1
|
Zhao J, Yu W, Zhou D, Liu Y, Wei J, Bi L, Zhao S, He J, Liu J, Su J, Jin H, Liu Y, Shan H, Li M, Zhang Y, Li Y. Delineating, Imaging, and Assessing Pulmonary Fibrosis Remodeling via Collagen Hybridization. ACS NANO 2024; 18:27997-28011. [PMID: 39361472 DOI: 10.1021/acsnano.4c06139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive, life-threatening disease with no early detection, few treatments, and dismal outcomes. Although collagen overdeposition is a hallmark of lung fibrosis, current research mostly focuses on the cellular aspect, leaving collagen, particularly its dynamic remodeling (i.e., degradation and turnover), largely unexplored. Here, using a collagen hybridizing peptide (CHP) that specifically binds unfolded collagen chains, we reveal vast collagen denaturation in human IPF lungs and delineate the spatiotemporal progression of collagen denaturation three-dimensionally within fibrotic lungs in mice. Transcriptomic analyses support that lung collagen denaturation is strongly associated with up-regulated collagen catabolism in mice and patients. We thus show that CHP probing differentiates remodeling responses to antifibrotics and highlights the resolution of established fibrosis by agents up-regulating collagen catabolism. We further develop a radioactive CHP that detects fibrosis in vivo in mice as early as 7 days postlung-injury (Ashcroft score: 2-3) by positron emission tomography (PET) imaging and ex vivo in clinical lung specimens. These findings establish collagen denaturation as a promising marker of fibrotic remodeling for the investigation, diagnosis, and therapeutic development of pulmonary fibrosis.
Collapse
Affiliation(s)
- Jie Zhao
- Guangdong Provincial Engineering Research Center of Molecular Imaging, Guangdong-Hong Kong-Macao University Joint Laboratory of Interventional Medicine, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China
| | - Wenjun Yu
- Guangdong Provincial Engineering Research Center of Molecular Imaging, Guangdong-Hong Kong-Macao University Joint Laboratory of Interventional Medicine, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China
- Department of Radiology, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China
| | - Daoning Zhou
- Guangdong Provincial Engineering Research Center of Molecular Imaging, Guangdong-Hong Kong-Macao University Joint Laboratory of Interventional Medicine, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China
| | - Yinghua Liu
- Guangdong Provincial Engineering Research Center of Molecular Imaging, Guangdong-Hong Kong-Macao University Joint Laboratory of Interventional Medicine, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China
| | - Jingyue Wei
- Guangdong Provincial Engineering Research Center of Molecular Imaging, Guangdong-Hong Kong-Macao University Joint Laboratory of Interventional Medicine, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China
- Biobank and Department of Information Technology and Data Center, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China
| | - Lei Bi
- Guangdong Provincial Engineering Research Center of Molecular Imaging, Guangdong-Hong Kong-Macao University Joint Laboratory of Interventional Medicine, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China
| | - Suwen Zhao
- Guangdong Provincial Engineering Research Center of Molecular Imaging, Guangdong-Hong Kong-Macao University Joint Laboratory of Interventional Medicine, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China
| | - Jianzhong He
- Department of Pathology, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China
| | - Jing Liu
- Department of Pulmonary and Critical Care Medicine, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China
| | - Jin Su
- State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510000, China
| | - Hongjun Jin
- Guangdong Provincial Engineering Research Center of Molecular Imaging, Guangdong-Hong Kong-Macao University Joint Laboratory of Interventional Medicine, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China
| | - Ye Liu
- Department of Pathology, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China
| | - Hong Shan
- Guangdong Provincial Engineering Research Center of Molecular Imaging, Guangdong-Hong Kong-Macao University Joint Laboratory of Interventional Medicine, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China
- Department of Interventional Medicine, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China
| | - Man Li
- Guangdong Provincial Engineering Research Center of Molecular Imaging, Guangdong-Hong Kong-Macao University Joint Laboratory of Interventional Medicine, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China
- Biobank and Department of Information Technology and Data Center, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China
| | - Yaqin Zhang
- Department of Radiology, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China
| | - Yang Li
- Guangdong Provincial Engineering Research Center of Molecular Imaging, Guangdong-Hong Kong-Macao University Joint Laboratory of Interventional Medicine, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China
| |
Collapse
|
2
|
Brizio M, Mancini M, Lora M, Joy S, Zhu S, Brilland B, Reinhardt DP, Farge D, Langlais D, Colmegna I. Cytokine priming enhances the antifibrotic effects of human adipose derived mesenchymal stromal cells conditioned medium. Stem Cell Res Ther 2024; 15:329. [PMID: 39334258 PMCID: PMC11438190 DOI: 10.1186/s13287-024-03916-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 09/02/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND Fibrosis is a pathological scarring process characterized by persistent myofibroblast activation with excessive accumulation of extracellular matrix (ECM). Fibrotic disorders represent an increasing burden of disease-associated morbidity and mortality worldwide for which there are limited therapeutic options. Reversing fibrosis requires the elimination of myofibroblasts, remodeling of the ECM, and regeneration of functional tissue. Multipotent mesenchymal stromal cells (MSC) have antifibrotic properties mediated by secreted factors present in their conditioned medium (MSC-CM). However, there are no standardized in vitro assays to predict the antifibrotic effects of human MSC. As a result, we lack evidence on the effect of cytokine priming on MSC's antifibrotic effects. We hypothesize that the MSC-CM promotes fibrosis resolution in vitro and that this effect is enhanced following MSC cytokine priming. METHODS We compared the antifibrotic effects of resting versus interferon gamma (IFN-γ) and tumor necrosis factor alpha (TNF-α) primed MSC-CM in four in vitro assays: prevention of fibroblast activation, myofibroblasts deactivation, ECM degradation and fibrosis resolution in lung explant cultures. Furthermore, we performed transcriptomic analysis of myofibroblasts treated or not with resting or primed MSC-CM and proteomic characterization of resting and primed MSC-CM. RESULTS We isolated MSC from adipose tissue of 8 donors, generated MSC-CM and tested each MSC-CM independently. We report that MSC-CM treatment prevented TGF-β induced fibroblast activation to a similar extent as nintedanib but, in contrast to nintedanib, MSC-CM reduced fibrogenic myofibroblasts (i.e. transcriptomic upregulation of apoptosis, senescence, and inflammatory pathways). These effects were larger when primed rather than resting MSC-CM were used. Priming increased the ability of MSC-CM to remodel the ECM, reducing its content of collagen I and fibronectin, and reduced the fibrotic load in TGF-β treated lung explant cultures. Priming increased the following antifibrotic proteins in MSC-CM: DKK1, MMP-1, MMP-3, follistatin and cathepsin S. Inhibition of DKK1 reduced the antifibrotic effects of MSC-CM. CONCLUSIONS In vitro, MSC-CM promote fibrosis resolution, an effect enhanced following MSC cytokine priming. Specifically, MSC-CM reduces fibrogenic myofibroblasts through apoptosis, senescence, and by enhancing ECM degradation. Future studies will establish the in vivo relevance of MSC priming to fibrosis resolution.
Collapse
Affiliation(s)
- Marianela Brizio
- Division of Experimental Medicine, McGill University, Montreal, QC, Canada
| | - Mathieu Mancini
- Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
- Department of Human Genetics, Dahdaleh Institute of Genomic Medicine, McGill University, Montreal, QC, Canada
| | - Maximilien Lora
- The Research Institute of the McGill University Health Centre (RI-MUHC), Montreal, QC, Canada
| | - Sydney Joy
- Division of Experimental Medicine, McGill University, Montreal, QC, Canada
| | - Shirley Zhu
- Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
| | - Benoit Brilland
- Department of Human Genetics, Dahdaleh Institute of Genomic Medicine, McGill University, Montreal, QC, Canada
- Service de Néphrologie-Dialyse-Transplantation, CHU Angers, Angers, France
- Univ Angers, Nantes Université, Inserm, CNRS, ICAT, CRCI2NA, Angers, SFR, France
| | - Dieter P Reinhardt
- Faculty of Medicine and Health Sciences, Department of Anatomy and Cell Biology, McGill University, Montreal, QC, Canada
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC, Canada
| | - Dominique Farge
- Division of Experimental Medicine, McGill University, Montreal, QC, Canada
- Internal Médicine Unit (04): CRMR MATHEC, Maladies Auto-Immunes Et Thérapie Cellulaire, AP-HP, Hôpital Saint-Louis, Université Paris Cité, Centre de Référence Des Maladies Auto-Immunes Systémiques Rares d'Ile-de-France, Paris, France
| | - David Langlais
- Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
- Department of Human Genetics, Dahdaleh Institute of Genomic Medicine, McGill University, Montreal, QC, Canada
| | - Inés Colmegna
- Division of Experimental Medicine, McGill University, Montreal, QC, Canada.
- Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada.
- The Research Institute of the McGill University Health Centre (RI-MUHC), Montreal, QC, Canada.
- Division of Rheumatology, McGill University Health Centre, Montreal, QC, Canada.
| |
Collapse
|
3
|
Somanader DVN, Zhao P, Widdop RE, Samuel CS. The involvement of the Wnt/β-catenin signaling cascade in fibrosis progression and its therapeutic targeting by relaxin. Biochem Pharmacol 2024; 223:116130. [PMID: 38490518 DOI: 10.1016/j.bcp.2024.116130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/06/2024] [Accepted: 03/12/2024] [Indexed: 03/17/2024]
Abstract
Organ scarring, referred to as fibrosis, results from a failed wound-healing response to chronic tissue injury and is characterised by the aberrant accumulation of various extracellular matrix (ECM) components. Once established, fibrosis is recognised as a hallmark of stiffened and dysfunctional tissues, hence, various fibrosis-related diseases collectively contribute to high morbidity and mortality in developed countries. Despite this, these diseases are ineffectively treated by currently-available medications. The pro-fibrotic cytokine, transforming growth factor (TGF)-β1, has emerged as the master regulator of fibrosis progression, owing to its ability to promote various factors and processes that facilitate rapid ECM synthesis and deposition, whilst negating ECM degradation. TGF-β1 signal transduction is tightly controlled by canonical (Smad-dependent) and non-canonical (MAP kinase- and Rho-associated protein kinase-dependent) intracellular protein activity, whereas its pro-fibrotic actions can also be facilitated by the Wnt/β-catenin pathway. This review outlines the pathological sequence of events and contributing roles of TGF-β1 in the progression of fibrosis, and how the Wnt/β-catenin pathway contributes to tissue repair in acute disease settings, but to fibrosis and related tissue dysfunction in synergy with TGF-β1 in chronic diseases. It also outlines the anti-fibrotic and related signal transduction mechanisms of the hormone, relaxin, that are mediated via its negative modulation of TGF-β1 and Wnt/β-catenin signaling, but through the promotion of Wnt/β-catenin activity in acute disease settings. Collectively, this highlights that the crosstalk between TGF-β1 signal transduction and the Wnt/β-catenin cascade may provide a therapeutic target that can be exploited to broadly treat and reverse established fibrosis.
Collapse
Affiliation(s)
- Deidree V N Somanader
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute and Department of Pharmacology, Monash University, Clayton, Victoria 3800, Australia
| | - Peishen Zhao
- Drug Discovery Biology Program, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Robert E Widdop
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute and Department of Pharmacology, Monash University, Clayton, Victoria 3800, Australia
| | - Chrishan S Samuel
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute and Department of Pharmacology, Monash University, Clayton, Victoria 3800, Australia; Department of Biochemistry and Pharmacology, University of Melbourne, Parkville, Victoria 3052, Australia.
| |
Collapse
|
4
|
Le Saux CJ, Ho TC, Brumwell AM, Kathiriya JJ, Wei Y, Hughes JWB, Garakani K, Atabai K, Auyeung VC, Papa FR, Chapman HA. BCL-2 Modulates IRE1α Activation to Attenuate Endoplasmic Reticulum Stress and Pulmonary Fibrosis. Am J Respir Cell Mol Biol 2024; 70:247-258. [PMID: 38117250 PMCID: PMC11478128 DOI: 10.1165/rcmb.2023-0109oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 12/19/2023] [Indexed: 12/21/2023] Open
Abstract
BCL-2 family members are known to be implicated in survival in numerous biological settings. Here, we provide evidence that in injury and repair processes in lungs, BCL-2 mainly acts to attenuate endoplasmic reticulum (ER) stress and limit extracellular matrix accumulation. Days after an intratracheal bleomycin challenge, mice lose a fraction of their alveolar type II epithelium from terminal ER stress driven by activation of the critical ER sensor and stress effector IRE1α. This fraction is dramatically increased by BCL-2 inhibition, because IRE1α activation is dependent on its physical association with the BCL-2-proapoptotic family member BAX, and we found BCL-2 to disrupt this association in vitro. In vivo, navitoclax (a BCL-2/BCL-xL inhibitor) given 15-21 days after bleomycin challenge evoked strong activation of IRE-1α in mesenchymal cells and markers of ER stress, but not apoptosis. Remarkably, after BCL-2 inhibition, bleomycin-exposed mice demonstrated persistent collagen accumulation at Day 42, compared with resolution in controls. Enhanced fibrosis proved to be due to the RNAase activity of IRE1α downregulating MRC2 mRNA and protein, a mediator of collagen turnover. The critical role of MRC2 was confirmed in precision-cut lung slice cultures of Day-42 lungs from bleomycin-exposed wild-type and MRC2 null mice. Soluble and tissue collagen accumulated in precision-cut lung slice cultures from navitoclax-treated, bleomycin-challenged mice compared with controls, in a manner nearly identical to that of challenged but untreated MRC2 null mice. Thus, apart from mitochondrial-based antiapoptosis, BCL-2 functions to attenuate ER stress responses, fostering tissue homeostasis and injury repair.
Collapse
Affiliation(s)
- Claude Jourdan Le Saux
- Division of Pulmonary, Critical Care, Allergy, and Sleep Medicine, Department of Medicine, University of California San Francisco, San Francisco, California; and
| | - Tsung Che Ho
- Division of Pulmonary, Critical Care, Allergy, and Sleep Medicine, Department of Medicine, University of California San Francisco, San Francisco, California; and
| | - Alexis M. Brumwell
- Division of Pulmonary, Critical Care, Allergy, and Sleep Medicine, Department of Medicine, University of California San Francisco, San Francisco, California; and
| | - Jaymin J. Kathiriya
- Division of Pulmonary, Critical Care, Allergy, and Sleep Medicine, Department of Medicine, University of California San Francisco, San Francisco, California; and
| | - Ying Wei
- Division of Pulmonary, Critical Care, Allergy, and Sleep Medicine, Department of Medicine, University of California San Francisco, San Francisco, California; and
| | | | - Kiana Garakani
- Division of Pulmonary, Critical Care, Allergy, and Sleep Medicine, Department of Medicine, University of California San Francisco, San Francisco, California; and
| | - Kamran Atabai
- Division of Pulmonary, Critical Care, Allergy, and Sleep Medicine, Department of Medicine, University of California San Francisco, San Francisco, California; and
| | - Vincent C. Auyeung
- Division of Pulmonary, Critical Care, Allergy, and Sleep Medicine, Department of Medicine, University of California San Francisco, San Francisco, California; and
| | - Ferroz R. Papa
- Division of Pulmonary, Critical Care, Allergy, and Sleep Medicine, Department of Medicine, University of California San Francisco, San Francisco, California; and
| | - Harold A. Chapman
- Division of Pulmonary, Critical Care, Allergy, and Sleep Medicine, Department of Medicine, University of California San Francisco, San Francisco, California; and
| |
Collapse
|
5
|
Cui Y, Yang Z, Lv Z, Lei J. Disruption of extracellular redox balance drives persistent lung fibrosis and impairs fibrosis resolution. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166842. [PMID: 37558008 DOI: 10.1016/j.bbadis.2023.166842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 07/13/2023] [Accepted: 08/04/2023] [Indexed: 08/11/2023]
Abstract
Lung fibrosis is a devastating outcome of various diffuse parenchymal lung diseases. Despite rigorous research efforts, the mechanisms that propagate its progressive and nonresolving nature remain enigmatic. Oxidative stress has been implicated in the pathogenesis of lung fibrosis. However, the role of extracellular redox state in disease progression and resolution remains largely unexplored. Here, we show that compartmentalized control over extracellular reactive oxygen species (ROS) by aerosolized delivery of recombinant extracellular superoxide dismutase (ECSOD) suppresses an established bleomycin-induced fibrotic process in mice. Further analysis of publicly available microarray, RNA-seq and single-cell RNAseq datasets reveals a significant decrease in ECSOD expression in fibrotic lung tissues that can be spontaneously restored during fibrosis resolution. Therefore, we investigate the effect of siRNA-mediated ECSOD depletion during the established fibrotic phase on the self-limiting nature of the bleomycin mouse model. Our results demonstrate that in vivo knockdown of ECSOD in mouse fibrotic lungs impairs fibrosis resolution. Mechanistically, we demonstrate that transforming growth factor (TGF)-β1 downregulates endogenous ECSOD expression, leading to the accumulation of extracellular superoxide via Smad-mediated signaling and the activation of additional stores of latent TGF-β1. In addition, depletion of endogenous ECSOD during the fibrotic phase in the bleomycin model induces an apoptosis-resistant phenotype in lung fibroblasts through unrestricted Akt signaling. Taken together, our data strongly support the critical role of extracellular redox state in fibrosis persistence and resolution. Based on these findings, we propose that compartment-specific control over extracellular ROS may be a potential therapeutic strategy for managing fibrotic lung disorders.
Collapse
Affiliation(s)
- Ye Cui
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, People's Republic of China.
| | - Zeran Yang
- Interventional Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, People's Republic of China
| | - Zhe Lv
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, People's Republic of China
| | - Jianfeng Lei
- Medical Imaging Laboratory, Research Core Facilities, Capital Medical University, Beijing 100069, People's Republic of China
| |
Collapse
|
6
|
Zhang Y, Fu J, Li C, Chang Y, Li X, Cheng H, Qiu Y, Shao M, Han Y, Feng D, Yue S, Sun Z, Luo Z, Zhou Y. Omentin-1 induces mechanically activated fibroblasts lipogenic differentiation through pkm2/yap/pparγ pathway to promote lung fibrosis resolution. Cell Mol Life Sci 2023; 80:308. [PMID: 37768341 PMCID: PMC11072733 DOI: 10.1007/s00018-023-04961-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 09/09/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive and fatal lung disease characterized by extensive extracellular matrix (ECM) deposition by activated myofibroblasts, which are specialized hyper-contractile cells that promote ECM remodeling and matrix stiffening. New insights on therapeutic strategies aimed at reversing fibrosis by targeting myofibroblast fate are showing promise in promoting fibrosis resolution. Previously, we showed that a novel adipocytokine, omentin-1, attenuated bleomycin (BLM)-induced lung fibrosis by reducing the number of myofibroblasts. Apoptosis, deactivation, and reprogramming of myofibroblasts are important processes in the resolution of fibrosis. Here we report that omentin-1 reverses established lung fibrosis by promoting mechanically activated myofibroblasts dedifferentiation into lipofibroblasts. Omentin-1 promotes myofibroblasts lipogenic differentiation by inhibiting dimerization and nuclear translocation of glycolytic enzymes pyruvate kinase isoform M2 (PKM2) and activation of the downstream Yes-associated protein (YAP) by increasing the cofactor fructose-1,6-bisphosphate (F1, 6BP, FBP). Moreover, omentin-1 activates proliferator-activated receptor gamma (PPARγ) signaling, the master regulator of lipogenesis, and promotes the upregulation of the lipogenic differentiation-related protein perilipin 2 (PLIN2) by suppressing the PKM2-YAP pathway. Ultimately, omentin-1 facilitates myofibroblasts transformation into the lipofibroblast phenotype, with reduced collagen synthesis and enhanced degradation properties, which are crucial mechanisms to clear the ECM deposition in fibrotic tissue, leading to fibrosis resolution. Our results indicate that omentin-1 targets mechanical signal accelerates fibrosis resolution and reverses established lung fibrosis by promoting myofibroblasts lipogenic differentiation, which is closely associated with ECM clearance in fibrotic tissue. These findings suggest that targeting mechanical force to promote myofibroblast lipogenic differentiation is a promising therapeutic strategy against persistent lung fibrosis.
Collapse
Affiliation(s)
- Yunna Zhang
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, 410008, Hunan, China
| | - Jiafeng Fu
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, 410008, Hunan, China
| | - Chen Li
- Department of Physiology, Changzhi Medical College, Changzhi, 046000, China
| | - Yanfen Chang
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, 410008, Hunan, China
| | - Xiaohong Li
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Haipeng Cheng
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Yujia Qiu
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, 410008, Hunan, China
| | - Min Shao
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, 410008, Hunan, China
| | - Yang Han
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, 410008, Hunan, China
| | - Dandan Feng
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, 410008, Hunan, China
| | - Shaojie Yue
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Zhengwang Sun
- Center for Immunology and Inflammatory Diseases, Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Ziqiang Luo
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, 410008, Hunan, China.
- Hunan Key Laboratory of Organ Fibrosis, Changsha, 410013, China.
| | - Yan Zhou
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, 410008, Hunan, China.
| |
Collapse
|
7
|
Zhao X, Chen J, Sun H, Zhang Y, Zou D. New insights into fibrosis from the ECM degradation perspective: the macrophage-MMP-ECM interaction. Cell Biosci 2022; 12:117. [PMID: 35897082 PMCID: PMC9327238 DOI: 10.1186/s13578-022-00856-w] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 07/16/2022] [Indexed: 02/06/2023] Open
Abstract
Fibrosis is a pathological feature of a variety of chronic inflammatory diseases that can affect almost all organs, which can cause severe consequences and even lead to death. Fibrosis is characterized by the excessive accumulation of extracellular matrix (ECM) due to disruption of the balance between ECM production and degradation. Although overabundance of ECM proteins has long been the focus of studies on fibrosis, another facet of the problem-impaired degradation of the ECM-is gaining increasing attention. Matrix metalloproteinase (MMP) and the tissue inhibitor of metalloproteinase (TIMP) system is the main molecular system contributing to ECM degradation, and macrophages are the major regulators of ECM. However, the relationship among macrophages, the MMP/TIMP system and the ECM is not fully understood in the context of fibrosis. Here, we discuss in detail the role played by the ECM in the development of fibrosis and highlight the macrophage-MMP-ECM interaction that is involved in fibrogenesis and may be a potential therapeutic target for fibrosis.
Collapse
Affiliation(s)
- Xiangyu Zhao
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiayin Chen
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hongxiang Sun
- Department of Immunology and Microbiology, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- The State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yao Zhang
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Duowu Zou
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
8
|
Liu GY, Budinger GRS, Dematte JE. Advances in the management of idiopathic pulmonary fibrosis and progressive pulmonary fibrosis. BMJ 2022; 377:e066354. [PMID: 36946547 DOI: 10.1136/bmj-2021-066354] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Similarly to idiopathic pulmonary fibrosis (IPF), other interstitial lung diseases can develop progressive pulmonary fibrosis (PPF) characterized by declining lung function, a poor response to immunomodulatory therapies, and early mortality. The pathophysiology of disordered lung repair involves common downstream pathways that lead to pulmonary fibrosis in both IPF and PPF. The antifibrotic drugs, such as nintedanib, are indicated for the treatment of IPF and PPF, and new therapies are being evaluated in clinical trials. Clinical, radiographic, and molecular biomarkers are needed to identify patients with PPF and subgroups of patients likely to respond to specific therapies. This article reviews the evidence supporting the use of specific therapies in patients with IPF and PPF, discusses agents being considered in clinical trials, and considers potential biomarkers based on disease pathogenesis that might be used to provide a personalized approach to care.
Collapse
Affiliation(s)
- Gabrielle Y Liu
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University, Chicago, IL, USA
| | - G R Scott Budinger
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University, Chicago, IL, USA
| | - Jane E Dematte
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University, Chicago, IL, USA
| |
Collapse
|
9
|
Abstract
Pulmonary fibrosis, a kind of terminal pathological changes in the lung, is caused by aberrant wound healing, deposition of extracellular matrix (ECM), and eventually replacement of lung parenchyma by ECM. Pulmonary fibrosis induced by acute lung injury and some diseases is reversible under treatment. While idiopathic pulmonary fibrosis is persistent and irreversible even after treatment. Currently, the pathogenesis of irreversible pulmonary fibrosis is not fully elucidated. The known factors associated with the development of irreversible fibrosis include apoptosis resistance of (myo)fibroblasts, dysfunction of pulmonary vessel, cell mitochondria and autophagy, aberrant epithelia hyperplasia and lipid metabolism disorder. In this review, other than a brief introduction of reversible pulmonary fibrosis, we focus on the underlying pathogenesis of irreversible pulmonary fibrosis from the above aspects as well as preclinical disease models, and also suggest directions for future studies.
Collapse
Affiliation(s)
- Qing Yang Yu
- 1State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiao Xiao Tang
- 1State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,2Guangzhou Laboratory, Bio-island, Guangzhou, China
| |
Collapse
|
10
|
Moss BJ, Ryter SW, Rosas IO. Pathogenic Mechanisms Underlying Idiopathic Pulmonary Fibrosis. ANNUAL REVIEW OF PATHOLOGY 2022; 17:515-546. [PMID: 34813355 DOI: 10.1146/annurev-pathol-042320-030240] [Citation(s) in RCA: 266] [Impact Index Per Article: 88.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The pathogenesis of idiopathic pulmonary fibrosis (IPF) involves a complex interplay of cell types and signaling pathways. Recurrent alveolar epithelial cell (AEC) injury may occur in the context of predisposing factors (e.g., genetic, environmental, epigenetic, immunologic, and gerontologic), leading to metabolic dysfunction, senescence, aberrant epithelial cell activation, and dysregulated epithelial repair. The dysregulated epithelial cell interacts with mesenchymal, immune, and endothelial cells via multiple signaling mechanisms to trigger fibroblast and myofibroblast activation. Recent single-cell RNA sequencing studies of IPF lungs support the epithelial injury model. These studies have uncovered a novel type of AEC with characteristics of an aberrant basal cell, which may disrupt normal epithelial repair and propagate a profibrotic phenotype. Here, we review the pathogenesis of IPF in the context of novel bioinformatics tools as strategies to discover pathways of disease, cell-specific mechanisms, and cell-cell interactions that propagate the profibrotic niche.
Collapse
Affiliation(s)
- Benjamin J Moss
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Baylor College of Medicine, Houston, Texas 77030, USA; ,
| | - Stefan W Ryter
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Weill Cornell Medicine, New York, NY 10021, USA;
| | - Ivan O Rosas
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Baylor College of Medicine, Houston, Texas 77030, USA; ,
| |
Collapse
|
11
|
Physiological Stimulation of the Synthesis of Preelastic Fibers in the Dermis of a Patient with Fibrosis. Case Rep Med 2022; 2021:2666867. [PMID: 35003267 PMCID: PMC8739906 DOI: 10.1155/2021/2666867] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 12/16/2021] [Accepted: 12/17/2021] [Indexed: 11/18/2022] Open
Abstract
Objective The aim of the present study was to report the physiological stimulation of the synthesis of preelastic fibers in the dermis of a patient with fibrosis. Design A clinical study was conducted involving the analysis of histological changes in preelastic fibers following treatment for stage II primary lymphedema for the clinical reversal of lymphedema and fibrosis. Setting. University Hospital of the São Jose do Rio Preto of School of Medicine in 2020. Participant was a 67-year-old male patient with late-onset primary lymphedema diagnosed 12 years earlier. Intervention is the lymphatic stimulation using the Godoy method adapted to the treatment of fibrosis. Main outcomes and measures are biopsies before and after treatment. Ten randomly selected histological fields were evaluated using the multipoint morphometric method. The values with this method are relative and expressed as percentages. Statistical analysis was performed with the t-test, considering a 95% significance level. Results A visible, significant difference in the percentage of preelastic fibers was found between the preintervention and postintervention slides, which were confirmed by the microscopic evaluation and quantification (4.95 ± 0.64% and 14.70 ± 1.06%, respectively). Conclusion The physiological stimulation of the lymphatic system using a specific method resulted in the clinical reduction of fibrosis, the return of the elasticity of the skin, and the stimulation of the synthesis of preelastic fibers.
Collapse
|
12
|
Stimulation of Synthesis and Lysis of Extracellular Matrix Proteins in Fibrosis Associated with Lymphedema. Dermatopathology (Basel) 2021; 9:1-10. [PMID: 35076482 PMCID: PMC8788559 DOI: 10.3390/dermatopathology9010001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 12/18/2021] [Accepted: 12/21/2021] [Indexed: 12/26/2022] Open
Abstract
Background: Fibrotic diseases pose a problem for overall health due to their chronic, progressive nature; the lack of a cure; and the fact that such conditions are largely refractory to current medical and surgical treatment practices. Objective: The aim of the present study was to report the physiological stimulation of synthesis and lysis of extracellular matrix proteins during the treatment of primary lymphedema. Material and Methods: A clinical trial was conducted involving the analysis of changes in type I and III collagen fibers and elastic fibers as well as the thickness of the epidermis and dermis in 10 histological fields. Samples were taken from the skin before and after intensive treatment using the Godoy Method® and adapted to the treatment of fibrosis in a patient with a clinical diagnosis of lower limb lymphedema. Slides were stained with orcein, hematoxylin and eosin, picrosirius red, and Gomori's reticulin stains. Weibel's multipoint method was used for the morphometric evaluation. The data were compared using the t-test with a 95% confidence interval. Results: Significant changes were detected in all aspects of interest (thickness of the epidermis and dermis, type I and III collagen fibers, and elastic fibers). Conclusion: The present findings demonstrate the physiological stimulation of synthesis and lysis of the main components of an extracellular matrix, such as type I and III collagen fibers and elastic fibers, as well as a reduction in the thickness of the epidermis and dermis in cases of fibrosis through adequate stimulation of the lymphatic system.
Collapse
|
13
|
Staab-Weijnitz CA. Fighting the Fiber: Targeting Collagen in Lung Fibrosis. Am J Respir Cell Mol Biol 2021; 66:363-381. [PMID: 34861139 DOI: 10.1165/rcmb.2021-0342tr] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Organ fibrosis is characterized by epithelial injury and aberrant tissue repair, where activated effector cells, mostly fibroblasts and myofibroblasts, excessively deposit collagen into the extracellular matrix. Fibrosis frequently results in organ failure and has been estimated to contribute to at least one third of all global deaths. Also lung fibrosis, in particular idiopathic pulmonary fibrosis (IPF), is a fatal disease with rising incidence worldwide. As current treatment options targeting fibrogenesis are insufficient, there is an urgent need for novel therapeutic strategies. During the last decade, several studies have proposed to target intra- and extracellular components of the collagen biosynthesis, maturation, and degradation machinery. This includes intra- and extracellular targets directly acting on collagen gene products, but also such that anabolize essential building blocks of collagen, in particular glycine and proline biosynthetic enzymes. Collagen, however, is a ubiquitous molecule in the body and fulfils essential functions as a macromolecular scaffold, growth factor reservoir, and receptor binding site in virtually every tissue. This review summarizes recent advances and future directions in this field. Evidence for the proposed therapeutic targets and where they currently stand in terms of clinical drug development for treatment of fibrotic disease is provided. The drug targets are furthermore discussed in light of (1) specificity for collagen biosynthesis, maturation and degradation, and (2) specificity for disease-associated collagen. As therapeutic success and safety of these drugs may largely depend on targeted delivery, different strategies for specific delivery to the main effector cells and to the extracellular matrix are discussed.
Collapse
Affiliation(s)
- Claudia A Staab-Weijnitz
- Helmholtz Zentrum Munchen Deutsches Forschungszentrum fur Gesundheit und Umwelt, 9150, Comprehensive Pneumology Center/Institute of Lung Biology and Disease, Member of the German Center of Lung Research (DZL), München, Germany;
| |
Collapse
|
14
|
Vindin HJ, Oliver BG, Weiss AS. Elastin in healthy and diseased lung. Curr Opin Biotechnol 2021; 74:15-20. [PMID: 34781101 DOI: 10.1016/j.copbio.2021.10.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 10/12/2021] [Accepted: 10/19/2021] [Indexed: 01/05/2023]
Abstract
Elastic fibers are an essential part of the pulmonary extracellular matrix (ECM). Intact elastin is required for normal function and its damage contributes profoundly to the etiology and pathology of lung disease. This highlights the need for novel lung-specific imaging methodology that enables high-resolution 3D visualization of the ECM. We consider elastin's involvement in chronic respiratory disease and examine recent methods for imaging and modeling of the lung in the context of advances in lung tissue engineering for research and clinical application.
Collapse
Affiliation(s)
- Howard J Vindin
- Charles Perkins Centre, The University of Sydney, Sydney 2006, NSW, Australia; School of Life and Environmental Sciences, The University of Sydney, 2006 Sydney, NSW, Australia; The Woolcock Institute, The University of Sydney, Sydney 2006, NSW, Australia
| | - Brian Gg Oliver
- The Woolcock Institute, The University of Sydney, Sydney 2006, NSW, Australia
| | - Anthony S Weiss
- Charles Perkins Centre, The University of Sydney, Sydney 2006, NSW, Australia; School of Life and Environmental Sciences, The University of Sydney, 2006 Sydney, NSW, Australia; Sydney Nano Institute, The University of Sydney, 2006 Sydney, NSW, Australia.
| |
Collapse
|
15
|
The M2a Macrophage Phenotype Accompanies Pulmonary Granuloma Resolution in Mmp12 Knock-Out Mice Instilled with Multiwall Carbon Nanotubes. Int J Mol Sci 2021; 22:ijms222011019. [PMID: 34681679 PMCID: PMC8537143 DOI: 10.3390/ijms222011019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 09/30/2021] [Accepted: 10/09/2021] [Indexed: 11/17/2022] Open
Abstract
Sarcoidosis is a chronic disease with unknown etiology and pathophysiology, characterized by granuloma formation. Matrix Metalloproteinase-12 (MMP12) is an elastase implicated in active granulomatous sarcoidosis. Previously, we reported that oropharyngeal instillation of multiwall carbon nanotubes (MWCNT) into C57Bl/6 mice induced sarcoid-like granulomas and upregulation of MMP12. When Mmp12 knock-out (KO) mice were instilled with MWCNT, granuloma formation occurred 10 days post-instillation but subsequently resolved at 60 days. Thus, we concluded that MMP12 was essential to granuloma persistence. The aim of the current study was to identify potential mechanisms of granuloma resolution in Mmp12KO mice. Strikingly, an M2 macrophage phenotype was present in Mmp12KO but not in C57Bl/6 mice. Between 10 and 60 days, macrophage populations in MWCNT-instilled Mmp12KO mice demonstrated an M2c to M2a phenotypic shift, with elevations in levels of IL-13, an M2 subtype-regulating factor. Furthermore, the M2 inducer, Apolipoprotein E (ApoE), and Matrix Metalloproteinase-14 (MMP14), a promoter of collagen degradation, were upregulated in 60-day MWCNT-instilled Mmp12KO mice. In conclusion, alveolar macrophages express two M2 phenotypes in Mmp12KO mice: M2c at 10 days when granulomas form, and M2a at 60 days when granulomas are resolving. Findings suggest that granuloma resolution in 60-day Mmp12KO mice requires an M2a macrophage phenotype.
Collapse
|
16
|
Podolanczuk AJ, Wong AW, Saito S, Lasky JA, Ryerson CJ, Eickelberg O. Update in Interstitial Lung Disease 2020. Am J Respir Crit Care Med 2021; 203:1343-1352. [PMID: 33835899 DOI: 10.1164/rccm.202103-0559up] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Anna J Podolanczuk
- Division of Pulmonary and Critical Care, Department of Medicine, Weill Cornell Medical College, Cornell University, New York, New York
| | - Alyson W Wong
- Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada.,Centre for Heart Lung Innovation, St. Paul's Hospital, Vancouver, British Columbia, Canada
| | - Shigeki Saito
- Section of Pulmonary Disease, Critical Care and Environmental Medicine, Department of Medicine, Tulane University, New Orleans, Louisiana; and
| | - Joseph A Lasky
- Section of Pulmonary Disease, Critical Care and Environmental Medicine, Department of Medicine, Tulane University, New Orleans, Louisiana; and
| | - Christopher J Ryerson
- Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada.,Centre for Heart Lung Innovation, St. Paul's Hospital, Vancouver, British Columbia, Canada
| | - Oliver Eickelberg
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
17
|
Kanagaki S, Suezawa T, Moriguchi K, Nakao K, Toyomoto M, Yamamoto Y, Murakami K, Hagiwara M, Gotoh S. Hydroxypropyl Cyclodextrin Improves Amiodarone-induced Aberrant Lipid Homeostasis of Alveolar Cells. Am J Respir Cell Mol Biol 2021; 64:504-514. [PMID: 33493427 DOI: 10.1165/rcmb.2020-0119oc] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Alveolar epithelial type II (AT2) cells secrete pulmonary surfactant via lamellar bodies (LBs). Abnormalities in LBs are associated with pulmonary disorders, including fibrosis. However, high-content screening (HCS) for LB abnormalities is limited by the lack of understanding of AT2 cell functions. In the present study, we have developed LB cells harboring LB-like organelles that secrete surfactant proteins. These cells were more similar to AT2 cells than to parental A549 cells. LB cells recapitulated amiodarone (AMD)-induced LB enlargement, similar to AT2 cells of patients exposed to AMD. To reverse AMD-induced LB abnormalities, we performed HCS of approved drugs and identified 2-hydroxypropyl-β-cyclodextrin (HPβCD), a cyclic oligosaccharide, as a potential therapeutic agent. A transcriptome analysis revealed that HPβCD modulates lipid homeostasis. In addition, HPβCD inhibited AMD-induced LB abnormalities in human induced pluripotent stem cell-derived AT2 cells. Our results demonstrate that LB cells are useful for HCS and suggest that HPβCD is a candidate therapeutic agent for AMD-induced interstitial pneumonia.
Collapse
Affiliation(s)
- Shuhei Kanagaki
- Department of Drug Discovery for Lung Diseases and.,Watarase Research Center, Kyorin Pharmaceutical Co. Ltd., Shimotsuga-gun, Tochigi, Japan
| | - Takahiro Suezawa
- Department of Drug Discovery for Lung Diseases and.,Watarase Research Center, Kyorin Pharmaceutical Co. Ltd., Shimotsuga-gun, Tochigi, Japan
| | - Keita Moriguchi
- Department of Drug Discovery for Lung Diseases and.,Watarase Research Center, Kyorin Pharmaceutical Co. Ltd., Shimotsuga-gun, Tochigi, Japan
| | - Kazuhisa Nakao
- Watarase Research Center, Kyorin Pharmaceutical Co. Ltd., Shimotsuga-gun, Tochigi, Japan
| | - Masayasu Toyomoto
- Department of Drug Discovery for Lung Diseases and.,Department of Anatomy and Developmental Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan; and
| | | | - Koji Murakami
- Watarase Research Center, Kyorin Pharmaceutical Co. Ltd., Shimotsuga-gun, Tochigi, Japan
| | - Masatoshi Hagiwara
- Department of Anatomy and Developmental Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan; and
| | | |
Collapse
|
18
|
Qu J, Yang SZ, Zhu Y, Guo T, Thannickal VJ, Zhou Y. Targeting mechanosensitive MDM4 promotes lung fibrosis resolution in aged mice. J Exp Med 2021; 218:e20202033. [PMID: 33688918 PMCID: PMC7953267 DOI: 10.1084/jem.20202033] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 12/18/2020] [Accepted: 01/21/2021] [Indexed: 12/15/2022] Open
Abstract
Aging is a strong risk factor and an independent prognostic factor for progressive human idiopathic pulmonary fibrosis (IPF). Aged mice develop nonresolving pulmonary fibrosis following lung injury. In this study, we found that mouse double minute 4 homolog (MDM4) is highly expressed in the fibrotic lesions of human IPF and experimental pulmonary fibrosis in aged mice. We identified MDM4 as a matrix stiffness-regulated endogenous inhibitor of p53. Reducing matrix stiffness down-regulates MDM4 expression, resulting in p53 activation in primary lung myofibroblasts isolated from IPF patients. Gain of p53 function activates a gene program that sensitizes lung myofibroblasts to apoptosis and promotes the clearance of apoptotic myofibroblasts by macrophages. Destiffening of the fibrotic lung matrix by targeting nonenzymatic cross-linking or genetic ablation of Mdm4 in lung (myo)fibroblasts activates the Mdm4-p53 pathway and promotes lung fibrosis resolution in aged mice. These findings suggest that mechanosensitive MDM4 is a molecular target with promising therapeutic potential against persistent lung fibrosis associated with aging.
Collapse
Affiliation(s)
- Jing Qu
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shan-Zhong Yang
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL
| | - Yi Zhu
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL
| | - Ting Guo
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL
- The Second Xiangya Hospital, Central-South University, Changsha, Hunan, China
| | - Victor J. Thannickal
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL
| | - Yong Zhou
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL
| |
Collapse
|