1
|
Pan W, An S, Dai L, Xu S, Liu D, Wang L, Zhang R, Wang F, Wang Z. Identification of Potential Differentially-Methylated/Expressed Genes in Chronic Obstructive Pulmonary Disease. COPD 2023; 20:44-54. [PMID: 36655999 DOI: 10.1080/15412555.2022.2158324] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Chronic obstructive pulmonary disease (COPD) is a chronic inflammatory lung disease that causes obstructed airflow from the lungs. DNA methylation can regulate gene expression. Understanding the potential molecular mechanism of COPD is of great importance. The aim of this study was to find differentially methylated/expressed genes in COPD. DNA methylation and gene expression profiles in COPD were downloaded from the dataset, followed by functional analysis of differentially-methylated/expressed genes. The potential diagnostic value of these differentially-methylated/expressed genes was determined by receiver operating characteristic (ROC) analysis. Expression validation of differentially-methylated/expressed genes was performed by in vitro experiment and extra online datasets. Totally, 81 hypermethylated-low expression genes and 121 hypomethylated-high expression genes were found in COPD. Among which, 9 core hypermethylated-low expression genes (CD247, CCR7, CD5, IKZF1, SLAMF1, IL2RB, CD3E, CD7 and IL7R) and 8 core hypomethylated-high expression genes (TREM1, AQP9, CD300LF, CLEC12A, NOD2, IRAK3, NLRP3 and LYZ) were identified in the protein-protein interaction (PPI) network. Moreover, these genes had a potential diagnostic utility for COPD. Some signaling pathways were identified in COPD, including T cell receptor signaling pathway, cytokine-cytokine receptor interaction, hematopoietic cell lineage, HTLV-I infection, endocytosis and Jak-STAT signaling pathway. In conclusion, differentially-methylated/expressed genes and involved signaling pathways are likely to be associated with the process of COPD.
Collapse
Affiliation(s)
- Wen Pan
- Department of Cardiology, Qingdao Fuwai Cardiovascular Hospital, Qingdao, Shandong, China
| | - Shuyuan An
- Department of Cardiology, Qingdao Fuwai Cardiovascular Hospital, Qingdao, Shandong, China
| | - Lina Dai
- Department of Cardiology, Qingdao Fuwai Cardiovascular Hospital, Qingdao, Shandong, China
| | - Shuo Xu
- Department of Cardiology, Qingdao Fuwai Cardiovascular Hospital, Qingdao, Shandong, China
| | - Dan Liu
- Clinical Laboratory, Qingdao Fuwai Cardiovascular Hospital, Qingdao, Shandong, China
| | - Lizhi Wang
- Department of Cardiology, Qingdao Fuwai Cardiovascular Hospital, Qingdao, Shandong, China
| | - Ruixue Zhang
- Department of Cardiology, Qingdao Fuwai Cardiovascular Hospital, Qingdao, Shandong, China
| | - Fengliang Wang
- Department of Cardiology, Qingdao Fuwai Cardiovascular Hospital, Qingdao, Shandong, China
| | - Zongling Wang
- Department of Cardiology, Qingdao Fuwai Cardiovascular Hospital, Qingdao, Shandong, China
| |
Collapse
|
2
|
Ghosh AJ, Saferali A, Lee S, Chase R, Moll M, Morrow J, Yun J, Castaldi PJ, Hersh CP. Blood RNA sequencing shows overlapping gene expression across COPD phenotype domains. Thorax 2022; 77:115-122. [PMID: 34168019 PMCID: PMC8711128 DOI: 10.1136/thoraxjnl-2020-216401] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 05/21/2021] [Indexed: 02/03/2023]
Abstract
RATIONALE COPD can be assessed using multidimensional grading systems with components from three domains: pulmonary function tests, symptoms and systemic features. Clinically, measures may be used interchangeably, though it is not known if they share similar pathobiology. OBJECTIVE To use RNA sequencing (RNA-seq) to determine if there is an overlap in the underlying biological mechanisms and consequences driving different components of the multidimensional grading systems. METHODS Whole blood was collected for RNA-seq from current and former smokers in the Genetic Epidemiology of COPD study. We tested the overlap in gene expression and biological pathways associated with case-control status and quantitative COPD phenotypes within and between the three domains. RESULTS In 2647 subjects, there were 3030 genes differentially expressed in any of the three domains or case-control status. There were five genes that overlapped between the three domains and case-control status, including G protein-coupled receptor 15(GPR15), sestrin 1 (SESN1) and interferon-induced guanylate-binding protein 1 (GBP1), which were associated with longitudinal decline in FEV1. The overlap between the three domains was enriched for pathways related to cellular components. CONCLUSIONS We identified gene sets and pathways that overlap between 12 COPD-related phenotypes and case-control status. There were no pathways represented in the overlap between the three domains and case-control status, but we identified multiple genes that demonstrated a consistent pattern of expression across several of the phenotypes. Patterns of gene expression correlation were generally similar to the correlation of clinical phenotypes in the PFT and symptom domains but not the systemic features.
Collapse
Affiliation(s)
- Auyon J Ghosh
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Aabida Saferali
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Sool Lee
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Robert Chase
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Matthew Moll
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Jarrett Morrow
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Jeong Yun
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Peter J Castaldi
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Craig P Hersh
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
| |
Collapse
|
3
|
Genetic regulation of gene expression of MIF family members in lung tissue. Sci Rep 2020; 10:16980. [PMID: 33046825 PMCID: PMC7552402 DOI: 10.1038/s41598-020-74121-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 09/08/2020] [Indexed: 12/18/2022] Open
Abstract
Macrophage migration inhibitory factor (MIF) is a cytokine found to be associated with chronic obstructive pulmonary disease (COPD). However, there is no consensus on how MIF levels differ in COPD compared to control conditions and there are no reports on MIF expression in lung tissue. Here we studied gene expression of members of the MIF family MIF, D-Dopachrome Tautomerase (DDT) and DDT-like (DDTL) in a lung tissue dataset with 1087 subjects and identified single nucleotide polymorphisms (SNPs) regulating their gene expression. We found higher MIF and DDT expression in COPD patients compared to non-COPD subjects and found 71 SNPs significantly influencing gene expression of MIF and DDTL. Furthermore, the platform used to measure MIF (microarray or RNAseq) was found to influence the splice variants detected and subsequently the direction of the SNP effects on MIF expression. Among the SNPs found to regulate MIF expression, the major LD block identified was linked to rs5844572, a SNP previously found to be associated with lower diffusion capacity in COPD. This suggests that MIF may be contributing to the pathogenesis of COPD, as SNPs that influence MIF expression are also associated with symptoms of COPD. Our study shows that MIF levels are affected not only by disease but also by genetic diversity (i.e. SNPs). Since none of our significant eSNPs for MIF or DDTL have been described in GWAS for COPD or lung function, MIF expression in COPD patients is more likely a consequence of disease-related factors rather than a cause of the disease.
Collapse
|
4
|
Ragland MF, Benway CJ, Lutz SM, Bowler RP, Hecker J, Hokanson JE, Crapo JD, Castaldi PJ, DeMeo DL, Hersh CP, Hobbs BD, Lange C, Beaty TH, Cho MH, Silverman EK. Genetic Advances in Chronic Obstructive Pulmonary Disease. Insights from COPDGene. Am J Respir Crit Care Med 2020; 200:677-690. [PMID: 30908940 DOI: 10.1164/rccm.201808-1455so] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a common and progressive disease that is influenced by both genetic and environmental factors. For many years, knowledge of the genetic basis of COPD was limited to Mendelian syndromes, such as alpha-1 antitrypsin deficiency and cutis laxa, caused by rare genetic variants. Over the past decade, the proliferation of genome-wide association studies, the accessibility of whole-genome sequencing, and the development of novel methods for analyzing genetic variation data have led to a substantial increase in the understanding of genetic variants that play a role in COPD susceptibility and COPD-related phenotypes. COPDGene (Genetic Epidemiology of COPD), a multicenter, longitudinal study of over 10,000 current and former cigarette smokers, has been pivotal to these breakthroughs in understanding the genetic basis of COPD. To date, over 20 genetic loci have been convincingly associated with COPD affection status, with additional loci demonstrating association with COPD-related phenotypes such as emphysema, chronic bronchitis, and hypoxemia. In this review, we discuss the contributions of the COPDGene study to the discovery of these genetic associations as well as the ongoing genetic investigations of COPD subtypes, protein biomarkers, and post-genome-wide association study analysis.
Collapse
Affiliation(s)
- Margaret F Ragland
- Division of Pulmonary Sciences and Critical Care Medicine, School of Medicine, and
| | | | | | | | - Julian Hecker
- Harvard T. H. Chan School of Public Health, Boston, Massachusetts; and
| | - John E Hokanson
- Department of Epidemiology, Colorado School of Public Health, University of Colorado Denver, Aurora, Colorado
| | | | | | - Dawn L DeMeo
- Channing Division of Network Medicine and.,Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, Massachusetts
| | - Craig P Hersh
- Channing Division of Network Medicine and.,Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, Massachusetts
| | - Brian D Hobbs
- Channing Division of Network Medicine and.,Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, Massachusetts
| | - Christoph Lange
- Harvard T. H. Chan School of Public Health, Boston, Massachusetts; and
| | - Terri H Beaty
- Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland
| | - Michael H Cho
- Channing Division of Network Medicine and.,Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, Massachusetts
| | - Edwin K Silverman
- Channing Division of Network Medicine and.,Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, Massachusetts
| |
Collapse
|
5
|
Li L, Li SY, Zhong X, Ren J, Tian X, Tuerxun M, Xie C, Li F, Zheng A, Aini P, Yasen M, Wang H, Zou X. SERPINE2 rs16865421 polymorphism is associated with a lower risk of chronic obstructive pulmonary disease in the Uygur population: A case-control study. J Gene Med 2019; 21:e3106. [PMID: 31215134 DOI: 10.1002/jgm.3106] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 05/12/2019] [Accepted: 06/05/2019] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND The present study aimed to investigate the relationship between seven polymorphisms of the serine protease inhibitor-2 (SERPINE2) gene and the risk of chronic obstructive pulmonary disease (COPD) in the Uygur population via a case-control study. METHODS In total, 440 Uygur patients with COPD were included in the patient group and 384 healthy individuals were recruited in the matched control group. Data on demographic variables, smoking status, occupational dust exposure history and living conditions were collected. Polymorphism analysis was performed for seven loci of the SERPINE2 gene by mass spectrometry. RESULTS The genotype distribution of rs16865421 showed a significant difference between the patient and control groups (p < 0.05). Participants carrying the rs16865421-AG heterozygous mutant genotype had a lower risk of COPD compared to those with the rs16865421-A allele (odds ratio = 0.68, 95% confidence interval = 0.47-0.98, p = 0.041). However, no such association was found for rs1438831, rs6734100, rs6748795, rs7583463, rs840088 and rs975278. No significant interaction was observed between the genotypes and risk factors. CONCLUSIONS Polymorphisms of rs16865421-AG carried by the Uygur population may be protective against COPD.
Collapse
Affiliation(s)
- Li Li
- Department of Respiratory and Critical Care Medicine, First People's Hospital of Kashgar, Xinjiang, Kashgar, Xinjiang, China
| | - Shi Yue Li
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Guangzhou Medical University, Guangdong, Guangzhou, Guangdong, China
| | - Xuemei Zhong
- Department of Respiratory and Critical Care Medicine, First People's Hospital of Kashgar, Xinjiang, Kashgar, Xinjiang, China
| | - Jie Ren
- Department of Respiratory and Critical Care Medicine, First People's Hospital of Kashgar, Xinjiang, Kashgar, Xinjiang, China
| | - Xuwei Tian
- Department of Respiratory and Critical Care Medicine, First People's Hospital of Kashgar, Xinjiang, Kashgar, Xinjiang, China
| | - Maimaitiaili Tuerxun
- Department of Respiratory and Critical Care Medicine, First People's Hospital of Kashgar, Xinjiang, Kashgar, Xinjiang, China
| | - Chengxin Xie
- Department of Respiratory and Critical Care Medicine, First People's Hospital of Kashgar, Xinjiang, Kashgar, Xinjiang, China
| | - Feifei Li
- Department of Respiratory and Critical Care Medicine, First People's Hospital of Kashgar, Xinjiang, Kashgar, Xinjiang, China
| | - Aifang Zheng
- Department of Respiratory and Critical Care Medicine, First People's Hospital of Kashgar, Xinjiang, Kashgar, Xinjiang, China
| | - Paierda Aini
- Department of Respiratory and Critical Care Medicine, First People's Hospital of Kashgar, Xinjiang, Kashgar, Xinjiang, China
| | - Mukeremu Yasen
- Department of Respiratory and Critical Care Medicine, First People's Hospital of Kashgar, Xinjiang, Kashgar, Xinjiang, China
| | - Huaizhen Wang
- Department of Respiratory and Critical Care Medicine, First People's Hospital of Kashgar, Xinjiang, Kashgar, Xinjiang, China
| | - Xiaoguang Zou
- Department of Respiratory and Critical Care Medicine, First People's Hospital of Kashgar, Xinjiang, Kashgar, Xinjiang, China
| |
Collapse
|
6
|
Hersh CP. Pharmacogenomics of chronic obstructive pulmonary disease. Expert Rev Respir Med 2019; 13:459-470. [PMID: 30925849 PMCID: PMC6482089 DOI: 10.1080/17476348.2019.1601559] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 03/27/2019] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Chronic obstructive pulmonary disease (COPD) is a heterogeneous condition, which presents the opportunity for precision therapy based on genetics or other biomarkers. Areas covered: Alpha-1 antitrypsin deficiency, a genetic form of emphysema, provides an example of this precision approach to diagnosis and therapy. To date, research in COPD pharmacogenomics has been limited by small sample sizes, lack of accessible target tissue, failure to consider COPD subtypes, and different outcomes relevant for various medications. There have been several published genome-wide association studies and other omics studies in COPD pharmacogenomics; however, clinical implementation remains far away. There is a growing evidence base for precision prescription of inhaled corticosteroids in COPD, based on clinical phenotypes and blood biomarkers, but not yet based on pharmacogenomics. Expert opinion: At this time, there is insufficient evidence for clinical implementation of COPD pharmacogenomics. Additional genome-wide studies will be required to discover predictors of drug response and to identify genomic biomarkers of COPD subtypes, which could be targeted with subtype-directed therapies.
Collapse
Affiliation(s)
- Craig P Hersh
- a Channing Division of Network Medicine and Division of Pulmonary and Critical Care Medicine , Brigham and Women's Hospital, Harvard Medical School , Boston , MA , USA
| |
Collapse
|
7
|
Cade BE, Chen H, Stilp AM, Louie T, Ancoli-Israel S, Arens R, Barfield R, Below JE, Cai J, Conomos MP, Evans DS, Frazier-Wood AC, Gharib SA, Gleason KJ, Gottlieb DJ, Hillman DR, Johnson WC, Lederer DJ, Lee J, Loredo JS, Mei H, Mukherjee S, Patel SR, Post WS, Purcell SM, Ramos AR, Reid KJ, Rice K, Shah NA, Sofer T, Taylor KD, Thornton TA, Wang H, Yaffe K, Zee PC, Hanis CL, Palmer LJ, Rotter JI, Stone KL, Tranah GJ, Wilson JG, Sunyaev SR, Laurie CC, Zhu X, Saxena R, Lin X, Redline S. Associations of variants In the hexokinase 1 and interleukin 18 receptor regions with oxyhemoglobin saturation during sleep. PLoS Genet 2019; 15:e1007739. [PMID: 30990817 PMCID: PMC6467367 DOI: 10.1371/journal.pgen.1007739] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 10/03/2018] [Indexed: 12/12/2022] Open
Abstract
Sleep disordered breathing (SDB)-related overnight hypoxemia is associated with cardiometabolic disease and other comorbidities. Understanding the genetic bases for variations in nocturnal hypoxemia may help understand mechanisms influencing oxygenation and SDB-related mortality. We conducted genome-wide association tests across 10 cohorts and 4 populations to identify genetic variants associated with three correlated measures of overnight oxyhemoglobin saturation: average and minimum oxyhemoglobin saturation during sleep and the percent of sleep with oxyhemoglobin saturation under 90%. The discovery sample consisted of 8,326 individuals. Variants with p < 1 × 10(-6) were analyzed in a replication group of 14,410 individuals. We identified 3 significantly associated regions, including 2 regions in multi-ethnic analyses (2q12, 10q22). SNPs in the 2q12 region associated with minimum SpO2 (rs78136548 p = 2.70 × 10(-10)). SNPs at 10q22 were associated with all three traits including average SpO2 (rs72805692 p = 4.58 × 10(-8)). SNPs in both regions were associated in over 20,000 individuals and are supported by prior associations or functional evidence. Four additional significant regions were detected in secondary sex-stratified and combined discovery and replication analyses, including a region overlapping Reelin, a known marker of respiratory complex neurons.These are the first genome-wide significant findings reported for oxyhemoglobin saturation during sleep, a phenotype of high clinical interest. Our replicated associations with HK1 and IL18R1 suggest that variants in inflammatory pathways, such as the biologically-plausible NLRP3 inflammasome, may contribute to nocturnal hypoxemia.
Collapse
Affiliation(s)
- Brian E. Cade
- Division of Sleep and Circadian Disorders, Brigham and Women’s Hospital, Boston, MA, United States of America
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, United States of America
- Program in Medical and Population Genetics, Broad Institute, Cambridge, MA, United States of America
| | - Han Chen
- Human Genetics Center, Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX United States of America
- Center for Precision Health, School of Public Health and School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX United States of America
| | - Adrienne M. Stilp
- Department of Biostatistics, University of Washington, Seattle, WA United States of America
| | - Tin Louie
- Department of Biostatistics, University of Washington, Seattle, WA United States of America
| | - Sonia Ancoli-Israel
- Department of Psychiatry, University of California, San Diego, CA, United States of America
| | - Raanan Arens
- The Children’s Hospital at Montefiore, Division of Respiratory and Sleep Medicine, Albert Einstein College of Medicine, Bronx, NY, United States of America
| | - Richard Barfield
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, United States of America
| | - Jennifer E. Below
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, United States of America
| | - Jianwen Cai
- Department of Biostatistics, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, United States of America
| | - Matthew P. Conomos
- Department of Biostatistics, University of Washington, Seattle, WA United States of America
| | - Daniel S. Evans
- California Pacific Medical Center Research Institute, San Francisco, CA, United States of America
| | - Alexis C. Frazier-Wood
- USDA/ARS Children's Nutrition Research Center, Baylor College of Medicine, Houston, TX, United States of America
| | - Sina A. Gharib
- Computational Medicine Core, Center for Lung Biology, UW Medicine Sleep Center, Division of Pulmonary, Critical Care and Sleep Medicine, University of Washington, Seattle WA, United States of America
| | - Kevin J. Gleason
- Division of Sleep and Circadian Disorders, Brigham and Women’s Hospital, Boston, MA, United States of America
- Department of Public Health Sciences, University of Chicago, Chicago, IL, United States of America
| | - Daniel J. Gottlieb
- Division of Sleep and Circadian Disorders, Brigham and Women’s Hospital, Boston, MA, United States of America
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, United States of America
- VA Boston Healthcare System, Boston, MA, United States of America
| | - David R. Hillman
- Department of Pulmonary Physiology and Sleep Medicine, Sir Charles Gairdner Hospital, Perth, Western Australia, Australia
| | - W. Craig Johnson
- Department of Biostatistics, University of Washington, Seattle, WA United States of America
| | - David J. Lederer
- Departments of Medicine and Epidemiology, Columbia University, New York, NY, United States of America
| | - Jiwon Lee
- Division of Sleep and Circadian Disorders, Brigham and Women’s Hospital, Boston, MA, United States of America
| | - Jose S. Loredo
- Division of Pulmonary Critical Care and Sleep Medicine, Department of Medicine, UC San Diego School of Medicine, La Jolla, CA, United States of America
| | - Hao Mei
- Department of Data Science, University of Mississippi Medical Center, Jackson, MS, United States of America
| | - Sutapa Mukherjee
- Sleep Health Service, Respiratory and Sleep Services, Southern Adelaide Local Health Network, Adelaide, South Australia
- Adelaide Institute for Sleep Health, Flinders University, Adelaide, South Australia
| | - Sanjay R. Patel
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Wendy S. Post
- Division of Cardiology, Johns Hopkins University, Baltimore, MD, United States of America
| | - Shaun M. Purcell
- Division of Sleep and Circadian Disorders, Brigham and Women’s Hospital, Boston, MA, United States of America
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, United States of America
- Program in Medical and Population Genetics, Broad Institute, Cambridge, MA, United States of America
| | - Alberto R. Ramos
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, United States of America
| | - Kathryn J. Reid
- Department of Neurology, Center for Circadian and Sleep Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, United States of America
| | - Ken Rice
- Department of Biostatistics, University of Washington, Seattle, WA United States of America
| | - Neomi A. Shah
- Division of Pulmonary, Critical Care and Sleep Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
| | - Tamar Sofer
- Division of Sleep and Circadian Disorders, Brigham and Women’s Hospital, Boston, MA, United States of America
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, United States of America
- Department of Biostatistics, University of Washington, Seattle, WA United States of America
| | - Kent D. Taylor
- The Institute for Translational Genomics and Population Sciences, Departments of Pediatrics and Medicine, LABioMed at Harbor-UCLA Medical Center, Torrance, CA, United States of America
| | - Timothy A. Thornton
- Department of Biostatistics, University of Washington, Seattle, WA United States of America
| | - Heming Wang
- Division of Sleep and Circadian Disorders, Brigham and Women’s Hospital, Boston, MA, United States of America
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, United States of America
- Program in Medical and Population Genetics, Broad Institute, Cambridge, MA, United States of America
| | - Kristine Yaffe
- Department of Psychiatry, Neurology, and Epidemiology and Biostatistics, University of California at San Francisco, San Francisco, CA, United States of America
- San Francisco VA Medical Center, San Francisco, CA, United States of America
| | - Phyllis C. Zee
- Department of Neurology, Center for Circadian and Sleep Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, United States of America
| | - Craig L. Hanis
- Human Genetics Center, Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX United States of America
| | - Lyle J. Palmer
- School of Public Health, University of Adelaide, South Australia, Australia
| | - Jerome I. Rotter
- The Institute for Translational Genomics and Population Sciences, Departments of Pediatrics and Medicine, LABioMed at Harbor-UCLA Medical Center, Torrance, CA, United States of America
| | - Katie L. Stone
- California Pacific Medical Center Research Institute, San Francisco, CA, United States of America
| | - Gregory J. Tranah
- California Pacific Medical Center Research Institute, San Francisco, CA, United States of America
| | - James G. Wilson
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson MS, United States of America
| | - Shamil R. Sunyaev
- Program in Medical and Population Genetics, Broad Institute, Cambridge, MA, United States of America
- Division of Genetics, Brigham and Women's Hospital, Boston, MA, United States of America
- Division of Medical Sciences, Harvard Medical School, Boston, MA, United States of America
| | - Cathy C. Laurie
- Department of Biostatistics, University of Washington, Seattle, WA United States of America
| | - Xiaofeng Zhu
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, United States of America
| | - Richa Saxena
- Division of Sleep and Circadian Disorders, Brigham and Women’s Hospital, Boston, MA, United States of America
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, United States of America
- Program in Medical and Population Genetics, Broad Institute, Cambridge, MA, United States of America
- Center for Genomic Medicine and Department of Anesthesia, Pain, and Critical Care Medicine, Massachusetts General Hospital, Boston, MA, United States of America
| | - Xihong Lin
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, United States of America
| | - Susan Redline
- Division of Sleep and Circadian Disorders, Brigham and Women’s Hospital, Boston, MA, United States of America
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, United States of America
- Division of Pulmonary, Critical Care, and Sleep Medicine, Beth Israel Deaconess Medical Center, Boston, MA, United States of America
| |
Collapse
|
8
|
Seo M, Qiu W, Bailey W, Criner GJ, Dransfield MT, Fuhlbrigge AL, Reilly JJ, Scholand MB, Castaldi P, Chase R, Parker M, Saferali A, Yun JH, Crapo JD, Cho MH, Beaty TH, Silverman EK, Hersh CP. Genomics and response to long-term oxygen therapy in chronic obstructive pulmonary disease. J Mol Med (Berl) 2018; 96:1375-1385. [PMID: 30353303 DOI: 10.1007/s00109-018-1708-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 10/01/2018] [Accepted: 10/16/2018] [Indexed: 12/19/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) is a leading cause of death worldwide, and long-term oxygen therapy has been shown to reduce mortality in COPD patients with severe hypoxemia. However, the Long-term Oxygen Treatment Trial (LOTT), a large randomized trial, found no benefit of oxygen therapy in COPD patients with moderate hypoxemia. We hypothesized that there may be differences in response to oxygen which depend on genotype or gene expression. In a genome-wide time-to-event analysis of the primary outcome of death or hospitalization in 331 subjects, 97 single nucleotide polymorphisms (SNPs) showed evidence of interaction with oxygen therapy at P < 1e-5, including 7 SNPs near arylsulfatase B (ARSB; P = 6e-6). In microarray expression profiling on 51 whole blood samples from 37 individuals, at screening and/or at 12-month follow-up, ARSB expression was associated with the primary outcome depending on oxygen treatment. The significant SNPs were conditional expression quantitative trait loci for ARSB expression. In a network analysis of genes affected by long-term oxygen, two observed clusters including 26 co-expressed genes were enriched in mitochondrial function. Using data from the observational COPDGene Study, we validated the expression of 25 of these 26 genes, plus ARSB. The effect of long-term oxygen therapy in COPD varied based on ARSB expression and genotype. ARSB has previously been shown to be associated with hypoxemia in human bronchial and colonic epithelial cells and in a mouse model. In peripheral blood, long-term oxygen treatment affected expression of mitochondrial-related genes, a biologically relevant pathway in COPD. SNPs and expression of ARSB are associated with response to long-term oxygen in COPD. The ARSB SNPs were expression quantitative trait loci depending on oxygen therapy. Genes differentially expressed by long-term oxygen were enriched in mitochondrial functions. This suggests a potential biomarker to personalize use of long-term oxygen in COPD.
Collapse
Affiliation(s)
- Minseok Seo
- Channing Division of Network Medicine, Brigham and Women's Hospital, 181 Longwood Ave, Boston, MA, 02115, USA
- Harvard Medical School, Boston, MA, USA
| | - Weiliang Qiu
- Channing Division of Network Medicine, Brigham and Women's Hospital, 181 Longwood Ave, Boston, MA, 02115, USA
- Harvard Medical School, Boston, MA, USA
| | - William Bailey
- Lung Health Center, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Gerard J Criner
- Department of Thoracic Medicine and Surgery, Temple University, Philadelphia, PA, USA
| | - Mark T Dransfield
- Lung Health Center, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | | | - John J Reilly
- University of Colorado School of Medicine, Denver, CO, USA
| | - Mary Beth Scholand
- Division of Pulmonary Medicine, University of Utah, Salt Lake City, UT, USA
| | - Peter Castaldi
- Channing Division of Network Medicine, Brigham and Women's Hospital, 181 Longwood Ave, Boston, MA, 02115, USA
- Harvard Medical School, Boston, MA, USA
| | - Robert Chase
- Channing Division of Network Medicine, Brigham and Women's Hospital, 181 Longwood Ave, Boston, MA, 02115, USA
| | - Margaret Parker
- Channing Division of Network Medicine, Brigham and Women's Hospital, 181 Longwood Ave, Boston, MA, 02115, USA
- Harvard Medical School, Boston, MA, USA
| | - Aabida Saferali
- Channing Division of Network Medicine, Brigham and Women's Hospital, 181 Longwood Ave, Boston, MA, 02115, USA
- Harvard Medical School, Boston, MA, USA
| | - Jeong H Yun
- Channing Division of Network Medicine, Brigham and Women's Hospital, 181 Longwood Ave, Boston, MA, 02115, USA
- Harvard Medical School, Boston, MA, USA
| | - James D Crapo
- Division of Pulmonary, Critical Care and Sleep Medicine, National Jewish Health, Denver, CO, USA
| | - Michael H Cho
- Channing Division of Network Medicine, Brigham and Women's Hospital, 181 Longwood Ave, Boston, MA, 02115, USA
- Harvard Medical School, Boston, MA, USA
| | - Terri H Beaty
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Edwin K Silverman
- Channing Division of Network Medicine, Brigham and Women's Hospital, 181 Longwood Ave, Boston, MA, 02115, USA
- Harvard Medical School, Boston, MA, USA
| | - Craig P Hersh
- Channing Division of Network Medicine, Brigham and Women's Hospital, 181 Longwood Ave, Boston, MA, 02115, USA.
- Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
9
|
Hobbs BD, Cho MH. Dissecting respiratory disease heterogeneity through the genetics of diffusing capacity. Eur Respir J 2018; 52:52/3/1801468. [PMID: 30219754 DOI: 10.1183/13993003.01468-2018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 08/15/2018] [Indexed: 11/05/2022]
Affiliation(s)
- Brian D Hobbs
- Channing Division of Network Medicine and Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Michael H Cho
- Channing Division of Network Medicine and Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA, USA
| |
Collapse
|
10
|
Jeong C, Witonsky DB, Basnyat B, Neupane M, Beall CM, Childs G, Craig SR, Novembre J, Di Rienzo A. Detecting past and ongoing natural selection among ethnically Tibetan women at high altitude in Nepal. PLoS Genet 2018; 14:e1007650. [PMID: 30188897 PMCID: PMC6143271 DOI: 10.1371/journal.pgen.1007650] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 09/18/2018] [Accepted: 08/21/2018] [Indexed: 12/21/2022] Open
Abstract
Adaptive evolution in humans has rarely been characterized for its whole set of components, i.e. selective pressure, adaptive phenotype, beneficial alleles and realized fitness differential. We combined approaches for detecting polygenic adaptations and for mapping the genetic bases of physiological and fertility phenotypes in approximately 1000 indigenous ethnically Tibetan women from Nepal, adapted to high altitude. The results of genome-wide association analyses and tests for polygenic adaptations showed evidence of positive selection for alleles associated with more pregnancies and live births and evidence of negative selection for those associated with higher offspring mortality. Lower hemoglobin level did not show clear evidence for polygenic adaptation, despite its strong association with an EPAS1 haplotype carrying selective sweep signals.
Collapse
Affiliation(s)
- Choongwon Jeong
- Department of Human Genetics, University of Chicago, Chicago, Illinois, United States of America
| | - David B. Witonsky
- Department of Human Genetics, University of Chicago, Chicago, Illinois, United States of America
| | - Buddha Basnyat
- Oxford University Clinical Research Unit, Patan Hospital, Kathmandu, Nepal
| | | | - Cynthia M. Beall
- Department of Anthropology, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Geoff Childs
- Department of Anthropology, Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - Sienna R. Craig
- Department of Anthropology, Dartmouth College, Hanover, New Hampshire, United States of America
| | - John Novembre
- Department of Human Genetics, University of Chicago, Chicago, Illinois, United States of America
| | - Anna Di Rienzo
- Department of Human Genetics, University of Chicago, Chicago, Illinois, United States of America
| |
Collapse
|
11
|
Wang H, Cade BE, Chen H, Gleason KJ, Saxena R, Feng T, Larkin EK, Vasan RS, Lin H, Patel SR, Tracy RP, Liu Y, Gottlieb DJ, Below JE, Hanis CL, Petty LE, Sunyaev SR, Frazier-Wood AC, Rotter JI, Post W, Lin X, Redline S, Zhu X. Variants in angiopoietin-2 (ANGPT2) contribute to variation in nocturnal oxyhaemoglobin saturation level. Hum Mol Genet 2017; 25:5244-5253. [PMID: 27798093 DOI: 10.1093/hmg/ddw324] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 09/19/2016] [Indexed: 12/30/2022] Open
Abstract
Genetic determinants of sleep-disordered breathing (SDB), a common set of disorders that contribute to significant cardiovascular and neuropsychiatric morbidity, are not clear. Overnight nocturnal oxygen saturation (SaO2) is a clinically relevant and easily measured indicator of SDB severity but its genetic contribution has never been studied. Our recent study suggests nocturnal SaO2 is heritable. We performed linkage analysis, association analysis and haplotype analysis of average nocturnal oxyhaemoglobin saturation in participants in the Cleveland Family Study (CFS), followed by gene-based association and additional tests in four independent samples. Linkage analysis identified a peak (LOD = 4.29) on chromosome 8p23. Follow-up association analysis identified two haplotypes in angiopoietin-2 (ANGPT2) that significantly contributed to the variation of SaO2 (P = 8 × 10-5) and accounted for a portion of the linkage evidence. Gene-based association analysis replicated the association of ANGPT2 and nocturnal SaO2. A rare missense SNP rs200291021 in ANGPT2 was associated with serum angiopoietin-2 level (P = 1.29 × 10-4), which was associated with SaO2 (P = 0.002). Our study provides the first evidence for the association of ANGPT2, a gene previously implicated in acute lung injury syndromes, with nocturnal SaO2, suggesting that this gene has a broad range of effects on gas exchange, including influencing oxygenation during sleep.
Collapse
Affiliation(s)
- Heming Wang
- Department of Epidemiology and Biostatistics, Case Western Reserve University, Cleveland, OH, USA
| | - Brian E Cade
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Boston, MA, USA.,Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA
| | - Han Chen
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Kevin J Gleason
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Boston, MA, USA.,Department of Public Health Sciences, University of Chicago, Chicago, IL, USA
| | - Richa Saxena
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Boston, MA, USA.,Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA.,Center for Human Genetic Research and Department of Anesthesia, Pain, and Critical Care Medicine, Massachusetts General Hospital, Boston, MA, USA.,Program in Medical and Population Genetics, Broad Institute, Cambridge, MA, USA
| | - Tao Feng
- Department of Epidemiology and Biostatistics, Case Western Reserve University, Cleveland, OH, USA
| | - Emma K Larkin
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Ramachandran S Vasan
- Preventive Medicine & Epidemiology, Boston University School of Medicine, Boston, MA, USA.,Framingham Heart Study, Framingham, MA
| | - Honghuang Lin
- Section of Computational Biomedicine, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Sanjay R Patel
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Boston, MA, USA.,Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA.,Division of Pulmonary, Critical Care, and Sleep Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Russell P Tracy
- Department of Pathology & Laboratory Medicine, University of Vermont, Burlington, VT, USA
| | - Yongmei Liu
- Epidemiology and Prevention Center for Genomics and Personalized Medicine Research, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Daniel J Gottlieb
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Boston, MA, USA.,Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA.,Sleep Disorders Center, VA Boston Healthcare System, Boston, MA, USA
| | - Jennifer E Below
- Human Genetics Center, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Craig L Hanis
- Human Genetics Center, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Lauren E Petty
- Human Genetics Center, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Shamil R Sunyaev
- Program in Medical and Population Genetics, Broad Institute, Cambridge, MA, USA.,Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Jerome I Rotter
- Institute for Translational Genomics and Population Sciences, Los Angeles BioMedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Wendy Post
- Division of Cardiology, Johns Hopkins University, Baltimore, MD, USA
| | - Xihong Lin
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Susan Redline
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Boston, MA, USA.,Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA.,Division of Pulmonary, Critical Care, and Sleep Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Xiaofeng Zhu
- Department of Epidemiology and Biostatistics, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
12
|
Hardin M, Cho MH, Sharma S, Glass K, Castaldi PJ, McDonald ML, Aschard H, Senter-Sylvia J, Tantisira K, Weiss ST, Hersh CP, Morrow JD, Lomas D, Agusti A, Bakke P, Gulsvik A, O'Connor GT, Dupuis J, Hokanson J, Crapo JD, Beaty TH, Laird N, Silverman EK, DeMeo DL. Sex-Based Genetic Association Study Identifies CELSR1 as a Possible Chronic Obstructive Pulmonary Disease Risk Locus among Women. Am J Respir Cell Mol Biol 2017; 56:332-341. [PMID: 27854507 DOI: 10.1165/rcmb.2016-0172oc] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a complex disease with strong environmental and genetic influences and sexually dimorphic features. Although genetic risk factors for COPD have been identified, much of the heritability remains unexplained. Sex-based genetic association studies may uncover additional COPD genetic risk factors. We studied current and former smokers from COPD case-control cohorts (COPDGene non-Hispanic whites and African Americans, Evaluation of COPD Longitudinally to Identify Predictive Surrogate End-Points, and Genetics of Chronic Obstructive Lung Disease). COPD was defined as post-bronchodilator forced expiratory volume in 1 second/forced vital capacity less than 0.70 and forced expiratory volume in 1 second percent predicted less than 80. Testing was performed across all cohorts and combined in a meta-analysis adjusted for age, pack-years, and genetic ancestry. We first performed genome-wide single-nucleotide polymorphism (SNP)-by-sex interaction testing on the outcome of COPD affection status. We performed sex-stratified association testing for SNPs with interaction P less than 10-6. We examined over 8 million SNPs in four populations, including 6,260 subjects with COPD (40.6% female) and 5,269 smoking control subjects (47.3% female). The SNP rs9615358 in the cadherin gene CELSR1 approached genome-wide significance for an interaction with sex (P = 1.24 × 10-7). In the sex-stratified meta-analysis, this SNP was associated with COPD among females (odds ratio, 1.37 [95% confidence interval, 1.25-1.49]; P = 3.32 × 10-7) but not males (odds ratio, 0.90 [95% confidence interval, 0.79-1.01]; P = 0.06). CELSR1 is involved in fetal lung development. In a human fetal lung tissue dataset, we observed greater CELSR1 expression in female compared with male samples. This SNP-by-sex genome-wide association analysis identified the fetal lung development gene, CELSR1, as a potential sex-specific risk factor for COPD. Identifying sex-specific genetic risk factors may reveal new insights into sexually dimorphic features of COPD.
Collapse
Affiliation(s)
- Megan Hardin
- 1 Channing Division of Network Medicine and.,2 Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Michael H Cho
- 1 Channing Division of Network Medicine and.,2 Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Sunita Sharma
- 3 Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado
| | | | | | | | - Hugues Aschard
- 4 Harvard School of Public Health, Boston, Massachusetts
| | | | - Kelan Tantisira
- 1 Channing Division of Network Medicine and.,2 Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Scott T Weiss
- 1 Channing Division of Network Medicine and.,2 Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Craig P Hersh
- 1 Channing Division of Network Medicine and.,2 Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Jarrett D Morrow
- 1 Channing Division of Network Medicine and.,2 Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - David Lomas
- 5 Department of Medicine, University College London, London, United Kingdom
| | - Alvar Agusti
- 6 Thoracic Institute, Hospital Clinic, Barcelona, Spain
| | - Per Bakke
- 7 Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Amund Gulsvik
- 8 Department of Geriatric Medicine Ullevaal, Institute of Clinical Medicine, Oslo University Hospital University of Oslo, Oslo, Norway
| | | | - Josée Dupuis
- 10 Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts.,11 National Heart, Lung, and Blood Institute's Framingham Heart Study, Framingham, Massachusetts
| | - John Hokanson
- 12 Department of Epidemiology, Colorado School of Public Health, University of Colorado Denver, Denver, Colorado
| | - James D Crapo
- 13 Division of Pulmonary Sciences and Critical Care Medicine, National Jewish Health, Denver, Colorado; and
| | - Terri H Beaty
- 14 Johns Hopkins School of Public Health, Baltimore, Maryland
| | - Nan Laird
- 4 Harvard School of Public Health, Boston, Massachusetts
| | - Edwin K Silverman
- 1 Channing Division of Network Medicine and.,2 Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Dawn L DeMeo
- 1 Channing Division of Network Medicine and.,2 Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | | |
Collapse
|
13
|
Abstract
Chronic respiratory failure due to chronic obstructive pulmonary disease (COPD) is an increasing problem worldwide. Many patients with severe COPD develop hypoxemic respiratory failure during the natural progression of disease. Long-term oxygen therapy (LTOT) is a well-established supportive treatment for COPD and has been shown to improve survival in patients who develop chronic hypoxemic respiratory failure. The degree of hypoxemia is severe when partial pressure of oxygen in arterial blood (PaO2) is ≤55 mmHg and moderate if PaO2 is between 56 and 69 mmHg. Although current guidelines consider LTOT only in patients with severe resting hypoxemia, many COPD patients with moderate to severe disease experience moderate hypoxemia at rest or during special circumstances, such as while sleeping or exercising. The efficacy of LTOT in these patients who do not meet the actual recommendations is still a matter of debate, and extensive research is still ongoing to understand the possible benefits of LTOT for survival and/or functional outcomes such as the sensation of dyspnea, exacerbation frequency, hospitalizations, exercise capacity, and quality of life. Despite its frequent use, the administration of "palliative" oxygen does not seem to improve dyspnea except for delivery with high-flow humidified oxygen. This narrative review will focus on current evidence for the effects of LTOT in the presence of moderate hypoxemia at rest, during sleep, or during exercise in COPD.
Collapse
Affiliation(s)
- Begum Ergan
- a Department of Pulmonary and Critical Care, Faculty of Medicine , Dokuz Eylul University , Izmir , Turkey
| | - Stefano Nava
- b Department of Clinical, Integrated and Experimental Medicine (DIMES), Respiratory and Critical Care Unit, S. Orsola-Malpighi Hospital , Alma Mater University , Bologna , Italy
| |
Collapse
|
14
|
Guo B, Lu D, Liao WB, Merilä J. Genomewide scan for adaptive differentiation along altitudinal gradient in the Andrew's toadBufo andrewsi. Mol Ecol 2016; 25:3884-900. [PMID: 27289071 DOI: 10.1111/mec.13722] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 06/02/2016] [Indexed: 12/19/2022]
Affiliation(s)
- Baocheng Guo
- Ecological Genetics Research Unit; Department of Biosciences; University of Helsinki; P.O. Box 65 Helsinki FI-00014 Finland
| | - Di Lu
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education); China West Normal University; Nanchong 637009 China
| | - Wen Bo Liao
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education); China West Normal University; Nanchong 637009 China
| | - Juha Merilä
- Ecological Genetics Research Unit; Department of Biosciences; University of Helsinki; P.O. Box 65 Helsinki FI-00014 Finland
| |
Collapse
|
15
|
Barone-Rochette G, Thony F, Boggetto-Graham L, Chavanon O, Rodière M, Pépin JL, Vautrin E, Lévy P, Vanzetto G, Tamisier R, Baguet JP. Aortic Expansion Assessed by Imaging Follow-up after Acute Aortic Syndrome: Effect of Sleep Apnea. Am J Respir Crit Care Med 2015; 192:111-4. [DOI: 10.1164/rccm.201411-2127le] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
16
|
Abstract
Chronic obstructive pulmonary disease (COPD) is one of the most common chronic illnesses in the world. The disease encompasses emphysema, chronic bronchitis, and small airway obstruction and can be caused by environmental exposures, primarily cigarette smoking. Since only a small subset of smokers develop COPD, it is believed that host factors interact with the environment to increase the propensity to develop disease. The major pathogenic factors causing disease include infection and inflammation, protease and antiprotease imbalance, and oxidative stress overwhelming antioxidant defenses. In this review, we will discuss the major environmental and host sources for oxidative stress; discuss how oxidative stress regulates chronic bronchitis; review the latest information on genetic predisposition to COPD, specifically focusing on oxidant/antioxidant imbalance; and review future antioxidant therapeutic options for COPD. The complexity of COPD will necessitate a multi-target therapeutic approach. It is likely that antioxidant supplementation and dietary antioxidants will have a place in these future combination therapies.
Collapse
Affiliation(s)
- Bernard M Fischer
- Department of Pediatrics, Duke University Medical Center, Durham, NC, USA
| | - Judith A Voynow
- Department of Pediatrics, Children’s Hospital of Richmond at Virginia Commonwealth University, Richmond, VA, USA
| | - Andrew J Ghio
- National Health and Environmental Effects Research Laboratory, US Environmental Protection Agency, Chapel Hill, NC, USA
| |
Collapse
|
17
|
Chan JPL, Thalamuthu A, Oldmeadow C, Armstrong NJ, Holliday EG, McEvoy M, Kwok JB, Assareh AA, Peel R, Hancock SJ, Reppermund S, Menant J, Trollor JN, Brodaty H, Schofield PR, Attia JR, Sachdev PS, Scott RJ, Mather KA. Genetics of hand grip strength in mid to late life. AGE (DORDRECHT, NETHERLANDS) 2015; 37:9745. [PMID: 25637336 PMCID: PMC4312310 DOI: 10.1007/s11357-015-9745-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2014] [Accepted: 01/12/2015] [Indexed: 06/04/2023]
Abstract
Hand grip strength (GS) is a predictor of mortality in older adults and is moderately to highly heritable, but no genetic variants have been consistently identified. We aimed to identify single nucleotide polymorphisms (SNPs) associated with GS in middle-aged to older adults using a genome-wide association study (GWAS). GS was measured using handheld dynamometry in community-dwelling men and women aged 55-85 from the Hunter Community Study (HCS, N = 2088) and the Sydney Memory and Ageing Study (Sydney MAS, N = 541). Genotyping was undertaken using Affymetrix microarrays with imputation to HapMap2. Analyses were performed using linear regression. No genome-wide significant results were observed in HCS nor were any of the top signals replicated in Sydney MAS. Gene-based analyses in HCS identified two significant genes (ZNF295, C2CD2), but these results were not replicated in Sydney MAS. One out of eight SNPs previously associated with GS, rs550942, located near the CNTF gene, was significantly associated with GS (p = 0.005) in the HCS cohort only. Study differences may explain the lack of consistent results between the studies, including the smaller sample size of the Sydney MAS cohort. Our modest sample size also had limited power to identify variants of small effect. Our results suggest that similar to various other complex traits, many genetic variants of small effect size may influence GS. Future GWAS using larger samples and consistent measures may prove more fruitful at identifying genetic contributors for GS in middle-aged to older adults.
Collapse
Affiliation(s)
- Jessica P. L. Chan
- />Centre for Healthy Brain Ageing, Psychiatry, University of New South Wales (UNSW), NPI, Euroa Centre, Barker St, Randwick, Sydney, NSW 2031 Australia
| | - Anbupalam Thalamuthu
- />Centre for Healthy Brain Ageing, Psychiatry, University of New South Wales (UNSW), NPI, Euroa Centre, Barker St, Randwick, Sydney, NSW 2031 Australia
| | | | - Nicola J. Armstrong
- />Centre for Healthy Brain Ageing, Psychiatry, University of New South Wales (UNSW), NPI, Euroa Centre, Barker St, Randwick, Sydney, NSW 2031 Australia
- />School of Mathematics and Statistics, University of Sydney, Sydney, Australia
| | - Elizabeth G. Holliday
- />Public Health Program, Hunter Medical Research Institute, Newcastle, Australia
- />Centre for Clinical Epidemiology and Biostatistics, School of Medicine and Public Health, University of Newcastle, Newcastle, New South Wales Australia
| | - Mark McEvoy
- />Public Health Program, Hunter Medical Research Institute, Newcastle, Australia
- />Centre for Clinical Epidemiology and Biostatistics, School of Medicine and Public Health, University of Newcastle, Newcastle, New South Wales Australia
| | - John B. Kwok
- />Neuroscience Research Australia, Sydney, Australia
- />School of Medical Sciences, UNSW, Sydney, Australia
| | - Amelia A. Assareh
- />Centre for Healthy Brain Ageing, Psychiatry, University of New South Wales (UNSW), NPI, Euroa Centre, Barker St, Randwick, Sydney, NSW 2031 Australia
| | - Rosanne Peel
- />Centre for Clinical Epidemiology and Biostatistics, School of Medicine and Public Health, University of Newcastle, Newcastle, New South Wales Australia
| | - Stephen J. Hancock
- />Centre for Clinical Epidemiology and Biostatistics, School of Medicine and Public Health, University of Newcastle, Newcastle, New South Wales Australia
| | - Simone Reppermund
- />Centre for Healthy Brain Ageing, Psychiatry, University of New South Wales (UNSW), NPI, Euroa Centre, Barker St, Randwick, Sydney, NSW 2031 Australia
| | | | - Julian N. Trollor
- />Department of Developmental Disability Neuropsychiatry, UNSW, Sydney, Australia
| | - Henry Brodaty
- />Centre for Healthy Brain Ageing, Psychiatry, University of New South Wales (UNSW), NPI, Euroa Centre, Barker St, Randwick, Sydney, NSW 2031 Australia
- />Primary Dementia Collaborative Research Centre, UNSW, Sydney, Australia
| | - Peter R. Schofield
- />Neuroscience Research Australia, Sydney, Australia
- />School of Medical Sciences, UNSW, Sydney, Australia
| | - John R. Attia
- />Public Health Program, Hunter Medical Research Institute, Newcastle, Australia
- />Centre for Clinical Epidemiology and Biostatistics, School of Medicine and Public Health, University of Newcastle, Newcastle, New South Wales Australia
| | - Perminder S. Sachdev
- />Centre for Healthy Brain Ageing, Psychiatry, University of New South Wales (UNSW), NPI, Euroa Centre, Barker St, Randwick, Sydney, NSW 2031 Australia
- />Neuropsychiatric Institute, Prince of Wales Hospital, Sydney, Australia
| | - Rodney J. Scott
- />School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, New South Wales Australia
- />Division of Molecular Medicine, Pathology North, Newcastle, Australia
- />Information Based Medicine, Hunter Medical Research Institute, Newcastle, Australia
| | - Karen A. Mather
- />Centre for Healthy Brain Ageing, Psychiatry, University of New South Wales (UNSW), NPI, Euroa Centre, Barker St, Randwick, Sydney, NSW 2031 Australia
| |
Collapse
|
18
|
Hobbs BD, Hersh CP. Integrative genomics of chronic obstructive pulmonary disease. Biochem Biophys Res Commun 2014; 452:276-86. [PMID: 25078622 PMCID: PMC4172635 DOI: 10.1016/j.bbrc.2014.07.086] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Accepted: 07/18/2014] [Indexed: 01/21/2023]
Abstract
Chronic obstructive pulmonary disease (COPD) is a complex disease with both environmental and genetic determinants, the most important of which is cigarette smoking. There is marked heterogeneity in the development of COPD among persons with similar cigarette smoking histories, which is likely partially explained by genetic variation. Genomic approaches such as genomewide association studies and gene expression studies have been used to discover genes and molecular pathways involved in COPD pathogenesis; however, these "first generation" omics studies have limitations. Integrative genomic studies are emerging which can combine genomic datasets to further examine the molecular underpinnings of COPD. Future research in COPD genetics will likely use network-based approaches to integrate multiple genomic data types in order to model the complex molecular interactions involved in COPD pathogenesis. This article reviews the genomic research to date and offers a vision for the future of integrative genomic research in COPD.
Collapse
Affiliation(s)
- Brian D Hobbs
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA, United States; Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA, United States; Harvard Medical School, Boston, MA, United States
| | - Craig P Hersh
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA, United States; Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA, United States; Harvard Medical School, Boston, MA, United States.
| |
Collapse
|