1
|
Haque A, Trager NNM, Butler JT, Das A, Zaman V, Banik NL. A novel combination approach to effectively reduce inflammation and neurodegeneration in multiple sclerosis models. Neurochem Int 2024; 175:105697. [PMID: 38364938 PMCID: PMC10994736 DOI: 10.1016/j.neuint.2024.105697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 02/10/2024] [Accepted: 02/12/2024] [Indexed: 02/18/2024]
Abstract
Multiple sclerosis (MS) is an autoimmune disease characterized by immune-mediated attacks on the central nervous system (CNS), resulting in demyelination and recurring T-cell responses. Unfortunately, there is no cure for it. Current therapies that target immunomodulation and/or immunosuppression show only modest beneficial effects, have many side effects, and do not block neurodegeneration or progression of the disease. Since neurodegeneration and in particular axonal degeneration is implicated in disability in progressive MS, development of novel therapeutic strategies to attenuate the neurodegenerative processes is imperative. This study aims to develop new safe and efficacious treatments that address both the inflammatory and neurodegenerative aspects of MS using its animal model, experimental allergic encephalomyelitis (EAE). In EAE, the cysteine protease calpain is upregulated in CNS tissue, and its activity correlates with neurodegeneration. Our immunologic studies on MS have indicated that increased calpain activity promotes pro-inflammatory T helper (Th)1 cells and the severity of the disease in EAE, suggesting that calpain inhibition could be a novel target to combat neurodegeneration in MS/EAE. While calpain inhibition by SNJ1945 reduced disease severity, treatment of EAE animals with a novel protease-resistant altered small peptide ligand (3aza-APL) that mimic myelin basic protein (MBP), also decreased the incidence of EAE, disease severity, infiltration of inflammatory cells, and protected myelin. A reduction in inflammatory T-cells with an increase in Tregs and myeloid suppressor cells is also found in EAE mice treated with SNJ1945 and 3aza-APL. Thus, a novel combination strategy was tested in chronic EAE mouse model in B10 mice which showed multiple pathological mechanisms could be addressed by simultaneous treatment with calpain inhibitor SNJ1945 and protease-resistant 3aza-APL to achieve a stronger therapeutic effect.
Collapse
Affiliation(s)
- Azizul Haque
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, 29425, USA; Department of Neurosurgery, Medical University of South Carolina, Charleston, SC, 29425, USA; Ralph H. Johnson Veterans Administration Medical Center, Charleston, SC, 29401, USA.
| | - Nicole N M Trager
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, 29425, USA; Department of Neurosurgery, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Jonathan T Butler
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Arabinda Das
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Vandana Zaman
- Department of Neurosurgery, Medical University of South Carolina, Charleston, SC, 29425, USA; Ralph H. Johnson Veterans Administration Medical Center, Charleston, SC, 29401, USA
| | - Naren L Banik
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, 29425, USA; Department of Neurosurgery, Medical University of South Carolina, Charleston, SC, 29425, USA; Ralph H. Johnson Veterans Administration Medical Center, Charleston, SC, 29401, USA.
| |
Collapse
|
2
|
Karimkhani H, Shojaolsadati P, Yiğitbaşı T, Kolbası B, Emekli N. The effect of calpain inhibitor-I on copper oxide nanoparticle-induced damage and cerebral ischemia-reperfusion in a rat model. Biomed Pharmacother 2024; 174:116539. [PMID: 38615610 DOI: 10.1016/j.biopha.2024.116539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 03/18/2024] [Accepted: 03/29/2024] [Indexed: 04/16/2024] Open
Abstract
This study aimed to investigate the effects of the calpain inhibitor N-Acetyl-Leu-Leu-norleucinal (ALLN) on neuroapoptotic cell damage caused by Copper Oxide Nanoparticles (CuO-NP) and exacerbation of damage through brain ischemia/reperfusion (I/R) in a rat model. Male Wistar Albino rats (n=80) were divided into eight groups: Control, I/R, CuO-NP, CuO-NP+I/R, I/R+ALLN, CuO-NP+ALLN, CuO-NP+I/R+ALLN, and DMSO. Biochemical markers (MBP, S100B, NEFL, NSE, BCL-2, Cyt-C, Calpain, TNF-α, Caspase-3, MDA, and CAT) were measured in serum and brain tissue samples. Histological examinations (H&E staining), DNA fragmentation analysis (TUNEL) were performed, along with Caspase-3 assessment. The ALLN-treated groups exhibited significant improvements in biochemical markers and a remarkable reduction in apoptosis compared to the damaged groups (CuO-NP and I/R). H&E and Caspase-3 staining revealed damage-related morphological changes and reduced apoptosis in the ALLN-treated group. However, no differences were observed among the groups with TUNEL staining. The findings suggest that ALLN, as a calpain inhibitor, has potential implications for anti-apoptotic treatment, specifically in mitigating neuroapoptotic cell damage caused by CuO-NP and I/R.
Collapse
Affiliation(s)
- Hadi Karimkhani
- Department of Biochemistry, School of Medicine, Istanbul Okan University, Istanbul, Turkey; Department of Stem Cell, School of Medicine, Eskisehir Osmangazi University, Eskisehir, Turkey.
| | - Paria Shojaolsadati
- Department of Anatomy, School of Medicine, Yeditepe University, Istanbul, Turkey
| | - Türkan Yiğitbaşı
- Department of Biochemistry, School of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Bircan Kolbası
- Department of Histology and Embryology, School of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Neslin Emekli
- Department of Biochemistry, School of Medicine, Istanbul Medipol University, Istanbul, Turkey
| |
Collapse
|
3
|
Del Negro I, Pauletto G, Verriello L, Spadea L, Salati C, Ius T, Zeppieri M. Uncovering the Genetics and Physiology behind Optic Neuritis. Genes (Basel) 2023; 14:2192. [PMID: 38137014 PMCID: PMC10742654 DOI: 10.3390/genes14122192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/06/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
Optic neuritis (ON) is an inflammatory condition affecting the optic nerve, leading to vision impairment and potential vision loss. This manuscript aims to provide a comprehensive review of the current understanding of ON, including its definition, epidemiology, physiology, genetics, molecular pathways, therapy, ongoing clinical studies, and future perspectives. ON is characterized by inflammation of the optic nerve, often resulting from an autoimmune response. Epidemiological studies have shown a higher incidence in females and an association with certain genetic factors. The physiology of ON involves an immune-mediated attack on the myelin sheath surrounding the optic nerve, leading to demyelination and subsequent impairment of nerve signal transmission. This inflammatory process involves various molecular pathways, including the activation of immune cells and the release of pro-inflammatory cytokines. Genetic factors play a significant role in the susceptibility to ON. Several genes involved in immune regulation and myelin maintenance have been implicated in the disease pathogenesis. Understanding the genetic basis can provide insights into disease mechanisms and potential therapeutic targets. Therapy for ON focuses on reducing inflammation and promoting nerve regeneration. Future perspectives involve personalized medicine approaches based on genetic profiling, regenerative therapies to repair damaged myelin, and the development of neuroprotective strategies. Advancements in understanding molecular pathways, genetics, and diagnostic tools offer new opportunities for targeted therapies and improved patient outcomes in the future.
Collapse
Affiliation(s)
- Ilaria Del Negro
- Clinical Neurology Unit, Head-Neck and Neurosciences Department, Santa Maria della Misericordia University Hospital, 33100 Udine, Italy;
| | - Giada Pauletto
- Neurology Unit, Head-Neck and Neurosciences Department, Santa Maria della Misericordia University Hospital, 33100 Udine, Italy; (G.P.)
| | - Lorenzo Verriello
- Neurology Unit, Head-Neck and Neurosciences Department, Santa Maria della Misericordia University Hospital, 33100 Udine, Italy; (G.P.)
| | - Leopoldo Spadea
- Eye Clinic, Policlinico Umberto I, “Sapienza” University of Rome, 00142 Rome, Italy
| | - Carlo Salati
- Department of Ophthalmology, Head-Neck and Neurosciences Department, Santa Maria della Misericordia University Hospital, 33100 Udine, Italy
| | - Tamara Ius
- Neurosurgery Unit, Head-Neck and Neurosciences Department, Santa Maria della Misericordia University Hospital of Udine, 33100 Udine, Italy
| | - Marco Zeppieri
- Department of Ophthalmology, Head-Neck and Neurosciences Department, Santa Maria della Misericordia University Hospital, 33100 Udine, Italy
| |
Collapse
|
4
|
Duncan GJ, Simkins TJ, Emery B. Neuron-Oligodendrocyte Interactions in the Structure and Integrity of Axons. Front Cell Dev Biol 2021; 9:653101. [PMID: 33763430 PMCID: PMC7982542 DOI: 10.3389/fcell.2021.653101] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 02/15/2021] [Indexed: 12/12/2022] Open
Abstract
The myelination of axons by oligodendrocytes is a highly complex cell-to-cell interaction. Oligodendrocytes and axons have a reciprocal signaling relationship in which oligodendrocytes receive cues from axons that direct their myelination, and oligodendrocytes subsequently shape axonal structure and conduction. Oligodendrocytes are necessary for the maturation of excitatory domains on the axon including nodes of Ranvier, help buffer potassium, and support neuronal energy metabolism. Disruption of the oligodendrocyte-axon unit in traumatic injuries, Alzheimer's disease and demyelinating diseases such as multiple sclerosis results in axonal dysfunction and can culminate in neurodegeneration. In this review, we discuss the mechanisms by which demyelination and loss of oligodendrocytes compromise axons. We highlight the intra-axonal cascades initiated by demyelination that can result in irreversible axonal damage. Both the restoration of oligodendrocyte myelination or neuroprotective therapies targeting these intra-axonal cascades are likely to have therapeutic potential in disorders in which oligodendrocyte support of axons is disrupted.
Collapse
Affiliation(s)
- Greg J. Duncan
- Jungers Center for Neurosciences Research, Department of Neurology, Oregon Health & Science University, Portland, OR, United States
| | - Tyrell J. Simkins
- Jungers Center for Neurosciences Research, Department of Neurology, Oregon Health & Science University, Portland, OR, United States
- Vollum Institute, Oregon Health & Science University, Portland, OR, United States
- Department of Neurology, VA Portland Health Care System, Portland, OR, United States
| | - Ben Emery
- Jungers Center for Neurosciences Research, Department of Neurology, Oregon Health & Science University, Portland, OR, United States
| |
Collapse
|
5
|
Sekyi MT, Lauderdale K, Atkinson KC, Golestany B, Karim H, Feri M, Soto JS, Diaz C, Kim SH, Cilluffo M, Nusinowitz S, Katzenellenbogen JA, Tiwari‐Woodruff SK. Alleviation of extensive visual pathway dysfunction by a remyelinating drug in a chronic mouse model of multiple sclerosis. Brain Pathol 2021; 31:312-332. [PMID: 33368801 PMCID: PMC8018057 DOI: 10.1111/bpa.12930] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 12/09/2020] [Accepted: 12/11/2020] [Indexed: 11/30/2022] Open
Abstract
Visual deficits are among the most prevalent symptoms in patients with multiple sclerosis (MS). To understand deficits in the visual pathway during MS and potential treatment effects, we used experimental autoimmune encephalomyelitis (EAE), the most commonly used animal model of MS. The afferent visual pathway was assessed in vivo using optical coherence tomography (OCT), electroretinography (ERG), and visually evoked cortical potentials (VEPs). Inflammation, demyelination, and neurodegeneration were examined by immunohistochemistry ex vivo. In addition, an immunomodulatory, remyelinating agent, the estrogen receptor β ligand chloroindazole (IndCl), was tested for its therapeutic potential in the visual pathway. EAE produced functional deficits in visual system electrophysiology, including suppression of ERG and VEP waveform amplitudes and increased signal latencies. Therapeutic IndCl rescued overall visual system latency by VEP but had little impact on amplitude or ERG findings relative to vehicle. Faster VEP conduction in IndCl-treated mice was associated with enhanced myelin basic protein signal in all visual system structures examined. IndCl preserved retinal ganglion cells (RGCs) and oligodendrocyte density in the prechiasmatic white matter, but similar retinal nerve fiber layer thinning by OCT was noted in vehicle and IndCl-treated mice. Although IndCl differentially attenuated leukocyte and astrocyte staining signal throughout the structures analyzed, axolemmal varicosities were observed in all visual fiber tracts of mice with EAE irrespective of treatment, suggesting impaired axonal energy homeostasis. These data support incomplete functional recovery of VEP amplitude with IndCl, as fiber tracts displayed persistent axon pathology despite remyelination-induced decreases in latencies, evidenced by reduced optic nerve g-ratio in IndCl-treated mice. Although additional studies are required, these findings demonstrate the dynamics of visual pathway dysfunction and disability during EAE, along with the importance of early treatment to mitigate EAE-induced axon damage.
Collapse
Affiliation(s)
- Maria T. Sekyi
- Division of Biomedical SciencesRiverside School of MedicineUniversity of CaliforniaRiversideCAUSA
- Department of BioengineeringRiverside Bourns School of EngineeringUniversity of CaliforniaRiversideCAUSA
| | - Kelli Lauderdale
- Division of Biomedical SciencesRiverside School of MedicineUniversity of CaliforniaRiversideCAUSA
| | - Kelley C. Atkinson
- Division of Biomedical SciencesRiverside School of MedicineUniversity of CaliforniaRiversideCAUSA
| | - Batis Golestany
- Division of Biomedical SciencesRiverside School of MedicineUniversity of CaliforniaRiversideCAUSA
| | - Hawra Karim
- Division of Biomedical SciencesRiverside School of MedicineUniversity of CaliforniaRiversideCAUSA
| | - Micah Feri
- Division of Biomedical SciencesRiverside School of MedicineUniversity of CaliforniaRiversideCAUSA
| | - Joselyn S. Soto
- Division of Biomedical SciencesRiverside School of MedicineUniversity of CaliforniaRiversideCAUSA
| | - Cobi Diaz
- Division of Biomedical SciencesRiverside School of MedicineUniversity of CaliforniaRiversideCAUSA
| | - Sung Hoon Kim
- Department of Chemistry and Cancer CenterUniversity of Illinois at Urbana‐ChampaignUrbanaILUSA
| | - Marianne Cilluffo
- BRI Electron Microscopy LaboratoryLos Angeles School of MedicineUniversity of CaliforniaLos AngelesCAUSA
| | - Steven Nusinowitz
- Stein Eye InstituteLos Angeles School of MedicineUniversity of CaliforniaLos AngelesCAUSA
| | | | - Seema K. Tiwari‐Woodruff
- Division of Biomedical SciencesRiverside School of MedicineUniversity of CaliforniaRiversideCAUSA
| |
Collapse
|
6
|
Polcyn R, Capone M, Matzelle D, Lueking B, Walker A, Kau E, Haque A, Banik N. Cytokine/chemokine dysregulation in progressive MS patient is apparent and can be modulated by calpain inhibition. Metab Brain Dis 2020; 35:255-261. [PMID: 31853829 PMCID: PMC9773329 DOI: 10.1007/s11011-019-00521-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 11/21/2019] [Indexed: 12/24/2022]
Abstract
This study examines the cytokine/chemokine profile of a 62-year-old African American male with progressive multiple sclerosis (MS). MRI images of the MS patient demonstrated generalized white matter involvement with multiple lesions in the periventricular area. A 42-plex Discovery Assay® (Eve Technologies) of the patient's plasma and peripheral blood mononuclear cells (PBMCs) supernatant or PBMC-derived T cell supernatant samples from two separate clinic visits revealed vastly differing cytokine/chemokine levels. In addition, certain cytokine/chemokine profiles had notable differences when compared to the larger patient group or patients' PBMCs treated with a calpain inhibitor in vitro. Interestingly, large numbers of cytokines/chemokines and growth factors in MS PBMCs are modulated by calpain inhibition, suggesting the clinical significance of these findings in designing better therapeutics against progressive MS.
Collapse
Affiliation(s)
- Rachel Polcyn
- Department of Microbiology and Immunology, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
| | - Mollie Capone
- Department of Microbiology and Immunology, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
- Department of Neurosurgery, Medical University of South Carolina, 96 Jonathan Lucas St, MSC606, Charleston, SC, 29425, USA
| | - Denise Matzelle
- Department of Neurosurgery, Medical University of South Carolina, 96 Jonathan Lucas St, MSC606, Charleston, SC, 29425, USA
- Ralph H. Johnson Veterans Administration Medical Center, Charleston, SC, USA
| | - Brittany Lueking
- Department of Neurology, Medical University of South Carolina, Charleston, SC, USA
| | - Aljoeson Walker
- Ralph H. Johnson Veterans Administration Medical Center, Charleston, SC, USA
- Department of Neurology, Medical University of South Carolina, Charleston, SC, USA
- Department of ophthalmology, Medical University of South Carolina, Charleston, SC, USA
| | - Elizabeth Kau
- Ralph H. Johnson Veterans Administration Medical Center, Charleston, SC, USA
| | - Azizul Haque
- Department of Microbiology and Immunology, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA.
| | - Naren Banik
- Department of Microbiology and Immunology, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA.
- Department of Neurosurgery, Medical University of South Carolina, 96 Jonathan Lucas St, MSC606, Charleston, SC, 29425, USA.
- Ralph H. Johnson Veterans Administration Medical Center, Charleston, SC, USA.
| |
Collapse
|
7
|
Wert KJ, Koch SF, Velez G, Hsu CW, Mahajan M, Bassuk AG, Tsang SH, Mahajan VB. CAPN5 genetic inactivation phenotype supports therapeutic inhibition trials. Hum Mutat 2019; 40:2377-2392. [PMID: 31403230 DOI: 10.1002/humu.23894] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 07/20/2019] [Accepted: 08/09/2019] [Indexed: 01/08/2023]
Abstract
Small molecule pharmacological inhibition of dominant human genetic disease is a feasible treatment that does not rely on the development of individual, patient-specific gene therapy vectors. However, the consequences of protein inhibition as a clinical therapeutic are not well-studied. In advance of human therapeutic trials for CAPN5 vitreoretinopathy, genetic inactivation can be used to infer the effect of protein inhibition in vivo. We created a photoreceptor-specific knockout (KO) mouse for Capn5 and compared the retinal phenotype to both wild-type and an existing Capn5 KO mouse model. In humans, CAPN5 loss-of-function (LOF) gene variants were ascertained in large exome databases from 60,706 unrelated subjects without severe disease phenotypes. Ocular examination of the retina of Capn5 KO mice by histology and electroretinography showed no significant abnormalities. In humans, there were 22 LOF CAPN5 variants located throughout the gene and in all major protein domains. Structural modeling of coding variants showed these LOF variants were nearby known disease-causing variants within the proteolytic core and in regions of high homology between human CAPN5 and 150 homologs, yet the LOF of CAPN5 was tolerated as opposed to gain-of-function disease-causing variants. These results indicate that localized inhibition of CAPN5 is a viable strategy for hyperactivating disease alleles.
Collapse
Affiliation(s)
- Katherine J Wert
- Omics Laboratory, Byers Eye Institute, Department of Ophthalmology, Stanford University, Palo Alto, California
| | - Susanne F Koch
- Department of Physiological Genomics, Biomedical Center, Ludwig Maximillian University, Munich, Germany
| | - Gabriel Velez
- Omics Laboratory, Byers Eye Institute, Department of Ophthalmology, Stanford University, Palo Alto, California.,Department of Ophthalmology, Medical Scientist Training Program, University of Iowa, Iowa City, Iowa
| | - Chun-Wei Hsu
- Department of Ophthalmology, Edward S. Harkness Eye Institute, New York Presbyterian Hospital, New York, New York.,Departments of Ophthalmology, Pathology, and Cell Biology, Jonas Children's Vision Care and Bernard and Shirlee Brown Glaucoma Laboratory, Institute of Human Nutrition, College of Physicians and Surgeons, Columbia Stem Cell Initiative (CSCI), Columbia University, New York, New York
| | - MaryAnn Mahajan
- Omics Laboratory, Byers Eye Institute, Department of Ophthalmology, Stanford University, Palo Alto, California
| | | | - Stephen H Tsang
- Department of Ophthalmology, Edward S. Harkness Eye Institute, New York Presbyterian Hospital, New York, New York.,Departments of Ophthalmology, Pathology, and Cell Biology, Jonas Children's Vision Care and Bernard and Shirlee Brown Glaucoma Laboratory, Institute of Human Nutrition, College of Physicians and Surgeons, Columbia Stem Cell Initiative (CSCI), Columbia University, New York, New York
| | - Vinit B Mahajan
- Omics Laboratory, Byers Eye Institute, Department of Ophthalmology, Stanford University, Palo Alto, California.,Department of Ophthalmology, Veterans Affairs, Palo Alto Health Care System, Palo Alto, California
| |
Collapse
|
8
|
Multiple molecular pathways stimulating macroautophagy protect from alpha-synuclein-induced toxicity in human neurons. Neuropharmacology 2019; 149:13-26. [DOI: 10.1016/j.neuropharm.2019.01.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 01/16/2019] [Accepted: 01/20/2019] [Indexed: 12/16/2022]
|
9
|
Liu Q, Li H, Yang J, Niu X, Zhao C, Zhao L, Wang Z. Valproic acid attenuates inflammation of optic nerve and apoptosis of retinal ganglion cells in a rat model of optic neuritis. Biomed Pharmacother 2017; 96:1363-1370. [PMID: 29198746 DOI: 10.1016/j.biopha.2017.11.066] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Revised: 11/04/2017] [Accepted: 11/10/2017] [Indexed: 11/29/2022] Open
Abstract
AIMS Optic neuritis (ON) is an inflammatory disease of the optic nerve, which often occurs in patients with multiple sclerosis (MS) and leads to retinal ganglion cell (RGC) death and even severe visual loss. Valproic acid (VPA) is a short-chain branched fatty acid with anti-epileptic, neuro-protective and anti-inflammatory effects. Here, we examined the effects of VPA in experimental autoimmune encephalomyelitis (EAE) rats and explored the underlying mechanisms. MAIN METHODS EAE was induced by subcutaneous injection with myelin basic protein, emulsified with complete Freund's adjuvant and Mycobacterium tuberculosis H37Ra into the Lewis rats. Subsequently, animals in the VPA groups were treated orally with VPA (250 or 500 mg/kg) once a day for 13 days. KEY FINDINGS VPA treatment significantly attenuated inflammation and microgliosis in optic nerve in EAE-ON rats, as evidenced by the decrease in the mRNA levels of interferon (INF)-γ, tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-17, and inducible nitric oxide synthase (iNOS), the suppression in nuclear factor (NF)-κB signal pathway as well as the down-regulation of CD11b expression in optic nerve. Additionally, the apoptotic RGCs were remarkably increased in the EAE retina, which was inhibited by VPA treatment. Consistent with the TUNEL staining, VPA administration also obviously suppressed the ratio of Bax: Bcl-2 and the expression of cleaved caspase-3 and PARP in optic nerve in EAE rats. SIGNIFICANCE Our findings demonstrated that VPA treatment could prevent inflammation responses and RGC apoptosis in optic nerve in EAE-ON rats, suggesting that VPA may be available for optic nerve protection during ON.
Collapse
Affiliation(s)
- Qiang Liu
- Neurology Center, The General Hospital of Ningxia Medical University, Yinchuan, Ningxia, 750004, People's Republic of China; Ningxia Key Laboratory of Craniocerebral Diseases, Yinchuan, Ningxia, 750004, People's Republic of China
| | - Haining Li
- Neurology Center, The General Hospital of Ningxia Medical University, Yinchuan, Ningxia, 750004, People's Republic of China; Graduate College, Ningxia Medical University, Yinchuan, Ningxia, 750004, People's Republic of China
| | - Juan Yang
- Neurology Center, The General Hospital of Ningxia Medical University, Yinchuan, Ningxia, 750004, People's Republic of China; Graduate College, Ningxia Medical University, Yinchuan, Ningxia, 750004, People's Republic of China
| | - Xiaoyan Niu
- Neurology Center, The General Hospital of Ningxia Medical University, Yinchuan, Ningxia, 750004, People's Republic of China
| | - Chunmei Zhao
- Neurology Center, The General Hospital of Ningxia Medical University, Yinchuan, Ningxia, 750004, People's Republic of China
| | - Li Zhao
- Neurology Center, The General Hospital of Ningxia Medical University, Yinchuan, Ningxia, 750004, People's Republic of China
| | - Zhenhai Wang
- Neurology Center, The General Hospital of Ningxia Medical University, Yinchuan, Ningxia, 750004, People's Republic of China; Ningxia Key Laboratory of Craniocerebral Diseases, Yinchuan, Ningxia, 750004, People's Republic of China; National Engineering Research Center for Beijing Biochip Technology, Sub-Center in Ningxia, Yinchuan, Ningxia, 750004, People's Republic of China.
| |
Collapse
|
10
|
Benusa SD, George NM, Sword BA, DeVries GH, Dupree JL. Acute neuroinflammation induces AIS structural plasticity in a NOX2-dependent manner. J Neuroinflammation 2017; 14:116. [PMID: 28595650 PMCID: PMC5465457 DOI: 10.1186/s12974-017-0889-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 05/25/2017] [Indexed: 02/08/2023] Open
Abstract
Background Chronic microglia-mediated inflammation and oxidative stress are well-characterized underlying factors in neurodegenerative disease, whereby reactive inflammatory microglia enhance ROS production and impact neuronal integrity. Recently, it has been shown that during chronic inflammation, neuronal integrity is compromised through targeted disruption of the axon initial segment (AIS), the axonal domain critical for action potential initiation. AIS disruption was associated with contact by reactive inflammatory microglia which wrap around the AIS, increasing association with disease progression. While it is clear that chronic microglial inflammation and enhanced ROS production impact neuronal integrity, little is known about how acute microglial inflammation influences AIS stability. Here, we demonstrate that acute neuroinflammation induces AIS structural plasticity in a ROS-mediated and calpain-dependent manner. Methods C57BL/6J and NOX2−/− mice were given a single injection of lipopolysaccharide (LPS; 5 mg/kg) or vehicle (0.9% saline, 10 mL/kg) and analyzed at 6 h–2 weeks post-injection. Anti-inflammatory Didox (250 mg/kg) or vehicle (0.9% saline, 10 mL/kg) was administered beginning 24 h post-LPS injection and continued for 5 days; animals were analyzed 1 week post-injection. Microglial inflammation was assessed using immunohistochemistry (IHC) and RT-qPCR, and AIS integrity was quantitatively analyzed using ankyrinG immunolabeling. Data were statistically compared by one-way or two-way ANOVA where mean differences were significant as assessed using Tukey’s post hoc analysis. Results LPS-induced neuroinflammation, characterized by enhanced microglial inflammation and increased expression of ROS-producing enzymes, altered AIS protein clustering. Importantly, inflammation-induced AIS changes were reversed following resolution of microglial inflammation. Modulation of the inflammatory response using anti-inflammatory Didox, even after significant AIS disruption occurred, increased the rate of AIS recovery. qPCR and IHC analysis revealed that expression of microglial NOX2, a ROS-producing enzyme, was significantly increased correlating with AIS disruption. Furthermore, ablation of NOX2 prevented inflammation-induced AIS plasticity, suggesting that ROS drive AIS structural plasticity. Conclusions In the presence of acute microglial inflammation, the AIS undergoes an adaptive change that is capable of spontaneous recovery. Moreover, recovery can be therapeutically accelerated. Together, these findings underscore the dynamic capabilities of this domain in the presence of a pathological insult and provide evidence that the AIS is a viable therapeutic target.
Collapse
Affiliation(s)
- S D Benusa
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, PO Box 980709, , 1101 East Marshall Street, Richmond, VA, 23298, USA.,Neuroscience Curriculum, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - N M George
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, PO Box 980709, , 1101 East Marshall Street, Richmond, VA, 23298, USA.,Neuroscience Graduate Program, University of Colorado, Denver, CO, 80204, USA
| | - B A Sword
- Research Service 151, Hunter Holmes McGuire Veterans Affairs Medical Center, Department of Veterans Affairs, 1201 Broad Rock Blvd, Richmond, VA, 23249, USA
| | - G H DeVries
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, PO Box 980709, , 1101 East Marshall Street, Richmond, VA, 23298, USA.,Research Service 151, Hunter Holmes McGuire Veterans Affairs Medical Center, Department of Veterans Affairs, 1201 Broad Rock Blvd, Richmond, VA, 23249, USA
| | - J L Dupree
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, PO Box 980709, , 1101 East Marshall Street, Richmond, VA, 23298, USA. .,Research Service 151, Hunter Holmes McGuire Veterans Affairs Medical Center, Department of Veterans Affairs, 1201 Broad Rock Blvd, Richmond, VA, 23249, USA.
| |
Collapse
|
11
|
Yang H, Liu C, Jiang J, Wang Y, Zhang X. Celastrol Attenuates Multiple Sclerosis and Optic Neuritis in an Experimental Autoimmune Encephalomyelitis Model. Front Pharmacol 2017; 8:44. [PMID: 28239352 PMCID: PMC5301323 DOI: 10.3389/fphar.2017.00044] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 01/20/2017] [Indexed: 01/21/2023] Open
Abstract
This study was aimed to evaluate the effects of celastrol, a natural compound with multiple bioactivities, on multiple sclerosis and optic neuritis (ON) in rat experimental autoimmune encephalomyelitis (EAE). EAE was induced in Sprague Dawley rats using myelin basic protein, and the animals received daily intraperitoneal injections of celastrol or vehicle for 13 days. The EAE rats showed abnormal neurobehavior and inflammatory infiltration and demyelination in the spinal cord. Significantly upregulated mRNA expression of pro-inflammatory cytokines interferon-γ and interleukin-17 and downregulated anti-inflammatory cytokines interleukin-4 were found in the spinal cord of EAE rats. In the study of ON, severely inflammatory responses like in the spinal cord were also seen in the optic nerve, as well as obvious microgliosis. Furthermore, activation of nuclear factor kappa-B and upregulated inducible nitric oxide synthase was observed in the optic nerve. In addition, apoptosis of retinal ganglion cells and dysregulation of apoptotic-associated proteins in the optic nerve were found in EAE rats. Treatment of celastrol potently restored these changes. In most of the indexes, the effects of high dose of celastrol were better than the low dose. Our data conclude that administration of celastrol attenuates multiple sclerosis and ON in EAE via anti-inflammatory and anti-apoptotic effects. These findings provide new pre-clinical evidence for the use of celastrol in treatment of multiple sclerosis.
Collapse
Affiliation(s)
- Hongbin Yang
- Department of Ophthalmology, The First Affiliated Hospital of Harbin Medical University Harbin, China
| | - Chang Liu
- Department of Neurology, Harbin Fourth Hospital Harbin, China
| | - Jie Jiang
- Department of Ophthalmology, The First Affiliated Hospital of Harbin Medical University Harbin, China
| | - Yuena Wang
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University Harbin, China
| | - Xiaoyu Zhang
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University Harbin, China
| |
Collapse
|
12
|
Microglia response in retina and optic nerve in chronic experimental autoimmune encephalomyelitis. J Neuroimmunol 2016; 298:32-41. [DOI: 10.1016/j.jneuroim.2016.06.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 06/07/2016] [Accepted: 06/22/2016] [Indexed: 11/19/2022]
|
13
|
Calpain-1 and calpain-2 play opposite roles in retinal ganglion cell degeneration induced by retinal ischemia/reperfusion injury. Neurobiol Dis 2016; 93:121-8. [PMID: 27185592 DOI: 10.1016/j.nbd.2016.05.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 05/04/2016] [Accepted: 05/12/2016] [Indexed: 12/17/2022] Open
Abstract
Calpain has been shown to be involved in neurodegeneration, and in particular in retinal ganglion cell (RGC) death resulting from increased intraocular pressure (IOP) and ischemia. However, the specific roles of the two major calpain isoforms, calpain-1 and calpain-2, in RGC death have not been investigated. Here, we show that calpain-1 and calpain-2 were sequentially activated in RGC dendrites after acute IOP elevation. By combining the use of a selective calpain-2 inhibitor (C2I) and calpain-1 KO mice, we demonstrated that calpain-1 activity supported survival, while calpain-2 activity promoted cell death of RGCs after IOP elevation. Calpain-1 activation cleaved PH domain and leucine-rich repeat protein phosphatase 1 (PHLPP1) and activated the Akt pro-survival pathway, while calpain-2 activation cleaved striatal-enriched protein tyrosine phosphatase (STEP) and activated STEP-mediated pro-death pathway in RGCs after IOP elevation. Systemic or intravitreal C2I injection to wild-type mice 2h after IOP elevation promoted RGC survival and improved visual function. Our data indicate that calpain-1 and calpain-2 play opposite roles in high IOP-induced ischemic injury and that a selective calpain-2 inhibitor could prevent acute glaucoma-induced RGC death and blindness.
Collapse
|
14
|
Retinal Cell Degeneration in Animal Models. Int J Mol Sci 2016; 17:ijms17010110. [PMID: 26784179 PMCID: PMC4730351 DOI: 10.3390/ijms17010110] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 12/25/2015] [Accepted: 01/08/2016] [Indexed: 01/01/2023] Open
Abstract
The aim of this review is to provide an overview of various retinal cell degeneration models in animal induced by chemicals (N-methyl-d-aspartate- and CoCl2-induced), autoimmune (experimental autoimmune encephalomyelitis), mechanical stress (optic nerve crush-induced, light-induced) and ischemia (transient retinal ischemia-induced). The target regions, pathology and proposed mechanism of each model are described in a comparative fashion. Animal models of retinal cell degeneration provide insight into the underlying mechanisms of the disease, and will facilitate the development of novel effective therapeutic drugs to treat retinal cell damage.
Collapse
|
15
|
Wert KJ, Bassuk AG, Wu WH, Gakhar L, Coglan D, Mahajan M, Wu S, Yang J, Lin CS, Tsang SH, Mahajan VB. CAPN5 mutation in hereditary uveitis: the R243L mutation increases calpain catalytic activity and triggers intraocular inflammation in a mouse model. Hum Mol Genet 2015; 24:4584-98. [PMID: 25994508 DOI: 10.1093/hmg/ddv189] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2015] [Accepted: 05/18/2015] [Indexed: 12/21/2022] Open
Abstract
A single amino acid mutation near the active site of the CAPN5 protease was linked to the inherited blinding disorder, autosomal dominant neovascular inflammatory vitreoretinopathy (ADNIV, OMIM #193235). In homology modeling with other calpains, this R243L CAPN5 mutation was situated in a mobile loop that gates substrate access to the calcium-regulated active site. In in vitro activity assays, the mutation increased calpain protease activity and made it far more active at low concentrations of calcium. To test whether the disease allele could yield an animal model of ADNIV, we created transgenic mice expressing human (h) CAPN5(R243L) only in the retina. The resulting hCAPN5(R243L) transgenic mice developed a phenotype consistent with human uveitis and ADNIV, at the clinical, histological and molecular levels. The fundus of hCAPN5(R243L) mice showed enhanced autofluorescence (AF) and pigment changes indicative of reactive retinal pigment epithelial cells and photoreceptor degeneration. Electroretinography showed mutant mouse eyes had a selective loss of the b-wave indicating an inner-retina signaling defect. Histological analysis of mutant mouse eyes showed protein extravasation from dilated vessels into the anterior chamber and vitreous, vitreous inflammation, vitreous and retinal fibrosis and retinal degeneration. Analysis of gene expression changes in the hCAPN5(R243L) mouse retina showed upregulation of several markers, including members of the Toll-like receptor pathway, chemokines and cytokines, indicative of both an innate and adaptive immune response. Since many forms of uveitis share phenotypic characteristics of ADNIV, this mouse offers a model with therapeutic testing utility for ADNIV and uveitis patients.
Collapse
Affiliation(s)
- Katherine J Wert
- Barbara and Donald Jonas Laboratory of Stem Cells and Regenerative Medicine and Bernard and Shirlee Brown Glaucoma Laboratory, Edward S. Harkness Eye Institute, Institute of Human Nutrition, College of Physicians and Surgeons
| | | | - Wen-Hsuan Wu
- Barbara and Donald Jonas Laboratory of Stem Cells and Regenerative Medicine and Bernard and Shirlee Brown Glaucoma Laboratory, Edward S. Harkness Eye Institute
| | - Lokesh Gakhar
- Department of Biochemistry, Protein Crystallography Facility
| | - Diana Coglan
- Omics Laboratory and Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, IA, USA
| | - MaryAnn Mahajan
- Omics Laboratory and Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, IA, USA
| | - Shu Wu
- Department of Pediatrics and Neurology
| | - Jing Yang
- Protein Crystallography Facility, Omics Laboratory and
| | | | - Stephen H Tsang
- Barbara and Donald Jonas Laboratory of Stem Cells and Regenerative Medicine and Bernard and Shirlee Brown Glaucoma Laboratory, Edward S. Harkness Eye Institute, Institute of Human Nutrition, College of Physicians and Surgeons, Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, NY, USA,
| | - Vinit B Mahajan
- Omics Laboratory and Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
16
|
Role of Protease-Inhibitors in Ocular Diseases. Molecules 2014; 19:20557-20569. [PMID: 25493637 PMCID: PMC6271012 DOI: 10.3390/molecules191220557] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2014] [Revised: 12/02/2014] [Accepted: 12/02/2014] [Indexed: 11/25/2022] Open
Abstract
It has been demonstrated that the balance between proteases and protease-inhibitors system plays a key role in maintaining cellular and tissue homeostasis. Indeed, its alteration has been involved in many ocular and systemic diseases. In particular, research has focused on keratoconus, corneal wounds and ulcers, keratitis, endophthalmitis, age-related macular degeneration, Sorsby fundus dystrophy, loss of nerve cells and photoreceptors during optic neuritis both in vivo and in vitro models. Protease-inhibitors have been extensively studied, rather than proteases, because they may represent a therapeutic approach for some ocular diseases. The protease-inhibitors mainly involved in the onset of the above-mentioned ocular pathologies are: α2-macroglobulin, α1-proteinase inhibitor (α1-PI), metalloproteinase inhibitor (TIMP), maspin, SERPINA3K, SERPINB13, secretory leukocyte protease inhibitor (SLPI), and calpeptin. This review is focused on the several characteristics of dysregulation of this system and, particularly, on a possible role of proteases and protease-inhibitors in molecular remodeling that may lead to some ocular diseases. Recently, researchers have even hypothesized a possible therapeutic effect of the protease-inhibitors in the treatment of injured eye in animal models.
Collapse
|
17
|
Nadal-Nicolás FM, Salinas-Navarro M, Jiménez-López M, Sobrado-Calvo P, Villegas-Pérez MP, Vidal-Sanz M, Agudo-Barriuso M. Displaced retinal ganglion cells in albino and pigmented rats. Front Neuroanat 2014; 8:99. [PMID: 25339868 PMCID: PMC4186482 DOI: 10.3389/fnana.2014.00099] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Accepted: 09/04/2014] [Indexed: 01/30/2023] Open
Abstract
We have studied in parallel the population of displaced retinal ganglion cells (dRGCs) and normally placed (orthotopic RGCs, oRGCs) in albino and pigmented rats. Using retrograde tracing from the optic nerve, from both superior colliculi (SC) or from the ipsilateral SC in conjunction with Brn3 and melanopsin immunodetection, we report for the first time their total number and topography as well as the number and distribution of those dRGCs and oRGCs that project ipsi- or contralaterally and/or that express any of the three Brn3 isoforms or melanopsin. The total number of RGCs (oRGCs+dRGCs) is 84,706 ± 1249 in albino and 90,440 ± 2236 in pigmented, out of which 2383 and 2428 are melanopsin positive (m-RGCs), respectively. Regarding dRGCs: i/ albino rats have a significantly lower number of dRGCs than pigmented animals (0.5% of the total number of RGCs vs. 2.5%, respectively), ii/ dRGCs project massively to the contralateral SC, iii/ the percentage of ipsilaterality is higher for dRGCs than for oRGCs, iv/ a higher proportion of ipsilateral dRGCs is observed in albino than pigmented animals, v/ dRGC topography is very specific, they predominate in the equatorial temporal retina, being densest where the oRGCs are densest, vi/ Brn3a detects all dRGCs except half of the ipsilateral ones and those that express melanopsin, vii/ the proportion of dRGCs that express Brn3b or Brn3c is slightly lower than in the oRGC population, viii/ a higher percentage of dRGCs (13% albino, 9% pigmented) than oRGCs (2.6%) express melanopsin, ix/ few m-RGCs (displaced and orthotopic) project to the ipsilateral SC, x/ the topography of m-dRGCs does not resemble the general distribution of dRGCs, xi/ The soma size in m-oRGCs ranges from 10 to 21 μm and in m-dRGCs from 8 to 15 μm, xii/ oRGCs and dRGCs have the same susceptibility to axonal injury and ocular hypertension. Although the role of mammalian dRGCs remains to be determined, our data suggest that they are not misplaced by an ontogenic mistake.
Collapse
Affiliation(s)
- Francisco M Nadal-Nicolás
- Instituto Murciano de Investigación Biosanitaria-Virgen de la Arrixaca Murcia, Spain ; Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia Murcia, Spain ; Hospital Clínico Universitario Virgen de la Arrixaca Murcia, Spain
| | - Manuel Salinas-Navarro
- Instituto Murciano de Investigación Biosanitaria-Virgen de la Arrixaca Murcia, Spain ; Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia Murcia, Spain
| | - Manuel Jiménez-López
- Instituto Murciano de Investigación Biosanitaria-Virgen de la Arrixaca Murcia, Spain ; Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia Murcia, Spain
| | - Paloma Sobrado-Calvo
- Instituto Murciano de Investigación Biosanitaria-Virgen de la Arrixaca Murcia, Spain ; Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia Murcia, Spain
| | - María P Villegas-Pérez
- Instituto Murciano de Investigación Biosanitaria-Virgen de la Arrixaca Murcia, Spain ; Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia Murcia, Spain
| | - Manuel Vidal-Sanz
- Instituto Murciano de Investigación Biosanitaria-Virgen de la Arrixaca Murcia, Spain ; Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia Murcia, Spain
| | - Marta Agudo-Barriuso
- Instituto Murciano de Investigación Biosanitaria-Virgen de la Arrixaca Murcia, Spain ; Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia Murcia, Spain ; Hospital Clínico Universitario Virgen de la Arrixaca Murcia, Spain
| |
Collapse
|
18
|
Trager N, Smith A, Wallace Iv G, Azuma M, Inoue J, Beeson C, Haque A, Banik NL. Effects of a novel orally administered calpain inhibitor SNJ-1945 on immunomodulation and neurodegeneration in a murine model of multiple sclerosis. J Neurochem 2014; 130:268-79. [PMID: 24447070 DOI: 10.1111/jnc.12659] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Revised: 12/27/2013] [Accepted: 01/15/2014] [Indexed: 12/12/2022]
Abstract
Multiple sclerosis (MS) pathology is marked by the massive infiltration of myelin-specific T cells into the CNS. Hallmarks of T helper (Th) cells during active disease are pro-inflammatory Th1/Th17 cells that predominate over immunoregulatory Th2/Treg cells. Neurodegeneration, a major factor in progressive MS, is often overlooked when considering drug prescription. Here, we show that oral dosing with SNJ-1945, a novel water-soluble calpain inhibitor, reduces experimental autoimmune encephalomyelitis clinical scores in vivo and has a two pronged effect via anti-inflammation and protection against neurodegeneration. We also show that SNJ-1945 treatment down-regulates Th1/Th17 inflammatory responses, and promotes regulatory T cells (Tregs) and myeloid-derived suppressor cells in vivo, which are known to have the capacity to suppress helper as well as cytotoxic T cell functions. Through analysis of spinal cord samples, we show a reduction in calpain expression, decreased infiltration of inflammatory cells, and signs of inhibition of neurodegeneration. We also show a marked reduction in neuronal cell death in spinal cord (SC) sections. These results suggest that calpain inhibition attenuates experimental autoimmune encephalomyelitis pathology by reducing both inflammation and neurodegeneration, and could be used in clinical settings to augment the efficacy of standard immunomodulatory agents used to treat MS. Multiple sclerosis (MS) pathology is marked by inflammation and infiltration of myelin-specific T cells into the central nervous system. Inflammation leads to neurodegeneration in progressive MS which also leads to epitope spreading, feedback looping to more inflammation. Calpain can play a role in both arms of the disease. Here, oral dosing with SNJ-1945, a novel water-soluble calpain inhibitor, reduces experimental autoimmune encephalomyelitis clinical scores in vivo and has a two-pronged effect via anti-inflammation and protection against neurodegeneration.
Collapse
Affiliation(s)
- Nicole Trager
- Department of Neurosciences, Medical University of South Carolina, Charleston, South Carolina, USA; Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, South Carolina, USA
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Chinskey ND, Zheng QD, Zacks DN. Control of photoreceptor autophagy after retinal detachment: the switch from survival to death. Invest Ophthalmol Vis Sci 2014; 55:688-95. [PMID: 24408986 DOI: 10.1167/iovs.13-12951] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE To examine whether calpain inhibition following retinal detachment would prolong autophagy and result in reduced photoreceptor apoptosis. METHODS Retinal detachments were created in Brown-Norway rats by subretinal injection of 1% hyaluronic acid and simulated in vitro by Fas-receptor activation of 661W cells, a cone cell line. Protein levels of LC3 and autophagy-related gene 5 (Atg5), both of which are involved in the creation of the autophagosome, were assayed by Western blot. Calpain 1, the protease responsible for Atg5 cleavage and transitioning photoreceptors from autophagy to apoptosis, activity was monitored by α-spectrin cleavage. Various calpain inhibitors were added either to the subretinal space or cell culture media. Apoptosis was assessed in vitro by caspase-8 activity assays and in vivo via TUNEL assays. Cell counts were assessed in vivo at 2 months following detachment. RESULTS Following retinal detachment or Fas-receptor activation of 661W cells, there was an increase in Atg5 and LC3-II that peaked at 3 days and decreased by 7-days postdetachment. Calpain 1 activity level peaked at 7 days and was associated with decreased autophagy. Calpain inhibition led to increased autophagy, a decrease in caspase-8 activation, reduced TUNEL-positive photoreceptors, and increased photoreceptor cell survival. CONCLUSIONS Our data suggest that calpain activation, which peaks at 7-days postdetachment, is a key step in triggering photoreceptors to shift from cell survival to death. Prolonging autophagy through calpain inhibition leads to significantly reduced photoreceptor apoptosis and increased cell survival.
Collapse
Affiliation(s)
- Nicholas D Chinskey
- Department of Ophthalmology and Visual Sciences, W.K. Kellogg Eye Center, University of Michigan, Ann Arbor, Michigan
| | | | | |
Collapse
|
20
|
Fairless R, Williams SK, Diem R. Dysfunction of neuronal calcium signalling in neuroinflammation and neurodegeneration. Cell Tissue Res 2013; 357:455-62. [PMID: 24326615 DOI: 10.1007/s00441-013-1758-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Accepted: 10/31/2013] [Indexed: 02/07/2023]
Abstract
Neurodegeneration has been increasingly recognised as the leading structural correlate of disability progression in autoimmune diseases such as multiple sclerosis. Since calcium signalling is known to regulate the development of degenerative processes in many cell types, it is believed to play significant roles in mediating neurodegeneration. Because of its function as a major juncture linking various insults and injuries associated with inflammatory attack on neuronal cell bodies and axons, it provides potential for the development of neuroprotective strategies. This is of great significance because of the lack of neuroprotective agents presently available to supplement the current array of immunomodulatory treatments. In this review, we summarise the role that various calcium channels and pumps have been shown to play in the development of neurodegeneration under inflammatory autoimmune conditions. The identification of suitable targets might also provide insights into applications in non-inflammatory neurodegenerative diseases.
Collapse
Affiliation(s)
- Richard Fairless
- Department of Neuro-oncology, University Clinic Heidelberg, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
| | | | | |
Collapse
|
21
|
Hoffmann DB, Williams SK, Bojcevski J, Müller A, Stadelmann C, Naidoo V, Bahr BA, Diem R, Fairless R. Calcium influx and calpain activation mediate preclinical retinal neurodegeneration in autoimmune optic neuritis. J Neuropathol Exp Neurol 2013; 72:745-57. [PMID: 23860028 DOI: 10.1097/nen.0b013e31829c7370] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Optic neuritis is a common manifestation of multiple sclerosis, an inflammatory demyelinating disease of the CNS. Recently, the neurodegenerative component of multiple sclerosis has come under focus particularly because permanent disability in patients correlates well with neurodegeneration; and observations in both humans and multiple sclerosis animal models highlight neurodegeneration of retinal ganglion cells as an early event. After myelin oligodendrocyte glycoprotein immunization of Brown Norway rats, significant retinal ganglion cell loss precedes the onset of pathologically defined autoimmune optic neuritis. To study the role calcium and calpain activation may play in mediating early degeneration, manganese-enhanced magnetic resonance imaging was used to monitor preclinical calcium elevations in the retina and optic nerve of myelin oligodendrocyte glycoprotein-immunized Brown Norway rats. Calcium elevation correlated with an increase in calpain activation during the induction phase of optic neuritis, as revealed by increased calpain-specific cleavage of spectrin. The relevance of early calpain activation to neurodegeneration during disease induction was addressed by performing treatment studies with the calpain inhibitor calpeptin. Treatment not only reduced calpain activity but also protected retinal ganglion cells from preclinical degeneration. These data indicate that elevation of retinal calcium levels and calpain activation are early events in autoimmune optic neuritis, providing a potential therapeutic target for neuroprotection.
Collapse
Affiliation(s)
- Dorit B Hoffmann
- Department of Neurology, University of the Saarland, Homburg/Saar, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Ozaki T, Ishiguro SI, Hirano S, Baba A, Yamashita T, Tomita H, Nakazawa M. Inhibitory peptide of mitochondrial μ-calpain protects against photoreceptor degeneration in rhodopsin transgenic S334ter and P23H rats. PLoS One 2013; 8:e71650. [PMID: 23951212 PMCID: PMC3739725 DOI: 10.1371/journal.pone.0071650] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Accepted: 07/01/2013] [Indexed: 11/23/2022] Open
Abstract
Mitochondrial μ-calpain and apoptosis-inducing factor (AIF)-dependent photoreceptor cell death has been seen in several rat and mouse models of retinitis pigmentosa (RP). Previously, we demonstrated that the specific peptide inhibitor of mitochondrial μ-calpain, Tat-µCL, protected against retinal degeneration following intravitreal injection or topical eye-drop application in Mertk gene-mutated Royal College of Surgeons rats, one of the animal models of RP. Because of the high rate of rhodopsin mutations in RP patients, the present study was performed to confirm the protective effects of Tat-µCL against retinal degeneration in rhodopsin transgenic S334ter and P23H rats. We examined the effects of intravitreal injection or topical application of the peptide on retinal degeneration in S334ter and P23H rats by terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) assay, electroretinogram (ERG), immunohistochemistry for AIF, and histological staining. In S334ter rats, we found that intravitreal injection or topical application of the peptide prevented photoreceptor cell death from postnatal (PN) 15 to 18 days, the time of early-stage retinal degeneration. Topical application of the peptide also delayed attenuation of ERG responses from PN 28 to 56 days. In P23H rats, topical application of the peptide protected against photoreceptor cell death and nuclear translocation of AIF on PN 30, 40, and 50 days, as the primary stages of degeneration. We observed that topical application of the peptide inhibited the thinning of the outer nuclear layer and delayed ERG attenuations from PN 30 to 90 days. Our results demonstrate that the mitochondrial μ-calpain and AIF pathway is involved in early-stage retinal degeneration in rhodopsin transgenic S334ter and P23H rats, and inhibition of this pathway shows curative potential for rhodopsin mutation-caused RP.
Collapse
Affiliation(s)
- Taku Ozaki
- Department of Ophthalmology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
- Department of Biochemistry and Molecular Biology, Hirosaki University Faculty of Agriculture and Life Science, Hirosaki, Japan
| | - Sei-ichi Ishiguro
- Department of Biochemistry and Molecular Biology, Hirosaki University Faculty of Agriculture and Life Science, Hirosaki, Japan
| | - Satoshi Hirano
- Department of Biochemistry and Molecular Biology, Hirosaki University Faculty of Agriculture and Life Science, Hirosaki, Japan
| | - Ayaka Baba
- Department of Biochemistry and Molecular Biology, Hirosaki University Faculty of Agriculture and Life Science, Hirosaki, Japan
| | - Tetsuro Yamashita
- Department of Biological Chemistry, Iwate University Faculty of Agriculture, Morioka, Japan
| | - Hiroshi Tomita
- Department of Chemistry and Bioengineering, Iwate University Graduate School of Engineering, Morioka, Japan
| | - Mitsuru Nakazawa
- Department of Ophthalmology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| |
Collapse
|
23
|
Das A, Guyton MK, Smith A, Wallace G, McDowell ML, Matzelle DD, Ray SK, Banik NL. Calpain inhibitor attenuated optic nerve damage in acute optic neuritis in rats. J Neurochem 2012; 124:133-46. [PMID: 23106593 DOI: 10.1111/jnc.12064] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Revised: 08/27/2012] [Accepted: 10/10/2012] [Indexed: 12/13/2022]
Abstract
Optic neuritis (ON), which is an acute inflammatory autoimmune demyelinating disease of the central nervous system (CNS), often occurs in multiple sclerosis (MS). ON is an early diagnostic sign in most MS patients caused by damage to the optic nerve leading to visual dysfunction. Various features of both MS and ON can be studied following induction of experimental autoimmune encephalomyelitis (EAE), an animal model of MS, in Lewis rats. Inflammation and cell death in the optic nerve, with subsequent damage to the retinal ganglion cells in the retina, are thought to correlate with visual dysfunction. Thus, characterizing the pathophysiological changes that lead to visual dysfunction in EAE animals may help develop novel targets for therapeutic intervention. We treated EAE animals with and without the calpain inhibitor calpeptin (CP). Our studies demonstrated that the Ca(2+)-activated neutral protease calpain was upregulated in the optic nerve following induction of EAE at the onset of clinical signs (OCS) of the disease, and these changes were attenuated following treatment with CP. These reductions correlated with decreases in inflammation (cytokines, iNOS, COX-2, and NF-κB), and microgliosis (i.e. activated microglia). We observed that calpain inhibition reduced astrogliosis (reactive astroglia) and expression of aquaporin 4 (AQP4). The balance of Th1/Th2 cytokine production and also expression of the Th1-related CCR5 and CXCR3 chemokine receptors influence many pathological processes and play both causative and protective roles in neuron damage. Our data indicated that CP suppressed cytokine imbalances. Also, Bax:Bcl-2 ratio, production of tBid, PARP-1, expression and activities of calpain and caspases, and internucleosomal DNA fragmentation were attenuated after treatment with CP. Our results demonstrated that CP decreased demyelination [loss of myelin basic protein (MBP)] and axonal damage [increase in dephosphorylated neurofilament protein (de-NFP)], and also promoted intracellular neuroprotective pathways in optic nerve in EAE rats. Thus, these data suggest that calpain is involved in inflammatory as well as in neurodegenerative aspects of the disease and may be a promising target for treating ON in EAE and MS.
Collapse
Affiliation(s)
- Arabinda Das
- Division of Neurology, Department of Neurosciences, Medical University of South Carolina, Charleston, SC 29425, USA
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Joachim SC, Gramlich OW, Laspas P, Schmid H, Beck S, von Pein HD, Dick HB, Pfeiffer N, Grus FH. Retinal ganglion cell loss is accompanied by antibody depositions and increased levels of microglia after immunization with retinal antigens. PLoS One 2012; 7:e40616. [PMID: 22848388 PMCID: PMC3406064 DOI: 10.1371/journal.pone.0040616] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2012] [Accepted: 06/11/2012] [Indexed: 12/25/2022] Open
Abstract
Background Antibodies against retinal and optic nerve antigens are detectable in glaucoma patients. Recent studies using a model of experimental autoimmune glaucoma demonstrated that immunization with certain ocular antigens causes an immun-mediated retinal ganglion cell loss in rats. Methodology/Principal Findings Rats immunized with a retinal ganglion cell layer homogenate (RGA) had a reduced retinal ganglion cell density on retinal flatmounts (p = 0.007) and a lower number of Brn3+retinal ganglion cells (p = 0.0001) after six weeks. The autoreactive antibody development against retina and optic nerve was examined throughout the study. The levels of autoreactive antibodies continuously increased up to 6 weeks (retina: p = 0.004; optic nerve: p = 0.000003). Additionally, antibody deposits were detected in the retina (p = 0.02). After 6 weeks a reactive gliosis (GFAP density: RGA: 174.7±41.9; CO: 137.6±36.8, p = 0.0006; %GFAP+ area: RGA: 8.5±3.4; CO: 5.9±3.6, p = 0.006) as well as elevated level of Iba1+ microglia cells (p = 0.003) was observed in retinas of RGA animals. Conclusions/Significance Our findings suggest that these antibodies play a substantial role in mechanisms leading to retinal ganglion cell death. This seems to lead to glia cell activation as well as the invasion of microglia, which might be associated with debris clearance.
Collapse
Affiliation(s)
- Stephanie C Joachim
- Experimental Eye Research Institute, Ruhr University Eye Hospital, Bochum, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|