1
|
Langstengel J, Yaggi HK. Sleep Deficiency and Opioid Use Disorder: Trajectory, Mechanisms, and Interventions. Sleep Med Clin 2024; 19:625-638. [PMID: 39455182 DOI: 10.1016/j.jsmc.2024.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2024]
Abstract
Opioid use disorder (OUD) is a chronic and relapsing brain disease characterized by loss of control over opioid use and impairments in cognitive function, mood, pain perception, and autonomic activity. Sleep deficiency, a term that encompasses insufficient or disrupted sleep due to multiple potential causes, including sleep disorders (eg, insomnia, sleep apnea), circadian disruption (eg, delayed sleep phase and social jet lag), and poor sleep quality (eg, sleep fragmentation, impaired sleep architecture), is present in greater than 75% of patients with OUD. This article focuses on highlighting bidirectional mechanisms between OUD and sleep deficiency and points toward promising therapeutic targets.
Collapse
Affiliation(s)
- Jennifer Langstengel
- Department of Internal Medicine, Section of Pulmonary, Critical Care, and Sleep Medicine, Yale University School of Medicine, 300 Cedar Street, PO Box 208057, New Haven, CT 06520-8057, USA
| | - H Klar Yaggi
- Department of Internal Medicine, Section of Pulmonary, Critical Care, and Sleep Medicine, Yale University School of Medicine, 300 Cedar Street, PO Box 208057, New Haven, CT 06520-8057, USA; Clinical Epidemiology Research Center (CERC), VA Connecticut Healthcare System, West Haven, CT, USA.
| |
Collapse
|
2
|
Nanayakkara B, McNamara S. Pathophysiology of Chronic Hypercapnic Respiratory Failure. Sleep Med Clin 2024; 19:379-389. [PMID: 39095137 DOI: 10.1016/j.jsmc.2024.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Chronic hypercapnic respiratory failure occurs in several conditions associated with hypoventilation. The mechanisms underlying the development of chronic hypercapnia include a combination of processes that increase metabolic CO2 production, reduce minute ventilation (V'e), or increase dead space fraction (Vd/Vt). Fundamental to the pathophysiology is a mismatch between increased load and a reduction in the capacity of the respiratory pump to compensate. Though neural respiratory drive may be decreased in a subset of central hypoventilation disorders, it is more commonly increased in attempting to maintain the load-capacity homeostatic balance.
Collapse
Affiliation(s)
- Budhima Nanayakkara
- Charles Sturt University, 346 Leeds Parade, Orange, NSW 2800, Australia; Department of Medicine, Orange Health Service, Orange, NSW 2800, Australia; University of Sydney, Camperdown, NSW 2006, Australia.
| | - Stephen McNamara
- Department of Respiratory & Sleep Medicine, Royal Prince Alfred Hospital, Camperdown, NSW 2050, Australia
| |
Collapse
|
3
|
Amorim MR, Wang X, Aung O, Bevans-Fonti S, Anokye-Danso F, Ribeiro C, Escobar J, Freire C, Pho H, Dergacheva O, Branco LGS, Ahima RS, Mendelowitz D, Polotsky VY. Leptin signaling in the dorsomedial hypothalamus couples breathing and metabolism in obesity. Cell Rep 2023; 42:113512. [PMID: 38039129 PMCID: PMC10804286 DOI: 10.1016/j.celrep.2023.113512] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 10/25/2023] [Accepted: 11/14/2023] [Indexed: 12/03/2023] Open
Abstract
Mismatch between CO2 production (Vco2) and respiration underlies the pathogenesis of obesity hypoventilation. Leptin-mediated CNS pathways stimulate both metabolism and breathing, but interactions between these functions remain elusive. We hypothesized that LEPRb+ neurons of the dorsomedial hypothalamus (DMH) regulate metabolism and breathing in obesity. In diet-induced obese LeprbCre mice, chemogenetic activation of LEPRb+ DMH neurons increases minute ventilation (Ve) during sleep, the hypercapnic ventilatory response, Vco2, and Ve/Vco2, indicating that breathing is stimulated out of proportion to metabolism. The effects of chemogenetic activation are abolished by a serotonin blocker. Optogenetic stimulation of the LEPRb+ DMH neurons evokes excitatory postsynaptic currents in downstream serotonergic neurons of the dorsal raphe (DR). Administration of retrograde AAV harboring Cre-dependent caspase to the DR deletes LEPRb+ DMH neurons and abolishes metabolic and respiratory responses to leptin. These findings indicate that LEPRb+ DMH neurons match breathing to metabolism through serotonergic pathways to prevent obesity-induced hypoventilation.
Collapse
Affiliation(s)
- Mateus R Amorim
- Department of Medicine, Johns Hopkins University, Baltimore, MD 21224, USA; Department of Anesthesiology and Critical Care Medicine, George Washington University, Washington, DC 20037, USA.
| | - Xin Wang
- Department of Pharmacology and Physiology, George Washington University, Washington, DC 20037, USA
| | - O Aung
- Department of Medicine, Johns Hopkins University, Baltimore, MD 21224, USA
| | - Shannon Bevans-Fonti
- Department of Medicine, Johns Hopkins University, Baltimore, MD 21224, USA; Department of Anesthesiology and Critical Care Medicine, George Washington University, Washington, DC 20037, USA
| | | | - Caitlin Ribeiro
- Department of Pharmacology and Physiology, George Washington University, Washington, DC 20037, USA
| | - Joan Escobar
- Department of Pharmacology and Physiology, George Washington University, Washington, DC 20037, USA
| | - Carla Freire
- Department of Medicine, Johns Hopkins University, Baltimore, MD 21224, USA
| | - Huy Pho
- Department of Medicine, Johns Hopkins University, Baltimore, MD 21224, USA
| | - Olga Dergacheva
- Department of Pharmacology and Physiology, George Washington University, Washington, DC 20037, USA
| | - Luiz G S Branco
- University of São Paulo, Ribeirão Preto, São Paulo 14040-904, Brazil
| | - Rexford S Ahima
- Department of Medicine, Johns Hopkins University, Baltimore, MD 21224, USA
| | - David Mendelowitz
- Department of Pharmacology and Physiology, George Washington University, Washington, DC 20037, USA
| | - Vsevolod Y Polotsky
- Department of Medicine, Johns Hopkins University, Baltimore, MD 21224, USA; Department of Anesthesiology and Critical Care Medicine, George Washington University, Washington, DC 20037, USA; Department of Pharmacology and Physiology, George Washington University, Washington, DC 20037, USA.
| |
Collapse
|
4
|
Singer ML, Shin MK, Kim LJ, Freire C, Aung O, Pho H, East JA, Sgambati FP, Latremoliere A, Pham LV, Polotsky VY. The efficacy of intranasal leptin for opioid-induced respiratory depression depends on sex and obesity state. Front Physiol 2023; 14:1320151. [PMID: 38162827 PMCID: PMC10756673 DOI: 10.3389/fphys.2023.1320151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 11/21/2023] [Indexed: 01/03/2024] Open
Abstract
Introduction: Opioid-induced respiratory depression (OIRD) is the primary cause of death associated with opioids and individuals with obesity are particularly susceptible due to comorbid obstructive sleep apnea (OSA). Repeated exposure to opioids, as in the case of pain management, results in diminished therapeutic effect and/or the need for higher doses to maintain the same effect. With limited means to address the negative impact of repeated exposure it is critical to develop drugs that prevent deaths induced by opioids without reducing beneficial analgesia. Methods: We hypothesized that OIRD as a result of chronic opioid use can be attenuated by administration of IN leptin while also maintaining analgesia in both lean mice and mice with diet-induced obesity (DIO) of both sexes. To test this hypothesis, an opioid tolerance protocol was developed and a model of OIRD in mice chronically receiving morphine and tolerant to morphine analgesia was established. Subsequently, breathing was recorded by barometric plethysmography in four experimental groups: obese male, obese female, lean male, and lean female following acute administration of IN leptin. Respiratory data were complemented with measures of arterial blood gas. Operant behavioral assays were used to determine the impact of IN leptin on the analgesic efficacy of morphine. Results: Acute administration of IN leptin significantly attenuated OIRD in DIO male mice decreasing the apnea index by 58.9% and apnea time by 60.1%. In lean mice leptin was ineffective. Blood gas measures confirmed the effectiveness of IN leptin for preventing respiratory acidosis in DIO male mice. However, IN leptin was not effective in lean mice of both sexes and appeared to exacerbate acid-base disturbances in DIO female mice. Additionally, morphine caused a complete loss of temperature aversion which was not reduced by intranasal leptin indicating IN leptin does not decrease morphine analgesia. Discussion: IN leptin effectively treated OIRD in morphine-tolerant DIO male mice without impacting analgesia. In contrast, IN leptin had no effect in lean mice of either sex or DIO female mice. The arterial blood gas data were consistent with ventilatory findings showing that IN leptin reversed morphine-induced respiratory acidosis only in DIO male mice but not in other mouse groups. Finally, a hypercapnic sensitivity study revealed that IN leptin rescued minute ventilation under hypercapnic conditions only in DIO male mice, which suggests that differential responses to IN leptin are attributable to different leptin sensitivities depending on sex and the obesity status.
Collapse
Affiliation(s)
- Michele L. Singer
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Mi-Kyung Shin
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Lenise J. Kim
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Carla Freire
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - O Aung
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Huy Pho
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Joshua A. East
- The Johns Hopkins Center for Interdisciplinary Sleep Research and Education (CISRE), Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Frank P. Sgambati
- The Johns Hopkins Center for Interdisciplinary Sleep Research and Education (CISRE), Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Alban Latremoliere
- Departments of Neurosurgery and Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, United States, United States
| | - Luu V. Pham
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Vsevolod Y. Polotsky
- Department of Anesthesiology and Critical Care Medicine, George Washington University School of Medicine and Health Sciences, Washington, DC, WA, United States
- Department of Pharmacology and Physiology, The George Washington University School of Medicine and Health Sciences, Washington, DC, WA, United States
| |
Collapse
|
5
|
Alvente S, Matteoli G, Miglioranza E, Zoccoli G, Bastianini S. How to study sleep apneas in mouse models of human pathology. J Neurosci Methods 2023; 395:109923. [PMID: 37459897 DOI: 10.1016/j.jneumeth.2023.109923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/28/2023] [Accepted: 07/13/2023] [Indexed: 07/22/2023]
Abstract
Sleep apnea, the most widespread sleep-related breathing disorder (SBD), consists of recurrent episodes of breathing cessation during sleep. This condition can be classified as either central (CSA) or obstructive (OSA) sleep apnea, with the latest being the most common and toxic. Due to the complexity of living organisms, animal models and, particularly, mice still represent an essential tool for the study of SBD. In the present review we first discuss the methodological pros and cons in the use of whole-body plethysmography to coupling respiratory and sleep measurements and to characterize CSA and OSA in mice; then, we draw an updated and objective picture of the methods used so far in the study of sleep apnea in mice. Most of the studies present in the literature used intermittent hypoxia to mimic OSA in mice and to investigate consequent pathological correlates. On the contrary, few studies using genetic manipulation or high-fat diets investigated the pathogenesis or potential treatments of sleep apnea. To date, mice lacking orexins, hemeoxygenase-2, monoamine oxidase A, Phox2b or Cdkl5 can be considered validated mouse models of sleep apnea. Moreover, genetically- or diet-induced obese mice, and mice recapitulating Down syndrome were proposed as OSA models. In conclusion, our review shows that despite the growing interest in the field and the need of new therapeutical approaches, technical complexity and inter-study variability strongly limit the availability of validated mouse of sleep apnea, which are essential in biomedical research.
Collapse
Affiliation(s)
- Sara Alvente
- PRISM Lab, Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Gabriele Matteoli
- PRISM Lab, Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Elena Miglioranza
- PRISM Lab, Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Giovanna Zoccoli
- PRISM Lab, Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Stefano Bastianini
- PRISM Lab, Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy.
| |
Collapse
|
6
|
Horner RL. Targets for obstructive sleep apnea pharmacotherapy: principles, approaches, and emerging strategies. Expert Opin Ther Targets 2023; 27:609-626. [PMID: 37494064 DOI: 10.1080/14728222.2023.2240018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 07/19/2023] [Indexed: 07/27/2023]
Abstract
INTRODUCTION Obstructive sleep apnea (OSA) is a common and serious breathing disorder. Several pathophysiological factors predispose individuals to OSA. These factors are quantifiable, and modifiable pharmacologically. AREAS COVERED Four key pharmacotherapeutic targets are identified and mapped to the major determinants of OSA pathophysiology. PubMed and Clinicaltrials.gov were searched through April 2023. EXPERT OPINION Target #1: Pharyngeal Motor Effectors. Increasing pharyngeal muscle activity and responsivity with noradrenergic-antimuscarinic combination is central to recent breakthrough OSA pharmacotherapy. Assumptions, knowledge gaps, future directions, and other targets are identified. #2: Upper Airway Sensory Afferents. There is translational potential of sensitizing and amplifying reflex pharyngeal dilator muscle responses to negative airway pressure via intranasal delivery of new potassium channel blockers. Rationales, advantages, findings, and potential strategies to enhance effectiveness are identified. #3: Chemosensory Afferents and Ventilatory Control. Strategies to manipulate ventilatory control system sensitivity by carbonic anhydrase inhibitors are supported in theory and initial studies. Intranasal delivery of agents to stimulate central respiratory activity are also introduced. #4: Sleep-Wake Mechanisms. Arousability is the fourth therapeutic target rationalized. Evolving automated tools to measure key pathophysiological factors predisposing to OSA will accelerate pharmacotherapy. Although not currently ready for general clinical settings, the identified targets are of future promise.
Collapse
Affiliation(s)
- Richard L Horner
- Departments of Physiology and Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
7
|
Bateman JT, Saunders SE, Levitt ES. Understanding and countering opioid-induced respiratory depression. Br J Pharmacol 2023; 180:813-828. [PMID: 34089181 PMCID: PMC8997313 DOI: 10.1111/bph.15580] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 05/06/2021] [Accepted: 05/23/2021] [Indexed: 02/06/2023] Open
Abstract
Respiratory depression is the proximal cause of death in opioid overdose, yet the mechanisms underlying this potentially fatal outcome are not well understood. The goal of this review is to provide a comprehensive understanding of the pharmacological mechanisms of opioid-induced respiratory depression, which could lead to improved therapeutic options to counter opioid overdose, as well as other detrimental effects of opioids on breathing. The development of tolerance in the respiratory system is also discussed, as are differences in the degree of respiratory depression caused by various opioid agonists. Finally, potential future therapeutic agents aimed at reversing or avoiding opioid-induced respiratory depression through non-opioid receptor targets are in development and could provide certain advantages over naloxone. By providing an overview of mechanisms and effects of opioids in the respiratory network, this review will benefit future research on countering opioid-induced respiratory depression. LINKED ARTICLES: This article is part of a themed issue on Advances in Opioid Pharmacology at the Time of the Opioid Epidemic. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v180.7/issuetoc.
Collapse
Affiliation(s)
- Jordan T Bateman
- Department of Pharmacology & Therapeutics, University of Florida, Gainesville, Florida, USA
| | - Sandy E Saunders
- Department of Pharmacology & Therapeutics, University of Florida, Gainesville, Florida, USA
| | - Erica S Levitt
- Department of Pharmacology & Therapeutics, University of Florida, Gainesville, Florida, USA
- Breathing Research and Therapeutics Center, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
8
|
Kim LJ, Alexandre C, Pho H, Latremoliere A, Polotsky VY, Pham LV. Diet-induced obesity leads to sleep fragmentation independently of the severity of sleep-disordered breathing. J Appl Physiol (1985) 2022; 133:1284-1294. [PMID: 36201322 PMCID: PMC9678416 DOI: 10.1152/japplphysiol.00386.2022] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/14/2022] [Accepted: 09/28/2022] [Indexed: 11/22/2022] Open
Abstract
Obesity is associated with sleep-disordered breathing (SDB) and unrefreshing sleep. Residual daytime sleepiness and sleep impairments often persist after SDB treatment in patients with obesity, which suggests an independent effect of obesity on breathing and sleep. However, examining the relationship between sleep architecture and SDB in patients with obesity is complex and can be confounded by multiple factors. The main goal of this study was to examine the relationship between obesity-related changes in sleep architecture and SDB. Sleep recordings were performed in 15 lean C57BL/6J and 17 diet-induced obesity (DIO) mice of the same genetic background. Arousals from sleep and apneas were manually scored. Respiratory arousals were classified as events associated with ≥30% drops in minute ventilation (VE) from baseline. We applied Poincaré analysis of VE during sleep to estimate breathing variability. Obesity augmented the frequency of arousals by 45% and this increase was independent of apneas. Respiratory arousals comprised only 15% of the arousals in both groups of mice. Breathing variability during non-rapid-eye-movment (NREM) sleep was significantly higher in DIO mice, but it was not associated with arousal frequency. Our results suggest that obesity induces sleep fragmentation independently of SDB severity.NEW & NOTEWORTHY Our diet-induced obesity (DIO) model reproduces sleep features of human obesity, including sleep fragmentation, increased apnea frequency, and larger breathing variability. DIO induces sleep fragmentation independently of apnea severity. Sleep fragmentation in DIO mice is mainly attributed to non-respiratory arousals. Increased breathing variability during sleep did not account for the higher arousal frequency in DIO. Our results provide a rationale to examine sleep in patients with obesity even when they are adequately treated for sleep-disordered breathing.
Collapse
Affiliation(s)
- Lenise J Kim
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Chloe Alexandre
- Department of Neurosurgery, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Huy Pho
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Alban Latremoliere
- Department of Neurosurgery, The Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Vsevolod Y Polotsky
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Luu V Pham
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
9
|
Freire C, Ramsey JD, Pho H, Kojima R, Zhao Y, Kim L, Anokye-Danso F, Berger S, Ahima RS, Batrakova EV, Kabanov AV, Polotsky VY. Leptin-loaded Extracellular Vesicles Treat Sleep-disordered Breathing in Mice with Obesity. Am J Respir Cell Mol Biol 2022; 67:720-723. [PMID: 36454084 PMCID: PMC9743189 DOI: 10.1165/rcmb.2022-0229le] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Affiliation(s)
- Carla Freire
- The Johns Hopkins School of MedicineBaltimore, Maryland
| | - Jacob D. Ramsey
- University of North Carolina at Chapel HillChapel Hill, North Carolina
| | - Huy Pho
- The Johns Hopkins School of MedicineBaltimore, Maryland
| | - Ryo Kojima
- University of North Carolina at Chapel HillChapel Hill, North Carolina
| | - Yuling Zhao
- University of North Carolina at Chapel HillChapel Hill, North Carolina
| | - Lenise Kim
- The Johns Hopkins School of MedicineBaltimore, Maryland
| | | | - Slava Berger
- The Johns Hopkins School of MedicineBaltimore, Maryland
| | | | | | - Alexander V. Kabanov
- University of North Carolina at Chapel HillChapel Hill, North Carolina
- M.V. Lomonosov Moscow State UniversityMoscow, Russia
| | | |
Collapse
|
10
|
Eckert DJ, Yaggi HK. Opioid Use Disorder, Sleep Deficiency, and Ventilatory Control: Bidirectional Mechanisms and Therapeutic Targets. Am J Respir Crit Care Med 2022; 206:937-949. [PMID: 35649170 PMCID: PMC9801989 DOI: 10.1164/rccm.202108-2014ci] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 05/31/2022] [Indexed: 01/07/2023] Open
Abstract
Opioid use continues to rise globally. So too do the associated adverse consequences. Opioid use disorder (OUD) is a chronic and relapsing brain disease characterized by loss of control over opioid use and impairments in cognitive function, mood, pain perception, and autonomic activity. Sleep deficiency, a term that encompasses insufficient or disrupted sleep due to multiple potential causes, including sleep disorders, circadian disruption, and poor sleep quality or structure due to other medical conditions and pain, is present in 75% of patients with OUD. Sleep deficiency accompanies OUD across the spectrum of this addiction. The focus of this concise clinical review is to highlight the bidirectional mechanisms between OUD and sleep deficiency and the potential to target sleep deficiency with therapeutic interventions to promote long-term, healthy recovery among patients in OUD treatment. In addition, current knowledge on the effects of opioids on sleep quality, sleep architecture, sleep-disordered breathing, sleep apnea endotypes, ventilatory control, and implications for therapy and clinical practice are highlighted. Finally, an actionable research agenda is provided to evaluate the basic mechanisms of the relationship between sleep deficiency and OUD and the potential for behavioral, pharmacologic, and positive airway pressure treatments targeting sleep deficiency to improve OUD treatment outcomes.
Collapse
Affiliation(s)
- Danny J. Eckert
- Adelaide Institute for Sleep Health, Flinders Health and Medical Research Institute, Flinders University, Bedford Park, South Australia, Australia
| | - H. Klar Yaggi
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut; and
- Clinical Epidemiology Research Center, Veterans Administration Connecticut Healthcare System, West Haven, Connecticut
| |
Collapse
|
11
|
Amorim MR, Aung O, Mokhlesi B, Polotsky VY. Leptin-mediated neural targets in obesity hypoventilation syndrome. Sleep 2022; 45:zsac153. [PMID: 35778900 PMCID: PMC9453616 DOI: 10.1093/sleep/zsac153] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 06/20/2022] [Indexed: 07/30/2023] Open
Abstract
Obesity hypoventilation syndrome (OHS) is defined as daytime hypercapnia in obese individuals in the absence of other underlying causes. In the United States, OHS is present in 10%-20% of obese patients with obstructive sleep apnea and is linked to hypoventilation during sleep. OHS leads to high cardiorespiratory morbidity and mortality, and there is no effective pharmacotherapy. The depressed hypercapnic ventilatory response plays a key role in OHS. The pathogenesis of OHS has been linked to resistance to an adipocyte-produced hormone, leptin, a major regulator of metabolism and control of breathing. Mechanisms by which leptin modulates the control of breathing are potential targets for novel therapeutic strategies in OHS. Recent advances shed light on the molecular pathways related to the central chemoreceptor function in health and disease. Leptin signaling in the nucleus of the solitary tract, retrotrapezoid nucleus, hypoglossal nucleus, and dorsomedial hypothalamus, and anatomical projections from these nuclei to the respiratory control centers, may contribute to OHS. In this review, we describe current views on leptin-mediated mechanisms that regulate breathing and CO2 homeostasis with a focus on potential therapeutics for the treatment of OHS.
Collapse
Affiliation(s)
- Mateus R Amorim
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - O Aung
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Babak Mokhlesi
- Department of Internal Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, Rush University Medical Center, Chicago, IL, USA
| | - Vsevolod Y Polotsky
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
12
|
Glovak ZT, Baghdoyan HA, Lydic R. Fentanyl and neostigmine delivered to mouse prefrontal cortex differentially alter breathing. Respir Physiol Neurobiol 2022; 303:103924. [PMID: 35662641 DOI: 10.1016/j.resp.2022.103924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 05/13/2022] [Accepted: 05/29/2022] [Indexed: 11/17/2022]
Abstract
Opioids impair many functions modulated by the prefrontal cortex (PFC), including wakefulness, cognition, and breathing. In contrast, cholinergic activity in the PFC increases wakefulness. This study tested the hypothesis that microinjecting the opioid fentanyl and the acetylcholinesterase inhibitor neostigmine into the PFC of awake C57BL/6J male mice (n = 27) alters breathing. The lateral and medial PFC were unilaterally microinjected with saline (control) and fentanyl. The medial PFC received additional microinjections of neostigmine. The results show that fentanyl caused site-specific changes in breathing. Fentanyl delivered to the lateral PFC significantly decreased minute ventilation variability, whereas fentanyl delivered to the medial PFC significantly increased tidal volume and duty cycle. Neostigmine microinjected into the medial PFC significantly increased respiratory rate, tidal volume, and minute ventilation. A final series of experiments revealed that decreased minute ventilation caused by systemic fentanyl administration was mitigated by PFC microinjection of neostigmine.
Collapse
Affiliation(s)
- Zachary T Glovak
- Department of Psychology, University of Tennessee, Knoxville TN 37996, USA
| | - Helen A Baghdoyan
- Department of Psychology, University of Tennessee, Knoxville TN 37996, USA; Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Ralph Lydic
- Department of Psychology, University of Tennessee, Knoxville TN 37996, USA; Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA.
| |
Collapse
|
13
|
Langstengel J, Yaggi HK. Sleep Deficiency and Opioid Use Disorder: Trajectory, Mechanisms, and Interventions. Clin Chest Med 2022; 43:e1-e14. [PMID: 35659031 PMCID: PMC10018646 DOI: 10.1016/j.ccm.2022.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Opioid use disorder (OUD) is a chronic and relapsing brain disease characterized by loss of control over opioid use and impairments in cognitive function, mood, pain perception, and autonomic activity. Sleep deficiency, a term that encompasses insufficient or disrupted sleep due to multiple potential causes, including sleep disorders (eg, insomnia, sleep apnea), circadian disruption (eg, delayed sleep phase and social jet lag), and poor sleep quality (eg, sleep fragmentation, impaired sleep architecture), is present in greater than 75% of patients with OUD. This article focuses on highlighting bidirectional mechanisms between OUD and sleep deficiency and points toward promising therapeutic targets.
Collapse
Affiliation(s)
- Jennifer Langstengel
- Department of Internal Medicine, Section of Pulmonary, Critical Care, and Sleep Medicine, Yale University School of Medicine, 300 Cedar Street, PO Box 208057, New Haven, CT 06520-8057, USA
| | - H Klar Yaggi
- Department of Internal Medicine, Section of Pulmonary, Critical Care, and Sleep Medicine, Yale University School of Medicine, 300 Cedar Street, PO Box 208057, New Haven, CT 06520-8057, USA; Clinical Epidemiology Research Center (CERC), VA Connecticut Healthcare System, West Haven, CT, USA.
| |
Collapse
|
14
|
Ihrie MD, McQuade VL, Womble JT, Hegde A, McCravy MS, Lacuesta CVG, Tighe RM, Que LG, Walker JKL, Ingram JL. Exogenous leptin enhances markers of airway fibrosis in a mouse model of chronic allergic airways disease. Respir Res 2022; 23:131. [PMID: 35610699 PMCID: PMC9131622 DOI: 10.1186/s12931-022-02048-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 05/09/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Asthma patients with comorbid obesity exhibit increased disease severity, in part, due to airway remodeling, which is also observed in mouse models of asthma and obesity. A mediator of remodeling that is increased in obesity is leptin. We hypothesized that in a mouse model of allergic airways disease, mice receiving exogenous leptin would display increased airway inflammation and fibrosis. METHODS Five-week-old male and female C57BL/6J mice were challenged with intranasal house dust mite (HDM) allergen or saline 5 days per week for 6 weeks (n = 6-9 per sex, per group). Following each HDM exposure, mice received subcutaneous recombinant human leptin or saline. At 48 h after the final HDM challenge, lung mechanics were evaluated and the mice were sacrificed. Bronchoalveolar lavage was performed and differential cell counts were determined. Lung tissue was stained with Masson's trichrome, periodic acid-Schiff, and hematoxylin and eosin stains. Mouse lung fibroblasts were cultured, and whole lung mRNA was isolated. RESULTS Leptin did not affect mouse body weight, but HDM+leptin increased baseline blood glucose. In mixed-sex groups, leptin increased mouse lung fibroblast invasiveness and increased lung Col1a1 mRNA expression. Total lung resistance and tissue damping were increased with HDM+leptin treatment, but not leptin or HDM alone. Female mice exhibited enhanced airway responsiveness to methacholine with HDM+leptin treatment, while leptin alone decreased total respiratory system resistance in male mice. CONCLUSIONS In HDM-induced allergic airways disease, administration of exogenous leptin to mice enhanced lung resistance and increased markers of fibrosis, with differing effects between males and females.
Collapse
Affiliation(s)
- Mark D Ihrie
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Duke University, Durham, NC, USA
| | - Victoria L McQuade
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Duke University, Durham, NC, USA
| | - Jack T Womble
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Duke University, Durham, NC, USA
| | - Akhil Hegde
- School of Nursing, Duke University, Durham, NC, USA
| | - Matthew S McCravy
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Duke University, Durham, NC, USA
| | | | - Robert M Tighe
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Duke University, Durham, NC, USA
| | - Loretta G Que
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Duke University, Durham, NC, USA
| | - Julia K L Walker
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Duke University, Durham, NC, USA
- School of Nursing, Duke University, Durham, NC, USA
| | - Jennifer L Ingram
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Duke University, Durham, NC, USA.
- , Durham, USA.
| |
Collapse
|
15
|
Pho H, Amorim MR, Qiu Q, Shin M, Kim LJ, Anokye‐Danso F, Jun JJ, Ahima RS, Branco LGS, Kuhn DM, Mateika JH, Polotsky VY. The effect of brain serotonin deficiency on breathing is magnified by age. Physiol Rep 2022; 10:e15245. [PMID: 35581741 PMCID: PMC9114658 DOI: 10.14814/phy2.15245] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/25/2022] [Accepted: 03/13/2022] [Indexed: 11/24/2022] Open
Abstract
Serotonin is an important mediator modulating behavior, metabolism, sleep, control of breathing, and upper airway function, but the role of aging in serotonin-mediated effects has not been previously defined. Our study aimed to examine the effect of brain serotonin deficiency on breathing during sleep and metabolism in younger and older mice. We measured breathing during sleep, hypercapnic ventilatory response (HCVR), CO2 production (VCO2 ), and O2 consumption (VO2 ) in 16-18-week old and 40-44-week old mice with deficiency of tryptophan hydroxylase 2 (Tph2), which regulates serotonin synthesis specifically in neurons, compared to Tph2+/+ mice. As expected, aging decreased VCO2 and VO2 . Tph2 knockout resulted in an increase in both metabolic indexes and no interaction between age and the genotype was observed. During wakefulness, neither age nor genotype had an effect on minute ventilation. The genotype did not affect hypercapnic sensitivity in younger mice. During sleep, Tph2-/- mice showed significant decreases in maximal inspiratory flow in NREM sleep, respiratory rate, and oxyhemoglobin saturation in REM sleep, compared to wildtype, regardless of age. Neither serotonin deficiency nor aging affected the frequency of flow limited breaths (a marker of upper airway closure) or apneas. Serotonin deficiency increased the amount and efficiency of sleep only in older animals. In conclusion, younger Tph2-/- mice were able to defend their ventilation and phenotypically did not differ from wildtype during wakefulness. In contrast, both young and old Tph2-/- mice showed sleep-related hypoventilation, which was manifested by hypoxemia during REM sleep.
Collapse
Affiliation(s)
- Huy Pho
- Division of Pulmonary and Critical Care MedicineDepartment of MedicineJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Mateus R. Amorim
- Division of Pulmonary and Critical Care MedicineDepartment of MedicineJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Qingchao Qiu
- Department of PhysiologyWayne State UniversityDetroitMichiganUSA
| | - Mi‐Kyung Shin
- Division of Pulmonary and Critical Care MedicineDepartment of MedicineJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Lenise J. Kim
- Division of Pulmonary and Critical Care MedicineDepartment of MedicineJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Frederick Anokye‐Danso
- Division of Endocrinology, Diabetes, and MetabolismDepartment of MedicineJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Jonathan J. Jun
- Division of Pulmonary and Critical Care MedicineDepartment of MedicineJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Rexford S. Ahima
- Division of Endocrinology, Diabetes, and MetabolismDepartment of MedicineJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Luiz G. S. Branco
- Dental School of Ribeirão PretoUniversity of São PauloSão PauloBrazil
| | - Donald M. Kuhn
- Department of Psychiatry and Behavioral NeurosciencesWayne State University School of MedicineDetroitMichiganUSA
- John D. Dingell Veterans Affairs Medical CenterDetroitMichiganUSA
| | - Jason H. Mateika
- Department of PhysiologyWayne State UniversityDetroitMichiganUSA
- John D. Dingell Veterans Affairs Medical CenterDetroitMichiganUSA
- Department of Internal MedicineWayne State University School of MedicineDetroitMichiganUSA
| | - Vsevolod Y. Polotsky
- Division of Pulmonary and Critical Care MedicineDepartment of MedicineJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| |
Collapse
|
16
|
Glovak ZT, Angel C, O'Brien CB, Baghdoyan HA, Lydic R. Buprenorphine differentially alters breathing among four congenic mouse lines as a function of dose, sex, and leptin status. Respir Physiol Neurobiol 2022; 297:103834. [PMID: 34954128 PMCID: PMC8810735 DOI: 10.1016/j.resp.2021.103834] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 12/01/2021] [Accepted: 12/20/2021] [Indexed: 01/29/2023]
Abstract
The opioid buprenorphine alters breathing and the cytokine leptin stimulates breathing. Obesity increases the risk for respiratory disorders and can lead to leptin resistance. This study tested the hypothesis that buprenorphine causes dose-dependent changes in breathing that vary as a function of obesity, leptin status, and sex. Breathing measures were acquired from four congenic mouse lines: female and male wild type C57BL/6J (B6) mice, obese db/db and ob/ob mice with leptin dysfunction, and male B6 mice with diet-induced obesity. Mice were injected intraperitoneally with saline (control) and five doses of buprenorphine (0.1, 0.3, 1.0, 3.0, 10 mg/kg). Buprenorphine caused dose-dependent decreases in respiratory frequency while increasing tidal volume, minute ventilation, and respiratory duty cycle. The effects of buprenorphine varied significantly with leptin status and sex. Buprenorphine decreased minute ventilation variability in all mice. The present findings highlight leptin status as an important modulator of respiration and encourage future studies aiming to elucidate the mechanisms through which leptin status alters breathing.
Collapse
Affiliation(s)
- Zachary T Glovak
- Psychology, University of Tennessee, Knoxville, TN, 37996, United States
| | - Chelsea Angel
- Anesthesiology, University of Michigan Health System, Ann Arbor, MI, 48105, United States
| | | | - Helen A Baghdoyan
- Psychology, University of Tennessee, Knoxville, TN, 37996, United States; Oak Ridge National Laboratory, Oak Ridge, TN, 37831, United States
| | - Ralph Lydic
- Psychology, University of Tennessee, Knoxville, TN, 37996, United States; Oak Ridge National Laboratory, Oak Ridge, TN, 37831, United States.
| |
Collapse
|
17
|
Freire C, Sennes LU, Polotsky VY. Opioids and obstructive sleep apnea. J Clin Sleep Med 2022; 18:647-652. [PMID: 34672945 PMCID: PMC8805010 DOI: 10.5664/jcsm.9730] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 10/13/2021] [Accepted: 10/15/2021] [Indexed: 02/03/2023]
Abstract
Opioids are widely prescribed for pain management, and it is estimated that 40% of adults in the United States use prescription opioids every year. Opioid misuse leads to high mortality, with respiratory depression as the main cause of death. Animal and human studies indicate that opioid use may lead to sleep-disordered breathing. Opioids affect control of breathing and impair upper airway function, causing central apneas, upper airway obstruction, and hypoxemia during sleep. The presence of obstructive sleep apnea (OSA) increases the risk of opioid-induced respiratory depression. However, even if the relationship between opioids and central sleep apnea is firmly established, the question of whether opioids can aggravate OSA remains unanswered. While several reports have shown a high prevalence of OSA and nocturnal hypoxemia in patients receiving a high dose of opioids, other studies did not find a correlation between opioid use and obstructive events. These differences can be attributed to considerable interindividual variability, divergent effects of opioids on different phenotypic traits of OSA, and wide-ranging methodology. This review will discuss mechanistic insights into the effects of opioids on the upper airway and hypoglossal motor activity and the association of opioid use and obstructive sleep apnea. CITATION Freire C, Sennes LU, Polotsky VY. Opioids and obstructive sleep apnea. J Clin Sleep Med. 2022;18(2):647-652.
Collapse
Affiliation(s)
- Carla Freire
- Johns Hopkins Sleep Disorders Center, Baltimore, Maryland
- Otolaryngology Department, University of São Paulo, Sao Paulo, Brazil
| | - Luiz U. Sennes
- Otolaryngology Department, University of São Paulo, Sao Paulo, Brazil
| | | |
Collapse
|
18
|
Abstract
Opiates, such as morphine, and synthetic opioids, such as fentanyl, constitute a class of drugs acting on opioid receptors which have been used therapeutically and recreationally for centuries. Opioid drugs have strong analgesic properties and are used to treat moderate to severe pain, but also present side effects including opioid dependence, tolerance, addiction, and respiratory depression, which can lead to lethal overdose if not treated. This chapter explores the pathophysiology, the neural circuits, and the cellular mechanisms underlying opioid-induced respiratory depression and provides a translational perspective of the most recent research. The pathophysiology discussed includes the effects of opioid drugs on the respiratory system in patients, as well as the animal models used to identify underlying mechanisms. Using a combination of gene editing and pharmacology, the neural circuits and molecular pathways mediating neuronal inhibition by opioids are examined. By using pharmacology and neuroscience approaches, new therapies to prevent or reverse respiratory depression by opioid drugs have been identified and are currently being developed. Considering the health and economic burden associated with the current opioid epidemic, innovative research is needed to better understand the side effects of opioid drugs and to discover new therapeutic solutions to reduce the incidence of lethal overdoses.
Collapse
|
19
|
Abstract
Obstructive sleep apnea (OSA) is a disease that results from loss of upper airway muscle tone leading to upper airway collapse during sleep in anatomically susceptible persons, leading to recurrent periods of hypoventilation, hypoxia, and arousals from sleep. Significant clinical consequences of the disorder cover a wide spectrum and include daytime hypersomnolence, neurocognitive dysfunction, cardiovascular disease, metabolic dysfunction, respiratory failure, and pulmonary hypertension. With escalating rates of obesity a major risk factor for OSA, the public health burden from OSA and its sequalae are expected to increase, as well. In this chapter, we review the mechanisms responsible for the development of OSA and associated neurocognitive and cardiometabolic comorbidities. Emphasis is placed on the neural control of the striated muscles that control the pharyngeal passages, especially regulation of hypoglossal motoneuron activity throughout the sleep/wake cycle, the neurocognitive complications of OSA, and the therapeutic options available to treat OSA including recent pharmacotherapeutic developments.
Collapse
Affiliation(s)
- Luu V Pham
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University, Baltimore, MD, United States.
| | - Jonathan Jun
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University, Baltimore, MD, United States
| | - Vsevolod Y Polotsky
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
20
|
Kim LJ, Shin MK, Pho H, Otvos L, Tufik S, Andersen ML, Pham LV, Polotsky VY. Leptin Receptor Blockade Attenuates Hypertension, but Does Not Affect Ventilatory Response to Hypoxia in a Model of Polygenic Obesity. Front Physiol 2021; 12:688375. [PMID: 34276408 PMCID: PMC8283021 DOI: 10.3389/fphys.2021.688375] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/15/2021] [Indexed: 12/24/2022] Open
Abstract
Background Obesity can cause hypertension and exacerbates sleep-disordered breathing (SDB). Leptin is an adipocyte-produced hormone, which increases metabolic rate, suppresses appetite, modulates control of breathing, and increases blood pressure. Obese individuals with high circulating levels of leptin are resistant to metabolic and respiratory effects of leptin, but they appear to be sensitive to hypertensive effects of this hormone. Obesity-induced hypertension has been associated with hyperleptinemia. New Zealand obese (NZO) mice, a model of polygenic obesity, have high levels of circulating leptin and hypertension, and are prone to develop SDB, similarly to human obesity. We hypothesize that systemic leptin receptor blocker Allo-aca will treat hypertension in NZO mice without any effect on body weight, food intake, or breathing. Methods Male NZO mice, 12–13 weeks of age, were treated with Allo-aca (n = 6) or a control peptide Gly11 (n = 12) for 8 consecutive days. Doses of 0.2 mg/kg were administered subcutaneously 2×/day, at 10 AM and 6 PM. Blood pressure was measured by telemetry for 48 h before and during peptide infusion. Ventilation was assessed by whole-body barometric plethysmography, control of breathing was examined by assessing the hypoxic ventilatory response (HVR), and polysomnography was performed during light-phase at baseline and during treatment. Heart rate variability analyses were performed to estimate the cardiac autonomic balance. Results Systemic leptin receptor blockade with Allo-aca did not affect body weight, body temperature, and food intake in NZO mice. Plasma levels of leptin did not change after the treatment with either Allo-aca or the control peptide Gy11. NZO mice were hypertensive at baseline and leptin receptor blocker Allo-aca significantly reduced the mean arterial pressure from 134.9 ± 3.1 to 124.9 ± 5.7 mmHg during the light phase (P < 0.05), whereas the control peptide had no effect. Leptin receptor blockade did not change the heart rate or cardiac autonomic balance. Allo-aca did not affect minute ventilation under normoxic or hypoxic conditions and HVR. Ventilation, apnea index, and oxygen desaturation during NREM and REM sleep did not change with leptin receptor blockade. Conclusion Systemic leptin receptor blockade attenuates hypertension in NZO mice, but does not exacerbate obesity and SDB. Thus, leptin receptor blockade represents a potential pharmacotherapy for obesity-associated hypertension.
Collapse
Affiliation(s)
- Lenise J Kim
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Mi-Kyung Shin
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Huy Pho
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Laszlo Otvos
- Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary.,Arrevus, Inc., Raleigh, NC, United States.,OLPE, LLC, Audubon, PA, United States
| | - Sergio Tufik
- Department of Psychobiology, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Monica L Andersen
- Department of Psychobiology, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Luu V Pham
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Vsevolod Y Polotsky
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
21
|
Pho H, Berger S, Freire C, Kim LJ, Shin MK, Streeter SR, Hosamane N, Cabassa ME, Anokye-Danso F, Dergacheva O, Amorim MR, Fleury-Curado T, Jun JC, Schwartz AR, Ahima RS, Mendelowitz D, Polotsky VY. Leptin receptor expression in the dorsomedial hypothalamus stimulates breathing during NREM sleep in db/db mice. Sleep 2021; 44:6149135. [PMID: 33624805 PMCID: PMC8193564 DOI: 10.1093/sleep/zsab046] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 02/06/2021] [Indexed: 12/12/2022] Open
Abstract
STUDY OBJECTIVES Obesity leads to obstructive sleep apnea (OSA), which is recurrent upper airway obstruction during sleep, and obesity hypoventilation syndrome (OHS), hypoventilation during sleep resulting in daytime hypercapnia. Impaired leptin signaling in the brain was implicated in both conditions, but mechanisms are unknown. We have previously shown that leptin stimulates breathing and treats OSA and OHS in leptin-deficient ob/ob mice and leptin-resistant diet-induced obese mice and that leptin's respiratory effects may occur in the dorsomedial hypothalamus (DMH). We hypothesized that leptin receptor LepRb-deficient db/db mice have obesity hypoventilation and that restoration of leptin signaling in the DMH will increase ventilation during sleep in these animals. METHODS We measured arterial blood gas in unanesthetized awake db/db mice. We subsequently infected these animals with Ad-LepRb or control Ad-mCherry virus into the DMH and measured ventilation during sleep as well as CO2 production after intracerebroventricular (ICV) infusions of phosphate-buffered saline or leptin. RESULTS Awake db/db mice had elevated CO2 levels in the arterial blood. Ad-LepRb infection resulted in LepRb expression in the DMH neurons in a similar fashion to wildtype mice. In LepRb-DMH db/db mice, ICV leptin shortened REM sleep and increased inspiratory flow, tidal volume, and minute ventilation during NREM sleep without any effect on the quality of NREM sleep or CO2 production. Leptin had no effect on upper airway obstruction in these animals. CONCLUSION Leptin stimulates breathing and treats obesity hypoventilation acting on LepRb-positive neurons in the DMH.
Collapse
Affiliation(s)
- Huy Pho
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Slava Berger
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Carla Freire
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Lenise J Kim
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Mi-Kyung Shin
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Stone R Streeter
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Nishitha Hosamane
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Meaghan E Cabassa
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Frederick Anokye-Danso
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Olga Dergacheva
- Department of Pharmacology and Physiology, George Washington University, Washington, DC, USA
| | - Mateus R Amorim
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Thomaz Fleury-Curado
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jonathan C Jun
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Alan R Schwartz
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Otorhinolaryngology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Rexford S Ahima
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - David Mendelowitz
- Department of Pharmacology and Physiology, George Washington University, Washington, DC, USA
| | - Vsevolod Y Polotsky
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Corresponding author. Vsevolod (Seva) Y. Polotsky, Division of Pulmonary and Critical Care Medicine, Department of Medicine, The Johns Hopkins University School of Medicine, 5501 Hopkins Bayview Circle, Johns Hopkins Asthma and Allergy Center, Rm 4B65, Baltimore, MD 21224.
| |
Collapse
|
22
|
Lingappan K. Does the Epigenome Hold Clues to Leptin-associated Hypertension in Obesity? Am J Respir Cell Mol Biol 2021; 65:132-133. [PMID: 34029509 PMCID: PMC8399570 DOI: 10.1165/rcmb.2021-0199ed] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
23
|
Freire C, Pho H, Bevans-Fonti S, Sennes LU, Polotsky VY. Intranasal leptin improves survival after opioid overdose in a mouse model. J Transl Med 2021; 19:134. [PMID: 33789690 PMCID: PMC8010489 DOI: 10.1186/s12967-021-02803-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 03/19/2021] [Indexed: 02/06/2023] Open
Affiliation(s)
- Carla Freire
- Johns Hopkins Sleep Disorders Center, 5501 Hopkins Bayview Circle, room 5A.50, Baltimore, MD, 21224, USA. .,Otolaryngology Department, University of São Paulo, Sao Paulo, Brazil.
| | - Huy Pho
- Johns Hopkins Sleep Disorders Center, 5501 Hopkins Bayview Circle, room 5A.50, Baltimore, MD, 21224, USA
| | - Shannon Bevans-Fonti
- Johns Hopkins Sleep Disorders Center, 5501 Hopkins Bayview Circle, room 5A.50, Baltimore, MD, 21224, USA
| | - Luiz U Sennes
- Otolaryngology Department, University of São Paulo, Sao Paulo, Brazil
| | - Vsevolod Y Polotsky
- Johns Hopkins Sleep Disorders Center, 5501 Hopkins Bayview Circle, room 5A.50, Baltimore, MD, 21224, USA
| |
Collapse
|
24
|
Prasad B, Chowdhuri S. Will Intranasal Leptin Mitigate Opioid-induced Sleep-disordered Breathing? Am J Respir Cell Mol Biol 2020; 63:410-412. [PMID: 32790505 PMCID: PMC7528931 DOI: 10.1165/rcmb.2020-0318ed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Bharati Prasad
- Division of Pulmonary, Critical Care, Sleep and Allergy University of Illinois at Chicago and Jesse Brown Veterans Affairs Medical Center Chicago, Illinois
| | - Susmita Chowdhuri
- Sleep Medicine Section John D. Dingell Veterans Affairs Medical Center Detroit, Michigan and.,Department of Medicine Wayne State University School of Medicine Detroit, Michigan
| |
Collapse
|