1
|
Brown ND, Vomhof-DeKrey EE. Focal Adhesion Kinase and Colony Stimulating Factors: Intestinal Homeostasis and Innate Immunity Crosstalk. Cells 2024; 13:1178. [PMID: 39056760 PMCID: PMC11274384 DOI: 10.3390/cells13141178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/08/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
Thousands struggle with acute and chronic intestinal injury due to various causes. Epithelial intestinal healing is dependent on phenotypic transitions to a mobile phenotype. Focal adhesion kinase (FAK) is a ubiquitous protein that is essential for cell mobility. This phenotype change is mediated by FAK activation and proves to be a promising target for pharmaceutical intervention. While FAK is crucial for intestinal healing, new evidence connects FAK with innate immunity and the importance it plays in macrophage/monocyte chemotaxis, as well as other intracellular signaling cascades. These cascades play a part in macrophage/monocyte polarization, maturation, and inflammation that is associated with intestinal injury. Colony stimulating factors (CSFs) such as macrophage colony stimulating factor (M-CSF/CSF-1) and granulocyte macrophage colony stimulating factor (GM-CSF/CSF-2) play a critical role in maintaining homeostasis within intestinal mucosa by crosstalk capabilities between macrophages and epithelial cells. The communication between these cells is imperative in orchestrating healing upon injury. Diving deeper into these connections may allow us a greater insight into the role that our immune system plays in healing, as well as a better comprehension of inflammatory diseases of the gut.
Collapse
Affiliation(s)
- Nicholas D. Brown
- Department of Pathology, School of Medicine and the Health Sciences, University of North Dakota, Grand Forks, ND 58203, USA;
| | - Emilie E. Vomhof-DeKrey
- Department of Pathology, School of Medicine and the Health Sciences, University of North Dakota, Grand Forks, ND 58203, USA;
- Department of Surgery, School of Medicine and the Health Sciences, University of North Dakota, Grand Forks, ND 58203, USA
- Department of Biomedical Sciences, School of Medicine and the Health Sciences, University of North Dakota, Grand Forks, ND 58203, USA
| |
Collapse
|
2
|
Mistry K, Richardson G, Vleminckx S, Smith R, Gevaert E, Lovat PE. Porcine-derived collagen peptides promote re-epithelialisation through activation of integrin signalling. Wound Repair Regen 2024; 32:475-486. [PMID: 38572659 DOI: 10.1111/wrr.13177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 02/26/2024] [Accepted: 03/25/2024] [Indexed: 04/05/2024]
Abstract
Chronic non-healing cutaneous wounds represent a major burden to patients and healthcare providers worldwide, emphasising the continued unmet need for credible and efficacious therapeutic approaches for wound healing. We have recently shown the potential for collagen peptides to promote proliferation and migration during cutaneous wound healing. In the present study, we demonstrate that the application of porcine-derived collagen peptides significantly increases keratinocyte and dermal fibroblast expression of integrin α2β1 and activation of an extracellular signal-related kinase (ERK)-focal adhesion kinase (FAK) signalling cascade during wound closure in vitro. SiRNA-mediated knockdown of integrin β1 impaired porcine-derived collagen peptide-induced wound closure and activation of ERK-FAK signalling in keratinocytes but did not impair ERK or FAK signalling in dermal fibroblasts, implying the activation of differing downstream signalling pathways. Studies in ex vivo human 3D skin equivalents subjected to punch biopsy-induced wounding confirmed the ability of porcine-derived collagen peptides to promote wound closure by enhancing re-epithelialisation. Collectively, these data highlight the translational and clinical potential for porcine-derived collagen peptides as a viable therapeutic approach to promote re-epithelialisation of superficial cutaneous wounds.
Collapse
Affiliation(s)
- Krishan Mistry
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, Tyne and Wear, UK
- Department of Materials, University of Manchester, Manchester, Greater Manchester, United Kingdom of Great Britain and Northern Ireland
| | - Grant Richardson
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, Tyne and Wear, UK
- AMLo Biosciences, Newcastle upon Tyne, Tyne and Wear, UK
| | | | - Robert Smith
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, Tyne and Wear, UK
- AMLo Biosciences, Newcastle upon Tyne, Tyne and Wear, UK
| | | | - Penny E Lovat
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, Tyne and Wear, UK
- AMLo Biosciences, Newcastle upon Tyne, Tyne and Wear, UK
| |
Collapse
|
3
|
Thomasy SM, Leonard BC, Greiner MA, Skeie JM, Raghunathan VK. Squishy matters - Corneal mechanobiology in health and disease. Prog Retin Eye Res 2024; 99:101234. [PMID: 38176611 PMCID: PMC11193890 DOI: 10.1016/j.preteyeres.2023.101234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 12/22/2023] [Accepted: 12/27/2023] [Indexed: 01/06/2024]
Abstract
The cornea, as a dynamic and responsive tissue, constantly interacts with mechanical forces in order to maintain its structural integrity, barrier function, transparency and refractive power. Cells within the cornea sense and respond to various mechanical forces that fundamentally regulate their morphology and fate in development, homeostasis and pathophysiology. Corneal cells also dynamically regulate their extracellular matrix (ECM) with ensuing cell-ECM crosstalk as the matrix serves as a dynamic signaling reservoir providing biophysical and biochemical cues to corneal cells. Here we provide an overview of mechanotransduction signaling pathways then delve into the recent advances in corneal mechanobiology, focusing on the interplay between mechanical forces and responses of the corneal epithelial, stromal, and endothelial cells. We also identify species-specific differences in corneal biomechanics and mechanotransduction to facilitate identification of optimal animal models to study corneal wound healing, disease, and novel therapeutic interventions. Finally, we identify key knowledge gaps and therapeutic opportunities in corneal mechanobiology that are pressing for the research community to address especially pertinent within the domains of limbal stem cell deficiency, keratoconus and Fuchs' endothelial corneal dystrophy. By furthering our understanding corneal mechanobiology, we can contextualize discoveries regarding corneal diseases as well as innovative treatments for them.
Collapse
Affiliation(s)
- Sara M Thomasy
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California - Davis, Davis, CA, United States; Department of Ophthalmology & Vision Science, School of Medicine, University of California - Davis, Davis, CA, United States; California National Primate Research Center, Davis, CA, United States.
| | - Brian C Leonard
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California - Davis, Davis, CA, United States; Department of Ophthalmology & Vision Science, School of Medicine, University of California - Davis, Davis, CA, United States
| | - Mark A Greiner
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, IA, United States; Iowa Lions Eye Bank, Coralville, IA, United States
| | - Jessica M Skeie
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, IA, United States; Iowa Lions Eye Bank, Coralville, IA, United States
| | | |
Collapse
|
4
|
Stelling-Férez J, Gabaldón JA, Nicolás FJ. Oleanolic acid stimulation of cell migration involves a biphasic signaling mechanism. Sci Rep 2022; 12:15065. [PMID: 36064555 PMCID: PMC9445025 DOI: 10.1038/s41598-022-17553-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 07/27/2022] [Indexed: 11/09/2022] Open
Abstract
Cell migration is a critical process for wound healing, a physiological phenomenon needed for proper skin restoration after injury. Wound healing can be compromised under pathological conditions. Natural bioactive terpenoids have shown promising therapeutic properties in wound healing. Oleanolic acid (OA), a triterpenoid, enhances in vitro and in vivo cell migration. However, the underlying signaling mechanisms and pathways triggered by OA are poorly understood. We have previously shown that OA activates epidermal growth factor receptor (EGFR) and downstream effectors such as mitogen-activated protein (MAP) kinase cascade and c-Jun N-terminal kinase (JNK), leading to c-Jun transcription factor phosphorylation, all of which are involved in migration. We performed protein expression or migration front protein subcellular localization assays, which showed that OA induces c-Jun activation and its nuclear translocation, which precisely overlaps at wound-edge cells. Furthermore, c-Jun phosphorylation was independent of EGFR activation. Additionally, OA promoted actin cytoskeleton and focal adhesion (FA) dynamization. In fact, OA induced the recruitment of regulator proteins to FAs to dynamize these structures during migration. Moreover, OA changed paxillin distribution and activated focal adhesion kinase (FAK) at focal adhesions (FAs). The molecular implications of these observations are discussed.
Collapse
Affiliation(s)
- Javier Stelling-Férez
- Department of Nutrition and Food Technology, Health Sciences PhD Program, Universidad Católica de Murcia (UCAM), Campus de los Jerónimos nº135, Guadalupe, 30107, Murcia, Spain.,Regeneration, Molecular Oncology and TGF-ß, Instituto Murciano de Investigación Biosanitaria (IMIB)-Arrixaca, Hospital Clínico Universitario Virgen de la Arrixaca, El Palmar, Murcia, Spain
| | - José Antonio Gabaldón
- Department of Nutrition and Food Technology, Health Sciences PhD Program, Universidad Católica de Murcia (UCAM), Campus de los Jerónimos nº135, Guadalupe, 30107, Murcia, Spain
| | - Francisco José Nicolás
- Regeneration, Molecular Oncology and TGF-ß, Instituto Murciano de Investigación Biosanitaria (IMIB)-Arrixaca, Hospital Clínico Universitario Virgen de la Arrixaca, El Palmar, Murcia, Spain.
| |
Collapse
|
5
|
The role of the PI3K/AKT signalling pathway in the corneal epithelium: recent updates. Cell Death Dis 2022; 13:513. [PMID: 35641491 PMCID: PMC9156734 DOI: 10.1038/s41419-022-04963-x] [Citation(s) in RCA: 93] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 05/14/2022] [Accepted: 05/17/2022] [Indexed: 12/14/2022]
Abstract
Phosphatidylinositol 3 kinase (PI3K)/AKT (also called protein kinase B, PKB) signalling regulates various cellular processes, such as apoptosis, cell proliferation, the cell cycle, protein synthesis, glucose metabolism, and telomere activity. Corneal epithelial cells (CECs) are the outermost cells of the cornea; they maintain good optical performance and act as a physical and immune barrier. Various growth factors, including epidermal growth factor receptor (EGFR) ligands, insulin-like growth factor 1 (IGF1), neurokinin 1 (NK-1), and insulin activate the PI3K/AKT signalling pathway by binding their receptors and promote antiapoptotic, anti-inflammatory, proliferative, and migratory functions and wound healing in the corneal epithelium (CE). Reactive oxygen species (ROS) regulate apoptosis and inflammation in CECs in a concentration-dependent manner. Extreme environments induce excess ROS accumulation, inhibit PI3K/AKT, and cause apoptosis and inflammation in CECs. However, at low or moderate levels, ROS activate PI3K/AKT signalling, inhibiting apoptosis and stimulating proliferation of healthy CECs. Diabetes-associated hyperglycaemia directly inhibit PI3K/AKT signalling by increasing ROS and endoplasmic reticulum (ER) stress levels or suppressing the expression of growth factors receptors and cause diabetic keratopathy (DK) in CECs. Similarly, hyperosmolarity and ROS accumulation suppress PI3K/AKT signalling in dry eye disease (DED). However, significant overactivation of the PI3K/AKT signalling pathway, which mediates inflammation in CECs, is observed in both infectious and noninfectious keratitis. Overall, upon activation by growth factors and NK-1, PI3K/AKT signalling promotes the proliferation, migration, and anti-apoptosis of CECs, and these processes can be regulated by ROS in a concentration-dependent manner. Moreover, PI3K/AKT signalling pathway is inhibited in CECs from individuals with DK and DED, but is overactivated by keratitis.
Collapse
|
6
|
Oncel S, Basson MD. Gut homeostasis, injury, and healing: New therapeutic targets. World J Gastroenterol 2022; 28:1725-1750. [PMID: 35633906 PMCID: PMC9099196 DOI: 10.3748/wjg.v28.i17.1725] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 12/12/2021] [Accepted: 03/25/2022] [Indexed: 02/06/2023] Open
Abstract
The integrity of the gastrointestinal mucosa plays a crucial role in gut homeostasis, which depends upon the balance between mucosal injury by destructive factors and healing via protective factors. The persistence of noxious agents such as acid, pepsin, nonsteroidal anti-inflammatory drugs, or Helicobacter pylori breaks down the mucosal barrier and injury occurs. Depending upon the size and site of the wound, it is healed by complex and overlapping processes involving membrane resealing, cell spreading, purse-string contraction, restitution, differentiation, angiogenesis, and vasculogenesis, each modulated by extracellular regulators. Unfortunately, the gut does not always heal, leading to such pathology as peptic ulcers or inflammatory bowel disease. Currently available therapeutics such as proton pump inhibitors, histamine-2 receptor antagonists, sucralfate, 5-aminosalicylate, antibiotics, corticosteroids, and immunosuppressants all attempt to minimize or reduce injury to the gastrointestinal tract. More recent studies have focused on improving mucosal defense or directly promoting mucosal repair. Many investigations have sought to enhance mucosal defense by stimulating mucus secretion, mucosal blood flow, or tight junction function. Conversely, new attempts to directly promote mucosal repair target proteins that modulate cytoskeleton dynamics such as tubulin, talin, Ehm2, filamin-a, gelsolin, and flightless I or that proteins regulate focal adhesions dynamics such as focal adhesion kinase. This article summarizes the pathobiology of gastrointestinal mucosal healing and reviews potential new therapeutic targets.
Collapse
Affiliation(s)
- Sema Oncel
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58202, United States
| | - Marc D Basson
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58202, United States
- Department of Surgery, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58202, United States
- Department of Pathology, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58202, United States
| |
Collapse
|
7
|
Zhang Y, Kishi H, Morita T, Kobayashi S. Paxillin controls actin stress fiber formation and migration of vascular smooth muscle cells by directly binding to the active Fyn. FASEB J 2021; 35:e22012. [PMID: 34724245 DOI: 10.1096/fj.202101035rr] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 10/08/2021] [Accepted: 10/11/2021] [Indexed: 11/11/2022]
Abstract
Rho-kinase (ROK)-mediated migration of vascular smooth muscle cells plays a crucial role in cardiovascular diseases. Previously we demonstrated Fyn tyrosine kinase as an upstream molecule of ROK to mediate actin stress fiber formation that plays an important role in cell migration, but the molecular mechanism between the two kinases was unclear. To discover a novel signaling molecule that exists between Fyn and ROK, we identified paxillin acting downstream of the active Fyn by combined use of pulldown assay and mass spectrometry. Immunofluorescence staining confirmed co-localization of Fyn and paxillin at the ends of actin stress fibers in human coronary artery smooth muscle cells (CASMCs). Surface plasmon resonance assay demonstrated direct binding between constitutively active Fyn (CA-Fyn) and N-terminus of paxillin (N-pax). The sphingosylphosphorylcholine (SPC)-induced ROK activation, actin stress fiber formation and cell migration were inhibited by paxillin knockdown, which were rescued by full-length paxillin (FL-pax) but not N-pax. N-pax co-localized with CA-Fyn at the cytosol and overexpression of N-pax inhibited the SPC-induced actin stress fiber formation and cell migration, indicating that the direct binding of FL-pax and CA-Fyn at the ends of actin stress fibers is essential for the ROK-mediated actin stress fiber formation and cell migration. Paxillin, as a novel signalling molecule, mediates the SPC-induced actin stress fiber formation and migration in human CASMCs via the Fyn/paxillin/ROK signalling pathway by direct binding of active Fyn.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Yamaguchi University, Ube, Japan
| | - Hiroko Kishi
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Yamaguchi University, Ube, Japan
| | - Tomoka Morita
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Yamaguchi University, Ube, Japan
| | - Sei Kobayashi
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Yamaguchi University, Ube, Japan.,Department of Advanced Preventive Medicine, Medical School, Yamaguchi University, Ube, Japan
| |
Collapse
|
8
|
Fu P, Epshtein Y, Ramchandran R, Mascarenhas JB, Cress AE, Jacobson J, Garcia JGN, Natarajan V. Essential role for paxillin tyrosine phosphorylation in LPS-induced mitochondrial fission, ROS generation and lung endothelial barrier loss. Sci Rep 2021; 11:17546. [PMID: 34475475 PMCID: PMC8413352 DOI: 10.1038/s41598-021-97006-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 08/12/2021] [Indexed: 11/09/2022] Open
Abstract
We have shown that both reactive oxygen species (ROS) and paxillin tyrosine phosphorylation regulate LPS-induced human lung endothelial permeability. Mitochondrial ROS (mtROS) is known to increase endothelial cell (EC) permeability which requires dynamic change in mitochondrial morphology, events that are likely to be regulated by paxillin. Here, we investigated the role of paxillin and its tyrosine phosphorylation in regulating LPS-induced mitochondrial dynamics, mtROS production and human lung microvascular EC (HLMVEC) dysfunction. LPS, in a time-dependent manner, induced higher levels of ROS generation in the mitochondria compared to cytoplasm or nucleus. Down-regulation of paxillin expression with siRNA or ecto-expression of paxillin Y31F or Y118F mutant plasmids attenuated LPS-induced mtROS in HLMVECs. Pre-treatment with MitoTEMPO, a scavenger of mtROS, attenuated LPS-induced mtROS, endothelial permeability and VE-cadherin phosphorylation. Further, LPS-induced mitochondrial fission in HLMVECs was attenuated by both a paxillin siRNA, and paxillin Y31F/Y118F mutant. LPS stimulated phosphorylation of dynamin-related protein (DRP1) at S616, which was also attenuated by paxillin siRNA, and paxillinY31/Y118 mutants. Inhibition of DRP1 phosphorylation by P110 attenuated LPS-induced mtROS and endothelial permeability. LPS challenge of HLMVECs enhanced interaction between paxillin, ERK, and DRP1, and inhibition of ERK1/2 activation with PD98059 blocked mitochondrial fission. Taken together, these results suggest a key role for paxillin tyrosine phosphorylation in LPS-induced mitochondrial fission, mtROS generation and EC barrier dysfunction.
Collapse
Affiliation(s)
- Panfeng Fu
- Department of Pharmacology, University of Illinois at Chicago, COMRB Room # 3137, 909, South Wolcott Avenue, Chicago, IL, 60612, USA. .,The Affiliated Hospital of Medical School, Medical School of Ningbo University, 247 Renmin Road, Ningbo, China.
| | - Yulia Epshtein
- Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Ramaswamy Ramchandran
- Department of Pharmacology, University of Illinois at Chicago, COMRB Room # 3137, 909, South Wolcott Avenue, Chicago, IL, 60612, USA
| | - Joseph B Mascarenhas
- Department of Medicine, College of Medicine, University of Arizona Health Sciences, Tucson, AZ, USA
| | - Anne E Cress
- Departments of Cellular and Molecular Medicine, University of Arizona Health Sciences, Tucson, AZ, USA.,Department of Medicine, College of Medicine, University of Arizona Health Sciences, Tucson, AZ, USA
| | - Jeffrey Jacobson
- Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Joe G N Garcia
- Department of Medicine, College of Medicine, University of Arizona Health Sciences, Tucson, AZ, USA
| | - Viswanathan Natarajan
- Department of Pharmacology, University of Illinois at Chicago, COMRB Room # 3137, 909, South Wolcott Avenue, Chicago, IL, 60612, USA. .,Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA.
| |
Collapse
|
9
|
Konagaya Y, Takakura K, Sogabe M, Bisaria A, Liu C, Meyer T, Sehara-Fujisawa A, Matsuda M, Terai K. Intravital imaging reveals cell cycle-dependent myogenic cell migration during muscle regeneration. Cell Cycle 2020; 19:3167-3181. [PMID: 33131406 DOI: 10.1080/15384101.2020.1838779] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
During muscle regeneration, extracellular signal-regulated kinase (ERK) promotes both proliferation and migration. However, the relationship between proliferation and migration is poorly understood in this context. To elucidate this complex relationship on a physiological level, we established an intravital imaging system for measuring ERK activity, migration speed, and cell-cycle phases in mouse muscle satellite cell-derived myogenic cells. We found that in vivo, ERK is maximally activated in myogenic cells two days after injury, and this is then followed by increases in cell number and motility. With limited effects of ERK activity on migration on an acute timescale, we hypothesized that ERK increases migration speed in the later phase by promoting cell-cycle progression. Our cell-cycle analysis further revealed that in myogenic cells, ERK activity is critical for G1/S transition, and cells migrate more rapidly in S/G2 phase 3 days after injury. Finally, migration speed of myogenic cells was suppressed after CDK1/2-but not CDK1-inhibitor treatment, demonstrating a critical role of CDK2 in myogenic cell migration. Overall, our study demonstrates that in myogenic cells, the ERK-CDK2 axis promotes not only G1/S transition but also migration, thus providing a novel mechanism for efficient muscle regeneration.
Collapse
Affiliation(s)
- Yumi Konagaya
- Department of Chemical and Systems Biology, Stanford University School of Medicine , Stanford, CA, USA.,Laboratory of Bioimaging and Cell Signaling, Graduate School of Biostudies, Kyoto University , Kyoto, Japan
| | - Kanako Takakura
- Imaging Platform for Spatio-Temporal Regulation, Graduate School of Medicine, Kyoto University , Kyoto, Japan
| | - Maina Sogabe
- Department of Regeneration Science and Engineering, Institute of Frontier Life and Medical Sciences, Kyoto University , Kyoto, Japan
| | - Anjali Bisaria
- Department of Chemical and Systems Biology, Stanford University School of Medicine , Stanford, CA, USA
| | - Chad Liu
- Department of Chemical and Systems Biology, Stanford University School of Medicine , Stanford, CA, USA
| | - Tobias Meyer
- Department of Chemical and Systems Biology, Stanford University School of Medicine , Stanford, CA, USA
| | - Atsuko Sehara-Fujisawa
- Department of Regeneration Science and Engineering, Institute of Frontier Life and Medical Sciences, Kyoto University , Kyoto, Japan
| | - Michiyuki Matsuda
- Laboratory of Bioimaging and Cell Signaling, Graduate School of Biostudies, Kyoto University , Kyoto, Japan.,Department of Pathology and Biology of Diseases, Graduate School of Medicine, Kyoto University , Kyoto, Japan
| | - Kenta Terai
- Laboratory of Bioimaging and Cell Signaling, Graduate School of Biostudies, Kyoto University , Kyoto, Japan
| |
Collapse
|
10
|
Olson HM, Nechiporuk AV. Lamellipodia-like protrusions and focal adhesions contribute to collective cell migration in zebrafish. Dev Biol 2020; 469:125-134. [PMID: 33096063 DOI: 10.1016/j.ydbio.2020.10.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 10/15/2020] [Accepted: 10/16/2020] [Indexed: 02/09/2023]
Abstract
Collective cell migration is a process where cohorts of cells exhibit coordinated migratory behavior. During individual and collective cellular migration, cells must extend protrusions to interact with the extracellular environment, sense chemotactic cues, and act as points of attachment. The mechanisms and regulators of protrusive behavior have been widely studied in individually migrating cells; however, how this behavior is regulated throughout collectives is not well understood. To address this, we used the zebrafish posterior lateral line primordium (pLLP) as a model. The pLLP is a cluster of ~150 cells that migrates along the zebrafish trunk, depositing groups of cells that will become sensory organs. To define protrusive behavior, we performed mosaic analysis to sparsely label pLLP cells with a transgene marking filamentous actin. This approach revealed an abundance of brush-like protrusions throughout the pLLP that orient in the direction of migration. Formation of these protrusions depends on the Arp2/3 complex, a regulator of dendritic actin. This argues that these brush-like protrusions are an in vivo example of lamellipodia. Mosaic analysis demonstrated that these lamellipodia-like protrusions are located in a close proximity to the overlying skin. Immunostaining revealed an abundance of focal adhesion complexes surrounding the pLLP. Disruption of these complexes specifically in pLLP cells led to impaired pLLP migration. Finally, we show that Erk signaling, a known regulator of focal adhesions, is required for proper formation of lamellipodia-like protrusions and pLLP migration. Altogether, our results suggest a model where the coordinated dynamics of lamellipodia-like protrusions, making contact with either the overlying skin or the extracellular matrix through focal adhesions, promotes migration of pLLP cells.
Collapse
Affiliation(s)
- Hannah M Olson
- Department Cell, Developmental & Cancer Biology, Oregon Health & Science University, The Knight Cancer Institute, Portland, OR, USA; Neuroscience Graduate Program, Oregon Health & Science University, Portland, OR, USA
| | - Alex V Nechiporuk
- Department Cell, Developmental & Cancer Biology, Oregon Health & Science University, The Knight Cancer Institute, Portland, OR, USA.
| |
Collapse
|
11
|
Ghilardi SJ, O'Reilly BM, Sgro AE. Intracellular signaling dynamics and their role in coordinating tissue repair. WILEY INTERDISCIPLINARY REVIEWS. SYSTEMS BIOLOGY AND MEDICINE 2020; 12:e1479. [PMID: 32035001 PMCID: PMC7187325 DOI: 10.1002/wsbm.1479] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 12/20/2019] [Accepted: 12/31/2019] [Indexed: 12/11/2022]
Abstract
Tissue repair is a complex process that requires effective communication and coordination between cells across multiple tissues and organ systems. Two of the initial intracellular signals that encode injury signals and initiate tissue repair responses are calcium and extracellular signal-regulated kinase (ERK). However, calcium and ERK signaling control a variety of cellular behaviors important for injury repair including cellular motility, contractility, and proliferation, as well as the activity of several different transcription factors, making it challenging to relate specific injury signals to their respective repair programs. This knowledge gap ultimately hinders the development of new wound healing therapies that could take advantage of native cellular signaling programs to more effectively repair tissue damage. The objective of this review is to highlight the roles of calcium and ERK signaling dynamics as mechanisms that link specific injury signals to specific cellular repair programs during epithelial and stromal injury repair. We detail how the signaling networks controlling calcium and ERK can now also be dissected using classical signal processing techniques with the advent of new biosensors and optogenetic signal controllers. Finally, we advocate the importance of recognizing calcium and ERK dynamics as key links between injury detection and injury repair programs that both organize and execute a coordinated tissue repair response between cells across different tissues and organs. This article is categorized under: Models of Systems Properties and Processes > Mechanistic Models Biological Mechanisms > Cell Signaling Laboratory Methods and Technologies > Imaging Models of Systems Properties and Processes > Organ, Tissue, and Physiological Models.
Collapse
Affiliation(s)
- Samuel J. Ghilardi
- Department of Biomedical Engineering and the Biological Design CenterBoston UniversityBostonMassachusetts
| | - Breanna M. O'Reilly
- Department of Biomedical Engineering and the Biological Design CenterBoston UniversityBostonMassachusetts
| | - Allyson E. Sgro
- Department of Biomedical Engineering and the Biological Design CenterBoston UniversityBostonMassachusetts
| |
Collapse
|
12
|
Leong MML, Cheung AKL, Kwok TCT, Lung ML. Functional characterization of a candidate tumor suppressor gene, Mirror Image Polydactyly 1, in nasopharyngeal carcinoma. Int J Cancer 2019; 146:2891-2900. [PMID: 31609475 DOI: 10.1002/ijc.32732] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 10/01/2019] [Accepted: 10/07/2019] [Indexed: 12/24/2022]
Abstract
Mirror Image Polydactyly 1 (MIPOL1) is generally associated with congenital anomalies. However, its role in cancer development is poorly understood. Previously, by utilizing the functional complementation approach, microcell-mediated chromosome transfer (MMCT), a tumor suppressor gene, MIPOL1, was identified. MIPOL1 was confirmed to be downregulated in nasopharyngeal carcinoma (NPC) cells and tumor tissues, and re-expression of MIPOL1 induced tumor suppression. The aim of the current study is to further elucidate the functional tumor suppressive role of MIPOL1. In our study, with an expanded sample size of different clinical stages of NPC tumor tissues, we further confirmed the downregulation of MIPOL1 in different cancer stages. MIPOL1 re-expression down-regulated angiogenic factors and reduced phosphorylation of metastasis-associated proteins including AKT, p65, and FAK. In addition, MIPOL1 was confirmed to interact with a tumor suppressor, RhoB, and re-expression of MIPOL1 enhanced RhoB activity. The functional role of MIPOL1 was further validated by utilizing a panel of wild-type (WT) and truncated MIPOL1 expression constructs. The MIPOL1 tumor-suppressive effect can only be observed in the WT MIPOL1-expressing cells. In vitro and nude mice in vivo functional studies further confirmed the critical role of WT MIPOL1 in inhibiting migration, invasion and metastasis in NPC. Overall, our study provides strong evidence about the tumor-suppressive role of MIPOL1 in inhibiting angiogenesis and metastasis in NPC.
Collapse
Affiliation(s)
- Merrin M L Leong
- Department of Clinical Oncology, University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Arthur K L Cheung
- Department of Clinical Oncology, University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Tommy C T Kwok
- Department of Clinical Oncology, University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Maria L Lung
- Department of Clinical Oncology, University of Hong Kong, Pok Fu Lam, Hong Kong.,Centre for Nasopharyngeal Carcinoma Research, University of Hong Kong, Pok Fu Lam, Hong Kong
| |
Collapse
|
13
|
Chu CC, Zhao SZ. Pathophysiological Role and Drug Modulation of Calcium Transport in Ocular Surface Cells. Curr Med Chem 2019; 27:5078-5091. [PMID: 31237195 DOI: 10.2174/0929867326666190619114848] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 04/28/2019] [Accepted: 05/21/2019] [Indexed: 11/22/2022]
Abstract
The ocular surface structure and extraocular accessory organs constitute the ocular surface system, which includes the cornea, conjunctiva, eyelids, lacrimal organs, and lacrimal passages. This system is composed of, and stabilized by, the corneal epithelium, conjunctival cells, conjunctival goblet cells, lacrimal acinar cells and Tenon's fibroblasts, all of which maintain the healthy eyeball surface system. Ocular surface diseases are commonly referred to corneal and conjunctival disease and external ocular disease, resulting from damage to the ocular surface structure. A growing body of evidence has indicated that abnormal activation of the KCa3.1 channel and Ca2+/ calmodulin-dependent kinase initiates ocular injury. Signaling pathways downstream of the irregular Ca2+ influx induce cell progression and migration, and impair tight junctions, epithelial transport and secretory function. In this overview, we summarize the current knowledge regarding ocular surface disease in terms of physical and pathological alteration of the ocular system. We dissect in-depth, the mechanisms underlying disease progression, and we describe the current calcium transport therapeutics and the obstacles that remain to be solved. Finally, we summarize how to integrate the research results into clinical practice in the future.
Collapse
Affiliation(s)
- Chen-Chen Chu
- Tianjin Medical University Eye Hospital, Tianjin Medical University Eye Institute, College of Optometry and Ophthalmology, Tianjin Medical University, Tianjin, 300384, China
| | - Shao-Zhen Zhao
- Tianjin Medical University Eye Hospital, Tianjin Medical University Eye Institute, College of Optometry and Ophthalmology, Tianjin Medical University, Tianjin, 300384, China
| |
Collapse
|
14
|
Nam SM, Maeng YS. Wound Healing and Mucin Gene Expression of Human Corneal Epithelial Cells Treated with Deproteinized Extract of Calf Blood. Curr Eye Res 2019; 44:1181-1188. [PMID: 31204524 DOI: 10.1080/02713683.2019.1633360] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Purpose: The function of Solcoseryl in the corneal epithelium has not been fully examined. Here, we investigated the roles of Solcoseryl in the regulation of gene expression and corneal epithelial cell (CEC) activity.Materials and Methods: The effect of Solcoseryl on CEC activity was analyzed through cell migration, adhesion, proliferation, and wound healing assays. Analysis of gene expression was conducted via western blotting and quantitative reverse transcription polymerase chain reaction (PCR).Results: The results demonstrated that Solcoseryl increased the adhesion, migration, proliferation, and wound healing of CECs. Analysis of gene expression showed that Solcoseryl-stimulated CECs exhibited increased expression of mucin family genes, such as MUC1, -5AC, -7, and -16. Solcoseryl also increased the activities of the intracellular signaling molecules AKT, FAK, ERK, and Src in CECs. Using pharmacologic inhibitors of ERK and AKT, we showed that the expression of mucin genes by Solcoseryl is mediated by the activation of ERK and AKT signaling.Conclusions: Our findings demonstrate that Solcoseryl may contribute to the wound healing of CECs by enhancing their migration, adhesion, and proliferation. Additionally, our results suggest that Solcoseryl has a protective effect on ocular surfaces due to its induction of the expression of mucin genes in CECs. These findings suggest that Solcoseryl is a useful therapeutic target for patients with corneal wounds.
Collapse
Affiliation(s)
- Sang-Min Nam
- Department of Ophthalmology, CHA Bundang Medical Center, CHA University, Seongnam, Republic of Korea
| | - Yong-Sun Maeng
- Department of Obstetrics and Gynecology, Institute of Women's Life Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
15
|
Role of PDGF-A-Activated ERK Signaling Mediated FAK-Paxillin Interaction in Oligodendrocyte Progenitor Cell Migration. J Mol Neurosci 2019; 67:564-573. [DOI: 10.1007/s12031-019-1260-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 01/03/2019] [Indexed: 12/24/2022]
|
16
|
Son DH, Yang DJ, Sun JS, Kim SK, Kang N, Kang JY, Choi YH, Lee JH, Moh SH, Shin DM, Kim KW. A Novel Peptide, Nicotinyl⁻Isoleucine⁻Valine⁻Histidine (NA⁻IVH), Promotes Antioxidant Gene Expression and Wound Healing in HaCaT Cells. Mar Drugs 2018; 16:md16080262. [PMID: 30071627 PMCID: PMC6117656 DOI: 10.3390/md16080262] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 07/23/2018] [Accepted: 07/27/2018] [Indexed: 12/26/2022] Open
Abstract
Nicotinamide (NA), a water-soluble vitamin B3, has been shown to exert cellular-protective effects against reactive oxygen species (ROS). In order to improve the cellular-protective effects of NA, we synthesized a novel compound, nicotinyl–isoleucine–valine–histidine (NA–IVH), by combining NA with jellyfish peptides’ IVH. In the present study, we examined the cellular-protective effects of the novel synthetic nicotinyl-peptide, NA–IVH. We found that NA–IVH enhances the radical scavenging activity with a robust increase of the nuclear factor (erythroid-derived 2)-like factor (Nrf2) expression in human HaCaT keratinocytes. In addition, NA–IVH protected the cells from hydrogen peroxide (H2O2)-induced cell death. Interestingly, NA–IVH exhibited an improved wound-healing effect in a high glucose condition, possibly through the regulation of reactive oxygen species (ROS). Collectively, our results imply that a novel nicotinyl-peptide, NA–IVH, has a wound-healing effect in a hyperglycemic condition, possibly by modulating excessive ROS.
Collapse
Affiliation(s)
- Dong Hwee Son
- Department of Oral Biology, BK21 PLUS, Yonsei University College of Dentistry, Seoul 03722, Korea.
| | - Dong Joo Yang
- Department of Oral Biology, BK21 PLUS, Yonsei University College of Dentistry, Seoul 03722, Korea.
- Department of Global Medical Science, Yonsei University Wonju College of Medicine, Wonju 26426, Korea.
| | - Ji Su Sun
- Department of Oral Biology, BK21 PLUS, Yonsei University College of Dentistry, Seoul 03722, Korea.
| | - Seul Ki Kim
- Department of Oral Biology, BK21 PLUS, Yonsei University College of Dentistry, Seoul 03722, Korea.
| | - Namju Kang
- Department of Oral Biology, BK21 PLUS, Yonsei University College of Dentistry, Seoul 03722, Korea.
| | - Jung Yun Kang
- Department of Oral Biology, BK21 PLUS, Yonsei University College of Dentistry, Seoul 03722, Korea.
| | - Yun-Hee Choi
- Department of Oral Biology, BK21 PLUS, Yonsei University College of Dentistry, Seoul 03722, Korea.
| | - Jeong Hun Lee
- Anti-Aging Research Institute of BIO-FD&C Co. Ltd., Incheon 21990, Korea.
| | - Sang Hyun Moh
- Anti-Aging Research Institute of BIO-FD&C Co. Ltd., Incheon 21990, Korea.
| | - Dong Min Shin
- Department of Oral Biology, BK21 PLUS, Yonsei University College of Dentistry, Seoul 03722, Korea.
| | - Ki Woo Kim
- Department of Oral Biology, BK21 PLUS, Yonsei University College of Dentistry, Seoul 03722, Korea.
| |
Collapse
|
17
|
Li Z, Xu X, Wang W, Kratz K, Sun X, Zou J, Deng Z, Jung F, Gossen M, Ma N, Lendlein A. Modulation of the mesenchymal stem cell migration capacity via preconditioning with topographic microstructure. Clin Hemorheol Microcirc 2018; 67:267-278. [PMID: 28869459 DOI: 10.3233/ch-179208] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Controlling mesenchymal stem cells (MSCs) behavior is necessary to fully exploit their therapeutic potential. Various approaches are employed to effectively influence the migration capacity of MSCs. Here, topographic microstructures with different microscale roughness were created on polystyrene (PS) culture vessel surfaces as a feasible physical preconditioning strategy to modulate MSC migration. By analyzing trajectories of cells migrating after reseeding, we demonstrated that the mobilization velocity of human adipose derived mesenchymal stem cells (hADSCs) could be promoted by and persisted after brief preconditioning with the appropriate microtopography. Moreover, the elevated activation levels of focal adhesion kinase (FAK) and mitogen-activated protein kinase (MAPK) in hADSCs were also observed during and after the preconditioning process. These findings underline the potential enhancement of in vivo therapeutic efficacy in regenerative medicine via transplantation of topographic microstructure preconditioned stem cells.
Collapse
Affiliation(s)
- Zhengdong Li
- Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, Teltow, Germany.,Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Xun Xu
- Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, Teltow, Germany.,Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Weiwei Wang
- Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, Teltow, Germany
| | - Karl Kratz
- Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, Teltow, Germany.,Helmholtz Virtual Institute "Multifunctional Biomaterials in Medicine", Teltow, Germany
| | - Xianlei Sun
- Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, Teltow, Germany.,Institute of Biochemistry and Biology, Universität Potsdam, Potsdam, Germany
| | - Jie Zou
- Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, Teltow, Germany.,Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Zijun Deng
- Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, Teltow, Germany.,Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Friedrich Jung
- Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, Teltow, Germany.,Helmholtz Virtual Institute "Multifunctional Biomaterials in Medicine", Teltow, Germany
| | - Manfred Gossen
- Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, Teltow, Germany
| | - Nan Ma
- Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, Teltow, Germany.,Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany.,Helmholtz Virtual Institute "Multifunctional Biomaterials in Medicine", Teltow, Germany
| | - Andreas Lendlein
- Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, Teltow, Germany.,Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany.,Institute of Biochemistry and Biology, Universität Potsdam, Potsdam, Germany.,Helmholtz Virtual Institute "Multifunctional Biomaterials in Medicine", Teltow, Germany
| |
Collapse
|
18
|
Role of Corneal Stromal Cells on Epithelial Cell Function during Wound Healing. Int J Mol Sci 2018; 19:ijms19020464. [PMID: 29401709 PMCID: PMC5855686 DOI: 10.3390/ijms19020464] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Revised: 01/31/2018] [Accepted: 02/01/2018] [Indexed: 01/12/2023] Open
Abstract
Following injury, corneal stromal keratocytes transform into repair-phenotype of activated stromal fibroblasts (SFs) and participate in wound repair. Simultaneously, ongoing bi-directional communications between corneal stromal-epithelial cells also play a vital role in mediating the process of wound healing. Factors produced by stromal cells are known to induce proliferation, differentiation, and motility of corneal epithelial cells, which are also subsequently the main processes that occur during wound healing. In this context, the present study aims to investigate the effect of SFs conditioned medium (SFCM) on corneal epithelial cell function along with substance P (SP). Antibody microarrays were employed to profile differentially expressed cell surface markers and cytokines in the presence of SFCM and SP. Antibody microarray data revealed enhanced expression of the ITGB1 in corneal epithelial cells following stimulation with SP whereas SFCM induced abundant expression of IL-8, ITGB1, PD1L1, PECA1, IL-15, BDNF, ICAM1, CD8A, CD44 and NTF4. All these proteins have either direct or indirect roles in epithelial cell growth, movement and adhesion related signaling cascades during tissue regeneration. We also observed activation of MAPK signaling pathway along with increased expression of focal adhesion kinase (FAK), paxillin, vimentin, β-catenin and vasodilator-stimulated phosphoprotein (VASP) phosphorylation. Additionally, epithelial-to-mesenchymal transition (EMT) regulating transcription factors Slug and ZEB1 expression were enhanced in the presence of SFCM. SP enriched the expression of integrin subunits α4, α5, αV, β1 and β3 whereas SFCM increased α4, α5, αV, β1 and β5 integrin subunits. We also observed increased expression of Serpin E1 following SP and SFCM treatment. Wound healing scratch assay revealed enhanced migration of epithelial cells following the addition of SFCM. Taken together, we conclude that SFCM-mediated sustained activation of ZEB1, Slug in combination with upregulated migration-associated integrins and ERK (Extracellular signal-regulated kinase)-FAK-paxillin axis, may lead to induce type 2 EMT-like changes during corneal epithelial wound healing.
Collapse
|
19
|
PDGFR inhibition mediated intracellular signalling in C6 glioma growth and migration: role of ERK and ROCK pathway. Cytotechnology 2017; 70:465-477. [PMID: 29143227 DOI: 10.1007/s10616-017-0163-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 10/31/2017] [Indexed: 12/11/2022] Open
Abstract
Aberrant PDGFR (Platelet derived growth factor receptor) signalling in brain tumors and gliomas is one of the primary cause of tumor progression. PDGFR stimulation by its ligand and the role of its downstream mediators such as extracellular regulated kinases (ERK1/2), PI3K and ROCK pathways have not been thoroughly investigated. The present study sought to investigate the role of PDGF receptor signalling inhibition on suppression of rat C6 glioma growth and migration. Treatment of C6 cells with PDGFR inhibitor, AG1295 caused a significant reduction in migration and proliferation by regulating the ERK and ROCK signalling. Subsequently, PDGFR blocking was demonstrated to regulate cytoskeleton reorganization by modulating the Actin-pMLC reorganization and pERK-FAK-Paxillin complex formation which may further regulate the C6 glioma migration. Further, other malignant behaviour of C6 glioma such as anchorage independent growth, adhesion, invasion and sphere forming abilities were found to be impaired by PDGFR blocking. PDGFR inhibition further regulates the C6 glioma tumor behaviour by inducing gene expression of GFAP, BDNF, and MECP2 and down regulating FAK expression. In conclusion, our data elucidate novel mechanisms involve in PDGFR inhibition mediated inhibition of C6 glioma growth and migration which can be a future potential target for the treatment of glioma.
Collapse
|
20
|
Hannen R, Hauswald M, Bartsch JW. A Rationale for Targeting Extracellular Regulated Kinases ERK1 and ERK2 in Glioblastoma. J Neuropathol Exp Neurol 2017; 76:838-847. [DOI: 10.1093/jnen/nlx076] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
21
|
Ex Vivo Expansion of Human Limbal Epithelial Cells Using Human Placenta-Derived and Umbilical Cord-Derived Mesenchymal Stem Cells. Stem Cells Int 2017; 2017:4206187. [PMID: 28894469 PMCID: PMC5574311 DOI: 10.1155/2017/4206187] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 07/04/2017] [Indexed: 12/29/2022] Open
Abstract
Ex vivo culture of human limbal epithelial cells (LECs) is used to treat limbal stem cell (LSC) deficiency, a vision loss condition, and suitable culture systems using feeder cells or serum without animal elements have been developed. This study evaluated the use of human umbilical cord or placenta mesenchymal stem cells (C-MSCs or P-MSCs, resp.) as feeder cells in an animal/serum-free coculture system with human LECs. C-/P-MSCs stimulated LEC colony formation of the stem cell markers (p63, ABCG2) and secreted known LEC clonal growth factors (keratinocyte growth factor, β-nerve growth factor). Transforming growth factor-β-induced protein (TGFBIp), an extracellular matrix (ECM) protein, was produced by C-/P-MSCs and resulted in an increase in p63+ ABCG2+ LEC colonies. TGFBIp-activated integrin signaling molecules (FAK, Src, and ERK) were expressed in LECs, and TGFBIp-induced LEC proliferation was effectively blocked by a FAK inhibitor. In conclusion, C-/P-MSCs enhanced LEC culture by increasing growth of the LSC population by secreting growth factors and the ECM protein TGFBIp, which is suggested to be a novel factor for promoting the growth of LECs in culture. C-/P-MSCs may be useful for the generation of animal-free culture systems for the treatment of LSC deficiency.
Collapse
|
22
|
Tian H, Ketova T, Hardy D, Xu X, Gao X, Zijlstra A, Blobe GC. Endoglin Mediates Vascular Maturation by Promoting Vascular Smooth Muscle Cell Migration and Spreading. Arterioscler Thromb Vasc Biol 2017; 37:1115-1126. [PMID: 28450296 PMCID: PMC5444426 DOI: 10.1161/atvbaha.116.308859] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 04/19/2017] [Indexed: 11/16/2022]
Abstract
Supplemental Digital Content is available in the text. Objective— Endoglin, a transforming growth factor-β superfamily coreceptor, is predominantly expressed in endothelial cells and has essential roles in vascular development. However, whether endoglin is also expressed in vascular smooth muscle cells (VSMCs), especially in vivo, remains controversial. Furthermore, the roles of endoglin in VSMC biology remain largely unknown. Our objective was to examine the expression and determine the function of endoglin in VSMCs during angiogenesis. Approach and Results— Here, we determine that endoglin is robustly expressed in VSMCs. Using CRISPR/CAS9 knockout and short hairpin RNA knockdown in the VSMC/endothelial coculture model system, we determine that endoglin in VSMCs, but not in endothelial cells, promotes VSMCs recruitment by the endothelial cells both in vitro and in vivo. Using an unbiased bioinformatics analysis of RNA sequencing data and further study, we determine that, mechanistically, endoglin mediates VSMC recruitment by promoting VSMC migration and spreading on endothelial cells via increasing integrin/FAK pathway signaling, whereas endoglin has minimal effects on VSMC adhesion to endothelial cells. In addition, we further determine that loss of endoglin in VSMCs inhibits VSMC recruitment in vivo. Conclusions— These studies demonstrate that endoglin has an important role in VSMC recruitment and blood vessel maturation during angiogenesis and also provide novel insights into how discordant endoglin function in endothelial and VSMCs may regulate vascular maturation and angiogenesis.
Collapse
Affiliation(s)
- Hongyu Tian
- From the Division of Medical Oncology, Department of Medicine (H.T., D.H., G.C.B.) and Department of Pharmacology and Cancer Biology (G.C.B.), Duke University Medical Center, Durham, NC; Department of Pathology, Microbiology, and Immunology (T.K., A.Z.) and Department of Cancer Biology (A.Z.), Vanderbilt University, Nashville, TN; Integrative Bioinformatics, National Institute of Environmental Health Sciences, Research Triangle Park, NC (X.X.); Department of Cell Biology, Duke University School of Medicine, Durham, NC (X.G.); and Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN (A.Z.);
| | - Tatiana Ketova
- From the Division of Medical Oncology, Department of Medicine (H.T., D.H., G.C.B.) and Department of Pharmacology and Cancer Biology (G.C.B.), Duke University Medical Center, Durham, NC; Department of Pathology, Microbiology, and Immunology (T.K., A.Z.) and Department of Cancer Biology (A.Z.), Vanderbilt University, Nashville, TN; Integrative Bioinformatics, National Institute of Environmental Health Sciences, Research Triangle Park, NC (X.X.); Department of Cell Biology, Duke University School of Medicine, Durham, NC (X.G.); and Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN (A.Z.)
| | - Duriel Hardy
- From the Division of Medical Oncology, Department of Medicine (H.T., D.H., G.C.B.) and Department of Pharmacology and Cancer Biology (G.C.B.), Duke University Medical Center, Durham, NC; Department of Pathology, Microbiology, and Immunology (T.K., A.Z.) and Department of Cancer Biology (A.Z.), Vanderbilt University, Nashville, TN; Integrative Bioinformatics, National Institute of Environmental Health Sciences, Research Triangle Park, NC (X.X.); Department of Cell Biology, Duke University School of Medicine, Durham, NC (X.G.); and Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN (A.Z.)
| | - Xiaojiang Xu
- From the Division of Medical Oncology, Department of Medicine (H.T., D.H., G.C.B.) and Department of Pharmacology and Cancer Biology (G.C.B.), Duke University Medical Center, Durham, NC; Department of Pathology, Microbiology, and Immunology (T.K., A.Z.) and Department of Cancer Biology (A.Z.), Vanderbilt University, Nashville, TN; Integrative Bioinformatics, National Institute of Environmental Health Sciences, Research Triangle Park, NC (X.X.); Department of Cell Biology, Duke University School of Medicine, Durham, NC (X.G.); and Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN (A.Z.)
| | - Xia Gao
- From the Division of Medical Oncology, Department of Medicine (H.T., D.H., G.C.B.) and Department of Pharmacology and Cancer Biology (G.C.B.), Duke University Medical Center, Durham, NC; Department of Pathology, Microbiology, and Immunology (T.K., A.Z.) and Department of Cancer Biology (A.Z.), Vanderbilt University, Nashville, TN; Integrative Bioinformatics, National Institute of Environmental Health Sciences, Research Triangle Park, NC (X.X.); Department of Cell Biology, Duke University School of Medicine, Durham, NC (X.G.); and Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN (A.Z.)
| | - Andries Zijlstra
- From the Division of Medical Oncology, Department of Medicine (H.T., D.H., G.C.B.) and Department of Pharmacology and Cancer Biology (G.C.B.), Duke University Medical Center, Durham, NC; Department of Pathology, Microbiology, and Immunology (T.K., A.Z.) and Department of Cancer Biology (A.Z.), Vanderbilt University, Nashville, TN; Integrative Bioinformatics, National Institute of Environmental Health Sciences, Research Triangle Park, NC (X.X.); Department of Cell Biology, Duke University School of Medicine, Durham, NC (X.G.); and Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN (A.Z.)
| | - Gerard C Blobe
- From the Division of Medical Oncology, Department of Medicine (H.T., D.H., G.C.B.) and Department of Pharmacology and Cancer Biology (G.C.B.), Duke University Medical Center, Durham, NC; Department of Pathology, Microbiology, and Immunology (T.K., A.Z.) and Department of Cancer Biology (A.Z.), Vanderbilt University, Nashville, TN; Integrative Bioinformatics, National Institute of Environmental Health Sciences, Research Triangle Park, NC (X.X.); Department of Cell Biology, Duke University School of Medicine, Durham, NC (X.G.); and Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN (A.Z.);
| |
Collapse
|
23
|
López-Colomé AM, Lee-Rivera I, Benavides-Hidalgo R, López E. Paxillin: a crossroad in pathological cell migration. J Hematol Oncol 2017; 10:50. [PMID: 28214467 PMCID: PMC5316197 DOI: 10.1186/s13045-017-0418-y] [Citation(s) in RCA: 250] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 02/08/2017] [Indexed: 02/08/2023] Open
Abstract
Paxilllin is a multifunctional and multidomain focal adhesion adapter protein which serves an important scaffolding role at focal adhesions by recruiting structural and signaling molecules involved in cell movement and migration, when phosphorylated on specific Tyr and Ser residues. Upon integrin engagement with extracellular matrix, paxillin is phosphorylated at Tyr31, Tyr118, Ser188, and Ser190, activating numerous signaling cascades which promote cell migration, indicating that the regulation of adhesion dynamics is under the control of a complex display of signaling mechanisms. Among them, paxillin disassembly from focal adhesions induced by extracellular regulated kinase (ERK)-mediated phosphorylation of serines 106, 231, and 290 as well as the binding of the phosphatase PEST to paxillin have been shown to play a key role in cell migration. Paxillin also coordinates the spatiotemporal activation of signaling molecules, including Cdc42, Rac1, and RhoA GTPases, by recruiting GEFs, GAPs, and GITs to focal adhesions. As a major participant in the regulation of cell movement, paxillin plays distinct roles in specific tissues and developmental stages and is involved in immune response, epithelial morphogenesis, and embryonic development. Importantly, paxillin is also an essential player in pathological conditions including oxidative stress, inflammation, endothelial cell barrier dysfunction, and cancer development and metastasis.
Collapse
Affiliation(s)
- Ana María López-Colomé
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Apartado Postal 70-253, Ciudad Universitaria, México, 04510, D.F., Mexico.
| | - Irene Lee-Rivera
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Apartado Postal 70-253, Ciudad Universitaria, México, 04510, D.F., Mexico
| | - Regina Benavides-Hidalgo
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Apartado Postal 70-253, Ciudad Universitaria, México, 04510, D.F., Mexico
| | - Edith López
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Apartado Postal 70-253, Ciudad Universitaria, México, 04510, D.F., Mexico
| |
Collapse
|
24
|
Voudouri K, Nikitovic D, Berdiaki A, Kletsas D, Karamanos NK, Tzanakakis GN. IGF-I/EGF and E2 signaling crosstalk through IGF-IR conduit point affects breast cancer cell adhesion. Matrix Biol 2016; 56:95-113. [DOI: 10.1016/j.matbio.2016.06.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 06/22/2016] [Accepted: 06/22/2016] [Indexed: 12/17/2022]
|
25
|
Gallic Acid Promotes Wound Healing in Normal and Hyperglucidic Conditions. Molecules 2016; 21:molecules21070899. [PMID: 27399667 PMCID: PMC6274221 DOI: 10.3390/molecules21070899] [Citation(s) in RCA: 111] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Revised: 06/28/2016] [Accepted: 07/01/2016] [Indexed: 01/25/2023] Open
Abstract
Skin is the outermost layer of the human body that is constantly exposed to environmental stressors, such as UV radiation and toxic chemicals, and is susceptible to mechanical wounding and injury. The ability of the skin to repair injuries is paramount for survival and it is disrupted in a spectrum of disorders leading to skin pathologies. Diabetic patients often suffer from chronic, impaired wound healing, which facilitate bacterial infections and necessitate amputation. Here, we studied the effects of gallic acid (GA, 3,4,5-trihydroxybenzoic acid; a plant-derived polyphenolic compound) on would healing in normal and hyperglucidic conditions, to mimic diabetes, in human keratinocytes and fibroblasts. Our study reveals that GA is a potential antioxidant that directly upregulates the expression of antioxidant genes. In addition, GA accelerated cell migration of keratinocytes and fibroblasts in both normal and hyperglucidic conditions. Further, GA treatment activated factors known to be hallmarks of wound healing, such as focal adhesion kinases (FAK), c-Jun N-terminal kinases (JNK), and extracellular signal-regulated kinases (Erk), underpinning the beneficial role of GA in wound repair. Therefore, our results demonstrate that GA might be a viable wound healing agent and a potential intervention to treat wounds resulting from metabolic complications.
Collapse
|
26
|
Chen Y, Wang L, Huang H, Tan R, Zhao J, Yang S, Zeng R, Wu H, Zhang J, Yu B, Tu M. Mechano-regulatory cellular behaviors of NIH/3T3 in response to the storage modulus of liquid crystalline substrates. J Mech Behav Biomed Mater 2016; 57:42-54. [DOI: 10.1016/j.jmbbm.2015.11.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2015] [Revised: 11/02/2015] [Accepted: 11/09/2015] [Indexed: 01/07/2023]
|
27
|
Yang DJ, Lee KS, Ko CM, Moh SH, Song J, Hur LC, Cheon YW, Yang SH, Choi YH, Kim KW. Leucine-enkephalin promotes wound repair through the regulation of hemidesmosome dynamics and matrix metalloprotease. Peptides 2016; 76:57-64. [PMID: 26763532 DOI: 10.1016/j.peptides.2015.12.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 12/03/2015] [Accepted: 12/29/2015] [Indexed: 11/17/2022]
Abstract
The skin responds to environmental stressors by coordinated actions of neuropeptides and their receptors. An endogenous peptide for δ-opioid receptor (DOPr), Leu-enkephalin (L-ENK), is expressed in the skin and its expression is altered in pathological conditions. Although the importance of DOPr is rapidly gaining recognition, the molecular mechanisms underlying its effects on wound healing are largely undefined. We show here that L-ENK induced activation of Erk, P90(RSK), and Elk-1 and promoted the disruption of hemidesmosomes and the expression of matrix metalloprotease (MMP)-2 and MMP-9, important processes for wound healing. Treatment with Erk inhibitor blocked activation of P90(RSK) and Elk-1 and significantly blunted wound repair. Therefore, our results suggest that activation of Erk and its downstream effectors, P90(RSK) and Elk-1, are critical for DOPr-mediated skin homeostasis.
Collapse
Affiliation(s)
- Dong Joo Yang
- Department of Pharmacology, Wonju College of Medicine, Yonsei University, Wonju 26426, Republic of Korea; Department of Global Medical Science, Wonju College of Medicine, Yonsei University, Wonju 26426, Republic of Korea
| | - Kyung Suk Lee
- Department of Plastic and Reconstructive Surgery, Gyeongsang National University Hospital, Gyeongsang National University School of Medicine, Jinju 52828, Republic of Korea
| | - Chang Mann Ko
- Department of Pharmacology, Wonju College of Medicine, Yonsei University, Wonju 26426, Republic of Korea
| | - Sang Hyun Moh
- Anti-aging Research Institute of BIO-FD&C Co. Ltd., Incheon 21990, Republic of Korea
| | - Jihyeok Song
- Anti-aging Research Institute of BIO-FD&C Co. Ltd., Incheon 21990, Republic of Korea
| | - Lucia C Hur
- Derma-Lucia Skinceuticals LLC, 7500 Escala Drive, Austin, TX 78735, USA
| | - Young Woo Cheon
- Department of Plastic and Reconstructive Surgery, Gachon University Gil Medical Center, Gachon University, School of Medicine, 1198 Guwol-Dong, Namdong-Gu, Incheon 21565, Republic of Korea
| | - Seung Ho Yang
- Department of Pharmacology, Wonju College of Medicine, Yonsei University, Wonju 26426, Republic of Korea
| | - Yun-Hee Choi
- Anti-aging Research Institute of BIO-FD&C Co. Ltd., Incheon 21990, Republic of Korea.
| | - Ki Woo Kim
- Department of Pharmacology, Wonju College of Medicine, Yonsei University, Wonju 26426, Republic of Korea; Department of Global Medical Science, Wonju College of Medicine, Yonsei University, Wonju 26426, Republic of Korea.
| |
Collapse
|
28
|
Mycosporine-Like Amino Acids Promote Wound Healing through Focal Adhesion Kinase (FAK) and Mitogen-Activated Protein Kinases (MAP Kinases) Signaling Pathway in Keratinocytes. Mar Drugs 2015; 13:7055-66. [PMID: 26703626 PMCID: PMC4699230 DOI: 10.3390/md13127056] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 11/10/2015] [Accepted: 11/18/2015] [Indexed: 12/02/2022] Open
Abstract
Mycosporine-like amino acids (MAAs) are secondary metabolites found in diverse marine, freshwater, and terrestrial organisms. Evidence suggests that MAAs have several beneficial effects on skin homeostasis such as protection against UV radiation and reactive oxygen species (ROS). In addition, MAAs are also involved in the modulation of skin fibroblasts proliferation. However, the regulatory function of MAAs on wound repair in human skin is not yet clearly elucidated. To investigate the roles of MAAs on the wound healing process in human keratinocytes, three MAAs, Shinorine (SH), Mycosporine-glycine (M-Gly), and Porphyra (P334) were purified from Chlamydomonas hedlyei and Porphyra yezoensis. We found that SH, M-Gly, and P334 have significant effects on the wound healing process in human keratinocytes and these effects were mediated by activation of focal adhesion kinases (FAK), extracellular signal-regulated kinases (ERK), and c-Jun N-terminal kinases (JNK). These results suggest that MAAs accelerate wound repair by activating the FAK-MAPK signaling pathways. This study also indicates that MAAs can act as a new wound healing agent and further suggests that MAAs might be a novel biomaterial for wound healing therapies.
Collapse
|
29
|
DU CHUANG, WANG XIN, ZHANG JUNLING, LIU XIANGZHENG, ZHU JING, LIU YUCUN. Paxillin is positively correlated with the clinicopathological factors of colorectal cancer, and knockdown of Paxillin improves sensitivity to cetuximab in colorectal cancer cells. Oncol Rep 2015; 35:409-17. [DOI: 10.3892/or.2015.4352] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2015] [Accepted: 09/18/2015] [Indexed: 11/06/2022] Open
|
30
|
Tseng C, Kolonin MG. Proteolytic Isoforms of SPARC Induce Adipose Stromal Cell Mobilization in Obesity. Stem Cells 2015; 34:174-90. [PMID: 26381424 DOI: 10.1002/stem.2192] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 08/14/2015] [Indexed: 12/30/2022]
Abstract
Adipose stromal cells (ASC) are mesenchymal adipocyte progenitors that reside in the peri-endothelium of fat tissue. ASC mobilization and migration accompany white adipose tissue (WAT) remodeling and pathological conditions. Mechanisms regulating ASC trafficking are largely unknown. We previously reported that binding of the matricellular protein secreted protein acidic and rich in cysteine (SPARC) to β1 integrin on ASC surface induces their motility. Here, we show that SPARC is required for ASC mobilization. We report two SPARC proteolytic isoforms, C-SPARC (lacking the N terminus) and N-SPARC (lacking the C terminus), generated in mesenteric WAT of obese mice. C-SPARC, but not N-SPARC, binds to β1 integrin on ASC, while N-SPARC preferentially binds to the extracellular matrix (ECM) and blocks ECM/integrin interaction. Interestingly, both C-SPARC and N-SPARC induce ASC deadhesion from the ECM, which is associated with modulation of integrin-dependent FAK-ERK signaling and integrin-independent ILK-Akt signaling. We show that these SPARC isoforms, acting on ASC through distinct mechanisms, have an additive effect in inducing ASC migration.
Collapse
Affiliation(s)
- Chieh Tseng
- Center for Metabolic and Degenerative Diseases, The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, Texas, 77030, USA
| | - Mikhail G Kolonin
- Center for Metabolic and Degenerative Diseases, The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, Texas, 77030, USA
| |
Collapse
|
31
|
Huang SU, Yoon JJ, Ismail S, McGhee JJ, Sherwin T. Sphere-forming cells from peripheral cornea demonstrate a wound-healing response to injury. Cell Biol Int 2015; 39:1274-87. [PMID: 26094955 DOI: 10.1002/cbin.10501] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 06/11/2015] [Indexed: 12/13/2022]
Abstract
The cornea is the initial refractive interface of the eye. Its transparency is critical for clear vision and is maintained by stem cells which also act to repair injury inflicted by external insults, such as chemical and thermal burns. Damage to the epithelium compromises its clarity and can reduce or eliminate the stem cell population, diminishing the ability for self-repair. This condition has been termed "limbal stem cell deficiency"; severe cases can lead to corneal blindness. Sphere-forming cells isolated from peripheral cornea are a potential source of stem and progenitor cells for corneal repair. When provided with appropriate substrate, these spheres have the ability to adhere and for cells to migrate outwards akin to that of their natural environment. Direct compression injury and remote scratch injury experiments were conducted on the sphere cells to gauge their wound healing capacity. Measures of proliferation, differentiation, and migration were assessed by immunohistochemical detection of EdU incorporation, α-smooth muscle actin expression and confocal image analysis, respectively. Both modes of injury were observed to draw responses from the spheres indicating wound healing processes. Direct wounding induced a rapid, but transient increase in expression of α-SMA, a marker of corneal myofibroblasts, followed by a proliferative and increasing migratory response. The spheres were observed to respond to remote injury as entire units, with no directional response seen for targeted repair over the scratch injury area. These results give strength to the future use of these peripheral corneal spheres as transplantable units for the regeneration of corneal tissue.
Collapse
Affiliation(s)
- Stephanie U Huang
- Department of Ophthalmology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Jinny J Yoon
- Department of Ophthalmology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Salim Ismail
- Department of Ophthalmology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Jennifer J McGhee
- Department of Ophthalmology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Trevor Sherwin
- Department of Ophthalmology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
32
|
Ham SL, Nasrollahi S, Shah KN, Soltisz A, Paruchuri S, Yun YH, Luker GD, Bishayee A, Tavana H. Phytochemicals potently inhibit migration of metastatic breast cancer cells. Integr Biol (Camb) 2015; 7:792-800. [PMID: 26120051 PMCID: PMC5474751 DOI: 10.1039/c5ib00121h] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Cell migration is a major process that drives metastatic progression of cancers, the major cause of cancer death. Existing chemotherapeutic drugs have limited efficacy to prevent and/or treat metastasis, emphasizing the need for new treatments. We focus on triple negative breast cancer (TNBC), the subtype of breast cancer with worst prognosis and no standard chemotherapy protocols. Here we demonstrate that a group of natural compounds, known as phytochemicals, effectively block migration of metastatic TNBC cells. Using a novel cell micropatterning technology, we generate consistent migration niches in standard 96-well plates where each well contains a cell-excluded gap within a uniform monolayer of cells. Over time, cells migrate into and occupy the gap. Treating TNBC cells with non-toxic concentrations of phytochemicals significantly blocks motility of cells. Using a molecular analysis approach, we show that anti-migratory property of phytochemicals is partly due to their inhibitory effects on phosphorylation of ERK1/2. This study provides a framework for future studies to understand molecular targets of phytochemicals and evaluate their effectiveness in inhibiting metastasis in animal models of cancer.
Collapse
Affiliation(s)
- Stephanie Lemmo Ham
- Department of Biomedical Engineering, The University of Akron, Akron, Ohio 44325, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Fu P, Usatyuk PV, Lele A, Harijith A, Gregorio CC, Garcia JGN, Salgia R, Natarajan V. c-Abl mediated tyrosine phosphorylation of paxillin regulates LPS-induced endothelial dysfunction and lung injury. Am J Physiol Lung Cell Mol Physiol 2015; 308:L1025-38. [PMID: 25795725 PMCID: PMC4437005 DOI: 10.1152/ajplung.00306.2014] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 03/19/2015] [Indexed: 01/11/2023] Open
Abstract
Paxillin is phosphorylated at multiple residues; however, the role of tyrosine phosphorylation of paxillin in endothelial barrier dysfunction and acute lung injury (ALI) remains unclear. We used siRNA and site-specific nonphosphorylable mutants of paxillin to abrogate the function of paxillin to determine its role in lung endothelial permeability and ALI. In vitro, lipopolysaccharide (LPS) challenge of human lung microvascular endothelial cells (HLMVECs) resulted in enhanced tyrosine phosphorylation of paxillin at Y31 and Y118 with no significant change in Y181 and significant barrier dysfunction. Knockdown of paxillin with siRNA attenuated LPS-induced endothelial barrier dysfunction and destabilization of VE-cadherin. LPS-induced paxillin phosphorylation at Y31 and Y118 was mediated by c-Abl tyrosine kinase, but not by Src and focal adhesion kinase. c-Abl siRNA significantly reduced LPS-induced endothelial barrier dysfunction. Transfection of HLMVECs with paxillin Y31F, Y118F, and Y31/118F double mutants mitigated LPS-induced barrier dysfunction and VE-cadherin destabilization. In vivo, the c-Abl inhibitor AG957 attenuated LPS-induced pulmonary permeability in mice. Together, these results suggest that c-Abl mediated tyrosine phosphorylation of paxillin at Y31 and Y118 regulates LPS-mediated pulmonary vascular permeability and injury.
Collapse
Affiliation(s)
- Panfeng Fu
- Department of Pharmacology, University of Illinois, Chicago, Illinois;
| | - Peter V Usatyuk
- Department of Pharmacology, University of Illinois, Chicago, Illinois
| | - Abhishek Lele
- Department of Pharmacology, University of Illinois, Chicago, Illinois
| | - Anantha Harijith
- Department of Pediatrics, University of Illinois, Chicago, Illinois
| | - Carol C Gregorio
- Department of Cellular and Molecular Medicine, The University of Arizona College of Medicine, Tucson, Arizona
| | - Joe G N Garcia
- Department of Medicine, The University of Arizona College of Medicine, Tucson, Arizona; and
| | - Ravi Salgia
- Department of Medicine, University of Chicago, Chicago, Illinois
| | - Viswanathan Natarajan
- Department of Pharmacology, University of Illinois, Chicago, Illinois; Department of Medicine, College of Medicine, University of Illinois, Chicago, Illinois
| |
Collapse
|
34
|
|
35
|
Qin Y, Mohandessi S, Gordon L, Wadehra M. Regulation of FAK Activity by Tetraspan Proteins: Potential Clinical Implications in Cancer. Crit Rev Oncog 2015; 20:391-405. [PMID: 27279237 PMCID: PMC5390008 DOI: 10.1615/critrevoncog.v20.i5-6.110] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Focal adhesion kinase (FAK) is a non-receptor tyrosine kinase that regulates multiple cell signaling pathways in both physiological and pathological conditions. Overexpression and activation of FAK is associated with many advanced stage cancers through promoting cancer cell tumorigenicity and progression as well as by regulating the tumor microenvironment. FAK has multiple binding partners through which FAK exerts its functions including RhoGEF, Src family, talin, cortactin, and paxilin. Over the last few years, it has been proposed that a novel group of four transmembrane proteins can interact with FAK and regulate its activity. These include select tetraspanins such as CD151 and CD9 as well as the GAS3 family members epithelial membrane protein-2 (EMP2) and peripheral myelin protein-22 (PMP22). In this review, we discuss the current knowledge of the interaction between FAK and tetraspan proteins in physiological and pathological conditions, with an emphasis on the potential of tetraspan family members as therapeutic targets in cancer.
Collapse
Affiliation(s)
- Yu Qin
- Department of Ophthalmology, Jules Stein Eye Institute, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Shabnam Mohandessi
- Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Lynn Gordon
- Department of Ophthalmology, Jules Stein Eye Institute, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Madhuri Wadehra
- Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at UCLA, Los Angeles, CA
- Center to Eliminate Cancer Health Disparities, Charles Drew University, Los Angeles, CA
| |
Collapse
|
36
|
Yang WJ, Yang YN, Cao J, Man ZH, Li Y, Xing YQ. Paxillin regulates vascular endothelial growth factor A-induced in vitro angiogenesis of human umbilical vein endothelial cells. Mol Med Rep 2014; 11:1784-92. [PMID: 25405379 PMCID: PMC4270338 DOI: 10.3892/mmr.2014.2961] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Accepted: 10/31/2014] [Indexed: 12/16/2022] Open
Abstract
The purpose of the present study was to investigate the role of paxillin in the vascular endothelial growth factor A (VEGF-A)-induced adhesion, proliferation, migration and capillary formation of endothelial cells (ECs) in vitro. Human umbilical vein ECs (HUVECs) were used to evaluate these four processes in vitro. The HUVECs were either mock-transfected (control), transfected with scramble small interference RNA (siRNA) or transfected with siRNA specifically targeting paxillin. VEGF-A (20 ng/ml) was used to stimulate angiogenesis. The VEGF-A treatment significantly increased the adhesion, proliferation, migration and tube formation of the HUVECs in the control and scramble siRNA groups, whereas the siRNA-mediated knockdown of paxillin inhibited these VEGF-A-induced effects. Paxillin is essential for VEGF-A-mediated angiogenesis in ECs and its inhibition may be a potential target for antiangiogenic therapies.
Collapse
Affiliation(s)
- Wan-Ju Yang
- Eye Center, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Yan-Ning Yang
- Eye Center, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Jin Cao
- Eye Center, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Zi-Hui Man
- Eye Center, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Ying Li
- Eye Center, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Yi-Qiao Xing
- Eye Center, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| |
Collapse
|
37
|
Choi JH, Jun JH, Kim JH, Sung HJ, Lee JH. Synergistic effect of interleukin-6 and hyaluronic acid on cell migration and ERK activation in human keratinocytes. J Korean Med Sci 2014; 29 Suppl 3:S210-6. [PMID: 25473211 PMCID: PMC4248007 DOI: 10.3346/jkms.2014.29.s3.s210] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Accepted: 08/07/2014] [Indexed: 12/03/2022] Open
Abstract
Wound healing is initiated and progressed by complex integrated process of cellular, physiologic, and biochemical events, such as inflammation, cell migration and proliferation. Interleukin 6 (IL-6) is a multifunctional cytokine, and it could regulate the inflammatory response of wound healing process in a timely manner. Hyaluronic acid (HA) is an essential component of the extracellular matrix, and contributes significantly to cell proliferation and migration. The purpose of this study was to investigate the effects of IL-6 or/and HA on the cell migration process in human keratinocytes. Combining IL-6 and HA significantly increased the cell migration in scratch based wound healing assay. The phosphorylation of extracellular-signal-regulated kinase (ERK) was significantly increased after 1 hr of IL-6 and HA treatment, but the phosphorylation of p38 mitogen-activated protein kinase (MAPK) was not. We also found that significant increase of the NF-κB translocation from cytoplasm into nucleus after 1 hr of IL-6 or/and HA treatments. This study firstly showed that synergistic effects of combining IL-6 and HA on the cell migration of wound healing by activation of ERK and NF-κB signaling. Further studies might be required to confirm the synergistic effects of HA and IL-6 in the animal model for the development of a novel therapeutic mixture for stimulation of wound healing process.
Collapse
Affiliation(s)
- Jee-Hyun Choi
- Eulji Medi-Bio Research Institute, Eulji General Hospital, Eulji University, Seoul, Korea
| | - Jin Hyun Jun
- Eulji Medi-Bio Research Institute, Eulji General Hospital, Eulji University, Seoul, Korea
- Department of Senior Healthcare, BK21 plus Program, Graduated School, Eulji University, Seongnam, Korea
- Department of Biomedical Laboratory Science, Eulji University, Seongnam, Korea
| | - Ji Hyun Kim
- Department of Senior Healthcare, BK21 plus Program, Graduated School, Eulji University, Seongnam, Korea
| | - Ho Joong Sung
- Department of Senior Healthcare, BK21 plus Program, Graduated School, Eulji University, Seongnam, Korea
- Department of Biomedical Laboratory Science, Eulji University, Seongnam, Korea
| | - Jong Hun Lee
- Eulji Medi-Bio Research Institute, Eulji General Hospital, Eulji University, Seoul, Korea
- Department of Plastic and Reconstructive Surgery, Eulji General Hospital, School of Medicine, Eulji University, Seoul, Korea
| |
Collapse
|
38
|
Eslani M, Movahedan A, Afsharkhamseh N, Sroussi H, Djalilian AR. The role of toll-like receptor 4 in corneal epithelial wound healing. Invest Ophthalmol Vis Sci 2014; 55:6108-15. [PMID: 25183764 DOI: 10.1167/iovs.14-14736] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
PURPOSE We evaluated the role of Toll-like receptor 4 (TLR4) in corneal epithelial wound healing. METHODS The expression of TLR4 during in vivo corneal epithelial wound healing was examined by immunostaining in mice. The expression and activation of TLR4 was studied in primary or telomerase-immortalized human corneal epithelial cells (HCEC). Scratch assay was performed to evaluate in vitro wound closure using live time-lapse microscopy. Transwell migration assay and Ki67 immunostaining were done to evaluate migration and proliferation, respectively. Lipopolysaccharide (LPS) was used to activate TLR4, whereas CLI-095 was used for its inhibition. The expression of inflammatory cytokines was determined by RT-PCR and ELISA. The activation of p42/44 and p38 was determined by immunoblotting. RESULTS In the murine model, TLR4 immunostaining was noted prominently in the epithelium 8 hours after wounding. There was a 4-fold increase in the expression of TLR4 6 hours after in vitro scratch wounding (P < 0.001). Confocal microscopy confirmed the membrane localization of TLR4/MD2 complex. There was a significant increase in migration, proliferation, and wound closure in HCEC treated with LPS (P < 0.05), while there was significant decrease with TLR4 inhibition (P < 0.05). Addition of LPS to wounded HCEC resulted in a significant increase in the expression of IL-6, TNF-α, CXCL8/IL8, and CCL5/RANTES at the mRNA and protein levels. Likewise, LPS increased the activation of p42/44 and p38 in wounded HCEC. CONCLUSIONS These results suggest that epithelial wounding induces the expression of functional TLR4. Toll-like receptor 4 signaling appears to contribute to early corneal epithelial wound repair by enhancing migration and proliferation.
Collapse
Affiliation(s)
- Medi Eslani
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, Illinois, United States
| | - Asadolah Movahedan
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, Illinois, United States
| | - Neda Afsharkhamseh
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, Illinois, United States
| | - Herve Sroussi
- Oral Medicine and Diagnostic Sciences, College of Dentistry, University of Illinois at Chicago, Chicago, Illinois, United States
| | - Ali R Djalilian
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, Illinois, United States
| |
Collapse
|
39
|
Kiwanuka E, Andersson L, Caterson EJ, Junker JPE, Gerdin B, Eriksson E. CCN2 promotes keratinocyte adhesion and migration via integrin α5β1. Exp Cell Res 2013; 319:2938-46. [DOI: 10.1016/j.yexcr.2013.08.021] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2013] [Revised: 08/06/2013] [Accepted: 08/07/2013] [Indexed: 10/26/2022]
|
40
|
Lyu J, Hu Y, Xu X, Zhang H. Dynamics of focal adhesions and reorganization of F-actin in VEGF-stimulated NSCs under varying differentiation states. J Cell Biochem 2013; 114:1744-59. [PMID: 23444112 DOI: 10.1002/jcb.24517] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Accepted: 02/04/2013] [Indexed: 12/30/2022]
Abstract
Precise migration of neural stem/progenitor cells (NSCs) is crucially important for neurogenesis and repair in the nervous system. However, the detailed mechanisms are not clear. Our previous results showed that NSCs in varying differentiation states possess different migratory ability to vascular endothelial growth factor (VEGF). In this study, we demonstrate the different dynamics of focal adhesions (FAs) and reorganization of F-actin in NSCs during spreading and migration stimulated by VEGF. We found that the migrating NSCs of 0.5 and 1 day differentiation possess more FAs at leading edge than cells of other states. Moreover, the phosphorylation of focal adhesion kinase (FAK) and paxillin in NSCs correlates closely with their differentiation states. VEGF promotes FA formation with broad lamellipodium generation at the leading edge in chemotaxing cells of 0, 0.5, and 1 day differentiation, but not in cells of 3 days differentiation. Furthermore, cells of 1 day differentiation show a maximal asymmetry of FAs between lamella and cell rear, orchestrating cell polarization and directional migration. Time-lapse video analysis shows that the disassembly of FAs and the cell tail detachment in NSCs of 1 day differentiation are more rapid, along with the concurrent enlarged size of FAs at the leading edge, leading to the most effective chemotactic response to VEGF. Collectively, these results indicate that the dynamics of FAs and reorganization of F-actin in NSCs that undergo directional migration correlate closely with their differentiation states, contributing to the different chemotactic responses of these cells to VEGF.
Collapse
Affiliation(s)
- Jingya Lyu
- Department of Cell Biology, Medical College of Soochow University, Jiangsu Key Laboratory of Stem Cell Research, Ren Ai Road 199, Suzhou Industrial Park, Suzhou 215123, China
| | | | | | | |
Collapse
|
41
|
Abstract
Cell-matrix adhesion is a fundamental biological process that governs survival, migration, and proliferation of living eukaryotic cells. Paxillin is an important central player in a network of adhesome proteins that form focal adhesion complexes. Phosphorylation of tyrosine and serine residues in paxillin is critical for the coordinated sequential recruitment of other adaptor and kinase proteins to adhesion complexes. Recently, the phosphorylation of serine178 in paxillin has been shown to be vital for epithelial cell adhesion and migration. In vivo and in vitro evidence have shown that transglutaminase (TG)-2 positively regulates this phosphorylation. Here, we propose three possible mechanisms that may explain these observations. First, TG-2 itself may be an adhesome member directly interacting with paxillin in a non-covalent way. Second, TG-2 may cross link a mitogen-activated protein kinase kinase kinase (MAP3K), which eventually activates c-Jun N-terminal kinase (JNK), and the latter phosphorylates paxillin. Lastly, TG-2 may have intrinsic kinase activity that phosphorylates paxillin. Future studies investigating these hypotheses on TG-2-paxillin relationships are necessary in order to address this fundamental process in cell matrix adhesion signaling.
Collapse
Affiliation(s)
- Evelyn Png
- Ocular Surface Research Group; Singapore Eye Research Institute; Singapore
| | - Louis Tong
- Ocular Surface Research Group; Singapore Eye Research Institute; Singapore; Department of Cornea and External Eye Disease; Singapore National Eye Center; Singapore; Office of Clinical Science; Duke-NUS Graduate Medical School; Singapore; Department of Ophthalmology; Yong Loo Lin School of Medicine; National University of Singapore; Singapore
| |
Collapse
|
42
|
Moscatilin inhibits lung cancer cell motility and invasion via suppression of endogenous reactive oxygen species. BIOMED RESEARCH INTERNATIONAL 2013; 2013:765894. [PMID: 23738332 PMCID: PMC3662177 DOI: 10.1155/2013/765894] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Accepted: 04/02/2013] [Indexed: 11/22/2022]
Abstract
Lung cancer is the leading cause of death among cancer patients worldwide, and most of them have died from metastasis. Migration and invasion are prerequisite processes associated with high metastasis potential in cancers. Moscatilin, a bibenzyl derivative isolated from the Thai orchid Dendrobium pulchellum, has been shown to have anticancer effect against numerous cancer cell lines. However, little is known regarding the effect of moscatilin on cancer cell migration and invasion. The present study demonstrates that nontoxic concentrations of moscatilin were able to inhibit human nonsmall cell lung cancer H23 cell migration and invasion. The inhibitory effect of moscatilin was associated with an attenuation of endogenous reactive oxygen species (ROS), in which hydroxyl radical (OH∙) was identified as a dominant species in the suppression of filopodia formation. Western blot analysis also revealed that moscatilin downregulated activated focal adhesion kinase (phosphorylated FAK, Tyr 397) and activated ATP-dependent tyrosine kinase (phosphorylated Akt, Ser 473), whereas their parental counterparts were not detectable changed. In conclusion, our results indicate the novel molecular basis of moscalitin-inhibiting lung cancer cell motility and invasion and demonstrate a promising antimetastatic potential of such an agent for lung cancer therapy.
Collapse
|
43
|
Chi C, Trinkaus-Randall V. New insights in wound response and repair of epithelium. J Cell Physiol 2013; 228:925-9. [PMID: 23129239 DOI: 10.1002/jcp.24268] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Accepted: 10/18/2012] [Indexed: 01/26/2023]
Abstract
Epithelial wounds usually heal relatively quickly, but repair may be impaired by environmental stressors, such as hypoxic or diabetic states, rendering patients vulnerable to a number of corneal pathologies. Though this response appears simple, at first, years of research have uncovered the complicated biochemical pathways coordinating the wound healing response. Here, we investigate signaling cascades and individual proteins involved in the corneal epithelium's self-repair. We will explore how an epithelial cell migrates across the wound bed and attaches itself to its new post-injury surroundings, including its neighboring cells and the basement membrane, through focal adhesions and hemidesmosomes. We will also discuss how the cell coordinates this motion physiologically, through calcium signaling and protein phosphorylation, focusing on the communication through purinergic, glutamatergic, and growth factor receptors. Many of these aspects reflect and can be extended to similar epithelial surfaces, and can be used to facilitate wound healing in patients with various underlying pathologies. The collective library of laboratory and clinical research done around the world has demonstrated how important precise regulation of these processes is in order for the injured corneal epithelium to properly heal.
Collapse
Affiliation(s)
- Cheryl Chi
- Department of Ophthalmology, Boston University School of Medicine, Boston, MA, USA
| | | |
Collapse
|
44
|
Ejiri K, Aoki A, Yamaguchi Y, Ohshima M, Izumi Y. High-frequency low-level diode laser irradiation promotes proliferation and migration of primary cultured human gingival epithelial cells. Lasers Med Sci 2013; 29:1339-47. [PMID: 23515630 DOI: 10.1007/s10103-013-1292-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Accepted: 02/25/2013] [Indexed: 12/28/2022]
Abstract
In periodontal therapy, the use of low-level diode lasers has recently been considered to improve wound healing of the gingival tissue. However, its effects on human gingival epithelial cells (HGECs) remain unknown. The aim of the present study was to examine whether high-frequency low-level diode laser irradiation stimulates key cell responses in wound healing, proliferation and migration, in primary cultured HGECs in vitro. HGECs were derived from seven independent gingival tissue specimens. Cultured HGECs were exposed to a single session of high-frequency (30 kHz) low-level diode laser irradiation with various irradiation time periods (fluence 5.7-56.7 J/cm(2)). After 20-24 h, cell proliferation was evaluated by WST-8 assay and [(3)H]thymidine incorporation assay, and cell migration was monitored by in vitro wound healing assay. Further, phosphorylation of the mitogen-activated protein kinase (MAPK) pathways after irradiation was investigated by Western blotting. The high-frequency low-level irradiation significantly increased cell proliferation and [(3)H]thymidine incorporation at various irradiation time periods. Migration of the irradiated cells was significantly accelerated compared with the nonirradiated control. Further, the low-level diode laser irradiation induced phosphorylation of MAPK/extracellular signal-regulated protein kinase (ERK) at 5, 15, 60, and 120 min after irradiation. Stress-activated protein kinases/c-Jun N-terminal kinase and p38 MAPK remained un-phosphorylated. The results show that high-frequency low-level diode laser irradiation promotes HGEC proliferation and migration in association with the activation of MAPK/ERK, suggesting that laser irradiation may accelerate gingival wound healing.
Collapse
Affiliation(s)
- Kenichiro Ejiri
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8549, Japan
| | | | | | | | | |
Collapse
|
45
|
Kwon HS, Tomarev SI. Myocilin, a glaucoma-associated protein, promotes cell migration through activation of integrin-focal adhesion kinase-serine/threonine kinase signaling pathway. J Cell Physiol 2011; 226:3392-402. [PMID: 21656515 DOI: 10.1002/jcp.22701] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The MYOCILIN gene encodes a secreted glycoprotein which is highly expressed in eye drainage structures. Mutations in this gene may lead to juvenile open-angle glaucoma and adult onset primary open-angle glaucoma, one of the leading causes of irreversible blindness in the world. Functions of wild-type myocilin are still unclear. We have recently demonstrated that myocilin is a modulator of Wnt signaling and may affect actin cytoskeleton organization. Here we report that myocilin and its naturally occurring proteolytic fragments, similar to Wnt3a, are able to stimulate trabecular meshwork, NIH3T3, and FHL124 cell migration with the N-terminal proteolytic fragment of myocilin lacking the olfactomedin domain producing the highest stimulatory effect. Stimulation of cell migration occurs through activation of the integrin-focal adhesion kinase (FAK)-serine/threonine kinase (AKT) signaling pathway. Inhibition of FAK by siRNA reduced the stimulatory action of myocilin by threefold. Activation of several components of this signaling pathway was also demonstrated in the eyes of transgenic mice expressing elevated levels of myocilin in the eye drainage structures. These data extend the similarities between actions of myocilin and Wnt proteins acting through a β-catenin-independent mechanism. The modification of the migratory ability of cells by myocilin may play a role in normal functioning of the eye anterior segment and its pathology including glaucoma.
Collapse
Affiliation(s)
- Heung Sun Kwon
- Molecular Mechanisms of Glaucoma Section, Laboratory of Molecular and Developmental Biology, National Eye Institute, NIH, Bethesda, Maryland 20892-9303, USA
| | | |
Collapse
|
46
|
Nasser MW, Qamri Z, Deol YS, Smith D, Shilo K, Zou X, Ganju RK. Crosstalk between chemokine receptor CXCR4 and cannabinoid receptor CB2 in modulating breast cancer growth and invasion. PLoS One 2011; 6:e23901. [PMID: 21915267 PMCID: PMC3168464 DOI: 10.1371/journal.pone.0023901] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Accepted: 07/27/2011] [Indexed: 11/28/2022] Open
Abstract
Background Cannabinoids bind to cannabinoid receptors CB1 and CB2 and have been reported to possess anti-tumorigenic activity in various cancers. However, the mechanisms through which cannabinoids modulate tumor growth are not well known. In this study, we report that a synthetic non-psychoactive cannabinoid that specifically binds to cannabinoid receptor CB2 may modulate breast tumor growth and metastasis by inhibiting signaling of the chemokine receptor CXCR4 and its ligand CXCL12. This signaling pathway has been shown to play an important role in regulating breast cancer progression and metastasis. Methodology/Principal Findings We observed high expression of both CB2 and CXCR4 receptors in breast cancer patient tissues by immunohistochemical analysis. We further found that CB2-specific agonist JWH-015 inhibits the CXCL12-induced chemotaxis and wound healing of MCF7 overexpressing CXCR4 (MCF7/CXCR4), highly metastatic clone of MDA-MB-231 (SCP2) and NT 2.5 cells (derived from MMTV-neu) by using chemotactic and wound healing assays. Elucidation of the molecular mechanisms using various biochemical techniques and confocal microscopy revealed that JWH-015 treatment inhibited CXCL12-induced P44/P42 ERK activation, cytoskeletal focal adhesion and stress fiber formation, which play a critical role in breast cancer invasion and metastasis. In addition, we have shown that JWH-015 significantly inhibits orthotopic tumor growth in syngenic mice in vivo using NT 2.5 cells. Furthermore, our studies have revealed that JWH-015 significantly inhibits phosphorylation of CXCR4 and its downstream signaling in vivo in orthotopic and spontaneous breast cancer MMTV-PyMT mouse model systems. Conclusions/Significance This study provides novel insights into the crosstalk between CB2 and CXCR4/CXCL12-signaling pathways in the modulation of breast tumor growth and metastasis. Furthermore, these studies indicate that CB2 receptors could be used for developing innovative therapeutic strategies against breast cancer.
Collapse
Affiliation(s)
- Mohd W. Nasser
- Department of Pathology and Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, United States of America
| | - Zahida Qamri
- Department of Pathology and Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, United States of America
| | - Yadwinder S. Deol
- Department of Pathology and Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, United States of America
| | - Diane Smith
- Department of Pathology and Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, United States of America
| | - Konstantin Shilo
- Department of Pathology and Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, United States of America
| | - Xianghong Zou
- Department of Pathology and Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, United States of America
| | - Ramesh K. Ganju
- Department of Pathology and Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, United States of America
- * E-mail:
| |
Collapse
|
47
|
Wu SM, Huang YH, Yeh CT, Tsai MM, Liao CH, Cheng WL, Chen WJ, Lin KH. Cathepsin H regulated by the thyroid hormone receptors associate with tumor invasion in human hepatoma cells. Oncogene 2011; 30:2057-69. [DOI: 10.1038/onc.2010.585] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
48
|
Lung tissue regeneration after induced injury in Runx3 KO mice. Cell Tissue Res 2010; 341:465-70. [PMID: 20623301 DOI: 10.1007/s00441-010-1011-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2010] [Accepted: 06/16/2010] [Indexed: 01/08/2023]
Abstract
Runx3 is essential for normal murine lung development, and Runx3 knockout (KO) mice, which die soon after birth, exhibit alveolar hyperplasia. Wound healing, tissue repair, and regeneration mechanisms are necessary in humans for proper early lung development. Previous studies have reported that various signaling molecules, such as pErk, Tgf-beta1, CCSP, pJnk, Smad3, and HSP70 are closely related to wound healing. In order to confirm the relationship between lung defects caused by the loss of function of Runx3 and wound healing, we have localized various wound-healing markers after laser irradiation in wild-type and in Runx3 KO mouse lungs at post-natal day 1. Our results indicate that pERK, Tgf-beta1, CCSP, pJnk, and HSP70 are dramatically down-regulated by loss of Runx3 during lung wound healing. However, Smad3 is up-regulated in the Runx3 KO laser-irradiated lung region. Therefore, the lung wound-healing mechanism is inhibited in the Runx3 KO mouse, which shows abnormal lung architecture, by reduced pErk, Tgf-beta1, CCSP, pJnk, and HSP70 and by induced Smad3.
Collapse
|
49
|
Zhang F, Yang H, Pan Z, Wang Z, Wolosin JM, Gjorstrup P, Reinach PS. Dependence of resolvin-induced increases in corneal epithelial cell migration on EGF receptor transactivation. Invest Ophthalmol Vis Sci 2010; 51:5601-9. [PMID: 20538990 DOI: 10.1167/iovs.09-4468] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
PURPOSE To determine whether resolvin E1 (RvE1), an endogenous oxygenation product of eicosapentaenoic acid (EPA), induces increases in migration in human corneal epithelial cells (HCECs) and to identify signal pathways mediating this response. METHODS Migration was measured with the scratch wound assay. Western blot analysis identified changes in the phosphorylation status of prospective intracellular signal transduction mediators. Immunocytochemistry probed for intracellular paxillin localization and actin reorganization. RESULTS RvE1 enhanced HCEC migratory rates to levels comparable to those induced by epidermal growth factor (EGF). These increases were accompanied by increases in the phosphorylation status of epidermal growth factor receptor (EGFR), Akt, p38 MAPK, GSK-3α/β, and paxillin, which essentially persisted for up to 60 minutes. The EGFR inhibitor AG1478 blocked the subsequent effects of RvE1 to induce increases in phosphorylation status and cell migration. The PI3-K inhibitor LY294002 or wortmannin or the p38 inhibitor BIRB796 blocked resolvin-induced increases in cell migration. Either the matrix metalloproteinase (MMP) inhibitor GM6001 or the specific heparin-bound EGF-like growth factor inhibitor CRM197 suppressed RvE1-induced stimulation of EGFR/PI3-K/Akt phosphorylation and cell migration. CONCLUSIONS RvE1 enhances HCEC migration through MMP and sheddase-mediated EGFR transactivation. This response is dependent on PI3-K and p38-linked signaling eliciting paxillin (Tyr118) phosphorylation.
Collapse
Affiliation(s)
- Fan Zhang
- Department of Biological Sciences, State University of New York, College of Optometry, New York, New York 10036, USA.
| | | | | | | | | | | | | |
Collapse
|
50
|
Wang J, Lin A, Lu L. Effect of EGF-induced HDAC6 activation on corneal epithelial wound healing. Invest Ophthalmol Vis Sci 2010; 51:2943-8. [PMID: 20089874 DOI: 10.1167/iovs.09-4639] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
PURPOSE Epidermal growth factor (EGF) stimulates migration in corneal epithelial wound healing. The purpose of this study was to investigate the effect of EGF-induced alpha-tubulin deacetylation through activating HDAC6 on migration in corneal epithelial wound healing. METHODS Human corneal epithelial (HCE) cells were cultured in DMEM/F12 medium containing 10% FBS in a 37 degrees C incubator supplied with 5% CO(2). Western blot analysis was used to determine protein expression. Activity of HDAC6 was suppressed by trichostatin A (TSA) and by siRNA specific to HDAC6. Corneal epithelial cell migration was measured by using scratch-induced directional migration assay in cultured cells and by corneal epithelial debridement using a mouse whole-eye organ culture model. RESULTS The authors found EGF stimulated corneal epithelial cell migration in wound healing by enhancing HDAC6 activity, resulting in the deacetylation of alpha-tubulin. EGF stimulated HDAC6 enzymatic activity and protein translocation toward the leading edge of the cell. Inhibition of HDAC6 activity by TSA significantly suppressed EGF-induced cell migration and delayed EGF-induced wound healing in epithelially debrided mouse corneas. In the meantime, knockdown of HDAC6 mRNA with specific siRNA effectively abolished EGF-induced deacetylation of alpha-tubulin, resulting in the inhibition of cell migration. CONCLUSIONS These results reveal an important mechanism that involves EGF-induced HDAC6 activation and alpha-tubulin deacetylation, subsequently affecting corneal epithelial migration in the wound-healing process.
Collapse
Affiliation(s)
- Jie Wang
- Division of Molecular Medicine, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Torrance, California 90502, USA
| | | | | |
Collapse
|