1
|
Pusti D, Benito A, Madrid-Valero JJ, Ordoñana JR, Artal P. Impact of Genetic and Environmental Factors on Peripheral Refraction. Transl Vis Sci Technol 2024; 13:33. [PMID: 39441572 PMCID: PMC11512578 DOI: 10.1167/tvst.13.10.33] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 09/10/2024] [Indexed: 10/25/2024] Open
Abstract
Purpose Investigate genetic and environmental influences on refractive errors in monozygotic (MZ) and dizygotic (DZ) twin pairs. Methods We assessed foveal and peripheral refractions in 54 MZ and 46 DZ twins, capturing three scans across the retina. The study focused on spherical equivalent (M) at the fovea (MLOS) and changes in midperipheral (δMmid-periphery), and peripheral (δMperiphery) defocus, along with nasal-temporal asymmetry (root mean squared error [RMSEASY]) and image shell contour (RMSEAVG). Genetic and environmental contributions were analyzed using structural equation models. Results No significant differences were observed between MZ and DZ twins for the examined variables. Intraclass correlations (ICC) indicated an important difference in genetic influence between MLOS, with the MZ twin pairs showing a higher correlation (0.83) than DZ (0.69) pairs, and δMperiphery, because the ICC for the MZ doubled (0.87) that of the DZ (0.42) pairs. Heritability estimates from the ACE model confirmed the large difference on genetic factors' influence on the variance for MLOS (0.13) and δMperiphery (0.77) change in refractive error. RMSEASY and RMSEAVG metrics showed significant genetic impact, particularly pronounced in the peripheral measurements, revealing high genetic control. Conclusions The study delineates a marked environmental impact on central refractive errors, whereas genetic factors had a more significant influence on peripheral refractive variance and retinal image traits. Findings of the ACE model highlight the intricate genetic and environmental interplay in refractive error development, with a notable genetic dominance in peripheral vision characteristics. This suggests potential genetic targets for interventions in myopia management and emphasizes the need for personalized approaches based on genetic predispositions. Translational Relevance Understanding the impact of genetics and environment on peripheral refraction is essential for deepening our fundamental knowledge of myopia and guiding the development of advanced myopia control strategies.
Collapse
Affiliation(s)
- Dibyendu Pusti
- Laboratorio de Óptica, Universidad de Murcia, Murcia, Spain
| | - Antonio Benito
- Laboratorio de Óptica, Universidad de Murcia, Murcia, Spain
| | - Juan J. Madrid-Valero
- Departamento de Anatomía Humana y Psicobiología, Universidad de Murcia, Spain and IMIB-Arrixaca, Murcia, Spain
| | - Juan R. Ordoñana
- Departamento de Anatomía Humana y Psicobiología, Universidad de Murcia, Spain and IMIB-Arrixaca, Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria (IMIB-Arrixaca), Universidad de Murcia, Spain
| | - Pablo Artal
- Laboratorio de Óptica, Universidad de Murcia, Murcia, Spain
| |
Collapse
|
2
|
Abebe MG, Alemayehu AM, Munaw MB, Tilahun MM, Alemayehu HB. Prevalence and associated factors of refractive error among adults in South Ethiopia, a community-based cross-sectional study. PLoS One 2024; 19:e0298960. [PMID: 38527026 PMCID: PMC10962790 DOI: 10.1371/journal.pone.0298960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 02/01/2024] [Indexed: 03/27/2024] Open
Abstract
INTRODUCTION The increasing prevalence of refractive error has become a serious health issue that needs serious attention. However, there are few studies regarding the prevalence and associated factors of refractive error at the community level in Ethiopia as well as in the study area. Therefore, providing updated data is crucial to reduce the burdens of refractive error in the community. OBJECTIVE To assess the prevalence and associated factors of refractive error among adults in Hawassa City, South Ethiopia, 2023. METHOD A community-based cross-sectional study was conducted on 951 adults using a multistage sampling technique from May 8 to June 8, 2023, in Hawassa City, South Ethiopia. A pretested, structured questionnaire combined with an ocular examination and a refraction procedure was used to collect data. The collected data from the Kobo Toolbox was exported to a statistical package for social sciences for analysis. Binary and multivariable logistic regression analyses were performed. A P-value of less than 0.05 was considered statistically significant in the multivariable analysis. RESULT A total of 894 study participants were involved in this study with a 94.1% response rate. The prevalence of refractive error was 12.3% (95% CI: 10.2, 14.5%). Regular use of electronic devices (adjusted odds ratio = 3.64, 95% CI: 2.25, 5.91), being diabetic (adjusted odds ratio = 4.02, 95% CI: 2.16, 7.48), positive family history of refractive error (adjusted odds ratio = 2.71, 95% CI 1.59, 4.61) and positive history of cataract surgery (adjusted odds ratio = 5.17, 95% CI 2.19, 12.4) were significantly associated with refractive error. CONCLUSION AND RECOMMENDATION The overall magnitude of refractive error in our study area was high. Regular use of electronic devices, being diabetic, positive family history of refractive error, and a positive history of cataract surgery were associated with refractive error.
Collapse
Affiliation(s)
- Marshet Gete Abebe
- Department of Ophthalmology and Optometry, Hawassa University, Comprehensive Specialized Hospital, Hawassa, Ethiopia
| | - Abiy Maru Alemayehu
- Department of Optometry, School of Medicine, University of Gondar, Comprehensive Specialized Hospital, Gondar, Ethiopia
| | - Minychil Bantihun Munaw
- Department of Optometry, School of Medicine, University of Gondar, Comprehensive Specialized Hospital, Gondar, Ethiopia
| | - Mikias Mered Tilahun
- Department of Optometry, School of Medicine, University of Gondar, Comprehensive Specialized Hospital, Gondar, Ethiopia
| | - Henok Biruk Alemayehu
- Department of Ophthalmology and Optometry, Hawassa University, Comprehensive Specialized Hospital, Hawassa, Ethiopia
| |
Collapse
|
3
|
Jackson D, Moosajee M. The Genetic Determinants of Axial Length: From Microphthalmia to High Myopia in Childhood. Annu Rev Genomics Hum Genet 2023; 24:177-202. [PMID: 37624667 DOI: 10.1146/annurev-genom-102722-090617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2023]
Abstract
The axial length of the eye is critical for normal visual function by enabling light to precisely focus on the retina. The mean axial length of the adult human eye is 23.5 mm, but the molecular mechanisms regulating ocular axial length remain poorly understood. Underdevelopment can lead to microphthalmia (defined as a small eye with an axial length of less than 19 mm at 1 year of age or less than 21 mm in adulthood) within the first trimester of pregnancy. However, continued overgrowth can lead to axial high myopia (an enlarged eye with an axial length of 26.5 mm or more) at any age. Both conditions show high genetic and phenotypic heterogeneity associated with significant visual morbidity worldwide. More than 90 genes can contribute to microphthalmia, and several hundred genes are associated with myopia, yet diagnostic yields are low. Crucially, the genetic pathways underpinning the specification of eye size are only now being discovered, with evidence suggesting that shared molecular pathways regulate under- or overgrowth of the eye. Improving our mechanistic understanding of axial length determination will help better inform us of genotype-phenotype correlations in both microphthalmia and myopia, dissect gene-environment interactions in myopia, and develop postnatal therapies that may influence overall eye growth.
Collapse
Affiliation(s)
- Daniel Jackson
- Institute of Ophthalmology, University College London, London, United Kingdom;
| | - Mariya Moosajee
- Institute of Ophthalmology, University College London, London, United Kingdom;
- The Francis Crick Institute, London, United Kingdom
- Moorfields Eye Hospital NHS Foundation Trust, London, United Kingdom
| |
Collapse
|
4
|
Myopia Genetics and Heredity. CHILDREN 2022; 9:children9030382. [PMID: 35327754 PMCID: PMC8947159 DOI: 10.3390/children9030382] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 02/19/2022] [Accepted: 03/03/2022] [Indexed: 11/18/2022]
Abstract
Myopia is the most common eye condition leading to visual impairment and is greatly influenced by genetics. Over the last two decades, more than 400 associated gene loci have been mapped for myopia and refractive errors via family linkage analyses, candidate gene studies, genome-wide association studies (GWAS), and next-generation sequencing (NGS). Lifestyle factors, such as excessive near work and short outdoor time, are the primary external factors affecting myopia onset and progression. Notably, besides becoming a global health issue, myopia is more prevalent and severe among East Asians than among Caucasians, especially individuals of Chinese, Japanese, and Korean ancestry. Myopia, especially high myopia, can be serious in consequences. The etiology of high myopia is complex. Prediction for progression of myopia to high myopia can help with prevention and early interventions. Prediction models are thus warranted for risk stratification. There have been vigorous investigations on molecular genetics and lifestyle factors to establish polygenic risk estimations for myopia. However, genes causing myopia have to be identified in order to shed light on pathogenesis and pathway mechanisms. This report aims to examine current evidence regarding (1) the genetic architecture of myopia; (2) currently associated myopia loci identified from the OMIM database, genetic association studies, and NGS studies; (3) gene-environment interactions; and (4) the prediction of myopia via polygenic risk scores (PRSs). The report also discusses various perspectives on myopia genetics and heredity.
Collapse
|
5
|
Zhao F, Chen W, Zhou H, Reinach PS, Wang Y, Juo SHH, Yang Z, Xue A, Shi Y, Liang CL, Zeng C, Qu J, Zhou X. PDE4B Proposed as a High Myopia Susceptibility Gene in Chinese Population. Front Genet 2022; 12:775797. [PMID: 35116054 PMCID: PMC8804583 DOI: 10.3389/fgene.2021.775797] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 12/27/2021] [Indexed: 12/17/2022] Open
Abstract
Myopia is the most common cause of refractive error worldwide. High myopia is a severe type of myopia, which usually accompanies pathological changes in the fundus. To identify high myopia susceptibility genes, DNA-pooling based genome-wide association analysis was used to search for a correlation between single nucleotide polymorphisms and high myopia in a Han Chinese cohort (cases vs. controls in discovery stage: 507 vs. 294; replication stage 1: 991 vs. 1,025; replication stage 2: 1,021 vs. 52,708). Three variants (rs10889602T/G, rs2193015T/C, rs9676191A/C) were identified as being significantly associated with high myopia in the discovery, and replication stage. rs10889602T/G is located at the third intron of phosphodiesterase 4B (PDE4B), whose functional assays were performed by comparing the effects of rs10889602T/T deletion of this risk allele on PDE4B and COL1A1 gene and protein expression levels in the rs10889602T/Tdel/del, rs10889602T/Tdel/wt, and normal control A549 cell lines. The declines in the PDE4B and COL1A1 gene expression levels were larger in the rs10889602T/T deleted A549 cells than in the normal control A549 cells (one-way ANOVA, p < 0.001). The knockdown of PDE4B by siRNA in human scleral fibroblasts led to downregulation of COL1A1. This correspondence between the declines in rs10889602 of the PDE4B gene, PDE4B knockdown, and COL1A1 protein expression levels suggest that PDE4B may be a novel high myopia susceptibility gene, which regulates myopia progression through controlling scleral collagen I expression levels. More studies are needed to determine if there is a correlation between PDE4B and high myopia in other larger sample sized cohorts.
Collapse
Affiliation(s)
- Fuxin Zhao
- School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, China.,State Key Laboratory of Optometry, Ophthalmology and Vision Science, Wenzhou, China
| | - Wei Chen
- Beijing Advanced Innovation Centre for Biomedical Engineering, Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Engineering Medicine, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Hui Zhou
- School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, China.,State Key Laboratory of Optometry, Ophthalmology and Vision Science, Wenzhou, China
| | - Peter S Reinach
- School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, China.,State Key Laboratory of Optometry, Ophthalmology and Vision Science, Wenzhou, China
| | - Yuhan Wang
- School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, China.,State Key Laboratory of Optometry, Ophthalmology and Vision Science, Wenzhou, China
| | - Suh-Hang H Juo
- Center for Myopia and Eye Disease, Department of Medical Research, China Medical University Hospital, Taichung, China
| | - Zhenglin Yang
- The Key Laboratory for Human Disease Gene Study of Sichuan Province and Institute of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Anquan Xue
- School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Yi Shi
- The Key Laboratory for Human Disease Gene Study of Sichuan Province and Institute of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Chung-Ling Liang
- Center for Myopia and Eye Disease, China Medical University Hospital, Taichung, China
| | - Changqing Zeng
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, The Chinese Academy of Sciences, Beijing, China
| | - Jia Qu
- School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, China.,State Key Laboratory of Optometry, Ophthalmology and Vision Science, Wenzhou, China.,Research Unit of Myopia Basic Research and Clinical Prevention and Control, Chinese Academy of Medical Sciences, Wenzhou, China
| | - Xiangtian Zhou
- School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, China.,State Key Laboratory of Optometry, Ophthalmology and Vision Science, Wenzhou, China.,Research Unit of Myopia Basic Research and Clinical Prevention and Control, Chinese Academy of Medical Sciences, Wenzhou, China
| |
Collapse
|
6
|
The Heritability of Primary Angle Closure Anatomic Traits and Predictors of Angle Closure in South Indian Siblings. Am J Ophthalmol 2021; 230:188-199. [PMID: 33992616 DOI: 10.1016/j.ajo.2021.04.038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 04/07/2021] [Accepted: 04/28/2021] [Indexed: 11/23/2022]
Abstract
PURPOSE To estimate the heritability of ocular biometric and anterior chamber morphologic parameters and to determine predictors of angle closure concordance in South Indian probands with angle closure and their siblings DESIGN: Prospective observational cohort study METHODS: Subjects received a standardized ophthalmic examination, A-scan ultrasonography, pachymetry, and anterior segment optical coherence tomography (ASOCT) imaging. Heritability was calculated using residual correlation coefficients adjusted for age, sex, and home setting. Concordant sibling pairs were defined as both proband and sibling with angle closure. Predictors of angle closure concordance among siblings were calculated using multivariable logistic regression models. RESULTS A total of 345 sibling pairs participated. All anterior chamber parameters were highly heritable (P < .001 for all). Similarly, all iris parameters, axial length, lens thickness (LT), central corneal thickness, anterior lens curvature, lens vault (LV), spherical equivalent, and intraocular pressure were moderately to highly heritable (P < .004 for all). LV and LT were more heritable among concordant siblings (P < .05 for both). In contrast, ASOCT angle parameters had statistically insignificant heritability estimates. In multivariable analyses, siblings older than their probands were more likely to be concordant for angle closure (OR 1.05, 95% CI 1.01, 1.09; P = .02) and siblings with deeper anterior chamber depths (ACDs) compared to their proband were less likely to be concordant for angle closure (OR 0.74, 95% CI 0.64, 0.86; P < .001). CONCLUSIONS Iris, anterior chamber, and lens parameters may be heritable whereas angle parameters were not. LT and LV may play important roles in the pathogenesis of angle closure. Siblings who are older or have a shallower ACD may need more careful disease monitoring.
Collapse
|
7
|
Neitz M, Neitz J. Intermixing the OPN1LW and OPN1MW Genes Disrupts the Exonic Splicing Code Causing an Array of Vision Disorders. Genes (Basel) 2021; 12:genes12081180. [PMID: 34440353 PMCID: PMC8391646 DOI: 10.3390/genes12081180] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 07/27/2021] [Accepted: 07/29/2021] [Indexed: 02/07/2023] Open
Abstract
Light absorption by photopigment molecules expressed in the photoreceptors in the retina is the first step in seeing. Two types of photoreceptors in the human retina are responsible for image formation: rods, and cones. Except at very low light levels when rods are active, all vision is based on cones. Cones mediate high acuity vision and color vision. Furthermore, they are critically important in the visual feedback mechanism that regulates refractive development of the eye during childhood. The human retina contains a mosaic of three cone types, short-wavelength (S), long-wavelength (L), and middle-wavelength (M) sensitive; however, the vast majority (~94%) are L and M cones. The OPN1LW and OPN1MW genes, located on the X-chromosome at Xq28, encode the protein component of the light-sensitive photopigments expressed in the L and M cones. Diverse haplotypes of exon 3 of the OPN1LW and OPN1MW genes arose thru unequal recombination mechanisms that have intermixed the genes. A subset of the haplotypes causes exon 3- skipping during pre-messenger RNA splicing and are associated with vision disorders. Here, we review the mechanism by which splicing defects in these genes cause vision disorders.
Collapse
|
8
|
Pusti D, Benito A, Madrid-Valero JJ, Ordoñana JR, Artal P. Inheritance of Refractive Error in Millennials. Sci Rep 2020; 10:8173. [PMID: 32424231 PMCID: PMC7235039 DOI: 10.1038/s41598-020-65130-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 04/22/2020] [Indexed: 12/13/2022] Open
Abstract
Over the last decades, the prevalence of myopia has suddenly increased, and at this rate, half of the world's population will be myopic by the year 2050. Contemporary behavioural and lifestyle circumstances, along with emergent technology, are thought to be responsible for this increase. Twin studies mostly reported a high heritability of refractive error across ethnicities. However, heritability is a population statistic and could vary as a result of changing environmental conditions. We studied the variance of refractive error in millennials with 100 twin pairs of university students in southeast Spain. The study population presented a high prevalence of myopia (77%). Statistical analysis showed the variance of refractive error in this group of young twins was mainly driven by the shared environment and, to a lesser extent, by additive genetic factors. We found an increase in myopia prevalence accompanied by a decrease in heritability in this sample of millennials in contrast with results from a previous generation group from the same ethnic origin.
Collapse
Affiliation(s)
- Dibyendu Pusti
- Laboratorio de Óptica, Instituto Universitario de Investigación en Óptica y Nanofísica, Universidad de Murcia, Campus de Espinardo (Ed. 34), 30100, Murcia, Spain.
| | - Antonio Benito
- Laboratorio de Óptica, Instituto Universitario de Investigación en Óptica y Nanofísica, Universidad de Murcia, Campus de Espinardo (Ed. 34), 30100, Murcia, Spain
| | - Juan J Madrid-Valero
- Registro de Gemelos de Murcia, Departamento de Anatomía Humana y Psicobiología, Universidad de Murcia, Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria (IMIB-Arrixaca), Universidad de Murcia, Murcia, Spain
| | - Juan R Ordoñana
- Registro de Gemelos de Murcia, Departamento de Anatomía Humana y Psicobiología, Universidad de Murcia, Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria (IMIB-Arrixaca), Universidad de Murcia, Murcia, Spain
| | - Pablo Artal
- Laboratorio de Óptica, Instituto Universitario de Investigación en Óptica y Nanofísica, Universidad de Murcia, Campus de Espinardo (Ed. 34), 30100, Murcia, Spain
| |
Collapse
|
9
|
Charng J, Sanfilippo PG, Lingham G, Stevenson LJ, Mackey DA, Yazar S. Estimation of heritability and familial correlation in myopia is not affected by past sun exposure. Ophthalmic Genet 2019; 40:500-506. [PMID: 31810409 DOI: 10.1080/13816810.2019.1696376] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Purpose: To consider the effect of including past sun exposure in estimating heritability and familial correlation of myopia-related traits.Methods: We calculate familial correlation and heritability of anterior chamber depth (ACD), axial length (AL), corneal curvature (CC), and spherical equivalent (SphE), with or without past sun exposure as a covariate, in a large number of unrelated nuclear families from the Raine Study (parents: Gen1, offspring: Gen2) residing in Perth, Australia, a city with a high amount of daily sunlight. Past sun exposure was objectively measured using conjunctival ultraviolet autofluorescence (CUVAF) photography.Results: When sun exposure was not included in the analysis, both familial correlation (correlation±SE; ACD: 0.308 ± 0.065, AL: 0.374 ± 0.061, CC: 0.436 ± 0.063, SphE: 0.281 ± 0.070) and heritability (ACD: 0.606 ± 0.104, AL: 0.623 ± 0.098, CC: 0.793 ± 0.079, SphE: 0.591 ± 0.106) were significant for all traits (all P < .001). However, there was no significant change in both familial correlation and heritability estimates when sun exposure was included as an additional covariate.Conclusions: Past sun exposure does not affect the estimation of the additive genetic component in myopia-related traits.
Collapse
Affiliation(s)
- Jason Charng
- Centre of Ophthalmology and Visual Science (incorporating Lions Eye Institute), The University of Western Australia, Perth, Australia
| | - Paul G Sanfilippo
- Centre of Ophthalmology and Visual Science (incorporating Lions Eye Institute), The University of Western Australia, Perth, Australia.,Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, University of Melbourne, Melbourne, Australia
| | - Gareth Lingham
- Centre of Ophthalmology and Visual Science (incorporating Lions Eye Institute), The University of Western Australia, Perth, Australia
| | - Louis J Stevenson
- Centre of Ophthalmology and Visual Science (incorporating Lions Eye Institute), The University of Western Australia, Perth, Australia
| | - David A Mackey
- Centre of Ophthalmology and Visual Science (incorporating Lions Eye Institute), The University of Western Australia, Perth, Australia
| | - Seyhan Yazar
- Centre of Ophthalmology and Visual Science (incorporating Lions Eye Institute), The University of Western Australia, Perth, Australia.,Garvan Institute of Medical Research, Sydney, Australia
| |
Collapse
|
10
|
Cai XB, Shen SR, Chen DF, Zhang Q, Jin ZB. An overview of myopia genetics. Exp Eye Res 2019; 188:107778. [DOI: 10.1016/j.exer.2019.107778] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 07/27/2019] [Accepted: 08/23/2019] [Indexed: 11/15/2022]
|
11
|
Update on Myopia Risk Factors and Microenvironmental Changes. J Ophthalmol 2019; 2019:4960852. [PMID: 31781378 PMCID: PMC6875023 DOI: 10.1155/2019/4960852] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 08/06/2019] [Accepted: 09/05/2019] [Indexed: 12/13/2022] Open
Abstract
The focus of this update is to emphasize the recent advances in the pathogenesis and various molecular key approaches associated with myopia in order to reveal new potential therapeutic targets. We review the current evidence for its complex genetics and evaluate the known or candidate genes and loci. In addition, we discuss recent investigations regarding the role of environmental factors. This paper also covers current research aimed at elucidating the signaling pathways involved in the pathogenesis of myopia.
Collapse
|
12
|
Hwang HS, Park G, Heo JW, Kim MK, Baek S, Cho B. Estimating heritability of refractive error in Koreans: the Korea National Health and Nutrition Examination Survey. Acta Ophthalmol 2019; 97:e248-e255. [PMID: 30207075 DOI: 10.1111/aos.13915] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Accepted: 08/09/2018] [Indexed: 01/11/2023]
Abstract
PURPOSE To estimate the familial correlation and heritability of refractive error in general Korean population. METHODS From the Korea National Health and Nutrition Examination Survey, 13 258 subjects of 7920 families, who were aged ≥19 years, were included in the study. Using variance components analysis, the additive genetic effect, or heritability, and the common and unique environmental effects on refractive error were examined, adopting common environments shared by cohabiting family or by siblings. RESULTS The proportions of hyperopia, myopia and high myopia in Koreans were 0.8%, 45.2% and 5.7% respectively. The correlation coefficients of spherical equivalent (SE) were 0.257 for parent-offspring pairs, 0.410 for sibling pairs and 0.112 for spouse pairs (p < 0.001 for all). Common environment shared by siblings affected the variation of SE significantly (p < 0.001), but that shared by cohabitants did not (p = 0.395). Adopting common environment shared by siblings, the heritability, common environmental effect and unique environmental effect of refractive error were 42.1 ± 3.3%, 11.8 ± 3.5% and 46.1 ± 3.9% respectively. Heritabilities of hyperopia, myopia and high myopia were 45.7%, 44.3% and 68.9% respectively. Adjusted odds ratios of myopia among offspring were 3.78 given one parent has myopia and 4.43 when both parents have myopia. CONCLUSION Refractive error is influenced by common environment shared by siblings. The heritability of refractive error is higher for high myopia than for myopia or hyperopia.
Collapse
Affiliation(s)
- Ho Sik Hwang
- Department of Ophthalmology Chuncheon Sacred Heart Hospital Hallym University College of Medicine Chuncheon Korea
| | - Gyeong‐Hun Park
- Department of Dermatology Dongtan Sacred Heart Hospital Hallym University College of Medicine Hwaseong Korea
| | - Jang Won Heo
- Department of Ophthalmology Seoul National University College of Medicine Seoul Korea
| | - Mee Kum Kim
- Department of Ophthalmology Seoul National University College of Medicine Seoul Korea
| | - Seung‐Hee Baek
- Department of Ophthalmology Kim's Eye Hospital Konyang University College of Medicine Seoul Korea
| | - Bum‐Joo Cho
- Department of Ophthalmology Chuncheon Sacred Heart Hospital Hallym University College of Medicine Chuncheon Korea
| |
Collapse
|
13
|
Tedja MS, Haarman AEG, Meester-Smoor MA, Kaprio J, Mackey DA, Guggenheim JA, Hammond CJ, Verhoeven VJM, Klaver CCW. IMI - Myopia Genetics Report. Invest Ophthalmol Vis Sci 2019; 60:M89-M105. [PMID: 30817828 PMCID: PMC6892384 DOI: 10.1167/iovs.18-25965] [Citation(s) in RCA: 140] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 01/09/2019] [Indexed: 02/07/2023] Open
Abstract
The knowledge on the genetic background of refractive error and myopia has expanded dramatically in the past few years. This white paper aims to provide a concise summary of current genetic findings and defines the direction where development is needed. We performed an extensive literature search and conducted informal discussions with key stakeholders. Specific topics reviewed included common refractive error, any and high myopia, and myopia related to syndromes. To date, almost 200 genetic loci have been identified for refractive error and myopia, and risk variants mostly carry low risk but are highly prevalent in the general population. Several genes for secondary syndromic myopia overlap with those for common myopia. Polygenic risk scores show overrepresentation of high myopia in the higher deciles of risk. Annotated genes have a wide variety of functions, and all retinal layers appear to be sites of expression. The current genetic findings offer a world of new molecules involved in myopiagenesis. As the missing heritability is still large, further genetic advances are needed. This Committee recommends expanding large-scale, in-depth genetic studies using complementary big data analytics, consideration of gene-environment effects by thorough measurement of environmental exposures, and focus on subgroups with extreme phenotypes and high familial occurrence. Functional characterization of associated variants is simultaneously needed to bridge the knowledge gap between sequence variance and consequence for eye growth.
Collapse
Affiliation(s)
- Milly S. Tedja
- Department of Ophthalmology, Erasmus Medical Center, Rotterdam, the Netherlands
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Annechien E. G. Haarman
- Department of Ophthalmology, Erasmus Medical Center, Rotterdam, the Netherlands
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Magda A. Meester-Smoor
- Department of Ophthalmology, Erasmus Medical Center, Rotterdam, the Netherlands
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Jaakko Kaprio
- Institute for Molecular Medicine, University of Helsinki, Helsinki, Finland
- Department of Public Health, University of Helsinki, Helsinki, Finland
| | - David A. Mackey
- Centre for Eye Research Australia, Ophthalmology, Department of Surgery, University of Melbourne, Royal Victorian Eye and Ear Hospital, Melbourne, Victoria, Australia
- Department of Ophthalmology, Menzies Institute of Medical Research, University of Tasmania, Hobart, Tasmania, Australia
- Centre for Ophthalmology and Visual Science, Lions Eye Institute, University of Western Australia, Perth, Western Australia, Australia
| | - Jeremy A. Guggenheim
- School of Optometry and Vision Sciences, Cardiff University, Cardiff, United Kingdom
| | - Christopher J. Hammond
- Section of Academic Ophthalmology, School of Life Course Sciences, King's College London, London, United Kingdom
| | - Virginie J. M. Verhoeven
- Department of Ophthalmology, Erasmus Medical Center, Rotterdam, the Netherlands
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, the Netherlands
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Caroline C. W. Klaver
- Department of Ophthalmology, Erasmus Medical Center, Rotterdam, the Netherlands
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, the Netherlands
- Department of Ophthalmology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - for the CREAM Consortium
- Department of Ophthalmology, Erasmus Medical Center, Rotterdam, the Netherlands
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, the Netherlands
- Institute for Molecular Medicine, University of Helsinki, Helsinki, Finland
- Department of Public Health, University of Helsinki, Helsinki, Finland
- Centre for Eye Research Australia, Ophthalmology, Department of Surgery, University of Melbourne, Royal Victorian Eye and Ear Hospital, Melbourne, Victoria, Australia
- Department of Ophthalmology, Menzies Institute of Medical Research, University of Tasmania, Hobart, Tasmania, Australia
- Centre for Ophthalmology and Visual Science, Lions Eye Institute, University of Western Australia, Perth, Western Australia, Australia
- School of Optometry and Vision Sciences, Cardiff University, Cardiff, United Kingdom
- Section of Academic Ophthalmology, School of Life Course Sciences, King's College London, London, United Kingdom
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, the Netherlands
- Department of Ophthalmology, Radboud University Medical Center, Nijmegen, the Netherlands
| |
Collapse
|
14
|
Paylakhi S, Labelle-Dumais C, Tolman NG, Sellarole MA, Seymens Y, Saunders J, Lakosha H, deVries WN, Orr AC, Topilko P, John SWM, Nair KS. Müller glia-derived PRSS56 is required to sustain ocular axial growth and prevent refractive error. PLoS Genet 2018. [PMID: 29529029 PMCID: PMC5864079 DOI: 10.1371/journal.pgen.1007244] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
A mismatch between optical power and ocular axial length results in refractive errors. Uncorrected refractive errors constitute the most common cause of vision loss and second leading cause of blindness worldwide. Although the retina is known to play a critical role in regulating ocular growth and refractive development, the precise factors and mechanisms involved are poorly defined. We have previously identified a role for the secreted serine protease PRSS56 in ocular size determination and PRSS56 variants have been implicated in the etiology of both hyperopia and myopia, highlighting its importance in refractive development. Here, we use a combination of genetic mouse models to demonstrate that Prss56 mutations leading to reduced ocular size and hyperopia act via a loss of function mechanism. Using a conditional gene targeting strategy, we show that PRSS56 derived from Müller glia contributes to ocular growth, implicating a new retinal cell type in ocular size determination. Importantly, we demonstrate that persistent activity of PRSS56 is required during distinct developmental stages spanning the pre- and post-eye opening periods to ensure optimal ocular growth. Thus, our mouse data provide evidence for the existence of a molecule contributing to both the prenatal and postnatal stages of human ocular growth. Finally, we demonstrate that genetic inactivation of Prss56 rescues axial elongation in a mouse model of myopia caused by a null mutation in Egr1. Overall, our findings identify PRSS56 as a potential therapeutic target for modulating ocular growth aimed at preventing or slowing down myopia, which is reaching epidemic proportions.
Collapse
Affiliation(s)
- Seyyedhassan Paylakhi
- Department of Ophthalmology, University of California, San Francisco, California, United States of America
| | - Cassandre Labelle-Dumais
- Department of Ophthalmology, University of California, San Francisco, California, United States of America
| | - Nicholas G Tolman
- Howard Hughes Medical Institute, The Jackson Laboratory, Bar Harbor, ME, United States of America
| | - Michael A. Sellarole
- Department of Ophthalmology, University of California, San Francisco, California, United States of America
| | - Yusef Seymens
- Department of Ophthalmology, University of California, San Francisco, California, United States of America
| | - Joseph Saunders
- Department of Ophthalmology and Visual Sciences, Dalhousie University, Halifax, NS, Canada
| | - Hesham Lakosha
- Department of Ophthalmology and Visual Sciences, Dalhousie University, Halifax, NS, Canada
| | - Wilhelmine N. deVries
- Howard Hughes Medical Institute, The Jackson Laboratory, Bar Harbor, ME, United States of America
| | - Andrew C. Orr
- Department of Ophthalmology and Visual Sciences, Dalhousie University, Halifax, NS, Canada
| | - Piotr Topilko
- Ecole Normale Supérieure, Institut de Biologie de l’ENS (IBENS), and Inserm U1024, and CNRS UMR 8197, Paris, France
| | - Simon WM. John
- Howard Hughes Medical Institute, The Jackson Laboratory, Bar Harbor, ME, United States of America
- Department of Ophthalmology, Tufts University School of Medicine Boston, MA, United States of America
| | - K. Saidas Nair
- Department of Ophthalmology, University of California, San Francisco, California, United States of America
- Department of Anatomy, University of California, San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|
15
|
Abstract
PURPOSE The prevalence of myopia has increased dramatically worldwide within the last three decades. Recent studies have shown that refractive development is influenced by environmental, behavioral, and inherited factors. This review aims to analyze recent progress in the genetics of refractive error and myopia. METHODS A comprehensive literature search of PubMed and OMIM was conducted to identify relevant articles in the genetics of refractive error. RESULTS Genome-wide association and sequencing studies have increased our understanding of the genetics involved in refractive error. These studies have identified interesting candidate genes. All genetic loci discovered to date indicate that refractive development is a heterogeneous process mediated by a number of overlapping biological processes. The exact mechanisms by which these biological networks regulate eye growth are poorly understood. Although several individual genes and/or molecular pathways have been investigated in animal models, a systematic network-based approach in modeling human refractive development is necessary to understand the complex interplay between genes and environment in refractive error. CONCLUSION New biomedical technologies and better-designed studies will continue to refine our understanding of the genetics and molecular pathways of refractive error, and may lead to preventative and therapeutic measures to combat the myopia epidemic.
Collapse
|
16
|
Refractive Errors & Refractive Surgery Preferred Practice Pattern®. Ophthalmology 2018; 125:P1-P104. [DOI: 10.1016/j.ophtha.2017.10.003] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 10/02/2017] [Indexed: 11/19/2022] Open
|
17
|
Li J, Zhang Q. Insight into the molecular genetics of myopia. Mol Vis 2017; 23:1048-1080. [PMID: 29386878 PMCID: PMC5757860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 12/29/2017] [Indexed: 11/18/2022] Open
Abstract
Myopia is the most common cause of visual impairment worldwide. Genetic and environmental factors contribute to the development of myopia. Studies on the molecular genetics of myopia are well established and have implicated the important role of genetic factors. With linkage analysis, association studies, sequencing analysis, and experimental myopia studies, many of the loci and genes associated with myopia have been identified. Thus far, there has been no systemic review of the loci and genes related to non-syndromic and syndromic myopia based on the different approaches. Such a systemic review of the molecular genetics of myopia will provide clues to identify additional plausible genes for myopia and help us to understand the molecular mechanisms underlying myopia. This paper reviews recent genetic studies on myopia, summarizes all possible reported genes and loci related to myopia, and suggests implications for future studies on the molecular genetics of myopia.
Collapse
Affiliation(s)
- Jiali Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Qingjiong Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
18
|
Trio-based exome sequencing arrests de novo mutations in early-onset high myopia. Proc Natl Acad Sci U S A 2017; 114:4219-4224. [PMID: 28373534 DOI: 10.1073/pnas.1615970114] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The etiology of the highly myopic condition has been unclear for decades. We investigated the genetic contributions to early-onset high myopia (EOHM), which is defined as having a refraction of less than or equal to -6 diopters before the age of 6, when children are less likely to be exposed to high educational pressures. Trios (two nonmyopic parents and one child) were examined to uncover pathogenic mutations using whole-exome sequencing. We identified parent-transmitted biallelic mutations or de novo mutations in as-yet-unknown or reported genes in 16 probands. Interestingly, an increased rate of de novo mutations was identified in the EOHM patients. Among the newly identified candidate genes, a BSG mutation was identified in one EOHM proband. Expanded screening of 1,040 patients found an additional four mutations in the same gene. Then, we generated Bsg mutant mice to further elucidate the functional impact of this gene and observed typical myopic phenotypes, including an elongated axial length. Using a trio-based exonic screening study in EOHM, we deciphered a prominent role for de novo mutations in EOHM patients without myopic parents. The discovery of a disease gene, BSG, provides insights into myopic development and its etiology, which expands our current understanding of high myopia and might be useful for future treatment and prevention.
Collapse
|
19
|
Ahn H, Lyu IS, Rim TH. The Influence of Parental Myopia on Children's Myopia in Different Generations of Parent-Offspring Pairs in South Korea. Semin Ophthalmol 2017; 33:419-428. [PMID: 28272971 DOI: 10.1080/08820538.2017.1284870] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
PURPOSE To compare the heritabilities of myopia and high myopia across three different generations in Korea. METHODS Parent-offspring pairs of different age groups were included: two parents and their offspring aged 10-19 ("young families"), two parents and their offspring aged 20-29 ("middle-aged families"), and two parents and their offspring aged 30-45 ("older families") were selected from the 2008-2012 Korea National Health and Nutrition Examination Survey. Variance component methods were used to obtain the heritability estimates for myopia and high myopia using parent-offspring pairs from three generations. Spherical equivalents measured in the right eyes were used. RESULTS From the 2008-2012 data, 2,716, 1,211, and 477 offspring from 1,807 young, 956 middle-aged, and 434 older families were eligible for the study, respectively. For myopia, the additive genetic portion of phenotypic variance was smaller in the younger families (74.7% in the older families, 48.1% in the middle-aged families, and 40.1% in the young families), and the non-shared environmental portion was greater in the younger families (12.4% in older families, 24.9% in middle-aged families, and 46.5% in young families). In contrast, for high myopia, the additive genetic portion remained roughly constant at approximately 60% in all three generations. CONCLUSIONS With myopia, the environmental portion of the phenotypic variance increased and the additive genetic portion decreased as South Korea became more urbanized. With high myopia, the additive genetic portion remained roughly constant at approximately 60%, despite the urbanization.
Collapse
Affiliation(s)
- Hyunmin Ahn
- a Department of Ophthalmology, National Health Insurance Service Ilsan Hospital , Goyang , Korea.,b Institute of Vision Research, Department of Ophthalmology, Yonsei University College of Medicine , Seoul, Korea
| | - Il Suk Lyu
- c Yonsei University College of Medicine , Seoul , Korea
| | - Tyler Hyungtaek Rim
- a Department of Ophthalmology, National Health Insurance Service Ilsan Hospital , Goyang , Korea.,b Institute of Vision Research, Department of Ophthalmology, Yonsei University College of Medicine , Seoul, Korea
| |
Collapse
|
20
|
Patterns in longitudinal growth of refraction in Southern Chinese children: cluster and principal component analysis. Sci Rep 2016; 6:37636. [PMID: 27874105 PMCID: PMC5118713 DOI: 10.1038/srep37636] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 10/14/2016] [Indexed: 11/28/2022] Open
Abstract
In the present study we attempt to use hypothesis-independent analysis in investigating the patterns in refraction growth in Chinese children, and to explore the possible risk factors affecting the different components of progression, as defined by Principal Component Analysis (PCA). A total of 637 first-born twins in Guangzhou Twin Eye Study with 6-year annual visits (baseline age 7–15 years) were available in the analysis. Cluster 1 to 3 were classified after a partitioning clustering, representing stable, slow and fast progressing groups of refraction respectively. Baseline age and refraction, paternal refraction, maternal refraction and proportion of two myopic parents showed significant differences across the three groups. Three major components of progression were extracted using PCA: “Average refraction”, “Acceleration” and the combination of “Myopia stabilization” and “Late onset of refraction progress”. In regression models, younger children with more severe myopia were associated with larger “Acceleration”. The risk factors of “Acceleration” included change of height and weight, near work, and parental myopia, while female gender, change of height and weight were associated with “Stabilization”, and increased outdoor time was related to “Late onset of refraction progress”. We therefore concluded that genetic and environmental risk factors have different impacts on patterns of refraction progression.
Collapse
|
21
|
Chen F, Duggal P, Klein BEK, Lee KE, Truitt B, Klein R, Iyengar SK, Klein AP. Variation in PTCHD2, CRISP3, NAP1L4, FSCB, and AP3B2 associated with spherical equivalent. Mol Vis 2016; 22:783-96. [PMID: 27440996 DOI: pmid/27440996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 07/12/2016] [Indexed: 11/10/2022] Open
Abstract
PURPOSE Ocular refraction is measured in spherical equivalent as the power of the external lens required to focus images on the retina. Myopia (nearsightedness) and hyperopia (farsightedness) are the most common refractive errors, and the leading causes of visual impairment and blindness in the world. The goal of this study is to identify rare and low-frequency variants that influence spherical equivalent. METHODS We conducted variant-level and gene-level quantitative trait association analyses for mean spherical equivalent, using data from 1,560 individuals in the Beaver Dam Eye Study. Genotyping was conducted using the Illumina exome array. We analyzed 34,976 single nucleotide variants and 11,571 autosomal genes across the genome, using single-variant tests as well as gene-based tests. RESULTS Spherical equivalent was significantly associated with five genes in gene-based analysis: PTCHD2 at 1p36.22 (p = 3.6 × 10(-7)), CRISP3 at 6p12.3 (p = 4.3 × 10(-6)), NAP1L4 at 11p15.5 (p = 3.6 × 10(-6)), FSCB at 14q21.2 (p = 1.5 × 10(-7)), and AP3B2 at 15q25.2 (p = 1.6 × 10(-7)). The variant-based tests identified evidence suggestive of association with two novel variants in linkage disequilibrium (pairwise r(2) = 0.80) in the TCTE1 gene region at 6p21.1 (rs2297336, minor allele frequency (MAF) = 14.1%, β = -0.62 p = 3.7 × 10(-6); rs324146, MAF = 16.9%, β = -0.55, p = 1.4 × 10(-5)). In addition to these novel findings, we successfully replicated a previously reported association with rs634990 near GJD2 at 15q14 (MAF = 47%, β = -0.29, p=1.8 × 10(-3)). We also found evidence of association with spherical equivalent on 2q37.1 in PRSS56 at rs1550094 (MAF = 31%, β = -0.33, p = 1.7 × 10(-3)), a region previously associated with myopia. CONCLUSIONS We identified several novel candidate genes that may play a role in the control of spherical equivalent. However, further studies are needed to replicate these findings. In addition, our results contribute to the increasing evidence that variation in the GJD2 and PRSS56 genes influence the development of refractive errors. Identifying that variation in these genes is associated with spherical equivalent may provide further insight into the etiology of myopia and consequent vision loss.
Collapse
Affiliation(s)
- Fei Chen
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
| | - Priya Duggal
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
| | - Barbara E K Klein
- Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Kristine E Lee
- Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Barbara Truitt
- Department of Epidemiology and Biostatistics, Case Western Reserve University, Cleveland, OH
| | - Ronald Klein
- Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Sudha K Iyengar
- Department of Epidemiology and Biostatistics, Case Western Reserve University, Cleveland, OH
| | - Alison P Klein
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD; Department of Oncology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD; Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD
| |
Collapse
|
22
|
Williams KM, Hammond CJ. GWAS in myopia: insights into disease and implications for the clinic. EXPERT REVIEW OF OPHTHALMOLOGY 2016. [DOI: 10.1586/17469899.2016.1164597] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
23
|
Lin Z, Mao GY, Vasudevan B, Jin ZB, Ciuffreda KJ, Jhanji V, Zhou HJ, Wang NL, Liang YB. The Association between Maternal Reproductive Age and Progression of Refractive Error in Urban Students in Beijing. PLoS One 2015; 10:e0139383. [PMID: 26421841 PMCID: PMC4589237 DOI: 10.1371/journal.pone.0139383] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 09/11/2015] [Indexed: 12/04/2022] Open
Abstract
Purpose To investigate the association between maternal reproductive age and their children’ refractive error progression in Chinese urban students. Methods The Beijing Myopia Progression Study was a three-year cohort investigation. Cycloplegic refraction of these students at both baseline and follow-up vision examinations, as well as non-cycloplegic refraction of their parents at baseline, were performed. Student’s refractive change was defined as the cycloplegic spherical equivalent (SE) of the right eye at the final follow-up minus the cycloplegic SE of the right eye at baseline. Results At the final follow-up, 241 students (62.4%) were reexamined. 226 students (58.5%) with completed refractive data, as well as completed parental reproductive age data, were enrolled. The average paternal and maternal age increased from 29.4 years and 27.5 years in 1993–1994 to 32.6 years and 29.2 years in 2003–2004, respectively. In the multivariate analysis, students who were younger (β = 0.08 diopter/year/year, P<0.001), with more myopic refraction at baseline (β = 0.02 diopter/year/diopter, P = 0.01), and with older maternal reproductive age (β = -0.18 diopter/year/decade, P = 0.01), had more myopic refractive change. After stratifying the parental reproductive age into quartile groups, children with older maternal reproductive age (trend test: P = 0.04) had more myopic refractive change, after adjusting for the children's age, baseline refraction, maternal refraction, and near work time. However, no significant association between myopic refractive change and paternal reproductive age was found. Conclusions In this cohort, children with older maternal reproductive age had more myopic refractive change. This new risk factor for myopia progression may partially explain the faster myopic progression found in the Chinese population in recent decades.
Collapse
Affiliation(s)
- Zhong Lin
- The Eye Hospital, School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Guang Yun Mao
- The Eye Hospital, School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang, China
- School of Environmental Science & Public Health, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Balamurali Vasudevan
- College of Optometry, Mid Western University, Glendale, AZ, United States of America
| | - Zi Bing Jin
- The Eye Hospital, School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Kenneth J. Ciuffreda
- Department of Biological and Vision Sciences, SUNY College of Optometry, New York, NY, United States of America
| | - Vishal Jhanji
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Hong Jia Zhou
- The Eye Hospital, School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Ning Li Wang
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University; Beijing Ophthalmology & Visual Science Key Lab, Beijing, China
| | - Yuan Bo Liang
- The Eye Hospital, School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang, China
- * E-mail:
| |
Collapse
|
24
|
Tkatchenko AV, Tkatchenko TV, Guggenheim JA, Verhoeven VJM, Hysi PG, Wojciechowski R, Singh PK, Kumar A, Thinakaran G, Williams C. APLP2 Regulates Refractive Error and Myopia Development in Mice and Humans. PLoS Genet 2015; 11:e1005432. [PMID: 26313004 PMCID: PMC4551475 DOI: 10.1371/journal.pgen.1005432] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 07/07/2015] [Indexed: 11/19/2022] Open
Abstract
Myopia is the most common vision disorder and the leading cause of visual impairment worldwide. However, gene variants identified to date explain less than 10% of the variance in refractive error, leaving the majority of heritability unexplained (“missing heritability”). Previously, we reported that expression of APLP2 was strongly associated with myopia in a primate model. Here, we found that low-frequency variants near the 5’-end of APLP2 were associated with refractive error in a prospective UK birth cohort (n = 3,819 children; top SNP rs188663068, p = 5.0 × 10−4) and a CREAM consortium panel (n = 45,756 adults; top SNP rs7127037, p = 6.6 × 10−3). These variants showed evidence of differential effect on childhood longitudinal refractive error trajectories depending on time spent reading (gene x time spent reading x age interaction, p = 4.0 × 10−3). Furthermore, Aplp2 knockout mice developed high degrees of hyperopia (+11.5 ± 2.2 D, p < 1.0 × 10−4) compared to both heterozygous (-0.8 ± 2.0 D, p < 1.0 × 10−4) and wild-type (+0.3 ± 2.2 D, p < 1.0 × 10−4) littermates and exhibited a dose-dependent reduction in susceptibility to environmentally induced myopia (F(2, 33) = 191.0, p < 1.0 × 10−4). This phenotype was associated with reduced contrast sensitivity (F(12, 120) = 3.6, p = 1.5 × 10−4) and changes in the electrophysiological properties of retinal amacrine cells, which expressed Aplp2. This work identifies APLP2 as one of the “missing” myopia genes, demonstrating the importance of a low-frequency gene variant in the development of human myopia. It also demonstrates an important role for APLP2 in refractive development in mice and humans, suggesting a high level of evolutionary conservation of the signaling pathways underlying refractive eye development. Gene variants identified by GWAS studies to date explain only a small fraction of myopia cases because myopia represents a complex disorder thought to be controlled by dozens or even hundreds of genes. The majority of genetic variants underlying myopia seems to be of small effect and/or low frequency, which makes them difficult to identify using classical genetic approaches, such as GWAS, alone. Here, we combined gene expression profiling in a monkey model of myopia, human GWAS, and a gene-targeted mouse model of myopia to identify one of the “missing” myopia genes, APLP2. We found that a low-frequency risk allele of APLP2 confers susceptibility to myopia only in children exposed to large amounts of daily reading, thus, providing an experimental example of the long-hypothesized gene-environment interaction between nearwork and genes underlying myopia. Functional analysis of APLP2 using an APLP2 knockout mouse model confirmed functional significance of APLP2 in refractive development and implicated a potential role of synaptic transmission at the level of glycinergic amacrine cells of the retina for the development of myopia. Furthermore, mouse studies revealed that lack of Aplp2 has a dose-dependent suppressive effect on susceptibility to form-deprivation myopia, providing a potential gene-specific target for therapeutic intervention to treat myopia.
Collapse
Affiliation(s)
- Andrei V. Tkatchenko
- Department of Ophthalmology, Columbia University, New York, New York, United States of America
- Department of Pathology and Cell Biology, Columbia University, New York, New York, United States of America
- * E-mail:
| | - Tatiana V. Tkatchenko
- Department of Ophthalmology, Columbia University, New York, New York, United States of America
| | - Jeremy A. Guggenheim
- School of Optometry & Vision Sciences, Cardiff University, Cardiff, United Kingdom
| | - Virginie J. M. Verhoeven
- Department of Ophthalmology, Erasmus Medical Center, Rotterdam, Netherlands
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, Netherlands
| | - Pirro G. Hysi
- Department of Twin Research and Genetic Epidemiology, King’s College London School of Medicine, London, United Kingdom
| | - Robert Wojciechowski
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
- Statistical Genetics Section, Inherited Disease Research Branch, National Human Genome Research Institute (NIH), Baltimore, Maryland, United States of America
| | - Pawan Kumar Singh
- Department of Ophthalmology, Wayne State University, Detroit, Michigan, United States of America
| | - Ashok Kumar
- Department of Ophthalmology, Wayne State University, Detroit, Michigan, United States of America
- Department of Anatomy and Cell Biology, Wayne State University, Detroit, Michigan, United States of America
| | - Gopal Thinakaran
- Departments of Neurobiology, Neurology, and Pathology, University of Chicago, Chicago, Illinois, United States of America
| | | | - Cathy Williams
- School of Social and Community Medicine, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
25
|
Simpson CL, Wojciechowski R, Oexle K, Murgia F, Portas L, Li X, Verhoeven VJM, Vitart V, Schache M, Hosseini SM, Hysi PG, Raffel LJ, Cotch MF, Chew E, Klein BEK, Klein R, Wong TY, van Duijn CM, Mitchell P, Saw SM, Fossarello M, Wang JJ, Polašek O, Campbell H, Rudan I, Oostra BA, Uitterlinden AG, Hofman A, Rivadeneira F, Amin N, Karssen LC, Vingerling JR, Döring A, Bettecken T, Bencic G, Gieger C, Wichmann HE, Wilson JF, Venturini C, Fleck B, Cumberland PM, Rahi JS, Hammond CJ, Hayward C, Wright AF, Paterson AD, Baird PN, Klaver CCW, Rotter JI, Pirastu M, Meitinger T, Bailey-Wilson JE, Stambolian D. Genome-wide meta-analysis of myopia and hyperopia provides evidence for replication of 11 loci. PLoS One 2014; 9:e107110. [PMID: 25233373 PMCID: PMC4169415 DOI: 10.1371/journal.pone.0107110] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Accepted: 08/12/2014] [Indexed: 01/01/2023] Open
Abstract
Refractive error (RE) is a complex, multifactorial disorder characterized by a mismatch between the optical power of the eye and its axial length that causes object images to be focused off the retina. The two major subtypes of RE are myopia (nearsightedness) and hyperopia (farsightedness), which represent opposite ends of the distribution of the quantitative measure of spherical refraction. We performed a fixed effects meta-analysis of genome-wide association results of myopia and hyperopia from 9 studies of European-derived populations: AREDS, KORA, FES, OGP-Talana, MESA, RSI, RSII, RSIII and ERF. One genome-wide significant region was observed for myopia, corresponding to a previously identified myopia locus on 8q12 (p = 1.25×10(-8)), which has been reported by Kiefer et al. as significantly associated with myopia age at onset and Verhoeven et al. as significantly associated to mean spherical-equivalent (MSE) refractive error. We observed two genome-wide significant associations with hyperopia. These regions overlapped with loci on 15q14 (minimum p value = 9.11×10(-11)) and 8q12 (minimum p value 1.82×10(-11)) previously reported for MSE and myopia age at onset. We also used an intermarker linkage- disequilibrium-based method for calculating the effective number of tests in targeted regional replication analyses. We analyzed myopia (which represents the closest phenotype in our data to the one used by Kiefer et al.) and showed replication of 10 additional loci associated with myopia previously reported by Kiefer et al. This is the first replication of these loci using myopia as the trait under analysis. "Replication-level" association was also seen between hyperopia and 12 of Kiefer et al.'s published loci. For the loci that show evidence of association to both myopia and hyperopia, the estimated effect of the risk alleles were in opposite directions for the two traits. This suggests that these loci are important contributors to variation of refractive error across the distribution.
Collapse
Affiliation(s)
- Claire L. Simpson
- National Human Genome Research Institute, National Institutes of Health, Baltimore, Maryland, United States of America
| | - Robert Wojciechowski
- National Human Genome Research Institute, National Institutes of Health, Baltimore, Maryland, United States of America
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Konrad Oexle
- Institute of Human Genetics, Technische Universität München, Munich, Germany
| | - Federico Murgia
- Institute of Population Genetics, National Research Council of Italy, Sassari, Italy
| | - Laura Portas
- Institute of Population Genetics, National Research Council of Italy, Sassari, Italy
| | - Xiaohui Li
- Institute for Translational Genomics and Population Sciences, Los Angeles BioMedical Research Institute at Harbor-UCLA Medical Center, Torrance, California, United States of America
| | - Virginie J. M. Verhoeven
- Department of Ophthalmology, Erasmus Medical Center, Rotterdam, the Netherlands
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Veronique Vitart
- MRC Human Genetics Unit, IGMM, University of Edinburgh, Edinburgh, United Kingdom
| | - Maria Schache
- Centre for Eye Research Australia, University of Melbourne, Royal Victorian Eye and Ear Hospital, Melbourne, Australia
| | - S. Mohsen Hosseini
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada, and DCCT/EDIC Research Group, The Diabetes Control and Complications Trial and Follow-up Study, The Biostatistics Center, The George Washington University, Rockville, Maryland, United States of America
| | - Pirro G. Hysi
- Department of Twin Research & Genetic Epidemiology, King's College London, St Thomas' Hospital, London, United Kingdom
| | - Leslie J. Raffel
- Medical Genetics Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
| | - Mary Frances Cotch
- Division of Epidemiology and Clinical Applications, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Emily Chew
- Division of Epidemiology and Clinical Applications, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Barbara E. K. Klein
- Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Ronald Klein
- Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Tien Yin Wong
- Centre for Eye Research Australia, University of Melbourne, Royal Victorian Eye and Ear Hospital, Melbourne, Australia
- Singapore Eye Research Institute, National University of Singapore, Singapore, Singapore
| | | | - Paul Mitchell
- Centre for Vision Research, Department of Ophthalmology and Westmead Millennium Institute, University of Sydney, Sydney, Australia
| | - Seang Mei Saw
- Department of Epidemiology and Public Health, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Maurizio Fossarello
- Dipartimento di Scienze Chirurgiche, Clinica Oculistica Universita' degli studi di Cagliari, Cagliari, Italy
| | - Jie Jin Wang
- Centre for Eye Research Australia, University of Melbourne, Royal Victorian Eye and Ear Hospital, Melbourne, Australia
- Centre for Vision Research, Department of Ophthalmology and Westmead Millennium Institute, University of Sydney, Sydney, Australia
| | - DCCT/EDIC Research Group
- The Diabetes Control and Complications Trial and Follow-up Study, The Biostatistics Center, The George Washington University, Rockville, Maryland, United States of America
| | - Ozren Polašek
- Croatian Centre for Global Health, University of Split Medical School, Split, Croatia
| | - Harry Campbell
- Centre for Population Health Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Igor Rudan
- Centre for Population Health Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Ben A. Oostra
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, the Netherlands
| | - André G. Uitterlinden
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, the Netherlands
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, the Netherlands
- Netherlands Consortium for Healthy Ageing, Netherlands Genomics Initiative, The Hague, the Netherlands
| | - Albert Hofman
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, the Netherlands
- Netherlands Consortium for Healthy Ageing, Netherlands Genomics Initiative, The Hague, the Netherlands
| | - Fernando Rivadeneira
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, the Netherlands
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, the Netherlands
- Netherlands Consortium for Healthy Ageing, Netherlands Genomics Initiative, The Hague, the Netherlands
| | - Najaf Amin
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Lennart C. Karssen
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Johannes R. Vingerling
- Department of Ophthalmology, Erasmus Medical Center, Rotterdam, the Netherlands
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Angela Döring
- Institute of Epidemiology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Thomas Bettecken
- Institute of Human Genetics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Goran Bencic
- Department of Ophthalmology, Hospital “Sestre Milosrdnice”, Zagreb, Croatia
| | - Christian Gieger
- Institute of Genetic Epidemiology, Helmholtz Zentrum München, Neuherberg, Germany
| | - H.-Erich Wichmann
- Institute of Epidemiology, Helmholtz Zentrum München, Neuherberg, Germany
| | - James F. Wilson
- Centre for Population Health Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Cristina Venturini
- Department of Twin Research & Genetic Epidemiology, King's College London, St Thomas' Hospital, London, United Kingdom
| | - Brian Fleck
- Princess Alexandra Eye Pavilion, Edinburgh, United Kingdom
| | - Phillippa M. Cumberland
- MRC Centre of Epidemiology for Child Health, Institute of Child Health, University College London, London, United Kingdom
| | - Jugnoo S. Rahi
- MRC Centre of Epidemiology for Child Health, Institute of Child Health, University College London, London, United Kingdom
- Institute of Ophthalmology, University College London, London, United Kingdom
- Ulverscroft Vision Research Group, Institute of Child Health, University College London, London, United Kingdom
| | - Chris J. Hammond
- Department of Twin Research & Genetic Epidemiology, King's College London, St Thomas' Hospital, London, United Kingdom
| | - Caroline Hayward
- MRC Human Genetics Unit, IGMM, University of Edinburgh, Edinburgh, United Kingdom
| | - Alan F. Wright
- MRC Human Genetics Unit, IGMM, University of Edinburgh, Edinburgh, United Kingdom
| | - Andrew D. Paterson
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada, and DCCT/EDIC Research Group, The Diabetes Control and Complications Trial and Follow-up Study, The Biostatistics Center, The George Washington University, Rockville, Maryland, United States of America
| | - Paul N. Baird
- Centre for Eye Research Australia, University of Melbourne, Royal Victorian Eye and Ear Hospital, Melbourne, Australia
| | - Caroline C. W. Klaver
- Department of Ophthalmology, Erasmus Medical Center, Rotterdam, the Netherlands
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Jerome I. Rotter
- Institute for Translational Genomics and Population Sciences, Los Angeles BioMedical Research Institute at Harbor-UCLA Medical Center, Torrance, California, United States of America
| | - Mario Pirastu
- Institute of Population Genetics, National Research Council of Italy, Sassari, Italy
| | - Thomas Meitinger
- Institute of Human Genetics, Technische Universität München, Munich, Germany
- Institute of Human Genetics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Joan E. Bailey-Wilson
- National Human Genome Research Institute, National Institutes of Health, Baltimore, Maryland, United States of America
| | - Dwight Stambolian
- Department of Ophthalmology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
26
|
Jones-Jordan LA, Sinnott LT, Graham ND, Cotter SA, Kleinstein RN, Manny RE, Mutti DO, Twelker JD, Zadnik K. The contributions of near work and outdoor activity to the correlation between siblings in the Collaborative Longitudinal Evaluation of Ethnicity and Refractive Error (CLEERE) Study. Invest Ophthalmol Vis Sci 2014; 55:6333-9. [PMID: 25205866 DOI: 10.1167/iovs.14-14640] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE We determined the correlation between sibling refractive errors adjusted for shared and unique environmental factors using data from the Collaborative Longitudinal Evaluation of Ethnicity and Refractive Error (CLEERE) Study. METHODS Refractive error from subjects' last study visits was used to estimate the intraclass correlation coefficient (ICC) between siblings. The correlation models used environmental factors (diopter-hours and outdoor/sports activity) assessed annually from parents by survey to adjust for shared and unique environmental exposures when estimating the heritability of refractive error (2*ICC). RESULTS Data from 700 families contributed to the between-sibling correlation for spherical equivalent refractive error. The mean age of the children at the last visit was 13.3 ± 0.90 years. Siblings engaged in similar amounts of near and outdoor activities (correlations ranged from 0.40-0.76). The ICC for spherical equivalent, controlling for age, sex, ethnicity, and site was 0.367 (95% confidence interval [CI] = 0.304, 0.420), with an estimated heritability of no more than 0.733. After controlling for these variables, and near and outdoor/sports activities, the resulting ICC was 0.364 (95% CI = 0.304, 0.420; estimated heritability no more than 0.728, 95% CI = 0.608, 0.850). The ICCs did not differ significantly between male-female and single sex pairs. CONCLUSIONS Adjusting for shared family and unique, child-specific environmental factors only reduced the estimate of refractive error correlation between siblings by 0.5%. Consistent with a lack of association between myopia progression and either near work or outdoor/sports activity, substantial common environmental exposures had little effect on this correlation. Genetic effects appear to have the major role in determining the similarity of refractive error between siblings.
Collapse
Affiliation(s)
- Lisa A Jones-Jordan
- The Ohio State University College of Optometry, Columbus, Ohio, United States
| | - Loraine T Sinnott
- The Ohio State University College of Optometry, Columbus, Ohio, United States
| | | | - Susan A Cotter
- Marshall B. Ketchum University, Fullerton, California, United States
| | - Robert N Kleinstein
- University of Alabama at Birmingham School of Optometry, Birmingham, Alabama, United States
| | - Ruth E Manny
- University of Houston College of Optometry, Houston, Texas, United States
| | - Donald O Mutti
- The Ohio State University College of Optometry, Columbus, Ohio, United States
| | - J Daniel Twelker
- University of Arizona Department of Ophthalmology and Vision Science, Tucson, Arizona, United States
| | - Karla Zadnik
- The Ohio State University College of Optometry, Columbus, Ohio, United States
| | | |
Collapse
|
27
|
Gao TY, Zhang P, Li L, Lin Z, Jhanji V, Peng Y, Li ZW, Sun LP, Han W, Wang NL, Liang YB. Rationale, design, and demographic characteristics of the Handan Offspring Myopia Study. Ophthalmic Epidemiol 2014; 21:124-32. [PMID: 24568612 DOI: 10.3109/09286586.2014.887734] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PURPOSE The Handan Offspring Myopia Study (HOMS) aims to investigate the familial associations of myopia between parents and their offspring. METHODS Children aged 6-18 years, residing in 6 villages where all people aged ≥30 years had participated in The Handan Eye Study in 2006-2007, were selected for the current eye study between March and June 2010. A mobile clinic was set up in the 6 villages for comprehensive eye examinations, including visual acuity, ocular biometry, cycloplegic autorefraction and retinal photography. RESULTS Of 1238 eligible individuals, 878 children (70.2%; 52.6% male) from 541 families were recruited. Mean age of the children was 10.5 ± 2.5 years. The prevalence of myopia (spherical equivalent refraction <-0.5 diopter) was 23.5% (males 16.8%, females 30.8%). The prevalence of low vision (presenting visual acuity ≥20/400 but <20/60) in the better eye was 7.1%. A higher number of females had low vision at the time of presentation (9.2%) compared to males (5.2%, p = 0.02). The prevalence of low vision in the worse eye was 10.6% (males 6.7%, females 14.9%, p < 0.001). The majority of visual impairment in the better-seeing (56/62, 90.3%) as well as the worse-seeing (84/93, 90.3%) eye was correctable. CONCLUSIONS The HOMS examined about 70% of eligible Han Chinese offspring of Handan Eye Study participants in a rural region of northern China. Results from the HOMS will provide key information about the prevalence of refractive errors and eye diseases in rural Chinese children.
Collapse
Affiliation(s)
- Tie Ying Gao
- Handan Eye Hospital , Handan, Hebei Province , China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Stambolian D, Wojciechowski R, Oexle K, Pirastu M, Li X, Raffel LJ, Cotch MF, Chew EY, Klein B, Klein R, Wong TY, Simpson CL, Klaver CC, van Duijn CM, Verhoeven VJ, Baird PN, Vitart V, Paterson AD, Mitchell P, Saw SM, Fossarello M, Kazmierkiewicz K, Murgia F, Portas L, Schache M, Richardson A, Xie J, Wang JJ, Rochtchina E, Viswanathan AC, Hayward C, Wright AF, Polašek O, Campbell H, Rudan I, Oostra BA, Uitterlinden AG, Hofman A, Rivadeneira F, Amin N, Karssen LC, Vingerling JR, Hosseini S, Döring A, Bettecken T, Vatavuk Z, Gieger C, Wichmann HE, Wilson JF, Fleck B, Foster PJ, Topouzis F, McGuffin P, Sim X, Inouye M, Holliday EG, Attia J, Scott RJ, Rotter JI, Meitinger T, Bailey-Wilson JE. Meta-analysis of genome-wide association studies in five cohorts reveals common variants in RBFOX1, a regulator of tissue-specific splicing, associated with refractive error. Hum Mol Genet 2013; 22:2754-64. [PMID: 23474815 PMCID: PMC3674806 DOI: 10.1093/hmg/ddt116] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Revised: 02/28/2013] [Accepted: 03/04/2013] [Indexed: 01/22/2023] Open
Abstract
Visual refractive errors (REs) are complex genetic traits with a largely unknown etiology. To date, genome-wide association studies (GWASs) of moderate size have identified several novel risk markers for RE, measured here as mean spherical equivalent (MSE). We performed a GWAS using a total of 7280 samples from five cohorts: the Age-Related Eye Disease Study (AREDS); the KORA study ('Cooperative Health Research in the Region of Augsburg'); the Framingham Eye Study (FES); the Ogliastra Genetic Park-Talana (OGP-Talana) Study and the Multiethnic Study of Atherosclerosis (MESA). Genotyping was performed on Illumina and Affymetrix platforms with additional markers imputed to the HapMap II reference panel. We identified a new genome-wide significant locus on chromosome 16 (rs10500355, P = 3.9 × 10(-9)) in a combined discovery and replication set (26 953 samples). This single nucleotide polymorphism (SNP) is located within the RBFOX1 gene which is a neuron-specific splicing factor regulating a wide range of alternative splicing events implicated in neuronal development and maturation, including transcription factors, other splicing factors and synaptic proteins.
Collapse
Affiliation(s)
- Dwight Stambolian
- Department of Ophthalmology, University of Pennsylvania, Philadelphia, PA, USA
| | - Robert Wojciechowski
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health
- National Human Genome Research Institute
| | - Konrad Oexle
- Institute of Human Genetics, Technische Universität München, Munich, Germany
| | - Mario Pirastu
- Institute of Population Genetics, National Research Council of Italy, Sassari, Italy
| | - Xiaohui Li
- Medical Genetics Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Leslie J. Raffel
- Medical Genetics Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Mary Frances Cotch
- Division of Epidemiology and Clinical Applications, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Emily Y. Chew
- Division of Epidemiology and Clinical Applications, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Barbara Klein
- Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Ronald Klein
- Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Tien Y. Wong
- Singapore Eye Research Institute, National University of Singapore, Singapore
- Centre for Eye Research Australia, University of Melbourne, Victoria, Australia
| | | | | | | | | | - Paul N. Baird
- Centre for Eye Research Australia, University of Melbourne, Royal Victorian Eye and Ear Hospital, Melbourne, Australia
| | | | - Andrew D. Paterson
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Paul Mitchell
- Centre for Vision Research, Department of Ophthalmology and Westmead Millennium Institute, University of Sydney, NSW, Australia
| | - Seang Mei Saw
- Department of Epidemiology and Public Health, Yong Loo Lin School of Medicine and
| | - Maurizio Fossarello
- Dipartimento di Scienze Chirurgiche, Clinica Oculistica Universita` degli studi di Cagliari, Cagliari, Italy
| | | | - Federico Murgia
- Institute of Population Genetics, National Research Council of Italy, Sassari, Italy
| | - Laura Portas
- Institute of Population Genetics, National Research Council of Italy, Sassari, Italy
| | - Maria Schache
- Centre for Eye Research Australia, University of Melbourne, Royal Victorian Eye and Ear Hospital, Melbourne, Australia
| | - Andrea Richardson
- Centre for Eye Research Australia, University of Melbourne, Royal Victorian Eye and Ear Hospital, Melbourne, Australia
| | - Jing Xie
- Centre for Eye Research Australia, University of Melbourne, Royal Victorian Eye and Ear Hospital, Melbourne, Australia
| | - Jie Jin Wang
- Centre for Eye Research Australia, University of Melbourne, Royal Victorian Eye and Ear Hospital, Melbourne, Australia
- Centre for Vision Research, Department of Ophthalmology and Westmead Millennium Institute, University of Sydney, NSW, Australia
| | - Elena Rochtchina
- Centre for Vision Research, Department of Ophthalmology and Westmead Millennium Institute, University of Sydney, NSW, Australia
| | | | - Ananth C. Viswanathan
- NIHR Biomedical Research Centre, Moorfields Eye Hospital NHS Foundation Trust and
- UCL Institute of Ophthalmology, London EC1V 2PD, UK
| | | | | | - Ozren Polašek
- Croatian Centre for Global Health, University of Split Medical School, Split, Croatia
| | - Harry Campbell
- Centre for Population Health Sciences, University of Edinburgh, Edinburgh, UK
| | - Igor Rudan
- Centre for Population Health Sciences, University of Edinburgh, Edinburgh, UK
| | | | - André G. Uitterlinden
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Albert Hofman
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Fernando Rivadeneira
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Najaf Amin
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Lennart C. Karssen
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | | | - S.M. Hosseini
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | | | - Thomas Bettecken
- Institute of Human Genetics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Zoran Vatavuk
- Dept of Ophthalmology, Hospital ‘Sestre Milosrdnice’, Zagreb, Croatia
| | | | | | - James F. Wilson
- Centre for Population Health Sciences, University of Edinburgh, Edinburgh, UK
| | - Brian Fleck
- Princess Alexandra Eye Pavilion, Edinburgh, UK
| | - Paul J. Foster
- NIHR Biomedical Research Centre, Moorfields Eye Hospital NHS Foundation Trust and
- UCL Institute of Ophthalmology, London EC1V 2PD, UK
| | - Fotis Topouzis
- Department of Ophthalmology, School of Medicine, Aristotle University of Thessaloniki, AHEPA Hospital, Thessaloniki, Greece
| | - Peter McGuffin
- MRC Social Genetic and Developmental Psychiatry Research Centre, Institute of Psychiatry, King's College, London, UK
| | - Xueling Sim
- Centre for Molecular Epidemiology, National University of Singapore, Singapore, Singapore
| | - Michael Inouye
- Medical Systems Biology, Department of Pathology and Department of Microbiology & Immunology, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Elizabeth G. Holliday
- School of Medicine and Public Health, University of Newcastle, Newcastle, Australia
- Hunter Medical Research Institute, Newcastle, Australia
| | - John Attia
- School of Medicine and Public Health, University of Newcastle, Newcastle, Australia
- Hunter Medical Research Institute, Newcastle, Australia
| | - Rodney J. Scott
- School of Medicine and Public Health, University of Newcastle, Newcastle, Australia
- Hunter Medical Research Institute, Newcastle, Australia
- The Centre for Information Based Medicine and the School of Biomedical Sciences and Pharmacy University of Newcastle, Newcastle, Australia
- The Division of Genetics, Hunter Area Pathology Service, John Hunter Hospital, Newcastle, Australia
| | - Jerome I. Rotter
- Medical Genetics Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Thomas Meitinger
- Institute of Human Genetics, Technische Universität München, Munich, Germany
- Institute of Human Genetics, Helmholtz Zentrum München, Neuherberg, Germany
| | | |
Collapse
|
29
|
Kiefer AK, Tung JY, Do CB, Hinds DA, Mountain JL, Francke U, Eriksson N. Genome-wide analysis points to roles for extracellular matrix remodeling, the visual cycle, and neuronal development in myopia. PLoS Genet 2013; 9:e1003299. [PMID: 23468642 PMCID: PMC3585144 DOI: 10.1371/journal.pgen.1003299] [Citation(s) in RCA: 219] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Accepted: 12/18/2012] [Indexed: 11/18/2022] Open
Abstract
Myopia, or nearsightedness, is the most common eye disorder, resulting primarily from excess elongation of the eye. The etiology of myopia, although known to be complex, is poorly understood. Here we report the largest ever genome-wide association study (45,771 participants) on myopia in Europeans. We performed a survival analysis on age of myopia onset and identified 22 significant associations (), two of which are replications of earlier associations with refractive error. Ten of the 20 novel associations identified replicate in a separate cohort of 8,323 participants who reported if they had developed myopia before age 10. These 22 associations in total explain 2.9% of the variance in myopia age of onset and point toward a number of different mechanisms behind the development of myopia. One association is in the gene PRSS56, which has previously been linked to abnormally small eyes; one is in a gene that forms part of the extracellular matrix (LAMA2); two are in or near genes involved in the regeneration of 11-cis-retinal (RGR and RDH5); two are near genes known to be involved in the growth and guidance of retinal ganglion cells (ZIC2, SFRP1); and five are in or near genes involved in neuronal signaling or development. These novel findings point toward multiple genetic factors involved in the development of myopia and suggest that complex interactions between extracellular matrix remodeling, neuronal development, and visual signals from the retina may underlie the development of myopia in humans. The genetic basis of myopia, or nearsightedness, is believed to be complex and affected by multiple genes. Two genetic association studies have each identified a single genetic region associated with myopia in European populations. Here we report the results of the largest ever genetic association study on myopia in over 45,000 people of European ancestry. We identified 22 genetic regions significantly associated with myopia age of onset. Two are replications of the previously identified associations, and 20 are novel. Ten of the novel associations replicate in a small separate cohort. Sixteen of the novel associations are in or near genes implicated in eye development, neuronal development and signaling, the visual cycle of the retina, and general morphology: BMP3, BMP4, DLG2, DLX1, KCNMA1, KCNQ5, LAMA2, LRRC4C, PRSS56, RBFOX1, RDH5, RGR, SFRP1, TJP2, ZBTB38, and ZIC2. These findings point to numerous biological pathways involved in the development of myopia and, in particular, suggest that early eye and neuronal development may lead to the eventual development of myopia in humans.
Collapse
Affiliation(s)
- Amy K. Kiefer
- 23andMe, Mountain View, California, United States of America
| | - Joyce Y. Tung
- 23andMe, Mountain View, California, United States of America
| | - Chuong B. Do
- 23andMe, Mountain View, California, United States of America
| | - David A. Hinds
- 23andMe, Mountain View, California, United States of America
| | | | - Uta Francke
- 23andMe, Mountain View, California, United States of America
| | - Nicholas Eriksson
- 23andMe, Mountain View, California, United States of America
- * E-mail:
| |
Collapse
|
30
|
|
31
|
Simpson CL, Wojciechowski R, Ibay G, Stambolian D, Bailey-Wilson JE. Dissecting the genetic heterogeneity of myopia susceptibility in an Ashkenazi Jewish population using ordered subset analysis. Mol Vis 2011; 17:1641-51. [PMID: 21738393 PMCID: PMC3123157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2011] [Accepted: 06/13/2011] [Indexed: 11/18/2022] Open
Abstract
PURPOSE Despite many years of research, most of the genetic factors contributing to myopia development remain unknown. Genetic studies have pointed to a strong inherited component, but although many candidate regions have been implicated, few genes have been positively identified. METHODS We have previously reported 2 genomewide linkage scans in a population of 63 highly aggregated Ashkenazi Jewish families that identified a locus on chromosome 22. Here we used ordered subset analysis (OSA), conditioned on non-parametric linkage to chromosome 22 to detect other chromosomal regions which had evidence of linkage to myopia in subsets of the families, but not the overall sample. RESULTS Strong evidence of linkage to a 19-cM linkage interval with a peak OSA nonparametric allele-sharing logarithm-of-odds (LOD) score of 3.14 on 20p12-q11.1 (ΔLOD=2.39, empirical p=0.029) was identified in a subset of 20 families that also exhibited strong evidence of linkage to chromosome 22. One other locus also presented with suggestive LOD scores >2.0 on chromosome 11p14-q14 and one locus on chromosome 6q22-q24 had an OSA LOD score=1.76 (ΔLOD=1.65, empirical p=0.02). CONCLUSIONS The chromosome 6 and 20 loci are entirely novel and appear linked in a subset of families whose myopia is known to be linked to chromosome 22. The chromosome 11 locus overlaps with the known Myopia-7 (MYP7, OMIM 609256) locus. Using ordered subset analysis allows us to find additional loci linked to myopia in subsets of families, and underlines the complex genetic heterogeneity of myopia even in highly aggregated families and genetically isolated populations such as the Ashkenazi Jews.
Collapse
Affiliation(s)
- Claire L. Simpson
- Inherited Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Baltimore, MD
| | - Robert Wojciechowski
- Inherited Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Baltimore, MD,Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
| | - Grace Ibay
- Inherited Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Baltimore, MD,Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD
| | - Dwight Stambolian
- Department of Ophthalmology, University of Pennsylvania, Philadelphia, PA
| | - Joan E. Bailey-Wilson
- Inherited Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Baltimore, MD
| |
Collapse
|
32
|
Sherwin JC, Kelly J, Hewitt AW, Kearns LS, Griffiths LR, Mackey DA. Prevalence and predictors of refractive error in a genetically isolated population: the Norfolk Island Eye Study. Clin Exp Ophthalmol 2011; 39:734-42. [DOI: 10.1111/j.1442-9071.2011.02579.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
33
|
Abstract
The refractive errors, myopia and hyperopia, are optical defects of the visual system that can cause blurred vision. Uncorrected refractive errors are the most common causes of visual impairment worldwide. It is estimated that 2.5 billion people will be affected by myopia alone within the next decade. Experimental, epidemiological and clinical research has shown that refractive development is influenced by both environmental and genetic factors. Animal models have showed that eye growth and refractive maturation during infancy are tightly regulated by visually guided mechanisms. Observational data in human populations provide compelling evidence that environmental influences and individual behavioral factors play crucial roles in myopia susceptibility. Nevertheless, the majority of the variance of refractive error within populations is thought to be because of hereditary factors. Genetic linkage studies have mapped two dozen loci, while association studies have implicated more than 25 different genes in refractive variation. Many of these genes are involved in common biological pathways known to mediate extracellular matrix (ECM) composition and regulate connective tissue remodeling. Other associated genomic regions suggest novel mechanisms in the etiology of human myopia, such as mitochondrial-mediated cell death or photoreceptor-mediated visual signal transmission. Taken together, observational and experimental studies have revealed the complex nature of human refractive variation, which likely involves variants in several genes and functional pathways. Multiway interactions between genes and/or environmental factors may also be important in determining individual risks of myopia, and may help explain the complex pattern of refractive error in human populations.
Collapse
Affiliation(s)
- R Wojciechowski
- Statistical Genetics Section, Inherited Disease Branch, National Human Genome Research Institute/NIH, 333 Cassell Drive, Baltimore, MD 21224, USA.
| |
Collapse
|
34
|
Sanfilippo PG, Hewitt AW, Hammond CJ, Mackey DA. The heritability of ocular traits. Surv Ophthalmol 2010; 55:561-83. [PMID: 20851442 DOI: 10.1016/j.survophthal.2010.07.003] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2009] [Revised: 07/23/2010] [Accepted: 07/27/2010] [Indexed: 12/17/2022]
Abstract
Heritability is the proportion of phenotypic variation in a population that is attributable to genetic variation among individuals. Many ophthalmic disorders and biometric traits are known to have a genetic basis and consequently much work has been published in the literature estimating the heritability of various ocular parameters. We collated and summarized the findings of heritability studies conducted in the field of ophthalmology. We grouped the various studies broadly by phenotype as follows: refraction, primary open-angle glaucoma, age-related macular degeneration (AMD), cataract, diabetic retinopathy, and others. A total of 82 articles were retrieved from the literature relating to estimation of heritability for an ocular disease or biometric trait; of these, 37 papers were concerned with glaucoma, 28 with refraction, 4 with AMD, 5 with diabetic retinopathy, and 4 with cataract. The highest reported heritability for an ophthalmic trait is 0.99 for the phenotype ≥ 20 small hard drusen, indicating that observed variation in this parameter is largely governed by genetic factors. Over 60% of the studies employed a twin study design and a similar percentage utilized variance components methods and structural equation modeling (SEM) to derive their heritability values. Using modern SEM techniques, heritability estimates derived from twin subjects were generally higher than those from family data. Many of the estimates are in the moderate to high range, but to date the majority of genetic variants accounting for these findings have not been uncovered, hence much work remains to be undertaken to elucidate fully their molecular etiology.
Collapse
Affiliation(s)
- Paul G Sanfilippo
- Centre for Eye Research Australia, University of Melbourne, Royal Victorian Eye and Ear Hospital, Melbourne, Australia.
| | | | | | | |
Collapse
|
35
|
Baird PN, Schäche M, Dirani M. The GEnes in Myopia (GEM) study in understanding the aetiology of refractive errors. Prog Retin Eye Res 2010; 29:520-42. [PMID: 20576483 DOI: 10.1016/j.preteyeres.2010.05.004] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Refractive errors represent the leading cause of correctable vision impairment and blindness in the world with an estimated 2 billion people affected. Refractive error refers to a group of refractive conditions including hypermetropia, myopia, astigmatism and presbyopia but relatively little is known about their aetiology. In order to explore the potential role of genetic determinants in refractive error the "GEnes in Myopia (GEM) study" was established in 2004. The findings that have resulted from this study have not only provided greater insight into the role of genes and other factors involved in myopia but have also gone some way to uncovering the aetiology of other refractive errors. This review will describe some of the major findings of the GEM study and their relative contribution to the literature, illuminate where the deficiencies are in our understanding of the development of refractive errors and how we will advance this field in the future.
Collapse
Affiliation(s)
- Paul N Baird
- Centre for Eye Research Australia, University of Melbourne, Royal Victorian Eye and Ear Hospital, East Melbourne, Victoria, Australia.
| | | | | |
Collapse
|
36
|
Wojciechowski R, Bailey-Wilson JE, Stambolian D. Association of matrix metalloproteinase gene polymorphisms with refractive error in Amish and Ashkenazi families. Invest Ophthalmol Vis Sci 2010; 51:4989-95. [PMID: 20484597 DOI: 10.1167/iovs.10-5474] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE Matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs) are involved in scleral extracellular matrix remodeling and have shown differential expression in experimental myopia. The genetic association of refractive error and polymorphisms in MMP and TIMP genes in Old Order Amish (AMISH) and Ashkenazi Jewish (ASHK) families was investigated. METHODS Individuals from 55 AMISH and 63 ASHK families participated in the study. Ascertainment was designed to enrich the families for myopia; the mean spherical equivalent (MSE) refractive error (SD) was -1.61 (2.72) D in the AMISH, and -3.56 (3.32) D in the ASHK. One hundred forty-six common haplotype tagging SNPs covering 14 MMP and 4 TIMP genes were genotyped in 358 AMISH and 535 ASHK participants. Association analyses of MSE and the spherical component of refraction (SPH) were performed separately for the AMISH and the ASHK. Bonferroni-corrected significance thresholds and local false discovery rates were used to account for multiple testing. RESULTS After they were filtered for quality-control, 127 SNPs were included in the analyses. No polymorphisms showed statistically significant association to refraction in the ASHK (minimum P = 0.0132). In AMISH, two SNPs showed evidence of association with refractive phenotypes: rs1939008 (P = 0.00016 for SPH); and rs9928731 (P = 0.00026 for SPH). These markers were each estimated to explain <5% of the variance of SPH in the AMISH sample. CONCLUSIONS Statistically significant genetic associations of ocular refraction to polymorphisms near MMP1 and within MMP2 were identified in the AMISH but not among the ASHK families. The results suggest that the MMP1 and MMP2 genes are involved in refractive variation in the AMISH. Genetic and/or environmental heterogeneity most likely contribute to differences in association results between ethnic groups.
Collapse
Affiliation(s)
- Robert Wojciechowski
- Inherited Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Baltimore, Maryland 21224, USA.
| | | | | |
Collapse
|
37
|
Demeester K, van Wieringen A, Hendrickx JJ, Topsakal V, Huyghe J, Fransen E, Van Laer L, Van Camp G, Van de Heyning P. Heritability of audiometric shape parameters and familial aggregation of presbycusis in an elderly Flemish population. Hear Res 2010; 265:1-10. [PMID: 20303401 DOI: 10.1016/j.heares.2010.03.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2009] [Revised: 02/27/2010] [Accepted: 03/14/2010] [Indexed: 11/29/2022]
Abstract
This study describes the heritability of audiometric shape parameters and the familial aggregation of different types of presbycusis in a healthy, otologically screened population between 50 and 75 years old. About 342 siblings of 64 families (average family-size: 5.3) were recruited through population registries. Audiometric shape was mathematically quantified by objective parameters developed to measure size, slope, concavity, percentage of frequency-dependent and frequency-independent hearing loss and Bulge Depth. The heritability of each parameter was calculated using a variance components model. Logistic regression models were used to estimate the odds ratios (ORs). Estimates of sibling recurrence risk ratios (lambda(s)) are also provided. Heritability estimates were generally higher compared to previous studies. ORs and lambda(s) for the parameters Total Hearing Loss (size), Uniform Hearing Loss (percentage of frequency-dependent hearing loss) and Bulge Depth suggest a higher heredity for severe types of presbycusis compared to moderate or mild types. Our results suggest that the separation of the parameter 'Total Hearing Loss' into the two parameters 'Uniform Hearing Loss' and 'Non-uniform Hearing Loss' could lead to the discovery of different genetic subtypes of presbycusis. The parameter 'Bulge Depth', instead of 'Concavity', seemed to be an important parameter for classifying subjects into 'susceptible' or 'resistant' to societal or intensive environmental exposure.
Collapse
Affiliation(s)
- Kelly Demeester
- Department of Otolaryngology, University (UA) and University Hospital of Antwerp (UZA), Wilrijkstraat 10, 2650 Edegem, Belgium.
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Ashby RS, Megaw PL, Morgan IG. Changes in the expression of Pax6 RNA transcripts in the retina during periods of altered ocular growth in chickens. Exp Eye Res 2009; 89:392-7. [DOI: 10.1016/j.exer.2009.04.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2008] [Revised: 03/22/2009] [Accepted: 04/11/2009] [Indexed: 12/01/2022]
|
39
|
Fine-mapping of candidate region in Amish and Ashkenazi families confirms linkage of refractive error to a QTL on 1p34-p36. Mol Vis 2009; 15:1398-406. [PMID: 19626131 PMCID: PMC2713730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2009] [Accepted: 07/14/2009] [Indexed: 11/17/2022] Open
Abstract
PURPOSE A previous genome-wide study in Orthodox Ashkenazi Jewish pedigrees showed significant linkage of ocular refraction to a Quantitative Trait Locus (QTL) on 1p34-36.1. We carried out a fine-mapping study of this region in Orthodox Ashkenazi Jewish (ASHK) and Old Order Amish (OOA) families to confirm linkage and narrow the candidate region. METHODS Families were recruited from ASHK and OOA American communities. The samples included: 402 individuals in 53 OOA families; and 596 members in 68 ASHK families. Families were ascertained to contain multiple myopic individuals. Genotyping of 1,367 SNPs was carried out within a 35cM (approximately 23.9 Mb) candidate QTL region on 1p34-36. Multipoint variance components (VC) and regression-based (REG) linkage analyses were carried out separately in OOA and ASHK groups, and in a combined analysis that included all families. RESULTS Evidence of linkage of refractive error was found in both OOA (VC LOD=3.45, REG LOD=3.38 at approximately 59 cM) and ASHK families (VC LOD=3.12, REG LOD=4.263 at ~66 cM). Combined analyses showed three highly significant linkage peaks, separated by approximately 11cM (or 10 Mb), within the candidate region. CONCLUSION In a fine-mapping linkage study of OOA and ASHK families, we have confirmed linkage of refractive error to a QTL on 1p. The area of linkage has been narrowed down to a gene-rich region at 1p34.2-35.1 containing ~124 genes.
Collapse
|
40
|
Wojciechowski R, Stambolian D, Ciner E, Ibay G, Holmes TN, Bailey-Wilson JE. Genomewide linkage scans for ocular refraction and meta-analysis of four populations in the Myopia Family Study. Invest Ophthalmol Vis Sci 2009; 50:2024-32. [PMID: 19151385 PMCID: PMC2885973 DOI: 10.1167/iovs.08-2848] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE Genomewide linkage scans were performed in Caucasian (CAUC) and Old Order Amish (OOA) families to identify genomic regions containing genes responsible for refractive error control. We also performed a meta-analysis by combining these results with our previous linkage results from Ashkenazi Jewish (ASHK) and African American (AFRAM) families. METHODS Two hundred seventy-one CAUC and 411 OOA participants (36 and 61 families, respectively) were recruited to participate in the Myopia Family Study. Recruitment criteria were designed to enrich the sample for multiplex myopic families. Genomewide, model-free, multipoint linkage analyses were performed separately for each population by using >370 microsatellite markers. Empirical significance levels were determined via gene-dropping simulations. A meta-analysis was performed by combining linkage results from the CAUC, OOA, AFRAM, and ASHK samples, and results were compared to previously reported loci for myopia and refraction. RESULTS Suggestive evidence of linkage was found at 12q24 (LOD = 4.583, P = 0.00037) and 4q21 (LOD = 2.72, P = 0.0028) in the CAUC sample and at 5qter (LOD = 3.271, P = 0.0014) in the OOA. Meta-analysis linkage results were largely driven by population-specific signals from ASHK and AFRAM families. The meta-analysis showed suggestive evidence of linkage to 4q21-22 (meta-P = 0.00214) adjacent to the previously reported MYP9 and MYP11 loci. CONCLUSIONS The results showed suggestive evidence of linkage of ocular refraction to 12q24 and 4q21 in CAUC and to 5qter in OOA families. The meta-analysis supports the view that several genes play a role in refractive development across populations. In MFS families, four broad genomic regions (on 1p, 4q, 7p, and 12q) most likely contain genes that influence ocular refraction.
Collapse
Affiliation(s)
- Robert Wojciechowski
- Inherited Disease Research Branch, National Human Genome Research Institute, Baltimore, Maryland 21231, USA.
| | | | | | | | | | | |
Collapse
|
41
|
Schäche M, Chen CY, Pertile KK, Richardson AJ, Dirani M, Mitchell P, Baird PN. Fine mapping linkage analysis identifies a novel susceptibility locus for myopia on chromosome 2q37 adjacent to but not overlapping MYP12. Mol Vis 2009; 15:722-30. [PMID: 19365569 PMCID: PMC2666771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2009] [Accepted: 04/05/2009] [Indexed: 11/09/2022] Open
Abstract
PURPOSE Myopia (shortsightedness) is one of the most common ocular conditions worldwide and results in blurred distance vision. It is a complex trait influenced by both genetic and environmental factors. We have previously reported linkage of myopia to a 13.01 cM region of chromosome 2q37 in three large multigenerational Australian families that initially overlapped with the known myopia locus, MYP12. The purpose of this study was to perform fine mapping of this region and identify single nucleotide polymorphisms (SNPs) associated with myopia. METHODS Fine mapping linkage analysis was performed on three multigenerational families with common myopia to refine the previously mapped critical interval. SNPs in the region were also genotyped to assess for association with myopia using an independent case-control cohort. RESULTS The disease interval was refined to a 1.83 cM region that is adjacent to rather than overlapping with the MYP12 locus. Subsequent sequencing of all known and hypothetical genes as well as an association study using an independent myopia case-control cohort showed suggestive but not statistically significant association to two intronic SNPs. CONCLUSIONS We have identified a novel locus for common myopia on chromosome 2q37.
Collapse
Affiliation(s)
- Maria Schäche
- Centre for Eye Research Australia, University of Melbourne, Royal Victorian Eye & Ear Hospital, Melbourne, Australia,Vision Cooperative Research Centre, Sydney, Australia
| | - Christine Y. Chen
- Centre for Eye Research Australia, University of Melbourne, Royal Victorian Eye & Ear Hospital, Melbourne, Australia,Vision Cooperative Research Centre, Sydney, Australia
| | - Kelly Kathleen Pertile
- Centre for Eye Research Australia, University of Melbourne, Royal Victorian Eye & Ear Hospital, Melbourne, Australia,Vision Cooperative Research Centre, Sydney, Australia
| | - Andrea Jane Richardson
- Centre for Eye Research Australia, University of Melbourne, Royal Victorian Eye & Ear Hospital, Melbourne, Australia,Vision Cooperative Research Centre, Sydney, Australia
| | - Mohamed Dirani
- Centre for Eye Research Australia, University of Melbourne, Royal Victorian Eye & Ear Hospital, Melbourne, Australia,Vision Cooperative Research Centre, Sydney, Australia
| | - Paul Mitchell
- Vision Cooperative Research Centre, Sydney, Australia,Centre for Vision Research, Department of Ophthalmology, Westmead Millennium Institute, University of Sydney, Westmead, Australia
| | - Paul Nigel Baird
- Centre for Eye Research Australia, University of Melbourne, Royal Victorian Eye & Ear Hospital, Melbourne, Australia,Vision Cooperative Research Centre, Sydney, Australia
| |
Collapse
|
42
|
Ciner E, Wojciechowski R, Ibay G, Bailey-Wilson JE, Stambolian D. Genomewide scan of ocular refraction in African-American families shows significant linkage to chromosome 7p15. Genet Epidemiol 2008; 32:454-63. [PMID: 18293391 DOI: 10.1002/gepi.20318] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Refractive development is influenced by environmental and genetic factors. Genetic studies have identified several regions of linkage to ocular refraction, but none have been carried out in African-derived populations. We performed quantitative trait locus linkage analyses in African-American (AA) families to identify genomic regions responsible for refraction. We recruited 493 AA individuals in 96 families to participate in the Myopia Family Study. Genotyping of 387 microsatellite markers was performed on 398 participants. The mean refraction among genotyped individuals was -2.87 D (SD=3.58) and myopia of at least 1 D was present in 267 (68%) participants. Multipoint, regression-based, linkage analyses were carried out on a logarithmic transformation of ocular refraction using the statistical package MERLIN-REGRESS. Empirical significance levels were determined via 4,898 whole-genome gene-dropping simulations. Linkage analyses were repeated after clustering families into two subgroups based on admixture proportions as determined by the software package STRUCTURE. Genomewide significant linkage was seen at 47 cM on chromosome 7 (logarithm of the odds ratio (LOD)=5.87, P=0.00005). In addition, three regions on chromosomes 2p, 3p and 10p showed suggestive evidence of linkage (LOD>2, P<0.005) for ocular refraction. We mapped the first quantitative trait locus for ocular refraction in an AA population to chr.7p15. Two previous studies in European-derived families reported some evidence of linkage to a nearby region, suggesting that this region may contain polymorphisms that mediate refraction across populations. The genomic region under our linkage peak spans approximately 17 Mb and contains approximately 170 genes. Further refinement of this region will be pursued in future studies.
Collapse
Affiliation(s)
- Elise Ciner
- The Eye Institute of the Pennsylvania College of Optometry, Philadelphia, Pennsylvania, USA
| | | | | | | | | |
Collapse
|
43
|
Rudnicka AR, Owen CG, Richards M, Wadsworth MEJ, Strachan DP. Effect of breastfeeding and sociodemographic factors on visual outcome in childhood and adolescence. Am J Clin Nutr 2008; 87:1392-9. [PMID: 18469263 DOI: 10.1093/ajcn/87.5.1392] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND It has been suggested that early life factors, including breastfeeding and birth weight, program childhood myopia. OBJECTIVE We examined the relation of reduced unaided vision (indicative of myopia) in childhood and adolescence with infant feeding, parental education, maternal age at birth, birth weight, sex, birth order, and socioeconomic status. DESIGN Three British cohorts recruited infants born in 1946 (n = 5362), 1958 (n = 18,558), and 1970 (n = 16,567). Adjusted odds ratios (ORs) for unaided vision of 6/12 or worse at ages 10-11 and 15-16 y from each cohort were pooled by using fixed-effects meta-analyses. RESULTS The prevalence of reduced vision ranged from 4.4% to 6.5% at 10-11 y and from 9.4% to 11.4% at 16 y, with marginally higher levels in later cohorts. Breastfeeding declined across successive cohorts (65%, 43%, and 22% in those breastfed for >1 mo, respectively). Pooled ORs showed no associations between infant feeding and vision after adjustment at either age. Parental education (OR: 1.48, high versus low education; 95% CI: 1.23, 1.79), maternal age (OR: 1.10, per 5-y increase; 95% CI: 1.04, 1.17), birth weight (OR: 0.85, per 1-kg rise; 95% CI: 0.76, 0.95), number of older siblings (OR: 0.89, per older sibling; 95% CI: 0.83, 0.94), and sex (OR: 1.10, girls versus boys; 95% CI: 0.98, 1.23) were related to adverse visual outcome in childhood. Stronger associations were observed in adolescence, except that the association with birth weight was null. CONCLUSIONS Infant feeding does not appear to influence visual development. Consistent associations of reduced vision with parental education, sex, maternal age, and birth order suggest that other environmental factors are important for visual development and myopia in early life.
Collapse
Affiliation(s)
- Alicja R Rudnicka
- Division of Community Health Sciences, St George's, University of London, London, United Kingdom.
| | | | | | | | | |
Collapse
|
44
|
Risovic DJ, Misailovic KR, Eric-Marinkovic JM, Kosanovic-Jakovic NG, Milenkovic SM, Petrovic LZ. Refractive errors and binocular dysfunctions in a population of university students. Eur J Ophthalmol 2008; 18:1-6. [PMID: 18203077 DOI: 10.1177/112067210801800101] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
PURPOSE This clinical study was performed to determine the presence of refractive errors and binocular dysfunctions in a population of university students. METHODS Refraction and binocular function were evaluated in a young patient population (230 students and 234 nonstudent subjects, aged 18-27 years). Distance visual acuity (DVA) and near visual acuity (NVA), refraction, cover test (CT), ocular motility, near-point of convergence, horizontal phoria measurement by Maddox wing, negative and positive vergence amplitude in prism diopters, fusion amplitude in synoptophore, as well as stereoacuity (Titmus test) were tested. RESULTS Emmetropia was the most frequent refractive status in our student and nonstudent groups (78.7%). Myopia was the most frequent refractive disorder in the whole population (13.1%). Myopia and hypermetropia were significantly more frequent in the students than in nonstudents (chi-square emp 47.55). Exophoria is significantly more frequent in myopic subjects. Vergence amplitude (t test 0.000) and fusion amplitude (t test 0.005) show significantly lower values in student population. Results of Titmus test in the student group is significantly worse than in the nonstudent group (t test 0.000). Maddox wing resulted in significantly higher degree of heterophoria in the student population (t test 0.000). Myopic subjects, in the student group (t test 0.002) as well as in the nonstudent group (t test 0.001), show significantly better results in Titmus test. CONCLUSIONS High near visual demand could be the most important factor for higher incidence of myopia, worse convergence and fusion amplitude, higher degree of exophoria, and worse results in Titmus test in the student population.
Collapse
Affiliation(s)
- D J Risovic
- Eye Clinic, Clinical Centre Zvezdara, Medical School Belgrade, Belgrade, Serbia
| | | | | | | | | | | |
Collapse
|
45
|
Paget S, Vitezica ZG, Malecaze F, Calvas P. Heritability of refractive value and ocular biometrics. Exp Eye Res 2008; 86:290-5. [PMID: 18160066 DOI: 10.1016/j.exer.2007.11.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2007] [Revised: 10/24/2007] [Accepted: 11/01/2007] [Indexed: 11/17/2022]
Affiliation(s)
- Sandrine Paget
- Centre de Physiopathologie de Toulouse Purpan, INSERM, U563, Toulouse, France
| | | | | | | |
Collapse
|
46
|
Fotouhi A, Etemadi A, Hashemi H, Zeraati H, Bailey-Wilson JE, Mohammad K. Familial aggregation of myopia in the Tehran eye study: estimation of the sibling and parent offspring recurrence risk ratios. Br J Ophthalmol 2007; 91:1440-4. [PMID: 17494955 PMCID: PMC2095425 DOI: 10.1136/bjo.2007.120162] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/02/2007] [Indexed: 11/03/2022]
Abstract
AIM To determine the potential influence of genetic factors on the prevalence of myopia in Tehran. METHODS Of 6497 citizens of Tehran sampled from 160 clusters using stratified random cluster sampling, 4565 (70.3%) participated in the study and were referred to a clinic for an extensive eye examination and interview. These were from 1259 nuclear families with the average size of 3.6. Refraction data obtained from 3321 participants aged 16 years and over are presented. Three definitions of myopia, as the spherical equivalent of -0.5, -1, and -2 diopters or less, were used. Familial aggregation of myopia was evaluated with odds ratios and recurrence risk ratios (lambda(R)) using a multiple logistic regression with generalised estimating equations (GEE), adjusted for age, sex, height, and education. RESULTS Multivariate analyses showed a strong familial aggregation of myopia among siblings (lambda(R) ranging from 2.09 to 3.86) and parent-offspring pairs (lambda(R) from 1.82 to 3.81) adjusted for age, sex, height, and education. The aggregation increased with higher myopia thresholds and with the use of cycloplegic refraction. The odds ratios for spouse pairs were not significantly different from 1.0. The association of myopia with sex, height, and education (and not age) remained significant in the final GEE2 model. CONCLUSIONS The findings indicate a relatively high degree of familial aggregation of myopia in the Tehran population, independent of age, sex, height, and education. This residual aggregation may be a result of heredity or of an unmeasured common environmental effect.
Collapse
Affiliation(s)
- Akbar Fotouhi
- Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
| | | | | | | | | | | |
Collapse
|
47
|
Peet JA, Cotch MF, Wojciechowski R, Bailey-Wilson JE, Stambolian D. Heritability and familial aggregation of refractive error in the Old Order Amish. Invest Ophthalmol Vis Sci 2007; 48:4002-6. [PMID: 17724179 PMCID: PMC1995233 DOI: 10.1167/iovs.06-1388] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE To determine the heritability of refractive error and familial aggregation of myopia and hyperopia in an elderly Old Order Amish (OOA) population. METHODS Nine hundred sixty-seven siblings (mean age, 64.2 years) in 269 families were recruited for the Amish Eye Study in the Lancaster County area of Pennsylvania. Refractive error was determined by noncycloplegic manifest refraction. Heritability of refractive error was estimated with multivariate linear regression as twice the residual sibling-sibling correlation after adjustment for age and gender. Logistic regression models were used to estimate the sibling recurrence odds ratio (OR(s)). Myopia and hyperopia were defined with five different thresholds. RESULTS The age- and gender-adjusted heritability of refractive error was 70% (95% CI: 48%-92%) in the OOA. Age and gender-adjusted OR(s) and sibling recurrence risk (lambda(s)), with different thresholds defining myopia ranged from 3.03 (95% CI: 1.58-5.80) to 7.02 (95% CI: 3.41-14.46) and from 2.36 (95% CI: 1.65-3.19) to 5.61 (95% CI: 3.06-9.34). Age and gender-adjusted OR(s) and lambda(s) for different thresholds of hyperopia ranged from 2.31 (95% CI: 1.56-3.42) to 2.94 (95% CI: 2.04-4.22) and from 1.33 (95% CI: 1.22-1.43) to 1.85 (95% CI: 1.18-2.78), respectively. Women were significantly more likely than men to have hyperopia. There was no significant gender difference in the risk of myopia. CONCLUSIONS In the OOA, refractive error is highly heritable. Hyperopia and myopia aggregate strongly in OOA families.
Collapse
Affiliation(s)
- Jon A. Peet
- Department of Ophthalmology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Mary-Frances Cotch
- Division of Epidemiology and Clinical Research, National Eye Institute, National Institutes of Health, Bethesda, Maryland
| | - Robert Wojciechowski
- National Human Genome Research Institute, National Institutes of Health, Baltimore, Maryland
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Joan E. Bailey-Wilson
- National Human Genome Research Institute, National Institutes of Health, Baltimore, Maryland
| | - Dwight Stambolian
- Department of Ophthalmology, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
48
|
Mandel Y, Grotto I, El-Yaniv R, Belkin M, Israeli E, Polat U, Bartov E. Season of birth, natural light, and myopia. Ophthalmology 2007; 115:686-92. [PMID: 17698195 DOI: 10.1016/j.ophtha.2007.05.040] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2006] [Revised: 05/21/2007] [Accepted: 05/21/2007] [Indexed: 11/30/2022] Open
Abstract
PURPOSE To investigate the possible roles of season of birth and perinatal duration of daylight hours (photoperiod) in the development of myopia. DESIGN Retrospective, population-based, epidemiological study. PARTICIPANTS A total of 276 911 adolescents (157 663 male, 119 248 female) 16 to 22 years old. All were Israeli-born conscripts to the Israeli Defense Forces who were examined during the 5-year period 2000 through 2004. METHODS Noncycloplegic refraction was determined by autorefractometer and validated by qualified optometrists. Myopia, defined on the basis of right eye spherical equivalence, was classified as mild (-0.75 to -2.99 diopters [D]), moderate (-3.0 to -5.99 D), or severe (-6.0 D or worse). The photoperiod was recorded from astronomical tables and classified into 4 categories. Using multivariate logistic regression models, we calculated odds ratios (ORs) for several risk factors of myopia including season of birth. MAIN OUTCOME MEASURE The OR for photoperiod categories as risk factors for myopia. RESULTS Overall prevalences of mild, moderate, and severe myopia were 18.8%, 8.7%, and 2.4%, respectively. There were seasonal variations in moderate and severe myopia according to birth month, with prevalence highest for June/July births and lowest for December/January. On multivariate logistic regression, the ORs of photoperiod categories for moderate and severe myopia were highly significant and demonstrated a dose-response pattern. Odds ratios for severe myopia were highest for the shortest versus the longest photoperiods (1.24; 95% confidence interval, 1.15-1.33; P<0.001). Mild myopia was not associated with season of birth or perinatal light exposure. Other risk factors were gender (1.14 for female), education level (1.32 for age above 12), and father's origin (1.31 for Eastern vs. Israeli origin). CONCLUSION Myopia in this population is associated with birth during summer months. The exact associating mechanism is not known but might be related to exposure to natural light during the early perinatal period.
Collapse
Affiliation(s)
- Yossi Mandel
- Israel Defense Force Medical Corps, Ramat-Gan, Israel.
| | | | | | | | | | | | | |
Collapse
|
49
|
Chen CYC, Scurrah KJ, Stankovich J, Garoufalis P, Dirani M, Pertile KK, Richardson AJ, Mitchell P, Baird PN. Heritability and shared environment estimates for myopia and associated ocular biometric traits: the Genes in Myopia (GEM) family study. Hum Genet 2007; 121:511-20. [PMID: 17205325 DOI: 10.1007/s00439-006-0312-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2006] [Accepted: 12/01/2006] [Indexed: 12/14/2022]
Abstract
To examine the familial correlations, heritability (h(2)) and common environmental components (c(2)) of myopia and ocular biometric traits (all treated as continuous outcomes) in families collected through the Genes in Myopia (GEM) family study in Australia. A total of 132 pedigrees (723 participants) were recruited for this study. All individuals completed a risk factor questionnaire and underwent a detailed eye examination including spherical equivalent (SphE) and ocular biometric measurements of axial length (AL), anterior chamber depth (ACD) and corneal curvature (CC). Familial correlations were calculated and h(2) and c(2) were estimated using a variance component model that assumes a multivariate t distribution within each pedigree. Two definitions of common environments (c(2)) were considered: nuclear family (current) shared environment (Model 1) and sib-ship (childhood) shared environment (Model 2). Population ascertainment adjustment was performed using the Blue Mountains eye study dataset. The trends observed for familial correlations suggested that SphE is influenced by both environmental and genetic factors whereas AL, ACD and CC are predominantly genetically determined. This was largely confirmed by variance components modelling. Heritability estimates (adjusted for age, sex and years of education) from the best fitting ACE model (Model 2, childhood shared environment) were 0.50 +/- 0.05 for SphE, 0.73 +/- 0.04 for AL, 0.78 +/- 0.04 for ACD and 0.16 +/- 0.06 for CC. Childhood environmental effects were significant with c(2) estimated to be 0.33 +/- 0.04 for SphE, 0.06 +/- 0.03 for AL, 0.22 +/- 0.04 for ACD and 0.10 +/- 0.05 for CC. Age was associated with SphE, total years of education was associated with AL and sex was associated with all traits studied. We used a novel and conservative approach to account for and estimate common environmental effects by specifying either nuclear family or sib-ship environment when estimating heritability estimates and showed that all traits examined (SphE, AL, ACD and CC) are heritable, thus reflecting a genetic component. These traits therefore all represent candidates for quantitative trait linkage analyses.
Collapse
Affiliation(s)
- Christine Yi-Chin Chen
- Ocular Genetics Unit, Eye Research Australia, The University of Melbourne, 32 Gisborne Street, East Melbourne, VIC, 3002, Australia.
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Guggenheim JA, Pong-Wong R, Haley CS, Gazzard G, Saw SM. Correlations in refractive errors between siblings in the Singapore Cohort Study of Risk factors for Myopia. Br J Ophthalmol 2006; 91:781-4. [PMID: 17135339 PMCID: PMC1955602 DOI: 10.1136/bjo.2006.107441] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
BACKGROUND The prevalence of myopia in parts of South East Asia has risen dramatically over the past 1-2 generations, suggesting that environmental factors may be particularly important determinants of refractive development in these populations. AIM To assess the contribution of familial factors (shared genes and/or shared family environment) to refractive error and ocular component dimensions of school-aged children in Singapore. METHODS Data were available for 315 children who had one or more siblings also participating in the Singapore Cohort Study of the Risk factors for Myopia (SCORM). Refractive error and ocular biometric parameters were measured under cycloplegia at baseline when children were 7-9 years, and at yearly follow-up sessions for the next 3 years, using consistent clinical procedures. The time children spent performing a variety of nearwork-related tasks was obtained from questionnaires. Familial influences were assessed by calculating between-sibling correlations. RESULTS After adjusting for age and sex, the between-sibling correlation in refractive error was 0.447 (95% CI 0.314 to 0.564), suggesting that familial factors account for 63-100% of the variation in the cohort. The between-sibling correlation for 1-year change in refractive error was similarly high, at 0.420 (95% CI 0.282 to 0.543). All ocular component dimensions were correlated significantly between siblings, especially for corneal curvature and vitreous chamber depth--the major structural determinants of refraction. The amount of time siblings spent engaged in nearwork tasks (reading, watching TV, playing video games, computing) and in outdoor activities was also highly correlated between siblings (p<0.001). CONCLUSION Shared genes and/or shared environment are important factors in the refractive development of children in Singapore. Because the time spent in nearwork tasks is highly correlated between siblings, epidemiological studies will benefit from precise, quantitative measures of refractive error in parents and more distant relatives in order to begin to dissociate genetic and environmental sources of variation.
Collapse
Affiliation(s)
- Jeremy A Guggenheim
- School of Optometry and Vision Sciences, Cardiff University, Cardiff, Wales CF10 3NB, UK.
| | | | | | | | | |
Collapse
|