1
|
Kilian R, Bonacci E, Donner R, Lammer J, Rizzo C, Crincoli E, De Ruvo V, Schmidinger G, Pedrotti E, Marchini G. Spotlight on Amniotic Membrane Extract Eye Drops: A Review of the Literature. Eye Contact Lens 2024:00140068-990000000-00242. [PMID: 39499048 DOI: 10.1097/icl.0000000000001136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/27/2024] [Indexed: 11/07/2024]
Abstract
OBJECTIVE To review the literature focusing on the effectiveness of amniotic membrane extract eye drops (AMEDs) in the treatment of ocular surface diseases. METHODS PubMed/MEDLINE, Scopus, and CENTRAL databases were searched until March 4, 2024. Overall, we identified 1,121 studies, 26 of which were selected for a full-text review. Twelve studies met the inclusion criteria and were analyzed for clinical improvements, time to resolution of corneal staining, adverse events, and preparation methods. Strength of clinical data was graded according to the Oxford Center for Evidence-Based Medicine. RESULTS Overall, AMED compounds were used in 296 eyes of 205 patients. Fifty-nine percent of eyes were treated for dry eye disease, 23% for an epithelial defect, and the rest (18%) for other corneal wound healing disorders. Three main types of eye drops preparation were described, that is, lyophilized, homogenized, and fresh AMED. Although the methods of outcome reporting were heterogeneous, all included studies showed various grades of improvement in both signs and symptoms. The overall incidence of ocular side effects was 2.3%. CONCLUSIONS Despite the suboptimal quality of evidence, overall, the available literature suggests that AMED is a valuable tool in the treatment of ocular surface disorders.
Collapse
Affiliation(s)
- Raphael Kilian
- Department of Translational Medicine (R.K., V.D.R.), University of Ferrara, Ferrara, Italy; Department of Ophthalmology (R.K., V.D.R.), Ospedali Privati Forlì "Villa Igea", Forlì, Italy; Department of Neurosciences, Biomedicine and Movement Sciences (E.B., C.R., E.P., G.M.), Ophthalmic Unit, University of Verona, Verona, Italy; Department of Ophthalmology and Optometry (R.D., J.L., G.S.), Medical University of Vienna, Vienna, Austria; and Ophthalmology Unit (E.C.), "Fondazione Policlinico Universitario a. Gemelli IRCCS", Rome, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
2
|
Boroumand S, Rahmani M, Sigaroodi F, Ganjoury C, Parandakh A, Bonakdar A, Khani MM, Soleimani M. The landscape of clinical trials in corneal regeneration: A systematic review of tissue engineering approaches in corneal disease. J Biomed Mater Res B Appl Biomater 2024; 112:e35449. [PMID: 39032135 DOI: 10.1002/jbm.b.35449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 04/27/2024] [Accepted: 06/19/2024] [Indexed: 07/22/2024]
Abstract
The limited availability of a healthy donor cornea and the incidence of allograft failure led researchers to seek other corneal substitutes via tissue engineering. Exploring the trend of clinical trials of the cornea with the vision of tissue engineering provides an opportunity to reveal future potential corneal substitutes. The results of this clinical trial are beneficial for future study designs to overcome the limitations of current therapeutic approaches. In this study, registered clinical trials of bio-based approaches were reviewed for corneal regeneration on March 22, 2024. Among the 3955 registered trials for the cornea, 392 trials were included in this study, which categorized in three main bio-based scaffolds, stem cells, and bioactive macromolecules. In addition to the acellular cornea and human amniotic membrane, several bio-based materials have been introduced as corneal substrates such as collagen, fibrin, and agarose. However, some synthetic materials have been introduced in recent studies to improve the desired properties of bio-based scaffolds for corneal substitutes. Nevertheless, new insights into corneal regenerative medicine have recently emerged from cell sheets with autologous and allogeneic cell sources. In addition, the future perspective of corneal regeneration is described through a literature review of recent experimental models.
Collapse
Affiliation(s)
- Safieh Boroumand
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahya Rahmani
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Faraz Sigaroodi
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Camellia Ganjoury
- Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Azim Parandakh
- Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Alireza Bonakdar
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad-Mehdi Khani
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Masoud Soleimani
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Yang Y, Zhong J, Cui D, Jensen LD. Up-to-date molecular medicine strategies for management of ocular surface neovascularization. Adv Drug Deliv Rev 2023; 201:115084. [PMID: 37689278 DOI: 10.1016/j.addr.2023.115084] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/30/2023] [Accepted: 09/04/2023] [Indexed: 09/11/2023]
Abstract
Ocular surface neovascularization and its resulting pathological changes significantly alter corneal refraction and obstruct the light path to the retina, and hence is a major cause of vision loss. Various factors such as infection, irritation, trauma, dry eye, and ocular surface surgery trigger neovascularization via angiogenesis and lymphangiogenesis dependent on VEGF-related and alternative mechanisms. Recent advances in antiangiogenic drugs, nanotechnology, gene therapy, surgical equipment and techniques, animal models, and drug delivery strategies have provided a range of novel therapeutic options for the treatment of ocular surface neovascularization. In this review article, we comprehensively discuss the etiology and mechanisms of corneal neovascularization and other types of ocular surface neovascularization, as well as emerging animal models and drug delivery strategies that facilitate its management.
Collapse
Affiliation(s)
- Yunlong Yang
- Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China.
| | - Junmu Zhong
- Department of Ophthalmology, Longyan First Hospital Affiliated to Fujian Medical University, Longyan 364000, Fujian Province, China
| | - Dongmei Cui
- Shenzhen Eye Hospital, Jinan University, Shenzhen Eye Institute, Shenzhen 518040, Guangdong Province, China
| | - Lasse D Jensen
- Department of Health, Medicine and Caring Sciences, Division of Diagnostics and Specialist Medicine, Unit of Cardiovascular Medicine, Linköping University, Linköping, Sweden.
| |
Collapse
|
4
|
Huang SJ, Huang CY, Huang YH, Cheng JH, Yu YC, Lai JC, Hung YP, Chang CC, Shiu LY. A novel therapeutic approach for endometriosis using adipose-derived stem cell-derived conditioned medium- A new hope for endometriotic patients in improving fertility. Front Endocrinol (Lausanne) 2023; 14:1158527. [PMID: 37293500 PMCID: PMC10244723 DOI: 10.3389/fendo.2023.1158527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 05/10/2023] [Indexed: 06/10/2023] Open
Abstract
Introduction Endometriosis is defined as the growth of endometrial glands and stromal cells in a heterotopic location with immune dysregulation. It usually leads to chronic pelvic pain and subfertility. Although various treatments are available, the recurrence rate remains high. Adipose tissue is an abundant source of multipotent mesenchymal adipose-derived stem cells (ADSCs). ADSCs display effects on not only tissue regeneration, but also immune regulation. Thus, the current study aims to test the effects of ADSCs on the growth of endometriosis. Methods ADSCs isolated from lipoaspiration-generated adipose tissue and their conditioned medium (ADSC-CM) were subjected to quality validation, including karyotyping as well as growth promotion and sterility tests for microbial contamination under Good Tissue Practice and Good Manufacturing Practice regulations. An autologous endometriosis mouse model was established by suturing endometrial tissue to peritoneal wall followed by treating with DMEM/F12 medium, ADSC-CM, ADSCs or ADSC-CM+ADSCs for 28 days. The area of endometriotic cysts and the degree of pelvic adhesion were measured. ICAM-1, VEGF and caspase 3 expression was assessed by quantitative reverse transcription polymerase chain reaction (qRT-PCR) and immunohistochemistry. Moreover, the mice were allowed to mate and deliver. The pregnancy outcomes were recorded. The ADSC-CM was subjected to proteomics analysis with further data mining with Ingenuity Pathway Analysis (IPA). Results Both ADSC-CM and ADSCs passed quality validation. ADSC-CM reduced the area of endometriotic cysts. The inhibition by ADSC-CM was obliterated by adding ADSCs. The presence of ADSCs with or without ADSC-CM increased the peritoneal adhesion. ADSC-CM inhibited ICAM-1 and VEGF mRNA and protein expression, whereas the addition of ADSCs not only did not inhibit by itself, but also blocked the inhibition by ADSC-CM. The resorption rate was reduced by ADSC-CM. The number of live birth/dam and the survival rate of pup at 1 week-old were both increased by ADSC-CM in mice with endometriosis. IPA demonstrated that PTX3 was potentially critical for the inhibition of endometriosis by ADSC-CM due to its anti-inflammatory and antiangiogenic properties as well as its importance in implantation. Conclusion ADSC-CM inhibited endometriosis development and improved pregnancy outcomes in mice. Potential translation to clinical treatment for human endometriosis is expected.
Collapse
Affiliation(s)
- S. Joseph Huang
- Department of Obstetrics and Gynecology, E-Da Hospital, I-Shou University, Kaohsiung, Taiwan
- School of Medicine, College of Medicine, I-Shou University, Kaohsiung, Taiwan
- Department of Obstetrics and Gynecology, University of South Florida, Tampa, FL, United States
| | - Chun-Yen Huang
- Department of Obstetrics and Gynecology, E-Da Hospital, I-Shou University, Kaohsiung, Taiwan
| | - Yu-Hao Huang
- Department of Plastic Surgery, E-Da Dachang Hospital, I-Shou University, Kaohsiung, Taiwan
| | - Jai-Hong Cheng
- Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital and College of Medicine, Chang Gung University, Kaohsiung, Taiwan
- Department of Medical Research, Kaohsiung Chang Gung Memorial Hospital and College of Medicine, Chang Gung University, Kaohsiung, Taiwan
| | - Ya-Chun Yu
- Department of Obstetrics and Gynecology, E-Da Hospital, I-Shou University, Kaohsiung, Taiwan
| | - Jui-Chi Lai
- Cell Therapy Center, E-Da Hospital, I-Shou University, Kaohsiung, Taiwan
| | | | - Chi-Chang Chang
- Department of Obstetrics and Gynecology, E-Da Dachang Hospital, I-Shou University, Kaohsiung, Taiwan
| | - Li-Yen Shiu
- Cell Therapy Center, E-Da Hospital, I-Shou University, Kaohsiung, Taiwan
| |
Collapse
|
5
|
Girolamo F, Lim YP, Virgintino D, Stonestreet BS, Chen XF. Inter-Alpha Inhibitor Proteins Modify the Microvasculature after Exposure to Hypoxia-Ischemia and Hypoxia in Neonatal Rats. Int J Mol Sci 2023; 24:6743. [PMID: 37047713 PMCID: PMC10094872 DOI: 10.3390/ijms24076743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/21/2023] [Accepted: 03/29/2023] [Indexed: 04/08/2023] Open
Abstract
Microvasculature develops during early brain development. Hypoxia-ischemia (HI) and hypoxia (H) predispose to brain injury in neonates. Inter-alpha inhibitor proteins (IAIPs) attenuate injury to the neonatal brain after exposure to HI. However, the effects of IAIPs on the brain microvasculature after exposure to HI have not been examined in neonates. Postnatal day-7 rats were exposed to sham treatment or right carotid artery ligation and 8% oxygen for 90 min. HI comprises hypoxia (H) and ischemia to the right hemisphere (HI-right) and hypoxia to the whole body, including the left hemisphere (H-left). Human IAIPs (hIAIPs, 30 mg/kg) or placebo were injected immediately, 24 and 48 h after HI/H. The brains were analyzed 72 h after HI/H to determine the effects of hIAIPs on the microvasculature by laminin immunohistochemistry and calculation of (1) the percentage area stained by laminin, (2) cumulative microvessel length, and (3) density of tunneling nanotubes (TNTs), which are sensitive indicators of the earliest phases of neo-vascularization/collateralization. hIAIPs mainly affected the percent of the laminin-stained area after HI/H, cumulative vessel length after H but not HI, and TNT density in females but not males. hIAIPs modify the effects of HI/H on the microvasculature after brain injury in neonatal rats and exhibit sex-related differential effects. Our findings suggest that treatment with hIAIPs after exposure to H and HI in neonatal rats affects the laminin content of the vessel basal lamina and angiogenic responses in a sex-related fashion.
Collapse
Affiliation(s)
- Francesco Girolamo
- Department of Translational Biomedicines and Neuroscience (DiBraiN), University of Bari School of Medicine, 70124 Bari, Italy
| | - Yow-Pin Lim
- ProThera Biologics, Inc., Providence, RI 02905, USA
- Department of Pathology and Laboratory Medicine, Alpert Medical School of Brown University, Providence, RI 02905, USA
| | - Daniela Virgintino
- Department of Translational Biomedicines and Neuroscience (DiBraiN), University of Bari School of Medicine, 70124 Bari, Italy
| | - Barbara S. Stonestreet
- Women & Infants Hospital of Rhode Island, Alpert Medical School of Brown University, Providence, RI 02905, USA
| | - Xiaodi F. Chen
- Women & Infants Hospital of Rhode Island, Alpert Medical School of Brown University, Providence, RI 02905, USA
| |
Collapse
|
6
|
Sharma R, Nappi V, Empeslidis T. The developments in amniotic membrane transplantation in glaucoma and vitreoretinal procedures. Int Ophthalmol 2023; 43:1771-1783. [PMID: 36715957 PMCID: PMC10149474 DOI: 10.1007/s10792-022-02570-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 11/12/2022] [Indexed: 01/31/2023]
Abstract
The main reasons why Amniotic Membrane (AM) is transplanted in Ophthalmology are: to provide a substrate for cellular growth and to provide tectonic support or as a biological bandage and barrier that protects the wound to facilitate an environment for wound healing. The application of AM is well-documented in corneal disorders of various aetiologies [1], however, research within the field has highlighted how it can be used in conjunctival disorders and most recently, in glaucoma and vitreoretinal procedures. This review explores the preservation modalities of AM and summarises the current literature regarding AM transplantation in Glaucoma and Vitreoretinal conditions. AM transplantation in conjunction with trabeculectomy was reported to be used in two different surgical techniques. They differ in relation to the position of the implant: below the scleral flap or over the entire exposed sclera. The results of these studies suggest that AM transplant is a safe procedure that helps in the improvement of the intraocular pressure when associated with trabeculectomies. Moreover, it enhances trabeculectomies success rates when used along with mitomycin C [2]. The use of AM is also described for managing leaking blebs. It is mentioned to be a suitable alternative to conjunctival advancement. Regarding AM transplantation in glaucoma shunt or valve surgeries, the current literature is relatively limited. However, AM has been described as a good tectonic support for shunt procedures [3]. Successful results are described in the literature for surgical treatments using AM plug for vitreoretinal procedures. In particular macular hole closure and rhegmatogenous retinal detachment. In conclusion, AM transplant is a very promising and versatile adjutant therapy. However, further studies are also required for a better understanding and refinement of surgical techniques.
Collapse
Affiliation(s)
- Rohit Sharma
- Eye Department, University Hospitals Derby & Burton NHS trust, Burton, UK. .,School of Medicine, University of Nottingham, Nottingham, UK.
| | - Vivian Nappi
- Ophthalmology Department, Nottingham University Hospital NHS Trust, Nottingham, UK
| | | |
Collapse
|
7
|
Castellanos R. Injectable amniotic membrane/umbilical cord particulate for facet joint syndrome: A retrospective, single-center study. J Back Musculoskelet Rehabil 2022; 35:559-564. [PMID: 34511481 DOI: 10.3233/bmr-200330] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND Facet joint syndrome (FJS) pain is a significant contributor to back pain and has a high rate of opioid prescription. Unfortunately, there are a limited number of therapeutic options for these patients. OBJECTIVE To evaluate the safety and effectiveness of amniotic membrane/umbilical cord particulate (AM/UC) in managing FJS pain. METHODS A single-center, investigator-initiated, retrospective study was performed on consecutive patients with FJS pain who received intra- or peri-articular injection of AM/UC between July 1, 2018 and July 26, 2019. Primary outcome was change in Patient Global Impression of Change (PGIC) at 6 weeks, 3 months, 6 months, and 12 months to assess the self-reported percent improvement relative to baseline. Safety was assessed by AM/UC- and procedure-related complications. Paired t-tests were used to determine whether there is a statistically significant improvement of pain post-injection compared to baseline. RESULTS There were a total of 54 patients (69.7 ± 13.4 years; 31 female) presenting baseline pain score of 9.2 ± 1.0 despite prior treatments of activity modification (66.7%), NSAIDs (61.1%), opioids (37.0%), and physical therapy (35.2%). Mean GPIC improvement was 65.3%, 67.5%, 56.9%, and 56.7% among responders30, respectively. There were no complications. CONCLUSION This study supports the safety and effectiveness of AM/UC particulate injection in managing FJS pain.
Collapse
|
8
|
Hsiao FC, Meir YJJ, Yeh LK, Tan HY, Hsiao CH, Ma DHK, Wu WC, Chen HC. Amniotic membrane transplantation in a patient with impending perforated corneal ulcer caused by Streptococcus mitis: A case report and review of literature. World J Clin Cases 2022; 10:3923-3929. [PMID: 35647159 PMCID: PMC9100738 DOI: 10.12998/wjcc.v10.i12.3923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 02/03/2022] [Accepted: 03/06/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Streptococcus mitis (S. mitis) is an opportunistic pathogen that can lead to severe ocular infections. In previous reports, penetrating keratoplasty (PK) was usually adopted for the treatment of persistent corneal ulcers. This report describes an unusual case of nonhealing descemetocele caused by S. mitis treated by antibiotics plus amniotic membrane transplantation (AMT). CASE SUMMARY A 63-year-old woman presented with a right persistent corneal ulcer that she had suffered from for the past 9 mo. The culture of a corneal scraping yielded S. mitis. The right eye descemetocele decreased in diameter from 3 to 0.8 mm after the continuous administration of topical vancomycin and ceftriaxone for 2 wk. Due to the slow healing, AMT was performed. Her corneal erosion healed and gradually became clear. Her visual acuity recovered from initially counting fingers to 100/200 at the last follow-up, 67 mo after AMT. CONCLUSION Antibiotics plus AMT may be an effective alternative treatment other than PK to promote epithelialization and to reduce inflammation in the corneas complicated by S. mitis keratitis.
Collapse
Affiliation(s)
- Fang-Chi Hsiao
- Department of Ophthalmology, Chang Gung Memorial Hospital, Taoyuan 333423, Taiwan
| | - Yaa-Jyuhn James Meir
- Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33305, Taiwan
| | - Lung-Kun Yeh
- Department of Ophthalmology, Chang Gung Memorial Hospital, Taoyuan 333423, Taiwan
- Department of Medicine, College of Medicine, Chang Gung University, Taoyuan 33305, Taiwan
| | - Hsin-Yuan Tan
- Department of Ophthalmology, Chang Gung Memorial Hospital, Taoyuan 333423, Taiwan
- Department of Medicine, College of Medicine, Chang Gung University, Taoyuan 33305, Taiwan
| | - Ching-Hsi Hsiao
- Department of Ophthalmology, Chang Gung Memorial Hospital, Taoyuan 333423, Taiwan
- Department of Medicine, College of Medicine, Chang Gung University, Taoyuan 33305, Taiwan
| | - David Hui-Kang Ma
- Department of Ophthalmology, Chang Gung Memorial Hospital, Taoyuan 333423, Taiwan
- Department of Medicine, College of Medicine, Chang Gung University, Taoyuan 33305, Taiwan
| | - Wei-Chi Wu
- Department of Ophthalmology, Chang Gung Memorial Hospital, Taoyuan 333423, Taiwan
- Department of Medicine, College of Medicine, Chang Gung University, Taoyuan 33305, Taiwan
| | - Hung-Chi Chen
- Department of Ophthalmology, Chang Gung Memorial Hospital, Taoyuan 333423, Taiwan
- Department of Medicine, College of Medicine, Chang Gung University, Taoyuan 33305, Taiwan
- Center for Tissue Engineering, Chang Gung Memorial Hospital, Taoyuan 333423, Taiwan
| |
Collapse
|
9
|
Roumeau S, Dutheil F, Sapin V, Baker JS, Watson SL, Pereira B, Chiambaretta F, Navel V. Efficacy of treatments for neurotrophic keratopathy: a systematic review and meta-analysis. Graefes Arch Clin Exp Ophthalmol 2022; 260:2623-2637. [DOI: 10.1007/s00417-022-05602-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 01/13/2022] [Accepted: 02/21/2022] [Indexed: 11/24/2022] Open
|
10
|
Periosteum and development of the tissue-engineered periosteum for guided bone regeneration. J Orthop Translat 2022; 33:41-54. [PMID: 35228996 PMCID: PMC8858911 DOI: 10.1016/j.jot.2022.01.002] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 01/02/2022] [Accepted: 01/17/2022] [Indexed: 12/11/2022] Open
Abstract
Background Periosteum plays a significant role in bone formation and regeneration by storing progenitor cells, and also acts as a source of local growth factors and a scaffold for recruiting cells and other growth factors. Recently, tissue-engineered periosteum has been studied extensively and shown to be important for osteogenesis and chondrogenesis. Using biomimetic methods for artificial periosteum synthesis, membranous tissues with similar function and structure to native periosteum are produced that significantly improve the efficacy of bone grafting and scaffold engineering, and can serve as direct replacements for native periosteum. Many problems involving bone defects can be solved by preparation of idealized periosteum from materials with different properties using various techniques. Methods This review summarizes the significance of periosteum for osteogenesis and chondrogenesis from the aspects of periosteum tissue structure, osteogenesis performance, clinical application, and development of periosteum tissue engineering. The advantages and disadvantages of different tissue engineering methods are also summarized. Results The fast-developing field of periosteum tissue engineering is aimed toward synthesis of bionic periosteum that can ensure or accelerate the repair of bone defects. Artificial periosteum materials can be similar to natural periosteum in both structure and function, and have good therapeutic potential. Induction of periosteum tissue regeneration and bone regeneration by biomimetic periosteum is the ideal process for bone repair. Conclusions Periosteum is essential for bone formation and regeneration, and it is indispensable in bone repair. Achieving personalized structure and composition in the construction of tissue engineering periosteum is in accordance with the design concept of both universality and emphasis on individual differences and ensures the combination of commonness and individuality, which are expected to meet the clinical needs of bone repair more effectively. The translational potential of this article To better understand the role of periosteum in bone repair, clarify the present research situation of periosteum and tissue engineering periosteum, and determine the development and optimization direction of tissue engineering periosteum in the future. It is hoped that periosteum tissue engineering will play a greater role in meeting the clinical needs of bone repair in the future, and makes it possible to achieve optimization of bone tissue therapy.
Collapse
|
11
|
Fernández Jiménez-Ortiz H, Sampedro Yañez R, Villarrubia Torcal B, Maroto Rodriguez B, Nava Pérez S, Monja N. Treatment and prevention of ocular motility restrictions with amniotic membrane transplantation. Strabismus 2021; 29:228-242. [PMID: 34686115 DOI: 10.1080/09273972.2021.1987925] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
We intend to investigate the indications, complications, and final results of amniotic membrane (AM) transplantation in ocular motility restrictions. Surgeons have tried to prevent restrictive adhesions between the extraocular muscles and surrounding tissues because they cause unpredictable results. AM transplantation wrapping extraocular musculature has been proposed as a technique with good results for this purpose. A search was carried out in Medline, Embase, Cochrane Library and Clinicaltrial, Lilac and Ibecs databases, using the indexed terms" amnion", "strabismus," "strabismus-subheading-surgery" and "ocular motility disorders." The only exclusion criteria were studies conducted in non-humans or studies with insufficient data on eye motility. No study was discarded for analysis because of language, age or methodology. This review includes 165 patients (223 eyes), with a mean follow-up of 11.49 months. The mean age was 21 years old, 47% were males and 57% were children. 14 studies conducted in humans were eligible: 4 single case, 8 case series, 1 cohort study and 1 randomized clinical trial. In the vast majority of these papers, use of AM transplantation to treat (12 out of 14 papers) or either to prevent (2 out of 14 papers) motility restrictions or restrictive strabismus secondary to muscular adhesions. All the studies except one presents very favorable results improving postsurgical eye motility. The cryopreservation method was more widely used, presenting a good safety profile with few adverse effects in the short and medium term. Significant improvement was reported in most patients after the use of amniotic membrane transplantation to treat or prevent ocular motility limitations. Very few complications or adverse effects were documented.
Collapse
|
12
|
Nam JW, Kim J, Yoon HJ, Yoon KC. Effects of Amniotic Membrane Extract Eye Drops on Persistent Epithelial Defects of the Cornea. JOURNAL OF THE KOREAN OPHTHALMOLOGICAL SOCIETY 2021. [DOI: 10.3341/jkos.2021.62.10.1340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Purpose: To evaluate the clinical efficacy of amniotic membrane extract eye drops (AMEEDs) in patients with persistent epithelial defects (PEDs) of the cornea.Methods: Sixteen patients with PEDs refractory to the conventional treatment were further treated with AMEEDs six times a day. Visual acuity, visual analog scale (VAS), esthesiometer score, and areas of the epithelial defects before and after 1 and 2 months of treatment were evaluated. After 2 months, AMEEDs were considered effective if all epithelial defects were healed, partially effective if the epithelial defects decreased in size compared with the baseline, and ineffective if the epithelial defects increased in size and required additional treatment.Results: After 2 months of treatment with AMEEDs, there was a reduction in the area of epithelial defects (5.2 ± 3.1 mm2 vs. 0.1 ± 0.1 mm2, respectively, p = 0.01), as well as a significant improvement in best-corrected visual acuity (0.8 ± 0.5 logarithm of minimal angle of resolution [LogMAR] vs. 0.6 ± 0.3 LogMAR, respectively, p = 0.03), and VAS scores (4.3 ± 1.0 vs. 2.8 ± 0.7, respectively, p = 0.04) compared with the baseline values. Treatment with AMEEDs was effective in 13 (81.3%) patients and partially effective in three (18.8%) patients.Conclusions: AMEEDs could stimulate epithelial wound healing and improve ocular symptoms in patients with refractory PED. Therefore, AMEEDs could be considered an effective treatment option for refractory PEDs.
Collapse
|
13
|
Zhang G, He Y, Liu Y, Du Y, Yang C, Gao F. Reduced hyaluronan cross-linking induces breast cancer malignancy in a CAF-dependent manner. Cell Death Dis 2021; 12:586. [PMID: 34099638 PMCID: PMC8184848 DOI: 10.1038/s41419-021-03875-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 05/23/2021] [Accepted: 05/25/2021] [Indexed: 12/29/2022]
Abstract
Hyaluronan (HA) cross-linking is a conformational state of HA, a covalent complex between HA and heavy chains (HCs) from inter-α-trypsin inhibitor (I-α-I) mediated by tumor necrosis factor-induced protein 6 (TSG6). Cross-linked HA has been identified as a protective factor in physiological and inflammatory conditions. However, the state of HA cross-linking in tumor microenvironment has not been fully elucidated. As a major constituent of the extracellular matrix (ECM), HA is mainly synthesized by cancer-associated fibroblasts (CAFs). Our study aimed to clarify the role of HA cross-linking in breast cancer malignancy. Compared to normal mammary gland tissues, cross-linked HA levels were significantly decreased in breast cancer and associated with tumor malignancy. When NFbs were activated into CAFs, the levels of cross-linked HA and TSG6 were both suppressed. Through upregulating TSG6, CAFs restored the high level of cross-linked HA and significantly inhibited breast cancer malignancy, whereas NFbs promoted the malignancy when the cross-linked HA level was reduced. Furthermore, the inhibitory role of HA cross-linking in tumor malignancy was directly verified using the synthesized HA-HC complex. Collectively, our study found that the deficiency of cross-linked HA induced breast cancer malignancy in a CAF-dependent manner, suggesting that recovering HA cross-linking may be a potential therapeutic strategy.
Collapse
Affiliation(s)
- Guoliang Zhang
- Department of Molecular Biology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, 200233, Shanghai, China.,Department of Clinical Laboratory, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, 200233, Shanghai, China
| | - Yiqing He
- Department of Molecular Biology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, 200233, Shanghai, China
| | - Yiwen Liu
- Department of Molecular Biology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, 200233, Shanghai, China
| | - Yan Du
- Department of Molecular Biology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, 200233, Shanghai, China
| | - Cuixia Yang
- Department of Molecular Biology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, 200233, Shanghai, China. .,Department of Clinical Laboratory, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, 200233, Shanghai, China.
| | - Feng Gao
- Department of Molecular Biology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, 200233, Shanghai, China. .,Department of Clinical Laboratory, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, 200233, Shanghai, China.
| |
Collapse
|
14
|
Jhanji V, Billig I, Yam GHF. Cell-Free Biological Approach for Corneal Stromal Wound Healing. Front Pharmacol 2021; 12:671405. [PMID: 34122095 PMCID: PMC8193853 DOI: 10.3389/fphar.2021.671405] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 05/17/2021] [Indexed: 12/13/2022] Open
Abstract
Corneal opacification is the fourth most common cause of blindness globally behind cataracts, glaucoma, and age-related macular degeneration. The standard treatment of serious corneal scarring is corneal transplantation. Though it is effective for restoring vision, the treatment outcome is not optimal, due to limitations such as long-term graft survival, lifelong use of immunosuppressants, and a loss of corneal strength. Regulation of corneal stromal wound healing, along with inhibition or downregulation of corneal scarring is a promising approach to prevent corneal opacification. Pharmacological approaches have been suggested, however these are fraught with side effects. Tissue healing is an intricate process that involves cell death, proliferation, differentiation, and remodeling of the extracellular matrix. Current research on stromal wound healing is focused on corneal characteristics such as the immune response, angiogenesis, and cell signaling. Indeed, promising new technologies with the potential to modulate wound healing are under development. In this review, we provide an overview of cell-free strategies and some approaches under development that have the potential to control stromal fibrosis and scarring, especially in the context of early intervention.
Collapse
Affiliation(s)
- Vishal Jhanji
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Isabelle Billig
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Gary Hin-Fai Yam
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
15
|
Dadkhah Tehrani F, Firouzeh A, Shabani I, Shabani A. A Review on Modifications of Amniotic Membrane for Biomedical Applications. Front Bioeng Biotechnol 2021; 8:606982. [PMID: 33520961 PMCID: PMC7839407 DOI: 10.3389/fbioe.2020.606982] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 11/25/2020] [Indexed: 12/18/2022] Open
Abstract
The amniotic membrane (AM) is the innermost layer of the fetal placenta, which surrounds and protects the fetus. Its unique structure, in addition to its physical and biological properties, makes it a useful substance in many applications related to regenerative medicine. The use of this fantastic substance with a century-old history has produced remarkable results in vivo, in vitro, and even in clinical studies. While the intact or preserved AM is widely used for these purposes, the addition of further modifications to AM can be considered as a relatively new subject in its applications. These modifications are applied to improve AM properties, ease of handling, and durability. Here, we will discuss the cases in which AM has undergone additional modifications besides the required processes for sterilization and preservation. In this article, we have categorized these modifications and discussed their applications and results.
Collapse
Affiliation(s)
- Fatemeh Dadkhah Tehrani
- Cell Engineering and Bio-microsystems Laboratory, Biomedical Engineering Faculty, Amirkabir University of Technology, Tehran, Iran
| | - Arezoo Firouzeh
- Cell Engineering and Bio-microsystems Laboratory, Biomedical Engineering Faculty, Amirkabir University of Technology, Tehran, Iran
| | - Iman Shabani
- Cell Engineering and Bio-microsystems Laboratory, Biomedical Engineering Faculty, Amirkabir University of Technology, Tehran, Iran
| | - Azadeh Shabani
- Preventative Gynecology Research Center, Department of Gynecology and Obstetrics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
16
|
Yin HY, Cheng AMS, Tighe S, Kurochkin P, Nord J, Dhanireddy S, Swan R, Alpert S. Self-retained cryopreserved amniotic membrane for treating severe corneal ulcers: a comparative, retrospective control study. Sci Rep 2020; 10:17008. [PMID: 33046729 PMCID: PMC7550608 DOI: 10.1038/s41598-020-73672-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 08/07/2020] [Indexed: 02/07/2023] Open
Abstract
To compare the effectiveness of self- retained cryopreserved AM as an adjuvant therapy for infectious corneal ulcers. Retrospective, case–control study of 24 eyes of 24 consecutive patients with central and paracentral corneal infectious ulcers and initial visual acuity worse than 20/200. Among them, 11 eyes of 11 patients received additional placement of self-retained cryopreserved AM. Epithelialization and Best Corrected Snellen Visual Acuity (BCSVA) were compared between the two groups. At baseline, both groups had comparable age, gender, visual acuity (VA), size and location of corneal ulcer. Patients receiving additional placement of cryopreserved AM had significantly faster epithelialization within 3.56 ± 1.78 weeks vs 5.87 ± 2.20 weeks (p = 0.01) and achieved complete epithelialization in significantly more patients (72.7% vs 23.1% p = 0.04) despite overall larger baseline defect size (32.7 ± 19.5 mm2 vs 21.5 ± 10.7 mm2, p = 0.11). Consequently, the AM group had clinically significant BCSVA (> 3 lines) (81.8% vs 38.4%, p = 0.047) and total VA improvement (log MAR 0.7 ± 0.6 vs 1.6 ± 0.9, p = 0.016) compared to the control group at the time of complete epithelialization. In-office sutureless AM may be an effective adjuvant therapy in treating sight-threatening infectious corneal ulcers by promoting faster corneal epithelialization and overall better recovery of the VA.
Collapse
Affiliation(s)
- Han Y Yin
- Department of Ophthalmology and Visual Sciences, SUNY Upstate Medical University, Suit L 550 Harrison St, Syracuse, NY, 13202, USA. .,Wake Forest Baptist Eye Center, Winston-Salem, NC, USA.
| | - Anny M S Cheng
- Florida International University College of Medicine, 11200 SW, 8th St, Miami, FL, 33199, USA.,Department of Surgery, Miller School of Medicine, University of Medicine, Miami, FL, USA
| | - Sean Tighe
- Florida International University College of Medicine, 11200 SW, 8th St, Miami, FL, 33199, USA.,Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL, USA.,TissueTech, 7300 corporate Center Drive, Suite 700, Miami, FL, 33126, USA
| | - Philip Kurochkin
- Department of Ophthalmology and Visual Sciences, SUNY Upstate Medical University, Suit L 550 Harrison St, Syracuse, NY, 13202, USA
| | - Jamie Nord
- Department of Ophthalmology and Visual Sciences, SUNY Upstate Medical University, Suit L 550 Harrison St, Syracuse, NY, 13202, USA
| | - Swetha Dhanireddy
- Department of Ophthalmology and Visual Sciences, SUNY Upstate Medical University, Suit L 550 Harrison St, Syracuse, NY, 13202, USA
| | - Robert Swan
- Department of Ophthalmology and Visual Sciences, SUNY Upstate Medical University, Suit L 550 Harrison St, Syracuse, NY, 13202, USA
| | - Samuel Alpert
- Department of Ophthalmology and Visual Sciences, SUNY Upstate Medical University, Suit L 550 Harrison St, Syracuse, NY, 13202, USA.
| |
Collapse
|
17
|
Tseng SCG, Chen SY, Mead OG, Tighe S. Niche regulation of limbal epithelial stem cells: HC-HA/PTX3 as surrogate matrix niche. Exp Eye Res 2020; 199:108181. [PMID: 32795525 DOI: 10.1016/j.exer.2020.108181] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 06/15/2020] [Accepted: 07/31/2020] [Indexed: 12/13/2022]
Abstract
Homeostasis of the corneal epithelium is ultimately maintained by stem cells that reside in a specialized microenvironment within the corneal limbus termed palisades of Vogt. This limbal niche nourishes, protects, and regulates quiescence, self-renewal, and fate decision of limbal epithelial stem/progenitor cells (LEPCs) toward corneal epithelial differentiation. This review focuses on our current understanding of the mechanism by which limbal (stromal) niche cells (LNCs) regulate the aforementioned functions of LEPCs. Based on our discovery and characterization of a unique extracellular matrix termed HC-HA/PTX3 (Heavy chain (HC1)-hyaluronan (HA)/pentraxin 3 (PTX3) complex, "-" denotes covalent linkage; "/" denotes non-covalent binding) in the birth tissue, i.e., amniotic membrane and umbilical cord, we put forth a new paradigm that HC-HA/PTX3 serves as a surrogate matrix niche by maintaining the in vivo nuclear Pax6+ neural crest progenitor phenotype to support quiescence and self-renewal but prevent corneal fate decision of LEPCs. This new paradigm helps explain how limbal stem cell deficiency (LSCD) develops in aniridia due to Pax6-haplotype deficiency and further explains why transplantation of HC-HA/PTX3-containing amniotic membrane prevents LSCD in acute chemical burns and Stevens Johnson syndrome, augments the success of autologous LEPCs transplantation in patients suffering from partial or total LSCD, and assists ex vivo expansion (engineering) of a graft containing LEPCs. We thus envisage that this new paradigm based on regenerative matrix HC-HA/PTX3 as a surrogate niche can set a new standard for regenerative medicine in and beyond ophthalmology.
Collapse
Affiliation(s)
- Scheffer C G Tseng
- Research & Development Department, TissueTech, Inc., Miami, FL, 33126, USA; Ocular Surface Center and Ocular Surface Research & Education Foundation, Miami, FL, 33126, USA.
| | - Szu-Yu Chen
- Research & Development Department, TissueTech, Inc., Miami, FL, 33126, USA
| | - Olivia G Mead
- Research & Development Department, TissueTech, Inc., Miami, FL, 33126, USA
| | - Sean Tighe
- Research & Development Department, TissueTech, Inc., Miami, FL, 33126, USA; Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA; Department of Ophthalmology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA
| |
Collapse
|
18
|
Walkden A. Amniotic Membrane Transplantation in Ophthalmology: An Updated Perspective. Clin Ophthalmol 2020; 14:2057-2072. [PMID: 32801614 PMCID: PMC7383023 DOI: 10.2147/opth.s208008] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 06/22/2020] [Indexed: 01/23/2023] Open
Abstract
Aim The aim of this paper is to provide a succinct literature review of the different clinical applications for AMT usage in an ophthalmic setting, ranging from commonly used applications to less mainstream approaches. The hope is that this review enables the reader to have a better understanding of the biological properties of amnion as well as the indications and scenarios in which AMT can be used, whilst presenting relevant evidence from within the literature which may be of interest. We also provide an update on the methods of preservation of amniotic membrane and the application methodologies. Methods Literature search. A PubMed search was performed using the search terms “amniotic membrane transplant”, “amnion AND cornea”, amnion AND ophthalmology”, “amnion AND ocular surface” and “Amnion AND eye”. A full review of the literature using the PubMed database was conducted up until 01/05/20. The articles used were written in English, with all articles accessed in full. Both review articles and original articles were used for this review. All full publications related to ophthalmology were considered.
Collapse
Affiliation(s)
- Andrew Walkden
- Manchester Royal Eye Hospital, Manchester University Foundation Trust, Manchester, UK.,University of Manchester Faculty of Medical and Human Sciences, Manchester, Greater Manchester, UK
| |
Collapse
|
19
|
Lord MS, Melrose J, Day AJ, Whitelock JM. The Inter-α-Trypsin Inhibitor Family: Versatile Molecules in Biology and Pathology. J Histochem Cytochem 2020; 68:907-927. [PMID: 32639183 DOI: 10.1369/0022155420940067] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Inter-α-trypsin inhibitor (IαI) family members are ancient and unique molecules that have evolved over several hundred million years of vertebrate evolution. IαI is a complex containing the proteoglycan bikunin to which heavy chain proteins are covalently attached to the chondroitin sulfate chain. Besides its matrix protective activity through protease inhibitory action, IαI family members interact with extracellular matrix molecules and most notably hyaluronan, inhibit complement, and provide cell regulatory functions. Recent evidence for the diverse roles of the IαI family in both biology and pathology is reviewed and gives insight into their pivotal roles in tissue homeostasis. In addition, the clinical uses of these molecules are explored, such as in the treatment of inflammatory conditions including sepsis and Kawasaki disease, which has recently been associated with severe acute respiratory syndrome coronavirus 2 infection in children.
Collapse
Affiliation(s)
- Megan S Lord
- Graduate School of Biomedical Engineering, UNSW Sydney, Sydney, NSW, Australia
| | - James Melrose
- Graduate School of Biomedical Engineering, UNSW Sydney, Sydney, NSW, Australia.,Raymond Purves Bone and Joint Research Laboratories, Kolling Institute of Medical Research, Royal North Shore Hospital and University of Sydney, St. Leonards, NSW, Australia.,Sydney Medical School, Northern, Sydney University, Royal North Shore Hospital, St. Leonards, NSW, Australia
| | - Anthony J Day
- Wellcome Trust Centre for Cell-Matrix Research and Lydia Becker Institute of Immunology and Inflammation, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - John M Whitelock
- Graduate School of Biomedical Engineering, UNSW Sydney, Sydney, NSW, Australia.,Stem Cell Extracellular Matrix & Glycobiology, Wolfson Centre for Stem Cells, Tissue Engineering and Modelling, Faculty of Medicine, University of Nottingham, Nottingham, UK
| |
Collapse
|
20
|
Mead OG, Tighe S, Tseng SCG. Amniotic membrane transplantation for managing dry eye and neurotrophic keratitis. Taiwan J Ophthalmol 2020; 10:13-21. [PMID: 32309119 PMCID: PMC7158925 DOI: 10.4103/tjo.tjo_5_20] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 01/12/2020] [Indexed: 12/18/2022] Open
Abstract
Neurotrophic keratitis (NK), a degenerative disease caused by damage to the trigeminal nerve, abolishes both tearing and blinking reflexes, thus causing the most severe forms of dry eye disease (DED). Conversely, the increasing severity of DED also leads to progressive loss of corneal nerve density, potentially resulting in NK. Both diseases manifest the same spectrum of corneal pathologies including inflammation and corneal epithelial keratitis, which can progress into vision-threatening epithelial defect and stromal ulceration. This review summarizes the current literature regarding outcomes following sutured and sutureless cryopreserved amniotic membrane (AM) in treating DED as well as epithelial defects and corneal ulcers due to underlying NK. These studies collectively support the safety and effectiveness of cryopreserved AM in restoring corneal epithelial health, improving visual acuity in eyes with NK and DED, and alleviating symptomatic DED. Future randomized controlled trials are warranted to validate the above findings and determine whether such clinical efficacy lies in promoting corneal nerve regeneration.
Collapse
Affiliation(s)
| | - Sean Tighe
- R&D Department, TissueTech Inc., Miami, FL, USA.,Department of Ophthalmology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA.,Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Scheffer C G Tseng
- R&D Department, TissueTech Inc., Miami, FL, USA.,Ocular Surface Center, Miami, FL, USA
| |
Collapse
|
21
|
Tighe S, Mead OG, Lee A, Tseng SCG. Basic science review of birth tissue uses in ophthalmology. Taiwan J Ophthalmol 2020; 10:3-12. [PMID: 32309118 PMCID: PMC7158924 DOI: 10.4103/tjo.tjo_4_20] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 01/12/2020] [Indexed: 12/31/2022] Open
Abstract
The birth tissue is predominantly comprised of amniotic membrane (AM) and umbilical cord (UC), which share the same cell origin as the fetus. These versatile biological tissues have been used to treat a wide range of conjunctival and corneal conditions since 1940. The therapeutic benefits of the birth tissue stem from its anti-inflammatory and anti-scarring properties that orchestrate regenerative healing. Although the birth tissue also contains many cytokines, growth factors, and proteins, the heavy chain 1-hyaluronic acid/pentraxin 3 (HC-HA/PTX3) matrix has been identified to be a major active tissue component responsible for AM/UC's multifactorial therapeutic actions. HC-HA/PTX3 complex is abundantly present in fresh and cryopreserved AM/UC, but not in dehydrated tissue. In this review, we discuss the tissue anatomy, the molecular mechanism of action based on HC-HA/ PTX3 to explain their therapeutic potentials, and the various forms available in ophthalmology.
Collapse
Affiliation(s)
- Sean Tighe
- R&D Department, TissueTech Inc., Miami, Florida, USA
- Department of Ophthalmology, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida, USA
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL, USA
| | | | - Amy Lee
- R&D Department, TissueTech Inc., Miami, Florida, USA
| | - Scheffer C. G. Tseng
- R&D Department, TissueTech Inc., Miami, Florida, USA
- Ocular Surface Center and Ocular Surface Research Education Foundation, Miami, FL, USA
| |
Collapse
|
22
|
Slater T, Haywood NJ, Matthews C, Cheema H, Wheatcroft SB. Insulin-like growth factor binding proteins and angiogenesis: from cancer to cardiovascular disease. Cytokine Growth Factor Rev 2019; 46:28-35. [PMID: 30954375 DOI: 10.1016/j.cytogfr.2019.03.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 03/15/2019] [Indexed: 12/22/2022]
Abstract
Angiogenesis is a tightly regulated activity that is vital during embryonic development and for normal physiological repair processes and reproduction in healthy adults. Pathological angiogenesis is a driving force behind a variety of diseases including cancer and retinopathies, and inhibition of angiogenesis is a therapeutic option that has been the subject of much research, with several inhibitory agents now available for medical therapy. Conversely, therapeutic angiogenesis has been mooted as having significant potential in the treatment of ischemic conditions such as angina pectoris and peripheral arterial disease, but so far there has been less translation from lab to bedside. The insulin-like growth factor binding proteins (IGFBP) are a family of seven proteins essential for the binding and transport of the insulin-like growth factors (IGF). It is being increasingly recognised that IGFBPs have a significant role beyond simply modulating IGF activity, with evidence of both IGF dependent and independent actions through a variety of mechanisms. Moreover, the action of the IGFBPs can be stimulatory or inhibitory depending on the cell type and environment. Specifically the IGFBPs have been heavily implicated in angiogenesis, both pathological and physiological, and they have significant promise as targeted cell therapy agents for both pathological angiogenesis inhibition and therapeutic angiogenesis following ischemic injury. In this short review we will explore the current understanding of the individual impact of each IGFBP on angiogenesis, and the pathways through which these effects occur.
Collapse
Affiliation(s)
- Thomas Slater
- Leeds Institute of Cardiovascular & Metabolic Medicine, School of Medicine, University of Leeds, United Kingdom
| | - Natalie J Haywood
- Leeds Institute of Cardiovascular & Metabolic Medicine, School of Medicine, University of Leeds, United Kingdom
| | - Connor Matthews
- Leeds Institute of Cardiovascular & Metabolic Medicine, School of Medicine, University of Leeds, United Kingdom
| | - Harneet Cheema
- Leeds Institute of Cardiovascular & Metabolic Medicine, School of Medicine, University of Leeds, United Kingdom
| | - Stephen B Wheatcroft
- Leeds Institute of Cardiovascular & Metabolic Medicine, School of Medicine, University of Leeds, United Kingdom.
| |
Collapse
|
23
|
Abstract
PURPOSE Adhesions between the extraocular muscles and surrounding tissues pose a main cause of failure of strabismus reoperations. Amniotic membrane (AM) transplantation during extraocular muscle surgery, to prevent the formation of adhesions, has been a subject of research during the past decade. This review aims to determine the value, indications, and tips on usage of AM transplantation during strabismus surgery. MATERIALS AND METHODS All references cited in PubMed in English were searched using the key words: amniotic membrane strabismus or amniotic membrane extraocular muscles, and a brief summary of these was described. In addition, certain articles were chosen to provide introductory information on wound healing and fibrosis, AM properties and how it works after transplantation, and AM processing and preservation. RESULTS AM used for transplantation during extraocular muscle surgery may be cryopreserved, dried, or fresh. It may be oriented with its stroma or epithelium towards the muscle. It may or may not be fixed with sutures. What were the best choices? Various studies attempted to answer these questions. Many of the studies reviewed, however, were inconclusive or contradictory. Fresh AM seemed effective, but carried a risk of transmission of communicable diseases. Dried membrane was not of value in preventing adhesions. Histopathologically, cryopreserved membrane prevented the development of adhesions in the region of its presence, regardless of its orientation, and without the need for suture fixation. To accentuate this histopathological effect during clinical practice, it was recommended to utilize the largest segment possible of cryopreserved membrane and limit its usage to cases where adhesions are expected to be the main cause of failure of strabismus surgery. CONCLUSION Cryopreserved AM transplantation was safe and histopathologically effective in preventing adhesions. This effect was, however, less pronounced clinically. Its use during strabismus reoperations is merited if previous recommendations and precautions are considered.
Collapse
|
24
|
Smith SM, Melrose J. A Retrospective Analysis of the Cartilage Kunitz Protease Inhibitory Proteins Identifies These as Members of the Inter-α-Trypsin Inhibitor Superfamily with Potential Roles in the Protection of the Articulatory Surface. Int J Mol Sci 2019; 20:ijms20030497. [PMID: 30678366 PMCID: PMC6387120 DOI: 10.3390/ijms20030497] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 01/17/2019] [Accepted: 01/21/2019] [Indexed: 02/06/2023] Open
Abstract
Aim: The aim of this study was to assess if the ovine articular cartilage serine proteinase inhibitors (SPIs) were related to the Kunitz inter-α-trypsin inhibitor (ITI) family. Methods: Ovine articular cartilage was finely diced and extracted in 6 M urea and SPIs isolated by sequential anion exchange, HA affinity and Sephadex G100 gel permeation chromatography. Selected samples were also subjected to chymotrypsin and concanavalin-A affinity chromatography. Eluant fractions from these isolation steps were monitored for protein and trypsin inhibitory activity. Inhibitory fractions were assessed by affinity blotting using biotinylated trypsin to detect SPIs and by Western blotting using antibodies to α1-microglobulin, bikunin, TSG-6 and 2-B-6 (+) CS epitope generated by chondroitinase-ABC digestion. Results: 2-B-6 (+) positive 250, 220,120, 58 and 36 kDa SPIs were detected. The 58 kDa SPI contained α1-microglobulin, bikunin and chondroitin-4-sulfate stub epitope consistent with an identity of α1-microglobulin-bikunin (AMBP) precursor and was also isolated by concanavalin-A lectin affinity chromatography indicating it had N-glycosylation. Kunitz protease inhibitor (KPI) species of 36, 26, 12 and 6 kDa were autolytically generated by prolonged storage of the 120 and 58 kDa SPIs; chymotrypsin affinity chromatography generated the 6 kDa SPI. KPI domain 1 and 2 SPIs were separated by concanavalin lectin affinity chromatography, domain 1 displayed affinity for this lectin indicating it had N-glycosylation. KPI 1 and 2 displayed potent inhibitory activity against trypsin, chymotrypsin, kallikrein, leucocyte elastase and cathepsin G. Localisation of versican, lubricin and hyaluronan (HA) in the surface regions of articular cartilage represented probable binding sites for the ITI serine proteinase inhibitors (SPIs) which may preserve articulatory properties and joint function. Discussion/Conclusions: The Kunitz SPI proteins synthesised by articular chondrocytes are members of the ITI superfamily. By analogy with other tissues in which these proteins occur we deduce that the cartilage Kunitz SPIs may be multifunctional proteins. Binding of the cartilage Kunitz SPIs to HA may protect this polymer from depolymerisation by free radical damage and may also protect other components in the cartilage surface from proteolytic degradation preserving joint function.
Collapse
Affiliation(s)
- Susan M Smith
- Raymond Purves Bone and Joint Research Laboratory, Kolling Institute, Northern Sydney Local Health District, St. Leonards, NSW 2065, Australia.
| | - James Melrose
- Raymond Purves Bone and Joint Research Laboratory, Kolling Institute, Northern Sydney Local Health District, St. Leonards, NSW 2065, Australia.
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW 2052, Australia.
- Sydney Medical School, Northern, The University of Sydney, Royal North Shore Hospital, St. Leonards, NSW 2065, Australia.
- Faculty of Medicine and Health, University of Sydney, Royal North Shore Hospital, St. Leonards, NSW 2065, Australia.
| |
Collapse
|
25
|
Murri MS, Moshirfar M, Birdsong OC, Ronquillo YC, Ding Y, Hoopes PC. Amniotic membrane extract and eye drops: a review of literature and clinical application. Clin Ophthalmol 2018; 12:1105-1112. [PMID: 29950805 PMCID: PMC6012548 DOI: 10.2147/opth.s165553] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The amniotic membrane (AM) has a long history of use in the treatment of various diseases of the ocular surface. It contains pluripotent cells, highly organized collagen, anti-fibrotic and anti-inflammatory cytokines, immune-modulators, growth factors, and matrix proteins. It is used to promote corneal healing in severely damaged eyes. Recently, AM extract and AM extract eye drops have been successfully used in clinical applications, including dry eye and chemical burns. We provide an overview on the recent progress in the preparation, mechanisms of action, and use of AM extract/AM extract eye drops for corneal and external eye diseases.
Collapse
Affiliation(s)
- Michael S Murri
- John A Moran Eye Center, Department of Ophthalmology and Visual Sciences, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Majid Moshirfar
- John A Moran Eye Center, Department of Ophthalmology and Visual Sciences, University of Utah School of Medicine, Salt Lake City, UT, USA.,HDR Research Center, Hoopes Vision, Draper, UT, USA
| | | | | | - Yanning Ding
- HDR Research Center, Hoopes Vision, Draper, UT, USA
| | | |
Collapse
|
26
|
Ghanmi S, Trigui M, Baya W, Ellouz Z, Elfeki A, Charfi S, Fricain JC, Keskes H. The periosteum-like effect of fresh human amniotic membrane on bone regeneration in a rabbit critical-sized defect model. Bone 2018. [PMID: 29524678 DOI: 10.1016/j.bone.2018.03.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
OBJECTIVE The purpose of this study was to investigate the effect of fresh human amniotic membrane (FHAM) as a substitute of periosteum to enhance bone regeneration in critical-sized defects. METHODS Tibial diaphyseal bone defects were created in forty New Zealand white rabbits and treated with FHAM or left empty. Treatment groups consisted of: FHAM implanted in the place of removed periosteum (FHAMP group); FHFAM implanted to fill the entire defect (FHAMF group) compared to negative control group; empty defect with removing the periosteum (NC group) and positive control group; and empty defect without removing the periosteum (PC group). Bone regeneration was evaluated by radiographic, micro-computed tomography (μ-CT) and histological analyses at 4 and 8weeks post-surgery. RESULTS Radiographic and μ-CT analysis demonstrated clearly enhanced new bone formation in positive control group (PC) and FHAMP group compared to negative control group (NC) and FHAMF group. Histological staining exhibited remaining woven bones and cartilage matrix in the FHAMP group, immature lamellar bone with medellury cavity and marrow bone formation in PC group from 4weeks post-operatively. For FHAMF group, a little new bone formation was detected only from 8weeks post-operatively, and an absence of any sign of healing in NC group at both time points. CONCLUSION The results provide that FHAM increases bone regeneration in critical-sized defects when it is implanted in the place of the removed periosteum, but its additive effect does not have the same effect of the natural periosteum.
Collapse
Affiliation(s)
- Sahar Ghanmi
- Experimental Surgery of the Musculoskeletal System Laboratory, Sfax Faculty of Medicine, Sfax, Tunisia; Tissue Bioengineering Laboratory, U1026, Inserm, University of Bordeaux, France.
| | - Moez Trigui
- Experimental Surgery of the Musculoskeletal System Laboratory, Sfax Faculty of Medicine, Sfax, Tunisia
| | - Walid Baya
- Experimental Surgery of the Musculoskeletal System Laboratory, Sfax Faculty of Medicine, Sfax, Tunisia
| | - Zoubaier Ellouz
- Experimental Surgery of the Musculoskeletal System Laboratory, Sfax Faculty of Medicine, Sfax, Tunisia
| | - Abdelfatteh Elfeki
- Animal Ecophysiology Laboratory, Sfax Faculty of Science, Department of Life Sciences, Sfax, Tunisia
| | - Slim Charfi
- Anatomy and Pathology Services, Hospital Habib Bourgiba, Sfax, Tunisia
| | | | - Hassib Keskes
- Experimental Surgery of the Musculoskeletal System Laboratory, Sfax Faculty of Medicine, Sfax, Tunisia
| |
Collapse
|
27
|
TSG-6 - a double-edged sword for osteoarthritis (OA). Osteoarthritis Cartilage 2018; 26:245-254. [PMID: 29129649 PMCID: PMC5807166 DOI: 10.1016/j.joca.2017.10.019] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 10/20/2017] [Accepted: 10/31/2017] [Indexed: 02/02/2023]
Abstract
PURPOSE To explore mechanisms underlying the association of TSG-6 with osteoarthritis (OA) progression. METHODS TSG-6-mediated heavy chain (HC) transfer (TSG-6 activity) and its association with inflammatory mediators were quantified in knee OA (n=25) synovial fluids (SFs). Paired intact and damaged cartilages from the same individuals (20 tibial and 12 meniscal) were analyzed by qRT-PCR and immunohistochemistry (IHC) for gene and protein expression of TSG-6 and components of Inter-alpha-Inhibitor (IαI) and TSG-6 activity ± spiked in IαI. Primary chondrocyte cultures (n=5) ± IL1β or TNFα were evaluated for gene expression. The effects of TSG-6 activity on cartilage extracellular matrix (ECM) assembly were explored using quantitative hyaluronan (HA)-aggrecan binding assays. RESULTS TSG-6 activity was significantly associated (R > 0.683, P < 0.0002) with inflammatory mediators including TIMP-1, A2M, MMP3, VEGF, VCAM-1, ICAM-1 and IL-6. Although TSG-6 protein and mRNA were highly expressed in damaged articular and meniscal cartilage and cytokine-treated chondrocytes, there was little or no cartilage expression of components of the IαI complex (containing HC1). By IHC, TSG-6 was present throughout lesioned cartilage but HC1 only at lesioned surfaces. TSG-6 impaired HA-aggrecan assembly, but TSG-6 mediated HA-HC formation reduced this negative effect. CONCLUSIONS TSG-6 activity is a global inflammatory biomarker in knee OA SF. IαI, supplied from outside cartilage, only penetrates the cartilage surface, restricting TSG-6 activity (HC transfer) to this region. Therefore, unopposed TSG-6 in intermediate and deep regions of OA cartilage could possibly block matrix assembly, leading to futile synthesis and account for increased risk of OA progression.
Collapse
|
28
|
Day AJ, Milner CM. TSG-6: A multifunctional protein with anti-inflammatory and tissue-protective properties. Matrix Biol 2018; 78-79:60-83. [PMID: 29362135 DOI: 10.1016/j.matbio.2018.01.011] [Citation(s) in RCA: 200] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 01/09/2018] [Accepted: 01/11/2018] [Indexed: 02/06/2023]
Abstract
Tumor necrosis factor- (TNF) stimulated gene-6 (TSG-6) is an inflammation-associated secreted protein that has been implicated as having important and diverse tissue protective and anti-inflammatory properties, e.g. mediating many of the immunomodulatory and beneficial activities of mesenchymal stem/stromal cells. TSG-6 is constitutively expressed in some tissues, which are either highly metabolically active or subject to challenges from the environment, perhaps providing protection in these contexts. The diversity of its functions are dependent on the binding of TSG-6 to numerous ligands, including matrix molecules such as glycosaminoglycans, as well as immune regulators and growth factors that themselves interact with these linear polysaccharides. It is becoming apparent that TSG-6 can directly affect matrix structure and modulate the way extracellular signalling molecules interact with matrix. In this review, we focus mainly on the literature for TSG-6 over the last 10 years, summarizing its expression, structure, ligand-binding properties, biological functions and highlighting TSG-6's potential as a therapeutic for a broad range of disease indications.
Collapse
Affiliation(s)
- Anthony J Day
- Wellcome Trust Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK.
| | - Caroline M Milner
- Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK.
| |
Collapse
|
29
|
Corneal Nerve Regeneration after Self-Retained Cryopreserved Amniotic Membrane in Dry Eye Disease. J Ophthalmol 2017; 2017:6404918. [PMID: 28894606 PMCID: PMC5574308 DOI: 10.1155/2017/6404918] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 06/28/2017] [Indexed: 01/22/2023] Open
Abstract
Purpose To evaluate the efficacy of self-retained cryopreserved amniotic membrane (CAM) in promoting corneal nerve regeneration and improving corneal sensitivity in dry eye disease (DED). Methods In this prospective randomized clinical trial, subjects with DED were randomized to receive CAM (study group) or conventional maximum treatment (control). Changes in signs and symptoms, corneal sensitivity, topography, and in vivo confocal microscopy (IVCM) were evaluated at baseline, 1 month, and 3 months. Results Twenty subjects (age 66.9 ± 8.9) were enrolled and 17 completed all follow-up visits. Signs and symptoms were significantly improved in the study group yet remained constant in the control. IVCM showed a significant increase in corneal nerve density in the study group (12,241 ± 5083 μm/mm2 at baseline, 16,364 ± 3734 μm/mm2 at 1 month, and 18,827 ± 5453 μm/mm2 at 3 months, p = 0.015) but was unchanged in the control. This improvement was accompanied with a significant increase in corneal sensitivity (3.25 ± 0.6 cm at baseline, 5.2 ± 0.5 cm at 1 month, and 5.6 ± 0.4 cm at 3 months, p < 0.001) and corneal topography only in the study group. Conclusions Self-retained CAM is a promising therapy for corneal nerve regeneration and accelerated recovery of the ocular surface health in patients with DED. The study is registered at clinicaltrials.gov with trial identifier: NCT02764814.
Collapse
|
30
|
Jutley G, Luk SM, Dehabadi MH, Cordeiro MF. Management of glaucoma as a neurodegenerative disease. Neurodegener Dis Manag 2017; 7:157-172. [PMID: 28540772 DOI: 10.2217/nmt-2017-0004] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Glaucoma is a neurodegenerative disease with an estimated prevalence of 60 million people, and the most common cause of irreversible blindness worldwide. The mainstay of treatment has been aimed at lowering intraocular pressure, currently the only modifiable risk factor. Unfortunately, despite adequate pressure control, many patients go on to suffer irreversible visual loss. We first briefly examine currently established intraocular pressure lowering-treatments, with a discussion of their roles in neuroprotection as demonstrated by both animal and clinical studies. The review then examines currently available intraocular pressure independent agents that have shown promise for possessing neuroprotective effects in the management of glaucoma. Finally, we explore potential future treatments such as immune-modulation, stem cell therapy and neural regeneration as they may provide further protection against the neurodegenerative processes involved in glaucomatous optic neuropathy.
Collapse
Affiliation(s)
- Gurjeet Jutley
- Western Eye Hospital, Imperial College Healthcare Trust, London, UK
| | - Sheila Mh Luk
- Medical Retina, Moorfields Eye Hospital, NHS Foundation Trust, London, UK
| | - Mohammad H Dehabadi
- Glaucoma & Retinal Neurodegeneration Research Group, Visual Neuroscience, UCL Institute of Ophthalmology, London, UK.,Medical Retina, Moorfields Eye Hospital, NHS Foundation Trust, London, UK
| | - M Francesca Cordeiro
- Glaucoma & Retinal Neurodegeneration Research Group, Visual Neuroscience, UCL Institute of Ophthalmology, London, UK.,Western Eye Hospital, Imperial College Healthcare Trust, London, UK
| |
Collapse
|
31
|
He H, Kuriyan AE, Su CW, Mahabole M, Zhang Y, Zhu YT, Flynn HW, Parel JM, Tseng SCG. Inhibition of Proliferation and Epithelial Mesenchymal Transition in Retinal Pigment Epithelial Cells by Heavy Chain-Hyaluronan/Pentraxin 3. Sci Rep 2017; 7:43736. [PMID: 28252047 PMCID: PMC5333089 DOI: 10.1038/srep43736] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 01/30/2017] [Indexed: 01/15/2023] Open
Abstract
Proliferative vitreoretinopathy (PVR) is mediated by proliferation and epithelial mesenchymal transition (EMT) of retinal pigment epithelium (RPE). Because heavy chain-hyaluronic acid/pentraxin 3 (HC-HA/PTX3) purified from human amniotic membrane exerts anti-inflammatory and anti-scarring actions, we hypothesized that HC-HA/PTX3 could inhibit these PVR-related processes in vitro. In this study, we first optimized an ARPE-19 cell culture model to mimic PVR by defining cell density, growth factors, and cultivation time. Using this low cell density culture model and HA as a control, we tested effects of HC-HA/PTX3 on the cell viability (cytotoxicity), proliferation (EGF + FGF-2) and EMT (TGF-β1). Furthermore, we determined effects of HC-HA/PTX3 on cell migration (EGF + FGF-2 + TGF-β1) and collagen gel contraction (TGF-β1). We found both HA and HC-HA/PTX3 were not toxic to unstimulated RPE cells. Only HC-HA/PTX3 dose-dependently inhibited proliferation and EMT of stimulated RPE cells by down-regulating Wnt (β-catenin, LEF1) and TGF-β (Smad2/3, collagen type I, α-SMA) signaling, respectively. Additionally, HA and HC-HA/PTX3 inhibited migration but only HC-HA/PTX3 inhibited collagen gel contraction. These results suggest HC-HA/PTX3 is a non-toxic, potent inhibitor of proliferation and EMT of RPE in vitro, and HC-HA/PTX3’s ability to inhibit PVR formation warrants evaluation in an animal model.
Collapse
Affiliation(s)
- Hua He
- TissueTech, Inc., Miami, FL, 33173, USA
| | - Ajay E Kuriyan
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, 33136, USA.,Flaum Eye Institute, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | | | | | - Yuan Zhang
- Ocular Surface Center and Ocular Surface Research &Education Foundation, Miami, FL, 33173, USA
| | | | - Harry W Flynn
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Jean-Marie Parel
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Scheffer C G Tseng
- TissueTech, Inc., Miami, FL, 33173, USA.,Ocular Surface Center and Ocular Surface Research &Education Foundation, Miami, FL, 33173, USA
| |
Collapse
|
32
|
Ogawa Y, He H, Mukai S, Imada T, Nakamura S, Su CW, Mahabole M, Tseng SCG, Tsubota K. Heavy Chain-Hyaluronan/Pentraxin 3 from Amniotic Membrane Suppresses Inflammation and Scarring in Murine Lacrimal Gland and Conjunctiva of Chronic Graft-versus-Host Disease. Sci Rep 2017; 7:42195. [PMID: 28165063 PMCID: PMC5292704 DOI: 10.1038/srep42195] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 01/06/2017] [Indexed: 12/21/2022] Open
Abstract
Chronic graft-versus-host disease (cGVHD) is a major complication of hematopoietic stem cell transplantation. Dry eye disease is the prominent ocular sequel of cGVHD and is caused by excessive inflammation and fibrosis in the lacrimal glands. Heavy chain-Hyaluronan/Pentraxin 3 (HC-HA/PTX3) is a complex purified from human amniotic membrane (AM) and known to exert anti-inflammatory and anti-scarring actions. In this study, we utilized a mouse model of cGVHD to examine whether HC-HA/PTX3 could attenuate dry eye disease elicited by cGVHD. Our results indicated that subconjunctival and subcutaneous injection of HC-HA/PTX3 preserved tear secretion and conjunctival goblet cell density and mitigated inflammation and scarring of the conjunctiva. Such therapeutic benefits were associated with suppression of scarring and infiltration of inflammatory/immune cells in the lacrimal glands. Furthermore, HC-HA/PTX3 significantly reduced the extent of infiltration of CD45+ CD4+ IL-17+ cells, CD45+ CD34+ collagen I+ CXCR4+ fibrocytes, and HSP47+ activated fibroblasts that were accompanied by upregulation of collagen type Iα1, collagen type IIIα1 and NF-kB in lacrimal glands. Collectively, these pre-clinical data help prove the concept that subcutaneous and subconjunctival injection of HC-HA/PTX3 is a novel approach to prevent dry eye disease caused by cGVHD and allow us to test its safety and efficacy in future human clinical trials.
Collapse
Affiliation(s)
- Yoko Ogawa
- Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Hua He
- TissueTech, Inc., Miami, FL 33173, USA
| | - Shin Mukai
- Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Toshihiro Imada
- Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Shigeru Nakamura
- Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi Shinjuku-ku, Tokyo, 160-8582, Japan
| | | | | | | | - Kazuo Tsubota
- Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi Shinjuku-ku, Tokyo, 160-8582, Japan
| |
Collapse
|
33
|
Pijuan-Galitó S, Tamm C, Schuster J, Sobol M, Forsberg L, Merry CLR, Annerén C. Human serum-derived protein removes the need for coating in defined human pluripotent stem cell culture. Nat Commun 2016; 7:12170. [PMID: 27405751 PMCID: PMC4947164 DOI: 10.1038/ncomms12170] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 06/03/2016] [Indexed: 01/30/2023] Open
Abstract
Reliable, scalable and time-efficient culture methods are required to fully realize the clinical and industrial applications of human pluripotent stem (hPS) cells. Here we present a completely defined, xeno-free medium that supports long-term propagation of hPS cells on uncoated tissue culture plastic. The medium consists of the Essential 8 (E8) formulation supplemented with inter-α-inhibitor (IαI), a human serum-derived protein, recently demonstrated to activate key pluripotency pathways in mouse PS cells. IαI efficiently induces attachment and long-term growth of both embryonic and induced hPS cell lines when added as a soluble protein to the medium at seeding. IαI supplementation efficiently supports adaptation of feeder-dependent hPS cells to xeno-free conditions, clonal growth as well as single-cell survival in the absence of Rho-associated kinase inhibitor (ROCKi). This time-efficient and simplified culture method paves the way for large-scale, high-throughput hPS cell culture, and will be valuable for both basic research and commercial applications. Improved culture methods are needed to reliably grow human pluripotent stem cells (hPSCs) on a large scale. Here, the authors identify a xeno-free medium with a supplement of Inter-α-inhibitor that supports long-term propagation and improved single-cell passaging of hPSCs on uncoated plastic.
Collapse
Affiliation(s)
- Sara Pijuan-Galitó
- Department of Medical Biochemistry and Microbiology, Box 582, Uppsala University, 751 23 Uppsala, Sweden
| | - Christoffer Tamm
- Department of Medical Biochemistry and Microbiology, Box 582, Uppsala University, 751 23 Uppsala, Sweden
| | - Jens Schuster
- Department of Immunology, Genetics and Pathology and Science for Life Laboratory, Box 815, Uppsala University, 751 08 Uppsala, Sweden
| | - Maria Sobol
- Department of Immunology, Genetics and Pathology and Science for Life Laboratory, Box 815, Uppsala University, 751 08 Uppsala, Sweden
| | - Lars Forsberg
- Department of Immunology, Genetics and Pathology and Science for Life Laboratory, Box 815, Uppsala University, 751 08 Uppsala, Sweden
| | - Catherine L R Merry
- Department of Medical Biochemistry and Microbiology, Box 582, Uppsala University, 751 23 Uppsala, Sweden.,Stem Cell Glycobiology Group, Wolfson Centre for Stem Cells, Tissue Engineering &Modelling Room A59, University of Nottingham, NG7 2RD Nottingham, UK
| | - Cecilia Annerén
- Department of Medical Biochemistry and Microbiology, Box 582, Uppsala University, 751 23 Uppsala, Sweden.,GE Healthcare Bio-Sciences AB, Björkgatan 30, 751 84 Uppsala, Sweden
| |
Collapse
|
34
|
Cheng AMS, Chua L, Casas V, Tseng SCG. Morselized Amniotic Membrane Tissue for Refractory Corneal Epithelial Defects in Cicatricial Ocular Surface Diseases. Transl Vis Sci Technol 2016; 5:9. [PMID: 27226933 PMCID: PMC4874450 DOI: 10.1167/tvst.5.3.9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 04/15/2016] [Indexed: 01/15/2023] Open
Abstract
Purpose To evaluate the clinical efficacy of morselized amniotic membrane and umbilical cord tissue (MAU) in treating refractory corneal epithelial defect in ocular cicatricial diseases. Methods Retrospective review of four patients with ocular cicatricial diseases treated with topical MAU for corneal epithelial defects refractory to conventional treatments including topical lubricants, autologous serum, bandage contact lens, and tarsorraphy. Their symptoms, corneal staining, conjunctival inflammation, and visual acuity were compared before and after treatment. Results After topical application of MAU twice daily, two patients demonstrated rapid corneal epithelialization with prompt visual acuity improvement at the first day. All patients showed corneal epithelialization in 7.3 ± 2.6 days accompanied by a significant relief of symptoms, reduction of ocular surface inflammation, and improvement of visual acuity. Conclusion This pilot study suggests topical MAU can be developed into a novel treatment for treating refractory corneal epithelial defects. Translational Relevance Topical MAU can be an effective novel treatment for refractory corneal epithelial defects.
Collapse
Affiliation(s)
| | - Lorraine Chua
- Research and Development Department, TissueTech, Inc., Miami, FL, USA
| | | | - Scheffer C G Tseng
- Ocular Surface Center, Miami, FL, USA ; Research and Development Department, TissueTech, Inc., Miami, FL, USA
| |
Collapse
|
35
|
Tseng SCG, He H, Zhang S, Chen SY. Niche Regulation of Limbal Epithelial Stem Cells: Relationship between Inflammation and Regeneration. Ocul Surf 2016; 14:100-12. [PMID: 26769483 DOI: 10.1016/j.jtos.2015.12.002] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 12/17/2015] [Accepted: 12/24/2015] [Indexed: 02/07/2023]
Abstract
Human limbal palisades of Vogt are the ideal site for studying and practicing regenerative medicine due to their accessibility. Nonresolving inflammation in limbal stroma is common manifestation of limbal stem cell (SC) deficiency and presents as a threat to the success of transplanted limbal epithelial SCs. This pathologic process can be overcome by transplantation of cryopreserved human amniotic membrane (AM), which exerts anti-inflammatory, antiscarring and anti-angiogenic action to promote wound healing. To determine how AM might exert anti-inflammation and promote regeneration, we have purified a novel matrix, HC-HA/PTX3, responsible for the efficacy of AM efficacy. HC-HA complex is covalently formed by hyaluronan (HA) and heavy chain 1 (HC1) of inter-α-trypsin inhibitor by the catalytic action of tumor necrosis factor-stimulated gene-6 (TSG-6) and are tightly associated with pentraxin 3 (PTX3) to form HC-HA/PTX3. In vitro reconstitution of the limbal niche can be established by reunion between limbal epithelial progenitors and limbal niche cells on different substrates. In 3-dimensional Matrigel, clonal expansion indicative of SC renewal is correlated with activation of canonical Wnt signaling and suppression of canonical bone morphogenetic protein (BMP) signaling. In contrast, SC quiescence can be achieved in HC-HA/PTX3 by activation of canonical BMP signaling and non-canonical planar cell polarity (PCP) Wnt signaling, but suppression of canonical Wnt signaling. HC-HA/PTX3 is a novel matrix mitigating nonresolving inflammation and restoring SC quiescence in the niche for various applications in regenerative medicine.
Collapse
Affiliation(s)
- Scheffer C G Tseng
- R&D Department, TissueTech, Inc., Ocular Surface Center, and Ocular Surface Research and Education Foundation, Miami, Florida, USA.
| | - Hua He
- R&D Department, TissueTech, Inc., Ocular Surface Center, and Ocular Surface Research and Education Foundation, Miami, Florida, USA
| | - Suzhen Zhang
- R&D Department, TissueTech, Inc., Ocular Surface Center, and Ocular Surface Research and Education Foundation, Miami, Florida, USA
| | - Szu-Yu Chen
- R&D Department, TissueTech, Inc., Ocular Surface Center, and Ocular Surface Research and Education Foundation, Miami, Florida, USA
| |
Collapse
|
36
|
Briggs DC, Birchenough HL, Ali T, Rugg MS, Waltho JP, Ievoli E, Jowitt TA, Enghild JJ, Richter RP, Salustri A, Milner CM, Day AJ. Metal Ion-dependent Heavy Chain Transfer Activity of TSG-6 Mediates Assembly of the Cumulus-Oocyte Matrix. J Biol Chem 2015; 290:28708-23. [PMID: 26468290 PMCID: PMC4661386 DOI: 10.1074/jbc.m115.669838] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Indexed: 11/06/2022] Open
Abstract
The matrix polysaccharide hyaluronan (HA) has a critical role in the expansion of the cumulus cell-oocyte complex (COC), a process that is necessary for ovulation and fertilization in most mammals. Hyaluronan is organized into a cross-linked network by the cooperative action of three proteins, inter-α-inhibitor (IαI), pentraxin-3, and TNF-stimulated gene-6 (TSG-6), driving the expansion of the COC and providing the cumulus matrix with its required viscoelastic properties. Although it is known that matrix stabilization involves the TSG-6-mediated transfer of IαI heavy chains (HCs) onto hyaluronan (to form covalent HC·HA complexes that are cross-linked by pentraxin-3) and that this occurs via the formation of covalent HC·TSG-6 intermediates, the underlying molecular mechanisms are not well understood. Here, we have determined the tertiary structure of the CUB module from human TSG-6, identifying a calcium ion-binding site and chelating glutamic acid residue that mediate the formation of HC·TSG-6. This occurs via an initial metal ion-dependent, non-covalent, interaction between TSG-6 and HCs that also requires the presence of an HC-associated magnesium ion. In addition, we have found that the well characterized hyaluronan-binding site in the TSG-6 Link module is not used for recognition during transfer of HCs onto HA. Analysis of TSG-6 mutants (with impaired transferase and/or hyaluronan-binding functions) revealed that although the TSG-6-mediated formation of HC·HA complexes is essential for the expansion of mouse COCs in vitro, the hyaluronan-binding function of TSG-6 does not play a major role in the stabilization of the murine cumulus matrix.
Collapse
Affiliation(s)
- David C Briggs
- From the Wellcome Trust Centre for Cell-Matrix Research and the Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester M13 9PT, United Kingdom
| | - Holly L Birchenough
- From the Wellcome Trust Centre for Cell-Matrix Research and the Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester M13 9PT, United Kingdom
| | - Tariq Ali
- From the Wellcome Trust Centre for Cell-Matrix Research and the Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester M13 9PT, United Kingdom
| | - Marilyn S Rugg
- the Medical Research Council Immunochemistry Unit, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom
| | - Jon P Waltho
- the Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester M13 9PT, United Kingdom
| | - Elena Ievoli
- the Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome 00133, Italy
| | - Thomas A Jowitt
- From the Wellcome Trust Centre for Cell-Matrix Research and the Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester M13 9PT, United Kingdom
| | - Jan J Enghild
- the Department of Molecular Chemistry, University of Aarhus, 8000 Aarhus C, Denmark
| | - Ralf P Richter
- CIC biomaGUNE, 20009 Donostia-San Sebastian, Spain, the Department of Molecular Chemistry, University Grenoble Alpes and CNRS, 38000 Grenoble, France, and the Max Planck Institute for Intelligent Systems, 70569 Stuttgart, Germany
| | - Antonietta Salustri
- the Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome 00133, Italy
| | - Caroline M Milner
- the Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester M13 9PT, United Kingdom
| | - Anthony J Day
- From the Wellcome Trust Centre for Cell-Matrix Research and the Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester M13 9PT, United Kingdom,
| |
Collapse
|
37
|
Chen SY, Han B, Zhu YT, Mahabole M, Huang J, Beebe DC, Tseng SCG. HC-HA/PTX3 Purified From Amniotic Membrane Promotes BMP Signaling in Limbal Niche Cells to Maintain Quiescence of Limbal Epithelial Progenitor/Stem Cells. Stem Cells 2015; 33:3341-55. [PMID: 26148958 DOI: 10.1002/stem.2091] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 05/08/2015] [Accepted: 05/23/2015] [Indexed: 12/13/2022]
Abstract
To explore how limbal niche cells (LNCs) may control quiescence, self-renewal, and corneal epithelial lineage commitment/differentiation of limbal epithelial progenitor/stem cells (LEPCs), we have established an in vitro sphere assay by reunion between the two cell types in three-dimensional Matrigel. The resultant sphere exhibits inhibition of corneal epithelial lineage commitment/differentiation and marked clonal growth of LEPCs, of which the latter is correlated with activation of canonical Wnt signaling. Herein, we have created a similar reunion assay in immobilized heavy chain-hyaluronic acid/pentraxin 3 (HC-HA/PTX3), which is purified from amniotic membrane (AM) and consists of a complex formed by hyaluronic covalently linked to heavy chain 1 of inter-α-inhibitor and noncovalently linked to pentraxin 3. The resultant spheres exhibited similar suppression of corneal epithelial lineage commitment/differentiation but upregulation of quiescence markers including nuclear translocation of Bmi-1, and negligible clonal growth of LEPCs. This outcome was correlated with the suppression of canonical Wnt but activation of noncanonical (Planar cell polarity) Wnt signaling as well as BMP signaling in both LEPCs and LNCs. The activation of BMP signaling in LNCs was pivotal because nuclear translocation of pSmad1/5/8 was prohibited in hLEPCs when reunioned with mLNCs of conditionally deleted Bmpr1a;Acvr1(DCKO) mice. Furthermore, ablation of BMP signaling in LEPCs led to upregulation of cell cycle genes, downregulation of Bmi-1, nuclear exclusion of phosphorylated Bmi-1, and marked promotion of the clonal growth of LEPCs. Hence, HC-HA/PTX3 uniquely upregulates BMP signaling in LNCs which leads to BMP signaling in LEPCs to achieve quiescence, helping explain how AM transplantation is clinically useful to be used as a matrix for ex vivo expansion of LEPCs and to treat corneal blindness caused by limbal stem cells deficiency.
Collapse
Affiliation(s)
- Szu-Yu Chen
- R&D Department, TissueTech, Inc., Miami, Florida, USA
| | - Bo Han
- Ocular Surface Research & Education Foundation, Miami, Florida, USA.,Department of Ophthalmology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Ying-Ting Zhu
- R&D Department, TissueTech, Inc., Miami, Florida, USA
| | | | - Jie Huang
- Department of Ophthalmology and Visual Sciences, Washington University, St. Louis, Missouri, USA
| | - David C Beebe
- Department of Ophthalmology and Visual Sciences, Washington University, St. Louis, Missouri, USA
| | - Scheffer C G Tseng
- R&D Department, TissueTech, Inc., Miami, Florida, USA.,Ocular Surface Research & Education Foundation, Miami, Florida, USA
| |
Collapse
|
38
|
Abstract
The fate of both endogenous and transplanted stem cells is dependent on the functional status of the regulatory local microenvironment, which is compromised by disease and therapeutic intervention. The glycosaminoglycan hyaluronan (HA) is a critical component of the hematopoietic microenvironment. We summarize recent advances in our understanding of the role of HA in regulating mesenchymal stem cells, osteoblasts, fibroblasts, macrophages, and endothelium in bone marrow (BM) and their crosstalk within the hematopoietic microenvironment. HA not only determines the volume, hydration, and microfluidics of the BM interstitial space, but also, via interactions with specific receptors, regulates multiple cell functions including differentiation, migration, and production of regulatory factors. The effects of HA are dependent on the polymer size and are influenced by the formation of complexes with other molecules. In healthy BM, HA synthases and hyaluronidases form a molecular network that maintains extracellular HA levels within a discrete physiological window, but HA homeostasis is often perturbed in pathological conditions, including hematological malignancies. Recent studies have suggested that HA synthases may have functions beyond HA production and contribute to the intracellular regulatory machinery. We discuss a possible role for HA synthases, intracellular and extracellular HA in the malignant BM microenvironment, and resistance to therapy.
Collapse
|
39
|
Abstract
Vascular integrity or the maintenance of blood vessel continuity is a fundamental process regulated by endothelial cell-cell junctions. Defects in endothelial barrier function are an initiating factor in several disease processes including tumor angiogenesis and metastasis. The glycosaminoglycan, hyaluronan (HA), maintains vascular integrity through specific mechanisms including HA-binding protein signaling in caveolin-enriched microdomains, a subset of lipid rafts. Certain disease states, including cancer, increase enzymatic hyaluronidase activity and reactive oxygen species generation, which break down high molecular weight HA (HMW-HA) to low molecular weight fragments (LMW-HA). LMW-HA can activate specific HA-binding proteins during tumor progression to promote disruption of endothelial cell-cell contacts. In contrast, exogenous administration of HMW-HA promotes enhancement of vascular integrity. This review focuses on the roles of HA in regulating angiogenic and metastatic processes based on its size and the HA-binding proteins present. Further, potential therapeutic applications of HMW-HA in treating cancer are discussed.
Collapse
Affiliation(s)
- Patrick A Singleton
- Department of Medicine, Section of Pulmonary and Critical Care, Chicago, Illinois, USA; Department of Anesthesia and Critical Care, The University of Chicago, Chicago, Illinois, USA.
| |
Collapse
|
40
|
Pijuan-Galitó S, Tamm C, Annerén C. Serum Inter-α-inhibitor activates the Yes tyrosine kinase and YAP/TEAD transcriptional complex in mouse embryonic stem cells. J Biol Chem 2014; 289:33492-502. [PMID: 25301940 DOI: 10.1074/jbc.m114.580076] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
We have previously demonstrated that the Src family kinase Yes, the Yes-associated protein (YAP) and TEA domain TEAD2 transcription factor pathway are activated by leukemia inhibitory factor (LIF) and contribute to mouse embryonic stem (mES) cell maintenance of pluripotency and self-renewal. In addition, we have shown that fetal bovine serum (FBS) induces Yes auto-phosphorylation and activation. In the present study we confirm that serum also activates TEAD-dependent transcription in a time- and dose-dependent manner and we identify Inter-α-inhibitor (IαI) as a component in serum capable of activating the Yes/YAP/TEAD pathway by inducing Yes auto-phosphorylation, YAP nuclear localization and TEAD-dependent transcription. The cleaved heavy chain 2 (HC2) sub-component of IαI, is demonstrated to be responsible for this effect. Moreover, IαI is also shown to efficiently increase expression of TEAD-downstream target genes including well-known stem cell factors Nanog and Oct 3/4. IαI is not produced by the ES cells per se but is added to the cells via the cell culture medium containing serum or serum-derived components such as bovine serum albumin (BSA). In conclusion, we describe a novel function of IαI in activating key pluripotency pathways associated with ES cell maintenance and self-renewal.
Collapse
Affiliation(s)
- Sara Pijuan-Galitó
- From the Department of Medical Biochemistry and Microbiology, Uppsala University, SE-75 123 Uppsala, Sweden and
| | - Christoffer Tamm
- From the Department of Medical Biochemistry and Microbiology, Uppsala University, SE-75 123 Uppsala, Sweden and
| | - Cecilia Annerén
- From the Department of Medical Biochemistry and Microbiology, Uppsala University, SE-75 123 Uppsala, Sweden and GE Healthcare Bio-Sciences AB, SE-751 84 Uppsala, Sweden
| |
Collapse
|
41
|
Cooke M, Tan EK, Mandrycky C, He H, O'Connell J, Tseng SCG. Comparison of cryopreserved amniotic membrane and umbilical cord tissue with dehydrated amniotic membrane/chorion tissue. J Wound Care 2014; 23:465-74, 476. [PMID: 25296347 DOI: 10.12968/jowc.2014.23.10.465] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
OBJECTIVE To evaluate how the different processing methods cryopreservation and dehydration affect the structural integrity and biological composition of key signalling molecules within amniotic membrane and umbilical cord tissues. METHOD We directly compared cryopreserved amniotic membrane (AM) and umbilical cord (UC) tissues with dehydrated amniotic membrane/chorion (dHACM) tissue using biochemical and functional assays including histological and histochemical staining, BCA, agarose gel electrophoresis, western blot, ELISA, and proliferation and cell death assays. RESULTS Cryopreservation retains the native architecture of the AM/UC extracellular matrix and maintains the quantity and activity of key biological signals present in fresh AM/UC, including high molecular weight hyaluronic acid, heavy chain-HA complex, and pentraxin 3. In contrast, dehydrated tissues were structurally compromised and almost completely lacked these crucial components. CONCLUSION The results presented here indicate that cryopreservation better preserves the structural and biological signaling molecules of foetal tissues.
Collapse
Affiliation(s)
- M Cooke
- Amniox Medical, Atlanta, GA, 30339, USA
| | | | | | | | | | | |
Collapse
|
42
|
Seino S, Takeshita F, Asari A, Masuda Y, Kunou M, Ochiya T. No influence of exogenous hyaluronan on the behavior of human cancer cells or endothelial cell capillary formation. J Food Sci 2014; 79:T1469-75. [PMID: 24894153 DOI: 10.1111/1750-3841.12500] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Accepted: 04/14/2014] [Indexed: 12/25/2022]
Abstract
UNLABELLED Hyaluronan (HA), a type of glycosaminoglycan used to construct the extracellular matrix, is involved in the proliferation and motility of cells, including cancer cells. The aim of this study was to determine whether exogenous HA has an influence on cancer in vitro and in vivo. High-molecular-weight HA (900 kDa) and low-molecular-weight HA (10 kDa) were added to several types of cancer cell lines in vitro, and proliferation and invasion were assessed. The effect of HA on capillary formation by human umbilical vein endothelial cells was also analyzed. The results showed that both types of HA had no apparent effect on cellular proliferation, invasion, or capillary formation. In an animal study, the 2 types of HA were orally administered to tumor-bearing mice at a dosage of 200 mg/kg/d for 4 wk. Analysis using an in vivo imaging system revealed that tumor proliferation and metastasis were not greatly altered by HA administration. Furthermore, CD31 immunohistochemical staining revealed no obvious change in tumor microvessels. Taken together, these results demonstrate that exogenously administered HA has little effect on cancer. This study may support the safety of various forms of HA administration, including oral intake. PRACTICAL APPLICATION Orally administered hyaluronan was recently found to have beneficial effects. However, the effect of exogenous hyaluronan on cancer remains unclear. Our findings support the safety of orally administered hyaluronan and its use as a functional food ingredient.
Collapse
Affiliation(s)
- Satoshi Seino
- Div. of Molecular and Cellular Medicine, Natl. Cancer Center Research Inst, 5-1-1, Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan; Research & Development Div, Kewpie Corp., 2-5-7, Sengawa-cho, Chofu-shi, Tokyo, 182-0002, Japan
| | | | | | | | | | | |
Collapse
|
43
|
Yalniz-Akkaya Z, Ustun H, Ozkan Uney G, Burcu A, Ornek F. Subconjunctival amniotic membrane free graft in rabbit eyes: effects on fibrovascular reaction. J Fr Ophtalmol 2014; 37:358-64. [PMID: 24704043 DOI: 10.1016/j.jfo.2013.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Revised: 09/19/2013] [Accepted: 09/25/2013] [Indexed: 10/25/2022]
Abstract
PURPOSE The purpose of our study is to investigate the effect of subconjunctival amniotic membrane free graft on subconjunctival fibrovascular reaction. METHODS Twelve healthy male white New Zealand rabbits were used for the study. The rabbits were divided randomly into two groups: Study Group (n=6) and Control Group (n=6). In the Study Group, a 4mm limbal incision was made and a 4×4mm subconjunctival pocket was created with blunt dissection. A 4×4mm single layer of free amniotic membrane was placed in the pocket in an epithelium-up fashion without suturing. The limbal opening was secured with 10-0 nylon sutures on both sides. In the Control Group, a 4mm limbal incision was made, a 4×4mm subconjunctival pocket was created with blunt dissection, and the limbal opening was closed with 10-0 nylon sutures on both sides. After the first month, sclero-conjunctival blocks were obtained from the operated area and sections were stained with hematoxylin and eosin, Masson trichrome, and Ki67, SMA and CD34 antibodies. RESULTS The number of fibroblasts, lymphocytes and macrophages was significantly higher in the Study Group than in the Control Group. The number of Ki67- and SMA-positive cells, and CD34-positive vessels was also significantly higher in the Study Group. Amniotic membrane appeared to form folds in all the specimens. CONCLUSION The higher fibrovascular reaction shown by our histopathological examination indicates that free human amniotic membrane grafting without suturing is not useful in decreasing the subconjunctival fibrovascular reaction at the first postoperative month in rabbit eyes.
Collapse
Affiliation(s)
- Z Yalniz-Akkaya
- Ankara training and research hospital, department of ophthalmology, Sukriye Mah, Ulucanlar Cad, No. 89, Altindag, Ankara, Turkey.
| | - H Ustun
- Kafkas university, school of medicine, department of pathology, Bülbül Mahallesi Kombine Yolu Üzeri Merkez Kars, 36000 Kars, Turkey
| | - G Ozkan Uney
- Ankara training and research hospital, department of ophthalmology, Sukriye Mah, Ulucanlar Cad, No. 89, Altindag, Ankara, Turkey
| | - A Burcu
- Ankara training and research hospital, department of ophthalmology, Sukriye Mah, Ulucanlar Cad, No. 89, Altindag, Ankara, Turkey
| | - F Ornek
- Ankara training and research hospital, department of ophthalmology, Sukriye Mah, Ulucanlar Cad, No. 89, Altindag, Ankara, Turkey
| |
Collapse
|
44
|
Zhang S, Zhu YT, Chen SY, He H, Tseng SCG. Constitutive expression of pentraxin 3 (PTX3) protein by human amniotic membrane cells leads to formation of the heavy chain (HC)-hyaluronan (HA)-PTX3 complex. J Biol Chem 2014; 289:13531-42. [PMID: 24652286 DOI: 10.1074/jbc.m113.525287] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Heavy chain (HC)-hyaluronan (HA), a complex formed by the covalent linkage between HC1 from the inter-α-trypsin inhibitor (IαI) and HA, purified from the human amniotic membrane (AM), is responsible for the anti-inflammatory, antiscarring, and antiangiogenic actions of the AM. This HC-HA complex is produced by constitutive expression of TNF-stimulated gene 6 and endogenous production of IαI by AM cells. Pentraxin 3 (PTX3), a prototypic long pentraxin that plays a non-redundant role in innate immunity against selected pathogens, also helps stabilize HC-HA to ensure female fertility. Here we noted strong positive PTX3 staining in the AM epithelium and compact stroma. PTX3 was constitutively expressed and secreted by cultured AM epithelial and stromal cells and, further, greatly up-regulated by TNF and IL-1β. Using an agarose overlay to trap the HA-containing matrix, the HC-HA-PTX3 complex was formed, as analyzed by Western blot analysis, by AM cells but not human skin fibroblasts, despite being cultured in the presence of serum and TNF. However, exogenous PTX3 helps human skin fibroblasts form the HC-HA-PTX3 complex with an agarose overlay. Furthermore, PTX3 can be coimmunoprecipitated with the HC-HA complex from agarose-overlaid AM cell extracts by an anti-human IαI antibody. Such a HC-HA-PTX3 complex can be reconstituted in vitro and exhibit similar effects as those reported for AM HC-HA-PTX3 on polarization of M2 macrophages. The tight binding between PTX3 and AM HC-HA withstands four runs of CsCl ultracentrifugation in the presence of 4 m GnHCl. These results indicate that PTX3 is constitutively expressed and secreted by AM cells as an integral component of the AM HC-HA-PTX3 complex and contributes to the biological function of AM HC-HA-PTX3.
Collapse
|
45
|
He H, Tan Y, Duffort S, Perez VL, Tseng SCG. In vivo downregulation of innate and adaptive immune responses in corneal allograft rejection by HC-HA/PTX3 complex purified from amniotic membrane. Invest Ophthalmol Vis Sci 2014; 55:1647-56. [PMID: 24519420 DOI: 10.1167/iovs.13-13094] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
PURPOSE Heavy chain-hyaluronic acid (HC-HA)/PTX3 purified from human amniotic membrane (AM) was previously observed to suppress inflammatory responses in vitro. We now examine whether HC-HA/PTX3 is able to exert a similar effect in vivo, using murine models for keratitis and corneal allograft rejection. METHODS The in vitro effect of HC-HA/PTX3 was tested using OTII ovalbumin (OVA) transgenic, purified CD4(+) T cells, or IFN-γ/lipopolysaccharide (LPS)-stimulated RAW264.7 cells. Cytokine production was measured by ELISA, while cell surface markers and cell proliferation were determined by flow cytometry. In vivo effects of HC-HA/PTX3 were analyzed by quantifying the recruitment of enhanced green fluorescence-labeled macrophages and by measuring the expression of arginase 1 (Arg-1), IL-10, and IL-12 in LPS-induced keratitis in the macrophage Fas-induced apoptosis (Mafia) mouse. The effect of corneal allograft survival in a complete major histocompatibility complex (MHC) mismatched mouse model was assessed by grading corneal opacification. RESULTS In vitro studies demonstrated that HC-HA/PTX3 significantly enhanced the expansion of FOXP3 T cells and suppressed cell proliferation and protein expression of IFN-γ, IL-2, CD25, and CD69 in activated CD4(+) T cells. Furthermore, immobilized HC-HA/PTX3 significantly upregulated IL-10 gene expression but downregulated that of IL-12 and IL-23 in activated RAW264.7 cells. Finally, in vivo subconjunctival injection of HC-HA/PTX3 significantly prolonged corneal allograft survival, suppressed macrophage infiltration, and promoted M2 polarization by upregulating Arg-1 and IL-10 but downregulating IL-12. CONCLUSIONS HC-HA/PTX3 can suppress inflammatory responses in vivo by modulating both innate and adaptive immunity of macrophages and CD4(+) T cells.
Collapse
Affiliation(s)
- Hua He
- TissueTech, Inc., Miami, Florida
| | | | | | | | | |
Collapse
|
46
|
Petrey AC, de la Motte CA. Hyaluronan, a crucial regulator of inflammation. Front Immunol 2014; 5:101. [PMID: 24653726 PMCID: PMC3949149 DOI: 10.3389/fimmu.2014.00101] [Citation(s) in RCA: 339] [Impact Index Per Article: 33.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Accepted: 02/25/2014] [Indexed: 12/30/2022] Open
Abstract
Hyaluronan (HA), a major component of the extracellular matrix (ECM), plays a key role in regulating inflammation. Inflammation is associated with accumulation and turnover of HA polymers by multiple cell types. Increasingly through the years, HA has become recognized as an active participant in inflammatory, angiogenic, fibrotic, and cancer promoting processes. HA and its binding proteins regulate the expression of inflammatory genes, the recruitment of inflammatory cells, the release of inflammatory cytokines, and can attenuate the course of inflammation, providing protection against tissue damage. A growing body of evidence suggests the cell responses are HA molecular weight dependent. HA fragments generated by multiple mechanisms throughout the course of inflammatory pathologies, elicit cellular responses distinct from intact HA. This review focuses on the role of HA in the promotion and resolution of inflammation.
Collapse
Affiliation(s)
- Aaron C Petrey
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic Foundation , Cleveland, OH , USA
| | - Carol A de la Motte
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic Foundation , Cleveland, OH , USA
| |
Collapse
|
47
|
Opposing effect of amniotic membrane on angiogenesis originating from amniotic epithelial cells. JOURNAL OF MEDICAL HYPOTHESES AND IDEAS 2014. [DOI: 10.1016/j.jmhi.2013.08.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
48
|
Cirman T, Beltram M, Schollmayer P, Rožman P, Kreft ME. Amniotic membrane properties and current practice of amniotic membrane use in ophthalmology in Slovenia. Cell Tissue Bank 2013; 15:177-92. [PMID: 24352631 DOI: 10.1007/s10561-013-9417-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Accepted: 12/12/2013] [Indexed: 01/01/2023]
Abstract
Amniotic membrane (AM) is the innermost, multilayered part of the placenta. When harvested, processed and stored properly, its properties, stemming from AM biological composition, make it a useful tissue for ophthalmic surgery. AM was shown to have several beneficial effects: it promotes epithelization, has antimicrobial effects, decreases inflammation, fibrosis and neovascularization. Many case reports and case series as well as practical experience (e.g. reconstruction of conjunctival and corneal defects, treatment of corneal ulcers) demonstrated the beneficial effect of AM for different ophthalmological indications. The combination of the above mentioned beneficial effects and reasonable mechanical properties are also the reason why AM is used as a substrate for ex vivo expansion of epithelial progenitor cells. Recently, amnion-derived cells, which also have stem cell characteristics, have been proposed as potential contributors to cell-based treatment of ocular surface disease. However, the use of AM remains one of the least standardized methods in ophthalmic surgery. In this review, the various properties of AM and its current clinical use in ophthalmology in Slovenia are discussed.
Collapse
Affiliation(s)
- Tina Cirman
- Blood Transfusion Centre of Slovenia, Ljubljana, Slovenia
| | | | | | | | | |
Collapse
|
49
|
He H, Zhang S, Tighe S, Son J, Tseng SCG. Immobilized heavy chain-hyaluronic acid polarizes lipopolysaccharide-activated macrophages toward M2 phenotype. J Biol Chem 2013; 288:25792-25803. [PMID: 23878196 DOI: 10.1074/jbc.m113.479584] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Despite the known anti-inflammatory effect of amniotic membrane, its action mechanism remains largely unknown. HC-HA complex (HC-HA) purified from human amniotic membrane consists of high molecular weight hyaluronic acid (HA) covalently linked to the heavy chain (HC) 1 of inter-α-trypsin inhibitor. In this study, we show that soluble HC-HA also contained pentraxin 3 and induced the apoptosis of both formyl-Met-Leu-Phe or LPS-activated neutrophils and LPS-activated macrophages while not affecting the resting cells. This enhanced apoptosis was caused by the inhibition of cell adhesion, spreading, and proliferation caused by HC-HA binding of LPS-activated macrophages and preventing adhesion to the plastic surface. Preferentially, soluble HC-HA promoted phagocytosis of apoptotic neutrophils in resting macrophages, whereas immobilized HC-HA promoted phagocytosis in LPS-activated macrophages. Upon concomitant LPS stimulation, immobilized HC-HA but not HA polarized macrophages toward the M2 phenotype by down-regulating IRF5 protein and preventing its nuclear localization and by down-regulating IL-12, TNF-α, and NO synthase 2. Additionally, IL-10, TGF-β1, peroxisome proliferator-activated receptor γ, LIGHT (TNF superfamily 14), and sphingosine kinase-1 were up-regulated, and such M2 polarization was dependent on TLR ligation. Collectively, these data suggest that HC-HA is a unique matrix component different from HA and uses multiple mechanisms to suppress M1 while promoting M2 phenotype. This anti-inflammatory action of HC-HA is highly desirable to promote wound healing in diseases heightened by unsuccessful transition from M1 to M2 phenotypes.
Collapse
Affiliation(s)
| | | | | | - Ji Son
- the Ocular Surface Research Education Foundation, and
| | - Scheffer C G Tseng
- From the TissueTech, Inc.,; the Ocular Surface Research Education Foundation, and; the Ocular Surface Center, Miami, Florida 33173.
| |
Collapse
|
50
|
Side dependent effects of the human amnion on angiogenesis. Placenta 2013; 34:340-5. [PMID: 23465536 DOI: 10.1016/j.placenta.2013.02.001] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2012] [Revised: 01/29/2013] [Accepted: 02/04/2013] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Amnion (AM), the innermost layer of human placenta, has a variety of functions such as capability to reduce scarring and inflammation, as well as anti-microbial and immunoregulatory properties. However, there are challenging reports about angiogenic and anti-angiogenic effects of the AM. The aim of this study was to evaluate whether the angiogenesis is dependent on epithelial or mesenchymal sides of this membrane. METHODS Dorsal skinfold chamber model was performed on male rats. A layer of dorsal skin of rats was removed and the AM was implanted in either epithelial side up or mesenchymal side up position. Intra-vital microscopy was done one week after tissue transplantation. In vitro evaluation of angiogenesis was also performed using rat aortic ring assay on the AM. RESULTS The number of vessel sprouts and their lengths were increased more significantly in epithelial side up group comparing to the control group. Inhibitory effect of epithelial side of the AM on angiogenesis was clearly seen in mesenchymal side up group. Both number and length of sprouts in mesenchymal up group were decreased in comparison to epithelial side up group. In aortic ring assay, angiogenesis was detected on the AM after removal of the amniotic epithelial cells. DISCUSSION & CONCLUSION This study showed that the AM has both angiogenic and anti-angiogenic properties, which is surface dependent. Therefore, the AM can have a vast application in both ischemic organs through inducing angiogenesis and pathological situations such as cancer in which angiogenesis must be inhibited.
Collapse
|