1
|
Nayak M, Sonowal L, Pradhan L, Upadhyay A, Kamath P, Mukherjee S. Multifunctional (4-in-1) Therapeutic Applications of Nickel Thiocyanate Nanoparticles Impregnated Cotton Gauze as Antibacterial, Antibiofilm, Antioxidant and Wound Healing Agent. Chem Asian J 2024; 19:e202400187. [PMID: 38665128 DOI: 10.1002/asia.202400187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/16/2024] [Indexed: 08/27/2024]
Abstract
The wounds, arises from accidents, burns, surgeries, diabetes, and trauma, can significantly impact well-being and present persistent clinical challenges. Ideal wound dressings should be flexible, stable, antibacterial, antioxidant and anti-inflammatory in nature, facilitating a scarless rapid wound healing. Initiatives were taken to create antibacterial cotton fabrics by incorporating agents like antibiotics and metallic nanoparticles. However, due to a lack of multifunctionality, these materials were not highly effective in causing scarless and rapid wound healing. In this article, nickel thiocyanate nanoparticle (NiSCN-NPs) impregnated cotton gauze wound dressing (NiSCN-CG) was developed. These nanoparticles were non-toxic to normal human cell lines till 1 mg/mL dose and did not cause skin irritation in the rat model. Further, NiSCN-NPs exhibited antimicrobial, antibiofilm and antioxidant activities confirmed using different in vitro experiments. In vivo wound healing studies in rat models using NiSCN-CG demonstrated rapid scarless wound healing. The nickel thiocyanate impregnated cotton gauze presents a novel approach in scarless wound healing, and as an antimicrobial agent, offering a promising solution for diverse wounds and infections in the future.
Collapse
Affiliation(s)
- Malay Nayak
- School of Biomedical Engineering, IIT (BHU), Varanasi, Varanasi, 221005, Uttar Pradesh, India
| | - Lidiya Sonowal
- School of Biomedical Engineering, IIT (BHU), Varanasi, Varanasi, 221005, Uttar Pradesh, India
| | - Lipi Pradhan
- School of Biomedical Engineering, IIT (BHU), Varanasi, Varanasi, 221005, Uttar Pradesh, India
| | - Anjali Upadhyay
- School of Biomedical Engineering, IIT (BHU), Varanasi, Varanasi, 221005, Uttar Pradesh, India
| | - Prajwal Kamath
- School of Biomedical Engineering, IIT (BHU), Varanasi, Varanasi, 221005, Uttar Pradesh, India
| | - Sudip Mukherjee
- School of Biomedical Engineering, IIT (BHU), Varanasi, Varanasi, 221005, Uttar Pradesh, India
| |
Collapse
|
2
|
Ashtiwi NM, Kim SO, Chandler JD, Rada B. The therapeutic potential of thiocyanate and hypothiocyanous acid against pulmonary infections. Free Radic Biol Med 2024; 219:104-111. [PMID: 38608822 PMCID: PMC11088529 DOI: 10.1016/j.freeradbiomed.2024.04.217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 03/18/2024] [Accepted: 04/09/2024] [Indexed: 04/14/2024]
Abstract
Hypothiocyanous acid (HOSCN) is an endogenous oxidant produced by peroxidase oxidation of thiocyanate (SCN-), an ubiquitous sulfur-containing pseudohalide synthesized from cyanide. HOSCN serves as a potent microbicidal agent against pathogenic bacteria, viruses, and fungi, functioning through thiol-targeting mechanisms, independent of currently approved antimicrobials. Additionally, SCN- reacts with hypochlorous acid (HOCl), a highly reactive oxidant produced by myeloperoxidase (MPO) at sites of inflammation, also producing HOSCN. This imparts both antioxidant and antimicrobial potential to SCN-. In this review, we discuss roles of HOSCN/SCN- in immunity and potential therapeutic implications for combating infections.
Collapse
Affiliation(s)
- Nuha Milad Ashtiwi
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Susan O Kim
- Pediatrics, Division of Pulmonary, Allergy & Immunology, Cystic Fibrosis, and Sleep Medicine, Emory University, Atlanta, GA, USA
| | - Joshua D Chandler
- Pediatrics, Division of Pulmonary, Allergy & Immunology, Cystic Fibrosis, and Sleep Medicine, Emory University, Atlanta, GA, USA; Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Balázs Rada
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, USA.
| |
Collapse
|
3
|
Zhao H, Chen X, Ni J, Fang L, Chen Y, Ma Y, Cai G, Pan F. Associations of perchlorate, nitrate, and thiocyanate exposure with arthritis and inflammation indicators in young and middle-aged adults, NHANES 2005-2016. Front Immunol 2024; 15:1318737. [PMID: 38495893 PMCID: PMC10940346 DOI: 10.3389/fimmu.2024.1318737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 02/19/2024] [Indexed: 03/19/2024] Open
Abstract
Background Perchlorates, nitrates, and thiocyanates are prevalent environmental chemicals. Their potential association with arthritis remains unexplored. This study aimed to investigate the link between perchlorate, nitrate, and thiocyanate exposure and arthritis, as well as the potential role of inflammation in this context. Methods Utilizing the National Health and Nutrition Examination Survey (NHANES) data spanning from 2005 to 2016, the study enrolled 6597 participants aged 20-59 (young and middle-aged), of which 1045 had arthritis. Employing multivariate logistic regression modeling, multiple linear regression models, restricted cubic spline analysis, Bayesian kernel machine regression (BKMR) modeling, and mediation analysis, we assessed these relationships. Results There was a significant positive association between elevated urinary thiocyanate levels and arthritis risk [1.19 (1.11, 1.28)]. This association held true across subgroups of osteoarthritis (OA) [1.24 (1.10, 1.40)] and rheumatoid arthritis (RA) [1.33 (1.15, 1.55)]. Thiocyanate levels displayed a dose-dependent relationship with arthritis risk, showing a linear trend (nonlinear P > 0.05). Conversely, perchlorate and nitrate did not exhibit associations with arthritis risk. BKMR outcomes highlighted a positive correlation between a mixture of perchlorate, nitrate, and thiocyanate and arthritis risk, with thiocyanate being the predominant predictors. Moreover, BKMR and generalized linear model analyses unveiled no significant synergistic effect of urinary perchlorate, nitrate, and thiocyanate on arthritis risk. Furthermore, thiocyanate exposure has been linked to elevated levels of inflammatory indicators (white blood cell, neutrophils, lymphocytes, and systemic immune-inflammatory index (SII)). Conclusion Heightened thiocyanate exposure may be linked to elevated arthritis risk, either single or in combined effects. Additionally, thiocyanate exposure is associated with heightened inflammation levels.
Collapse
Affiliation(s)
- Hui Zhao
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China
- The Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, Anhui, China
| | - Xuyang Chen
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China
- The Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, Anhui, China
| | - Jianping Ni
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China
- The Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, Anhui, China
| | - Lanlan Fang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China
- The Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, Anhui, China
| | - Yuting Chen
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China
- The Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, Anhui, China
| | - Yubo Ma
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China
- The Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, Anhui, China
| | - Guoqi Cai
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China
- The Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, Anhui, China
| | - Faming Pan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China
- The Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
4
|
Kim SO, Shapiro JP, Cottrill KA, Collins GL, Shanthikumar S, Rao P, Ranganathan S, Stick SM, Orr ML, Fitzpatrick AM, Go YM, Jones DP, Tirouvanziam RM, Chandler JD. Substrate-dependent metabolomic signatures of myeloperoxidase activity in airway epithelial cells: Implications for early cystic fibrosis lung disease. Free Radic Biol Med 2023; 206:180-190. [PMID: 37356776 PMCID: PMC10513041 DOI: 10.1016/j.freeradbiomed.2023.06.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 06/14/2023] [Accepted: 06/23/2023] [Indexed: 06/27/2023]
Abstract
Myeloperoxidase (MPO) is released by neutrophils in inflamed tissues. MPO oxidizes chloride, bromide, and thiocyanate to produce hypochlorous acid (HOCl), hypobromous acid (HOBr), and hypothiocyanous acid (HOSCN), respectively. These oxidants are toxic to pathogens, but may also react with host cells to elicit biological activity and potential toxicity. In cystic fibrosis (CF) and related diseases, increased neutrophil inflammation leads to increased airway MPO and airway epithelial cell (AEC) exposure to its oxidants. In this study, we investigated how equal dose-rate exposures of MPO-derived oxidants differentially impact the metabolome of human AECs (BEAS-2B cells). We utilized enzymatic oxidant production with rate-limiting glucose oxidase (GOX) coupled to MPO, and chloride, bromide (Br-), or thiocyanate (SCN-) as substrates. AECs exposed to GOX/MPO/SCN- (favoring HOSCN) were viable after 24 h, while exposure to GOX/MPO (favoring HOCl) or GOX/MPO/Br- (favoring HOBr) developed cytotoxicity after 6 h. Cell glutathione and peroxiredoxin-3 oxidation were insufficient to explain these differences. However, untargeted metabolomics revealed GOX/MPO and GOX/MPO/Br- diverged significantly from GOX/MPO/SCN- for dozens of metabolites. We noted methionine sulfoxide and dehydromethionine were significantly increased in GOX/MPO- or GOX/MPO/Br--treated cells, and analyzed them as potential biomarkers of lung damage in bronchoalveolar lavage fluid from 5-year-olds with CF (n = 27). Both metabolites were associated with increasing bronchiectasis, neutrophils, and MPO activity. This suggests MPO production of HOCl and/or HOBr may contribute to inflammatory lung damage in early CF. In summary, our in vitro model enabled unbiased identification of exposure-specific metabolite products which may serve as biomarkers of lung damage in vivo. Continued research with this exposure model may yield additional oxidant-specific biomarkers and reveal explicit mechanisms of oxidant byproduct formation and cellular redox signaling.
Collapse
Affiliation(s)
- Susan O Kim
- Department of Pediatrics, Division of Pulmonary, Asthma, Cystic Fibrosis, and Sleep, Emory University, Atlanta, GA, USA
| | - Joseph P Shapiro
- Department of Pediatrics, Division of Pulmonary, Asthma, Cystic Fibrosis, and Sleep, Emory University, Atlanta, GA, USA
| | - Kirsten A Cottrill
- Department of Pediatrics, Division of Pulmonary, Asthma, Cystic Fibrosis, and Sleep, Emory University, Atlanta, GA, USA
| | - Genoah L Collins
- Department of Pediatrics, Division of Pulmonary, Asthma, Cystic Fibrosis, and Sleep, Emory University, Atlanta, GA, USA
| | - Shivanthan Shanthikumar
- Respiratory and Sleep Medicine, Royal Children's Hospital, Parkville, VIC, Australia; Respiratory Diseases, Murdoch Children's Research Institute, Parkville, VIC, Australia; Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia
| | - Padma Rao
- Medical Imaging, Royal Children's Hospital, Parkville, VIC, Australia
| | - Sarath Ranganathan
- Respiratory and Sleep Medicine, Royal Children's Hospital, Parkville, VIC, Australia; Respiratory Diseases, Murdoch Children's Research Institute, Parkville, VIC, Australia; Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia
| | - Stephen M Stick
- Telethon Kids Institute, Perth, Western Australia, Australia
| | - Michael L Orr
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Emory University, Atlanta, GA, USA
| | - Anne M Fitzpatrick
- Department of Pediatrics, Division of Pulmonary, Asthma, Cystic Fibrosis, and Sleep, Emory University, Atlanta, GA, USA; Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Young-Mi Go
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Emory University, Atlanta, GA, USA
| | - Dean P Jones
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Emory University, Atlanta, GA, USA
| | - Rabindra M Tirouvanziam
- Department of Pediatrics, Division of Pulmonary, Asthma, Cystic Fibrosis, and Sleep, Emory University, Atlanta, GA, USA; Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Joshua D Chandler
- Department of Pediatrics, Division of Pulmonary, Asthma, Cystic Fibrosis, and Sleep, Emory University, Atlanta, GA, USA; Department of Medicine, Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Emory University, Atlanta, GA, USA; Children's Healthcare of Atlanta, Atlanta, GA, USA.
| |
Collapse
|
5
|
Meredith JD, Gray MJ. Hypothiocyanite and host-microbe interactions. Mol Microbiol 2023; 119:302-311. [PMID: 36718113 DOI: 10.1111/mmi.15025] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/30/2022] [Accepted: 01/03/2023] [Indexed: 02/01/2023]
Abstract
The pseudohypohalous acid hypothiocyanite/hypothiocyanous acid (OSCN- /HOSCN) has been known to play an antimicrobial role in mammalian immunity for decades. It is a potent oxidant that kills bacteria but is non-toxic to human cells. Produced from thiocyanate (SCN- ) and hydrogen peroxide (H2 O2 ) in a variety of body sites by peroxidase enzymes, HOSCN has been explored as an agent of food preservation, pathogen killing, and even improved toothpaste. However, despite the well-recognized antibacterial role HOSCN plays in host-pathogen interactions, little is known about how bacteria sense and respond to this oxidant. In this work, we will summarize what is known and unknown about HOSCN in innate immunity and recent advances in understanding the responses that both pathogenic and non-pathogenic bacteria mount against this antimicrobial agent, highlighting studies done with three model organisms, Escherichia coli, Streptococcus spp., and Pseudomonas aeruginosa.
Collapse
Affiliation(s)
- Julia D Meredith
- Department of Microbiology, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, Alabama, USA
| | - Michael J Gray
- Department of Microbiology, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, Alabama, USA
| |
Collapse
|
6
|
Han Y, Li D, Zou C, Li Y, Zhao F. Effects of perchlorate, nitrate, and thiocyanate exposures on serum total testosterone in children and adolescents. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 861:160566. [PMID: 36574544 DOI: 10.1016/j.scitotenv.2022.160566] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 11/24/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
Perchlorate, nitrate, and thiocyanate are common thyroid disruptors in daily life and alter testosterone levels in animals. However, little is known about the effects of perchlorate, nitrate, and thiocyanate on serum total testosterone (TT) in the general population. The study was designed to assess the associations between urinary levels of perchlorate, nitrate, and thiocyanate and serum total testosterone (TT) in the general population. The present study utilized data from the 2011-2016 National Health and Nutritional Examination Survey (NHANES). A total of 6201 participants aged 6-79 with information on urinary perchlorate, nitrate, thiocyanate, and serum total testosterone were included. We conducted multiple linear regression models and Bayesian Kernel Machine Regression (BKMR) models to estimate the associations by sex-age groups. Children (ages 6-11) have higher levels of perchlorate and nitrate than the rest. After adjusting for covariates, urinary perchlorate was significantly negatively associated with serum TT in male adolescents (β = -0.1, 95 % confidence interval: -0.2, -0.01) and female children [-0.13, (-0.21, -0.05)]. Urinary nitrate was significantly negatively associated with serum TT in female children, while urinary thiocyanate was significantly positively associated with serum TT in female adults aged 20 to 49 [0.05 (0.02, 0.08)]. BKMR analysis indicated that no other interactions were found between urinary perchlorate, nitrate, and thiocyanate. Our findings suggested that urinary perchlorate, nitrate, and thiocyanate levels may relate to serum total testosterone levels in specific sex-age groups. We identified male adolescents and female children as are most sensitive subgroups where testosterone is susceptible to interference.
Collapse
Affiliation(s)
- Yingying Han
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Dandan Li
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Chenxi Zou
- Department of Respiratory and Critical Medicine, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Yonggang Li
- Hubei Provincial Key Laboratory for Applied Toxicology, Hubei Provincial Centre for Disease Control and Prevention, Wuhan, China; National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China.
| | - Feng Zhao
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China.
| |
Collapse
|
7
|
Sarfraz M, Nasim MJ, Gruhlke MCH, Handzlik J, Jacob C. To Cut the Mustard: Antimicrobial Activity of Selenocyanates on the Plate and in the Gas Phase. Antibiotics (Basel) 2023; 12:antibiotics12020290. [PMID: 36830201 PMCID: PMC9952309 DOI: 10.3390/antibiotics12020290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 01/26/2023] [Accepted: 01/28/2023] [Indexed: 02/04/2023] Open
Abstract
Organic selenocyanates (RSeCN) are among the most reactive and biologically active Se species, often exhibiting a pronounced cytotoxic activity against mammalian cells and microorganisms. Various aromatic selenocyanates have been synthesized and, similar to some of the most Reactive Sulfur Species (RSS), such as allicin, found to be active against a range of bacteria, including Escherichia coli, Pseudomonas syringae and Micrococcus luteus, and fungi, including Verticillium dahlia, Verticillium longisporum, Alternaria brassicicola, and Botrytis cinerea, even via the gas phase. The highest antimicrobial activity has been observed for benzyl selenocyanate, which inhibited the growth of all bacteria considerably, even at the lowest tested concentration of 50 µM. Notably, neither the analogues thiocyanate (BTC) nor isothiocyanate (BITC) show any of these activities, rendering this selenium motif rather special in activity and mode of action. Eventually, these findings advocate a range of potential applications of organic selenocyanates in medicine and agriculture.
Collapse
Affiliation(s)
- Muhammad Sarfraz
- Department of Plant Physiology, RWTH Aachen University, Worringer Weg 1, 52056 Aachen, Germany
- Division of Bioorganic Chemistry, Saarland University, Campus B2 1, 66123 Saarbruecken, Germany
| | - Muhammad Jawad Nasim
- Division of Bioorganic Chemistry, Saarland University, Campus B2 1, 66123 Saarbruecken, Germany
- Correspondence: (M.J.N.); (C.J.); Tel.: +49-681-302-57335 (M.J.N.); +49-681-302-3129 (C.J.)
| | - Martin C. H. Gruhlke
- Department of Plant Physiology, RWTH Aachen University, Worringer Weg 1, 52056 Aachen, Germany
| | - Jadwiga Handzlik
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College in Kraków, Medyczna 9, 30-688 Cracow, Poland
| | - Claus Jacob
- Division of Bioorganic Chemistry, Saarland University, Campus B2 1, 66123 Saarbruecken, Germany
- Correspondence: (M.J.N.); (C.J.); Tel.: +49-681-302-57335 (M.J.N.); +49-681-302-3129 (C.J.)
| |
Collapse
|
8
|
Xu S, Chuang CY, Malle E, Gamon LF, Hawkins CL, Davies MJ. Influence of plasma halide, pseudohalide and nitrite ions on myeloperoxidase-mediated protein and extracellular matrix damage. Free Radic Biol Med 2022; 188:162-174. [PMID: 35718304 DOI: 10.1016/j.freeradbiomed.2022.06.222] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 06/11/2022] [Indexed: 01/15/2023]
Abstract
Myeloperoxidase (MPO) mediates pathogen destruction by generating the bactericidal oxidant hypochlorous acid (HOCl). Formation of this oxidant is however associated with host tissue damage and disease. MPO also utilizes H2O2 to oxidize other substrates, and we hypothesized that mixtures of other plasma anions, including bromide (Br-), iodide (I-), thiocyanate (SCN-) and nitrite (NO2-), at normal or supplemented concentrations, might modulate MPO-mediated HOCl damage. For the (pseudo)halide anions, only SCN- significantly modulated HOCl formation (IC50 ∼33 μM), which is within the normal physiological range, as judged by damage to human plasma fibronectin or extracellular matrix preparations detected by ELISA and LC-MS. NO2- modulated HOCl-mediated damage, in a dose-dependent manner, at physiologically-attainable anion concentrations. However, this was accompanied by increased tyrosine and tryptophan nitration (detected by ELISA and LC-MS), and the overall extent of damage remained approximately constant. Increasing NO2- concentrations (0.5-20 μM) diminished HOCl-mediated modification of tyrosine and methionine, whereas tryptophan loss was enhanced. At higher NO2- concentrations, enhanced tyrosine and methionine loss was detected. These analytical data were confirmed in studies of cell adhesion and metabolic activity. Together, these data indicate that endogenous plasma levels of SCN- (but not Br- or I-) can modulate protein modification induced by MPO, including the extent of chlorination. In contrast, NO2- alters the type of modification, but does not markedly decrease its extent, with chlorination replaced by nitration. These data also indicate that MPO could be a major source of nitration in vivo, and particularly at inflammatory sites where NO2- levels are often elevated.
Collapse
Affiliation(s)
- Shuqi Xu
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Denmark
| | - Christine Y Chuang
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Denmark
| | - Ernst Malle
- Division of Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
| | - Luke F Gamon
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Denmark
| | - Clare L Hawkins
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Denmark
| | - Michael J Davies
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Denmark.
| |
Collapse
|
9
|
The Use of Thiocyanate Formulations to Create Manganese Porphyrin Antioxidants That Supplement Innate Immunity. Antioxidants (Basel) 2022; 11:antiox11071252. [PMID: 35883743 PMCID: PMC9311894 DOI: 10.3390/antiox11071252] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 06/02/2022] [Accepted: 06/09/2022] [Indexed: 01/25/2023] Open
Abstract
The innate immune response to infection results in inflammation and oxidative damage, creating a paradox where most anti-inflammatory and antioxidant therapies can further suppress an already inadequate immune response. We have previously reported the beneficial effects of the exogenous supplementation of innate immunity with small pseudohalide thiocyanate (−SCN) in a mouse model of a cystic fibrosis (CF) lung infection and inflammation. The object of this study was to evaluate the use of −SCN as a counter anion for cationic manganese porphyrin (MnP) catalytic antioxidants, which could increase the parent compound’s antioxidant spectrum against hypohalous acids while supplementing innate immunity. The antioxidant activities of the parent compound were examined, as its chloride salt was compared with the −SCN-anion exchanged compound, (MnP(SCN) versus MnP(Cl)). We measured the superoxide dismutase activity spectrophotometrically and performed hydrogen peroxide scavenging using oxygen and hydrogen peroxide electrodes. Peroxidase activity was measured using an amplex red assay. The inhibition of lipid peroxidation was assessed using a thiobarbituric acid reactive species (TBARS) assay. The effects of the MnP compounds on macrophage phagocytosis were assessed by flow cytometry. The abilities of the MnP(Cl) formulations to protect human bronchiolar epithelial cells against hypochlorite (HOCl) and glycine chloramine versus their MnP(SCN) formulations were assessed using a cell viability assay. We found that anions exchanging out the chloride for −SCN improved the cellular bioavailability but did not adversely affect the cell viability or phagocytosis and that they switched hydrogen-peroxide scavenging from a dismutation reaction to a peroxidase reaction. In addition, the −SCN formulations improved the ability of MnPs to protect human bronchiolar epithelial cells against hypochlorous acid (HOCl) and glycine chloramine toxicity. These novel types of antioxidants may be more beneficial in treating lung disease that is associated with chronic infections or acute infectious exacerbations.
Collapse
|
10
|
Ashtiwi NM, Sarr D, Nagy T, Reneer ZB, Tripp RA, Rada B. The Hypothiocyanite and Amantadine Combination Treatment Prevents Lethal Influenza A Virus Infection in Mice. Front Immunol 2022; 13:859033. [PMID: 35663985 PMCID: PMC9159274 DOI: 10.3389/fimmu.2022.859033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 04/12/2022] [Indexed: 11/21/2022] Open
Abstract
The influenza virus has a large clinical burden and is associated with significant mortality and morbidity. The development of effective drugs for the treatment or prevention of influenza is important in order to reduce its impact. Adamantanes and neuraminidase inhibitors are two classes of anti-influenza drugs in which resistance has developed; thus, there is an urgent need to explore new therapeutic options. Boosting antiviral innate immune mechanisms in the airways represents an attractive approach. Hypothiocyanite (OSCN-) is produced by the airway epithelium and is effective in reducing the replication of several influenza A virus strains in vitro. It remains, however, largely unexplored whether OSCN- has such an antiviral effect in vivo. Here we determined the therapeutic potential of OSCN-, alone or in combination with amantadine (AMT), in preventing lethal influenza A virus replication in mice and in vitro. Mice intranasally infected with a lethal dose of A/Puerto Rico/8/1934 (H1N1) or A/Hong Kong/8/1968 (H3N2) were cured by the combination treatment of OSCN- and AMT. Monotherapy with OSCN- or AMT alone did not substantially improve survival outcomes. However, AMT+OSCN- treatment significantly inhibited viral replication, and in vitro treatment inhibited viral entry and nuclear transport of different influenza A virus strains (H1N1 and H3N2) including the AMT-resistant strain A/WSN/33 (H1N1). A triple combination treatment consisting of AMT, oseltamivir, and OSCN- was also tested and further inhibited in vitro viral replication of the AMT-resistant A/WSN/33 strain. These results suggest that OSCN- is a promising anti-influenza treatment option when combined with other antiviral drugs.
Collapse
Affiliation(s)
- Nuha Milad Ashtiwi
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Demba Sarr
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Tamás Nagy
- Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Z. Beau Reneer
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Ralph A. Tripp
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Balázs Rada
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| |
Collapse
|
11
|
Wang L, Fu Z, Zheng J, Wang S, Ping Y, Gao B, Mo X, Liang P, Huang J. Exposure to perchlorate, nitrate and thiocyanate was associated with the prevalence of cardiovascular diseases. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 230:113161. [PMID: 34999343 DOI: 10.1016/j.ecoenv.2022.113161] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 12/29/2021] [Accepted: 01/01/2022] [Indexed: 06/14/2023]
Abstract
AIMS To determine the association between urinary levels of perchlorate, nitrate and thiocyanate, and the prevalence of cardiovascular diseases (CVD) among general population. METHODS A total of 16, 570 participants were enrolled from the National Health and Nutrition Examination Surveys (NHANES). Urinary levels of perchlorate, nitrate and thiocyanate were measured using ion chromatography coupled with electrospray tandem mass spectrometry. Multivariable linear regressions and logistic regressions were performed to explore the associations of exposure to perchlorate, nitrate and thiocyanate, and the prevalence of total and specific CVD, including chronic heart failure (CHF), coronary heart disease (CHD), angina, heart failure and stroke. Restricted cubic splines were used to explore the nonlinearity. RESULTS Participants with CVD had a lower urinary level of nitrate and thiocyanate (all P < 0.001). A null association between urinary perchlorate and total CVD or specific CVD was observed. Comparing with the lowest quartile, the highest quartile of urinary nitrate was independently associated with a decreased presence of total CVD (odds ratio [OR] 0.66, 95% confidence interval [CI] [0.53, 0.82]), CHF (OR 0.48, 95% CI [0.33, 0.71]), and stroke (OR 0.63, 95%CI [0.45, 0.88]). In addition, per one-fold increasement of urinary nitrate decreased a 0.15-fold prevalence of total CVD, 0.29-fold prevalence of CHF, and 0.16-fold prevalence of stroke. However, for urinary thiocyanate, we found that the 2nd and 3rd quartile were associated with total CVD, the 2nd quartile associated with heart attack, and the 2nd, 3rd and 4th quartile associated with stroke. What's more, restricted cubic splines confirmed that the relation between urinary nitrate and CVD was linear (P for nonlinearity = 0.242) and the inverse relation between urinary thiocyanate and CVD was nonlinear (P for nonlinearity < 0.001). CONCLUSION In the general population, low levels of nitrate were linearly while thiocyanate were nonlinearly associated with an increased presence of cardiovascular diseases.
Collapse
Affiliation(s)
- Long Wang
- Department of Cardiology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Center for Translational Medicine, The Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhi Fu
- Department of Cardio-macrovascular Surgery, The Affiliated Hospital of Yangzhou University, Yangzhou, China
| | - Jie Zheng
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Shuai Wang
- Department of Cardiology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Center for Translational Medicine, The Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yan Ping
- Department of Cardiology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Center for Translational Medicine, The Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Beibei Gao
- Department of Cardiology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Center for Translational Medicine, The Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xuming Mo
- Department of Cardiothoracic Surgery, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing, China.
| | - Ping Liang
- Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, The First Affiliated Hospital, Zhejiang University School of Medicine, Institute of Translational Medicine, Zhejiang University, Hangzhou 310029, China.
| | - Jinyu Huang
- Department of Cardiology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Center for Translational Medicine, The Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
12
|
Khobjai W, Ninlaor W, Watcharasamphankul W, Thongom T, Sukati S. Modulation of platelet functions by Careya sphaerica Roxb. leave extracts. J Adv Pharm Technol Res 2021; 12:420-424. [PMID: 34820319 PMCID: PMC8588925 DOI: 10.4103/japtr.japtr_95_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 06/29/2021] [Accepted: 07/19/2021] [Indexed: 11/18/2022] Open
Abstract
Platelets form a plug to prevent blood loss and contribute to wound healing. Kradonbok, Careya sphaerica Roxb., is a Thai plant with medicinal properties. Conventionally, leaves of C. sphaerica are being used to help wound healing in Thailand. The present study was aimed to investigate the effect of C. sphaerica on the function of platelet. Four different extracts of leaves of C. sphaerica (distilled water, methanol, ethanol, and chloroform extracts) were prepared. The extracts at 5.0 mg/ml per dose were tested for the effect of C. sphaerica on platelet adhesion and aggregation properties, by employing a microtiter plate approach. The phytochemical identification was done by using gas chromatography–mass spectrometry (GC-MS). Our data revealed that chloroform extract significantly activated thrombin-induced platelet adhesion (105.27 ± 0.11%, P < 0.05). None of the extracts exhibited an improvement in platelet aggregation. Further GC-MS analysis of the chloroform extract revealed five key phytochemical constituents with potential platelet activation properties. In conclusion, our study evaluated platelet activation and potentially wound healing property of C. sphaerica. GC-MS analysis identified potential bioactive phytochemical compounds in C. sphaerica which warrant further investigation to characterize these compounds.
Collapse
Affiliation(s)
- Warachate Khobjai
- Department of Preclinic, Faculty of Medicine, Siam University, Phasi Charoen, Bangkok, Thailand
| | - Wanvisa Ninlaor
- Department of Thai Traditional Medicine, Thai Traditional Medicine College, Rajamangala University of Technology Thanyaburi, Pathum Thani, Thailand
| | - Worawan Watcharasamphankul
- Department of Clinical Microbiology, Faculty of Medical Technology, Nation University, Lampang, Thailand
| | - Thaksaorn Thongom
- Department of Thai Traditional Medicine, Thai Traditional Medicine College, Rajamangala University of Technology Thanyaburi, Pathum Thani, Thailand
| | - Suriyan Sukati
- Department of Medical Technology, School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat, Thailand
| |
Collapse
|
13
|
Microbicidal Activity of Hypothiocyanite against Pneumococcus. Antibiotics (Basel) 2021; 10:antibiotics10111313. [PMID: 34827251 PMCID: PMC8614991 DOI: 10.3390/antibiotics10111313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/21/2021] [Accepted: 10/26/2021] [Indexed: 11/17/2022] Open
Abstract
Infections caused by Streptococcus pneumoniae (pneumococcus, Spn) manifest in several forms such as pneumonia, meningitis, sinusitis or otitis media and are associated with severe morbidity and mortality worldwide. While current vaccines and antibiotics are available to treat Spn infections, the rise of antibiotic resistance and limitations of the vaccines to only certain Spn serotypes urge the development of novel treatments against Spn. Hypothiocyanite (OSCN-) is a natural antimicrobial product produced by the body's own innate immune system to fight a variety of pathogens. We recently showed that OSCN- is also capable of killing Spn in vitro. OSCN- is an oxidative agent attacking microbes in a nonspecific manner, is safe for the host and also has anti-inflammatory effects that make it an ideal candidate to treat a variety of infections in humans. However, OSCN- has a short life span that makes its use, dosage and administration more problematic. This minireview discusses the antimicrobial mechanism of action of OSCN- against Spn and elaborates on the potential therapeutic use of OSCN- against Spn and other infectious agents, either alone or in combination with other therapeutic approaches.
Collapse
|
14
|
Zhu F, Jiao J, Zhuang P, Huang M, Zhang Y. Association of exposures to perchlorate, nitrate, and thiocyanate with allergic symptoms: A population-based nationwide cohort study. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 283:117068. [PMID: 33892368 DOI: 10.1016/j.envpol.2021.117068] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 03/05/2021] [Accepted: 03/30/2021] [Indexed: 06/12/2023]
Abstract
Allergic diseases have been one of the leading causes of chronic disorders in the United States. Animal studies have suggested that exposures to perchlorate, nitrate, and thiocyanate could induce allergic inflammation. However, the associations have not been examined among general populations. Here, we investigated data of 7030 participants aged ≥6 years from the National Health and Nutritional Examination Survey (NHANES) 2005-2006. Urinary levels of perchlorate, nitrate, and thiocyanate were measured by ion chromatography combined with electrospray tandem mass spectrometry. Information on allergic symptoms (hay fever, allergy, rash, sneeze, wheeze, eczema, and current asthma) was collected by questionnaire. Allergic sensitization was defined by a concentration ≥150 kU/L for total immunoglobulin E (IgE) levels. The associations were estimated using multivariate-adjusted logistic regression models. A positive association was observed for urinary nitrate and eczema (p < 0.001 for the trend). Compared with quartile 1 (lowest quartile), the odds ratios of eczema with 95% confidence intervals [ORs (95% CIs)] from quartiles 2 to 4 were 1.72 (95% CI, 1.41, 2.09), 1.94 (1.53, 2.47) and 2.10 (1.49, 2.97) for urinary nitrate. In addition, urinary thiocyanate was positively related to sneeze (ORQ4 vs. Q1: 1.25, 95% CI: 1.01, 1.55; p = 0.015 for the trend). However, urinary perchlorate was not correlated with any allergic-related outcome. Additionally, the associations were different among subgroups in a four-level polytomous model. Thus, our results suggested that exposures to nitrate and thiocyanate may be associated with allergic symptoms. Further investigations are warranted to concentrate on the practical strategies to monitor exposure levels and the latent mechanisms of the relationship between exposure and allergy.
Collapse
Affiliation(s)
- Fanghuan Zhu
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jingjing Jiao
- Department of Nutrition and Food Hygiene, School of Public Health, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Pan Zhuang
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Mengmeng Huang
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yu Zhang
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
15
|
Sarr D, Gingerich AD, Asthiwi NM, Almutairi F, Sautto GA, Ecker J, Nagy T, Kilgore MB, Chandler JD, Ross TM, Tripp RA, Rada B. Dual oxidase 1 promotes antiviral innate immunity. Proc Natl Acad Sci U S A 2021; 118:e2017130118. [PMID: 34168077 PMCID: PMC8256044 DOI: 10.1073/pnas.2017130118] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Indexed: 12/30/2022] Open
Abstract
Dual oxidase 1 (DUOX1) is an NADPH oxidase that is highly expre-ssed in respiratory epithelial cells and produces H2O2 in the airway lumen. While a line of prior in vitro observations suggested that DUOX1 works in partnership with an airway peroxidase, lactoperoxidase (LPO), to produce antimicrobial hypothiocyanite (OSCN-) in the airways, the in vivo role of DUOX1 in mammalian organisms has remained unproven to date. Here, we show that Duox1 promotes antiviral innate immunity in vivo. Upon influenza airway challenge, Duox1-/- mice have enhanced mortality, morbidity, and impaired lung viral clearance. Duox1 increases the airway levels of several cytokines (IL-1β, IL-2, CCL1, CCL3, CCL11, CCL19, CCL20, CCL27, CXCL5, and CXCL11), contributes to innate immune cell recruitment, and affects epithelial apoptosis in the airways. In primary human tracheobronchial epithelial cells, OSCN- is generated by LPO using DUOX1-derived H2O2 and inactivates several influenza strains in vitro. We also show that OSCN- diminishes influenza replication and viral RNA synthesis in infected host cells that is inhibited by the H2O2 scavenger catalase. Binding of the influenza virus to host cells and viral entry are both reduced by OSCN- in an H2O2-dependent manner in vitro. OSCN- does not affect the neuraminidase activity or morphology of the influenza virus. Overall, this antiviral function of Duox1 identifies an in vivo role of this gene, defines the steps in the infection cycle targeted by OSCN-, and proposes that boosting this mechanism in vivo can have therapeutic potential in treating viral infections.
Collapse
Affiliation(s)
- Demba Sarr
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602
| | - Aaron D Gingerich
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602
| | - Nuha Milad Asthiwi
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602
| | - Faris Almutairi
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, GA 30602
| | - Giuseppe A Sautto
- Center for Vaccines and Immunology, University of Georgia, Athens, GA 30602
| | - Jeffrey Ecker
- Center for Vaccines and Immunology, University of Georgia, Athens, GA 30602
| | - Tamás Nagy
- Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602
| | - Matthew B Kilgore
- Department of Pediatrics, Division of Pulmonary, Allergy and Immunology, Cystic Fibrosis, and Sleep Medicine, Emory University School of Medicine, Atlanta, GA 30322
- Center for Cystic Fibrosis and Airways Disease Research, Children's Healthcare of Atlanta, Atlanta, GA 30322
| | - Joshua D Chandler
- Department of Pediatrics, Division of Pulmonary, Allergy and Immunology, Cystic Fibrosis, and Sleep Medicine, Emory University School of Medicine, Atlanta, GA 30322
- Center for Cystic Fibrosis and Airways Disease Research, Children's Healthcare of Atlanta, Atlanta, GA 30322
| | - Ted M Ross
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602
- Center for Vaccines and Immunology, University of Georgia, Athens, GA 30602
| | - Ralph A Tripp
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602
| | - Balázs Rada
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602;
| |
Collapse
|
16
|
Oral pre-treatment with thiocyanate (SCN -) protects against myocardial ischaemia-reperfusion injury in rats. Sci Rep 2021; 11:12712. [PMID: 34135432 PMCID: PMC8209016 DOI: 10.1038/s41598-021-92142-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 06/07/2021] [Indexed: 01/15/2023] Open
Abstract
Despite improvements in revascularization after a myocardial infarction, coronary disease remains a major contributor to global mortality. Neutrophil infiltration and activation contributes to tissue damage, via the release of myeloperoxidase (MPO) and formation of the damaging oxidant hypochlorous acid. We hypothesized that elevation of thiocyanate ions (SCN−), a competitive MPO substrate, would modulate tissue damage. Oral dosing of rats with SCN−, before acute ischemia–reperfusion injury (30 min occlusion, 24 h or 4 week recovery), significantly reduced the infarct size as a percentage of the total reperfused area (54% versus 74%), and increased the salvageable area (46% versus 26%) as determined by MRI imaging. No difference was observed in fractional shortening, but supplementation resulted in both left-ventricle end diastolic and left-ventricle end systolic areas returning to control levels, as determined by echocardiography. Supplementation also decreased antibody recognition of HOCl-damaged myocardial proteins. SCN− supplementation did not modulate serum markers of damage/inflammation (ANP, BNP, galectin-3, CRP), but returned metabolomic abnormalities (reductions in histidine, creatine and leucine by 0.83-, 0.84- and 0.89-fold, respectively), determined by NMR, to control levels. These data indicate that elevated levels of the MPO substrate SCN−, which can be readily modulated by dietary means, can protect against acute ischemia–reperfusion injury.
Collapse
|
17
|
Medapati MR, Singh N, Bhagirath AY, Duan K, Triggs-Raine B, Batista EL, Chelikani P. Bitter taste receptor T2R14 detects quorum sensing molecules from cariogenic Streptococcus mutans and mediates innate immune responses in gingival epithelial cells. FASEB J 2021; 35:e21375. [PMID: 33559200 DOI: 10.1096/fj.202000208r] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 12/18/2020] [Accepted: 01/04/2021] [Indexed: 12/26/2022]
Abstract
Host-pathogen interactions play an important role in defining the outcome of a disease. Recent studies have shown that the bacterial quorum sensing molecules (QSM) can interact with host cell membrane proteins, mainly G protein-coupled receptors (GPCRs), and induce innate immune responses. However, few studies have examined QSM-GPCR interactions and their influence on oral innate immune responses. In this study, we examined the role of bitter taste receptor T2R14 in sensing competence stimulating peptides (CSPs) secreted by cariogenic bacterium Streptococcus mutans and in mediating innate immune responses in gingival epithelial cells (GECs). Transcriptomic and western blot analyses identify T2R14 to be highly expressed in GECs. Our data show that only CSP-1 from S. mutans induces robust intracellular calcium mobilization compared to CSP-2 and CSP-3. By using CRISPR-Cas9, we demonstrate that CSP-1 induced calcium signaling and secretion of cytokines CXCL-8/IL-8, TNF-α, and IL-6 is mediated through T2R14 in GECs. Interestingly, the NF-kB signaling activated by CSP-1 in GECs was independent of T2R14. CSP-1-primed GECs attracted differentiated HL-60 immune cells (dHL-60) and this effect was abolished in T2R14 knock down GECs and also in cells primed with T2R14 antagonist 6-Methoxyflavone (6-MF). Our findings identify S. mutans CSP-1 as a peptide ligand for the T2R family. Our study establishes a novel host-pathogen interaction between cariogenic S. mutans CSP-1 and T2R14 in GECs leading to an innate immune response. Collectively, these findings suggest T2Rs as potential therapeutic targets to modulate innate immune responses upon oral bacterial infections.
Collapse
Affiliation(s)
- Manoj Reddy Medapati
- Manitoba Chemosensory Biology Research Group and Department of Oral Biology, Dr. Gerald Niznick College of Dentistry, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
| | - Nisha Singh
- Manitoba Chemosensory Biology Research Group and Department of Oral Biology, Dr. Gerald Niznick College of Dentistry, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
| | - Anjali Yadav Bhagirath
- Manitoba Chemosensory Biology Research Group and Department of Oral Biology, Dr. Gerald Niznick College of Dentistry, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada.,Children's Hospital Research Institute of Manitoba (CHRIM), University of Manitoba, Winnipeg, Canada
| | - Kangmin Duan
- Manitoba Chemosensory Biology Research Group and Department of Oral Biology, Dr. Gerald Niznick College of Dentistry, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada.,Children's Hospital Research Institute of Manitoba (CHRIM), University of Manitoba, Winnipeg, Canada
| | - Barbara Triggs-Raine
- Children's Hospital Research Institute of Manitoba (CHRIM), University of Manitoba, Winnipeg, Canada.,Department of Biochemistry and Medical Genetics, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
| | - Eraldo L Batista
- Department of Dental Diagnostic and Clinical Sciences, Dr. Gerald Niznick College of Dentistry, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
| | - Prashen Chelikani
- Manitoba Chemosensory Biology Research Group and Department of Oral Biology, Dr. Gerald Niznick College of Dentistry, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada.,Children's Hospital Research Institute of Manitoba (CHRIM), University of Manitoba, Winnipeg, Canada
| |
Collapse
|
18
|
Myeloperoxidase: Mechanisms, reactions and inhibition as a therapeutic strategy in inflammatory diseases. Pharmacol Ther 2021; 218:107685. [DOI: 10.1016/j.pharmthera.2020.107685] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 09/09/2020] [Indexed: 12/17/2022]
|
19
|
Flouda K, Gammelgaard B, Davies MJ, Hawkins CL. Modulation of hypochlorous acid (HOCl) induced damage to vascular smooth muscle cells by thiocyanate and selenium analogues. Redox Biol 2021; 41:101873. [PMID: 33550113 PMCID: PMC7868818 DOI: 10.1016/j.redox.2021.101873] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/12/2021] [Accepted: 01/14/2021] [Indexed: 02/08/2023] Open
Abstract
The production of hypochlorous acid (HOCl) by myeloperoxidase (MPO) plays a key role in immune defense, but also induces host tissue damage, particularly in chronic inflammatory pathologies, including atherosclerosis. This has sparked interest in the development of therapeutic approaches that decrease HOCl formation during chronic inflammation, including the use of alternative MPO substrates. Thiocyanate (SCN−) supplementation decreases HOCl production by favouring formation of hypothiocyanous acid (HOSCN), which is more selectively toxic to bacterial cells. Selenium-containing compounds are also attractive therapeutic agents as they react rapidly with HOCl and can be catalytically recycled. In this study, we examined the ability of SCN−, selenocyanate (SeCN−) and selenomethionine (SeMet) to modulate HOCl-induced damage to human coronary artery smooth muscle cells (HCASMC), which are critical to both normal vessel function and lesion formation in atherosclerosis. Addition of SCN− prevented HOCl-induced cell death, altered the pattern and extent of intracellular thiol oxidation, and decreased perturbations to calcium homeostasis and pro-inflammatory signaling. Protection was also observed with SeCN− and SeMet, though SeMet was less effective than SeCN− and SCN−. Amelioration of damage was detected with sub-stoichiometric ratios of the added compound to HOCl. The effects of SCN− are consistent with conversion of HOCl to HOSCN. Whilst SeCN− prevented HOCl-induced damage to a similar extent to SCN−, the resulting product hyposelenocyanous acid (HOSeCN), was more toxic to HCASMC than HOSCN. These results provide support for the use of SCN− and/or selenium analogues as scavengers, to decrease HOCl-induced cellular damage and HOCl production at inflammatory sites in atherosclerosis and other pathologies. HOCl induces extensive smooth muscle cell death and irreversible thiol oxidation. Addition of SCN− decreases the extent of HOCl-induced cell damage. SeCN− has similar protective effects to SCN− towards HOCl-induced cell damage. HOSeCN is less toxic than HOCl but more damaging than HOSCN. SeMet modulates HOCl-induced damage but less effectively than SCN− or SeCN−.
Collapse
Affiliation(s)
- Konstantina Flouda
- Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3B, Copenhagen, DK-2200, Denmark
| | - Bente Gammelgaard
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, Copenhagen, DK-2100, Denmark
| | - Michael J Davies
- Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3B, Copenhagen, DK-2200, Denmark
| | - Clare L Hawkins
- Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3B, Copenhagen, DK-2200, Denmark.
| |
Collapse
|
20
|
Myeloperoxidase Modulates Hydrogen Peroxide Mediated Cellular Damage in Murine Macrophages. Antioxidants (Basel) 2020; 9:antiox9121255. [PMID: 33321763 PMCID: PMC7764223 DOI: 10.3390/antiox9121255] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 12/02/2020] [Accepted: 12/07/2020] [Indexed: 11/17/2022] Open
Abstract
Myeloperoxidase (MPO) is involved in the development of many chronic inflammatory diseases, in addition to its key role in innate immune defenses. This is attributed to the excessive production of hypochlorous acid (HOCl) by MPO at inflammatory sites, which causes tissue damage. This has sparked wide interest in the development of therapeutic approaches to prevent HOCl-induced cellular damage including supplementation with thiocyanate (SCN-) as an alternative substrate for MPO. In this study, we used an enzymatic system composed of glucose oxidase (GO), glucose, and MPO in the absence and presence of SCN-, to investigate the effects of generating a continuous flux of oxidants on macrophage cell function. Our studies show the generation of hydrogen peroxide (H2O2) by glucose and GO results in a dose- and time-dependent decrease in metabolic activity and cell viability, and the activation of stress-related signaling pathways. Interestingly, these damaging effects were attenuated by the addition of MPO to form HOCl. Supplementation with SCN-, which favors the formation of hypothiocyanous acid, could reverse this effect. Addition of MPO also resulted in upregulation of the antioxidant gene, NAD(P)H:quinone acceptor oxidoreductase 1. This study provides new insights into the role of MPO in the modulation of macrophage function, which may be relevant to inflammatory pathologies.
Collapse
|
21
|
Checa J, Aran JM. Airway Redox Homeostasis and Inflammation Gone Awry: From Molecular Pathogenesis to Emerging Therapeutics in Respiratory Pathology. Int J Mol Sci 2020; 21:E9317. [PMID: 33297418 PMCID: PMC7731288 DOI: 10.3390/ijms21239317] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 12/05/2020] [Indexed: 02/06/2023] Open
Abstract
As aerobic organisms, we are continuously and throughout our lifetime subjected to an oxidizing atmosphere and, most often, to environmental threats. The lung is the internal organ most highly exposed to this milieu. Therefore, it has evolved to confront both oxidative stress induced by reactive oxygen species (ROS) and a variety of pollutants, pathogens, and allergens that promote inflammation and can harm the airways to different degrees. Indeed, an excess of ROS, generated intrinsically or from external sources, can imprint direct damage to key structural cell components (nucleic acids, sugars, lipids, and proteins) and indirectly perturb ROS-mediated signaling in lung epithelia, impairing its homeostasis. These early events complemented with efficient recognition of pathogen- or damage-associated recognition patterns by the airway resident cells alert the immune system, which mounts an inflammatory response to remove the hazards, including collateral dead cells and cellular debris, in an attempt to return to homeostatic conditions. Thus, any major or chronic dysregulation of the redox balance, the air-liquid interface, or defects in epithelial proteins impairing mucociliary clearance or other defense systems may lead to airway damage. Here, we review our understanding of the key role of oxidative stress and inflammation in respiratory pathology, and extensively report current and future trends in antioxidant and anti-inflammatory treatments focusing on the following major acute and chronic lung diseases: acute lung injury/respiratory distress syndrome, asthma, chronic obstructive pulmonary disease, pulmonary fibrosis, and cystic fibrosis.
Collapse
Affiliation(s)
| | - Josep M. Aran
- Immune-Inflammatory Processes and Gene Therapeutics Group, IDIBELL, L’Hospitalet de Llobregat, 08908 Barcelona, Spain;
| |
Collapse
|
22
|
Divyavani C, Padmaja P, Ugale VG, Reddy PN. A Review on Thiocyanation of Indoles. Curr Org Synth 2020; 18:233-247. [PMID: 33272188 DOI: 10.2174/1570179417999201203211855] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 10/26/2020] [Accepted: 11/02/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND The thiocyanation of indoles is a direct way for carbon-sulfur bond formation to access 3-thiocyanato-indoles. 3-thiocyanato-indoles exhibit potent biological and pharmacological activities and also serve as building blocks to synthesize many biologically active sulfur-containing indole derivatives. OBJECTIVE The aim of this review is to highlight different approaches for the thiocyanation of indoles focusing on its scope and mechanism. CONCLUSION In this review, we have summarized various methods for the thiocyanation of indoles. Selection of new methods for the preparation of 3-thiocyanato-indoles will be done. The mechanistic aspects and significance of the methods are also briefly discussed.
Collapse
Affiliation(s)
- Chitteti Divyavani
- Department of Chemistry, Sri Padmavathi Women's Degree & PG College, Tirupati, Andhra Pradesh, India
| | - Pannala Padmaja
- Fluoro & Agrochemicals, CSIR-Indian Institute of Chemical Technology, Hyderabad, India
| | - Vinod G Ugale
- Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur- 425405, Maharashtra, India
| | | |
Collapse
|
23
|
Tolbatov I, Coletti C, Marrone A, Re N. Reactivity of arsenoplatin complex versus water and thiocyanate: a DFT benchmark study. Theor Chem Acc 2020. [DOI: 10.1007/s00214-020-02694-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
AbstractSeven different density functionals, including GGAs, meta-GGAs, hybrids and range-separated hybrids, and considering Grimme’s empirical dispersion correction (M06-L, M06-2X, PBE0, B3LYP, B3LYP-D3, CAM-B3LYP, ωB97X) have been tested for their performance in the prediction of molecular structures, energies and energy barriers for a class of newly developed antitumor platinum complexes involving main group heavy elements such as arsenic. The calculated structural parameters, energies and energy barriers have been compared to the available experimental data. The results show that range-separated hybrid functionals CAM-B3LYP and ωB97X give good results in predicting both geometrical parameters and isomerization energies and barrier heights and are promising new tools for the theoretical study of novel platinum(II) arsenic compounds.
Collapse
|
24
|
The Role of Thiocyanate in Modulating Myeloperoxidase Activity during Disease. Int J Mol Sci 2020; 21:ijms21176450. [PMID: 32899436 PMCID: PMC7503669 DOI: 10.3390/ijms21176450] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/31/2020] [Accepted: 09/01/2020] [Indexed: 12/19/2022] Open
Abstract
Thiocyanate (SCN−) is a pseudohalide anion omnipresent across mammals and is particularly concentrated in secretions within the oral cavity, digestive tract and airway. Thiocyanate can outcompete chlorine anions and other halides (F−, Br−, I−) as substrates for myeloperoxidase by undergoing two-electron oxidation with hydrogen peroxide. This forms their respective hypohalous acids (HOX where X− = halides) and in the case of thiocyanate, hypothiocyanous acid (HOSCN), which is also a bactericidal oxidative species involved in the regulation of commensal and pathogenic microflora. Disease may dysregulate redox processes and cause imbalances in the oxidative profile, where typically favoured oxidative species, such as hypochlorous acid (HOCl), result in an overabundance of chlorinated protein residues. As such, the pharmacological capacity of thiocyanate has been recently investigated for its ability to modulate myeloperoxidase activity for HOSCN, a less potent species relative to HOCl, although outcomes vary significantly across different disease models. To date, most studies have focused on therapeutic effects in respiratory and cardiovascular animal models. However, we note other conditions such as rheumatic arthritis where SCN− administration may worsen patient outcomes. Here, we discuss the pathophysiological role of SCN− in diseases where MPO is implicated.
Collapse
|
25
|
Vanichkitrungruang S, Chuang CY, Hawkins CL, Davies MJ. Myeloperoxidase-derived damage to human plasma fibronectin: Modulation by protein binding and thiocyanate ions (SCN -). Redox Biol 2020; 36:101641. [PMID: 32863239 PMCID: PMC7378696 DOI: 10.1016/j.redox.2020.101641] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 07/03/2020] [Accepted: 07/06/2020] [Indexed: 12/29/2022] Open
Abstract
Endothelial cell dysfunction is an early event in cardiovascular disease and atherosclerosis. The origin of this dysfunction is unresolved, but accumulating evidence implicates damaging oxidants, including hypochlorous acid (HOCl), a major oxidant produced by myeloperoxidase (MPO), during chronic inflammation. MPO is released extracellularly by activated leukocytes and binds to extracellular molecules including fibronectin, a major matrix glycoprotein involved in endothelial cell binding. We hypothesized that MPO binding might influence the modifications induced on fibronectin, when compared to reagent HOCl, with this including alterations to the extent of damage to protein side-chains, modified structural integrity, changes to functional domains, and impact on naïve human coronary artery endothelial cell (HCAEC) adhesion and metabolic activity. The effect of increasing concentrations of the alternative MPO substrate thiocyanate (SCN-), which might decrease HOCl formation were also examined. Exposure of fibronectin to MPO/H2O2/Cl- is shown to result in damage to the functionally important cell-binding and heparin-binding fragments, gross structural changes to the protein, and altered HCAEC adhesion and activity. Differences were observed between stoichiometric, and above-stoichiometric MPO concentrations consistent with an effect of MPO binding to fibronectin. In contrast, MPO/H2O2/SCN- induced much less marked changes and limited protein damage. Addition of increasing SCN- concentrations to the MPO/H2O2/Cl- system provided protection, with 20 μM of this anion rescuing damage to functionally-important domains, decreasing chemical modification, and maintaining normal HCAEC behavior. Modulating MPO binding to fibronectin, or enhancing SCN- levels at sites of inflammation may therefore limit MPO-mediated damage, and be of therapeutic value.
Collapse
Affiliation(s)
- Siriluck Vanichkitrungruang
- The Heart Research Institute, Newtown, NSW, Australia; Faculty of Medicine, The University of Sydney, NSW, Australia; Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Denmark
| | - Christine Y Chuang
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Denmark
| | - Clare L Hawkins
- The Heart Research Institute, Newtown, NSW, Australia; Faculty of Medicine, The University of Sydney, NSW, Australia; Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Denmark
| | - Michael J Davies
- The Heart Research Institute, Newtown, NSW, Australia; Faculty of Medicine, The University of Sydney, NSW, Australia; Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Denmark.
| |
Collapse
|
26
|
Lee EH, Shin MH, Gi M, Park J, Song D, Hyun YM, Ryu JH, Seong JK, Jeon Y, Han G, Namkung W, Park MS, Choi JY. Inhibition of Pendrin by a small molecule reduces Lipopolysaccharide-induced acute Lung Injury. Theranostics 2020; 10:9913-9922. [PMID: 32929324 PMCID: PMC7481407 DOI: 10.7150/thno.46417] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 07/27/2020] [Indexed: 12/11/2022] Open
Abstract
Rationale: Pendrin is encoded by SLC26A4 and its mutation leads to congenital hearing loss. Additionally, pendrin is up-regulated in inflammatory airway diseases such as chronic obstructive pulmonary disease, allergic rhinitis, and asthma. In this study, the effects of a novel pendrin inhibitor, YS-01, were investigated in an LPS-induced acute lung injury (ALI) mice model, and the mechanism underlying the effect of YS-01 was examined. Methods: Lipopolysaccharide (LPS, 10 mg/kg) was intranasally instilled in wild type (WT) and pendrin-null mice. YS-01 (10 mg/kg) was administered intra-peritoneally before or after LPS inhalation. Lung injury parameters were assessed in the lung tissue and bronchoalveolar lavage fluid (BALF). Pendrin levels in the BALF of 41 patients with acute respiratory distress syndrome (ARDS) due to pneumonia and 25 control (solitary pulmonary nodule) patients were also measured. Results: LPS instillation induced lung injury in WT mice but not in pendrin-null mice. Pendrin expression was increased by LPS stimulation both in vitro and in vivo. YS-01 treatment dramatically attenuated lung injury and reduced BALF cell counts and protein concentration after LPS instillation in WT mice. Proinflammatory cytokines and NF-κB activation were suppressed by YS-01 treatment in LPS-induced ALI mice. In BALF of patients whose ARDS was caused by pneumonia, pendrin expression was up-regulated compared to that in controls (mean, 24.86 vs. 6.83 ng/mL, P < 0.001). Conclusions: A novel pendrin inhibitor, YS-01, suppressed lung injury in LPS-induced ALI mice and our data provide a new strategy for the treatment of inflammatory airway diseases including sepsis-induced ALI.
Collapse
|
27
|
Guo C, Davies MJ, Hawkins CL. Role of thiocyanate in the modulation of myeloperoxidase-derived oxidant induced damage to macrophages. Redox Biol 2020; 36:101666. [PMID: 32781424 PMCID: PMC7417949 DOI: 10.1016/j.redox.2020.101666] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/20/2020] [Accepted: 07/28/2020] [Indexed: 12/13/2022] Open
Abstract
Myeloperoxidase (MPO) is a vital component of the innate immune system, which produces the potent oxidant hypochlorous acid (HOCl) to kill invading pathogens. However, an overproduction of HOCl during chronic inflammatory conditions causes damage to host cells, which promotes disease, including atherosclerosis. As such, there is increasing interest in the use of thiocyanate (SCN-) therapeutically to decrease inflammatory disease, as SCN- is the favoured substrate for MPO, and a potent competitive inhibitor of HOCl formation. Use of SCN- by MPO forms hypothiocyanous acid (HOSCN), which can be less damaging to mammalian cells. In this study, we examined the ability of SCN- to modulate damage to macrophages induced by HOCl, which is relevant to lesion formation in atherosclerosis. Addition of SCN- prevented HOCl-mediated cell death, altered the extent and nature of thiol oxidation and the phosphorylation of mitogen activated protein kinases. These changes were dependent on the concentration of SCN- and were observed in some cases, at a sub-stoichiometric ratio of SCN-: HOCl. Co-treatment with SCN- also modulated HOCl-induced perturbations in the expression of various antioxidant and inflammatory genes. In general, the data reflect the conversion of HOCl to HOSCN, which can induce reversible modifications that are repairable by cells. However, our data also highlight the ability of HOSCN to increase pro-inflammatory gene expression and cytokine/chemokine release, which may be relevant to the use of SCN- therapeutically in atherosclerosis. Overall, this study provides further insight into the cellular pathways by which SCN- could exert protective effects on supplementation to decrease the development of chronic inflammatory diseases, such as atherosclerosis.
Collapse
Affiliation(s)
- Chaorui Guo
- Department of Biomedical Sciences, University of Copenhagen, Panum, Blegdamsvej 3B, Copenhagen, DK-2200, Denmark
| | - Michael J Davies
- Department of Biomedical Sciences, University of Copenhagen, Panum, Blegdamsvej 3B, Copenhagen, DK-2200, Denmark
| | - Clare L Hawkins
- Department of Biomedical Sciences, University of Copenhagen, Panum, Blegdamsvej 3B, Copenhagen, DK-2200, Denmark.
| |
Collapse
|
28
|
Love DT, Guo C, Nikelshparg EI, Brazhe NA, Sosnovtseva O, Hawkins CL. The role of the myeloperoxidase-derived oxidant hypothiocyanous acid (HOSCN) in the induction of mitochondrial dysfunction in macrophages. Redox Biol 2020; 36:101602. [PMID: 32570189 PMCID: PMC7315103 DOI: 10.1016/j.redox.2020.101602] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 05/20/2020] [Accepted: 06/03/2020] [Indexed: 02/07/2023] Open
Abstract
A host of chronic inflammatory diseases are accelerated by the formation of the powerful oxidant hypochlorous acid (HOCl) by myeloperoxidase (MPO). In the presence of thiocyanate (SCN-), the production of HOCl by MPO is decreased in favour of the formation of a milder oxidant, hypothiocyanous acid (HOSCN). The role of HOSCN in disease has not been fully elucidated, though there is increasing interest in using SCN- therapeutically in different disease settings. Unlike HOCl, HOSCN can be detoxified by thioredoxin reductase, and reacts selectively with thiols to result in reversible modifications, which could potentially reduce the extent of MPO-induced damage during chronic inflammation. In this study, we show that exposure of macrophages, a key inflammatory cell type, to HOSCN results in the reversible modification of multiple mitochondrial proteins, leading to increased mitochondrial membrane permeability, decreased oxidative phosphorylation and reduced formation of ATP. The increased permeability and reduction in ATP could be reversed by pre-treatment of the macrophages with cyclosporine A, implicating a role for the mitochondrial permeability transition pore. HOSCN also drives cells to utilise fatty acids as an energetic substrate after the inhibition of oxidative phosphorylation. Raman imaging studies highlighted the ability of HOSCN to perturb the electron transport chain of mitochondria and redistribute these organelles within the cell. Taken together, these data provide new insight into the pathways by which HOSCN can induce cytotoxicity and cellular damage, which may have relevance for the development of inflammatory disease, and therapeutic strategies to reduce HOCl-induced damage by supplementation with SCN-. HOSCN induces the oxidation of mitochondrial thiol proteins and cytochromes. HOSCN alters mitochondrial permeability and ATP production via MPTP formation. HOSCN increases the capacity of cells to use fatty acids as an energetic substrate. Raman imaging shows redistribution of mitochondria after cell exposure to HOSCN.
Collapse
Affiliation(s)
- Dominic T Love
- The Heart Research Institute, 7 Eliza Street, Newtown, NSW, 2042, Australia; Sydney Medical School, University of Sydney, NSW, 2006, Australia
| | - Chaorui Guo
- Department of Biomedical Sciences, University of Copenhagen, Panum, Blegdamsvej 3B, Copenhagen N, DK-2200, Denmark
| | - Evelina I Nikelshparg
- Department of Biophysics, Biological Faculty, Moscow State University, Leninskie Gory 1/12, Moscow, 119234, Russia
| | - Nadezda A Brazhe
- Department of Biophysics, Biological Faculty, Moscow State University, Leninskie Gory 1/12, Moscow, 119234, Russia
| | - Olga Sosnovtseva
- Department of Biomedical Sciences, University of Copenhagen, Panum, Blegdamsvej 3B, Copenhagen N, DK-2200, Denmark
| | - Clare L Hawkins
- The Heart Research Institute, 7 Eliza Street, Newtown, NSW, 2042, Australia; Sydney Medical School, University of Sydney, NSW, 2006, Australia; Department of Biomedical Sciences, University of Copenhagen, Panum, Blegdamsvej 3B, Copenhagen N, DK-2200, Denmark.
| |
Collapse
|
29
|
Dickerhof N, Huang J, Min E, Michaëlsson E, Lindstedt EL, Pearson JF, Kettle AJ, Day BJ. Myeloperoxidase inhibition decreases morbidity and oxidative stress in mice with cystic fibrosis-like lung inflammation. Free Radic Biol Med 2020; 152:91-99. [PMID: 32142878 DOI: 10.1016/j.freeradbiomed.2020.03.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 02/23/2020] [Accepted: 03/02/2020] [Indexed: 01/02/2023]
Abstract
BACKGROUND Cystic fibrosis (CF) lung disease is characterized by severe bacterial infections, excessive neutrophilic inflammation and oxidative stress. The neutrophil enzyme myeloperoxidase (MPO), which produces hypochlorous acid, is associated with worse disease outcomes. Therefore, pharmacological inhibition of MPO in the airways has therapeutic potential. We investigated whether treating mice with an MPO inhibitor during pulmonary infection decreases oxidative stress and improves infection outcomes in mice with CF-like lung inflammation without impacting on bacterial clearance. METHODS Transgenic β-epithelial sodium channel (βENaC)-overexpressing mice (n = 10) were infected with Burkholderia multivorans and treated twice daily with the MPO inhibitor AZM198 (125 μmol/kg) or vehicle administered by oral gavage for two days. Bodyweight was recorded daily. MPO activity, markers of oxidative stress, inflammatory cytokines and leukocytes numbers were measured in bronchoalveolar lavage fluid (BALF). Bacterial burden was determined in lung tissue homogenates. RESULTS During the course of infection, mice treated with AZM198 lost less weight than vehicle-treated mice (p < 0.01). MPO activity and glutathione sulfonamide, a hypochlorous acid-specific glutathione oxidation product, were significantly lower in BALF from AZM198-treated mice (p < 0.05). The inflammatory cytokines CXCL1 and TNF-α in BALF and bacterial burden in the lung were not significantly different between treated and control mice. CONCLUSIONS Orally administered AZM198 inhibits MPO activity in epithelial lining fluid. Blocking hypochlorous acid production in epithelial lining fluid during pulmonary infections through inhibition of MPO improves morbidity in mice with CF-like lung inflammation without interfering with clearance of bacteria. Pharmacological inhibition of MPO is an approach to limit destructive oxidative stress in cystic fibrosis lung disease in humans.
Collapse
Affiliation(s)
- Nina Dickerhof
- Centre for Free Radical Research, Department of Pathology and Biomedical Science, University of Otago Christchurch, Christchurch, New Zealand.
| | - Jie Huang
- Department of Medicine, National Jewish Health, Denver, CO, USA
| | - Elysia Min
- Department of Medicine, National Jewish Health, Denver, CO, USA
| | - Erik Michaëlsson
- Cardiovascular, Renal and Metabolism, Biopharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Eva-Lotte Lindstedt
- Cardiovascular, Renal and Metabolism, Biopharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - John F Pearson
- Biostatistics and Computational Biology Unit, University of Otago Christchurch, Christchurch, New Zealand
| | - Anthony J Kettle
- Centre for Free Radical Research, Department of Pathology and Biomedical Science, University of Otago Christchurch, Christchurch, New Zealand
| | - Brian J Day
- Department of Medicine, National Jewish Health, Denver, CO, USA
| |
Collapse
|
30
|
Davies MJ, Hawkins CL. The Role of Myeloperoxidase in Biomolecule Modification, Chronic Inflammation, and Disease. Antioxid Redox Signal 2020; 32:957-981. [PMID: 31989833 DOI: 10.1089/ars.2020.8030] [Citation(s) in RCA: 174] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Significance: The release of myeloperoxidase (MPO) by activated leukocytes is critical in innate immune responses. MPO produces hypochlorous acid (HOCl) and other strong oxidants, which kill bacteria and other invading pathogens. However, MPO also drives the development of numerous chronic inflammatory pathologies, including atherosclerosis, neurodegenerative disease, lung disease, arthritis, cancer, and kidney disease, which are globally responsible for significant patient mortality and morbidity. Recent Advances: The development of imaging approaches to precisely identify the localization of MPO and the molecular targets of HOCl in vivo is an important advance, as typically the involvement of MPO in inflammatory disease has been inferred by its presence, together with the detection of biomarkers of HOCl, in biological fluids or diseased tissues. This will provide valuable information in regard to the cell types responsible for releasing MPO in vivo, together with new insight into potential therapeutic opportunities. Critical Issues: Although there is little doubt as to the value of MPO inhibition as a protective strategy to mitigate tissue damage during chronic inflammation in experimental models, the impact of long-term inhibition of MPO as a therapeutic strategy for human disease remains uncertain, in light of the potential effects on innate immunity. Future Directions: The development of more targeted MPO inhibitors or a treatment regimen designed to reduce MPO-associated host tissue damage without compromising pathogen killing by the innate immune system is therefore an important future direction. Similarly, a partial MPO inhibition strategy may be sufficient to maintain adequate bacterial activity while decreasing the propagation of inflammatory pathologies.
Collapse
Affiliation(s)
- Michael J Davies
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen N, Denmark
| | - Clare L Hawkins
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen N, Denmark
| |
Collapse
|
31
|
Shi X, Gao Z, Lin Q, Zhao L, Ma Q, Kang Y, Yu J. Meta-analysis Reveals Potential Influence of Oxidative Stress on the Airway Microbiomes of Cystic Fibrosis Patients. GENOMICS PROTEOMICS & BIOINFORMATICS 2020; 17:590-602. [PMID: 32171662 PMCID: PMC7212475 DOI: 10.1016/j.gpb.2018.03.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 03/25/2018] [Accepted: 03/28/2018] [Indexed: 12/11/2022]
Abstract
The lethal chronic airway infection of the cystic fibrosis (CF) patients is predisposed by colonization of specific CF-philic pathogens or the CF microbiomes, but key processes and reasons of the microbiome settlement in the patients are yet to be fully understood, especially their survival and metabolic dynamics from normal to diseased status under treatment. Here, we report our meta-analysis results on CF airway microbiomes based on metabolic networks reconstructed from genome information at species level. The microbiomes of CF patients appear to engage much more redox-related activities than those of controls, and by constructing a large dataset of anti-oxidative stress (anti-OS) genes, our quantitative evaluation of the anti-OS capacity of each bacterial species in the CF microbiomes confirms strong conservation of the anti-OS responses within genera and also shows that the CF pathogens have significantly higher anti-OS capacity than commensals and other typical respiratory pathogens. In addition, the anti-OS capacity of a relevant species correlates with its relative fitness for the airways of CF patients over that for the airways of controls. Moreover, the total anti-OS capacity of the respiratory microbiome of CF patients is collectively higher than that of controls, which increases with disease progression, especially after episodes of acute exacerbation and antibiotic treatment. According to these results, we propose that the increased OS in the airways of CF patients may play an important role in reshaping airway microbiomes to a more resistant status that favors the pre-infection colonization of the CF pathogens for a higher anti-OS capacity.
Collapse
Affiliation(s)
- Xing Shi
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100190, China
| | - Zhancheng Gao
- Department of Respiratory & Critical Care Medicine, Peking University People's Hospital, Beijing 100044, China
| | - Qiang Lin
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Liping Zhao
- Department of Biochemistry and Microbiology, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Qin Ma
- Bioinformatics and Mathematical Biosciences Lab, Department of Agronomy, Horticulture and Plant Science and Department of Mathematics and Statistics, South Dakota State University, Brookings, SD 57007, USA
| | - Yu Kang
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China.
| | - Jun Yu
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100190, China.
| |
Collapse
|
32
|
Inflammation in CF: Key Characteristics and Therapeutic Discovery. Respir Med 2020. [DOI: 10.1007/978-3-030-42382-7_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
33
|
Lights and Shadows in the Use of Mesenchymal Stem Cells in Lung Inflammation, a Poorly Investigated Topic in Cystic Fibrosis. Cells 2019; 9:cells9010020. [PMID: 31861724 PMCID: PMC7016730 DOI: 10.3390/cells9010020] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 12/12/2019] [Accepted: 12/17/2019] [Indexed: 12/14/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are multipotent non-hematopoietic stem cells residing in many tissues, including the lung. MSCs have long been regarded as a promising tool for cell-based therapy because of their ability to replace damaged tissue by differentiating into the resident cell and repopulating the injured area. Their ability to release soluble factors and extracellular vesicles has emerged as crucial in the resolution of inflammation and injury. There is a growing literature on the use of MSCs and MSC secretome to hamper inflammation in different lung pathologies, including: asthma, pneumonia, acute lung injury (ALI), pulmonary hypertension, and chronic obstructive pulmonary disease (COPD). However, their potential therapeutic role in the context of Cystic Fibrosis (CF) lung inflammation is still not fully characterized. CF morbidity and mortality are mainly due to progressive lung dysfunction. Lung inflammation is a chronic and unresolved condition that triggers progressive tissue damage. Thus, it becomes even more important to develop innovative immunomodulatory therapies aside from classic anti-inflammatory agents. Here, we address the main features of CF and the implications in lung inflammation. We then review how MSCs and MSC secretome participate in attenuating inflammation in pulmonary pathologies, emphasizing the significant potential of MSCs as new therapeutic approach in CF.
Collapse
|
34
|
Saminathan M, Kanagarajan S, Chandrasekaran R, Sivasubramaniyan A, Raja R, Alagusundaram P. Synthesis, structural, DFT investigations and antibacterial activity assessment of pyrazoline‐thiocyanatoethanone derivatives as thymidylate kinase inhibitors. J CHIN CHEM SOC-TAIP 2019. [DOI: 10.1002/jccs.201900363] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Murugavel Saminathan
- Department of PhysicsThanthai Periyar Government Institute of Technology Vellore India
| | | | | | | | - Ranganathan Raja
- Research Institute of Pharmaceutical Sciences, Seoul National University Seoul South Korea
| | - Ponnusamy Alagusundaram
- Department of Organic Chemistry, School of ChemistryMadurai Kamaraj University Madurai India
| |
Collapse
|
35
|
Iodide modulates protein damage induced by the inflammation-associated heme enzyme myeloperoxidase. Redox Biol 2019; 28:101331. [PMID: 31568923 PMCID: PMC6812061 DOI: 10.1016/j.redox.2019.101331] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 09/10/2019] [Accepted: 09/16/2019] [Indexed: 01/15/2023] Open
Abstract
Iodide ions (I-) are an essential dietary mineral, and crucial for mental and physical development, fertility and thyroid function. I- is also a high affinity substrate for the heme enzyme myeloperoxidase (MPO), which is involved in bacterial cell killing during the immune response, and also host tissue damage during inflammation. In the presence of H2O2 and Cl-, MPO generates the powerful oxidant hypochlorous acid (HOCl), with excessive formation of this species linked to multiple inflammatory diseases. In this study, we have examined the hypothesis that elevated levels of I- would decrease HOCl formation and thereby protein damage induced by a MPO/Cl-/H2O2 system, by acting as a competitive substrate. The presence of increasing I- concentrations (0.1-10 μM; i.e. within the range readily achievable by oral supplementation in humans), decreased damage to both model proteins and extracellular matrix components as assessed by gross structural changes (SDS-PAGE), antibody recognition of parent and modified protein epitopes (ELISA), and quantification of both parent amino acid loss (UPLC) and formation of the HOCl-biomarker 3-chlorotyrosine (LC-MS) (reduced by ca. 50% at 10 μM I-). Elevated levels of I- ( > 1 μM) also protected against functional changes as assessed by a decreased loss of adhesion (eg. 40% vs. < 22% with >1 μM I-) of primary human coronary artery endothelial cells (HCAECs), to MPO-modified human plasma fibronectin. These data indicate that low micromolar concentrations of I-, which can be readily achieved in humans and are readily tolerated, may afford protection against cell and tissue damage induced by MPO.
Collapse
|
36
|
The science of licking your wounds: Function of oxidants in the innate immune system. Biochem Pharmacol 2019; 163:451-457. [DOI: 10.1016/j.bcp.2019.03.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 03/08/2019] [Indexed: 02/07/2023]
|
37
|
Huang L, Xuan W, Sarna T, Hamblin MR. Comparison of thiocyanate and selenocyanate for potentiation of antimicrobial photodynamic therapy. JOURNAL OF BIOPHOTONICS 2019; 12:e201800092. [PMID: 29885019 PMCID: PMC6286685 DOI: 10.1002/jbio.201800092] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 06/07/2018] [Indexed: 06/08/2023]
Abstract
We have previously shown that antimicrobial photodynamic therapy (aPDT) mediated by different photosensitizers (PS) can be potentiated by a variety of inorganic salts. Potassium thiocyanate (KSCN) potentiated aPDT mediated by methylene blue (MB), while potassium selenocyanate (KSeCN) potentiated aPDT mediated by MB, Rose Bengal and the anionic porphyrin 5,10,15,20-tetrakis(4-sulfonatophenyl)porphyrin dihydrochloride. However, the mechanisms of action that were proposed were fundamentally different. In the present study, we compare these two salts (KSCN and KSeCN) with different light-activated PS and different oxidative reactions for killing gram-positive and gram-negative bacteria. Overall KSeCN was more powerful than KSCN, and worked with a wider range of PS, while KSCN only worked with phenothiazinium salts. KSeCN produced killing when cells were added after light suggesting production of a semistable species called selenocyanogen (SeCN)2 . We tested three different oxidative reactions that can all potentially kill bacteria: lead tetraacetate (Pb[OAc]4 ); Fenton reagent (hydrogen peroxide [H2 O2 ] and ferrous sulfate) H2 O2 and horseradish peroxidase (HRP). In every case, KSeCN was substantially more effective (several logs) than KSCN in potentiating the bacterial killing. We conclude that (SeCN)2 is the mediator for aPDT using KSeCN, while sulfur trioxide radical anion is the mediator for KSCN using phenothiaziums. For H2 O2 /HRP with KSCN, hypothiocyanite is proposed to be the antibacterial agent in the literature, while hyposelenocyanite is said not to exist. Pb[OAc]4 is known to produce (SeCN)2 from KSeCN as well as the analogous (SCN)2 from KSCN. The mediators from Fenton reaction are unclear (pseudohalogen radical ions?) Both KSCN (which occurs naturally in the human body) and KSeCN may be clinically applicable.
Collapse
Affiliation(s)
- Liyi Huang
- Department of Infectious Diseases, First Affiliated
Hospital, Guangxi Medical University, Nanning, China
- Wellman Center for Photomedicine, Massachusetts General
Hospital, Boston, MA, USA
- Department of Dermatology, Harvard Medical School, Boston,
MA, USA
| | - Weijun Xuan
- Wellman Center for Photomedicine, Massachusetts General
Hospital, Boston, MA, USA
- Department of Dermatology, Harvard Medical School, Boston,
MA, USA
- Department of Otorhinolaryngology, Head and Neck Surgery,
First Clinical Medical College and Hospital, Guangxi University of Chinese Medicine,
Nanning, China
| | - Tadeusz Sarna
- Department of Biophysics, Faculty of Biochemistry,
Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General
Hospital, Boston, MA, USA
- Department of Dermatology, Harvard Medical School, Boston,
MA, USA
- Harvard-MIT Division of Health Sciences and Technology,
Cambridge, MA, USA
| |
Collapse
|
38
|
Maroney MJ, Hondal RJ. Selenium versus sulfur: Reversibility of chemical reactions and resistance to permanent oxidation in proteins and nucleic acids. Free Radic Biol Med 2018; 127:228-237. [PMID: 29588180 PMCID: PMC6158117 DOI: 10.1016/j.freeradbiomed.2018.03.035] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Revised: 03/14/2018] [Accepted: 03/18/2018] [Indexed: 12/16/2022]
Abstract
This review highlights the contributions of Jean Chaudière to the field of selenium biochemistry. Chaudière was the first to recognize that one of the main reasons that selenium in the form of selenocysteine is used in proteins is due to the fact that it strongly resists permanent oxidation. The foundations for this important concept was laid down by Al Tappel in the 1960's and even before by others. The concept of oxygen tolerance first recognized in the study of glutathione peroxidase was further advanced and refined by those studying [NiFeSe]-hydrogenases, selenosubtilisin, and thioredoxin reductase. After 200 years of selenium research, work by Marcus Conrad and coworkers studying glutathione peroxidase-4 has provided definitive evidence for Chaudière's original hypothesis (Ingold et al., 2018) [36]. While the reaction of selenium with oxygen is readily reversible, there are many other examples of this phenomenon of reversibility. Many reactions of selenium can be described as "easy in - easy out". This is due to the strong nucleophilic character of selenium to attack electrophiles, but then this reaction can be reversed due to the strong electrophilic character of selenium and the weakness of the selenium-carbon bond. Several examples of this are described.
Collapse
Affiliation(s)
- Michael J Maroney
- Department of Chemistry and Program in Molecular and Cellular Biology, University of Massachusetts, Life Sciences Laboratories, 240 Thatcher Road, Room N373, Amherst, MA 01003-9364, United States
| | - Robert J Hondal
- Department of Biochemistry, 89 Beaumont Ave, Given Building Room B413, Burlington, VT 05405, United States.
| |
Collapse
|
39
|
Chandler JD, Margaroli C, Horati H, Kilgore MB, Veltman M, Liu HK, Taurone AJ, Peng L, Guglani L, Uppal K, Go YM, Tiddens HAWM, Scholte BJ, Tirouvanziam R, Jones DP, Janssens HM. Myeloperoxidase oxidation of methionine associates with early cystic fibrosis lung disease. Eur Respir J 2018; 52:13993003.01118-2018. [PMID: 30190273 DOI: 10.1183/13993003.01118-2018] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 08/09/2018] [Indexed: 12/26/2022]
Abstract
Cystic fibrosis (CF) lung disease progressively worsens from infancy to adulthood. Disease-driven changes in early CF airway fluid metabolites may identify therapeutic targets to curb progression.CF patients aged 12-38 months (n=24; three out of 24 later denoted as CF screen positive, inconclusive diagnosis) received chest computed tomography scans, scored by the Perth-Rotterdam Annotated Grid Morphometric Analysis for CF (PRAGMA-CF) method to quantify total lung disease (PRAGMA-%Dis) and components such as bronchiectasis (PRAGMA-%Bx). Small molecules in bronchoalveolar lavage fluid (BALF) were measured with high-resolution accurate-mass metabolomics. Myeloperoxidase (MPO) was quantified by ELISA and activity assays.Increased PRAGMA-%Dis was driven by bronchiectasis and correlated with airway neutrophils. PRAGMA-%Dis correlated with 104 metabolomic features (p<0.05, q<0.25). The most significant annotated feature was methionine sulfoxide (MetO), a product of methionine oxidation by MPO-derived oxidants. We confirmed the identity of MetO in BALF and used reference calibration to confirm correlation with PRAGMA-%Dis (Spearman's ρ=0.582, p=0.0029), extending to bronchiectasis (PRAGMA-%Bx; ρ=0.698, p=1.5×10-4), airway neutrophils (ρ=0.569, p=0.0046) and BALF MPO (ρ=0.803, p=3.9×10-6).BALF MetO associates with structural lung damage, airway neutrophils and MPO in early CF. Further studies are needed to establish whether methionine oxidation directly contributes to early CF lung disease and explore potential therapeutic targets indicated by these findings.
Collapse
Affiliation(s)
- Joshua D Chandler
- Center for CF and Airways Disease Research, Children's Healthcare of Atlanta, Atlanta, GA, USA.,Division of Pulmonary, Allergy and Immunology, Cystic Fibrosis and Sleep Medicine, Dept of Pediatrics, Emory University, Atlanta, GA, USA.,Division of Pulmonary, Allergy and Critical Care Medicine, Dept of Medicine, Emory University, Atlanta, GA, USA
| | - Camilla Margaroli
- Center for CF and Airways Disease Research, Children's Healthcare of Atlanta, Atlanta, GA, USA.,Division of Pulmonary, Allergy and Immunology, Cystic Fibrosis and Sleep Medicine, Dept of Pediatrics, Emory University, Atlanta, GA, USA
| | - Hamed Horati
- Division of Respiratory Medicine and Allergology, Dept of Pediatrics, University Medical Center Rotterdam, Erasmus MC-Sophia, Rotterdam, The Netherlands
| | - Matthew B Kilgore
- Center for CF and Airways Disease Research, Children's Healthcare of Atlanta, Atlanta, GA, USA.,Division of Pulmonary, Allergy and Immunology, Cystic Fibrosis and Sleep Medicine, Dept of Pediatrics, Emory University, Atlanta, GA, USA
| | - Mieke Veltman
- Division of Respiratory Medicine and Allergology, Dept of Pediatrics, University Medical Center Rotterdam, Erasmus MC-Sophia, Rotterdam, The Netherlands
| | - H Ken Liu
- Division of Pulmonary, Allergy and Critical Care Medicine, Dept of Medicine, Emory University, Atlanta, GA, USA
| | - Alexander J Taurone
- Dept of Biostatistics, Emory University School of Public Health, Atlanta, GA, USA
| | - Limin Peng
- Dept of Biostatistics, Emory University School of Public Health, Atlanta, GA, USA
| | - Lokesh Guglani
- Center for CF and Airways Disease Research, Children's Healthcare of Atlanta, Atlanta, GA, USA.,Division of Pulmonary, Allergy and Immunology, Cystic Fibrosis and Sleep Medicine, Dept of Pediatrics, Emory University, Atlanta, GA, USA
| | - Karan Uppal
- Division of Pulmonary, Allergy and Critical Care Medicine, Dept of Medicine, Emory University, Atlanta, GA, USA
| | - Young-Mi Go
- Division of Pulmonary, Allergy and Critical Care Medicine, Dept of Medicine, Emory University, Atlanta, GA, USA
| | - Harm A W M Tiddens
- Division of Respiratory Medicine and Allergology, Dept of Pediatrics, University Medical Center Rotterdam, Erasmus MC-Sophia, Rotterdam, The Netherlands
| | - Bob J Scholte
- Division of Respiratory Medicine and Allergology, Dept of Pediatrics, University Medical Center Rotterdam, Erasmus MC-Sophia, Rotterdam, The Netherlands
| | - Rabindra Tirouvanziam
- Center for CF and Airways Disease Research, Children's Healthcare of Atlanta, Atlanta, GA, USA.,Division of Pulmonary, Allergy and Immunology, Cystic Fibrosis and Sleep Medicine, Dept of Pediatrics, Emory University, Atlanta, GA, USA.,These authors are joint senior authors
| | - Dean P Jones
- Division of Pulmonary, Allergy and Critical Care Medicine, Dept of Medicine, Emory University, Atlanta, GA, USA.,These authors are joint senior authors
| | - Hettie M Janssens
- Division of Respiratory Medicine and Allergology, Dept of Pediatrics, University Medical Center Rotterdam, Erasmus MC-Sophia, Rotterdam, The Netherlands.,These authors are joint senior authors
| |
Collapse
|
40
|
Chandler JD, Horati H, Walker DI, Pagliano E, Tirouvanziam R, Veltman M, Scholte BJ, Janssens HM, Go YM, Jones DP. Determination of thiocyanate in exhaled breath condensate. Free Radic Biol Med 2018; 126:334-340. [PMID: 30144632 PMCID: PMC6166650 DOI: 10.1016/j.freeradbiomed.2018.08.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 08/09/2018] [Accepted: 08/11/2018] [Indexed: 01/09/2023]
Abstract
Thiocyanate is a heme peroxidase substrate that scavenges oxidants produced during inflammation and regulates host defense. In cystic fibrosis (CF) patients, increased airway thiocyanate levels are associated with improved lung function. Research on airway thiocyanate is limited, however, because convenient non-invasive airway sampling methods, such as exhaled breath condensate (EBC), yield low concentrations that are difficult to detect with available assays. In the present study, we developed a method for the determination of thiocyanate in dilute samples using isotope dilution headspace gas chromatography-coupled high-resolution, accurate-mass mass spectrometry (GC-HRMS). The method reliably quantified as little as 4 pmol thiocyanate in EBC and could detect even lower amounts. We successfully measured thiocyanate in EBC from seven healthy donors, with a mean ± SD of 27 ± 16 nM and a median inter-assay coefficient of variation of 10.4% over six months. The method was applied to other biological fluids (plasma from the same visit as EBC donation; bronchoalveolar lavage fluid [BALF] from infants with CF; and healthy adult mouse BALF), giving reliable quantification of samples ranging from 10 nM to 100 µM. Thiocyanate concentrations in fluids besides EBC were (from lowest to highest): 0.73 ± 0.39 µM in BALF of healthy adult mice (n = 6); 1.4 ± 1.4 µM in BALF from infants with CF (n = 24); 46 ± 22 µM in the plasma of adult volunteers (n = 7). These results demonstrate the utility of this new method for clinical determination of thiocyanate in EBC and other biological fluids.
Collapse
Affiliation(s)
- Joshua D Chandler
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Hamed Horati
- Department of Pediatric Pulmonology, Erasmus MC, Rotterdam, the Netherlands; Department of Cell Biology, Erasmus MC, Rotterdam, the Netherlands
| | - Douglas I Walker
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Enea Pagliano
- Measurement Science and Standards, National Research Council of Canada, Ottawa, Canada
| | - Rabindra Tirouvanziam
- Division of Pulmonary, Allergy & Immunology, Cystic Fibrosis and Sleep, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Mieke Veltman
- Department of Pediatric Pulmonology, Erasmus MC, Rotterdam, the Netherlands; Department of Cell Biology, Erasmus MC, Rotterdam, the Netherlands
| | - Bob J Scholte
- Department of Pediatric Pulmonology, Erasmus MC, Rotterdam, the Netherlands; Department of Cell Biology, Erasmus MC, Rotterdam, the Netherlands
| | - Hettie M Janssens
- Department of Pediatric Pulmonology, Erasmus MC, Rotterdam, the Netherlands
| | - Young-Mi Go
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Dean P Jones
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
41
|
Abraham R, Periakaruppan P. A sustainable process for gram-scale synthesis of stereoselective aryl substituted (E)-2-thiocyanatoacrylic acids. J CHEM SCI 2018. [DOI: 10.1007/s12039-017-1412-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
42
|
Dickerhof N, Turner R, Khalilova I, Fantino E, Sly PD, Kettle AJ. Oxidized glutathione and uric acid as biomarkers of early cystic fibrosis lung disease. J Cyst Fibros 2017; 16:214-221. [DOI: 10.1016/j.jcf.2016.10.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 09/30/2016] [Accepted: 10/25/2016] [Indexed: 01/13/2023]
|
43
|
Margaroli C, Tirouvanziam R. Neutrophil plasticity enables the development of pathological microenvironments: implications for cystic fibrosis airway disease. Mol Cell Pediatr 2016; 3:38. [PMID: 27868161 PMCID: PMC5136534 DOI: 10.1186/s40348-016-0066-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 11/04/2016] [Indexed: 02/06/2023] Open
Abstract
INTRODUCTION The pathological course of several chronic inflammatory diseases, including cystic fibrosis, chronic obstructive pulmonary disease, and rheumatoid arthritis, features an aberrant innate immune response dominated by neutrophils. In cystic fibrosis, neutrophil burden and activity of neutrophil elastase in the extracellular fluid have been identified as strong predictors of lung disease severity. REVIEW Although neutrophils are generally considered to be rigid, pre-programmed effector leukocytes, recent studies suggest extensive plasticity in how neutrophil functions unfold upon recruitment to peripheral tissues, and how they choose their ultimate fate. Indeed, upon migration to cystic fibrosis airways, neutrophils display dysregulated lifespan, metabolic activation, and altered effector and regulatory functions, consistent with profound adaptation and phenotypic reprogramming. Licensed by signals present in cystic fibrosis airway microenvironment to survive and develop these novel functions, neutrophils orchestrate, in partnership with the epithelium and with the resident microbiota, the evolution of a pathological microenvironment. This microenvironment is defined by altered proteolytic, redox, and metabolic balance and the presence of stable luminal structures in which neutrophils and microbes coexist. CONCLUSIONS The elucidation of molecular mechanisms driving neutrophil plasticity in vivo will open new treatment opportunities designed to modulate, rather than block, the crucial adaptive functions fulfilled by neutrophils. This review aims to outline emerging mechanisms of neutrophil plasticity and their participation in the building of pathological microenvironments in the context of cystic fibrosis and other diseases with similar features.
Collapse
Affiliation(s)
- Camilla Margaroli
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Center for CF and Airways Disease Research, Children's Healthcare of Atlanta, Atlanta, GA, 30322, USA
- Emory + Children's Center, 2015 Uppergate Dr NE, Rm 344, Atlanta, GA, 30322-1014, USA
| | - Rabindra Tirouvanziam
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, 30322, USA.
- Center for CF and Airways Disease Research, Children's Healthcare of Atlanta, Atlanta, GA, 30322, USA.
- Emory + Children's Center, 2015 Uppergate Dr NE, Rm 344, Atlanta, GA, 30322-1014, USA.
| |
Collapse
|
44
|
Wang Z, DiDonato JA, Buffa J, Comhair SA, Aronica MA, Dweik RA, Lee NA, Lee JJ, Thomassen MJ, Kavuru M, Erzurum SC, Hazen SL. Eosinophil Peroxidase Catalyzed Protein Carbamylation Participates in Asthma. J Biol Chem 2016; 291:22118-22135. [PMID: 27587397 DOI: 10.1074/jbc.m116.750034] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Indexed: 12/21/2022] Open
Abstract
The biochemical mechanisms through which eosinophils contribute to asthma pathogenesis are unclear. Here we show eosinophil peroxidase (EPO), an abundant granule protein released by activated eosinophils, contributes to characteristic asthma-related phenotypes through oxidative posttranslational modification (PTM) of proteins in asthmatic airways through a process called carbamylation. Using a combination of studies we now show EPO uses plasma levels of the pseudohalide thiocyanate (SCN-) as substrate to catalyze protein carbamylation, as monitored by PTM of protein lysine residues into Nϵ-carbamyllysine (homocitrulline), and contributes to the pathophysiological sequelae of eosinophil activation. Studies using EPO-deficient mice confirm EPO serves as a major enzymatic source for protein carbamylation during eosinophilic inflammatory models, including aeroallergen challenge. Clinical studies similarly revealed significant enrichment in carbamylation of airway proteins recovered from atopic asthmatics versus healthy controls in response to segmental allergen challenge. Protein-bound homocitrulline is shown to be co-localized with EPO within human asthmatic airways. Moreover, pathophysiologically relevant levels of carbamylated protein either incubated with cultured human airway epithelial cells in vitro, or provided as an aerosolized exposure in non-sensitized mice, induced multiple asthma-associated phenotypes including induction of mucin, Th2 cytokines, IFNγ, TGFβ, and epithelial cell apoptosis. Studies with scavenger receptor-A1 null mice reveal reduced IL-13 generation following exposure to aerosolized carbamylated protein, but no changes in other asthma-related phenotypes. In summary, EPO-mediated protein carbamylation is promoted during allergen-induced asthma exacerbation, and can both modulate immune responses and trigger a cascade of many of the inflammatory signals present in asthma.
Collapse
Affiliation(s)
- Zeneng Wang
- From the Departments of Cellular and Molecular Medicine
| | | | | | | | | | | | - Nancy A Lee
- the Department of Biochemistry and Molecular Biology, Mayo Clinic, Scottsdale, Arizona 85259
| | - James J Lee
- the Department of Biochemistry and Molecular Biology, Mayo Clinic, Scottsdale, Arizona 85259
| | - Mary Jane Thomassen
- the Division of Pulmonary, Critical Care & Sleep Medicine, East Carolina University, Greenville, North Carolina 27834, and
| | - Mani Kavuru
- the Division of Pulmonary and Critical Care Medicine, Thomas Jefferson University and Hospital, Philadelphia, Pennsylvania 19107
| | | | - Stanley L Hazen
- From the Departments of Cellular and Molecular Medicine, Cardiovascular Medicine, Cleveland Clinic, Cleveland, Ohio 44195,
| |
Collapse
|
45
|
Epithelial Anion Transport as Modulator of Chemokine Signaling. Mediators Inflamm 2016; 2016:7596531. [PMID: 27382190 PMCID: PMC4921137 DOI: 10.1155/2016/7596531] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 05/03/2016] [Accepted: 05/12/2016] [Indexed: 12/16/2022] Open
Abstract
The pivotal role of epithelial cells is to secrete and absorb ions and water in order to allow the formation of a luminal fluid compartment that is fundamental for the epithelial function as a barrier against environmental factors. Importantly, epithelial cells also take part in the innate immune system. As a first line of defense they detect pathogens and react by secreting and responding to chemokines and cytokines, thus aggravating immune responses or resolving inflammatory states. Loss of epithelial anion transport is well documented in a variety of diseases including cystic fibrosis, chronic obstructive pulmonary disease, asthma, pancreatitis, and cholestatic liver disease. Here we review the effect of aberrant anion secretion with focus on the release of inflammatory mediators by epithelial cells and discuss putative mechanisms linking these transport defects to the augmented epithelial release of chemokines and cytokines. These mechanisms may contribute to the excessive and persistent inflammation in many respiratory and gastrointestinal diseases.
Collapse
|
46
|
Abstract
Cystic fibrosis (CF) lung disease is characterized by persistent and unresolved inflammation, with elevated proinflammatory and decreased anti-inflammatory cytokines, and greater numbers of immune cells. Hyperinflammation is recognized as a leading cause of lung tissue destruction in CF. Hyper-inflammation is not solely observed in the lungs of CF patients, since it may contribute to destruction of exocrine pancreas and, likely, to defects in gastrointestinal tract tissue integrity. Paradoxically, despite the robust inflammatory response, and elevated number of immune cells (such as neutrophils and macrophages), CF lungs fail to clear bacteria and are more susceptible to infections. Here, we have summarized the current understanding of immune dysregulation in CF, which may drive hyperinflammation and impaired host defense.
Collapse
Affiliation(s)
- Emanuela M Bruscia
- Section of Respiratory Medicine, Department of Pediatrics, Yale University School of Medicine, 330 Cedar Street, FMP, Room#524, New Haven, CT 06520, USA.
| | - Tracey L Bonfield
- Division of Pulmonology, Allergy and Immunology, Department of Pediatrics, Case Western Reserve University School of Medicine, 0900 Euclid Avenue, Cleveland, OH 44106-4948, USA.
| |
Collapse
|
47
|
Therapeutic Effects of α1-Antitrypsin on Psedumonas aeruginosa Infection in ENaC Transgenic Mice. PLoS One 2015; 10:e0141232. [PMID: 26509529 PMCID: PMC4624966 DOI: 10.1371/journal.pone.0141232] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 10/06/2015] [Indexed: 11/19/2022] Open
Abstract
Cystic fibrosis (CF) is a genetic disease with many airway pathological features, including aberrant epithelial sodium channel (ENaC) function, persistent Pseudomonas aeruginosa (PA) infection and neutrophil-dominant inflammation. PA infection in CF airways is difficult to treat due to antibiotic resistance and other factors. Recently, α1-antitrypsin (A1AT) have been shown to be effective to reduce CF airway PA infection. However, there is a dearth of studies about the mechanisms underlying A1AT's therapeutic effects. The goal of our study is to provide an animal model of A1AT therapy in CF lungs. ENaC transgenic mice with PA infection were used as a CF-like model. Mice were intratracheally treated with PA or saline (control) in a fibrin plug. Two hours after PA infection, aerosolized A1AT were delivered to mouse lungs once daily. At day 1 and day 3 post PA infection, lung inflammation, PA load as well as host defence protein short palate, lung, and nasal epithelium clone 1 (SPLUNC1) were measured. At day 1 post PA infection when A1AT was delivered once to ENaC transgenic mouse lungs, A1AT did not reduce lung inflammation (e.g., neutrophils) and PA load. However, at day 3 post PA infection when ENaC transgenic mice received three repeated A1AT treatments, a significant decrease in airspace inflammation and PA load was observed. Although A1AT prevented the loss of SPLUNC1 in bronchoalveolar lavage fluid of PA-infected wild-type mice, it did not restore SPLUNC1 levels in ENaC transgenic mice. Our current study has provided a valid and quick A1AT therapeutic model in CF-like lungs that may serve as a platform for future mechanistic studies about how A1AT exerts beneficial effects in human CF patients.
Collapse
|
48
|
Abstract
The cysteine (Cys) proteome is a major component of the adaptive interface between the genome and the exposome. The thiol moiety of Cys undergoes a range of biologic modifications enabling biological switching of structure and reactivity. These biological modifications include sulfenylation and disulfide formation, formation of higher oxidation states, S-nitrosylation, persulfidation, metalation, and other modifications. Extensive knowledge about these systems and their compartmentalization now provides a foundation to develop advanced integrative models of Cys proteome regulation. In particular, detailed understanding of redox signaling pathways and sensing networks is becoming available to allow the discrimination of network structures. This research focuses attention on the need for atlases of Cys modifications to develop systems biology models. Such atlases will be especially useful for integrative studies linking the Cys proteome to imaging and other omics platforms, providing a basis for improved redox-based therapeutics. Thus, a framework is emerging to place the Cys proteome as a complement to the quantitative proteome in the omics continuum connecting the genome to the exposome.
Collapse
Affiliation(s)
- Young-Mi Go
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Joshua D Chandler
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Dean P Jones
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Emory University, Atlanta, GA 30322, USA.
| |
Collapse
|
49
|
Chandler JD, Day BJ. Biochemical mechanisms and therapeutic potential of pseudohalide thiocyanate in human health. Free Radic Res 2015; 49:695-710. [PMID: 25564094 DOI: 10.3109/10715762.2014.1003372] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Thiocyanate (SCN(-)) is a ubiquitous molecule in mammalian biology, reaching up to mM concentrations in extracellular fluids. Two- electron oxidation of SCN(-) by H2O2 produces hypothiocyanous acid (HOSCN), a potent anti-microbial species. This reaction is catalyzed by chordate peroxidases (e.g., myeloperoxidase and lactoperoxidase), occurring in human secretory mucosa, including the oral cavity, airway, and alimentary tract, and regulates resident and transient flora as part of innate immunity. Increasing SCN(-) levels limits the concentrations of a family of 2-electron oxidants (H2O2, hypohalous acids, and haloamines) in favor of HOSCN formation, altering the oxidative impact on host tissue by substitution of repairable thiol and selenol oxidations instead of biomolecule degradation. This fine-tuning of inflammatory oxidation paradoxically associates with maintained host defense and decreased host injury during infections, due in part to phylogenetic differences in the thioredoxin reductase system between mammals and their pathogens. These differences could be exploited by pharmacologic use of SCN(-). Recent preclinical studies have identified anti-microbial and anti-inflammatory effects of SCN(-) in pulmonary and cardiovascular animal models, with implications for treatment of infectious lung disease and atherogenesis. Further research is merited to expand on these findings and identify other diseases where SCN(-) may be of use. High oral bioavailability and an increased knowledge of the biochemical effects of SCN(-) on a subset of pro-inflammatory reactions suggest clinical utility.
Collapse
|