1
|
Nordström A, Jangard M, Ryott M, Tang X, Svedberg M, Kumlin M. Mucosal LTE 4, PGD 2 and 15(S)-HETE as potential prognostic markers for polyp recurrence in chronic rhinosinusitis. Prostaglandins Other Lipid Mediat 2024; 174:106886. [PMID: 39179198 DOI: 10.1016/j.prostaglandins.2024.106886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/30/2024] [Accepted: 08/20/2024] [Indexed: 08/26/2024]
Abstract
BACKGROUND Altered biosynthesis of eicosanoids is linked to type 2 inflammation in chronic rhinosinusitis with nasal polyps (CRSwNP), but their role in recalcitrant NPs is unclear. OBJECTIVES We sought to identify endotypes that are linked to recalcitrant CRSwNP, based on eicosanoids, their biosynthetic enzymes, and receptors as well as cytokines and the presence of eosinophils and mast cells in recurrent NPs. METHODS Mucosal tissue collected at the time of sinus surgery from 54 patients with CRSwNP and 12 non-CRS controls were analysed for leukotriene (LT) E4, prostaglandin (PG) D2, 15(S)-hydroxyeicosatetraenoic acid (15(S)-HETE) and 17 cytokines with ELISAs and Bio-Plex immunoassays. Patient subgroups were identified by cluster analysis and the probability of NP recurrence were tested with logistic regression analyses. Gene expressions were analysed with qPCR. Tryptase and eosinophil-derived neurotoxin (EDN) were measured with ELISAs as indications of the presence of mast cells and eosinophils, respectively. RESULTS Clustering of patients showed that an inflammatory signature characterised by elevated LTE4, PGD2, 15(S)-HETE and IL-13 was associated with NP recurrence. Previous NP surgery as well as aspirin-exacerbated respiratory disease were significantly more common among these patients. Expression of cyclooxygenase 1 was the only gene associated with NP recurrence. Levels of EDN, but not tryptase, were significantly higher in patients with recurrent NPs. CONCLUSION Distinguishing endotypes that include LTE4, PGD2, 15HETE and conventional biomarkers of type 2 inflammation could help predict recurrent nasal polyposis and thus identify cases of recalcitrant CRSwNP.
Collapse
Affiliation(s)
- Axel Nordström
- Department of Health Promoting Science, Sophiahemmet University, Stockholm, Sweden
| | - Mattias Jangard
- Department of Otorhinolaryngology, Sophiahemmet Hospital, Stockholm, Sweden
| | - Michael Ryott
- Department of Otorhinolaryngology, Sophiahemmet Hospital, Stockholm, Sweden
| | - Xiao Tang
- Division of Physiological Chemistry II, Biomedicum 9A, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Marie Svedberg
- Department of Health Promoting Science, Sophiahemmet University, Stockholm, Sweden
| | - Maria Kumlin
- Department of Health Promoting Science, Sophiahemmet University, Stockholm, Sweden; Division of Physiological Chemistry II, Biomedicum 9A, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
2
|
Yamada K, St Croix C, Stolz DB, Tyurina YY, Tyurin VA, Bradley LR, Kapralov AA, Deng Y, Zhou X, Wei Q, Liao B, Fukuda N, Sullivan M, Trudeau J, Ray A, Kagan VE, Zhao J, Wenzel SE. Compartmentalized mitochondrial ferroptosis converges with optineurin-mediated mitophagy to impact airway epithelial cell phenotypes and asthma outcomes. Nat Commun 2024; 15:5818. [PMID: 38987265 PMCID: PMC11237105 DOI: 10.1038/s41467-024-50222-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 07/03/2024] [Indexed: 07/12/2024] Open
Abstract
A stable mitochondrial pool is crucial for healthy cell function and survival. Altered redox biology can adversely affect mitochondria through induction of a variety of cell death and survival pathways, yet the understanding of mitochondria and their dysfunction in primary human cells and in specific disease states, including asthma, is modest. Ferroptosis is traditionally considered an iron dependent, hydroperoxy-phospholipid executed process, which induces cytosolic and mitochondrial damage to drive programmed cell death. However, in this report we identify a lipoxygenase orchestrated, compartmentally-targeted ferroptosis-associated peroxidation process which occurs in a subpopulation of dysfunctional mitochondria, without promoting cell death. Rather, this mitochondrial peroxidation process tightly couples with PTEN-induced kinase (PINK)-1(PINK1)-Parkin-Optineurin mediated mitophagy in an effort to preserve the pool of functional mitochondria and prevent cell death. These combined peroxidation processes lead to altered epithelial cell phenotypes and loss of ciliated cells which associate with worsened asthma severity. Ferroptosis-targeted interventions of this process could preserve healthy mitochondria, reverse cell phenotypic changes and improve disease outcomes.
Collapse
Affiliation(s)
- Kazuhiro Yamada
- Department of Environmental and Occupational Health, School of Public Health, University of Pittsburgh, Pittsburgh, PA, 15261, USA
- Department of Respiratory Medicine, Graduate School of Medicine, Osaka Metropolitan University, Osaka, 545-8585, Japan
| | - Claudette St Croix
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Donna B Stolz
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Yulia Y Tyurina
- Department of Environmental and Occupational Health, School of Public Health, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Vladimir A Tyurin
- Department of Environmental and Occupational Health, School of Public Health, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Laura R Bradley
- Department of Environmental and Occupational Health, School of Public Health, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Alexander A Kapralov
- Department of Environmental and Occupational Health, School of Public Health, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Yanhan Deng
- Department of Environmental and Occupational Health, School of Public Health, University of Pittsburgh, Pittsburgh, PA, 15261, USA
- Department of Rheumatology and Immunology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiuxia Zhou
- Department of Environmental and Occupational Health, School of Public Health, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Qi Wei
- Department of Environmental and Occupational Health, School of Public Health, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Bo Liao
- Department of Environmental and Occupational Health, School of Public Health, University of Pittsburgh, Pittsburgh, PA, 15261, USA
- Department of Otolaryngology-Head & Neck Surgery, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Nobuhiko Fukuda
- Department of Environmental and Occupational Health, School of Public Health, University of Pittsburgh, Pittsburgh, PA, 15261, USA
- Department of Pulmonology, Yokohama City University Graduate School of Medicine, Yokohama, 236-0004, Japan
| | - Mara Sullivan
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - John Trudeau
- Department of Environmental and Occupational Health, School of Public Health, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Anuradha Ray
- Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Valerian E Kagan
- Department of Environmental and Occupational Health, School of Public Health, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Jinming Zhao
- Department of Environmental and Occupational Health, School of Public Health, University of Pittsburgh, Pittsburgh, PA, 15261, USA.
| | - Sally E Wenzel
- Department of Environmental and Occupational Health, School of Public Health, University of Pittsburgh, Pittsburgh, PA, 15261, USA.
| |
Collapse
|
3
|
Luo C, Zhu Y, Zhang S, Zhou J, Mao S, Tang R, Gu Y, Tan S, Lin H, Li Z, Zhang W. Increased SERPINB2 potentiates 15LO1 expression via STAT6 signalling in epithelial cells in eosinophilic chronic rhinosinusitis with nasal polyps. Clin Exp Allergy 2024; 54:412-424. [PMID: 38639267 DOI: 10.1111/cea.14484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/19/2024] [Accepted: 04/07/2024] [Indexed: 04/20/2024]
Abstract
BACKGROUND SERPINB2, a biomarker of Type-2 (T2) inflammatory processes, has been described in the context of asthma. Chronic rhinosinusitis with nasal polyps (CRSwNP) is also correlated with T2 inflammation and elevated 15LO1 induced by IL-4/13 in nasal epithelial cells. The aim of this study was to evaluate the expression and location of SERPINB2 in nasal epithelial cells (NECs) and determine whether SERPINB2 regulates 15LO1 and downstream T2 markers in NECs via STAT6 signalling. METHODS SERPINB2 gene expression in bulk and single-cell RNAseq database was analysed by bioinformatics analysis. SERPINB2, 15LO1 and other T2 markers were evaluated from CRSwNP and HCs NECs. The colocalization of SERPINB2 and 15LO1 was evaluated by immunofluorescence. Fresh NECs were cultured at an air-liquid interface with or without IL-13, SERPINB2 Dicer-substrate short interfering RNAs (DsiRNAs) transfection, exogenous SERPINB2, 15-HETE recombinant protein and pSTAT6 inhibitors. 15LO1, 15-HETE and downstream T2 markers were analysed by qRT-PCR, western blot and ELISA. RESULTS SERPINB2 expression was increased in eosinophilic nasal polyps compared with that in noneosinophilic nasal polyps and control tissues and positively correlated with 15LO1 and other downstream T2 markers. SERPINB2 was predominantly expressed by epithelial cells in NP tissue and was colocalized with 15LO1. In primary NECs in vitro, SERPINB2 expression was induced by IL-13. Knockdown or overexpression SERPINB2 decreased or enhanced expression of 15LO1 and 15-HETE in NECs, respectively, in a STAT6-dependent manner. SERPINB2 siRNA also inhibited the expression of the 15LO1 downstream genes, such as CCL26, POSTN and NOS2. STAT6 inhibition similarly decreased SERPINB2-induced 15LO1. CONCLUSIONS SERPINB2 is increased in NP epithelial cells of eosinophilic CRSwNP (eCRSwNP) and contributes to T2 inflammation via STAT6 signalling. SERPINB2 could be considered a novel therapeutic target for eCRSwNP.
Collapse
Affiliation(s)
- Chunyu Luo
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Otolaryngological Institute, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
| | - Ying Zhu
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Otolaryngological Institute, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
| | - Shiyao Zhang
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Otolaryngological Institute, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
| | - Jiayao Zhou
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Otolaryngological Institute, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
| | - Song Mao
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Otolaryngological Institute, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
| | - Ru Tang
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Otolaryngological Institute, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
| | - Yuelong Gu
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Otolaryngological Institute, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
| | - Shaolin Tan
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Otolaryngological Institute, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
- Postgraduate Training Base of Shanghai Sixth People's Hospital, Jinzhou Medical University, Shanghai, China
| | - Hai Lin
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Otolaryngological Institute, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
| | - Zhipeng Li
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Otolaryngological Institute, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
| | - Weitian Zhang
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Otolaryngological Institute, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
| |
Collapse
|
4
|
McCauley KB, Kukreja K, Tovar Walker AE, Jaffe AB, Klein AM. A map of signaling responses in the human airway epithelium. Cell Syst 2024; 15:307-321.e10. [PMID: 38508187 PMCID: PMC11031335 DOI: 10.1016/j.cels.2024.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 11/14/2023] [Accepted: 02/28/2024] [Indexed: 03/22/2024]
Abstract
Receptor-mediated signaling plays a central role in tissue regeneration, and it is dysregulated in disease. Here, we build a signaling-response map for a model regenerative human tissue: the airway epithelium. We analyzed the effect of 17 receptor-mediated signaling pathways on organotypic cultures to determine changes in abundance and phenotype of epithelial cell types. This map recapitulates the gamut of known airway epithelial signaling responses to these pathways. It defines convergent states induced by multiple ligands and diverse, ligand-specific responses in basal cell and secretory cell metaplasia. We show that loss of canonical differentiation induced by multiple pathways is associated with cell-cycle arrest, but that arrest is not sufficient to block differentiation. Using the signaling-response map, we show that a TGFB1-mediated response underlies specific aberrant cells found in multiple lung diseases and identify interferon responses in COVID-19 patient samples. Thus, we offer a framework enabling systematic evaluation of tissue signaling responses. A record of this paper's transparent peer review process is included in the supplemental information.
Collapse
Affiliation(s)
- Katherine B McCauley
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA; Respiratory Diseases, Novartis Institutes for BioMedical Research, Cambridge, MA 02139, USA; Disease Area X, Biomedical Research, Novartis, Cambridge, MA 02139, USA
| | - Kalki Kukreja
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | | | - Aron B Jaffe
- Respiratory Diseases, Novartis Institutes for BioMedical Research, Cambridge, MA 02139, USA
| | - Allon M Klein
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
5
|
Groiss S, Somvilla I, Daxböck C, Stückler M, Pritz E, Brislinger D. Bei Mu Gua Lou San facilitates mucus expectoration by increasing surface area and hydration levels of airway mucus in an air-liquid-interface cell culture model of the respiratory epithelium. BMC Complement Med Ther 2023; 23:414. [PMID: 37978392 PMCID: PMC10655387 DOI: 10.1186/s12906-023-04251-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 11/09/2023] [Indexed: 11/19/2023] Open
Abstract
BACKGROUND Bei Mu Gua Lou San (BMGLS) is an ancient formulation known for its moisturizing and expectorant properties, but the underlying mechanisms remain unknown. We investigated concentration-dependent effects of BMGLS on its rehydrating and mucus-modulating properties using an air-liquid-interface (ALI) cell culture model of the Calu-3 human bronchial epithelial cell line and primary normal human bronchial epithelial cells (NHBE), and specifically focused on quantity and composition of the two major mucosal proteins MUC5AC and MUC5B. METHODS ALI cultures were treated with BMGLS at different concentrations over three weeks and evaluated by means of histology, immunostaining and electron microscopy. MUC5AC and MUC5B mRNA levels were assessed and quantified on protein level using an automated image-based approach. Additionally, expression levels of the major mucus-stimulating enzyme 15-lipoxygenase (ALOX15) were evaluated. RESULTS BMGLS induced concentration-dependent morphological changes in NHBE but not Calu-3 ALI cultures that resulted in increased surface area via the formation of herein termed intra-epithelial structures (IES). While cellular rates of proliferation, apoptosis or degeneration remained unaffected, BMGLS caused swelling of mucosal granules, increased the area of secreted mucus, decreased muco-glycoprotein density, and dispensed MUC5AC. Additionally, BMGLS reduced expression levels of MUC5AC, MUC5B and the mucus-stimulating enzyme 15-lipoxygenase (ALOX15). CONCLUSIONS Our studies suggest that BMGLS rehydrates airway mucus while stimulating mucus secretion by increasing surface areas and regulating goblet cell differentiation through modulating major mucus-stimulating pathways.
Collapse
Affiliation(s)
- Silvia Groiss
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Centre, Medical University of Graz, Neue Stiftingtalstraße 6/II, Graz, 8010, Austria
| | - Ina Somvilla
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Centre, Medical University of Graz, Neue Stiftingtalstraße 6/II, Graz, 8010, Austria
| | - Christine Daxböck
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Centre, Medical University of Graz, Neue Stiftingtalstraße 6/II, Graz, 8010, Austria
| | - Manuela Stückler
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Centre, Medical University of Graz, Neue Stiftingtalstraße 6/II, Graz, 8010, Austria
| | - Elisabeth Pritz
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Centre, Medical University of Graz, Neue Stiftingtalstraße 6/II, Graz, 8010, Austria
| | - Dagmar Brislinger
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Centre, Medical University of Graz, Neue Stiftingtalstraße 6/II, Graz, 8010, Austria.
| |
Collapse
|
6
|
Huang GX, Hallen NR, Lee M, Zheng K, Wang X, Mandanas MV, Djeddi S, Fernandez D, Hacker J, Ryan T, Bergmark RW, Bhattacharyya N, Lee S, Maxfield AZ, Roditi RE, Buchheit KM, Laidlaw TM, Gern JE, Hallstrand TS, Ray A, Wenzel SE, Boyce JA, Gutierrez-Arcelus M, Barrett NA. Increased epithelial mTORC1 activity in chronic rhinosinusitis with nasal polyps. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.13.562288. [PMID: 37904989 PMCID: PMC10614789 DOI: 10.1101/2023.10.13.562288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Background The airway epithelium plays a central role in the pathogenesis of chronic respiratory diseases such as asthma and chronic rhinosinusitis with nasal polyps (CRSwNP), but the mechanisms by which airway epithelial cells (EpCs) maintain inflammation are poorly understood. Objective We hypothesized that transcriptomic assessment of sorted airway EpCs across the spectrum of differentiation would allow us to define mechanisms by which EpCs perpetuate airway inflammation. Methods Ethmoid sinus EpCs from adult patients with CRS were sorted into 3 subsets, bulk RNA sequenced, and analyzed for differentially expressed genes and pathways. Single cell RNA-seq (scRNA-seq) datasets from eosinophilic and non-eosinophilic CRSwNP and bulk RNA-seq of EpCs from mild/moderate and severe asthma were assessed. Immunofluorescent staining and ex vivo functional analysis of sinus EpCs were used to validate our findings. Results Analysis within and across purified EpC subsets revealed an enrichment in glycolytic programming in CRSwNP vs CRSsNP. Correlation analysis identified mammalian target of rapamycin complex 1 (mTORC1) as a potential regulator of the glycolytic program and identified EpC expression of cytokines and wound healing genes as potential sequelae. mTORC1 activity was upregulated in CRSwNP, and ex vivo inhibition demonstrated that mTOR is critical for EpC generation of CXCL8, IL-33, and CXCL2. Across patient samples, the degree of glycolytic activity was associated with T2 inflammation in CRSwNP, and with both T2 and non-T2 inflammation in severe asthma. Conclusions Together, these findings highlight a metabolic axis required to support epithelial generation of cytokines critical to both chronic T2 and non-T2 inflammation in CRSwNP and asthma.
Collapse
Affiliation(s)
- George X. Huang
- Jeff and Penny Vinik Center for Translational Immunology Research, Division of Allergy and Clinical Immunology, Brigham and Women’s Hospital; Boston, MA
- Department of Medicine, Harvard Medical School; Boston, MA
| | - Nils R. Hallen
- Jeff and Penny Vinik Center for Translational Immunology Research, Division of Allergy and Clinical Immunology, Brigham and Women’s Hospital; Boston, MA
- Department of Medicine, Harvard Medical School; Boston, MA
| | - Minkyu Lee
- Jeff and Penny Vinik Center for Translational Immunology Research, Division of Allergy and Clinical Immunology, Brigham and Women’s Hospital; Boston, MA
- Department of Medicine, Harvard Medical School; Boston, MA
| | - Kelly Zheng
- Jeff and Penny Vinik Center for Translational Immunology Research, Division of Allergy and Clinical Immunology, Brigham and Women’s Hospital; Boston, MA
- Department of Medicine, Harvard Medical School; Boston, MA
| | - Xin Wang
- Jeff and Penny Vinik Center for Translational Immunology Research, Division of Allergy and Clinical Immunology, Brigham and Women’s Hospital; Boston, MA
- Department of Medicine, Harvard Medical School; Boston, MA
| | | | - Sarah Djeddi
- Division of Immunology, Boston Children’s Hospital; Boston, MA
| | | | - Jonathan Hacker
- Jeff and Penny Vinik Center for Translational Immunology Research, Division of Allergy and Clinical Immunology, Brigham and Women’s Hospital; Boston, MA
- Department of Medicine, Harvard Medical School; Boston, MA
| | - Tessa Ryan
- Jeff and Penny Vinik Center for Translational Immunology Research, Division of Allergy and Clinical Immunology, Brigham and Women’s Hospital; Boston, MA
- Department of Medicine, Harvard Medical School; Boston, MA
| | - Regan W. Bergmark
- Department of Otolaryngology, Head and Neck Surgery, Brigham and Women’s Hospital; Boston, MA
| | - Neil Bhattacharyya
- Department of Otolaryngology, Head and Neck Surgery, Massachusetts Eye and Ear Infirmary; Boston, MA
| | - Stella Lee
- Department of Otolaryngology, Head and Neck Surgery, Brigham and Women’s Hospital; Boston, MA
| | - Alice Z. Maxfield
- Department of Otolaryngology, Head and Neck Surgery, Brigham and Women’s Hospital; Boston, MA
| | - Rachel E. Roditi
- Department of Otolaryngology, Head and Neck Surgery, Brigham and Women’s Hospital; Boston, MA
| | - Kathleen M. Buchheit
- Jeff and Penny Vinik Center for Translational Immunology Research, Division of Allergy and Clinical Immunology, Brigham and Women’s Hospital; Boston, MA
- Department of Medicine, Harvard Medical School; Boston, MA
| | - Tanya M. Laidlaw
- Jeff and Penny Vinik Center for Translational Immunology Research, Division of Allergy and Clinical Immunology, Brigham and Women’s Hospital; Boston, MA
- Department of Medicine, Harvard Medical School; Boston, MA
| | - James E. Gern
- Division of Allergy, Immunology, and Rheumatology, University of Wisconsin School of Medicine and Public Health; Madison, WI
| | - Teal S. Hallstrand
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Washington Medical Center; Seattle, WA
| | - Anuradha Ray
- Department of Immunology, University of Pittsburgh; Pittsburgh, PA
| | - Sally E. Wenzel
- Department of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh Medical Center; Pittsburgh, PA
| | - Joshua A. Boyce
- Jeff and Penny Vinik Center for Translational Immunology Research, Division of Allergy and Clinical Immunology, Brigham and Women’s Hospital; Boston, MA
- Department of Medicine, Harvard Medical School; Boston, MA
| | - Maria Gutierrez-Arcelus
- Division of Immunology, Boston Children’s Hospital; Boston, MA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard; Cambridge, MA
| | - Nora A. Barrett
- Jeff and Penny Vinik Center for Translational Immunology Research, Division of Allergy and Clinical Immunology, Brigham and Women’s Hospital; Boston, MA
- Department of Medicine, Harvard Medical School; Boston, MA
| |
Collapse
|
7
|
Esnault S, Jarjour NN. Development of Adaptive Immunity and Its Role in Lung Remodeling. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1426:287-351. [PMID: 37464127 DOI: 10.1007/978-3-031-32259-4_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Asthma is characterized by airflow limitations resulting from bronchial closure, which can be either reversible or fixed due to changes in airway tissue composition and structure, also known as remodeling. Airway remodeling is defined as increased presence of mucins-producing epithelial cells, increased thickness of airway smooth muscle cells, angiogenesis, increased number and activation state of fibroblasts, and extracellular matrix (ECM) deposition. Airway inflammation is believed to be the main cause of the development of airway remodeling in asthma. In this chapter, we will review the development of the adaptive immune response and the impact of its mediators and cells on the elements defining airway remodeling in asthma.
Collapse
|
8
|
Mccauley KB, Kukreja K, Jaffe AB, Klein AM. A map of signaling responses in the human airway epithelium. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.12.21.521460. [PMID: 36597531 PMCID: PMC9810218 DOI: 10.1101/2022.12.21.521460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Receptor-mediated signaling plays a central role in tissue regeneration, and it is dysregulated in disease. Here, we build a signaling-response map for a model regenerative human tissue: the airway epithelium. We analyzed the effect of 17 receptor-mediated signaling pathways on organotypic cultures to determine changes in abundance and phenotype of all epithelial cell types. This map recapitulates the gamut of known airway epithelial signaling responses to these pathways. It defines convergent states induced by multiple ligands and diverse, ligand-specific responses in basal-cell and secretory-cell metaplasia. We show that loss of canonical differentiation induced by multiple pathways is associated with cell cycle arrest, but that arrest is not sufficient to block differentiation. Using the signaling-response map, we show that a TGFB1-mediated response underlies specific aberrant cells found in multiple lung diseases and identify interferon responses in COVID-19 patient samples. Thus, we offer a framework enabling systematic evaluation of tissue signaling responses.
Collapse
Affiliation(s)
- Katherine B Mccauley
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
- Disease Area X, Respiratory Therapeutic Area, Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| | - Kalki Kukreja
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | - Aron B Jaffe
- Disease Area X, Respiratory Therapeutic Area, Novartis Institutes for BioMedical Research, Cambridge, MA, USA
- Current address: Chroma Medicine, Boston, MA, USA
| | - Allon M Klein
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
9
|
Clifton C, Niemeyer BF, Novak R, Can UI, Hainline K, Benam KH. BPIFA1 is a secreted biomarker of differentiating human airway epithelium. Front Cell Infect Microbiol 2022; 12:1035566. [PMID: 36519134 PMCID: PMC9744250 DOI: 10.3389/fcimb.2022.1035566] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 11/07/2022] [Indexed: 11/29/2022] Open
Abstract
In vitro culture and differentiation of human-derived airway basal cells under air-liquid interface (ALI) into a pseudostratified mucociliated mucosal barrier has proven to be a powerful preclinical tool to study pathophysiology of respiratory epithelium. As such, identifying differentiation stage-specific biomarkers can help investigators better characterize, standardize, and validate populations of regenerating epithelial cells prior to experimentation. Here, we applied longitudinal transcriptomic analysis and observed that the pattern and the magnitude of OMG, KRT14, STC1, BPIFA1, PLA2G7, TXNIP, S100A7 expression create a unique biosignature that robustly indicates the stage of epithelial cell differentiation. We then validated our findings by quantitative hemi-nested real-time PCR from in vitro cultures sourced from multiple donors. In addition, we demonstrated that at protein-level secretion of BPIFA1 accurately reflects the gene expression profile, with very low quantities present at the time of ALI induction but escalating levels were detectable as the epithelial cells terminally differentiated. Moreover, we observed that increase in BPIFA1 secretion closely correlates with emergence of secretory cells and an anti-inflammatory phenotype as airway epithelial cells undergo mucociliary differentiation under air-liquid interface in vitro.
Collapse
Affiliation(s)
- Clarissa Clifton
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Brian F. Niemeyer
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Richard Novak
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, United States
| | - Uryan Isik Can
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Kelly Hainline
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, United States
| | - Kambez H. Benam
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, United States,Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States,Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, United States,*Correspondence: Kambez H. Benam,
| |
Collapse
|
10
|
Tony SR, Haque N, Siddique AE, Khatun M, Rahman M, Islam Z, Islam MS, Islam J, Hossain S, Hoque MA, Saud ZA, Sumi D, Wahed AS, Barchowsky A, Himeno S, Hossain K. Elevated serum periostin levels among arsenic-exposed individuals and their associations with the features of asthma. CHEMOSPHERE 2022; 298:134277. [PMID: 35278445 PMCID: PMC9081271 DOI: 10.1016/j.chemosphere.2022.134277] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 03/04/2022] [Accepted: 03/07/2022] [Indexed: 05/14/2023]
Abstract
Chronic exposure to arsenic via drinking water is a serious public health issue in many countries. Arsenic causes not only cancers but also non-malignant diseases, including asthma. We have previously reported that arsenic exposure increases the risk of Th2-mediated allergic asthma. The serum level of periostin, an extracellular matrix protein activated by Th2 cytokines, is recognized as a biomarker for Th2-mediated eosinophilic asthma and contributes to enhanced airway inflammation and remodeling. However, the role of periostin in arsenic-related asthma is unknown. Therefore, this study was designed to explore the associations of serum periostin levels with arsenic exposure and the features of asthma in 442 individuals in Bangladesh who participated in our previous study. Exposure levels of the participants were determined by measuring the arsenic concentrations in drinking water, hair, and nails through inductively coupled plasma mass spectroscopy. Periostin levels in serum were assessed by immunoassay. In this study, we found that serum periostin levels of the participants were increased with increasing exposure to arsenic. Notably, even the participants with 10.1-50 μg/L arsenic in drinking water had significantly higher levels of periostin than participants with <10 μg/L of water arsenic. Elevated serum periostin levels were positively associated with serum levels of Th2 mediators, such as interleukin (IL)-4, IL-5, IL-13, and eotaxin. Each log increase in periostin levels was associated with approximately eight- and three-fold increases in the odds ratios (ORs) for reversible airway obstruction (RAO) and asthma symptoms, respectively. Additionally, causal mediation analyses revealed that arsenic exposure metrics had both direct and indirect (periostin-mediated) effects on the risk of RAO and asthma symptoms. Thus, the results suggested that periostin may be involved in the arsenic-related pathogenesis of Th2-mediated asthma. The elevated serum periostin levels may predict the greater risk of asthma among the people living in arsenic-endemic areas.
Collapse
Affiliation(s)
- Selim Reza Tony
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Nazmul Haque
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Abu Eabrahim Siddique
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, NY, 14260, USA
| | - Moriom Khatun
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Mizanur Rahman
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Zohurul Islam
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Md Shofikul Islam
- Department of Applied Nutrition and Food Technology, Islamic University, Kushtia, 7003, Bangladesh
| | - Jahidul Islam
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Shakhawoat Hossain
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Md Ashraful Hoque
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Zahangir Alam Saud
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Daigo Sumi
- Laboratory of Molecular Nutrition and Toxicology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, 770-8514, Japan
| | - Abdus S Wahed
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Aaron Barchowsky
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Seiichiro Himeno
- Laboratory of Molecular Nutrition and Toxicology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, 770-8514, Japan; Division of Health Chemistry, School of Pharmacy, Showa University, Tokyo, 142-8555, Japan
| | - Khaled Hossain
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, 6205, Bangladesh.
| |
Collapse
|
11
|
Li Y, Lan F, Yang Y, Xu Y, Chen Y, Qin X, Lv Z, Wang W, Ying S, Zhang L. The absence of IL-9 reduces allergic airway inflammation by reducing ILC2, Th2 and mast cells in murine model of asthma. BMC Pulm Med 2022; 22:180. [PMID: 35524325 PMCID: PMC9074312 DOI: 10.1186/s12890-022-01976-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 04/18/2022] [Indexed: 11/16/2022] Open
Abstract
Allergic asthma is an allergic inflammatory disease of the airways, in which numerous cell types and cytokines have been shown to contribute to pathogenesis of the disease. Although increased expression of IL-9 has been shown to influence the activity of structural as well as eosinophils and mast cells in asthma, the influence of IL-9 on function of ILC2 and Th2 cells remains unclear. This study therefore aimed to elucidate the role of IL-9 on ILC2 and Th2 cells using a murine model of asthma. A murine model of asthma was established using wild type (WT) and IL-9-deficient (Il9−/−) transgenic mice sensitized to house dust mite (HDM). Bronchoalveolar lavage fluid (BALF) and lung tissues were collected, and analysed for inflammatory cells (eosinophils, mast cells, Th2 cells and ILC2 cells), histopathological changes, and several cytokines. HDM challenge significantly increased accumulation of ILC2 cells, Th2 cells and mast cells, as well as goblet cell hyperplasia, and the expression of cytokines IL-4, IL-5 and IL-13, but not IFN-γ, in WT mice compared to saline-challenged control group. In contrast, all pathological changes, including infiltration of ILC2 cells, Th2 cells and mast cells, were significantly attenuated in HDM-challenged Il9−/− mice. Furthermore, the number of Ki67+ILC2 cells, Ki67+Th2 cells and Ki67+mast cells were significantly reduced in the absence of IL-9 signalling. These data suggest that IL-9 promotes the proliferation and type 2 cytokine production of type 2 cells in the murine models of asthma, and therefore might be a potential therapeutic target for asthma treatment.
Collapse
Affiliation(s)
- Yan Li
- Department of Otorhinolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing Institute of Otorhinolaryngology, Key Laboratory of Otorhinolaryngology Head and Neck Surgery, Ministry of Education, Beijing Key Laboratory of Nasal Diseases, No. 17, HouGouHuTong, DongCheng District, Beijing, 100730, China
| | - Feng Lan
- Department of Otorhinolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing Institute of Otorhinolaryngology, Key Laboratory of Otorhinolaryngology Head and Neck Surgery, Ministry of Education, Beijing Key Laboratory of Nasal Diseases, No. 17, HouGouHuTong, DongCheng District, Beijing, 100730, China
| | - Yiran Yang
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, 10 Xi Tou Tiao, You An Men Wai, Fengtai District, Beijing, 100069, China
| | - Yingjie Xu
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, 10 Xi Tou Tiao, You An Men Wai, Fengtai District, Beijing, 100069, China
| | - Yalin Chen
- Department of Thyroid Head and Neck Surgery, Qingdao Central Hospital, Qingdao University, Qingdao, China
| | - Xiaofeng Qin
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, 10 Xi Tou Tiao, You An Men Wai, Fengtai District, Beijing, 100069, China
| | - Zhe Lv
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, 10 Xi Tou Tiao, You An Men Wai, Fengtai District, Beijing, 100069, China
| | - Wei Wang
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, 10 Xi Tou Tiao, You An Men Wai, Fengtai District, Beijing, 100069, China
| | - Sun Ying
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, 10 Xi Tou Tiao, You An Men Wai, Fengtai District, Beijing, 100069, China.
| | - Luo Zhang
- Department of Otorhinolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing Institute of Otorhinolaryngology, Key Laboratory of Otorhinolaryngology Head and Neck Surgery, Ministry of Education, Beijing Key Laboratory of Nasal Diseases, No. 17, HouGouHuTong, DongCheng District, Beijing, 100730, China.
| |
Collapse
|
12
|
Banafea GH, Bakhashab S, Alshaibi HF, Natesan Pushparaj P, Rasool M. The role of human mast cells in allergy and asthma. Bioengineered 2022; 13:7049-7064. [PMID: 35266441 PMCID: PMC9208518 DOI: 10.1080/21655979.2022.2044278] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Mast cells are tissue-inhabiting cells that play an important role in inflammatory diseases of the airway tract. Mast cells arise in the bone marrow as progenitor cells and complete their differentiation in tissues exposed to the external environment, such as the skin and respiratory tract, and are among the first to respond to bacterial and parasitic infections. Mast cells express a variety of receptors that enable them to respond to a wide range of stimulants, including the high-affinity FcεRI receptor. Upon initial contact with an antigen, mast cells are sensitized with IgE to recognize the allergen upon further contact. FcεRI-activated mast cells are known to release histamine and proteases that contribute to asthma symptoms. They release a variety of cytokines and lipid mediators that contribute to immune cell accumulation and tissue remodeling in asthma. Mast cell mediators trigger inflammation and also have a protective effect. This review aims to update the existing knowledge on the mediators released by human FcεRI-activated mast cells, and to unravel their pathological and protective roles in asthma and allergy. In addition, we highlight other diseases that arise from mast cell dysfunction, the therapeutic approaches used to address them, and fill the gaps in our current knowledge. Mast cell mediators not only trigger inflammation but may also have a protective effect. Given the differences between human and animal mast cells, this review focuses on the mediators released by human FcεRI-activated mast cells and the role they play in asthma and allergy.
Collapse
Affiliation(s)
- Ghalya H Banafea
- Biochemistry Department, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Sherin Bakhashab
- Biochemistry Department, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Huda F Alshaibi
- Biochemistry Department, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Peter Natesan Pushparaj
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.,Center of Excellence in Genomic Medicine Research, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mahmood Rasool
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.,Center of Excellence in Genomic Medicine Research, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
13
|
Jin M, Watkins S, Larriba Y, Wallace C, St. Croix C, Zhou X, Zhao J, Peddada S, Wenzel SE. Real-time imaging of asthmatic epithelial cells identifies migratory deficiencies under type-2 conditions. J Allergy Clin Immunol 2022; 149:579-588. [PMID: 34547368 PMCID: PMC8821171 DOI: 10.1016/j.jaci.2021.08.027] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/05/2021] [Accepted: 08/27/2021] [Indexed: 02/03/2023]
Abstract
BACKGROUND The epithelium is increasingly recognized as a pathologic contributor to asthma and its phenotypes. Although delayed wound closure by asthmatic epithelial cells is consistently observed, underlying mechanisms remain poorly understood, partly due to difficulties in studying dynamic physiologic processes involving polarized multilayered cell systems. Although type-2 immunity has been suggested to play a role, the mechanisms by which repair is diminished are unclear. OBJECTIVES This study sought to develop and utilize primary multilayered polarized epithelial cell systems, derived from patients with asthma, to evaluate cell migration in response to wounding under type-2 and untreated conditions. METHODS A novel wounding device for multilayered polarized cells, along with time-lapse live cell/real-time confocal imaging were evaluated under IL-13 and untreated conditions. The influence of inhibition of 15 lipoxygenase (15LO1), a type-2 enzyme, on the process was also addressed. Cell migration patterns were analyzed by high-dimensional frequency modulated Möbius for statistical comparisons. RESULTS IL-13 stimulation negatively impacts wound healing by altering the total speed, directionality, and acceleration of individual cells. Inhibition 15LO1 partially improved the wound repair through improving total speed. CONCLUSIONS Migration abnormalities contributed to markedly slower wound closure of IL-13 treated cells, which was modestly reversed by 15LO1 inhibition, suggesting its potential as an asthma therapeutic target. These novel methodologies offer new ways to dynamically study cell movements and identify contributing pathologic processes.
Collapse
Affiliation(s)
- Mingzhu Jin
- Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, USA,Department of Rhinology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Simon Watkins
- Center for Biologic Imaging, School of Medicine, University of Pittsburgh, Pittsburgh, USA
| | - Yolanda Larriba
- Department of Statistics and Operations Research, Universidad de Valladolid, Valladolid, Spain
| | - Callen Wallace
- Center for Biologic Imaging, School of Medicine, University of Pittsburgh, Pittsburgh, USA
| | - Claudette St. Croix
- Center for Biologic Imaging, School of Medicine, University of Pittsburgh, Pittsburgh, USA
| | - Xiuxia Zhou
- Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, USA
| | - Jinming Zhao
- Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, USA
| | - Shyamal Peddada
- Department of Biostatistics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, USA
| | - Sally E. Wenzel
- Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, USA,Asthma and Environmental Lung Health Institute @UPMC, Pittsburgh, USA
| |
Collapse
|
14
|
Boyce JA. The role of 15 lipoxygenase 1 in asthma comes into focus. J Clin Invest 2022; 132:155884. [PMID: 34981786 PMCID: PMC8718133 DOI: 10.1172/jci155884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
IL-4– and IL-13–driven epithelial cell expression of 15 lipoxygenase 1 (15LO1) is a consistent feature of eosinophil-dominated asthma known as type 2–high (T2-high) asthma. The abundant soluble products of arachidonic acid (AA) metabolized by 15LO1 reflect a high level of enzymatic activity in asthma and chronic rhinosinusitis. However, the precise role of 15LO1 and its products in disease pathogenesis remains enigmatic. In this issue of the JCI, Nagasaki and colleagues demonstrate a role for 15LO1 in controlling redox balance and epithelial homeostasis in T2-high asthma by metabolizing AA that is esterified to membrane phospholipids. The findings may pave the way toward the development of 15LO1 inhibitors as asthma treatments.
Collapse
|
15
|
Luo Y, Jin M, Lou L, Yang S, Li C, Li X, Zhou M, Cai C. Role of arachidonic acid lipoxygenase pathway in Asthma. Prostaglandins Other Lipid Mediat 2021; 158:106609. [PMID: 34954219 DOI: 10.1016/j.prostaglandins.2021.106609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 11/15/2021] [Accepted: 12/17/2021] [Indexed: 11/30/2022]
Abstract
The arachidonic acid (AA) metabolism pathways play a key role in immunological response and inflammation diseases, such as asthma, etc. AA in cell membranes can be metabolized by lipoxygenases (LOXs) to a screen of bioactive substances that include leukotrienes (LTs), lipoxins (LXs), and eicosatetraenoic acids (ETEs), which are considered closely related to the pathophysiology of respiratory allergic disease. Studies also verified that drugs regulating AA LOXs pathway have better rehabilitative intervention for asthma. This review aims to summarize the physiological and pathophysiological importance of AA LOXs metabolism pathways in asthma and to discuss its prospects of therapeutic strategies.
Collapse
Affiliation(s)
- Yacan Luo
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, PR China
| | - Minli Jin
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, PR China
| | - Lejing Lou
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, PR China
| | - Song Yang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, PR China
| | - Chengye Li
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, PR China
| | - Xi Li
- The Affiliated Kangning Hospital of Wenzhou Medical University, Wenzhou, PR China
| | - Meixi Zhou
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, PR China.
| | - Chang Cai
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, PR China.
| |
Collapse
|
16
|
Nagasaki T, Schuyler AJ, Zhao J, Samovich SN, Yamada K, Deng Y, Ginebaugh SP, Christenson SA, Woodruff PG, Fahy JV, Trudeau JB, Stoyanovsky D, Ray A, Tyurina YY, Kagan VE, Wenzel SE. 15LO1 dictates glutathione redox changes in asthmatic airway epithelium to worsen type-2 inflammation. J Clin Invest 2021; 132:151685. [PMID: 34762602 PMCID: PMC8718153 DOI: 10.1172/jci151685] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 11/10/2021] [Indexed: 11/23/2022] Open
Abstract
Altered redox biology challenges all cells, with compensatory responses often determining a cell’s fate. When 15 lipoxygenase 1 (15LO1), a lipid-peroxidizing enzyme abundant in asthmatic human airway epithelial cells (HAECs), binds phosphatidylethanolamine-binding protein 1 (PEBP1), hydroperoxy-phospholipids, which drive ferroptotic cell death, are generated. Peroxidases, including glutathione peroxidase 4 (GPX4), metabolize hydroperoxy-phospholipids to hydroxy derivatives to prevent ferroptotic death, but consume reduced glutathione (GSH). The cystine transporter SLC7A11 critically restores/maintains intracellular GSH. We hypothesized that high 15LO1, PEBP1, and GPX4 activity drives abnormal asthmatic redox biology, evidenced by lower bronchoalveolar lavage (BAL) fluid and intraepithelial cell GSH:oxidized GSH (GSSG) ratios, to enhance type 2 (T2) inflammatory responses. GSH, GSSG (enzymatic assays), 15LO1, GPX4, SLC7A11, and T2 biomarkers (Western blot and RNA-Seq) were measured in asthmatic and healthy control (HC) cells and fluids, with siRNA knockdown as appropriate. GSSG was higher and GSH:GSSG lower in asthmatic compared with HC BAL fluid, while intracellular GSH was lower in asthma. In vitro, a T2 cytokine (IL-13) induced 15LO1 generation of hydroperoxy-phospholipids, which lowered intracellular GSH and increased extracellular GSSG. Lowering GSH further by inhibiting SLC7A11 enhanced T2 inflammatory protein expression and ferroptosis. Ex vivo, redox imbalances corresponded to 15LO1 and SLC7A11 expression, T2 biomarkers, and worsened clinical outcomes. Thus, 15LO1 pathway–induced redox biology perturbations worsen T2 inflammation and asthma control, supporting 15LO1 as a therapeutic target.
Collapse
Affiliation(s)
- Tadao Nagasaki
- Department of Respiratory Medicine, Graduate School of Medicine Kyoto University, Kyoto, Japan
| | - Alexander J Schuyler
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, United States of America
| | - Jinming Zhao
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, United States of America
| | - Svetlana N Samovich
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, United States of America
| | - Kazuhiro Yamada
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, United States of America
| | - Yanhan Deng
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, United States of America
| | - Scott P Ginebaugh
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, United States of America
| | - Stephanie A Christenson
- Department of Medicine, University of California, San Francisco, San Francisco, United States of America
| | - Prescott G Woodruff
- Department of Medicine, University of California, San Francisco, San Francisco, United States of America
| | - John V Fahy
- Department of Medicine, University of California, San Francisco, San Francisco, United States of America
| | - John B Trudeau
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, United States of America
| | - Detcho Stoyanovsky
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, United States of America
| | - Anuradha Ray
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh Asthma and Environmental Lung Health Institute, Pittsburgh, United States of America
| | - Yulia Y Tyurina
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, United States of America
| | - Valerian E Kagan
- Department of Environmental and Occupational Health, University of Pittsburgh Asthma and Environmental Lung Health Institute, Pittsburgh, United States of America
| | - Sally E Wenzel
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh Asthma Institute at UPMC, Pittsburgh, United States of America
| |
Collapse
|
17
|
Corcoran TE, Huber AS, Hill SL, Locke LW, Weber L, Muthukrishnan A, Heidrich EM, Wenzel S, Myerburg MM. Mucociliary Clearance Differs in Mild Asthma by Levels of Type 2 Inflammation. Chest 2021; 160:1604-1613. [PMID: 34029561 PMCID: PMC8628176 DOI: 10.1016/j.chest.2021.05.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 04/30/2021] [Accepted: 05/03/2021] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND Although mucus plugging is a well-reported feature of asthma, whether asthma and type 2 inflammation affect mucociliary clearance (MCC) is unknown. RESEARCH QUESTION Does type 2 inflammation influence mucus clearance rates in patients with mild asthma who are not receiving corticosteroids? STUDY DESIGN AND METHODS The clearance rates of inhaled radiolabeled particles were compared between patients with mild asthma with low (n = 17) and high (n = 18) levels of T2 inflammation. Fraction exhaled nitric oxide (Feno) was used to prospectively segregate subjects into T2 Lo (Feno < 25 ppb) and T2 Hi (Feno > 35 ppb) cohorts. Bronchial brush samples were collected with fiber-optic bronchoscopy, and quantitative polymerase chain reaction was performed to measure expression of genes associated with T2 asthma. MCC rate comparisons were also made with a historical group of healthy control subjects (HCs, n = 12). RESULTS The T2 Lo cohort demonstrated increased MCC when compared with both T2 Hi and historic HCs. MCC within the T2 Hi group varied significantly, with some subjects having low or zero clearance. MCC decreased with increasing expression of several markers of T2 airway inflammation (CCL26, NOS2, and POSTN) and with Feno. MUC5AC and FOXJ1 expression was similar between the T2Lo and T2Hi cohorts. INTERPRETATION Increasing T2 inflammation was associated with decreasing MCC. High rates of MCC in T2 Lo subjects may indicate a compensatory mechanism present in mild disease but lost with high levels of inflammation. Future studies are required to better understand mechanisms and whether impairments in MCC in more severe asthma drive worse clinical outcomes.
Collapse
Affiliation(s)
- Timothy E Corcoran
- Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh, PA; Department of Bioengineering, University of Pittsburgh, PA; Department of Chemical and Petroleum Engineering, University of Pittsburgh, PA.
| | - Alex S Huber
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, PA
| | - Sherri L Hill
- Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh, PA
| | - Landon W Locke
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH
| | - Lawrence Weber
- Nuclear Medicine Department, University of Pittsburgh Medical Center, PA
| | | | - Elisa M Heidrich
- Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh, PA
| | - Sally Wenzel
- Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh, PA; Department of Environmental & Occupational Health, University of Pittsburgh, PA
| | - Mike M Myerburg
- Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh, PA
| |
Collapse
|
18
|
Aoyagi R, Yamamoto T, Furukawa Y, Arita M. Characterization of the Structural Diversity and Structure-Specific Behavior of Oxidized Phospholipids by LC-MS/MS. Chem Pharm Bull (Tokyo) 2021; 69:953-961. [PMID: 34602576 DOI: 10.1248/cpb.c21-00274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Polyunsaturated fatty acids (PUFAs), esterified to phospholipids, are susceptible to oxidation. They form oxidized phospholipids (OxPLs) by oxygenases or reactive oxygen species (ROS), or both. These OxPLs are associated with various diseases, such as atherosclerosis, pulmonary injuries, neurodegenerative diseases, cancer, and diabetes. Since many types of OxPLs seem to be generated in vivo, precise determination of their structural diversity is required to understand their potential structure-specific functions. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) is a powerful method to quantitatively measure the structural diversity of OxPLs present in biological samples. This review outlines recent advances in analytical methods for OxPLs and their physiological relevance in health and diseases.
Collapse
Affiliation(s)
- Ryohei Aoyagi
- Division of Physiological Chemistry and Metabolism, Keio University Faculty of Pharmacy.,Laboratory for Metabolomics, RIKEN Center for Integrative Medical Sciences (IMS)
| | - Takahiro Yamamoto
- Division of Physiological Chemistry and Metabolism, Keio University Faculty of Pharmacy.,Laboratory for Metabolomics, RIKEN Center for Integrative Medical Sciences (IMS)
| | - Yuuki Furukawa
- Division of Physiological Chemistry and Metabolism, Keio University Faculty of Pharmacy.,Laboratory for Metabolomics, RIKEN Center for Integrative Medical Sciences (IMS)
| | - Makoto Arita
- Division of Physiological Chemistry and Metabolism, Keio University Faculty of Pharmacy.,Laboratory for Metabolomics, RIKEN Center for Integrative Medical Sciences (IMS).,Cellular and Molecular Epigenetics Laboratory, Graduate School of Medical Life Science, Yokohama-City University
| |
Collapse
|
19
|
Xu X, Li J, Zhang Y, Zhang L. Arachidonic Acid 15-Lipoxygenase: Effects of Its Expression, Metabolites, and Genetic and Epigenetic Variations on Airway Inflammation. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2021; 13:684-696. [PMID: 34486255 PMCID: PMC8419644 DOI: 10.4168/aair.2021.13.5.684] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/18/2021] [Accepted: 05/26/2021] [Indexed: 01/21/2023]
Abstract
Arachidonic acid 15-lipoxygenase (ALOX15) is an enzyme that can oxidize polyunsaturated fatty acids. ALOX15 is strongly expressed in airway epithelial cells, where it catalyzes the conversion of arachidonic acid to 15-hydroxyeicosatetraenoic acid (15-HETE) involved in various airway inflammatory diseases. Interleukin (IL)-4 and IL-13 induce ALOX15 expression by activating Jak2 and Tyk2 kinases as well as signal transducers and activators of transcription (STATs) 1/3/5/6. ALOX15 up-regulation and subsequent association with phosphatidylethanolamine-binding protein 1 (PEBP1) activate the mitogen-activated extracellular signal-regulated kinase (MEK)-extracellular signal-regulated kinase (ERK) pathway, thus inducing eosinophil-mediated airway inflammation. In addition, ALOX15 plays a significant role in promoting the migration of immune cells, such as immature dendritic cells, activated T cells, and mast cells, and airway remodeling, including goblet cell differentiation. Genome-wide association studies have revealed multiple ALOX15 variants and their significant correlation with the risk of developing airway diseases. The epigenetic modifications of the ALOX15 gene, such as DNA methylation and histone modifications, have been shown to closely relate with airway inflammation. This review summarizes the role of ALOX15 in different phenotypes of asthma, chronic obstructive pulmonary disease, chronic rhinosinusitis, aspirin-exacerbated respiratory disease, and nasal polyps, suggesting new treatment strategies for these airway inflammatory diseases with complex etiology and poor treatment response.
Collapse
Affiliation(s)
- Xu Xu
- Department of Otolaryngology Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China
| | - Jingyun Li
- Department of Otolaryngology Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, China
| | - Yuan Zhang
- Department of Otolaryngology Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, China.,Department of Allergy, Beijing TongRen Hospital, Capital Medical University, Beijing, China.
| | - Luo Zhang
- Department of Otolaryngology Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, China.,Department of Allergy, Beijing TongRen Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
20
|
COX-1 dependent biosynthesis of 15-hydroxyeicosatetraenoic acid in human mast cells. Biochim Biophys Acta Mol Cell Biol Lipids 2021; 1866:158886. [PMID: 33450390 DOI: 10.1016/j.bbalip.2021.158886] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 01/07/2021] [Accepted: 01/11/2021] [Indexed: 01/18/2023]
Abstract
15-hydroxyeicosatetraenoic acid (15-HETE) is an arachidonic acid derived lipid mediator which can originate both from 15-lipoxygenase (15-LOX) activity and cyclooxygenase (COX) activity. The enzymatic source determines the enantiomeric profile of the 15-HETE formed. 15-HETE is the most abundant arachidonic acid metabolite in the human lung and has been suggested to influence the pathophysiology of asthma. Mast cells are central effectors in asthma, but there are contradictory reports on whether 15-HETE originates from 15-LOX or COX in human mast cells. This prompted the current study where the pathway of 15-HETE biosynthesis was examined in three human mast cell models; the cell line LAD2, cord blood derived mast cells (CBMC) and tissue isolated human lung mast cells (HLMC). Levels and enantiomeric profiles of 15-HETE and levels of the downstream metabolite 15-KETE, were analyzed by UPLC-MS/MS after stimulation with anti-IgE or calcium ionophore A23187 in the presence and absence of inhibitors of COX isoenzymes. We found that 15-HETE was produced by COX-1 in human mast cells under these experimental conditions. Unexpectedly, chiral analysis showed that the 15(R) isomer was predominant and gradually accumulated, whereas the 15(S) isomer was metabolized by the 15-hydroxyprostaglandin dehydrogenase. We conclude that during physiological conditions, i.e., without addition of exogenous arachidonic acid, both enantiomers of 15-HETE are produced by COX-1 in human mast cells but that the 15(S) isomer is selectively depleted by undergoing further metabolism. The study highlights that 15-HETE cannot be used as an indicator of 15-LOX activity for cellular studies, unless chirality and sensitivity to pharmacologic inhibition is determined.
Collapse
|
21
|
Revealing the role of glycerophospholipid metabolism in asthma through plasma lipidomics. Clin Chim Acta 2020; 513:34-42. [PMID: 33307061 DOI: 10.1016/j.cca.2020.11.026] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 11/09/2020] [Accepted: 11/29/2020] [Indexed: 01/18/2023]
Abstract
Lipid mediators play an essential role in the pathogenesis of asthma. Many studies on the differential expression of sphingolipids and fatty acid exist, but relatively few concerned about glycerophospholipid (GP) metabolites in asthma. Here, plasma samples from 20 healthy controls and 24 asthmatic patients were collected and analyzed. High-performance liquid chromatography with quadrupole time-of-flight mass spectrometry (HPLC-QTOF-MS) revealed that 29 GPs were identified and relatively quantified as differential metabolites for discriminating asthma patients and healthy subjects, consisting of six major subclasses of GPs. Moreover, a significant relevance was found between the selected metabolites and diagnostic and prognostic indicators of asthma. Remarkably, in subgroup analyses, plasma phosphatidic acid (PA), phosphatidylglycerol (PG), and phosphatidylethanolamine (PE) levels were higher in patients with eosinophilic asthma than non-eosinophilic asthma. Receiver-operating characteristic curve analysis revealed that the power of plasma PA and PG levels to distinguish between asthmatic patients and healthy subjects was strong (all areas under the curves > 0.9; P < 0.05). Our study characterized circulating GP metabolites in patients with asthma and explored their clinical relevance which may help to develop reliable biomarkers for early and accurate diagnosis based on lipid metabolites and provide novel insight into the role of GPs in asthma.
Collapse
|
22
|
Imoto Y, Takabayashi T, Sakashita M, Kato Y, Yoshida K, Kidoguchi M, Koyama K, Adachi N, Kimura Y, Ogi K, Ito Y, Kanno M, Okamoto M, Narita N, Fujieda S. Enhanced 15-Lipoxygenase 1 Production is Related to Periostin Expression and Eosinophil Recruitment in Eosinophilic Chronic Rhinosinusitis. Biomolecules 2020; 10:biom10111568. [PMID: 33218117 PMCID: PMC7698943 DOI: 10.3390/biom10111568] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 11/14/2020] [Accepted: 11/16/2020] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND The pathological features of chronic rhinosinusitis (CRS) with nasal polyps (CRSwNP) tissues include an eosinophilic infiltration pattern (eosinophilic CRS (ECRS)) or a less eosinophilic pattern (non-ECRS). Recently, it has been suggested that 15-lipoxygenase 1 (15-LOX-1) may have significant roles in allergic disease; however, the significance of 15-LOX-1 in CRS is not well understood. The objective of this study was to demonstrate the expression of 15-LOX-1 in CRS. METHODS The mRNA expression levels of 15-LOX-1 and periostin in nasal tissues were measured by quantitative real-time polymerase chain reaction. We also performed an immunofluorescence study of nasal tissues. Cells of the Eol-1 eosinophilic leukemic cell line were stimulated with interleukin-33 to test the induction of 15-LOX-1. RESULTS The expression level of 15-LOX-1 mRNA in nasal polyps (NPs) was significantly higher in ECRS patients than in non-ECRS patients. The immunofluorescence study revealed that both airway epithelial cells and eosinophils in NPs expressed 15-LOX-1. A significant correlation was seen between the number of eosinophils and the mRNA expression levels of 15-LOX-1 and periostin in nasal polyps. Moreover, interleukin-33 enhanced 15-LOX-1 expression in Eol-1 cells. CONCLUSIONS 15-LOX-1 was shown to be a significant molecule that facilitates eosinophilic inflammation in ECRS.
Collapse
|
23
|
Scott WC, Cahill KN, Milne GL, Li P, Sheng Q, Huang LC, Dennis S, Snyder J, Bauer AM, Chandra RK, Chowdhury NI, Turner JH. Inflammatory heterogeneity in aspirin-exacerbated respiratory disease. J Allergy Clin Immunol 2020; 147:1318-1328.e5. [PMID: 33189729 DOI: 10.1016/j.jaci.2020.11.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 10/15/2020] [Accepted: 11/04/2020] [Indexed: 01/24/2023]
Abstract
BACKGROUND Aspirin-exacerbated respiratory disease (AERD) is a mechanistically distinct subtype of chronic rhinosinusitis with nasal polyps (CRSwNP). Although frequently associated with type 2 inflammation, literature characterizing the milieu of inflammatory cytokines and lipid mediators in AERD has been conflicting. OBJECTIVE We sought to identify differences in the upper airway inflammatory signature between CRSwNP and AERD and determine whether endotypic subtypes of AERD may exist. METHODS Levels of 7 cytokines representative of type 1, type 2, and type 3 inflammation, and 21 lipid mediators were measured in nasal mucus from 109 patients with CRSwNP, 30 patients with AERD, and 64 non-CRS controls. Differences in inflammatory mediators were identified between groups, and patterns of inflammation among patients with AERD were determined by hierarchical cluster analysis. RESULTS AERD could be distinguished from CRSwNP by profound elevations in IL-5, IL-6, IL-13, and IFN-γ; however, significant heterogeneity existed between patients. Hierarchical cluster analysis identified 3 inflammatory subendotypes of AERD characterized by (1) low inflammatory burden, (2) high type 2 cytokines, and (3) comparatively low type 2 cytokines and high levels of type 1 and type 3 cytokines. Several lipid mediators were associated with asthma and sinonasal disease severity; however, lipid mediators showed less variability than cytokines. CONCLUSIONS AERD is associated with elevations in type 2 cytokines (IL-5 and IL-13) and the type 1 cytokine, IFN-γ. Among patients with AERD, the inflammatory signature is heterogeneous, supporting subendotypes of the disease. Variability in AERD immune signatures should be further clarified because this may predict clinical response to biologic medications that target type 2 inflammation.
Collapse
Affiliation(s)
- William C Scott
- Department of Otolaryngology-Head and Neck Surgery, Vanderbilt University Medical Center, Nashville, Tenn
| | - Katherine N Cahill
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, Tenn
| | - Ginger L Milne
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, Tenn
| | - Ping Li
- Department of Otolaryngology-Head and Neck Surgery, Vanderbilt University Medical Center, Nashville, Tenn
| | - Quanhu Sheng
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tenn
| | - Li Ching Huang
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tenn
| | - Spencer Dennis
- Department of Otolaryngology-Head and Neck Surgery, Vanderbilt University Medical Center, Nashville, Tenn
| | - Jacob Snyder
- Department of Otolaryngology-Head and Neck Surgery, Vanderbilt University Medical Center, Nashville, Tenn
| | - Ashley M Bauer
- Department of Otolaryngology-Head and Neck Surgery, Vanderbilt University Medical Center, Nashville, Tenn
| | - Rakesh K Chandra
- Department of Otolaryngology-Head and Neck Surgery, Vanderbilt University Medical Center, Nashville, Tenn
| | - Naweed I Chowdhury
- Department of Otolaryngology-Head and Neck Surgery, Vanderbilt University Medical Center, Nashville, Tenn
| | - Justin H Turner
- Department of Otolaryngology-Head and Neck Surgery, Vanderbilt University Medical Center, Nashville, Tenn.
| |
Collapse
|
24
|
Zhang M, Wang J, Li M. [Menthol enhances interleukin-13-induced synthesis and secretion of mucin 5AC in human bronchial epithelial cells]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2020; 40:1432-1438. [PMID: 33118512 DOI: 10.12122/j.issn.1673-4254.2020.10.08] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To investigate the effect of interleukin (IL) -13 combined with cold stimulation on synthesis and secretion of mucin (MUC) 5AC in human bronchial epithelial cell line 16HBE and explore the role of transient receptor potential 8 (TRPM8) and anti-apoptotic factor B-cell lymphoblast-2 (Bcl-2) in this process. METHODS 16HBE cells were stimulated with 10 ng/mL IL-13, 1 mmol/L menthol, or both (1 mmol/L menthol was added after 6 days of IL-13 stimulation), and the changes in the expression of MUC5AC, intracellular Ca2+ concentration and Bcl-2 expression were evaluated. The effects of ABT-263 (a Bcl-2 inhibitor) and BCTC (a TRPM8 ion channel inhibitor), alone or in combination, on MUC5AC expression in the cells were tested, and the changes in intracellular Ca2+ and Bcl-2 expression following BCTC treatment were observed. The cell viability was assessed using CCK-8 assay, the mRNA expressions of MUC5AC and Bcl-2 were detected with real-time quantitative PCR, the level of MUC5AC in the culture medium was measured with ELISA, and the intracellular Ca2+ fluorescence intensity was determined with flow cytometry. RESULTS The mRNA and protein expressions of MUC5AC increased significantly in 16HBE cells following stimulation with IL-13, menthol, and both (P < 0.05), and were the highest in the combined treatment group with its peak level occurred at 24 h (P < 0.01). The intracellular Ca2+ fluorescence intensity and Bcl-2 mRNA expression were also increased in 16HBE cells after the stimulations (P < 0.05), and the increments were the most obvious in the combined treatment group (P < 0.01). Treatment with BCTC significantly lowered intracellular Ca2+ fluorescence intensity and the expressions of Bcl-2 and MUC5AC mRNA and protein in the cells stimulated with menthol or with both IL-13 and menthol (P < 0.05), but caused no significant changes in IL-13-stimulated cells (P > 0.05). Treatment with ABT-263 significantly lowered the mRNA and protein expressions of MUC5AC in the cells stimulated with IL-13 and menthol either alone or in combination (P < 0.05). CONCLUSIONS Menthol combined with IL-13 produces a synergistic effect to promote the synthesis and secretion of MUC5AC in 16HBE cells possibly by activating TRPM8 receptor to upregulate the expression of Bcl-2.
Collapse
Affiliation(s)
- Mingyang Zhang
- Department of Respiratory Medicine, Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010, China
| | - Jing Wang
- Department of Respiratory Medicine, Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010, China
| | - Minchao Li
- Department of Respiratory Medicine, Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010, China
| |
Collapse
|
25
|
Predictive significance of arachidonate 15-lipoxygenase for eosinophilic chronic rhinosinusitis with nasal polyps. Allergy Asthma Clin Immunol 2020; 16:82. [PMID: 32973910 PMCID: PMC7493848 DOI: 10.1186/s13223-020-00480-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 09/04/2020] [Indexed: 12/20/2022] Open
Abstract
Background Eosinophilic chronic rhinosinusitis with nasal polyps (ECRSwNP) exhibits a poorer outcome compared with non-eosinophilic chronic rhinosinusitis with nasal polyps (nonECRSwNP), so it is significant to identify effective markers to differentiate ECRSwNP in guiding the treatment strategies of these patients. Although arachidonate 15-lipoxygenase (ALOX15) is positioned as a marker of eosinophilic inflammation, its study in differentiating ECRSwNP has not been reported. The aim of this study is to assess the potential of ALOX15 in distinguishing and predicting ECRSwNP. Methods Forty-eight patients with chronic rhinosinusitis with nasal polyps (CRSwNP), including 30 ECRSwNP and 18 nonECRSwNP patients, were enrolled. ALOX15 mRNA level was determined in polyps by real-time polymerase chain reaction (RT-PCR). The patients’ baseline characteristics were evaluated and analyzed for correlations with ALOX15. Receiver operating characteristic (ROC) curve was used to assess the predictive significance of the potential predictors for ECRSwNP. Results ALOX15 mRNA level was significantly higher in ECRSwNP patients than in nonECRSwNP patients (P < 0.001). ALOX15 mRNA was significantly correlated with tissue and blood eosinophil percentages (r = 0.565, P < 0.001 and r = 0.395, P = 0.006), olfaction scores (r = 0.400, P = 0.005), total visual analogue scale (VAS) symptom scores (r = 0.383, P = 0.007), ethmoid/maxillary sinus (E/M) ratio (r = 0.463, P = 0.001), and endoscopy scores (r = 0.409, P = 0.004). Logistic regression analysis showed ALOX15 mRNA level and percentage of blood eosinophils to be predictive factors for ECRSwNP (P = 0.004 and P = 0.036, respectively). ROC curve indicated ALOX15 to have high predictive accuracy for ECRSwNP (area under the curve (AUC) = 0.909), which was further improved by combination of ALOX15 with percentage of blood eosinophils (AUC = 0.933). Conclusions The relative ALOX15 mRNA level alone or in combination with blood eosinophils might be a reliable biomarker for predicting a diagnosis of ECRSwNP.
Collapse
|
26
|
PEBP1 acts as a rheostat between prosurvival autophagy and ferroptotic death in asthmatic epithelial cells. Proc Natl Acad Sci U S A 2020; 117:14376-14385. [PMID: 32513718 PMCID: PMC7321965 DOI: 10.1073/pnas.1921618117] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Temporally harmonized elimination of damaged or unnecessary organelles and cells is a prerequisite of health. Under Type 2 inflammatory conditions, human airway epithelial cells (HAECs) generate proferroptotic hydroperoxy-arachidonoyl-phosphatidylethanolamines (HpETE-PEs) as proximate death signals. Production of 15-HpETE-PE depends on activation of 15-lipoxygenase-1 (15LO1) in complex with PE-binding protein-1 (PEBP1). We hypothesized that cellular membrane damage induced by these proferroptotic phospholipids triggers compensatory prosurvival pathways, and in particular autophagic pathways, to prevent cell elimination through programmed death. We discovered that PEBP1 is pivotal to driving dynamic interactions with both proferroptotic 15LO1 and the autophagic protein microtubule-associated light chain-3 (LC3). Further, the 15LO1-PEBP1-generated ferroptotic phospholipid, 15-HpETE-PE, promoted LC3-I lipidation to stimulate autophagy. This concurrent activation of autophagy protects cells from ferroptotic death and release of mitochondrial DNA. Similar findings are observed in Type 2 Hi asthma, where high levels of both 15LO1-PEBP1 and LC3-II are seen in HAECs, in association with low bronchoalveolar lavage fluid mitochondrial DNA and more severe disease. The concomitant activation of ferroptosis and autophagy by 15LO1-PEBP1 complexes and their hydroperoxy-phospholipids reveals a pathobiologic pathway relevant to asthma and amenable to therapeutic targeting.
Collapse
|
27
|
Stevens WW, Staudacher AG, Hulse KE, Carter RG, Winter DR, Abdala-Valencia H, Kato A, Suh L, Norton JE, Huang JH, Peters AT, Grammer LC, Price CPE, Conley DB, Shintani-Smith S, Tan BK, Welch KC, Kern RC, Schleimer RP. Activation of the 15-lipoxygenase pathway in aspirin-exacerbated respiratory disease. J Allergy Clin Immunol 2020; 147:600-612. [PMID: 32371071 DOI: 10.1016/j.jaci.2020.04.031] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 04/02/2020] [Accepted: 04/03/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND Aspirin-exacerbated respiratory disease (AERD) is characterized by asthma, chronic rhinosinusitis with nasal polyps (CRSwNP), and an intolerance of medications that inhibit cyclooxygenase-1. Patients with AERD have more severe upper and lower respiratory tract disease than do aspirin-tolerant patients with CRSwNP. A dysregulation in arachidonic acid metabolism is thought to contribute to the enhanced sinonasal inflammation in AERD. OBJECTIVE Our aim was to utilize an unbiased approach investigating arachidonic acid metabolic pathways in AERD. METHODS Single-cell RNA sequencing (10× Genomics, Pleasanton, Calif) was utilized to compare the transcriptional profile of nasal polyp (NP) cells from patients with AERD and patients with CRSwNP and map differences in the expression of select genes among identified cell types. Findings were confirmed by traditional real-time PCR. Lipid mediators in sinonasal tissue were measured by mass spectrometry. Localization of various proteins within NPs was assessed by immunofluorescence. RESULTS The gene encoding for 15-lipooxygenase (15-LO), ALOX15, was significantly elevated in NPs of patients with AERD compared to NPs of patients with CRSwNP (P < .05) or controls (P < .001). ALOX15 was predominantly expressed by epithelial cells. Expression levels significantly correlated with radiographic sinus disease severity (r = 0.56; P < .001) and were associated with asthma. The level of 15-oxo-eicosatetraenoic acid (15-Oxo-ETE), a downstream product of 15-LO, was significantly elevated in NPs from patients with CRSwNP (27.93 pg/mg of tissue) and NPs from patients with AERD (61.03 pg/mg of tissue) compared to inferior turbinate tissue from controls (7.17 pg/mg of tissue [P < .001]). Hydroxyprostaglandin dehydrogenase, an enzyme required for 15-Oxo-ETE synthesis, was predominantly expressed in mast cells and localized near 15-LO+ epithelium in NPs from patients with AERD. CONCLUSIONS Epithelial and mast cell interactions, leading to the synthesis of 15-Oxo-ETE, may contribute to the dysregulation of arachidonic acid metabolism via the 15-LO pathway and to the enhanced sinonasal disease severity observed in AERD.
Collapse
Affiliation(s)
- Whitney W Stevens
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Ill; Department of Otolaryngology, Northwestern University Feinberg School of Medicine, Chicago, Ill.
| | - Anna G Staudacher
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Kathryn E Hulse
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Roderick G Carter
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Deborah R Winter
- Division of Rheumatology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Hiam Abdala-Valencia
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Atsushi Kato
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Lydia Suh
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - James E Norton
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Julia H Huang
- Department of Otolaryngology, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Anju T Peters
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Ill; Department of Otolaryngology, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Leslie C Grammer
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Caroline P E Price
- Department of Otolaryngology, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - David B Conley
- Department of Otolaryngology, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | | | - Bruce K Tan
- Department of Otolaryngology, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Kevin C Welch
- Department of Otolaryngology, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Robert C Kern
- Department of Otolaryngology, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Robert P Schleimer
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Ill; Department of Otolaryngology, Northwestern University Feinberg School of Medicine, Chicago, Ill
| |
Collapse
|
28
|
Erratum: Preferential Generation of 15-HETE-PE Induced by IL-13 Regulates Goblet Cell Differentiation in Human Airway Epithelial Cells. Am J Respir Cell Mol Biol 2020; 62:535. [PMID: 32233870 DOI: 10.1165/rcmb.62erratum1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
29
|
Li Z, Zeng M, Deng Y, Zhao J, Zhou X, Trudeau JB, Goldschmidt E, Moore JA, Chu H, Zhang W, Yin S, Liu Z, Di YP, Lee SE, Wenzel SE. 15-Lipoxygenase 1 in nasal polyps promotes CCL26/eotaxin 3 expression through extracellular signal-regulated kinase activation. J Allergy Clin Immunol 2019; 144:1228-1241.e9. [PMID: 31301373 PMCID: PMC6842430 DOI: 10.1016/j.jaci.2019.06.037] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 05/29/2019] [Accepted: 06/19/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND 15-Lipoxygenase 1 (15LO1) is expressed in airway epithelial cells in patients with type 2-high asthma in association with eosinophilia. Chronic rhinosinusitis with nasal polyps (CRSwNP) is also associated with type 2 inflammation and eosinophilia. CCL26/eotaxin 3 has been reported to be regulated by 15LO1 in lower airway epithelial cells. However, its relation to 15LO1 in patients with CRSwNP or mechanisms for its activation are unclear. OBJECTIVE We sought to evaluate 15LO1 and CCL26 expression in nasal epithelial cells (NECs) from patients with CRSwNP and healthy control subjects (HCs) and determine whether 15LO1 regulates CCL26 in NECs through extracellular signal-regulated kinase (ERK) activation. METHODS 15LO1, CCL26, and phosphorylated ERK were evaluated in NECs from patients with CRSwNP and HCs. 15LO1/CCL26 and CCL26/cytokeratin 5 were colocalized by means of immunofluorescence. IL-13-stimulated NECs were cultured at an air-liquid interface with or without 15-lipoxygenase 1 gene (ALOX15) Dicer-substrate short interfering RNAs (DsiRNA) transfection, a specific 15LO1 enzymatic inhibitor, and 2 ERK inhibitors. Expression of 15LO1 and CCL26 mRNA and protein was analyzed by using quantitative RT-PCR, Western blotting, and ELISA. RESULTS 15LO1 expression was increased in nasal polyp (NP) epithelial cells compared with middle turbinate epithelial cells from patients with CRSwNP and HCs. 15LO1 expression correlated with CCL26 expression and colocalized with CCL26 expression in basal cells of the middle turbinate and NPs from patients with CRSwNP. In primary NECs in vitro, IL-13 induced 15LO1 and CCL26 expression. 15LO1 knockdown and inhibition decreased IL-13-induced ERK phosphorylation and CCL26 expression. ERK inhibition (alone) similarly decreased IL-13-induced CCL26. Phosphorylated ERK expression was increased in NECs from CRSwNP subjects and positively correlated with both 15LO1 and CCL26 expression. CONCLUSIONS 15LO1 expression is increased in NP epithelial cells and contributes to CCL26 expression through ERK activation. 15LO1 could be considered a novel therapeutic target for CRSwNP.
Collapse
Affiliation(s)
- Zhipeng Li
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai; University of Pittsburgh Asthma Institute@UPMC, Department of Environmental and Occupational Health, Graduate School of Public Health, Pittsburgh, Pa
| | - Ming Zeng
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; University of Pittsburgh Asthma Institute@UPMC, Department of Environmental and Occupational Health, Graduate School of Public Health, Pittsburgh, Pa
| | - Yanhan Deng
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; University of Pittsburgh Asthma Institute@UPMC, Department of Environmental and Occupational Health, Graduate School of Public Health, Pittsburgh, Pa
| | - Jinming Zhao
- University of Pittsburgh Asthma Institute@UPMC, Department of Environmental and Occupational Health, Graduate School of Public Health, Pittsburgh, Pa
| | - Xiuxia Zhou
- University of Pittsburgh Asthma Institute@UPMC, Department of Environmental and Occupational Health, Graduate School of Public Health, Pittsburgh, Pa
| | - John B Trudeau
- University of Pittsburgh Asthma Institute@UPMC, Department of Environmental and Occupational Health, Graduate School of Public Health, Pittsburgh, Pa
| | - Ezequiel Goldschmidt
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pa
| | - John A Moore
- Department of Otolaryngology-Head and Neck Surgery, University of Pittsburgh Medical Center, Mercy Hospital, Pittsburgh, Pa
| | - Hongwei Chu
- Department of Medicine, National Jewish Health, Denver, Colo
| | - Weitian Zhang
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai
| | - Shankai Yin
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai
| | - Zheng Liu
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Y Peter Di
- University of Pittsburgh Asthma Institute@UPMC, Department of Environmental and Occupational Health, Graduate School of Public Health, Pittsburgh, Pa
| | - Stella E Lee
- Department of Otolaryngology-Head and Neck Surgery, University of Pittsburgh Medical Center, Mercy Hospital, Pittsburgh, Pa.
| | - Sally E Wenzel
- University of Pittsburgh Asthma Institute@UPMC, Department of Environmental and Occupational Health, Graduate School of Public Health, Pittsburgh, Pa.
| |
Collapse
|
30
|
Parainfluenza virus infection enhances NSAIDs-induced inhibition of PGE2 generation and COX-2 expression in human airway epithelial cells. Adv Med Sci 2019; 64:338-343. [PMID: 31022559 DOI: 10.1016/j.advms.2019.04.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 01/29/2019] [Accepted: 04/12/2019] [Indexed: 12/22/2022]
Abstract
PURPOSE Respiratory viral infection and nonsteroidal anti-inflammatory drugs (NSAIDs) may affect arachidonic acid (AA) metabolism in the airway epithelium, however their joint effect has not been studied. We hypothesized, that alternations of AA metabolism in human airway epithelial cells (ECs) - induced by Parainfluenza virus type 3 (PIV3) - may be modified by concomitant treatment with NSAIDs. MATERIALS AND METHODS Nasal (RPMI 2650) and bronchial (BEAS-2B) epithelial cells were cultured into confluence and then infected with PIV3. Prostaglandin E2 (PGE2) and 15-hydroxyeicosatetraenoic acid (15-HETE) levels in cell supernatants were measured by ELISA and expression of cyclooxygenase-1 (COX-1), cyclooxygenase-2 (COX-2), 5-lipoxygenase (5-LO) and 15-lipoxygenase (15-LO) mRNA in cells was evaluated after reverse transcription with real-time polymerase chain reactions. RESULTS PGE2 generation was decreased by PIV3 infection in the upper airway epithelial cells, and increased in the lower airway epithelial cells. Both naproxen and celecoxib induced significant reduction in PGE2 release in both infected and non-infected upper and lower airway epithelial cells. However, in PIV3-infected epithelial cells celecoxib inhibited PGE2 release and COX-2 expression to significantly higher degree as compared to non-infected cells. 15-HETE generation or COX-1, 5-LO and 15-LO expression were not affected by the virus infection or by NSAIDs. CONCLUSION Virus infection in airway epithelial cells enhances inhibitory effect of NSAIDs on prostaglandin E2 generation.
Collapse
|
31
|
Cai C, Bian X, Xue M, Liu X, Hu H, Wang J, Zheng SG, Sun B, Wu JL. Eicosanoids metabolized through LOX distinguish asthma-COPD overlap from COPD by metabolomics study. Int J Chron Obstruct Pulmon Dis 2019; 14:1769-1778. [PMID: 31496676 PMCID: PMC6689553 DOI: 10.2147/copd.s207023] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 05/24/2019] [Indexed: 12/12/2022] Open
Abstract
Background and objective The prevalence of asthma is greater than 20% in patients previously diagnosed with COPD. Patients with asthma–COPD overlap (ACO) are at risk of rapid progression of disease and severe exacerbations. However, in some patients with ACO, a clear distinction from COPD is very difficult by using physiological testing techniques. This study aimed to apply a novel metabolomic approach to identify the metabolites in sera in order to distinguish ACO from COPD. Methods In the study, blood samples were collected from patients with COPD, ACO, and healthy controls. Cholamine derivatization-ultrahigh performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UHPLC-Q-TOF/MS) was used to investigate serum metabolites of eicosanoids. Results A clear intergroup separation existed between the patients with ACO and those with COPD, while ACO tends to have higher serum metabolic levels of eicosanoids. A robust Orthogonal Projections to Latent Structures-Discriminant Analysis (OPLS-DA) model was found for discriminating between ACO and COPD (R2Y =0.81, Q2=0.79). In addition, there is a significant correlation between some metabolites and clinical indicators, such as hydroxyeicosatetraenoic acids (HETEs), hydroperoxyeicosatetraenoic acids (HPETEs) and FEV1/FVC. The higher values of area under the receiver operating characteristic curves (ROC) of HETEs, which were metabolized from HPETEs through lipoxygenase (LOX), indicated that they should be the potential biomarkers to distinguish ACO from COPD. Conclusion Eicosanoids can clearly discriminate different biochemical metabolic profiles between ACO and COPD. The results possibly provide a new perspective to identify potential biomarkers of ACO and may be helpful for personalized treatment.
Collapse
Affiliation(s)
- Chuanxu Cai
- Department of Allergy and Clinical Immunology, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center of Respiratory Disease, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China.,Department of Laboratory Medicine, Shenzhen People's Hospital, Shenzhen, People's Republic of China
| | - Xiqing Bian
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macao, People's Republic of China
| | - Mingshan Xue
- Department of Allergy and Clinical Immunology, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center of Respiratory Disease, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Xiaoqing Liu
- Department of Allergy and Clinical Immunology, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center of Respiratory Disease, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Haisheng Hu
- Department of Allergy and Clinical Immunology, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center of Respiratory Disease, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Jingxian Wang
- Center for Tissue Engineering and Stem Cell Research, Guizhou Medical University, Guiyang, Guizhou, People's Republic of China
| | - Song Guo Zheng
- Department of Internal Medicine, Ohio State University College of Medicine and Wexner Medical Center, Columbus, OH, USA
| | - Baoqing Sun
- Department of Allergy and Clinical Immunology, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center of Respiratory Disease, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Jian-Lin Wu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macao, People's Republic of China
| |
Collapse
|
32
|
Wu G, Meng X, Zheng P, Zhang XD, Li L, Hu H, Sun B. Elevated serum levels of periostin in patients with allergic bronchopulmonary aspergillosis. Mycoses 2019; 62:780-789. [PMID: 31173398 DOI: 10.1111/myc.12957] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 05/31/2019] [Accepted: 05/31/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND Serum periostin levels have been reported to be an indicator of Th2 inflammation in asthmatic patients. OBJECTIVE This study aimed to investigate serum levels of periostin in patients with allergic bronchopulmonary aspergillosis (ABPA) and to evaluate its diagnostic and monitoring value in the disease. METHODS Patients with ABPA (n = 19) and asthma (n = 24), including severe asthma with fungal sensitisation (SAFS, n = 11) and severe asthma without fungal sensitization (SAwFS, n = 13), were enrolled. Serum levels of periostin were analysed by enzyme-linked immunosorbent assay. Serum total IgE and Aspergillus fumigatus specific IgE, IgG were measured by ImmunoCAP. Levels of cytokines (IFN-γ, IL-4, IL-5, IL-8, IL-10, IL-13 and IL-17A) were measured by Meso Scale Discovery (MSD). RESULTS Serum levels of periostin in ABPA patients (85.55 ng/mL, [68.28-166] ng/mL) were higher than those in SAFS (50.99 ng/mL, [32.02-71.80] ng/mL; P < 0.01). Among the analysed cytokines, IL-5 levels in ABPA (1.55 pg/mL, [0.96-3.33] pg/mL) were higher than those in SAFS (0.31 pg/mL, [0.26-0.56] pg/mL; P < 0.05) or SAwFS (0.34 pg/mL, [0.21-0.56] pg/mL; P < 0.01). Serum periostin levels was positively associated with total IgE levels (r = 0.319, P < 0.05), serum IL-5 levels (r = 0.484, P < 0.01) and blood eosinophil counts (r = 0.428, P < 0.05). In ROC analysis, the clinical reference value of periostin was 68.8 ng/mL for differential diagnosis of ABPA and SAFS, with the area under the curve (AUC) of 0.81. Longitudinally, serum periostin levels did not change significantly after treatment in ABPA. CONCLUSIONS These findings suggested that serum levels of periostin were up-regulated in ABPA patients, which may be associated with eosinophilic inflammation.
Collapse
Affiliation(s)
- Ge Wu
- Department of Allergy and Clinical Immunology, State Key Laboratory of Respiratory Disease, National Clinical Research Center of Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xun Meng
- The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, China
| | - Peiyan Zheng
- Department of Allergy and Clinical Immunology, State Key Laboratory of Respiratory Disease, National Clinical Research Center of Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | | | - Lu Li
- Sino-French Hoffmann Institute of Immunology, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Haisheng Hu
- Department of Allergy and Clinical Immunology, State Key Laboratory of Respiratory Disease, National Clinical Research Center of Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Baoqing Sun
- Department of Allergy and Clinical Immunology, State Key Laboratory of Respiratory Disease, National Clinical Research Center of Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
33
|
Zhou X, Kinlough CL, Hughey RP, Jin M, Inoue H, Etling E, Modena BD, Kaminski N, Bleecker ER, Meyers DA, Jarjour NN, Trudeau JB, Holguin F, Ray A, Wenzel SE. Sialylation of MUC4β N-glycans by ST6GAL1 orchestrates human airway epithelial cell differentiation associated with type-2 inflammation. JCI Insight 2019; 4:122475. [PMID: 30730306 DOI: 10.1172/jci.insight.122475] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 01/29/2019] [Indexed: 12/28/2022] Open
Abstract
Although type-2-induced (T2-induced) epithelial dysfunction is likely to profoundly alter epithelial differentiation and repair in asthma, the mechanisms for these effects are poorly understood. A role for specific mucins, heavily N-glycosylated epithelial glycoproteins, in orchestrating epithelial cell fate in response to T2 stimuli has not previously been investigated. Levels of a sialylated MUC4β isoform were found to be increased in airway specimens from asthmatic patients in association with T2 inflammation. We hypothesized that IL-13 would increase sialylation of MUC4β, thereby altering its function and that the β-galactoside α-2,6-sialyltransferase 1 (ST6GAL1) would regulate the sialylation. Using human biologic specimens and cultured primary human airway epithelial cells (HAECs),we demonstrated that IL-13 increases ST6GAL1-mediated sialylation of MUC4β and that both were increased in asthma, particularly in sputum supernatant and/or fresh isolated HAECs with elevated T2 biomarkers. ST6GAL1-induced sialylation of MUC4β altered its lectin binding and secretion. Both ST6GAL1 and MUC4β inhibited epithelial cell proliferation while promoting goblet cell differentiation. These in vivo and in vitro data provide strong evidence for a critical role for ST6GAL1-induced sialylation of MUC4β in epithelial dysfunction associated with T2-high asthma, thereby identifying specific sialylation pathways as potential targets in asthma.
Collapse
Affiliation(s)
- Xiuxia Zhou
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh School of Medicine, University of Pittsburgh Asthma Institute at University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA.,Department of Environmental & Occupational Health, University of Pittsburgh Graduate School of Public Health, Pittsburgh, Pennsylvania, USA
| | - Carol L Kinlough
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Rebecca P Hughey
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Mingzhu Jin
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh School of Medicine, University of Pittsburgh Asthma Institute at University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Hideki Inoue
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh School of Medicine, University of Pittsburgh Asthma Institute at University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA.,Division of Pulmonary and Allergy Medicine, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Emily Etling
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh School of Medicine, University of Pittsburgh Asthma Institute at University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Brian D Modena
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh School of Medicine, University of Pittsburgh Asthma Institute at University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA.,Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, USA
| | - Naftali Kaminski
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | | | - Deborah A Meyers
- Department of Medicine, University of Arizona, Tucson, Arizona, USA
| | - Nizar N Jarjour
- Division of Allergy, Pulmonary, and Critical Care Medicine, University of Wisconsin, Madison, Wisconsin, USA
| | - John B Trudeau
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh School of Medicine, University of Pittsburgh Asthma Institute at University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA.,Department of Environmental & Occupational Health, University of Pittsburgh Graduate School of Public Health, Pittsburgh, Pennsylvania, USA
| | - Fernando Holguin
- Division of Pulmonary and Critical Care Medicine, University of Colorado Health Sciences Center, Denver, Colorado, USA
| | - Anuradha Ray
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh School of Medicine, University of Pittsburgh Asthma Institute at University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA.,Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Sally E Wenzel
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh School of Medicine, University of Pittsburgh Asthma Institute at University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA.,Department of Environmental & Occupational Health, University of Pittsburgh Graduate School of Public Health, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
34
|
Singh P, Ochoa Allemant P, Brown J, Perides G, Freedman SD, Martin CR. Effect of polyunsaturated fatty acids on postnatal ileum development using the fat-1 transgenic mouse model. Pediatr Res 2019; 85:556-565. [PMID: 30653193 PMCID: PMC6397682 DOI: 10.1038/s41390-019-0284-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 12/05/2018] [Accepted: 12/18/2018] [Indexed: 11/09/2022]
Abstract
BACKGROUND Long-chain polyunsaturated fatty acids (LCPUFAs) play a critical role in neonatal health. We hypothesized that LCPUFAs play an essential role in priming postnatal gut development. We studied the effect of LCPUFAs on postnatal gut development using fat-1 transgenic mice, which are capable of converting n-6 to n-3 LCPUFAs, and wild-type (WT) C57BL/6 mice. METHODS Distal ileum sections were collected from fat-1 and WT mice on days 3, 14, and 28. Fatty acid analyses, histology, RT-qPCR and intestinal permeability were performed. RESULTS Fat-1 mice, relative to WT mice, showed increased n-3 LCPUFAs levels (α-linolenic acid, docosahexaenoic acid, and eicosapentaenoic acid, p < 0.05) and decreased arachidonic acid levels (p < 0.05) in the ileum. Preweaning fat-1 mice, compared to WT, showed >50% reduced muc2, Tff3, TLR9, and Camp expression (p < 0.05), markers of the innate immune response. There was a >two-fold increased expression of Fzd5 and EphB2, markers of cell differentiation (p < 0.05), and Fabp2 and 6, regulators of fatty acid transport and metabolism (p < 0.05). Despite reduced expression of tight junction genes, intestinal permeability in fat-1 was comparable to WT mice. CONCLUSIONS Our data support the hypothesis that fatty acid profiles early in development modulate intestinal gene expression in formative domains, such as cell differentiation, tight junctions, other innate host defenses, and lipid metabolism.
Collapse
Affiliation(s)
- Pratibha Singh
- Division of Gastroenterology, Beth Israel Deaconess Medical Center, MA,,Harvard Medical School, Boston, MA
| | - Pedro Ochoa Allemant
- Division of Gastroenterology, Beth Israel Deaconess Medical Center, MA,,Harvard Medical School, Boston, MA
| | - Joanne Brown
- Division of Gastroenterology, Beth Israel Deaconess Medical Center, MA,,Harvard Medical School, Boston, MA
| | - George Perides
- Division of Gastroenterology, Beth Israel Deaconess Medical Center, MA,,Harvard Medical School, Boston, MA
| | - Steven D. Freedman
- Division of Gastroenterology, Beth Israel Deaconess Medical Center, MA,,Division of Translational Research, Beth Israel Deaconess Medical Center, MA,,Harvard Medical School, Boston, MA
| | - Camilia R Martin
- Department of Neonatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
35
|
Yan B, Wang Y, Li Y, Wang C, Zhang L. Inhibition of arachidonate 15-lipoxygenase reduces the epithelial-mesenchymal transition in eosinophilic chronic rhinosinusitis with nasal polyps. Int Forum Allergy Rhinol 2018; 9:270-280. [PMID: 30452122 DOI: 10.1002/alr.22243] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 10/05/2018] [Accepted: 10/17/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Bing Yan
- Department of Otolaryngology, Head and Neck Surgery, Beijing TongRen Hospital; Capital Medical University; Beijing China
- Beijing Key Laboratory of Nasal Diseases; Beijing Institute of Otolaryngology; Beijing China
| | - Yang Wang
- Department of Otolaryngology, Head and Neck Surgery, Beijing TongRen Hospital; Capital Medical University; Beijing China
- Beijing Key Laboratory of Nasal Diseases; Beijing Institute of Otolaryngology; Beijing China
| | - Ying Li
- Department of Otolaryngology, Head and Neck Surgery, Beijing TongRen Hospital; Capital Medical University; Beijing China
- Beijing Key Laboratory of Nasal Diseases; Beijing Institute of Otolaryngology; Beijing China
| | - Chengshuo Wang
- Department of Otolaryngology, Head and Neck Surgery, Beijing TongRen Hospital; Capital Medical University; Beijing China
| | - Luo Zhang
- Department of Otolaryngology, Head and Neck Surgery, Beijing TongRen Hospital; Capital Medical University; Beijing China
- Beijing Key Laboratory of Nasal Diseases; Beijing Institute of Otolaryngology; Beijing China
- Department of Allergy, Beijing TongRen Hospital; Capital Medical University; Beijing China
| |
Collapse
|
36
|
Çolakoğlu M, Tunçer S, Banerjee S. Emerging cellular functions of the lipid metabolizing enzyme 15-Lipoxygenase-1. Cell Prolif 2018; 51:e12472. [PMID: 30062726 DOI: 10.1111/cpr.12472] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 04/22/2018] [Indexed: 02/06/2023] Open
Abstract
The oxygenation of polyunsaturated fatty acids such as arachidonic and linoleic acid through lipoxygenases (LOXs) and cyclooxygenases (COXs) leads to the production of bioactive lipids that are important both in the induction of acute inflammation and its resolution. Amongst the several isoforms of LOX that are expressed in mammals, 15-LOX-1 was shown to be important both in the context of inflammation, being expressed in cells of the immune system, and in epithelial cells where the enzyme has been shown to crosstalk with a number of important signalling pathways. This review looks into the latest developments in understanding the role of 15-LOX-1 in different disease states with emphasis on the emerging role of the enzyme in the tumour microenvironment as well as a newly re-discovered form of cell death called ferroptosis. We also discuss future perspectives on the feasibility of use of this protein as a target for therapeutic interventions.
Collapse
Affiliation(s)
- Melis Çolakoğlu
- Department of Biological Sciences, Middle East Technical University, Ankara, Turkey
| | - Sinem Tunçer
- Department of Biological Sciences, Middle East Technical University, Ankara, Turkey
| | - Sreeparna Banerjee
- Department of Biological Sciences, Middle East Technical University, Ankara, Turkey
| |
Collapse
|
37
|
Liou CJ, Cheng CY, Yeh KW, Wu YH, Huang WC. Protective Effects of Casticin From Vitex trifolia Alleviate Eosinophilic Airway Inflammation and Oxidative Stress in a Murine Asthma Model. Front Pharmacol 2018; 9:635. [PMID: 29962952 PMCID: PMC6010522 DOI: 10.3389/fphar.2018.00635] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Accepted: 05/29/2018] [Indexed: 01/09/2023] Open
Abstract
Casticin has been isolated from Vitex trifolia and found to have anti-inflammatory and anti-tumor properties. We also previously discovered that casticin can reduce pro-inflammatory cytokines and ICAM-1 expression in inflammatory pulmonary epithelial cells. In the present study, we evaluated whether casticin reduced airway hyper-responsiveness (AHR), airway inflammation, and oxidative stress in the lungs of a murine asthma model and alleviated inflammatory and oxidative responses in tracheal epithelial cells. Female BALB/c mice were randomly divided into five groups: normal controls, ovalbumin (OVA)-induced asthma, and OVA-induced asthma treated with intraperitoneal injection of casticin (5 or 10 mg/kg) or prednisolone (5 mg/kg). Casticin reduced AHR, goblet cell hyperplasia, and oxidative responses in the lungs of mice with asthma. Mechanistic studies revealed that casticin attenuated the levels of Th2 cytokine in bronchoalveolar lavage fluids and regulated the expression of Th2 cytokine and chemokine genes in the lung. Casticin also significantly regulated oxidative stress and reduced inflammation in the lungs of mice with asthma. Consequently, inflammatory tracheal epithelial BEAS-2B cells treated with casticin had significantly suppressed levels of pro-inflammatory cytokines and eotaxin, and reduced THP-1 monocyte cell adherence to BEAS-2B cells via suppressed ICAM-1 expression. Thus, casticin is a powerful immunomodulator, ameliorating pathological changes by suppressing Th2 cytokine expression in mice with asthma.
Collapse
Affiliation(s)
- Chian-Jiun Liou
- Division of Basic Medical Sciences, Department of Nursing, Research Center for Chinese Herbal Medicine, Graduate Institute of Health Industry Technology, Chang Gung University of Science and Technology, Taoyuan City, Taiwan.,Division of Allergy, Asthma, and Rheumatology, Department of Pediatrics, Chang Gung Memorial Hospital, Taoyuan City, Taiwan
| | - Ching-Yi Cheng
- Graduate Institute of Health Industry Technology, Research Center for Food and Cosmetic Safety, Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan City, Taiwan.,Department of Ophthalmology, Chang Gung Memorial Hospital, Taoyuan City, Taiwan.,Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Kuo-Wei Yeh
- Division of Allergy, Asthma, and Rheumatology, Department of Pediatrics, Chang Gung Memorial Hospital, Taoyuan City, Taiwan
| | - Yi-Hong Wu
- Division of Chinese Internal Medicine, Center for Traditional Chinese Medicine, Chang Gung Memorial Hospital, Taoyuan City, Taiwan.,School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan City, Taiwan
| | - Wen-Chung Huang
- Division of Allergy, Asthma, and Rheumatology, Department of Pediatrics, Chang Gung Memorial Hospital, Taoyuan City, Taiwan.,Graduate Institute of Health Industry Technology, Research Center for Food and Cosmetic Safety, Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan City, Taiwan
| |
Collapse
|
38
|
IL-13 induces periostin and eotaxin expression in human primary alveolar epithelial cells: Comparison with paired airway epithelial cells. PLoS One 2018; 13:e0196256. [PMID: 29672593 PMCID: PMC5908159 DOI: 10.1371/journal.pone.0196256] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 04/09/2018] [Indexed: 01/01/2023] Open
Abstract
Alveolar epithelial cells are critical to the pathogenesis of pulmonary inflammation and fibrosis, which are associated with overexpression of type 2 cytokine IL-13. IL-13 is known to induce the production of profibrotic (e.g., periostin) and pro-inflammatory (e.g., eotaxin-3) mediators in human airway epithelial cells, but it remains unclear if human primary alveolar epithelial cells increase periostin and eotaxin expression following IL-13 stimulation. The goals of this study are to determine if alveolar epithelial cells increase periostin and eotaxin expression upon IL-13 stimulation, and if alveolar and airway epithelial cells from the same subjects have similar responses to IL-13. Paired alveolar and airway epithelial cells were isolated from donors without any lung disease, and cultured under submerged or air-liquid interface conditions with or without IL-13. Up-regulation of periostin protein and mRNA was observed in IL-13-stimulated alveolar epithelial cells, which was comparable to that in IL-13-stimulated paired airway epithelial cells. IL-13 also increased eotaxin-3 expression in alveolar epithelial cells, but the level of eotaxin mRNA was lower in alveolar epithelial cells than in airway epithelial cells. Our findings demonstrate that human alveolar epithelial cells are able to produce periostin and eotaxin in responses to IL-13 stimulation. This study suggests the need to further determine the contribution of alveolar epithelial cell-derived mediators to pulmonary fibrosis.
Collapse
|
39
|
Randell SH, Zeldin DC. A Slippery Cause of a Slimy Problem: Mucin Induction by an Esterified Lipid. Am J Respir Cell Mol Biol 2018; 57:633-634. [PMID: 29192828 DOI: 10.1165/rcmb.2017-0275ed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Scott H Randell
- 1 Department of Cell Biology and Physiology.,2 Marsico Lung Institute University of North Carolina at Chapel Hill Chapel Hill, North Carolina and
| | - Darryl C Zeldin
- 3 National Institute of Environmental Health Sciences National Institutes of Health Research Triangle Park, North Carolina
| |
Collapse
|