1
|
Sun Y, Lu T, Pan J, He H, Xu M, Chen Y, Chen Y, Fang P, Ye X, Li S, Hu H, Yu S. Dual tobramycin and docosahexaenoic acid loaded nanoemulsions combating Pseudomonas aeruginosa-induced pulmonary infection. Colloids Surf B Biointerfaces 2024; 242:114088. [PMID: 39003845 DOI: 10.1016/j.colsurfb.2024.114088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/04/2024] [Accepted: 07/10/2024] [Indexed: 07/16/2024]
Abstract
Pseudomonas aeruginosa (P. aeruginosa) typically forms biofilms in vivo, which exhibit high resistance and complicate eradication efforts. Additionally, persistent inflammation and excessive oxidative stress can lead to severe lung dysfunction, facilitating bacterial colonization and infection. Herein, we prepared oil-in-water (O/W) nanoemulsions (TD-αT NEs) by using PEG5k-block-PCL5k and α-tocopherol to encapsulate tobramycin (TOB). To enhance TOB's drug load, a hydrophobic ion pair (TDIP) composed of TOB and docosahexaenoic acid (DHA) was pre-prepared. TD-αT NEs was not only easily prepared and aerosolized, but stable in both physics and chemistry. The negatively charged TD-αT NEs facilitated penetration through mucus, reaching infection sites. Subsequently, TD-αT NEs permeated biofilms due to their small size and released drugs via lipase-triggered carrier dissociation, aiding in eradicating internal bacteria within biofilms (with a 16-fold reduction in CFU vs. free TOB group). TD-αT NEs simultaneously exerted superior anti-inflammatory effects, reducing levels of pro-inflammatory cytokines (NO, IL-6, IL-8, and TNF-α) while increasing the level of anti-inflammatory cytokine (IL-10). It was achieved through the upregulation of PPAR-γ and downregulation of NF-κB signaling, thus mitigating the lung damage. In addition, TD-αT NEs demonstrated strong antioxidant activity, alleviating the oxidative stress induced by P. aeruginosa. Notably, when administered via inhalation, TD-αT NEs significantly reduced the lung bacterial burden, lung inflammation, and oxidative stress in vivo compared to TOB solution. TD-αT NEs could prove beneficial in treating chronic pulmonary infections induced by P. aeruginosa through a comprehensive strategy, specifically enhancing biofilm eradication, reducing inflammation, and alleviating oxidative stress.
Collapse
Affiliation(s)
- Yingying Sun
- School of Pharmaceutical Sciences, Sun Yat-Sen University, University Town, Guangzhou 510006, PR China
| | - Tianli Lu
- School of Pharmaceutical Sciences, Sun Yat-Sen University, University Town, Guangzhou 510006, PR China
| | - Jieyi Pan
- School of Pharmaceutical Sciences, Sun Yat-Sen University, University Town, Guangzhou 510006, PR China
| | - Haonan He
- School of Pharmaceutical Sciences, Sun Yat-Sen University, University Town, Guangzhou 510006, PR China
| | - Mao Xu
- School of Pharmaceutical Sciences, Sun Yat-Sen University, University Town, Guangzhou 510006, PR China
| | - Yujun Chen
- School of Pharmaceutical Sciences, Sun Yat-Sen University, University Town, Guangzhou 510006, PR China
| | - Yan Chen
- School of Pharmaceutical Sciences, Sun Yat-Sen University, University Town, Guangzhou 510006, PR China
| | - Pengchao Fang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, University Town, Guangzhou 510006, PR China
| | - Xiaoxing Ye
- School of Pharmaceutical Sciences, Sun Yat-Sen University, University Town, Guangzhou 510006, PR China
| | - Shuxuan Li
- School of Pharmaceutical Sciences, Sun Yat-Sen University, University Town, Guangzhou 510006, PR China
| | - Haiyan Hu
- School of Pharmaceutical Sciences, Sun Yat-Sen University, University Town, Guangzhou 510006, PR China; State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, PR China; Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, Sun Yat-Sen University, University Town, Guangzhou 510006, PR China.
| | - Shihui Yu
- School of Pharmaceutical Sciences, Sun Yat-Sen University, University Town, Guangzhou 510006, PR China; State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, PR China; Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, Sun Yat-Sen University, University Town, Guangzhou 510006, PR China.
| |
Collapse
|
2
|
Ulu A, Burr A, Heires AJ, Pavlik J, Larsen T, Perez PA, Bravo C, DiPatrizio NV, Baack M, Romberger DJ, Nordgren TM. A high docosahexaenoic acid diet alters lung inflammation and recovery following repetitive exposure to aqueous organic dust extracts. J Nutr Biochem 2021; 97:108797. [PMID: 34126202 PMCID: PMC8725620 DOI: 10.1016/j.jnutbio.2021.108797] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 12/15/2022]
Abstract
Agricultural workers, especially those who work in swine confinement facilities, are at increased risk for developing pulmonary diseases including asthma, chronic obstructive pulmonary disease, and chronic bronchitis due to exposures to fumes, vapors, and organic dust. Repetitive exposure to agricultural dust leads to unresolved inflammation, a common underlying mechanism that worsens lung disease. Besides occupational exposure to dusts, diet also significantly contributes to inflammation and disease progression. Since DHA (docosahexaenoic acid), a polyunsaturated omega-3 fatty acid and its bioactive metabolites have key roles in inflammation resolution, we rationalized that individuals chronically exposed to organic dusts can benefit from dietary modifications. Here, we evaluated the role of DHA in modifying airway inflammation in a murine model of repetitive exposure to an aqueous extract of agricultural dust (three-week exposure to swine confinement dust extract, HDE) and after a one-week resolution/recovery period. We found that mice fed a high DHA diet had significantly increased bronchoalveolar lavage fluid (BALF) levels of DHA-derived resolvins and lower TNFα along with altered plasma levels of endocannabinoids and related lipid mediators. Following the one-week recovery we identified significantly reduced BALF cellularity and cytokine/chemokine release along with increased BALF amphiregulin and resolvins in DHA diet-fed versus control diet-fed mice challenged with HDE. We further report observations on the effects of repetitive HDE exposure on lung Ym1+ and Arg-1+ macrophages. Overall, our findings support a protective role for DHA and identify DHA-derived resolvins and endocannabinoids among the potential mediators of DHA in altering airway inflammation in chronic agricultural dust exposure.
Collapse
Affiliation(s)
- Arzu Ulu
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, California, USA
| | - Abigail Burr
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, California, USA
| | - Art J Heires
- Pulmonary, Critical Care, Sleep and Allergy Division, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Jacqueline Pavlik
- Pulmonary, Critical Care, Sleep and Allergy Division, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Tricia Larsen
- Children's Health Research Center, Sanford Research, Sioux Falls, South Dakota, USA
| | - Pedro A Perez
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, California, USA
| | - Carissa Bravo
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, California, USA
| | - Nicholas V DiPatrizio
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, California, USA
| | - Michelle Baack
- Children's Health Research Center, Sanford Research, Sioux Falls, South Dakota, USA; Division of Neonatology, University of South Dakota-Sanford School of Medicine, Sioux Falls, South Dakota, USA
| | - Debra J Romberger
- VA Nebraska-Western Iowa Healthcare System, Omaha, Nebraska, USA; Pulmonary, Critical Care, Sleep and Allergy Division, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Tara M Nordgren
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, California, USA; Pulmonary, Critical Care, Sleep and Allergy Division, University of Nebraska Medical Center, Omaha, Nebraska, USA.
| |
Collapse
|
3
|
Wang TT, Yang Y, Wang F, Yang WG, Zhang JJ, Zou ZQ. Docosahexaenoic acid monoglyceride induces apoptosis and autophagy in breast cancer cells via lipid peroxidation-mediated endoplasmic reticulum stress. J Food Sci 2021; 86:4704-4716. [PMID: 34494660 DOI: 10.1111/1750-3841.15900] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 07/30/2021] [Accepted: 08/05/2021] [Indexed: 12/31/2022]
Abstract
Epidemiologic and preclinical studieshave shown that marine n-3 polyunsaturated fatty acids (n-3 PUFAs) elicit promising chemoprevention against breast cancer. Docosahexaenoic acid monoglyceride (MAG-DHA), a docosahexaenoic acid sn-1-monoacylglycerol does not required pancreatic lipase to be absorbed, eliciting a better bioavailability when compared with other formulations such as DHA-free fatty acid, DHA-triglycerol, or DHA-ethyl ester. However, the anticancer actions and underlying mechanisms of MAG-DHA on breast cancer remain to be assessed. In this study, MAG-DHA induced significant growth inhibition in MCF-7 and MDA-MB-231 breast cancer cells in a dose-dependent manner. MAG-DHA treatment (80 µM) led to 83.8 and 94.3% growth inhibition between MCF-7 and MDA-MB-231 cells, respectively. MAG-DHA-induced growth inhibition was tightly associated with apoptosis, as evidenced by increased active forms of caspase-3, poly (ADP-ribose) polymerase (PARP) and caspase-12. In particular, MAG-DHA-induced apoptosis was triggered by oxidative stress-mediated endoplasmic reticulum (ER) stress, as evidenced by activation of the PERK-eIF2α pathway in ER. MAG-DHA treatment also strongly suppressed the growth of E0771 murine breast cancer xenografts, significant differences of tumor volume were found between MAG-DHA group (0.271 cm3 ) and control group (0.875 cm3 ) after 15 daily MAG-DHA treatments. The in vitro antibreast cancer mechanism of MAG-DHA was supported by the in vivo xenograft model. In addition, MAG-DHA-induced ER stress concomitantly triggered autophagy in these cancer cells, and the induction of autophagy suppressed its ability to induce apoptotic cell death. Our data suggested that MAG-DHA as dietary supplement, in combination with autophagy inhibitors may be a useful therapeutic strategy in treating breast cancer.
Collapse
Affiliation(s)
- Tian-Tian Wang
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, P. R. China
| | - Yong Yang
- Department of Clinical Laboratory, The Affiliated Hospital of Medical School of Ningbo University, Ningbo, Zhejiang, P. R. China
| | - Feng Wang
- Department of Laboratory Medicine, Ningbo Medical Center Lihuili Hospital, Ningbo, Zhejiang, P. R. China
| | - Wen-Ge Yang
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, P. R. China
| | - Jin-Jie Zhang
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, P. R. China
| | - Zu-Quan Zou
- Zhejiang Key Laboratory of Pathophysiology, Medical School, Ningbo University, Ningbo, Zhejiang, P. R. China
| |
Collapse
|
4
|
Garić D, Dumut DC, Shah J, De Sanctis JB, Radzioch D. The role of essential fatty acids in cystic fibrosis and normalizing effect of fenretinide. Cell Mol Life Sci 2020; 77:4255-4267. [PMID: 32394023 PMCID: PMC11105061 DOI: 10.1007/s00018-020-03530-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 02/28/2020] [Accepted: 04/15/2020] [Indexed: 12/26/2022]
Abstract
Cystic fibrosis (CF) is the most common autosomal-recessive disease in Caucasians caused by mutations in the CF transmembrane regulator (CFTR) gene. Patients are usually diagnosed in infancy and are burdened with extensive medical treatments throughout their lives. One of the first documented biochemical defects in CF, which predates the cloning of CFTR gene for almost three decades, is an imbalance in the levels of polyunsaturated fatty acids (PUFAs). The principal hallmarks of this imbalance are increased levels of arachidonic acid and decreased levels of docosahexaenoic acids (DHA) in CF. This pro-inflammatory profile of PUFAs is an important component of sterile inflammation in CF, which is known to be detrimental, rather than protective for the patients. Despite decades of intensive research, the mechanistic basis of this phenomenon remains unclear. In this review we summarized the current knowledge on the biochemistry of PUFAs, with a focus on the metabolism of AA and DHA in CF. Finally, a synthetic retinoid called fenretinide (N-(4-hydroxy-phenyl) retinamide) was shown to be able to correct the pro-inflammatory imbalance of PUFAs in CF. Therefore, its pharmacological actions and clinical potential are briefly discussed as well.
Collapse
Affiliation(s)
- Dušan Garić
- Department of Human Genetics, McGill University, Montreal, QC, Canada
- Program in Infectious Diseases and Immunity in Global Health, McGill University Health Center, 1001 Decarie Boulevard, Room EM3-3211, Montreal, QC, H4A 3J1, Canada
| | - Daciana Catalina Dumut
- Department of Medicine, Division of Experimental Medicine, McGill University, Montreal, QC, Canada
- Program in Infectious Diseases and Immunity in Global Health, McGill University Health Center, 1001 Decarie Boulevard, Room EM3-3211, Montreal, QC, H4A 3J1, Canada
| | - Juhi Shah
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
- Program in Infectious Diseases and Immunity in Global Health, McGill University Health Center, 1001 Decarie Boulevard, Room EM3-3211, Montreal, QC, H4A 3J1, Canada
| | - Juan Bautista De Sanctis
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Danuta Radzioch
- Department of Human Genetics, McGill University, Montreal, QC, Canada.
- Department of Medicine, Division of Experimental Medicine, McGill University, Montreal, QC, Canada.
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic.
- Program in Infectious Diseases and Immunity in Global Health, McGill University Health Center, 1001 Decarie Boulevard, Room EM3-3211, Montreal, QC, H4A 3J1, Canada.
| |
Collapse
|
5
|
Garić D, De Sanctis JB, Dumut DC, Shah J, Peña MJ, Youssef M, Petrof BJ, Kopriva F, Hanrahan JW, Hajduch M, Radzioch D. Fenretinide favorably affects mucins (MUC5AC/MUC5B) and fatty acid imbalance in a manner mimicking CFTR-induced correction. Biochim Biophys Acta Mol Cell Biol Lipids 2019; 1865:158538. [PMID: 31678518 DOI: 10.1016/j.bbalip.2019.158538] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 09/28/2019] [Accepted: 10/03/2019] [Indexed: 02/07/2023]
Abstract
Cystic fibrosis (CF) is the most common genetic disease in Caucasians. CF is manifested by abnormal accumulation of mucus in the lungs, which serves as fertile ground for the growth of microorganisms leading to recurrent infections and ultimately, lung failure. Mucus in CF patients consists of DNA from dead neutrophils as well as mucins produced by goblet cells. MUC5AC mucin leads to pathological plugging of the airways whereas MUC5B has a protective role against bacterial infection. Therefore, decreasing the level of MUC5AC while maintaining MUC5B intact would in principle be a desirable mucoregulatory treatment outcome. Fenretinide prevented the lipopolysaccharide-induced increase of MUC5AC gene expression, without affecting the level of MUC5B, in a lung goblet cell line. Additionally, fenretinide treatment reversed the pro-inflammatory imbalance of fatty acids by increasing docosahexaenoic acid and decreasing the levels of arachidonic acid in a lung epithelial cell line and primary leukocytes derived from CF patients. Furthermore, for the first time we also demonstrate the effect of fenretinide on multiple unsaturated fatty acids, as well as differential effects on the levels of long- compared to very-long-chain saturated fatty acids which are important substrates of complex phospholipids. Finally, we demonstrate that pre-treating mice with fenretinide in a chronic model of P. aeruginosa lung infection efficiently decreases the accumulation of mucus. These findings suggest that fenretinide may offer a new approach to therapeutic modulation of pathological mucus production in CF.
Collapse
Affiliation(s)
- Dušan Garić
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada; Program in Infectious Diseases and Immunity in Global Health, McGill University Health Center, Montreal, Quebec, Canada
| | - Juan B De Sanctis
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic; Institute of Immunology, Faculty of Medicine, Universidad Central de Venezuela, Bolivarian Republic of Venezuela
| | - Daciana Catalina Dumut
- Department of Medicine, Division of Experimental Medicine, McGill University, Montreal, Quebec, Canada; Program in Infectious Diseases and Immunity in Global Health, McGill University Health Center, Montreal, Quebec, Canada
| | - Juhi Shah
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada; Program in Infectious Diseases and Immunity in Global Health, McGill University Health Center, Montreal, Quebec, Canada
| | - Maria Johanna Peña
- Institute of Immunology, Faculty of Medicine, Universidad Central de Venezuela, Bolivarian Republic of Venezuela
| | - Mina Youssef
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada; Program in Infectious Diseases and Immunity in Global Health, McGill University Health Center, Montreal, Quebec, Canada
| | - Basil J Petrof
- Meakins-Christie Laboratories, Translational Research in Respiratory Diseases Program, Department of Medicine, McGill University Health Centre, Montreal, Quebec, Canada
| | - Francisek Kopriva
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - John W Hanrahan
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| | - Marian Hajduch
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Danuta Radzioch
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada; Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic; Department of Medicine, Division of Experimental Medicine, McGill University, Montreal, Quebec, Canada; Program in Infectious Diseases and Immunity in Global Health, McGill University Health Center, Montreal, Quebec, Canada.
| |
Collapse
|
6
|
Watson JE, Kim JS, Das A. Emerging class of omega-3 fatty acid endocannabinoids & their derivatives. Prostaglandins Other Lipid Mediat 2019; 143:106337. [PMID: 31085370 DOI: 10.1016/j.prostaglandins.2019.106337] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 03/11/2019] [Accepted: 05/10/2019] [Indexed: 12/26/2022]
Abstract
Cannabinoid receptor activation is involved in homeostatic regulation of the body. These receptors are activated by cannabinoids, that include the active constituents of Cannabis sativa, as well as endocannabinoids (eCBs). The eCBs are endogenously synthesized from the omega-6 and omega-3 polyunsaturated fatty acids (PUFAs). The consumption of omega-3 fatty acids shifts the balance towards a higher proportion of omega-3 eCBs, whose physiological functions warrants further investigation. Herein, we review the discovery of omega-3 fatty acid derived eCBs that are generated from long chain omega-3 PUFAs - docosahexaenoyl ethanolamide (DHA-EA or synaptamide), docosahexanoyl-glycerol (DHG), eicosapentaenoyl ethanolamide (EPA-EA) and eicosapentanoylglycerol (EPG). Furthermore, we outline the lesser known omega-3 eCB-like molecules that arise from the conjugation of omega-3 fatty acids with neurotransmitters serotonin and dopamine - DHA-serotonin (DHA-5HT), DHA-dopamine (DHA-DA), EPA-serotonin (EPA-5HT) and EPA-dopamine (EPA-DA). Additionally, we describe the role of omega-3 eCBs and their derivatives in different disease states, such as pain, inflammation and cancer. Moreover, we detail the formation and potential physiological roles of the oxidative metabolites that arise from the metabolism of omega-3 eCBs by eicosanoid synthesizing enzymes - cyclooxygenase (COX), lipoxygenase (LOX) and cytochrome P450 epoxygenase (CYP450). In summary, we outline the novel findings regarding a growing class of signaling molecules that can control the physiological and pathophysiological processes in the body.
Collapse
Affiliation(s)
| | - Justin S Kim
- Division of Nutritional Sciences, Urbana, IL 61801, United States
| | - Aditi Das
- Department of Comparative Biosciences, Urbana, IL 61802, United States; Department of Biochemistry, Urbana, IL 61801, United States; Division of Nutritional Sciences, Urbana, IL 61801, United States; Beckman Institute for Advanced Science, Neuroscience Program, Center for Biophysics and Quantitative Biology, Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States.
| |
Collapse
|
7
|
Abstract
The majority of evidence linking anti-colorectal cancer (CRC) activity with omega-3 polyunsaturated fatty acids (O3FAs) has focussed on decreased CRC risk (prevention). More recently, preclinical data and human observational studies have begun to make the case for adjuvant treatment of advanced CRC. Herein, we review latest data regarding the effect of O3FAs on post-diagnosis CRC outcomes, including mechanistic preclinical data, evidence that O3FAs have beneficial effects on efficacy and tolerability of CRC chemotherapy, and human epidemiological data linking dietary O3FA intake with CRC outcomes. We also highlight ongoing randomised controlled trials of O3FAs with CRC endpoints and discuss critical gaps in the evidence base, which include limited understanding of the effects of O3FAs on the tumour microenvironment, the host immune response to CRC, and the intestinal microbiome.
Collapse
Affiliation(s)
- Milene Volpato
- Leeds Institute of Biomedical and Clinical Sciences, St James's University Hospital, University of Leeds, Leeds, LS9 7TF, UK
| | - Mark A Hull
- Leeds Institute of Biomedical and Clinical Sciences, St James's University Hospital, University of Leeds, Leeds, LS9 7TF, UK.
| |
Collapse
|
8
|
Krishnamoorthy N, Abdulnour REE, Walker KH, Engstrom BD, Levy BD. Specialized Proresolving Mediators in Innate and Adaptive Immune Responses in Airway Diseases. Physiol Rev 2018; 98:1335-1370. [PMID: 29717929 DOI: 10.1152/physrev.00026.2017] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Airborne pathogens and environmental stimuli evoke immune responses in the lung. It is critical to health that these responses be controlled to prevent tissue damage and the compromise of organ function. Resolution of inflammation is a dynamic process that is coordinated by biochemical and cellular mechanisms. Recently, specialized proresolving mediators (SPMs) have been identified in resolution exudates. These molecules orchestrate anti-inflammatory and proresolving actions that are cell type specific. In this review, we highlight SPM biosynthesis, the influence of SPMs on the innate and adaptive immune responses in the lung, as well as recent insights from SPMs on inflammatory disease pathophysiology. Uncovering these mediators and cellular mechanisms for resolution is providing new windows into physiology and disease pathogenesis.
Collapse
Affiliation(s)
- Nandini Krishnamoorthy
- Pulmonary and Critical Care Medicine, Brigham and Women's Hospital and Harvard Medical School , Boston, Massachusetts ; and Department of Anesthesiology, Center for Experimental Therapeutics and Reperfusion Injury, Perioperative and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School , Boston, Massachusetts
| | - Raja-Elie E Abdulnour
- Pulmonary and Critical Care Medicine, Brigham and Women's Hospital and Harvard Medical School , Boston, Massachusetts ; and Department of Anesthesiology, Center for Experimental Therapeutics and Reperfusion Injury, Perioperative and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School , Boston, Massachusetts
| | - Katherine H Walker
- Pulmonary and Critical Care Medicine, Brigham and Women's Hospital and Harvard Medical School , Boston, Massachusetts ; and Department of Anesthesiology, Center for Experimental Therapeutics and Reperfusion Injury, Perioperative and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School , Boston, Massachusetts
| | - Braden D Engstrom
- Pulmonary and Critical Care Medicine, Brigham and Women's Hospital and Harvard Medical School , Boston, Massachusetts ; and Department of Anesthesiology, Center for Experimental Therapeutics and Reperfusion Injury, Perioperative and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School , Boston, Massachusetts
| | - Bruce D Levy
- Pulmonary and Critical Care Medicine, Brigham and Women's Hospital and Harvard Medical School , Boston, Massachusetts ; and Department of Anesthesiology, Center for Experimental Therapeutics and Reperfusion Injury, Perioperative and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School , Boston, Massachusetts
| |
Collapse
|
9
|
Carnevale LN, Arango AS, Arnold WR, Tajkhorshid E, Das A. Endocannabinoid Virodhamine Is an Endogenous Inhibitor of Human Cardiovascular CYP2J2 Epoxygenase. Biochemistry 2018; 57:6489-6499. [PMID: 30285425 PMCID: PMC6262108 DOI: 10.1021/acs.biochem.8b00691] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The human body contains endogenous cannabinoids (endocannabinoids) that elicit effects similar to those of Δ9-tetrahydrocanabinol, the principal bioactive component of cannabis. The endocannabinoid virodhamine (O-AEA) is the constitutional isomer of the well-characterized cardioprotective and anti-inflammatory endocannabinoid anandamide (AEA). The chemical structures of O-AEA and AEA contain arachidonic acid (AA) and ethanolamine; however, AA in O-AEA is connected to ethanolamine via an ester linkage, whereas AA in AEA is connected through an amide linkage. O-AEA is involved in regulating blood pressure and cardiovascular function. We show that O-AEA is found at levels 9.6-fold higher than that of AEA in porcine left ventricle. On a separate note, the cytochrome P450 (CYP) epoxygenase CYP2J2 is the most abundant CYP in the heart where it catalyzes the metabolism of AA and AA-derived eCBs to bioactive epoxides that are involved in diverse cardiovascular functions. Herein, using competitive binding studies, kinetic metabolism measurements, molecular dynamics, and wound healing assays, we have shown that O-AEA is an endogenous inhibitor of CYP2J2 epoxygenase. As a result, the role of O-AEA as an endogenous eCB inhibitor of CYP2J2 may provide a new mode of regulation to control the activity of cardiovascular CYP2J2 in vivo and suggests a potential cross-talk between the cardiovascular endocannabinoids and the cytochrome P450 system.
Collapse
Affiliation(s)
- Lauren N. Carnevale
- Department of Biochemistry, Division of Nutritional Sciences, Neuroscience Program, University of Illinois Urbana-Champaign, Urbana IL 61801
| | - Andres S. Arango
- Center for Biophysics and Computational Biology, Division of Nutritional Sciences, Neuroscience Program, University of Illinois Urbana-Champaign, Urbana IL 61801
- Beckman Institute for Advanced Science and Technology, Division of Nutritional Sciences, Neuroscience Program, University of Illinois Urbana-Champaign, Urbana IL 61801
| | - William R. Arnold
- Department of Biochemistry, Division of Nutritional Sciences, Neuroscience Program, University of Illinois Urbana-Champaign, Urbana IL 61801
| | - Emad Tajkhorshid
- Center for Biophysics and Computational Biology, Division of Nutritional Sciences, Neuroscience Program, University of Illinois Urbana-Champaign, Urbana IL 61801
- Beckman Institute for Advanced Science and Technology, Division of Nutritional Sciences, Neuroscience Program, University of Illinois Urbana-Champaign, Urbana IL 61801
- Department of Bioengineering, Division of Nutritional Sciences, Neuroscience Program, University of Illinois Urbana-Champaign, Urbana IL 61801
| | - Aditi Das
- Department of Comparative Biosciences, Division of Nutritional Sciences, Neuroscience Program, University of Illinois Urbana-Champaign, Urbana IL 61801
- Department of Biochemistry, Division of Nutritional Sciences, Neuroscience Program, University of Illinois Urbana-Champaign, Urbana IL 61801
- Center for Biophysics and Computational Biology, Division of Nutritional Sciences, Neuroscience Program, University of Illinois Urbana-Champaign, Urbana IL 61801
- Beckman Institute for Advanced Science and Technology, Division of Nutritional Sciences, Neuroscience Program, University of Illinois Urbana-Champaign, Urbana IL 61801
| |
Collapse
|
10
|
Shao X, Bor G, Al-Hosayni S, Salentinig S, Yaghmur A. Structural characterization of self-assemblies of new omega-3 lipids: docosahexaenoic acid and docosapentaenoic acid monoglycerides. Phys Chem Chem Phys 2018; 20:23928-23941. [PMID: 30209464 DOI: 10.1039/c8cp04256j] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The attractiveness of new omega-3 (ω-3) polyunsaturated fatty acid (PUFA) monoglycerides (MAGs) lies in the amphiphilic nature and the beneficial health effects as PUFA precursors in various disorders including cancer, pulmonary hypertension, and inflammatory diseases. For exploring the potential therapeutic applications of these new amphiphilic lipids, particularly as main lipid constituents in the development of nanocarriers for delivery of drugs and PUFAs, it is of paramount importance to gain insight into their self-assembly behavior on exposure to excess water. This work describes the structural characteristics of self-assemblies based on two newly synthesized MAGs, namely docosahexaenoic acid (MAG-DHA) and docosapentaenoic acid (MAG-DPA) monoglycerides, on exposure to excess water. We found that both lipids tend to form a dominant inverse hexagonal (H2) phase in excess water at 25 °C and a temperature-triggered structural transition to an inverse micellar solution (L2 phase) is detected similar to that recently reported (A. Yaghmur et al., Langmuir, 2017, 33, 14045-14057) for eicosapentaenoic acid monoglyceride (MAG-EPA). An experimental SAXS structural evaluation study on the temperature-dependent behavior of these new monoglycerides is provided, and the effects of unsaturation degree and fatty acyl chain length on the self-assembled structural features in excess water and on the H2-L2 phase transition temperature are discussed. In addition, hexosomes stabilized by using the triblock copolymer F127 and the food-grade emulsifier citrem were investigated to gain insights into the effects of stabilizer and temperature on the internal nanostructure. These nanoparticles are attractive for use in the development of nanocarriers for delivering drugs and/or nutritional compounds as the beneficial health effects of ω-3 PUFA monoglycerides can be combined with those of loaded therapeutic agents or nutraceuticals.
Collapse
Affiliation(s)
- Xianrong Shao
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen Ø, Denmark.
| | | | | | | | | |
Collapse
|
11
|
Long Y, Wang G, Li K, Zhang Z, Zhang P, Zhang J, Zhang X, Bao Y, Yang X, Wang P. Oxidative stress and NF-κB signaling are involved in LPS induced pulmonary dysplasia in chick embryos. Cell Cycle 2018; 17:1757-1771. [PMID: 30010471 DOI: 10.1080/15384101.2018.1496743] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Inflammation or dysbacteriosis-derived lipopolysaccharides (LPS) adversely influence the embryonic development of respiratory system. However, the precise pathological mechanisms still remain to be elucidated. In this study, we demonstrated that LPS exposure caused lung maldevelopment in chick embryos, including higher embryo mortality, increased thickness of alveolar gas exchange zone, and accumulation of PAS+ immature pulmonary cells, accompanied with reduced expression of alveolar epithelial cell markers and lamellar body count. Upon LPS exposure, pulmonary cell proliferation was significantly altered and cell apoptosis was inhibited as well, indicating a delayed progress of pulmonary development. LPS treatment also resulted in reduced CAV-1 expression and up-regulation of Collagen I, suggesting increased lung fibrosis, which was verified by Masson staining. Moreover, LPS induced enhanced Nrf2 expression in E18 lungs, and the increased reactive oxygen species (ROS) production was confirmed in MLE-12 cells in vitro. Antioxidant vitamin C restored the LPS induced down-regulation of ABCA3, SP-C and GATA-6 in MLE-12 cells. Furthermore, LPS induced activation of NF-κB signaling in MLE-12 cells, and the LPS-induced decrease in SP-C expression was partially abrogated by blocking NF-κB signaling with Bay-11-7082. Bay-11-7082 also inhibited LPS-induced increases of ROS and Nrf2 expression. Taken together, we have demonstrated that oxidative stress and NF-κB signaling are involved in LPS induced disruption of pulmonary cell development in chick embryos.
Collapse
Affiliation(s)
- Yun Long
- a Department of Microbiology and Immunology, School of Basic Medical Sciences , Jinan University , Guangzhou , China
| | - Guang Wang
- b Division of Histology & Embryology, Key Laboratory for Regenerative Medicine of the Ministry of Education, School of Basic Medical Sciences , Jinan University , Guangzhou , China
| | - Ke Li
- b Division of Histology & Embryology, Key Laboratory for Regenerative Medicine of the Ministry of Education, School of Basic Medical Sciences , Jinan University , Guangzhou , China
| | - Zongyi Zhang
- a Department of Microbiology and Immunology, School of Basic Medical Sciences , Jinan University , Guangzhou , China
| | - Ping Zhang
- b Division of Histology & Embryology, Key Laboratory for Regenerative Medicine of the Ministry of Education, School of Basic Medical Sciences , Jinan University , Guangzhou , China
| | - Jing Zhang
- b Division of Histology & Embryology, Key Laboratory for Regenerative Medicine of the Ministry of Education, School of Basic Medical Sciences , Jinan University , Guangzhou , China
| | - Xiaotan Zhang
- b Division of Histology & Embryology, Key Laboratory for Regenerative Medicine of the Ministry of Education, School of Basic Medical Sciences , Jinan University , Guangzhou , China
| | - Yongping Bao
- c Norwich Medical School , University of East Anglia , Norwich , Norfolk , UK
| | - Xuesong Yang
- b Division of Histology & Embryology, Key Laboratory for Regenerative Medicine of the Ministry of Education, School of Basic Medical Sciences , Jinan University , Guangzhou , China
| | - Pengcheng Wang
- a Department of Microbiology and Immunology, School of Basic Medical Sciences , Jinan University , Guangzhou , China
| |
Collapse
|
12
|
Morin C, Cantin AM, Vézina FA, Fortin S. The Efficacy of MAG-DHA for Correcting AA/DHA Imbalance of Cystic Fibrosis Patients. Mar Drugs 2018; 16:md16060184. [PMID: 29861448 PMCID: PMC6025526 DOI: 10.3390/md16060184] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 05/16/2018] [Accepted: 05/25/2018] [Indexed: 11/22/2022] Open
Abstract
Omega-3 polyunsaturated fatty acid (n-3 PUFA) supplementations are thought to improve essential fatty acid deficiency (EFAD) as well as reduce inflammation in Cystic Fibrosis (CF), but their effectiveness in clinical studies remains unknown. The aim of the study was to determine how the medical food containing docosahexaenoic acid monoglyceride (MAG-DHA) influenced erythrocyte fatty acid profiles and the expression levels of inflammatory circulating mediators. We conducted a randomized, double blind, pilot trial including fifteen outpatients with Cystic Fibrosis, ages 18–48. The patients were divided into 2 groups and received MAG-DHA or a placebo (sunflower oil) for 60 days. Patients took 8 × 625 mg MAG-DHA softgels or 8 × 625 mg placebo softgels every day at bedtime for 60 days. Lipid analyses revealed that MAG-DHA increased docosahexaenoic acid (DHA) levels and decrease arachidonic acid (AA) ratio (AA/DHA) in erythrocytes of CF patients following 1 month of daily supplementation. Data also revealed a reduction in plasma human leukocyte elastase (pHLE) complexes and interleukin-6 (IL-6) expression levels in blood samples of MAG-DHA supplemented CF patients. This pilot study indicates that MAG-DHA supplementation corrects erythrocyte AA/DHA imbalance and may exert anti-inflammatory properties through the reduction of pHLE complexes and IL6 in blood samples of CF patients. Trial registration: Pro-resolving Effect of MAG-DHA in Cystic Fibrosis (PREMDIC), NCT02518672.
Collapse
Affiliation(s)
- Caroline Morin
- SCF Pharma, 235, route du Fleuve Ouest, Ste-Luce, QC G0K 1P0, Canada.
| | - André M Cantin
- Department of Medicine, Respiratory Division, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada.
| | - Félix-Antoine Vézina
- Department of Medicine, Respiratory Division, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada.
| | - Samuel Fortin
- SCF Pharma, 235, route du Fleuve Ouest, Ste-Luce, QC G0K 1P0, Canada.
| |
Collapse
|
13
|
Novel n-3 PUFA monoacylglycerides of pharmacological and medicinal interest: Anti-inflammatory and anti-proliferative effects. Eur J Pharmacol 2016; 792:70-77. [PMID: 27818127 DOI: 10.1016/j.ejphar.2016.10.038] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 09/26/2016] [Accepted: 10/31/2016] [Indexed: 12/25/2022]
Abstract
Newly-synthesized, eicosapentaenoic acid monoacylglyceride (MAG-EPA), docosahexaenoic acid monoacylglyceride (MAG-DHA) and docosapentaenoic acid monoacylglyceride (MAG-DPA) have been demonstrated to display beneficial effects in several disorders including chronic airway inflammatory diseases, pulmonary hypertension, rheumatoid arthritis, and lung and colorectal adenocarcinoma. Recent evidence reveals that omega-3 polyunsaturated fatty acid (n-3 PUFA) precursors provide a window to explore the pathobiology of inflammatory disease as well as structural templates for the design of novel pro-resolving precursors that are well absorbed by the gastrointestinal (GI) tract and metabolized into bioactive metabolites. These metabolites are found in blood circulation and tissues thereby mediating numerous immuno-modulatory effects through the activation of specific receptors. Bioactive metabolites regulate cell membrane functions, lipid signaling and gene expressions encoding for enzymes responsible for lipid storage and fatty acid metabolism. This review highlights recent experimental findings regarding n-3 PUFA monoacylglyceride research, as well as the pharmacological and medicinal relevance of these stereospecific derivatives in the resolution of chronic inflammatory diseases.
Collapse
|
14
|
Cross CE, Zeki AA. Update on the spider and the fly: An extended commentary on "Oxidized LDL induced extracellular trap formation in human neutrophils via TLR-PKC-IRAK-MAPK and NADPH-Oxidase activation". Free Radic Biol Med 2016; 96:462-4. [PMID: 27040582 PMCID: PMC6020148 DOI: 10.1016/j.freeradbiomed.2016.03.034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 03/29/2016] [Indexed: 12/12/2022]
Affiliation(s)
- Carroll E Cross
- UC Davis Adult Cystic Fibrosis, University of California School of Medicine, Davis, CA, USA; Center for Comparative Respiratory Biology and Medicine, University of California School of Medicine, Davis, CA, USA; Department of Internal Medicine, University of California School of Medicine, Davis, CA, USA; Physiology and Membrane Biology, University of California School of Medicine, Davis, CA, USA.
| | - Amir A Zeki
- Asthma Network (UCAN) Clinic Programs, University of California School of Medicine, Davis, CA, USA; Center for Comparative Respiratory Biology and Medicine, University of California School of Medicine, Davis, CA, USA; Department of Internal Medicine, University of California School of Medicine, Davis, CA, USA
| |
Collapse
|
15
|
Lingappan K, Moorthy B. Can maternal DHA supplementation offer long-term protection against neonatal hyperoxic lung injury? Am J Physiol Lung Cell Mol Physiol 2015; 309:L1383-6. [PMID: 26361877 DOI: 10.1152/ajplung.00313.2015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 09/08/2015] [Indexed: 12/19/2022] Open
Abstract
The effect of adverse perinatal environment (like maternal infection) has long-standing effects on many organ systems, including the respiratory system. Use of maternal nutritional supplements is an exciting therapeutic option that could be used to protect the developing fetus. In a recent issue of the journal, Ali and associates (Ali M, Heyob KM, Velten M, Tipple TE, Rogers LK. Am J Physiol Lung Cell Mol Physiol 309: L441-L448, 2015) specifically look at maternal docosahexaenoic acid (DHA) supplementation and its effect on chronic apoptosis in the lung in a mouse model of perinatal inflammation and postnatal hyperoxia. Strikingly, the authors show that pulmonary apoptosis was augmented even 8 wk after the hyperoxia-exposed mice had been returned to room air. This effect was significantly attenuated in mice that were subjected to maternal dietary DHA supplementation. These findings are novel, significantly advance our understanding of chronic effects of adverse perinatal and neonatal events on the developing lung, and thereby offer novel therapeutic options in the form of maternal dietary supplementation with DHA. This editorial reviews the long-term effects of adverse perinatal environment on postnatal lung development and the protective effects of dietary supplements such as DHA.
Collapse
|
16
|
Omega-3 PUFA docosahexaenoic acid decreases LPS-stimulated MUC5AC production by altering EGFR-related signaling in NCI-H292 cells. Biochem Biophys Res Commun 2015; 463:1047-52. [PMID: 26079889 DOI: 10.1016/j.bbrc.2015.06.056] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 06/08/2015] [Indexed: 11/23/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) is an inflammatory process characterized by airway mucus hypersecretion. Lipopolysaccharides (LPS) are known to stimulate the production of mucin 5AC (MUC5AC) via epidermal growth factor receptor (EGFR) in human airway cells. Noteworthy, we have previously demonstrated that EGFR/Rac1/reactive oxygen species (ROS)/matrix metalloproteinase 9 (MMP-9) is a key signaling cascade regulating MUC5AC production in airway cells challenged with LPS. Various reports have shown an inverse association between the intake of polyunsaturated fatty acids (PUFA) of the n-3 (omega-3) family or fish consumption and COPD. In the present study, we investigated the influence of docosahexaenoic acid (DHA), one of the most important omega-3 PUFA contained in fish oil, on the production of MUC5AC in LPS-challenged human airway cells NCI--H292. Our results indicate that DHA is capable of counteracting MUC5AC overproduction in LPS-stimulated cells by abrogating both EGFR phosphorylation and its downstream signaling pathway. This signaling pathway not only includes Rac1, ROS and MMP-9, but also NF-κB, since we have found that ROS require NF-κB activity to induce MMP-9 secretion and activation.
Collapse
|