites in the brain, skeletal muscle, liver, kidney, and heart tissues, respectively. The positively identified metabolites were mapped to diverse molecular pathways in different organs. In the brain, perturbations in protein biosynthesis, amino acid metabolism, and monoamine neurotransmitter synthesis were identified, while in the heart, pyrimidine metabolism and branched amino acid biosynthesis were the most significantly impaired pathways. In the kidney, several amino acid pathways were dysregulated, which reflected impairments in several biological functions, including gluconeogenesis and ureagenesis. Beta-alanine metabolism and uridine homeostasis were profoundly affected in liver tissues, whereas alterations of glutathione, arginine, glutamine, and nitrogen metabolism pointed to the modulation of muscle metabolism and disturbances in energy production and muscle mass in skeletal muscle. The differential expression of multiple dipeptides was most significant in the liver (down-regulated), brain (up-regulation), and kidney tissues, but not in the heart or skeletal muscle tissues. The identification of clinically relevant pathways provides holistic insights into the tissue molecular responses induced by Dex and understanding of the underlying mechanisms associated with their side effects. Our data suggest a potential role for glutathione supplementation and dipeptide modulators as novel therapeutic interventions to mitigate the side effects induced by Dex therapy.
Collapse
|
33
|
Transcriptomic and metabolomic adaptation of Nannochloropsis gaditana grown under different light regimes. ALGAL RES 2020. [DOI: 10.1016/j.algal.2019.101735] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
34
|
Choi JY, Kim SH, Kim JE, Park JW, Kang MJ, Choi HJ, Bae SJ, Lee JH, Jung YS, Hwang DY. Four amino acids as serum biomarkers for anti-asthma effects in the ovalbumin-induced asthma mouse model treated with extract of Asparagus cochinchinensis. Lab Anim Res 2019; 35:32. [PMID: 32257919 PMCID: PMC7081585 DOI: 10.1186/s42826-019-0033-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Accepted: 12/10/2019] [Indexed: 11/30/2022] Open
Abstract
The butanol extract of Asparagus cochinchinensis roots fermented with Weissella cibaria (BAW) effectively prevents inflammation and remodeling of airway in the ovalbumin (OVA)-induced asthma model. To characterize biomarkers that can predict the anti-asthmatic effects induced by BAW treatment, we measured the alteration of endogenous metabolites in the serum of OVA-induced asthma mice after administration of low concentration BAW (BAWLo, 250 mg/kg) and high concentration BAW (BAWHi, 500 mg/kg) using 1H nuclear magnetic resonance (1H-NMR) spectral data. The number of immune cells and serum concentration of IgE as well as thickness of the respiratory epithelium and infiltration of inflammatory cells in the airway significantly recovered in the OVA+BAW treated group as compared to the OVA+Vehicle treated group. In the metabolic profile analysis, the pattern recognition showed completely separate clustering of serum analysis parameters between the OVA+Vehicle and OVA+BAW treated groups. Of the total endogenous metabolites, 19 metabolites were upregulated or downregulated in the OVA+Vehicle treated group as compared to the Control treated group. However, only 4 amino acids (alanine, glycine, methionine and tryptophan) were significantly recovered after BAWLo and BAWHi treatment. This study provides the first results pertaining to metabolic changes in the asthma model mice treated with OVA+BAW. Additionally, these findings show that 4 metabolites can be used as one of biomarkers to predict the anti-asthmatic effects.
Collapse
Affiliation(s)
- Jun Young Choi
- 1Department of Biomaterials Science, College of Natural Resources and Life Science, Pusan National University, 50 Cheonghak-ri, Samnangjin-eup Miryang-si, Gyeongsangnam-do 50463 South Korea
| | - So Hyun Kim
- 2College of Pharmacy, Pusan National University, Busan, 46241 South Korea
| | - Ji Eun Kim
- 1Department of Biomaterials Science, College of Natural Resources and Life Science, Pusan National University, 50 Cheonghak-ri, Samnangjin-eup Miryang-si, Gyeongsangnam-do 50463 South Korea
| | - Ji Won Park
- 1Department of Biomaterials Science, College of Natural Resources and Life Science, Pusan National University, 50 Cheonghak-ri, Samnangjin-eup Miryang-si, Gyeongsangnam-do 50463 South Korea
| | - Mi Ju Kang
- 1Department of Biomaterials Science, College of Natural Resources and Life Science, Pusan National University, 50 Cheonghak-ri, Samnangjin-eup Miryang-si, Gyeongsangnam-do 50463 South Korea
| | - Hyeon Jun Choi
- 1Department of Biomaterials Science, College of Natural Resources and Life Science, Pusan National University, 50 Cheonghak-ri, Samnangjin-eup Miryang-si, Gyeongsangnam-do 50463 South Korea
| | - Su Ji Bae
- 1Department of Biomaterials Science, College of Natural Resources and Life Science, Pusan National University, 50 Cheonghak-ri, Samnangjin-eup Miryang-si, Gyeongsangnam-do 50463 South Korea
| | - Jae Ho Lee
- 1Department of Biomaterials Science, College of Natural Resources and Life Science, Pusan National University, 50 Cheonghak-ri, Samnangjin-eup Miryang-si, Gyeongsangnam-do 50463 South Korea
| | - Young-Suk Jung
- 2College of Pharmacy, Pusan National University, Busan, 46241 South Korea
| | - Dae Youn Hwang
- 1Department of Biomaterials Science, College of Natural Resources and Life Science, Pusan National University, 50 Cheonghak-ri, Samnangjin-eup Miryang-si, Gyeongsangnam-do 50463 South Korea.,3Wellbeing Product Regional Innovation System Center, Pusan National University, Gyeongsangnam-do, 50463 South Korea
| |
Collapse
|
35
|
Banoei MM, Iupe I, Bazaz RD, Campos M, Vogel HJ, Winston BW, Mirsaeidi M. Metabolomic and metallomic profile differences between Veterans and Civilians with Pulmonary Sarcoidosis. Sci Rep 2019; 9:19584. [PMID: 31863066 PMCID: PMC6925242 DOI: 10.1038/s41598-019-56174-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 12/03/2019] [Indexed: 12/18/2022] Open
Abstract
Sarcoidosis is a disorder characterized by granulomatous inflammation of unclear etiology. In this study we evaluated whether veterans with sarcoidosis exhibited different plasma metabolomic and metallomic profiles compared with civilians with sarcoidosis. A case control study was performed on veteran and civilian patients with confirmed sarcoidosis. Proton nuclear magnetic resonance spectroscopy (1H NMR), hydrophilic interaction liquid chromatography mass spectrometry (HILIC-MS) and inductively coupled plasma mass spectrometry (ICP-MS) were applied to quantify metabolites and metal elements in plasma samples. Our results revealed that the veterans with sarcoidosis significantly differed from civilians, according to metabolic and metallomics profiles. Moreover, the results showed that veterans with sarcoidosis and veterans with COPD were similar to each other in metabolomics and metallomics profiles. This study suggests the important role of environmental risk factors in the development of different molecular phenotypic responses of sarcoidosis. In addition, this study suggests that sarcoidosis in veterans may be an occupational disease.
Collapse
Affiliation(s)
| | - Isabella Iupe
- Department of Medicine, University of Miami, Miami, FL, USA
| | - Reza Dowlatabadi Bazaz
- Department of Biological Science, Bio-NMR-metabolomics Research center, University of Calgary, Calgary, Canada
- Departments of Critical Care Medicine, Medicine and Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta, Canada
| | - Michael Campos
- Section of Pulmonary, Miami VA Healthcare System, Miami, FL, USA
- Division of Pulmonary and Critical Care, University of Miami, Miami, FL, USA
| | - Hans J Vogel
- Department of Biological Science, Bio-NMR-metabolomics Research center, University of Calgary, Calgary, Canada
- Departments of Critical Care Medicine, Medicine and Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta, Canada
| | - Brent W Winston
- Department of Biological Science, Bio-NMR-metabolomics Research center, University of Calgary, Calgary, Canada
- Departments of Critical Care Medicine, Medicine and Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta, Canada
| | - Mehdi Mirsaeidi
- Section of Pulmonary, Miami VA Healthcare System, Miami, FL, USA.
- Division of Pulmonary and Critical Care, University of Miami, Miami, FL, USA.
| |
Collapse
|
36
|
Liu X, Zhang Y, Jiang H, Jiang N, Gao J. Integrative analysis of the contribution of mRNAs and long non‑coding RNAs to the pathogenesis of asthma. Mol Med Rep 2019; 20:2617-2624. [PMID: 31524265 PMCID: PMC6691207 DOI: 10.3892/mmr.2019.10511] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 05/23/2019] [Indexed: 12/27/2022] Open
Abstract
Asthma, a common but poorly controlled disease, is one of the most serious health problems worldwide; however, the mechanisms underlying the development of asthma remain unknown. Long non-coding RNAs (lncRNAs) and mRNAs serve important roles in the initiation and progression of various diseases. The present study aimed to investigate the role of differentially expressed lncRNAs and mRNAs associated with asthma. Differentially expressed lncRNAs and mRNAs were screened between the expression data of 62 patients with asthma and 43 healthy controls. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were performed to investigate the biological functions and pathways associated with the lncRNAs and mRNAs identified. Protein-protein interaction (PPI) networks were subsequently generated. In addition, lncRNA-mRNA weighted co-expression networks were obtained. In total, 159 differentially expressed lncRNAs and 1,261 mRNAs were identified. GO and KEGG analyses revealed that differentially expressed mRNAs regulated asthma by participating in the ‘vascular endothelial (VEGF) signaling pathway’, ‘oxidative phosphorylation’, ‘Fc ε RI signaling pathway’, ‘amino sugar and nucleotide sugar metabolism’, ‘histidine metabolism’, ‘β-alanine metabolism’ and ‘extracellular matrix-receptor interaction’ (P<0.05). Furthermore, protein kinase B 1 had the highest connectivity degree in the PPI network, and was significantly enriched in the ‘VEGF signaling pathway’ and ‘Fc ε RI signaling pathway’. A total of 8 lncRNAs in the lncRNA-mRNA co-expression network were reported to interact with 52 differentially expressed genes, which were enriched in asthma-associated GO and KEGG pathways. The results obtained in the present study may provide insight into the profile of differentially expressed lncRNAs associated with asthma. The identification of a cluster of dysregulated lncRNAs and mRNAs may serve as a potential therapeutic strategy to reverse the progression of asthma.
Collapse
Affiliation(s)
- Xiaochuang Liu
- Department of Pharmacy, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui 230031, P.R. China
| | - Yanyan Zhang
- Department of Pharmacy, Anhui Medical College, Hefei, Anhui 230601, P.R. China
| | - Hui Jiang
- Department of Pharmacy, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui 230031, P.R. China
| | - Nannan Jiang
- Department of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui 230012, P.R. China
| | - Jiarong Gao
- Department of Pharmacy, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui 230031, P.R. China
| |
Collapse
|
37
|
Hashoul D, Haick H. Sensors for detecting pulmonary diseases from exhaled breath. Eur Respir Rev 2019; 28:28/152/190011. [PMID: 31243097 PMCID: PMC9489036 DOI: 10.1183/16000617.0011-2019] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 05/13/2019] [Indexed: 01/09/2023] Open
Abstract
This review presents and discusses a new frontier for fast, risk-free and potentially inexpensive diagnostics of respiratory diseases by detecting volatile organic compounds (VOCs) present in exhaled breath. One part of the review is a didactic presentation of the overlaying concept and the chemistry of exhaled breath. The other part discusses diverse sensors that have been developed and used for the detection of respiratory diseases (e.g. chronic obstructive pulmonary disease, asthma, lung cancer, pulmonary arterial hypertension, tuberculosis, cystic fibrosis, obstructive sleep apnoea syndrome and pneumoconiosis) by analysis of VOCs in exhaled breath. The strengths and pitfalls are discussed and criticised, particularly in the perspective in disseminating information regarding these advances. Ideas regarding the improvement of sensors, sensor arrays, sensing devices and the further planning of workflow are also discussed. Detection of volatile organic compounds from exhaled breath by nanomaterial-based sensors is a new diagnostics frontier in the screening of pulmonary diseases.http://bit.ly/2JoBKXn
Collapse
Affiliation(s)
- Dina Hashoul
- Dept of Chemical Engineering, Russell Berrie Nanotechnology Institute, and the Technion Integrated Cancer Center, Haifa, Israel
| | - Hossam Haick
- Dept of Chemical Engineering, Russell Berrie Nanotechnology Institute, and the Technion Integrated Cancer Center, Haifa, Israel
| |
Collapse
|
38
|
Svedberg FR, Brown SL, Krauss MZ, Campbell L, Sharpe C, Clausen M, Howell GJ, Clark H, Madsen J, Evans CM, Sutherland TE, Ivens AC, Thornton DJ, Grencis RK, Hussell T, Cunoosamy DM, Cook PC, MacDonald AS. The lung environment controls alveolar macrophage metabolism and responsiveness in type 2 inflammation. Nat Immunol 2019; 20:571-580. [PMID: 30936493 PMCID: PMC8381729 DOI: 10.1038/s41590-019-0352-y] [Citation(s) in RCA: 129] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 02/14/2019] [Indexed: 02/06/2023]
Abstract
Fine control of macrophage activation is needed to prevent inflammatory disease, particularly at barrier sites such as the lungs. However, the dominant mechanisms that regulate the activation of pulmonary macrophages during inflammation are poorly understood. We found that alveolar macrophages (AlvMs) were much less able to respond to the canonical type 2 cytokine IL-4, which underpins allergic disease and parasitic worm infections, than macrophages from lung tissue or the peritoneal cavity. We found that the hyporesponsiveness of AlvMs to IL-4 depended upon the lung environment but was independent of the host microbiota or the lung extracellular matrix components surfactant protein D (SP-D) and mucin 5b (Muc5b). AlvMs showed severely dysregulated metabolism relative to that of cavity macrophages. After removal from the lungs, AlvMs regained responsiveness to IL-4 in a glycolysis-dependent manner. Thus, impaired glycolysis in the pulmonary niche regulates AlvM responsiveness during type 2 inflammation.
Collapse
Affiliation(s)
- Freya R Svedberg
- Lydia Becker Institute of Immunology and Inflammation, Manchester Collaborative Centre for Inflammation Research, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
- Laboratory of Myeloid Cell Ontogeny and Functional Specialisation, VIB Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Sheila L Brown
- Lydia Becker Institute of Immunology and Inflammation, Manchester Collaborative Centre for Inflammation Research, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Maria Z Krauss
- Lydia Becker Institute of Immunology and Inflammation, Wellcome Trust Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Laura Campbell
- Lydia Becker Institute of Immunology and Inflammation, Wellcome Trust Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Catherine Sharpe
- Lydia Becker Institute of Immunology and Inflammation, Wellcome Trust Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Maryam Clausen
- AstraZeneca, Discovery Sciences IMED, Gothenburg, Sweden
| | - Gareth J Howell
- Lydia Becker Institute of Immunology and Inflammation, Manchester Collaborative Centre for Inflammation Research, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Howard Clark
- Department of Child Health, Division of Clinical and Experimental Sciences, Faculty of Medicine, Sir Henry Wellcome Laboratories, Southampton General Hospital, University of Southampton, Southampton, UK
- Institute for Life Sciences, University of Southampton, Southampton, UK
- National Institute for Health Research, Southampton Respiratory Biomedical Research Unit, Southampton Centre for Biomedical Research, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Jens Madsen
- Department of Child Health, Division of Clinical and Experimental Sciences, Faculty of Medicine, Sir Henry Wellcome Laboratories, Southampton General Hospital, University of Southampton, Southampton, UK
- Institute for Life Sciences, University of Southampton, Southampton, UK
- National Institute for Health Research, Southampton Respiratory Biomedical Research Unit, Southampton Centre for Biomedical Research, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Christopher M Evans
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| | - Tara E Sutherland
- Lydia Becker Institute of Immunology and Inflammation, Manchester Collaborative Centre for Inflammation Research, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Alasdair C Ivens
- Institute of Immunology and Infection Research, Centre for Immunity, Infection and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - David J Thornton
- Lydia Becker Institute of Immunology and Inflammation, Wellcome Trust Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Richard K Grencis
- Lydia Becker Institute of Immunology and Inflammation, Wellcome Trust Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Tracy Hussell
- Lydia Becker Institute of Immunology and Inflammation, Manchester Collaborative Centre for Inflammation Research, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | | | - Peter C Cook
- Lydia Becker Institute of Immunology and Inflammation, Manchester Collaborative Centre for Inflammation Research, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK.
| | - Andrew S MacDonald
- Lydia Becker Institute of Immunology and Inflammation, Manchester Collaborative Centre for Inflammation Research, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK.
| |
Collapse
|
39
|
Ran S, Sun F, Song Y, Wang X, Hong Y, Han Y. The Study of Dried Ginger and Linggan Wuwei Jiangxin Decoction Treatment of Cold Asthma Rats Using GC-MS Based Metabolomics. Front Pharmacol 2019; 10:284. [PMID: 31031619 PMCID: PMC6470627 DOI: 10.3389/fphar.2019.00284] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 03/07/2019] [Indexed: 01/13/2023] Open
Abstract
Dried ginger is the monarch drug in Linggan Wuwei Jiangxin (LGWWJX) decoction, which is used to treat cold asthma. The purpose of this study was to investigate and compare the effects of dried ginger and LGWWJX decoction for treatment of cold asthma rats at the metabolomics level using gas chromatography–mass spectrometry (GC–MS). OVA and ice water-induced cold asthma were induced in SD rats. The effects of dried ginger and LGWWJX decoction were evaluated by general morphological observation, hematoxylin and eosin staining, inflammatory cell count, IgE, IL-4, IFN-γ quantitation, and visceral index. GC-MS-based metabolomics was performed and analyzed using multivariate statistical analysis. Biomarker identification, pathway analysis, correlations between identified biomarker, and efficacy indices were performed. The results showed that dried ginger and LGWWJX decoction had obvious effects on cold asthma rats. Thirty-seven metabolites (15 in serum and 22 in urine) associated with cold asthma were identified. These metabolites were mainly carbohydrates, fatty acids and their products, organic acids, and others. Seven pathways were identified by MetaboAnalyst 4.0 metabolic pathway analysis. After intervention with dried ginger and LGWWJX decoction, the majority of altered metabolites and metabolic pathways returned to control levels. LGWWJX decoction regulated more metabolites of carbohydrates and fatty acids, which contribute to energy metabolism and oxidative stress in cold asthma, than dried ginger. We concluded that dried ginger and LGWWJX decoction both were effective for treatment of cold asthma. LGWWJX decoction was more effective than dried ginger for treatment of cold asthma. This study evaluated the effects of dried ginger and LGWWJX decoction on cold asthma at the metabolomics level. It provides a reference for the research on the compatibility of Chinese Medicine.
Collapse
Affiliation(s)
- Shan Ran
- The First Affiliated Hospital of Anhui University of Chinese Medicine, Grade 3 Laboratory of TCM Preparation, State Administration of Anhui University of Chinese Medicine, Hefei, China
| | - Fangfang Sun
- The First Affiliated Hospital of Anhui University of Chinese Medicine, Grade 3 Laboratory of TCM Preparation, State Administration of Anhui University of Chinese Medicine, Hefei, China
| | - Yan Song
- The First Affiliated Hospital of Anhui University of Chinese Medicine, Grade 3 Laboratory of TCM Preparation, State Administration of Anhui University of Chinese Medicine, Hefei, China
| | - Xiaoli Wang
- The First Affiliated Hospital of Anhui University of Chinese Medicine, Grade 3 Laboratory of TCM Preparation, State Administration of Anhui University of Chinese Medicine, Hefei, China
| | - Yan Hong
- Clinical College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Yanquan Han
- The First Affiliated Hospital of Anhui University of Chinese Medicine, Grade 3 Laboratory of TCM Preparation, State Administration of Anhui University of Chinese Medicine, Hefei, China
| |
Collapse
|
40
|
GC/MS-Based Metabolomics Reveals Biomarkers in Asthma Murine Model Modulated by Opuntia humifusa. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:1202860. [PMID: 30515230 PMCID: PMC6236801 DOI: 10.1155/2018/1202860] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 10/04/2018] [Accepted: 10/17/2018] [Indexed: 12/26/2022]
Abstract
GC/MS coupled with multivariate statistical analysis was performed to identify marker metabolites in serum of mice after healing ovalbumin- (OVA-) induced asthma using Opuntia humifusa. Principal component analysis (PCA) score plot showed separation among groups, with metabolite profiles of serum showing differences according to various treatments for the asthma murine model. Levels of stearic acid and arachidic acid were significantly lower in the serum from OVA-induced group than those from the control group. Dexamethasone treatment group was characterized by higher serum levels of urea, myristic acid, and palmitic acid along with lower levels of aspartic acid compared to OVA-induced group. O. humifusa treatment mice groups showed dose-proportional higher levels of urea and glycerol than OVA-induced group. These results highlight that GC/MS-based metabolomics is a powerful technique for identifying molecular markers of asthma.
Collapse
|
41
|
Pang Z, Wang G, Wang C, Zhang W, Liu J, Wang F. Serum Metabolomics Analysis of Asthma in Different Inflammatory Phenotypes: A Cross-Sectional Study in Northeast China. BIOMED RESEARCH INTERNATIONAL 2018; 2018:2860521. [PMID: 30345296 PMCID: PMC6174811 DOI: 10.1155/2018/2860521] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 08/11/2018] [Accepted: 09/03/2018] [Indexed: 01/21/2023]
Abstract
BACKGROUND AND OBJECTIVE Asthma as a chronic heterogeneous disease seriously affects the quality of life. Incorrect identification for its clinical phenotypes lead to a huge waste of medical resources. Metabolomic technique as a novel approach to explore the pathogenesis of diseases have not been used to study asthma based on their clear defined inflammatory phenotypes. This study is aimed to distinguish the divergent metabolic profile in different asthma phenotypes and clarify the pathogenesis of them. METHODS Participants including eosinophilic asthmatics (EA, n=13), noneosinophilic asthmatics (NEA, n=16), and healthy controls (HC, n=15) were enrolled. A global profile of untargeted serum metabolomics was identified with Ultra Performance Liquid Chromatography-Mass Spectrometry technique. RESULTS Multivariate analysis was performed and showed a clear distinction between EA, NEA, and HC. A total of 18 different metabolites were recognized between the three groups based on OPLS-DA model and involved in 10 perturbed metabolic pathways. Glycerophospholipid metabolism, retinol metabolism, and sphingolipid metabolism were identified as the most significant changed three pathways (impact > 0.1 and -log(P) > 4) between the phenotypes. CONCLUSIONS We showed that the different inflammatory phenotypes of asthma involve the immune regulation, energy, and nutrients metabolism. The clarified metabolic profile contributes to understanding the pathophysiology of asthma phenotypes and optimizing the therapeutic strategy against asthma heterogeneity.
Collapse
Affiliation(s)
- Zhiqiang Pang
- Department of Pathogen Biology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Guoqiang Wang
- Department of Pathogen Biology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Cuizhu Wang
- School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - Weijie Zhang
- Third Department of Respiratory Disease, Jilin Provincial People's Hospital, Changchun, China
| | - Jinping Liu
- School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - Fang Wang
- Department of Pathogen Biology, College of Basic Medical Sciences, Jilin University, Changchun, China
| |
Collapse
|
42
|
Andersen CJ. Impact of Dietary Cholesterol on the Pathophysiology of Infectious and Autoimmune Disease. Nutrients 2018; 10:E764. [PMID: 29899295 PMCID: PMC6024721 DOI: 10.3390/nu10060764] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 06/02/2018] [Accepted: 06/11/2018] [Indexed: 01/02/2023] Open
Abstract
Cellular cholesterol metabolism, lipid raft formation, and lipoprotein interactions contribute to the regulation of immune-mediated inflammation and response to pathogens. Lipid pathways have been implicated in the pathogenesis of bacterial and viral infections, whereas altered lipid metabolism may contribute to immune dysfunction in autoimmune diseases, such as systemic lupus erythematosus, multiple sclerosis, and rheumatoid arthritis. Interestingly, dietary cholesterol may exert protective or detrimental effects on risk, progression, and treatment of different infectious and autoimmune diseases, although current findings suggest that these effects are variable across populations and different diseases. Research evaluating the effects of dietary cholesterol, often provided by eggs or as a component of Western-style diets, demonstrates that cholesterol-rich dietary patterns affect markers of immune inflammation and cellular cholesterol metabolism, while additionally modulating lipoprotein profiles and functional properties of HDL. Further, cholesterol-rich diets appear to differentially impact immunomodulatory lipid pathways across human populations of variable metabolic status, suggesting that these complex mechanisms may underlie the relationship between dietary cholesterol and immunity. Given the Dietary Guidelines for Americans 2015⁻2020 revision to no longer include limitations on dietary cholesterol, evaluation of dietary cholesterol recommendations beyond the context of cardiovascular disease risk is particularly timely. This review provides a comprehensive and comparative analysis of significant and controversial studies on the role of dietary cholesterol and lipid metabolism in the pathophysiology of infectious disease and autoimmune disorders, highlighting the need for further investigation in this developing area of research.
Collapse
|
43
|
Lee SH, Tang CH, Lin WY, Chen KH, Liang HJ, Cheng TJ, Lin CY. LC-MS-based lipidomics to examine acute rat pulmonary responses after nano- and fine-sized ZnO particle inhalation exposure. Nanotoxicology 2018; 12:439-452. [DOI: 10.1080/17435390.2018.1458918] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Sheng-Han Lee
- Institute of Environmental Health, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Chuan-Ho Tang
- National Museum of Marine Biology and Aquarium, Pingtung, Taiwan
- Institute of Marine Biodiversity and Evolutionary Biology, National Dong Hwa University, Pingtung, Taiwan
| | - Wan-Yu Lin
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Ke-Han Chen
- Institute of Environmental Health, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Hao-Jan Liang
- Institute of Environmental Health, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Tsun-Jen Cheng
- Institute of Occupational Medicine and Industrial Hygiene, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Ching-Yu Lin
- Institute of Environmental Health, College of Public Health, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
44
|
Su L, Shi L, Liu J, Huang L, Huang Y, Nie X. Metabolic profiling of asthma in mice and the interventional effects of SPA using liquid chromatography and Q-TOF mass spectrometry. MOLECULAR BIOSYSTEMS 2018; 13:1172-1181. [PMID: 28463380 DOI: 10.1039/c7mb00025a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Asthma is a chronic inflammatory lung disease that leads to 250 000 deaths annually. There is a need to better understand asthma by identifying new pathogenic molecules. We conducted a liquid-chromatography time-of-flight mass spectrometry (LC-Q-TOF-MS)-based metabolomics study to test for asthma and investigate the interventional mechanisms of surfactant protein A (SPA) in OVA-induced asthma mice. The results revealed that asthma disturbed 32 metabolites in 9 metabolic pathways. After SPA treatment, the metabolomics profile found in asthma was significantly reversed, shifting much closer to that of the control group, indicating that SPA has therapeutic effects against asthma. Metabolomic pathway analysis by the ingenuity pathway analysis demonstrated that several pathways including fatty acid metabolism, lipid metabolism, and purine metabolism were significantly altered in asthma. This study offers new methodologies for the understanding of asthma and the mechanisms of SPA in treating asthma.
Collapse
Affiliation(s)
- Li Su
- School of Pharmacy, Second Military Medical University, Shanghai, China
| | | | | | | | | | | |
Collapse
|
45
|
Reisdorph NA, Cruickshank-Quinn C, Nkrumah-Elie Y, Reisdorph R. Application of Metabolomics in Lung Research. Methods Mol Biol 2018; 1809:263-288. [PMID: 29987794 DOI: 10.1007/978-1-4939-8570-8_17] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Advancements in omics technologies have increased our potential to evaluate molecular changes in a rapid and comprehensive manner. This is especially true in mass spectrometry-based metabolomics where improvements, including ease of use, in high-performance liquid chromatography (HPLC), column chemistries, instruments, software, and molecular databases, have advanced the field considerably. Applications of this relatively new omics technology in clinical research include discovering disease biomarkers, finding new drug targets, and elucidating disease mechanisms. Here we describe a typical clinical metabolomics workflow, which includes the following steps: (1) extraction of metabolites from the lung, plasma, bronchoalveolar lavage, or cells; (2) sample analysis via liquid chromatography-mass spectrometry; and (3) data analysis using commercial and freely available software packages. Overall, the methods delineated here can help investigators use metabolomics to discovery novel biomarkers and to understand lung diseases.
Collapse
Affiliation(s)
- Nichole A Reisdorph
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| | | | - Yasmeen Nkrumah-Elie
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Richard Reisdorph
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
46
|
Villaseñor A, Rosace D, Obeso D, Pérez-Gordo M, Chivato T, Barbas C, Barber D, Escribese MM. Allergic asthma: an overview of metabolomic strategies leading to the identification of biomarkers in the field. Clin Exp Allergy 2017; 47:442-456. [PMID: 28160515 DOI: 10.1111/cea.12902] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Allergic asthma is a prominent disease especially during childhood. Indoor allergens, in general, and particularly house dust mites (HDM) are the most prevalent sensitizers associated with allergic asthma. Available data show that 65-130 million people are mite-sensitized world-wide and as many as 50% of these are asthmatic. In fact, sensitization to HDM in the first years of life can produce devastating effects on pulmonary function leading to asthmatic syndromes that can be fatal. To date, there has been considerable research into the pathological pathways and structural changes associated with allergic asthma. However, limitations related to the disease heterogeneity and a lack of knowledge into its pathophysiology have impeded the generation of valuable data needed to appropriately phenotype patients and, subsequently, treat this disease. Here, we report a systematic and integral analysis of the disease, from airway remodelling to the immune response taking place throughout the disease stages. We present an overview of metabolomics, the management of complex multifactorial diseases through the analysis of all possible metabolites in a biological sample, obtaining a global interpretation of biological systems. Special interest is placed on the challenges to obtain biological samples and the methodological aspects to acquire relevant information, focusing on the identification of novel biomarkers associated with specific phenotypes of allergic asthma. We also present an overview of the metabolites cited in the literature, which have been related to inflammation and immune response in asthma and other allergy-related diseases.
Collapse
Affiliation(s)
- A Villaseñor
- Faculty of Medicine, Institute of Applied Molecular Medicine (IMMA), CEU San Pablo University, Boadilla del Monte, Madrid, Spain
| | - D Rosace
- Faculty of Medicine, Institute of Applied Molecular Medicine (IMMA), CEU San Pablo University, Boadilla del Monte, Madrid, Spain
| | - D Obeso
- Faculty of Medicine, Institute of Applied Molecular Medicine (IMMA), CEU San Pablo University, Boadilla del Monte, Madrid, Spain.,Faculty of Pharmacy, Centre for Metabolomics and Bioanalysis (CEMBIO), CEU San Pablo University, Boadilla del Monte, Madrid, Spain
| | - M Pérez-Gordo
- Faculty of Pharmacy, Centre for Metabolomics and Bioanalysis (CEMBIO), CEU San Pablo University, Boadilla del Monte, Madrid, Spain.,Basic Medical Sciences Department, Faculty of Medicine, CEU San Pablo University, Boadilla del Monte, Madrid, Spain
| | - T Chivato
- Basic Medical Sciences Department, Faculty of Medicine, CEU San Pablo University, Boadilla del Monte, Madrid, Spain
| | - C Barbas
- Faculty of Pharmacy, Centre for Metabolomics and Bioanalysis (CEMBIO), CEU San Pablo University, Boadilla del Monte, Madrid, Spain
| | - D Barber
- Faculty of Medicine, Institute of Applied Molecular Medicine (IMMA), CEU San Pablo University, Boadilla del Monte, Madrid, Spain
| | - M M Escribese
- Faculty of Medicine, Institute of Applied Molecular Medicine (IMMA), CEU San Pablo University, Boadilla del Monte, Madrid, Spain.,Basic Medical Sciences Department, Faculty of Medicine, CEU San Pablo University, Boadilla del Monte, Madrid, Spain
| |
Collapse
|
47
|
Mitchell PD, El-Gammal AI, O'Byrne PM. Anti-IgE and Biologic Approaches for the Treatment of Asthma. Handb Exp Pharmacol 2017; 237:131-152. [PMID: 27864676 DOI: 10.1007/164_2016_65] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Current asthma treatments are effective for the majority of patients with mild-to-moderate disease. However, in those with more severe refractory asthma, agents other than inhaled corticosteroids and beta-agonists are needed both to better manage this group of patients and to avoid the side effects of high-dose corticosteroids and the social and personal hardship endured. Several biological pathways have been targeted over the last 20 years, and this research has resulted in pharmacological approaches to attempt to better treat patients with severe refractory asthma. The flagship of the biologics, the anti-IgE monoclonal antibody, omalizumab, has proven efficacious in selected subgroups of asthma patients. Tailoring asthma treatments to suit specific subtypes of asthma patients is in keeping with ideals of personalized medicine. Research in the complex interplay of allergens, epithelial host defenses, cytokines, and innate and adaptive immunity interactions has allowed better understanding of the mechanics of allergy and inflammation in asthma. As a result, new biologic treatments have been developed that target several different phenotypes and endotypes in asthma. As knowledge of the efficacy of these biological agents in asthma emerges, as well as the type of patients in whom they are most beneficial, the movement toward personalized asthma treatment will follow.
Collapse
Affiliation(s)
- Patrick D Mitchell
- Firestone Institute for Respiratory Health and the Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Amani I El-Gammal
- Firestone Institute for Respiratory Health and the Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Paul M O'Byrne
- Firestone Institute for Respiratory Health and the Department of Medicine, McMaster University, Hamilton, ON, Canada.
| |
Collapse
|
48
|
Wang X, Jiang S, Liu Y, Du X, Zhang W, Zhang J, Shen H. Comprehensive pulmonary metabolome responses to intratracheal instillation of airborne fine particulate matter in rats. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 592:41-50. [PMID: 28297636 DOI: 10.1016/j.scitotenv.2017.03.064] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 03/05/2017] [Accepted: 03/07/2017] [Indexed: 06/06/2023]
Abstract
Airborne fine particulate matter (PM2.5) has been closely related with a variety of lung diseases. Although some modes of action (e.g. oxidative stress, inflammations) have been proposed, but the pulmonary toxicological mechanism remains obscure. In this paper, in order to understand the comprehensive pulmonary response to PM2.5 stress, a non-targeted high-throughput metabolomics strategy was adopted to characterize the overall metabolic changes and relevant toxicological pathways. PM2.5 samples were collected from Tangshan, one of the most polluted cities in China. Adult male rats were treated with PM2.5 suspension once a week at the dose of 1mg/kg/week through intratracheal instillation in three months. Aqueous and organic metabolite extracts of the lung tissues were subjected to metabolomics analysis using ultra-high performance liquid chromatograph/mass spectrometry. Along with a significant increase of oxidative stress, significant metabolome alterations were observed in the lung tissues of the treated rats. Nineteen metabolites were found decreased and 31 metabolites increased, which are mainly involved in lipid and nucleotide metabolism. Integrated pathway analysis suggests that PM2.5 can induce pulmonary toxicity through disturbing pro-oxidant/antioxidant balance, which may further correlate with metabolism changes of phospholipid, glycerophospholipid, sphingolipid and purine. These findings improve our understanding of the toxicological pathways of PM2.5 exposure.
Collapse
Affiliation(s)
- Xiaofei Wang
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, China; Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, China
| | - Shoufang Jiang
- Department of Occupational and Environmental Health, Hebei Province Key Laboratory of Occupational Health and Safety for Coal Industry, School of Public Health, North China University of Science and Technology, Tangshan, Hebei, China
| | - Ying Liu
- Department of Occupational and Environmental Health, Hebei Province Key Laboratory of Occupational Health and Safety for Coal Industry, School of Public Health, North China University of Science and Technology, Tangshan, Hebei, China
| | - Xiaoyan Du
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, China
| | - Weibing Zhang
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, China.
| | - Jie Zhang
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, China.
| | - Heqing Shen
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, China
| |
Collapse
|
49
|
Liu K, Pi F, Zhang H, Ji J, Xia S, Cui F, Sun J, Sun X. Metabolomics Analysis To Evaluate the Anti-Inflammatory Effects of Polyphenols: Glabridin Reversed Metabolism Change Caused by LPS in RAW 264.7 Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:6070-6079. [PMID: 28644019 DOI: 10.1021/acs.jafc.7b01692] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Inflammation has been shown to play a critical role in the development of many diseases. In this study, we used metabolomics to evaluate the inflammatory effect of lipopolysaccharide (LPS) and the anti-inflammatory effect of glabridin (GB, a polyphenol from Glycurrhiza glabra L. roots) in RAW 264.7 cells. Multivariate statistical analysis showed that in comparison with the LPS group, the metabolic profile of the GB group was more similar to that of the control group. LPS impacted the amino acid, energy, and lipid metabolisms in RAW 264.7 cells, and metabolic pathway analysis showed that GB reversed some of those LPS impacts. Metabolomics analysis provided us with a new perspective to better understand the inflammatory response and the anti-inflammatory effects of GB. Metabolic pathway analysis can be an effective tool to elucidate the mechanism of inflammation and to potentially find new anti-inflammatory agents.
Collapse
Affiliation(s)
- Kaiqin Liu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University , Wuxi, Jiangsu 214122, People's Republic of China
| | - Fuwei Pi
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University , Wuxi, Jiangsu 214122, People's Republic of China
| | - Hongxia Zhang
- School of Foreign Studies, Shaanxi University of Technology , Xianyang, Shaanxi 723000, People's Republic of China
| | - Jian Ji
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University , Wuxi, Jiangsu 214122, People's Republic of China
| | - Shuang Xia
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University , Wuxi, Jiangsu 214122, People's Republic of China
| | - Fangchao Cui
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University , Wuxi, Jiangsu 214122, People's Republic of China
| | - Jiadi Sun
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University , Wuxi, Jiangsu 214122, People's Republic of China
| | - Xiulan Sun
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University , Wuxi, Jiangsu 214122, People's Republic of China
| |
Collapse
|
50
|
Metabolomic similarities between bronchoalveolar lavage fluid and plasma in humans and mice. Sci Rep 2017; 7:5108. [PMID: 28698669 PMCID: PMC5505974 DOI: 10.1038/s41598-017-05374-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 05/30/2017] [Indexed: 12/22/2022] Open
Abstract
This observational study catalogues the overlap in metabolites between matched bronchoalveolar lavage fluid (BALF) and plasma, identifies the degree of congruence between these metabolomes in human and mouse, and determines how molecules may change in response to cigarette smoke (CS) exposure. Matched BALF and plasma was collected from mice (ambient air or CS-exposed) and humans (current or former smokers), and analyzed using mass spectrometry. There were 1155 compounds in common in all 4 sample types; fatty acyls and glycerophospholipids strongly overlapped between groups. In humans and mice, more than half of the metabolites present in BALF were also present in plasma. Mouse BALF and human BALF had a strong positive correlation with 2040 metabolites in common, suggesting that mouse models can be used to interrogate human lung metabolome changes. While power was affected by small sample size in the mouse study, the BALF metabolome appeared to be more affected by CS than plasma. CS-exposed mice showed increased plasma and BALF glycerolipids and glycerophospholipids. This is the first report cataloguing the metabolites present across mouse and human, BALF and plasma. Findings are relevant to translational studies where mouse models are used to examine human disease, and where plasma may be interrogated in lieu of BALF or lung tissue.
Collapse
|