1
|
Rieder F, Nagy LE, Maher TM, Distler JHW, Kramann R, Hinz B, Prunotto M. Fibrosis: cross-organ biology and pathways to development of innovative drugs. Nat Rev Drug Discov 2025:10.1038/s41573-025-01158-9. [PMID: 40102636 DOI: 10.1038/s41573-025-01158-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/10/2025] [Indexed: 03/20/2025]
Abstract
Fibrosis is a pathophysiological mechanism involved in chronic and progressive diseases that results in excessive tissue scarring. Diseases associated with fibrosis include metabolic dysfunction-associated steatohepatitis (MASH), inflammatory bowel diseases (IBDs), chronic kidney disease (CKD), idiopathic pulmonary fibrosis (IPF) and systemic sclerosis (SSc), which are collectively responsible for substantial morbidity and mortality. Although a few drugs with direct antifibrotic activity are approved for pulmonary fibrosis and considerable progress has been made in the understanding of mechanisms of fibrosis, translation of this knowledge into effective therapies continues to be limited and challenging. With the aim of assisting developers of novel antifibrotic drugs, this Review integrates viewpoints of biologists and physician-scientists on core pathways involved in fibrosis across organs, as well as on specific characteristics and approaches to assess therapeutic interventions for fibrotic diseases of the lung, gut, kidney, skin and liver. This discussion is used as a basis to propose strategies to improve the translation of potential antifibrotic therapies.
Collapse
Affiliation(s)
- Florian Rieder
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA.
- Department of Gastroenterology, Hepatology and Nutrition, Digestive Disease Institute, Cleveland Clinic, Cleveland, OH, USA.
- Program for Global Translational Inflammatory Bowel Diseases (GRID), Chicago, IL, USA.
| | - Laura E Nagy
- Department of Gastroenterology, Hepatology and Nutrition, Digestive Disease Institute, Cleveland Clinic, Cleveland, OH, USA
- Northern Ohio Alcohol Center, Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, OH, USA
| | - Toby M Maher
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- National Heart and Lung Institute, Imperial College, London, UK
| | - Jörg H W Distler
- Department of Rheumatology, University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf, Germany
- Hiller Research Center, University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf, Germany
| | - Rafael Kramann
- Department of Nephrology and Clinical Immunology, RWTH Aachen; Medical Faculty, Aachen, Germany
- Department of Internal Medicine, Nephrology and Transplantation, Erasmus Medical Center, Rotterdam, Netherlands
| | - Boris Hinz
- Keenan Research Institute for Biomedical Science of the St Michael's Hospital, Toronto, Ontario, Canada
- Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | - Marco Prunotto
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland.
| |
Collapse
|
2
|
Kai F, Leidal AM, Weaver VM. Tension-induced organelle stress: an emerging target in fibrosis. Trends Pharmacol Sci 2025; 46:117-131. [PMID: 39818520 PMCID: PMC11805623 DOI: 10.1016/j.tips.2024.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/16/2024] [Accepted: 12/16/2024] [Indexed: 01/18/2025]
Abstract
Fibrosis accounts for approximately one-third of disease-related deaths globally. Current therapies fail to cure fibrosis, emphasizing the need to identify new antifibrotic approaches. Fibrosis is defined by the excessive accumulation of extracellular matrix (ECM) and resultant stiffening of tissue stroma. This stiffening appropriates actomyosin-mediated mechanical tension within cells to ultimately affect cell fate decisions and function. Recent studies demonstrate that subcellular organelles are physically connected to the actin cytoskeleton and sensitive to mechanoperturbations. These insights highlight mechanisms that may contribute to the chronic organelle stress in many fibrotic diseases, including those of the lung and liver. In this review, we discuss the hypothesis that a stiffened fibrotic ECM corrupts intracellular mechanical tension to compromise organelle homeostasis. We summarize potential therapeutics that could intervene in this mechanical dialog and that may have clinical benefit for resolving pathological organelle stress in fibrosis.
Collapse
Affiliation(s)
- FuiBoon Kai
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Department of Biochemistry, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
| | - Andrew M Leidal
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Valerie M Weaver
- Department of Surgery, University of California, San Francisco, San Francisco, CA, USA; Center for Bioengineering and Tissue Regeneration, University of California, San Francisco, San Francisco, CA, USA; UCSF Helen Diller Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA; Department of Radiation Oncology, Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
3
|
Zhu R, Jiao Z, Yu FX. Advances towards potential cancer therapeutics targeting Hippo signaling. Biochem Soc Trans 2024; 52:2399-2413. [PMID: 39641583 DOI: 10.1042/bst20240244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/06/2024] [Accepted: 11/06/2024] [Indexed: 12/07/2024]
Abstract
Decades of research into the Hippo signaling pathway have greatly advanced our understanding of its roles in organ growth, tissue regeneration, and tumorigenesis. The Hippo pathway is frequently dysregulated in human cancers and is recognized as a prominent cancer signaling pathway. Hence, the Hippo pathway represents an ideal molecular target for cancer therapies. This review will highlight recent advancements in targeting the Hippo pathway for cancer treatment and discuss the potential opportunities for developing new therapeutic modalities.
Collapse
Affiliation(s)
- Rui Zhu
- Institute of Pediatrics, Children's Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Zhihan Jiao
- Institute of Pediatrics, Children's Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Fa-Xing Yu
- Institute of Pediatrics, Children's Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| |
Collapse
|
4
|
Iannelli F, Lombardi R, Costantini S, Roca MS, Addi L, Bruzzese F, Di Gennaro E, Budillon A, Pucci B. Integrated proteomics and metabolomics analyses reveal new insights into the antitumor effects of valproic acid plus simvastatin combination in a prostate cancer xenograft model associated with downmodulation of YAP/TAZ signaling. Cancer Cell Int 2024; 24:381. [PMID: 39550583 PMCID: PMC11569608 DOI: 10.1186/s12935-024-03573-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 11/11/2024] [Indexed: 11/18/2024] Open
Abstract
BACKGROUND Despite advancements in therapeutic approaches, including taxane-based chemotherapy and androgen receptor-targeting agents, metastatic castration-resistant prostate cancer (mCRPC) remains an incurable tumor, highlighting the need for novel strategies that can target the complexities of this disease and bypass the development of drug resistance mechanisms. We previously demonstrated the synergistic antitumor interaction of valproic acid (VPA), an antiepileptic agent with histone deacetylase inhibitory activity, with the lipid-lowering drug simvastatin (SIM). This combination sensitizes mCRPC cells to docetaxel treatment both in vitro and in vivo by targeting the cancer stem cell compartment via mevalonate pathway/YAP axis modulation. METHODS Here, using a combined proteomic and metabolomic/lipidomic approach, we characterized tumor samples derived from 22Rv1 mCRPC cell-xenografted mice treated with or without VPA/SIM and performed an in-depth bioinformatics analysis. RESULTS We confirmed the specific impact of VPA/SIM on the Hippo-YAP signaling pathway, which is functionally related to the modulation of cancer-related extracellular matrix biology and metabolic reprogramming, providing further insights into the molecular mechanism of the antitumor effects of VPA/SIM. CONCLUSIONS In this study, we present an in-depth exploration of the potential to repurpose two generic, safe drugs for mCRPC treatment, valproic acid (VPA) and simvastatin (SIM), which already show antitumor efficacy in combination, primarily affecting the cancer stem cell compartment via MVP/YAP axis modulation. Bioinformatics analysis of the LC‒MS/MS and 1H‒NMR metabolomics/lipidomics results confirmed the specific impact of VPA/SIM on Hippo-YAP.
Collapse
Affiliation(s)
- Federica Iannelli
- Experimental Pharmacology Unit, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, Naples, 80131, Italy
| | - Rita Lombardi
- Experimental Animal Unit, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, Naples, 80131, Italy
| | - Susan Costantini
- Experimental Pharmacology Unit, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, Naples, 80131, Italy
| | - Maria Serena Roca
- Experimental Pharmacology Unit, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, Naples, 80131, Italy
| | - Laura Addi
- Experimental Pharmacology Unit, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, Naples, 80131, Italy
| | - Francesca Bruzzese
- Experimental Animal Unit, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, Naples, 80131, Italy
| | - Elena Di Gennaro
- Experimental Pharmacology Unit, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, Naples, 80131, Italy
| | - Alfredo Budillon
- Scientific Directorate, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, Via M. Semmola, Napoli, 80131, Italy.
| | - Biagio Pucci
- Experimental Pharmacology Unit, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, Naples, 80131, Italy
| |
Collapse
|
5
|
Saito Y, Xiao Y, Yao J, Li Y, Liu W, Yuzhalin AE, Shyu YM, Li H, Yuan X, Li P, Zhang Q, Li Z, Wei Y, Yin X, Zhao J, Kariminia SM, Wu YC, Wang J, Yang J, Xia W, Sun Y, Jho EH, Chiao PJ, Hwang RF, Ying H, Wang H, Zhao Z, Maitra A, Hung MC, DePinho RA, Yu D. Targeting a chemo-induced adaptive signaling circuit confers therapeutic vulnerabilities in pancreatic cancer. Cell Discov 2024; 10:109. [PMID: 39468013 PMCID: PMC11519973 DOI: 10.1038/s41421-024-00720-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 07/28/2024] [Indexed: 10/30/2024] Open
Abstract
Advanced pancreatic ductal adenocarcinomas (PDACs) respond poorly to all therapies, including the first-line treatment, chemotherapy, the latest immunotherapies, and KRAS-targeting therapies. Despite an enormous effort to improve therapeutic efficacy in late-stage PDAC patients, effective treatment modalities remain an unmet medical challenge. To change the status quo, we explored the key signaling networks underlying the universally poor response of PDAC to therapy. Here, we report a previously unknown chemo-induced symbiotic signaling circuit that adaptively confers chemoresistance in patients and mice with advanced PDAC. By integrating single-cell transcriptomic data from PDAC mouse models and clinical pathological information from PDAC patients, we identified Yap1 in cancer cells and Cox2 in stromal fibroblasts as two key nodes in this signaling circuit. Co-targeting Yap1 in cancer cells and Cox2 in stroma sensitized PDAC to Gemcitabine treatment and dramatically prolonged survival of mice bearing late-stage PDAC, whereas simultaneously inhibiting Yap1 and Cox2 only in cancer cells was ineffective. Mechanistically, chemotherapy triggers non-canonical Yap1 activation by nemo-like kinase in 14-3-3ζ-overexpressing PDAC cells and increases secretion of CXCL2/5, which bind to CXCR2 on fibroblasts to induce Cox2 and PGE2 expression, which reciprocally facilitate PDAC cell survival. Finally, analyses of PDAC patient data revealed that patients who received Statins, which inhibit Yap1 signaling, and Cox2 inhibitors (including Aspirin) while receiving Gemcitabine displayed markedly prolonged survival compared to others. The robust anti-tumor efficacy of Statins and Aspirin, which co-target the chemo-induced adaptive circuit in the tumor cells and stroma, signifies a unique therapeutic strategy for PDAC.
Collapse
Affiliation(s)
- Yohei Saito
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yi Xiao
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jun Yao
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yunhai Li
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Wendao Liu
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
- Center for Precision Health, McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Arseniy E Yuzhalin
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yueh-Ming Shyu
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hongzhong Li
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xiangliang Yuan
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ping Li
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Qingling Zhang
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ziyi Li
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yongkun Wei
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xuedong Yin
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jun Zhao
- Department of Anatomical Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Seyed M Kariminia
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yao-Chung Wu
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jinyang Wang
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jun Yang
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Weiya Xia
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yutong Sun
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Eek-Hoon Jho
- Department of Life Science, University of Seoul, Seoul, Korea
| | - Paul J Chiao
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Rosa F Hwang
- Department of Breast Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Haoqiang Ying
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Huamin Wang
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
- Department of Anatomical Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Zhongming Zhao
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
- Center for Precision Health, McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Human Genetics Center, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Anirban Maitra
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mien-Chie Hung
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ronald A DePinho
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
- Departments of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Dihua Yu
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA.
| |
Collapse
|
6
|
Ezzo M, Spindler K, Wang JB, Lee D, Pecoraro G, Cowen J, Pakshir P, Hinz B. Acute contact with profibrotic macrophages mechanically activates fibroblasts via αvβ3 integrin-mediated engagement of Piezo1. SCIENCE ADVANCES 2024; 10:eadp4726. [PMID: 39441936 PMCID: PMC11498225 DOI: 10.1126/sciadv.adp4726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 09/18/2024] [Indexed: 10/25/2024]
Abstract
Fibrosis-excessive scarring after injury-causes >40% of disease-related deaths worldwide. In this misguided repair process, activated fibroblasts drive the destruction of organ architecture by accumulating and contracting extracellular matrix. The resulting stiff scar tissue, in turn, enhances fibroblast contraction-bearing the question of how this positive feedback loop begins. We show that direct contact with profibrotic but not proinflammatory macrophages triggers acute fibroblast contractions. The contractile response depends on αvβ3 integrin expression on macrophages and Piezo1 expression on fibroblasts. The touch of macrophages elevates fibroblast cytosolic calcium within seconds, followed by translocation of the transcription cofactors nuclear factor of activated T cells 1 and Yes-associated protein, which drive fibroblast activation within hours. Intriguingly, macrophages induce mechanical stress in fibroblasts on soft matrix that alone suppresses their spontaneous activation. We propose that acute contact with suitable macrophages mechanically kick-starts fibroblast activation in an otherwise nonpermissive soft environment. The molecular components mediating macrophage-fibroblast mechanotransduction are potential targets for antifibrosis strategies.
Collapse
Affiliation(s)
- Maya Ezzo
- Laboratory of Tissue Repair and Regeneration, Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
- Keenan Research Institute for Biomedical Science of the St. Michael’s Hospital, Toronto, Ontario, Canada
| | - Katrin Spindler
- Keenan Research Institute for Biomedical Science of the St. Michael’s Hospital, Toronto, Ontario, Canada
- School of Life Sciences, Reutlingen University, 72762 Reutlingen, Germany
| | - Jun Bo Wang
- Laboratory of Tissue Repair and Regeneration, Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | - Dahea Lee
- Keenan Research Institute for Biomedical Science of the St. Michael’s Hospital, Toronto, Ontario, Canada
| | - Gilbert Pecoraro
- Laboratory of Tissue Repair and Regeneration, Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
- School of Life Sciences, Reutlingen University, 72762 Reutlingen, Germany
| | - Justin Cowen
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Pardis Pakshir
- Laboratory of Tissue Repair and Regeneration, Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | - Boris Hinz
- Laboratory of Tissue Repair and Regeneration, Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
- Keenan Research Institute for Biomedical Science of the St. Michael’s Hospital, Toronto, Ontario, Canada
| |
Collapse
|
7
|
Papavassiliou KA, Sofianidi AA, Spiliopoulos FG, Gogou VA, Gargalionis AN, Papavassiliou AG. YAP/TAZ Signaling in the Pathobiology of Pulmonary Fibrosis. Cells 2024; 13:1519. [PMID: 39329703 PMCID: PMC11430237 DOI: 10.3390/cells13181519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 09/08/2024] [Accepted: 09/10/2024] [Indexed: 09/28/2024] Open
Abstract
Pulmonary fibrosis (PF) is a severe, irreversible lung disease characterized by progressive scarring, with idiopathic pulmonary fibrosis (IPF) being the most prevalent form. IPF's pathogenesis involves repetitive lung epithelial injury leading to fibroblast activation and excessive extracellular matrix (ECM) deposition. The prognosis for IPF is poor, with limited therapeutic options like nintedanib and pirfenidone offering only modest benefits. Emerging research highlights the dysregulation of the yes-associated protein (YAP)/transcriptional coactivator with PDZ-binding motif (TAZ) signaling pathway as a critical factor in PF. YAP and TAZ, components of the Hippo pathway, play significant roles in cell proliferation, differentiation, and fibrosis by modulating gene expression through interactions with TEA domain (TEAD) transcription factors. The aberrant activation of YAP/TAZ in lung tissue promotes fibroblast activation and ECM accumulation. Targeting the YAP/TAZ pathway offers a promising therapeutic avenue. Preclinical studies have identified potential treatments, such as trigonelline, dopamine receptor D1 (DRD1) agonists, and statins, which inhibit YAP/TAZ activity and demonstrate antifibrotic effects. These findings underscore the importance of YAP/TAZ in PF pathogenesis and the potential of novel therapies aimed at this pathway, suggesting a new direction for improving IPF treatment outcomes. Further research is needed to validate these approaches and translate them into clinical practice.
Collapse
Affiliation(s)
- Kostas A. Papavassiliou
- First University Department of Respiratory Medicine, Medical School, ‘Sotiria’ Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece; (K.A.P.); (V.A.G.)
| | - Amalia A. Sofianidi
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (A.A.S.); (F.G.S.)
| | - Fotios G. Spiliopoulos
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (A.A.S.); (F.G.S.)
| | - Vassiliki A. Gogou
- First University Department of Respiratory Medicine, Medical School, ‘Sotiria’ Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece; (K.A.P.); (V.A.G.)
| | - Antonios N. Gargalionis
- Laboratory of Clinical Biochemistry, Medical School, ‘Attikon’ University General Hospital, National and Kapodistrian University of Athens, 12462 Athens, Greece;
| | - Athanasios G. Papavassiliou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (A.A.S.); (F.G.S.)
| |
Collapse
|
8
|
Mohamed RH, Abdelrahim DS, Hay NHA, Fawzy NM, M DKM, Yehia DAY, AbdelMaksoud OM, Tamim YM. The role of protein prenylation inhibition through targeting FPPS by zoledronic acid in the prevention of renal fibrosis in rats. Sci Rep 2024; 14:18283. [PMID: 39112499 PMCID: PMC11306734 DOI: 10.1038/s41598-024-68303-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 07/22/2024] [Indexed: 08/10/2024] Open
Abstract
Renal fibrosis (RF) represents the most widespread pathological condition in chronic kidney disease (CKD). Recently, protein prenylation has been implicated in the fibrosis's progression. The research examined the renoprotective effect of zoledronic acid (ZA) (50 µg/kg/week) in a rat model of carbon tetrachloride (CCl4)-induced RF through targeting protein prenylation. Forty Wistar male rats were split up into the control group, vehicle-treated group, model-RF group, and RF-ZA group. Mean arterial blood pressure (MBP), BUN, serum creatinine, and urine albumin-creatinine ratio (uACR), protein levels of farnesyl pyrophosphate (FPP), tumour necrosis factor-alpha (TNF-α), transforming growth factor-β (TGF-β), and malondialdehyde (MDA), and catalase and gene expression of farnesyl pyrophosphate synthase (FPPS) and nuclear factor-kB (NF-κB) were measured. Immunohistochemical staining for renal interleukin-6 (IL-6), α-smooth muscle actin (α-SMA), and caspase-3, as well as histopathological alterations, were assessed. ZA considerably ceased the reduction in MBP, markedly reduced uACR, serum creatinine, BUN, and expression of FPPS, FPP, NF-κB, TGF-β, TNF-α, and MDA, and significantly increased catalase levels compared to the model-RF rats. ZA ameliorated the CCl4-induced histopathological alterations and suppressed the expression of caspase-3, α-SMA, and IL-6. In conclusion, ZA preserved renal function and prevented renal fibrosis in a rat model. These were achieved through targeting protein prenylation mainly by inhibiting FPPS.
Collapse
Affiliation(s)
- Reham Hussein Mohamed
- Department of Clinical Pharmacology, Faculty of Medicine, Ain Shams University, Abbasia, Cairo, Egypt.
| | - Dina S Abdelrahim
- Department of Clinical Pharmacology, Faculty of Medicine, Ain Shams University, Abbasia, Cairo, Egypt
- Department of Pharmacology, Faculty of Medicine, Modern Technology & Information University, Cairo, Egypt
| | - Nesma Hussein Abdel Hay
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Nesma Mohamed Fawzy
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Doaa Karem M M
- Department of Histology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | | | - Omnia M AbdelMaksoud
- Department of Medical Physiology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Yomna M Tamim
- Department of Clinical Pharmacology, Faculty of Medicine, Ain Shams University, Abbasia, Cairo, Egypt
| |
Collapse
|
9
|
Myasoedova VA, Rega S, Valerio V, Moschetta D, Massaiu I, Bonalumi G, Esposito G, Rusconi V, Bertolini F, Perrucci GL, Poggio P. Exploiting the anti-fibrotic effects of statins on thoracic aortic aneurysm progression: results from a meta-analysis and experimental data. Front Pharmacol 2024; 15:1426982. [PMID: 39148550 PMCID: PMC11324425 DOI: 10.3389/fphar.2024.1426982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 07/23/2024] [Indexed: 08/17/2024] Open
Abstract
Aims Thoracic aortic aneurysm (TAA) that progress to acute aortic dissection is often fatal and there is no pharmacological treatment that can reduce TAA progression. We aim to evaluate statins' effects on TAA growth rate and outcomes using a meta-analysis approach. Methods and results A detailed search related to the effects of statins on TAA was conducted according to PRISMA guidelines. The analyses of statins' effects on TAA growth rate were performed on 4 studies (n = 1850), while the impact on outcomes was evaluated on 3 studies (n = 2,867). Patients under statin treatment showed a reduced TAA growth rate (difference in means = -0.36 cm/year; 95%CI: -0.64, -0.08; p = 0.013) when compared to controls, patients not taking statins. Regarding the outcomes (death, dissection, or rupture of the aorta, and the need for operative repair), statins exhibited a protective effect reducing the number of events (log odds ratio = -0.56; 95%CI: -1.06, -0.05; p = 0.030). In vitro, the anti-fibrotic effect of atorvastatin was tested on vascular smooth muscle cells (VMSC) isolated from patients with TAA. Our results highlighted that, in transforming growth factor beta 1 (TGF-β1) pro-fibrotic condition, VSMC expressed a significant lower amount of collagen type I alpha 1 chain (COL1A1) when treated with atorvastatin (untreated = +2.66 ± 0.23 fold-change vs. treated = +1.63 ± 0.09 fold-change; p = 0.014). Conclusion Statins show a protective effect on TAA growth rate and adverse outcomes in patients with TAA, possibly via their anti-fibrotic properties on VSMC. Given the current lack of effective drug treatments for TAA, we believe our findings highlight the need for more in-depth research to explore the potential benefits of statins in this context.
Collapse
Affiliation(s)
- Veronika A Myasoedova
- Centro Cardiologico Monzino Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Milan, Italy
| | - Sara Rega
- Centro Cardiologico Monzino Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Milan, Italy
| | - Vincenza Valerio
- Centro Cardiologico Monzino Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Milan, Italy
| | - Donato Moschetta
- Centro Cardiologico Monzino Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Milan, Italy
| | - Ilaria Massaiu
- Centro Cardiologico Monzino Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Milan, Italy
| | - Giorgia Bonalumi
- Centro Cardiologico Monzino Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Milan, Italy
| | - Giampiero Esposito
- Centro Cardiologico Monzino Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Milan, Italy
| | - Valentina Rusconi
- Centro Cardiologico Monzino Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Milan, Italy
| | - Francesca Bertolini
- Centro Cardiologico Monzino Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Milan, Italy
| | - Gianluca Lorenzo Perrucci
- Centro Cardiologico Monzino Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Milan, Italy
| | - Paolo Poggio
- Centro Cardiologico Monzino Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Milan, Italy
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
| |
Collapse
|
10
|
Wang Y, Geng X, Sun X, Cui H, Guo Z, Chu D, Li J, Li Z. Celastrol alleviates subconjunctival fibrosis induced by silicone implants mimicking glaucoma surgery. Eur J Pharm Biopharm 2024; 201:114352. [PMID: 38851459 DOI: 10.1016/j.ejpb.2024.114352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/29/2024] [Accepted: 06/06/2024] [Indexed: 06/10/2024]
Abstract
Subconjunctival fibrosis is critical to the outcomes of several ophthalmic conditions or procedures, such as glaucoma filtering surgery. This study aimed to investigate the anti-fibrotic effect of celastrol on subconjunctival fibrosis and to further reveal the underlying mechanisms. We used celastrol-loaded nanomicelles hydrogel hybrid as a sustained-release drug. A rabbit model of subconjunctival fibrosis following silicone implantation was used for in vivo study, and TGF-β1-induced human pterygium fibroblast (HPF) activation as an in vitro model. The effects of celastrol on inhibiting TGF-β1-induced migration and proliferation of HPFs were evaluated by scratch wound assay and CCK-8, respectively. Immunofluorescence and western blotting were used to examine the effect of celastrol on the expression of α-SMA, collagen I, fibronectin, and the targets of the Hippo signaling pathway. We found that in vivo celastrol treatment reduced the expression of YAP and TAZ in subconjunctival tissue. Moreover, celastrol alleviated collagen deposition and subconjunctival fibrosis at 8 weeks. No obvious tissue toxicity was observed in the rabbit models. Mechanistically, celastrol significantly inhibited TGF-β1-induced proliferation and migration of HPFs. Pretreatment of HPFs with celastrol also suppressed the TGF-β1-induced protein expression of α-SMA, collagen I, fibronectin, TGF-βRII, phosphorylated Smad2/3, YAP, TAZ, and TEAD1. In conclusion, celastrol effectively prevented subconjunctival fibrosis through inhibiting TGF-β1/Smad2/3-YAP/TAZ pathway. Celastrol could serve as a promising therapy for subconjunctival fibrosis.
Collapse
Affiliation(s)
- Yiwei Wang
- Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, China
| | - Xingchen Geng
- Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, China
| | - Xue Sun
- Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, China
| | - Haohao Cui
- Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, China
| | - Zhihua Guo
- Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, China
| | - Dandan Chu
- Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, China
| | - Jingguo Li
- Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, China.
| | - Zhanrong Li
- Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, China.
| |
Collapse
|
11
|
Bo C, Liu F, Zhang Z, Du Z, Xiu H, Zhang Z, Li M, Zhang C, Jia Q. Simvastatin attenuates silica-induced pulmonary inflammation and fibrosis in rats via the AMPK-NOX pathway. BMC Pulm Med 2024; 24:224. [PMID: 38720270 PMCID: PMC11080310 DOI: 10.1186/s12890-024-03014-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 04/15/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND Simvastatin (Sim), a hydroxy-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitor, has been widely used in prevention and treatment of cardiovascular diseases. Studies have suggested that Sim exerts anti-fibrotic effects by interfering fibroblast proliferation and collagen synthesis. This study was to determine whether Sim could alleviate silica-induced pulmonary fibrosis and explore the underlying mechanisms. METHODS The rat model of silicosis was established by the tracheal perfusion method and treated with Sim (5 or 10 mg/kg), AICAR (an AMPK agonist), and apocynin (a NOX inhibitor) for 28 days. Lung tissues were collected for further analyses including pathological histology, inflammatory response, oxidative stress, epithelial mesenchymal transformation (EMT), and the AMPK-NOX pathway. RESULTS Sim significantly reduced silica-induced pulmonary inflammation and fibrosis at 28 days after administration. Sim could reduce the levels of interleukin (IL)-1β, IL-6, tumor necrosis factor-α and transforming growth factor-β1 in lung tissues. The expressions of hydroxyproline, α-SMA and vimentin were down-regulated, while E-cad was increased in Sim-treated rats. In addition, NOX4, p22pox, p40phox, p-p47phox/p47phox expressions and ROS levels were all increased, whereas p-AMPK/AMPK was decreased in silica-induced rats. Sim or AICAR treatment could notably reverse the decrease of AMPK activity and increase of NOX activity induced by silica. Apocynin treatment exhibited similar protective effects to Sim, including down-regulating of oxidative stress and inhibition of the EMT process and inflammatory reactions. CONCLUSIONS Sim attenuates silica-induced pulmonary inflammation and fibrosis by downregulating EMT and oxidative stress through the AMPK-NOX pathway.
Collapse
Affiliation(s)
- Cunxiang Bo
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Fang Liu
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Guangzhou Huaxia Vocational College, Guangzhou, China
| | - Zewen Zhang
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Zhongjun Du
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Haidi Xiu
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Zhenling Zhang
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Ming Li
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Caiqing Zhang
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China.
- Pulmonary and Critical Care Medicine, Shandong Province's Second General Hospital (Shandong Province ENT Hospital), Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, Shandong, China.
| | - Qiang Jia
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China.
| |
Collapse
|
12
|
Noom A, Sawitzki B, Knaus P, Duda GN. A two-way street - cellular metabolism and myofibroblast contraction. NPJ Regen Med 2024; 9:15. [PMID: 38570493 PMCID: PMC10991391 DOI: 10.1038/s41536-024-00359-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 03/20/2024] [Indexed: 04/05/2024] Open
Abstract
Tissue fibrosis is characterised by the high-energy consumption associated with myofibroblast contraction. Although myofibroblast contraction relies on ATP production, the role of cellular metabolism in myofibroblast contraction has not yet been elucidated. Studies have so far only focused on myofibroblast contraction regulators, such as integrin receptors, TGF-β and their shared transcription factor YAP/TAZ, in a fibroblast-myofibroblast transition setting. Additionally, the influence of the regulators on metabolism and vice versa have been described in this context. However, this has so far not yet been connected to myofibroblast contraction. This review focuses on the known and unknown of how cellular metabolism influences the processes leading to myofibroblast contraction and vice versa. We elucidate the signalling cascades responsible for myofibroblast contraction by looking at FMT regulators, mechanical cues, biochemical signalling, ECM properties and how they can influence and be influenced by cellular metabolism. By reviewing the existing knowledge on the link between cellular metabolism and the regulation of myofibroblast contraction, we aim to pinpoint gaps of knowledge and eventually help identify potential research targets to identify strategies that would allow switching tissue fibrosis towards tissue regeneration.
Collapse
Affiliation(s)
- Anne Noom
- Julius Wolff Institute (JWI), Berlin Institute of Health and Center for Musculoskeletal Surgery at Charité - Universitätsmedizin Berlin, 13353, Berlin, Germany
- BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité - Universitätsmedizin Berlin, 13353, Berlin, Germany
| | - Birgit Sawitzki
- Department of Infectious Diseases and Respiratory Medicine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt University of Berlin, 13353, Berlin, Germany
- Center of Immunomics, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, 13353, Berlin, Germany
| | - Petra Knaus
- Institute of Chemistry and Biochemistry - Biochemistry, Freie Universität Berlin, 14195, Berlin, Germany
| | - Georg N Duda
- Julius Wolff Institute (JWI), Berlin Institute of Health and Center for Musculoskeletal Surgery at Charité - Universitätsmedizin Berlin, 13353, Berlin, Germany.
- BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité - Universitätsmedizin Berlin, 13353, Berlin, Germany.
| |
Collapse
|
13
|
Park J, Lee CH, Han K, Choi SM. Association between statin use and the risk for idiopathic pulmonary fibrosis and its prognosis: a nationwide, population-based study. Sci Rep 2024; 14:7805. [PMID: 38565856 PMCID: PMC10987568 DOI: 10.1038/s41598-024-58417-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 03/28/2024] [Indexed: 04/04/2024] Open
Abstract
Given the pleiotropic effects of statins beyond their lipid-lowering effects, there have been attempts to evaluate the role of statin therapy in IPF, but they have shown inconclusive results. Data from the National Health Insurance Service (NHIS) database of South Korea were used to investigate the effects of statin therapy on IPF. The IPF cohort consisted of a total of 10,568 patients who were newly diagnosed with IPF between 2010 and 2017. These patients were then matched in a 1:3 ratio to 31,704 subjects from a control cohort without IPF, with matching based on age and sex. A case-control study was performed to evaluate the association between statin use and the risk for IPF, and the multivariable analysis revealed that statin use was associated with a lower risk for IPF (adjusted OR 0.847, 95% CI 0.800-0.898). Using the IPF cohort, we also evaluated whether statin use at the time of diagnosis was associated with future clinical outcomes. The statin use at the time of IPF diagnosis was associated with improved overall survival (adjusted HR 0.779, 95% CI 0.709-0.856). Further prospective studies are needed to clarify the role of statin therapy in IPF.
Collapse
Affiliation(s)
- Jimyung Park
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul National University Hospital, Seoul National University College of Medicine, 101, Daehak-ro, Jongno-gu, Seoul, 03080, South Korea
| | - Chang-Hoon Lee
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul National University Hospital, Seoul National University College of Medicine, 101, Daehak-ro, Jongno-gu, Seoul, 03080, South Korea
| | - Kyungdo Han
- Department of Statistics and Actuarial Science, Soongsil University, Seoul, South Korea
| | - Sun Mi Choi
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul National University Hospital, Seoul National University College of Medicine, 101, Daehak-ro, Jongno-gu, Seoul, 03080, South Korea.
| |
Collapse
|
14
|
Leng J, Wang C, Liang Z, Qiu F, Zhang S, Yang Y. An updated review of YAP: A promising therapeutic target against cardiac aging? Int J Biol Macromol 2024; 254:127670. [PMID: 37913886 DOI: 10.1016/j.ijbiomac.2023.127670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/05/2023] [Accepted: 10/23/2023] [Indexed: 11/03/2023]
Abstract
The transcriptional co-activator Yes-associated protein (YAP) functions as a downstream effector of the Hippo signaling pathway and plays a crucial role in cardiomyocyte survival. In its non-phosphorylated activated state, YAP binds to transcription factors, activating the transcription of downstream target genes. It also regulates cell proliferation and survival by selectively binding to enhancers and activating target genes. However, the upregulation of the Hippo pathway in human heart failure inhibits cardiac regeneration and disrupts astrogenesis, thus preventing the nuclear translocation of YAP. Existing literature indicates that the Hippo/YAP axis contributes to inflammation and fibrosis, potentially playing a role in the development of cardiac, vascular and renal injuries. Moreover, it is a key mediator of myofibroblast differentiation and fibrosis in the infarcted heart. Given these insights, can we harness YAP's regenerative potential in a targeted manner? In this review, we provide a detailed discussion of the Hippo signaling pathway and consolidate concepts for the development and intervention of cardiac anti-aging drugs to leverage YAP signaling as a pivotal target.
Collapse
Affiliation(s)
- Jingzhi Leng
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao, China; School of Physical Education, Qingdao University, China
| | - Chuanzhi Wang
- College of Sports Science, South China Normal University, Guangzhou, China
| | - Zhide Liang
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao, China; Qingdao Cancer Institute, Qingdao University, Qingdao, China
| | - Fanghui Qiu
- School of Physical Education, Qingdao University, China
| | - Shuangshuang Zhang
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao, China; Qingdao Cancer Institute, Qingdao University, Qingdao, China; School of Physical Education, Qingdao University, China.
| | - Yuan Yang
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao, China; Qingdao Cancer Institute, Qingdao University, Qingdao, China; School of Physical Education, Qingdao University, China.
| |
Collapse
|
15
|
Melchionna R, Trono P, Di Carlo A, Di Modugno F, Nisticò P. Transcription factors in fibroblast plasticity and CAF heterogeneity. J Exp Clin Cancer Res 2023; 42:347. [PMID: 38124183 PMCID: PMC10731891 DOI: 10.1186/s13046-023-02934-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 12/13/2023] [Indexed: 12/23/2023] Open
Abstract
In recent years, research focused on the multifaceted landscape and functions of cancer-associated fibroblasts (CAFs) aimed to reveal their heterogeneity and identify commonalities across diverse tumors for more effective therapeutic targeting of pro-tumoral stromal microenvironment. However, a unified functional categorization of CAF subsets remains elusive, posing challenges for the development of targeted CAF therapies in clinical settings.The CAF phenotype arises from a complex interplay of signals within the tumor microenvironment, where transcription factors serve as central mediators of various cellular pathways. Recent advances in single-cell RNA sequencing technology have emphasized the role of transcription factors in the conversion of normal fibroblasts to distinct CAF subtypes across various cancer types.This review provides a comprehensive overview of the specific roles of transcription factor networks in shaping CAF heterogeneity, plasticity, and functionality. Beginning with their influence on fibroblast homeostasis and reprogramming during wound healing and fibrosis, it delves into the emerging insights into transcription factor regulatory networks. Understanding these mechanisms not only enables a more precise characterization of CAF subsets but also sheds light on the early regulatory processes governing CAF heterogeneity and functionality. Ultimately, this knowledge may unveil novel therapeutic targets for cancer treatment, addressing the existing challenges of stromal-targeted therapies.
Collapse
Affiliation(s)
- Roberta Melchionna
- Tumor Immunology and Immunotherapy Unit, IRCCS-Regina Elena National Cancer Institute, Rome, Italy.
| | - Paola Trono
- Tumor Immunology and Immunotherapy Unit, IRCCS-Regina Elena National Cancer Institute, Rome, Italy
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council (CNR), Rome, Italy
| | - Anna Di Carlo
- Tumor Immunology and Immunotherapy Unit, IRCCS-Regina Elena National Cancer Institute, Rome, Italy
| | - Francesca Di Modugno
- Tumor Immunology and Immunotherapy Unit, IRCCS-Regina Elena National Cancer Institute, Rome, Italy
| | - Paola Nisticò
- Tumor Immunology and Immunotherapy Unit, IRCCS-Regina Elena National Cancer Institute, Rome, Italy
| |
Collapse
|
16
|
Lin Q, Cao J, Yu J, Zhu Y, Shen Y, Wang S, Wang Y, Liu Z, Chang Y. YAP-mediated trophoblast dysfunction: the common pathway underlying pregnancy complications. Cell Commun Signal 2023; 21:353. [PMID: 38098027 PMCID: PMC10722737 DOI: 10.1186/s12964-023-01371-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 10/29/2023] [Indexed: 12/17/2023] Open
Abstract
Yes-associated protein (YAP) is a pivotal regulator in cellular proliferation, survival, differentiation, and migration, with significant roles in embryonic development, tissue repair, and tumorigenesis. At the maternal-fetal interface, emerging evidence underscores the importance of precisely regulated YAP activity in ensuring successful pregnancy initiation and progression. However, despite the established association between YAP dysregulation and adverse pregnancy outcomes, insights into the impact of aberrant YAP levels in fetal-derived, particularly trophoblast cells, and the ensuing dysfunction at the maternal-fetal interface remain limited. This review comprehensively examines YAP expression and its regulatory mechanisms in trophoblast cells throughout pregnancy. We emphasize its integral role in placental development and maternal-fetal interactions and delve into the correlations between YAP dysregulation and pregnancy complications. A nuanced understanding of YAP's functions during pregnancy could illuminate intricate molecular mechanisms and pave the way for innovative prevention and treatment strategies for pregnancy complications. Video Abstract.
Collapse
Affiliation(s)
- Qimei Lin
- Tianjin Key Laboratory of Human Development and Reproductive Regulation, Nankai University Affiliated Maternity Hospital, Tianjin Central Hospital of Obstetrics and Gynecology, Tianjin, 300100, China
| | - Jiasong Cao
- Tianjin Key Laboratory of Human Development and Reproductive Regulation, Nankai University Affiliated Maternity Hospital, Tianjin Central Hospital of Obstetrics and Gynecology, Tianjin, 300100, China
| | - Jing Yu
- School of Clinical Medicine, Tianjin Medical University, Tianjin, 300070, China
| | - Yu Zhu
- School of Clinical Medicine, Tianjin Medical University, Tianjin, 300070, China
| | - Yongmei Shen
- Tianjin Key Laboratory of Human Development and Reproductive Regulation, Nankai University Affiliated Maternity Hospital, Tianjin Central Hospital of Obstetrics and Gynecology, Tianjin, 300100, China
| | - Shuqi Wang
- Tianjin Key Laboratory of Human Development and Reproductive Regulation, Nankai University Affiliated Maternity Hospital, Tianjin Central Hospital of Obstetrics and Gynecology, Tianjin, 300100, China
| | - Yixin Wang
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Zhen Liu
- Academy of Clinical Medicine, Medical College, Tianjin University, Tianjin, 300072, China
| | - Ying Chang
- Tianjin Key Laboratory of Human Development and Reproductive Regulation, Nankai University Affiliated Maternity Hospital, Tianjin Central Hospital of Obstetrics and Gynecology, Tianjin, 300100, China.
- Academy of Clinical Medicine, Medical College, Tianjin University, Tianjin, 300072, China.
| |
Collapse
|
17
|
Ezzo M, Hinz B. Novel approaches to target fibroblast mechanotransduction in fibroproliferative diseases. Pharmacol Ther 2023; 250:108528. [PMID: 37708995 DOI: 10.1016/j.pharmthera.2023.108528] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/09/2023] [Accepted: 09/07/2023] [Indexed: 09/16/2023]
Abstract
The ability of cells to sense and respond to changes in mechanical environment is vital in conditions of organ injury when the architecture of normal tissues is disturbed or lost. Among the various cellular players that respond to injury, fibroblasts take center stage in re-establishing tissue integrity by secreting and organizing extracellular matrix into stabilizing scar tissue. Activation, activity, survival, and death of scar-forming fibroblasts are tightly controlled by mechanical environment and proper mechanotransduction ensures that fibroblast activities cease after completion of the tissue repair process. Conversely, dysregulated mechanotransduction often results in fibroblast over-activation or persistence beyond the state of normal repair. The resulting pathological accumulation of extracellular matrix is called fibrosis, a condition that has been associated with over 40% of all deaths in the industrialized countries. Consequently, elements in fibroblast mechanotransduction are scrutinized for their suitability as anti-fibrotic therapeutic targets. We review the current knowledge on mechanically relevant factors in the fibroblast extracellular environment, cell-matrix and cell-cell adhesion structures, stretch-activated membrane channels, stress-regulated cytoskeletal structures, and co-transcription factors. We critically discuss the targetability of these elements in therapeutic approaches and their progress in pre-clinical and/or clinical trials to treat organ fibrosis.
Collapse
Affiliation(s)
- Maya Ezzo
- Keenan Research Institute for Biomedical Science of the St. Michael's Hospital, and Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | - Boris Hinz
- Keenan Research Institute for Biomedical Science of the St. Michael's Hospital, and Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
18
|
Kizawa R, Araya J, Fujita Y. Divergent roles of the Hippo pathway in the pathogenesis of idiopathic pulmonary fibrosis: tissue homeostasis and fibrosis. Inflamm Regen 2023; 43:45. [PMID: 37735707 PMCID: PMC10512581 DOI: 10.1186/s41232-023-00295-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 09/10/2023] [Indexed: 09/23/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive aging-related lung disease with a poor prognosis. Despite extensive research, the cause of IPF remains largely unknown and treatment strategies are limited. Proposed mechanisms of the pathogenesis of IPF are a combination of excessive accumulation of the extracellular matrix and dysfunctional lung tissue regeneration. Epithelial cell dysfunction, in addition to fibroblast activation, is considered a key process in the progression of IPF. Epithelial cells normally maintain homeostasis of the lung tissue through regulated proliferation, differentiation, cell death, and cellular senescence. However, various stresses can cause repetitive damage to lung epithelial cells, leading to dysfunctional regeneration and acquisition of profibrotic functions. The Hippo pathway is a central signaling pathway that maintains tissue homeostasis and plays an essential role in fundamental biological processes. Dysregulation of the Hippo pathway has been implicated in various diseases, including IPF. However, the role of the Hippo pathway in the pathogenesis of IPF remains unclear, particularly given the pathway's opposing effects on the 2 key pathogenic mechanisms of IPF: epithelial cell dysfunction and fibroblast activation. A deeper understanding of the relationship between the Hippo pathway and the pathogenesis of IPF will pave the way for novel Hippo-targeted therapies.
Collapse
Affiliation(s)
- Ryusuke Kizawa
- Division of Respiratory Diseases, Department of Internal Medicine, The Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-Ku, Tokyo, 105-8461, Japan
- Division of Next-Generation Drug Development, Research Center for Medical Sciences, The Jikei University School of Medicine, Tokyo, Japan
| | - Jun Araya
- Division of Respiratory Diseases, Department of Internal Medicine, The Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-Ku, Tokyo, 105-8461, Japan
| | - Yu Fujita
- Division of Respiratory Diseases, Department of Internal Medicine, The Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-Ku, Tokyo, 105-8461, Japan.
- Division of Next-Generation Drug Development, Research Center for Medical Sciences, The Jikei University School of Medicine, Tokyo, Japan.
| |
Collapse
|
19
|
Yoo H, Singh A, Li H, Strat AN, Bagué T, Ganapathy PS, Herberg S. Simvastatin Attenuates Glucocorticoid-Induced Human Trabecular Meshwork Cell Dysfunction via YAP/TAZ Inactivation. Curr Eye Res 2023; 48:736-749. [PMID: 37083467 PMCID: PMC10524554 DOI: 10.1080/02713683.2023.2206067] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 03/22/2023] [Accepted: 04/18/2023] [Indexed: 04/22/2023]
Abstract
PURPOSE Impairment of the trabecular meshwork (TM) is the principal cause of increased outflow resistance in the glaucomatous eye. Yes-associated protein (YAP) and transcriptional coactivator with PDZ binding motif (TAZ) are emerging as potential mediators of TM cell/tissue dysfunction. Furthermore, YAP/TAZ activity was recently found to be controlled by the mevalonate pathway in non-ocular cells. Clinically used statins block the mevalonate cascade and were shown to improve TM cell pathobiology; yet, the link to YAP/TAZ signaling was not investigated. In this study, we hypothesized that simvastatin attenuates glucocorticoid-induced human TM (HTM) cell dysfunction via YAP/TAZ inactivation. METHODS Primary HTM cells were seeded atop or encapsulated within bioengineered extracellular matrix (ECM) hydrogels. Dexamethasone was used to induce a pathologic phenotype in HTM cells in the absence or presence of simvastatin. Changes in YAP/TAZ activity, actin cytoskeletal organization, phospho-myosin light chain levels, hydrogel contraction/stiffness, and fibronectin deposition were assessed. RESULTS Simvastatin potently blocked pathologic YAP/TAZ nuclear localization/activity, actin stress fiber formation, and myosin light chain phosphorylation in HTM cells. Importantly, simvastatin co-treatment significantly attenuated dexamethasone-induced ECM contraction/stiffening and fibronectin mRNA and protein levels. Sequential treatment was similarly effective but did not match clinically-used Rho kinase inhibition. CONCLUSIONS YAP/TAZ inactivation with simvastatin attenuates HTM cell pathobiology in a tissue-mimetic ECM microenvironment. Our data may help explain the association of statin use with a reduced risk of developing glaucoma via indirect YAP/TAZ inhibition as a proposed regulatory mechanism.
Collapse
Affiliation(s)
- Hannah Yoo
- Department of Ophthalmology and Visual Sciences, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Ayushi Singh
- Department of Ophthalmology and Visual Sciences, SUNY Upstate Medical University, Syracuse, NY 13210, USA
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
- BioInspired Institute, Syracuse University, Syracuse, NY 13244, USA
| | - Haiyan Li
- Department of Ophthalmology and Visual Sciences, SUNY Upstate Medical University, Syracuse, NY 13210, USA
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
- BioInspired Institute, Syracuse University, Syracuse, NY 13244, USA
| | - Ana N. Strat
- Department of Ophthalmology and Visual Sciences, SUNY Upstate Medical University, Syracuse, NY 13210, USA
- BioInspired Institute, Syracuse University, Syracuse, NY 13244, USA
- Department of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Tyler Bagué
- Department of Ophthalmology and Visual Sciences, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Preethi S. Ganapathy
- Department of Ophthalmology and Visual Sciences, SUNY Upstate Medical University, Syracuse, NY 13210, USA
- BioInspired Institute, Syracuse University, Syracuse, NY 13244, USA
- Department of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Samuel Herberg
- Department of Ophthalmology and Visual Sciences, SUNY Upstate Medical University, Syracuse, NY 13210, USA
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
- BioInspired Institute, Syracuse University, Syracuse, NY 13244, USA
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, NY 13244, USA
| |
Collapse
|
20
|
Chen R, Dai J. Lipid metabolism in idiopathic pulmonary fibrosis: From pathogenesis to therapy. J Mol Med (Berl) 2023; 101:905-915. [PMID: 37289208 DOI: 10.1007/s00109-023-02336-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/26/2023] [Accepted: 05/29/2023] [Indexed: 06/09/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic irreversible interstitial lung disease characterized by a progressive decline in lung function. The etiology of IPF is unknown, which poses a significant challenge to the treatment of IPF. Recent studies have identified a strong association between lipid metabolism and the development of IPF. Qualitative and quantitative analysis of small molecule metabolites using lipidomics reveals that lipid metabolic reprogramming plays a role in the pathogenesis of IPF. Lipids such as fatty acids, cholesterol, arachidonic acid metabolites, and phospholipids are involved in the onset and progression of IPF by inducing endoplasmic reticulum stress, promoting cell apoptosis, and enhancing the expression of pro-fibrotic biomarkers. Therefore, targeting lipid metabolism can provide a promising therapeutic strategy for pulmonary fibrosis. This review focuses on lipid metabolism in the pathogenesis of pulmonary fibrosis.
Collapse
Affiliation(s)
- Ranxun Chen
- Department of Pulmonary and Critical Care Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, Jiangsu, China
| | - Jinghong Dai
- Department of Pulmonary and Critical Care Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, Jiangsu, China.
| |
Collapse
|
21
|
Wei Y, Hui VLZ, Chen Y, Han R, Han X, Guo Y. YAP/TAZ: Molecular pathway and disease therapy. MedComm (Beijing) 2023; 4:e340. [PMID: 37576865 PMCID: PMC10412783 DOI: 10.1002/mco2.340] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 06/27/2023] [Accepted: 07/04/2023] [Indexed: 08/15/2023] Open
Abstract
The Yes-associated protein and its transcriptional coactivator with PDZ-binding motif (YAP/TAZ) are two homologous transcriptional coactivators that lie at the center of a key regulatory network of Hippo, Wnt, GPCR, estrogen, mechanical, and metabolism signaling. YAP/TAZ influences the expressions of downstream genes and proteins as well as enzyme activity in metabolic cycles, cell proliferation, inflammatory factor expression, and the transdifferentiation of fibroblasts into myofibroblasts. YAP/TAZ can also be regulated through epigenetic regulation and posttranslational modifications. Consequently, the regulatory function of these mechanisms implicates YAP/TAZ in the pathogenesis of metabolism-related diseases, atherosclerosis, fibrosis, and the delicate equilibrium between cancer progression and organ regeneration. As such, there arises a pressing need for thorough investigation of YAP/TAZ in clinical settings. In this paper, we aim to elucidate the signaling pathways that regulate YAP/TAZ and explore the mechanisms of YAP/TAZ-induce diseases and their potential therapeutic interventions. Furthermore, we summarize the current clinical studies investigating treatments targeting YAP/TAZ. We also address the limitations of existing research on YAP/TAZ and propose future directions for research. In conclusion, this review aims to provide fresh insights into the signaling mediated by YAP/TAZ and identify potential therapeutic targets to present innovative solutions to overcome the challenges associated with YAP/TAZ.
Collapse
Affiliation(s)
- Yuzi Wei
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of StomatologySichuan UniversityChengduSichuanChina
| | - Victoria Lee Zhi Hui
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of StomatologySichuan UniversityChengduSichuanChina
| | - Yilin Chen
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of StomatologySichuan UniversityChengduSichuanChina
- Department of OrthodonticsWest China Hospital of StomatologySichuan UniversityChengduSichuanChina
| | - Ruiying Han
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of StomatologySichuan UniversityChengduSichuanChina
- Department of OrthodonticsWest China Hospital of StomatologySichuan UniversityChengduSichuanChina
| | - Xianglong Han
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of StomatologySichuan UniversityChengduSichuanChina
- Department of OrthodonticsWest China Hospital of StomatologySichuan UniversityChengduSichuanChina
| | - Yongwen Guo
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of StomatologySichuan UniversityChengduSichuanChina
- Department of OrthodonticsWest China Hospital of StomatologySichuan UniversityChengduSichuanChina
- Department of OrthodonticsLanzhou Stomatological HospitalLanzhouGansuChina
| |
Collapse
|
22
|
Ishikane S, Arioka M, Takahashi-Yanaga F. Promising small molecule anti-fibrotic agents: Newly developed or repositioned drugs targeting myofibroblast transdifferentiation. Biochem Pharmacol 2023; 214:115663. [PMID: 37336252 DOI: 10.1016/j.bcp.2023.115663] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/11/2023] [Accepted: 06/13/2023] [Indexed: 06/21/2023]
Abstract
Fibrosis occurs in all organs and tissues except the brain, and its progression leads to dysfunction of affected organs. Fibrosis-induced organ dysfunction results from the loss of elasticity, strength, and functionality of tissues due to the extracellular matrix secreted by myofibroblasts that express smooth muscle-type actin as a marker. Myofibroblasts, which play a major role in fibrosis, were once thought to originate exclusively from activated fibroblasts; however, it is now clear that myofibroblasts are diverse in origin, from epithelial cells, endothelial cells, adipocytes, macrophages, and other cells. Fibrosis of vital organs, such as the heart, lungs, kidneys, and liver, is a serious chronic disease that ultimately leads to death. Currently, anti-cancer drugs have made remarkable progress, as evidenced by the development of many molecular-targeted drugs, and are making a significant contribution to improving the prognosis of cancer treatment. However, the development of anti-fibrotic agents, which also play an important role in prognosis, has lagged. In this review, the current knowledge regarding myofibroblasts is summarized, with particular attention given to their origin and transdifferentiation signaling pathways (e.g., TGF-β, Wnt/β-catenin, YAP/TAZ and AMPK signaling pathways). The development of new small molecule anti-fibrotic agents and the repositioning of existing drugs targeting myofibroblast transdifferentiation are discussed.
Collapse
Affiliation(s)
- Shin Ishikane
- Department of Pharmacology, Faculty of Medicine, University of Occupational and Environmental Health, Kitakyushu, 807-8555, Japan
| | - Masaki Arioka
- Department of Pharmacology, Faculty of Medicine, University of Occupational and Environmental Health, Kitakyushu, 807-8555, Japan
| | - Fumi Takahashi-Yanaga
- Department of Pharmacology, Faculty of Medicine, University of Occupational and Environmental Health, Kitakyushu, 807-8555, Japan.
| |
Collapse
|
23
|
Dolivo DM, Reed CR, Gargiulo KA, Rodrigues AE, Galiano RD, Mustoe TA, Hong SJ. Anti-fibrotic effects of statin drugs: a review of evidence and mechanisms. Biochem Pharmacol 2023:115644. [PMID: 37321414 DOI: 10.1016/j.bcp.2023.115644] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/05/2023] [Accepted: 06/07/2023] [Indexed: 06/17/2023]
Abstract
Fibrosis is a pathological repair process common among organs, that responds to damage by replacement of tissue with non-functional connective tissue. Despite the widespread prevalence of tissue fibrosis, manifesting in numerous disease states across myriad organs, therapeutic modalities to prevent or alleviate fibrosis are severely lacking in quantity and efficacy. Alongside development of new drugs, repurposing of existing drugs may be a complementary strategy to elect anti-fibrotic compounds for pharmacologic treatment of tissue fibrosis. Drug repurposing can provide key advantages to de novo drug discovery, harnessing the benefits of previously elucidated mechanisms of action and already existing pharmacokinetic profiles. One class of drugs a wealth of clinical data and extensively studied safety profiles is the statins, a class of antilipidemic drugs widely prescribed for hypercholesterolemia. In addition to these widely utilized lipid-lowering effects, increasing data from cellular, pre-clinical mammalian, and clinical human studies have also demonstrated that statins are able to alleviate tissue fibrosis originating from a variety of pathological insults via lesser-studied, pleiotropic effects of these drugs. Here we review literature demonstrating evidence for direct effects of statins antagonistic to fibrosis, as well as much of the available mechanistic data underlying these effects. A more complete understanding of the anti-fibrotic effects of statins may enable a clearer picture of their anti-fibrotic potential for various clinical indications. Additionally, more lucid comprehension of the mechanisms by which statins exert anti-fibrotic effects may aid in development of novel therapeutic agents that target similar pathways but with greater specificity or efficacy.
Collapse
Affiliation(s)
- David M Dolivo
- Department of Surgery-Northwestern University Feinberg School of Medicine, United States.
| | - Charlotte R Reed
- Department of Surgery-Northwestern University Feinberg School of Medicine, United States
| | - Kristine A Gargiulo
- Department of Surgery-Northwestern University Feinberg School of Medicine, United States
| | - Adrian E Rodrigues
- Department of Surgery-Northwestern University Feinberg School of Medicine, United States
| | - Robert D Galiano
- Department of Surgery-Northwestern University Feinberg School of Medicine, United States
| | - Thomas A Mustoe
- Department of Surgery-Northwestern University Feinberg School of Medicine, United States
| | - Seok Jong Hong
- Department of Surgery-Northwestern University Feinberg School of Medicine, United States.
| |
Collapse
|
24
|
Ilg MM, Ralph DJ, Cellek S. Statins synergize with phosphodiesterase type 5 inhibitors but not with selective estrogen receptor modulators to prevent myofibroblast transformation in an in vitro model of Peyronie's disease. J Sex Med 2023:7131119. [PMID: 37082866 DOI: 10.1093/jsxmed/qdad051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/22/2023] [Accepted: 03/10/2023] [Indexed: 04/22/2023]
Abstract
BACKGROUND Peyronie's disease (PD) is a fibrotic disorder characterized by plaque formation in the tunica albuginea (TA) of the penis, and we have previously shown that inhibition of transformation of TA-derived fibroblasts to myofibroblasts using a combination phosphodiesterase type 5 (PDE5) inhibitors and selective estrogen receptor modulators (SERMs) is effective in slowing the progression of early PD. AIM The study sought to investigate whether combinations of statins with PDE5 inhibitors or SERMs would affect myofibroblast transformation in vitro. METHODS Primary fibroblasts were isolated from TA of patients with PD and stimulated with transforming growth factor β1 in the absence and presence of a range of concentrations of statins, PDE5 inhibitors, SERMs, and their combinations for 72 hours before quantifying α-smooth muscle actin using in-cell enzyme-linked immunosorbent assay. OUTCOMES The prevention of transforming growth factor β1-induced transformation of TA-derived fibroblasts to myofibroblasts was measured in vitro. RESULTS Statins (simvastatin, lovastatin) inhibited myofibroblast transformation in a concentration-dependent manner with half maximal inhibitory concentration values of 0.77 ± 0.07 μM and 0.8 ± 0.13 μM, respectively. Simvastatin inhibited myofibroblast transformation in a synergistic fashion when combined with vardenafil (a PDE5 inhibitor; log alpha >0). Combination of tamoxifen (a SERM) and simvastatin did not show synergy (log alpha <0). When 3 drugs (simvastatin, vardenafil, and tamoxifen) were combined, the effect was not synergistic, but rather was additive. CLINICAL IMPLICATIONS A combination of a statin with a PDE5 inhibitor might be useful in the clinic to slow the progression of the disease in patients with early PD; however, caution should be taken with such a combination because of the reported myopathy as a side effect. STRENGTHS AND LIMITATIONS The use of primary human cells from patients with PD is a strength of this study. The mechanisms by which these drug classes exert synergy when used in combination was not investigated. CONCLUSION This is the first demonstration of an antifibrotic synergy between statins and PDE5 inhibitors.
Collapse
Affiliation(s)
- Marcus M Ilg
- Medical Technology Research Centre, School of Allied Health, Faculty of Health, Education, Medicine and Social Care, Anglia Ruskin University, Chelmsford CM1 1SQ, United Kingdom
| | - David J Ralph
- Medical Technology Research Centre, School of Allied Health, Faculty of Health, Education, Medicine and Social Care, Anglia Ruskin University, Chelmsford CM1 1SQ, United Kingdom
- Urology Department, University College Hospital, London W1G 8PH, United Kingdom
| | - Selim Cellek
- Medical Technology Research Centre, School of Allied Health, Faculty of Health, Education, Medicine and Social Care, Anglia Ruskin University, Chelmsford CM1 1SQ, United Kingdom
| |
Collapse
|
25
|
Chen Z, Xiao L, Hu C, Shen Z, Zhou E, Zhang S, Wang Y. Aligned Lovastatin-loaded Electrospun Nanofibers Regulate Collagen Organization and Reduce Scar Formation. Acta Biomater 2023; 164:240-252. [PMID: 37075962 DOI: 10.1016/j.actbio.2023.04.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 04/04/2023] [Accepted: 04/12/2023] [Indexed: 04/21/2023]
Abstract
Excessive scar formation caused by cutaneous injury leads to pruritus, pain, contracture, dyskinesia, and unpleasant appearance. Functional wound dressings are designed to accelerate wound healing and reduce scar formation. In this study, we fabricated aligned or random polycaprolactone/silk fibroin electrospun nanofiber membranes with or without lovastatin loading, and then evaluated their scar-inhibitory effects on wounds under a specific tension direction. The nanofiber membranes exhibited good controlled-release performance, mechanical properties, hydrophilicity, and biocompatibility. Furthermore, nanofibers' perpendicular placement to the tension direction of the wound most effectively reduced scar formation (the scar area decreased by 66.9%) and promoted skin regeneration in vivo. The mechanism was associated with its aligned nanofibers regulated collagen organization in the early stage of wound healing. Moreover, lovastatin-loaded nanofibers inhibited myofibroblast differentiation and migration. Both tension direction-perpendicular topographical cues and lovastatin synergistically inhibited mechanical transduction and fibrosis progression, further reducing scar formation. In summary, our study may provide an effective scar prevention strategy in which individualized dressings can be designed according to the local mechanical force direction of patients' wounds, and the addition of lovastatin can further inhibit scar formation. STATEMENT OF SIGNIFICANCE: In vivo, cells and collagen are always arranged parallel to the tension direction. However, the aligned topographic cues themselves promote myofibroblast differentiation and exacerbate scar formation. Electrospun nanofibers' perpendicular placement to the tension direction of the wound most effectively reduces scar formation and promotes skin regeneration in vivo. The mechanism is associated with its tension direction-perpendicular nanofibers reregulate collagen organization in the early stage of wound healing. In addition, tension direction-perpendicular topographical cue and lovastatin could inhibit mechanical transduction and fibrosis progression synergistically, further reducing scar formation. This study proves that combining topographical cues of wound dressing and drugs would be a promising therapy for clinical scar management.
Collapse
Affiliation(s)
- Zuhan Chen
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Wuhan, 430072, China; Department of Kidney Transplantation, Nephropathy Hospital, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Lingfei Xiao
- Department of Spine Surgery and Musculoskeletal Tumor, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China
| | - Chaoyu Hu
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Wuhan, 430072, China
| | - Zixia Shen
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Wuhan, 430072, China
| | - Encheng Zhou
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Wuhan, 430072, China
| | - Shichen Zhang
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Wuhan, 430072, China
| | - Yanfeng Wang
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
26
|
Golubev DA, Zemskaya NV, Gorbunova AA, Kukuman DV, Moskalev A, Shaposhnikov MV. Studying the Geroprotective Properties of YAP/TAZ Signaling Inhibitors on Drosophila melanogaster Model. Int J Mol Sci 2023; 24:ijms24066006. [PMID: 36983079 PMCID: PMC10058302 DOI: 10.3390/ijms24066006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 02/28/2023] [Accepted: 03/21/2023] [Indexed: 03/30/2023] Open
Abstract
The transcriptional coactivators Yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ) are the main downstream effectors of the evolutionarily conserved Hippo signaling pathway. YAP/TAZ are implicated in the transcriptional regulation of target genes that are involved in a wide range of key biological processes affecting tissue homeostasis and play dual roles in the aging process, depending on the cellular and tissue context. The aim of the present study was to investigate whether pharmacological inhibitors of Yap/Taz increase the lifespan of Drosophila melanogaster. Real-time qRT-PCR was performed to measure the changes in the expression of Yki (Yorkie, the Drosophila homolog of YAP/TAZ) target genes. We have revealed a lifespan-increasing effect of YAP/TAZ inhibitors that was mostly associated with decreased expression levels of the wg and E2f1 genes. However, further analysis is required to understand the link between the YAP/TAZ pathway and aging.
Collapse
Affiliation(s)
- Denis A Golubev
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Center, Ural Branch, Russian Academy of Sciences, 167982 Syktyvkar, Russia
| | - Nadezhda V Zemskaya
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Center, Ural Branch, Russian Academy of Sciences, 167982 Syktyvkar, Russia
| | - Anastasia A Gorbunova
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Center, Ural Branch, Russian Academy of Sciences, 167982 Syktyvkar, Russia
| | - Daria V Kukuman
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Center, Ural Branch, Russian Academy of Sciences, 167982 Syktyvkar, Russia
| | - Alexey Moskalev
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Center, Ural Branch, Russian Academy of Sciences, 167982 Syktyvkar, Russia
| | - Mikhail V Shaposhnikov
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Center, Ural Branch, Russian Academy of Sciences, 167982 Syktyvkar, Russia
| |
Collapse
|
27
|
Hamrangsekachaee M, Wen K, Bencherif SA, Ebong EE. Atherosclerosis and endothelial mechanotransduction: current knowledge and models for future research. Am J Physiol Cell Physiol 2023; 324:C488-C504. [PMID: 36440856 PMCID: PMC10069965 DOI: 10.1152/ajpcell.00449.2022] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/16/2022] [Accepted: 11/20/2022] [Indexed: 11/29/2022]
Abstract
Endothelium health is essential to the regulation of physiological vascular functions. Because of the critical capability of endothelial cells (ECs) to sense and transduce chemical and mechanical signals in the local vascular environment, their dysfunction is associated with a vast variety of vascular diseases and injuries, especially atherosclerosis and subsequent cardiovascular diseases. This review describes the mechanotransduction events that are mediated through ECs, the EC subcellular components involved, and the pathways reported to be potentially involved. Up-to-date research efforts involving in vivo animal models and in vitro biomimetic models are also discussed, including their advantages and drawbacks, with recommendations on future modeling approaches to aid the development of novel therapies targeting atherosclerosis and related cardiovascular diseases.
Collapse
Affiliation(s)
| | - Ke Wen
- Chemical Engineering Department, Northeastern University, Boston, Massachusetts
| | - Sidi A Bencherif
- Chemical Engineering Department, Northeastern University, Boston, Massachusetts
- Bioengineering Department, Northeastern University, Boston, Massachusetts
- Laboratoire de BioMécanique et BioIngénierie, UMR CNRS 7388, Sorbonne Universités, Université de Technologie of Compiègne, Compiègne, France
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts
| | - Eno E Ebong
- Chemical Engineering Department, Northeastern University, Boston, Massachusetts
- Bioengineering Department, Northeastern University, Boston, Massachusetts
- Neuroscience Department, Albert Einstein College of Medicine, New York, New York
| |
Collapse
|
28
|
Andreikos D, Karampitsakos T, Tzouvelekis A, Stratakos G. Statins’ still controversial role in pulmonary fibrosis: What does the evidence show? Pulm Pharmacol Ther 2022; 77:102168. [DOI: 10.1016/j.pupt.2022.102168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 09/16/2022] [Accepted: 09/23/2022] [Indexed: 11/07/2022]
|
29
|
Fingolimod exerts in vitro anticancer activity against hepatocellular carcinoma cell lines via YAP/TAZ suppression. ACTA PHARMACEUTICA (ZAGREB, CROATIA) 2022; 72:427-436. [PMID: 36651547 DOI: 10.2478/acph-2022-0029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/19/2022] [Indexed: 01/26/2023]
Abstract
Hepatocellular carcinoma (HCC) remains a notably global health challenge with high mortality rates and poor prognosis. The deregulation of the Hippo signalling pathway, especially the overexpression and activation of downstream effector Yes-associated protein (YAP), has been demonstrated to result in the rapid malignant evolution of HCC. In this context, multiple efforts have been dedicated to targeting YAP for HCC therapy, but effective YAP inhibitors are still lacking. In this study, through a YAP-TEAD (8×GTIIC) luciferase reporter assay, we identified fingolimod, an immunomodulatory drug approved for the treatment of multiple sclerosis, as a novel YAP inhibitor. Fingolimod suppressed the proliferation of HCC cell lines by downregulating the protein levels as well as the trans-activating function of YAP. Overall, our current study not only identifies fingolimod as a novel YAP-targeting in hibitor, but also indicates that this clinically-approved drug could be utilized as a potential and feasible therapeutic drug for HCC.
Collapse
|
30
|
Saito S, Deskin B, Rehan M, Yadav S, Matsunaga Y, Lasky JA, Thannickal VJ. Novel mediators of idiopathic pulmonary fibrosis. Clin Sci (Lond) 2022; 136:1229-1240. [PMID: 36043396 DOI: 10.1042/cs20210878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 08/04/2022] [Accepted: 08/08/2022] [Indexed: 11/17/2022]
Abstract
Fibrosis involving the lung may occur in many settings, including in association with known environmental agents, connective tissue diseases, and exposure to drugs or radiation therapy. The most common form is referred to as 'idiopathic' since a causal agent or specific association has not been determined; the strongest risk factor for idiopathic pulmonary fibrosis is aging. Emerging studies indicate that targeting certain components of aging biology may be effective in mitigating age-associated fibrosis. While transforming growth factor-β1 (TGF-β1) is a central mediator of fibrosis in almost all contexts, and across multiple organs, it is not feasible to target this canonical pathway at the ligand-receptor level due to the pleiotropic nature of its actions; importantly, its homeostatic roles as a tumor-suppressor and immune-modulator make this an imprudent strategy. However, defining targets downstream of its receptor(s) that mediate fibrogenesis, while relatively dispenable for tumor- and immune-suppressive functions may aid in developing safer and more effective therapies. In this review, we explore molecular targets that, although TGF-β1 induced/activated, may be relatively more selective in mediating tissue fibrosis. Additionally, we explore epigenetic mechanisms with global effects on the fibrogenic process, as well as metabolic pathways that regulate aging and fibrosis.
Collapse
Affiliation(s)
- Shigeki Saito
- Section of Pulmonary Diseases, Critical Care and Environmental Medicine, John W. Deming Department of Medicine, Tulane University School of Medicine, New Orleans, LA, U.S.A
- John W. Deming Department of Medicine, Tulane University School of Medicine, New Orleans, LA, U.S.A, and the Southeast Louisiana Veterans Health Care System, New Orleans, LA, U.S.A
| | - Brian Deskin
- John W. Deming Department of Medicine, Tulane University School of Medicine, New Orleans, LA, U.S.A, and the Southeast Louisiana Veterans Health Care System, New Orleans, LA, U.S.A
| | - Mohammad Rehan
- John W. Deming Department of Medicine, Tulane University School of Medicine, New Orleans, LA, U.S.A, and the Southeast Louisiana Veterans Health Care System, New Orleans, LA, U.S.A
| | - Santosh Yadav
- John W. Deming Department of Medicine, Tulane University School of Medicine, New Orleans, LA, U.S.A, and the Southeast Louisiana Veterans Health Care System, New Orleans, LA, U.S.A
| | - Yasuka Matsunaga
- John W. Deming Department of Medicine, Tulane University School of Medicine, New Orleans, LA, U.S.A, and the Southeast Louisiana Veterans Health Care System, New Orleans, LA, U.S.A
| | - Joseph A Lasky
- Section of Pulmonary Diseases, Critical Care and Environmental Medicine, John W. Deming Department of Medicine, Tulane University School of Medicine, New Orleans, LA, U.S.A
- John W. Deming Department of Medicine, Tulane University School of Medicine, New Orleans, LA, U.S.A, and the Southeast Louisiana Veterans Health Care System, New Orleans, LA, U.S.A
| | - Victor J Thannickal
- John W. Deming Department of Medicine, Tulane University School of Medicine, New Orleans, LA, U.S.A, and the Southeast Louisiana Veterans Health Care System, New Orleans, LA, U.S.A
| |
Collapse
|
31
|
Yang Y, Santos DM, Pantano L, Knipe R, Abe E, Logue A, Pronzati G, Black KE, Spinney JJ, Giacona F, Bieler M, Godbout C, Nicklin P, Wyatt D, Tager AM, Seither P, Herrmann FE, Medoff BD. Screening for Inhibitors of YAP Nuclear Localization Identifies Aurora Kinase A as a Modulator of Lung Fibrosis. Am J Respir Cell Mol Biol 2022; 67:36-49. [PMID: 35377835 PMCID: PMC9798384 DOI: 10.1165/rcmb.2021-0428oc] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 04/04/2022] [Indexed: 01/01/2023] Open
Abstract
Idiopathic pulmonary fibrosis is a progressive lung disease with limited therapeutic options that is characterized by pathological fibroblast activation and aberrant lung remodeling with scar formation. YAP (Yes-associated protein) is a transcriptional coactivator that mediates mechanical and biochemical signals controlling fibroblast activation. We previously identified HMG-CoA (3-hydroxy-3-methylglutaryl coenzyme A) reductase inhibitors (statins) as YAP inhibitors based on a high-throughput small-molecule screen in primary human lung fibroblasts. Here we report that several Aurora kinase inhibitors were also identified from the top hits of this screen. MK-5108, a highly selective inhibitor for AURKA (Aurora kinase A), induced YAP phosphorylation and cytoplasmic retention and significantly reduced profibrotic gene expression in human lung fibroblasts. The inhibitory effect on YAP nuclear translocation and profibrotic gene expression is specific to inhibition of AURKA, but not Aurora kinase B or C, and is independent of the Hippo pathway kinases LATS1 and LATS2 (Large Tumor Suppressor 1 and 2). Further characterization of the effects of MK-5108 demonstrate that it inhibits YAP nuclear localization indirectly via effects on actin polymerization and TGFβ (Transforming Growth Factor β) signaling. In addition, MK-5108 treatment reduced lung collagen deposition in the bleomycin mouse model of pulmonary fibrosis. Our results reveal a novel role for AURKA in YAP-mediated profibrotic activity in fibroblasts and highlight the potential of small-molecule screens for YAP inhibitors for identification of novel agents with antifibrotic activity.
Collapse
Affiliation(s)
- Yang Yang
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Daniela M Santos
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Lorena Pantano
- Harvard T. H. Chan School of Public Health, Boston, Massachusetts
| | - Rachel Knipe
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Elizabeth Abe
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Amanda Logue
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Gina Pronzati
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Katharine E Black
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Jillian J Spinney
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Francesca Giacona
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | | | | | | | | | - Andrew M Tager
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | | | - Franziska E Herrmann
- Immunology and Respiratory Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Benjamin D Medoff
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
32
|
New Insights into Hippo/YAP Signaling in Fibrotic Diseases. Cells 2022; 11:cells11132065. [PMID: 35805148 PMCID: PMC9265296 DOI: 10.3390/cells11132065] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 06/25/2022] [Accepted: 06/26/2022] [Indexed: 12/20/2022] Open
Abstract
Fibrosis results from defective wound healing processes often seen after chronic injury and/or inflammation in a range of organs. Progressive fibrotic events may lead to permanent organ damage/failure. The hallmark of fibrosis is the excessive accumulation of extracellular matrix (ECM), mostly produced by pathological myofibroblasts and myofibroblast-like cells. The Hippo signaling pathway is an evolutionarily conserved kinase cascade, which has been described well for its crucial role in cell proliferation, apoptosis, cell fate decisions, and stem cell self-renewal during development, homeostasis, and tissue regeneration. Recent investigations in clinical and pre-clinical models has shown that the Hippo signaling pathway is linked to the pathophysiology of fibrotic diseases in many organs including the lung, heart, liver, kidney, and skin. In this review, we have summarized recent evidences related to the contribution of the Hippo signaling pathway in the development of organ fibrosis. A better understanding of this pathway will guide us to dissect the pathophysiology of fibrotic disorders and develop effective tissue repair therapies.
Collapse
|
33
|
Neubig RR. A Glowing Opportunity to Target YAP in Lung Fibrosis. Am J Respir Cell Mol Biol 2022; 67:1-2. [PMID: 35503038 PMCID: PMC9273223 DOI: 10.1165/rcmb.2022-0082ed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Richard R Neubig
- Michigan State University, 3078, Pharmacology and Toxicology, East Lansing, Michigan, United States.,Michigan State University, 3078, Department of Medicine, Nicolas V. Perricone MD Division of Dermatology, East Lansing, Michigan, United States;
| |
Collapse
|
34
|
Hippo signaling pathway and respiratory diseases. Cell Death Dis 2022; 8:213. [PMID: 35443749 PMCID: PMC9021242 DOI: 10.1038/s41420-022-01020-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 04/06/2022] [Accepted: 04/07/2022] [Indexed: 12/16/2022]
Abstract
The hippo signaling pathway is a highly conserved evolutionary signaling pathway that plays an important role in regulating cell proliferation, organ size, tissue development, and regeneration. Increasing evidences consider that the hippo signaling pathway is involved in the process of respiratory diseases. Hippo signaling pathway is mainly composed of mammalian STE20-like kinase 1/2 (MST1/2), large tumor suppressor 1/2 (LATS1/2), WW domain of the Sav family containing protein 1 (SAV1), MOB kinase activator 1 (MOB1), Yes-associated protein (YAP) or transcriptional coactivator with PDZ-binding motif (TAZ), and members of the TEA domain (TEAD) family. YAP is the cascade effector of the hippo signaling pathway. The activation of YAP promotes pulmonary arterial vascular smooth muscle cells (PAVSMCs) proliferation, which leads to pulmonary vascular remodeling; thereby the pulmonary arterial hypertension (PAH) is aggravated. While the loss of YAP leads to high expression of inflammatory genes and the accumulation of inflammatory cells, the pneumonia is consequently exacerbated. In addition, overexpressed YAP promotes the proliferation of lung fibroblasts and collagen deposition; thereby the idiopathic pulmonary fibrosis (IPF) is promoted. Moreover, YAP knockout reduces collagen deposition and the senescence of adult alveolar epithelial cells (AECs); hence the IPF is slowed. In addition, hippo signaling pathway may be involved in the repair of acute lung injury (ALI) by promoting the proliferation and differentiation of lung epithelial progenitor cells and intervening in the repair of pulmonary capillary endothelium. Moreover, the hippo signaling pathway is involved in asthma. In conclusion, the hippo signaling pathway is involved in respiratory diseases. More researches are needed to focus on the molecular mechanisms by which the hippo signaling pathway participates in respiratory diseases.
Collapse
|
35
|
Yildirim M, Kayalar O, Atahan E, Oztay F. Atorvastatin attenuates pulmonary fibrosis in mice and human lung fibroblasts, by the regulation of myofibroblast differentiation and apoptosis. J Biochem Mol Toxicol 2022; 36:e23074. [PMID: 35416377 DOI: 10.1002/jbt.23074] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 03/02/2022] [Accepted: 04/01/2022] [Indexed: 12/25/2022]
Abstract
Statins have anti-inflammatory and antifibrotic effects in addition to cholesterol-lowering effect. We aimed to investigate the effect of atorvastatin (ATR) in fibrotic mouse lung and human lung fibroblasts (MRC5s). Pulmonary fibrosis was induced by a single dose of bleomycin by intratracheal instillation in adult mice. ATR was administered (20 mg/kg ip) to mice with healthy and pulmonary fibrosis for 10 days from Day 7 of the experiment. Mice were dissected on the 21st day. The levels of alpha-smooth muscle actin (α-SMA), pSMAD2/3, LOXL2, and p-Src were determined by Western blot analysis in the lungs. Furthermore, a group of MRC5 was differentiated into myofibroblasts by transforming growth factor-beta (TGF-β). Another group of MRC5s was treated with 10 µM ATR at 24 h after TGF-β stimulation. Cells were collected at 0, 24, 48, and 72 h. The effects of ATR on myofibroblast differentiation, apoptosis, and TGF-β and Wnt/β-catenin signaling activations were examined by Western blot analysis and flow cytometry in MRC5s. ATR attenuated pulmonary fibrosis by regulating myofibroblast differentiation and interstitial accumulation of collagen, by acting on LOXL2, p-Src, and pSMAD2/3 in mice lungs. Additionally, it blocked myofibroblast differentiation via reduced TGF-β and Wnt/β-catenin signaling and decreased α-SMA in MRC5s stimulated with TGF-β. Moreover, ATR caused myofibroblast apoptosis via caspase-3 activation. ATR treatment attenuates pulmonary fibrosis in mice treated with bleomycin. It also inhibits fibroblast/myofibroblast activation, by both reducing myofibroblasts differentiation and inducing myofibroblast apoptosis.
Collapse
Affiliation(s)
- Merve Yildirim
- Department of Biology, Science Faculty, Istanbul University, Istanbul, Turkey
| | - Ozgecan Kayalar
- Department of Biology, Science Faculty, Istanbul University, Istanbul, Turkey.,Koç University School of Medicine Koç University Research Center for Translational Medicine (KUTTAM), Istanbul, Turkey
| | - Ersan Atahan
- Department of Chest Diseases, Cerrahpasa School of Medicine, Istanbul University Cerrahpasa, Istanbul, Turkey
| | - Fusun Oztay
- Department of Biology, Science Faculty, Istanbul University, Istanbul, Turkey
| |
Collapse
|
36
|
Kou L, Kou P, Luo G, Wei S. Progress of Statin Therapy in the Treatment of Idiopathic Pulmonary Fibrosis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:6197219. [PMID: 35345828 PMCID: PMC8957418 DOI: 10.1155/2022/6197219] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 02/24/2022] [Indexed: 11/18/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a type of interstitial lung disease (ILD) characterized by the proliferation of fibroblasts and aberrant accumulation of extracellular matrix. These changes are accompanied by structural destruction of the lung tissue and the progressive decline of pulmonary function. In the past few decades, researchers have investigated the pathogenesis of IPF and sought a therapeutic approach for its treatment. Some studies have shown that the occurrence of IPF is related to pulmonary inflammatory injury; however, its specific etiology and pathogenesis remain unknown, and no effective treatment, with the exception of lung transplantation, has been identified yet. Several basic science and clinical studies in recent years have shown that statins, the traditional lipid-lowering drugs, exert significant antifibrotic effects, which can delay the progression of IPF and impairment of pulmonary function. This article is aimed at summarizing the current understanding of the pathogenesis of IPF, the progress of research on the use of statins in IPF models and clinical trials, and its main molecular targets.
Collapse
Affiliation(s)
- Leiya Kou
- Department of Respiratory Medicine, Wuhan No. 1 Hospital, Wuhan 430022, China
- Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Pei Kou
- Department of Medical Record, Wuhan No. 1 Hospital, Wuhan 430022, China
| | - Guangwei Luo
- Department of Respiratory Medicine, Wuhan No. 1 Hospital, Wuhan 430022, China
| | - Shuang Wei
- Department of Respiratory and Critical Care Medicine, Tongji Hospital Tongji Medical College Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
37
|
Xu P, Zhang J, Wang M, Liu B, Li R, Li H, Zhai N, Liu W, Lv C, Song X. hnRNP L-activated circANKRD42 Reverse Splicing and the circANKRD42-mediated Crosstalk between Mechanical Stiffness and Biochemical Signals to Drive Pulmonary Fibrogenesis. Mol Ther 2022; 30:2370-2387. [PMID: 35278674 DOI: 10.1016/j.ymthe.2022.01.045] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 11/20/2021] [Accepted: 01/20/2022] [Indexed: 11/19/2022] Open
Abstract
Increasing circular RNAs (circRNAs) are involved in the progression of idiopathic pulmonary fibrosis (IPF). However, circRNA biogenesis and circRNA-mediated crosstalk between mechanical stiffness and biochemical signals in IPF remain obscure. In this study, a novel circRNA-ANKRD42 from peripheral blood of patients with IPF, which participated in pulmonary fibrosis through the close communication of mechanical stiffness and biochemical signals, was identified. Mechanistic studies revealed that the heterogeneous nuclear ribonucleoprotein L (hnRNP L) activated the circANKRD42 reverse splicing biogenesis. The biogenetic circANKRD42 sponged miR-324-5p to promote the AJUBA expression, which blocked the binding between phosphorylated yes-associated protein 1 (YAP1) and large tumor suppressor kinase 1/2 (LATS1/2), leading to increased YAP1 entering the nucleus. circANKRD42 also sponged miR-136-5p to promote the YAP1 translation. Accumulating YAP1 in nucleus bound to TEAD, which initiated the transcription of genes related to mechanical stiffness. Finally, the therapeutic effect of circANKRD42 was evaluated in mice and the association between circANKRD42 and clinicopathological features was analyzed in IPF patients. Our findings supported that circANKRD42 is a promising biomarker and a potential therapeutic target related to cytoskeleton tension for IPF treatment.
Collapse
Affiliation(s)
- Pan Xu
- Department of Cellular and Genetic Medicine, School of Pharmaceutical Sciences, Binzhou Medical University, Yantai 264003, China; Department of Respiratory and Critical Care Medicine, Binzhou Medical University Hospital, Binzhou Medical University, Binzhou 256603, China
| | - Jinjin Zhang
- Department of Cellular and Genetic Medicine, School of Pharmaceutical Sciences, Binzhou Medical University, Yantai 264003, China; Medical Research Center, Binzhou Medical University, Yantai 264003, China
| | - Meirong Wang
- Department of Clinical Laboratory, Yantai Affiliated Hospital to Binzhou Medical University, Yantai 264003, China
| | - Bo Liu
- Department of Respiratory and Critical Care Medicine, Binzhou Medical University Hospital, Binzhou Medical University, Binzhou 256603, China
| | - Rongrong Li
- Department of Respiratory and Critical Care Medicine, Binzhou Medical University Hospital, Binzhou Medical University, Binzhou 256603, China
| | - Hongbo Li
- Department of Respiratory and Critical Care Medicine, Binzhou Medical University Hospital, Binzhou Medical University, Binzhou 256603, China
| | - Nailiang Zhai
- Department of Respiratory and Critical Care Medicine, Binzhou Medical University Hospital, Binzhou Medical University, Binzhou 256603, China
| | - Weili Liu
- Department of Respiratory and Critical Care Medicine, Binzhou Medical University Hospital, Binzhou Medical University, Binzhou 256603, China
| | - Changjun Lv
- Department of Respiratory and Critical Care Medicine, Binzhou Medical University Hospital, Binzhou Medical University, Binzhou 256603, China.
| | - Xiaodong Song
- Department of Cellular and Genetic Medicine, School of Pharmaceutical Sciences, Binzhou Medical University, Yantai 264003, China; Department of Respiratory and Critical Care Medicine, Binzhou Medical University Hospital, Binzhou Medical University, Binzhou 256603, China.
| |
Collapse
|
38
|
The YAP/TAZ Signaling Pathway in the Tumor Microenvironment and Carcinogenesis: Current Knowledge and Therapeutic Promises. Int J Mol Sci 2021; 23:ijms23010430. [PMID: 35008857 PMCID: PMC8745604 DOI: 10.3390/ijms23010430] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/23/2021] [Accepted: 12/24/2021] [Indexed: 12/14/2022] Open
Abstract
The yes-associated protein (YAP) and the transcriptional coactivator with PDZ-binding motif (TAZ) are transcriptional coactivators, members of the Hippo signaling pathway, which play a critical role in cell growth regulation, embryonic development, regeneration, proliferation, and cancer origin and progression. The mechanism involves the nuclear binding of the un-phosphorylated YAP/TAZ complex to release the transcriptional enhanced associate domain (TEAD) from its repressors. The active ternary complex is responsible for the aforementioned biological effects. Overexpression of YAP/TAZ has been reported in cancer stem cells and tumor resistance. The resistance involves chemotherapy, targeted therapy, and immunotherapy. This review provides an overview of YAP/TAZ pathways’ role in carcinogenesis and tumor microenvironment. Potential therapeutic alternatives are also discussed.
Collapse
|
39
|
Gokey JJ, Patel SD, Kropski JA. The Role of Hippo/YAP Signaling in Alveolar Repair and Pulmonary Fibrosis. Front Med (Lausanne) 2021; 8:752316. [PMID: 34671628 PMCID: PMC8520933 DOI: 10.3389/fmed.2021.752316] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 09/09/2021] [Indexed: 01/30/2023] Open
Abstract
Pulmonary fibrosis is characterized by loss of normal alveoli, accumulation of pathologic activated fibroblasts, and exuberant extracellular matrix deposition that over time can lead to progressive loss of respiratory function and death. This loss of respiratory function is associated with the loss of alveolar type 1 cells (AT1) that play a crucial role in gas exchange and the depletion of the alveolar type 2 cells (AT2) that act as progenitor cells to regenerate the AT1 and AT2 cell populations during repair. Understanding the mechanisms that regulate normal alveolar repair and those associated with pathologic repair is essential to identify potential therapeutic targets to treat or delay progression of fibrotic diseases. The Hippo/YAP developmental signaling pathway has been implicated as a regulator of normal alveolar development and repair. In idiopathic pulmonary fibrosis, aberrant activation of YAP/TAZ has been demonstrated in both the alveolar epithelium and activated fibroblasts associated with increased fibrotic remodeling, and there is emerging interest in this pathway as a target for antifibrotic therapies. In this review, we summarize current evidence as to the role of the Hippo-YAP/TAZ pathway in alveolar development, homeostasis, and repair, and highlight key questions that must be resolved to determine effective strategies to modulate YAP/TAZ signaling to prevent progressive pulmonary fibrosis and enhance adaptive alveolar repair.
Collapse
Affiliation(s)
- Jason J Gokey
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Saawan D Patel
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Jonathan A Kropski
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States.,Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, United States.,Department of Veterans Affairs Medical Center, Nashville, TN, United States
| |
Collapse
|
40
|
Ung CY, Onoufriadis A, Parsons M, McGrath JA, Shaw TJ. Metabolic perturbations in fibrosis disease. Int J Biochem Cell Biol 2021; 139:106073. [PMID: 34461262 DOI: 10.1016/j.biocel.2021.106073] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 08/09/2021] [Accepted: 08/25/2021] [Indexed: 12/19/2022]
Abstract
Metabolic changes occur in all forms of disease but their impact on fibrosis is a relatively recent area of interest. This review provides an overview of the major metabolic pathways, glycolysis, amino acid metabolism and lipid metabolism, and highlights how they influence fibrosis at a cellular and tissue level, drawing on key discoveries in dermal, renal, pulmonary and hepatic fibrosis. The emerging influence of adipose tissue-derived cytokines is discussed and brings a link between fibrosis and systemic metabolism. To close, the concept of targeting metabolism for fibrotic therapy is reviewed, drawing on lessons from the more established field of cancer metabolism, with an emphasis on important considerations for clinical translation.
Collapse
Affiliation(s)
- Chuin Ying Ung
- St John's Institute of Dermatology, King's College London, London, SE19RT, UK.
| | | | - Maddy Parsons
- Randall Centre for Cell & Molecular Biophysics, King's College London, London, SE11UL, UK.
| | - John A McGrath
- St John's Institute of Dermatology, King's College London, London, SE19RT, UK.
| | - Tanya J Shaw
- Centre for Inflammation Biology & Cancer Immunology, King's College London, London, SE1 1UL, UK.
| |
Collapse
|
41
|
Duarte D, Vale N. Combining repurposed drugs to treat colorectal cancer. Drug Discov Today 2021; 27:165-184. [PMID: 34592446 DOI: 10.1016/j.drudis.2021.09.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 07/19/2021] [Accepted: 09/22/2021] [Indexed: 02/08/2023]
Abstract
The drug development process, especially of antineoplastic agents, has become increasingly costly and ineffective. Drug repurposing and drug combination are alternatives to de novo drug development, being low cost, rapid, and easy to apply. These strategies allow higher efficacy, decreased toxicity, and overcoming of drug resistance. The combination of antineoplastic agents is already being applied in cancer therapy, but the combination of repurposed drugs is still under-explored in pre- and clinical development. In this review, we provide a set of pharmacological concepts focusing on drug repurposing for treating colorectal cancer (CRC) and that are relevant for the application of new drug combinations against this disease.
Collapse
Affiliation(s)
- Diana Duarte
- OncoPharma Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Dr. Plácido da Costa, 4200-450 Porto, Portugal; Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Nuno Vale
- OncoPharma Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Dr. Plácido da Costa, 4200-450 Porto, Portugal; Department of Community Medicine, Information and Health Decision Sciences (MEDCIDS), Faculty of Medicine, University of Porto, Al. Prof. Hernâni Monteiro, 4200-319 Porto, Portugal.
| |
Collapse
|
42
|
Podolanczuk AJ, Wong AW, Saito S, Lasky JA, Ryerson CJ, Eickelberg O. Update in Interstitial Lung Disease 2020. Am J Respir Crit Care Med 2021; 203:1343-1352. [PMID: 33835899 DOI: 10.1164/rccm.202103-0559up] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Anna J Podolanczuk
- Division of Pulmonary and Critical Care, Department of Medicine, Weill Cornell Medical College, Cornell University, New York, New York
| | - Alyson W Wong
- Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada.,Centre for Heart Lung Innovation, St. Paul's Hospital, Vancouver, British Columbia, Canada
| | - Shigeki Saito
- Section of Pulmonary Disease, Critical Care and Environmental Medicine, Department of Medicine, Tulane University, New Orleans, Louisiana; and
| | - Joseph A Lasky
- Section of Pulmonary Disease, Critical Care and Environmental Medicine, Department of Medicine, Tulane University, New Orleans, Louisiana; and
| | - Christopher J Ryerson
- Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada.,Centre for Heart Lung Innovation, St. Paul's Hospital, Vancouver, British Columbia, Canada
| | - Oliver Eickelberg
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
43
|
Zeng R, Dong J. The Hippo Signaling Pathway in Drug Resistance in Cancer. Cancers (Basel) 2021; 13:cancers13020318. [PMID: 33467099 PMCID: PMC7830227 DOI: 10.3390/cancers13020318] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/14/2021] [Accepted: 01/14/2021] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Although great breakthroughs have been made in cancer treatment following the development of targeted therapy and immune therapy, resistance against anti-cancer drugs remains one of the most challenging conundrums. Considerable effort has been made to discover the underlying mechanisms through which malignant tumor cells acquire or develop resistance to anti-cancer treatment. The Hippo signaling pathway appears to play an important role in this process. This review focuses on how components in the human Hippo signaling pathway contribute to drug resistance in a variety of cancer types. This article also summarizes current pharmacological interventions that are able to target the Hippo signaling pathway and serve as potential anti-cancer therapeutics. Abstract Chemotherapy represents one of the most efficacious strategies to treat cancer patients, bringing advantageous changes at least temporarily even to those patients with incurable malignancies. However, most patients respond poorly after a certain number of cycles of treatment due to the development of drug resistance. Resistance to drugs administrated to cancer patients greatly limits the benefits that patients can achieve and continues to be a severe clinical difficulty. Among the mechanisms which have been uncovered to mediate anti-cancer drug resistance, the Hippo signaling pathway is gaining increasing attention due to the remarkable oncogenic activities of its components (for example, YAP and TAZ) and their druggable properties. This review will highlight current understanding of how the Hippo signaling pathway regulates anti-cancer drug resistance in tumor cells, and currently available pharmacological interventions targeting the Hippo pathway to eradicate malignant cells and potentially treat cancer patients.
Collapse
Affiliation(s)
| | - Jixin Dong
- Correspondence: ; Tel.: +1-402-559-5596; Fax: +1-402-559-4651
| |
Collapse
|
44
|
Reichardt IM, Robeson KZ, Regnier M, Davis J. Controlling cardiac fibrosis through fibroblast state space modulation. Cell Signal 2020; 79:109888. [PMID: 33340659 DOI: 10.1016/j.cellsig.2020.109888] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/14/2020] [Accepted: 12/15/2020] [Indexed: 12/13/2022]
Abstract
The transdifferentiation of cardiac fibroblasts into myofibroblasts after cardiac injury has traditionally been defined by a unidirectional continuum from quiescent fibroblasts, through activated fibroblasts, and finally to fibrotic-matrix producing myofibroblasts. However, recent lineage tracing and single cell RNA sequencing experiments have demonstrated that fibroblast transdifferentiation is much more complex. Growing evidence suggests that fibroblasts are more heterogenous than previously thought, and many new cell states have recently been identified. This review reexamines conventional fibroblast transdifferentiation paradigms with a dynamic state space lens, which could enable a more complex understanding of how fibroblast state dynamics alters fibrotic remodeling of the heart. This review will define cellular state space, how it relates to fibroblast state transitions, and how the canonical and non-canonical fibrotic signaling pathways modulate fibroblast cell state and cardiac fibrosis. Finally, this review explores the therapeutic potential of fibroblast state space modulation by p38 inhibition, yes-associated protein (YAP) inhibition, and fibroblast reprogramming.
Collapse
Affiliation(s)
- Isabella M Reichardt
- Department of Bioengineering, University of Washington, Seattle, WA 98105, United States.
| | - Kalen Z Robeson
- Department of Bioengineering, University of Washington, Seattle, WA 98105, United States.
| | - Michael Regnier
- Department of Bioengineering, University of Washington, Seattle, WA 98105, United States; Institute for Stem Cell & Regenerative Medicine, University of Washington, Seattle, WA 98109, United States; Center for Cardiovascular Biology, University of Washington, Seattle, WA 98109, United States; Center for Translational Muscle Research, University of Washington, Seattle, WA 98109, United States.
| | - Jennifer Davis
- Department of Bioengineering, University of Washington, Seattle, WA 98105, United States; Department of Pathology, University of Washington, 850 Republican, #343, Seattle, WA 98109, United States; Institute for Stem Cell & Regenerative Medicine, University of Washington, Seattle, WA 98109, United States; Center for Cardiovascular Biology, University of Washington, Seattle, WA 98109, United States; Center for Translational Muscle Research, University of Washington, Seattle, WA 98109, United States.
| |
Collapse
|
45
|
Agarwal M, Goheen M, Jia S, Ling S, White ES, Kim KK. Type I Collagen Signaling Regulates Opposing Fibrotic Pathways through α 2β 1 Integrin. Am J Respir Cell Mol Biol 2020; 63:613-622. [PMID: 32692932 DOI: 10.1165/rcmb.2020-0150oc] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Fibrosis is characterized by fibroblast activation, leading to matrix remodeling culminating in a stiff, type I collagen-rich fibrotic matrix. Alveolar epithelial cell (AEC) apoptosis is also a major feature of fibrogenesis, and AEC apoptosis is sufficient to initiate a robust lung fibrotic response. TGF-β (transforming growth factor-β) is a major driver of fibrosis and can induce both AEC apoptosis and fibroblast activation. We and others have previously shown that changes in extracellular matrix stiffness and composition can regulate the cellular response to TGF-β. In the present study, we find that type I collagen signaling promotes TGF-β-mediated fibroblast activation and inhibits TGF-β-induced AEC death. Fibroblasts cultured on type I collagen or fibrotic decellularized lung matrix had augmented activation in response to TGF-β, whereas AECs on cultured on type I collagen or fibrotic lung matrix were more resistant to TGF-β-induced apoptosis. Both of these responses were mediated by integrin α2β1, a major collagen receptor. AECs treated with an α2 integrin inhibitor or with deletion of α2 integrin had loss of collagen-mediated protection from apoptosis. We found that mice with fibroblast-specific deletion of α2 integrin were protected from fibrosis whereas mice with AEC-specific deletion of α2 integrin had more lung injury and a greater fibrotic response to bleomycin. Intrapulmonary delivery of an α2 integrin-activating collagen peptide inhibited AEC apoptosis in vitro and in vivo and attenuated the fibrotic response. These studies underscore the need for a thorough understanding of the divergent response to matrix signaling.
Collapse
Affiliation(s)
- Manisha Agarwal
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Mitchell Goheen
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Shijing Jia
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Song Ling
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Eric S White
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Kevin K Kim
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
46
|
Deng Z, Fear MW, Suk Choi Y, Wood FM, Allahham A, Mutsaers SE, Prêle CM. The extracellular matrix and mechanotransduction in pulmonary fibrosis. Int J Biochem Cell Biol 2020; 126:105802. [PMID: 32668329 DOI: 10.1016/j.biocel.2020.105802] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 07/06/2020] [Accepted: 07/10/2020] [Indexed: 12/11/2022]
Abstract
Pulmonary fibrosis is characterised by excessive scarring in the lung which leads to compromised lung function, serious breathing problems and in some diseases, death. It includes several lung disorders with idiopathic pulmonary fibrosis (IPF) the most common and most severe. Pulmonary fibrosis is considered to be perpetuated by aberrant wound healing which leads to fibroblast accumulation, differentiation and activation, and deposition of excessive amounts of extracellular matrix (ECM) components, in particular, collagen. Recent studies have identified the importance of changes in the composition and structure of lung ECM during the development of pulmonary fibrosis and the interaction between ECM and lung cells. There is strong evidence that increased matrix stiffness induces changes in cell function including proliferation, migration, differentiation and activation. Understanding how changes in the ECM microenvironment influence cell behaviour during fibrogenesis, and the mechanisms regulating these changes, will provide insight for developing new treatments.
Collapse
Affiliation(s)
- Zhenjun Deng
- Burn Injury Research Unit, School of Biomedical Sciences, The University of Western Australia, Nedlands, 6009, WA, Australia
| | - Mark W Fear
- Burn Injury Research Unit, School of Biomedical Sciences, The University of Western Australia, Nedlands, 6009, WA, Australia; Institute for Respiratory Health, Nedlands, WA, Australia
| | - Yu Suk Choi
- School of Human Sciences, The University of Western Australia, Crawley, WA, Australia
| | - Fiona M Wood
- Burn Injury Research Unit, School of Biomedical Sciences, The University of Western Australia, Nedlands, 6009, WA, Australia; Burns Service of Western Australia, Perth Children's Hospital, Nedlands, WA, Australia; Fiona Stanley Hospital, Murdoch, WA, Australia
| | - Amira Allahham
- Burn Injury Research Unit, School of Biomedical Sciences, The University of Western Australia, Nedlands, 6009, WA, Australia
| | - Steven E Mutsaers
- Institute for Respiratory Health, Nedlands, WA, Australia; Centre for Respiratory Health, School of Biomedical Sciences, The University of Western Australia, Nedlands, WA, Australia; Centre for Cell Therapy and Regenerative Medicine, School of Biomedical Sciences, The University of Western Australia, Nedlands, WA, Australia
| | - Cecilia M Prêle
- Institute for Respiratory Health, Nedlands, WA, Australia; Centre for Respiratory Health, School of Biomedical Sciences, The University of Western Australia, Nedlands, WA, Australia; Centre for Cell Therapy and Regenerative Medicine, School of Biomedical Sciences, The University of Western Australia, Nedlands, WA, Australia.
| |
Collapse
|