1
|
Houser A, Baconguis I. Structural insights into subunit-dependent functional regulation in epithelial sodium channels. Structure 2024:S0969-2126(24)00526-4. [PMID: 39667931 DOI: 10.1016/j.str.2024.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 10/04/2024] [Accepted: 11/18/2024] [Indexed: 12/14/2024]
Abstract
Epithelial sodium channels (ENaCs) play a crucial role in Na+ reabsorption in mammals. To date, four subunits have been identified-α, β, γ, and δ-believed to form different heteromeric complexes. Currently, only the structure of the αβγ complex is known. To investigate the formation of channels with different subunit compositions and to determine how each subunit contributes to distinct channel properties, we co-expressed human δ, β, and γ. Using single-particle cryoelectron microscopy, we observed three distinct ENaC complexes. The structures unveil a pattern in which β and γ positions are conserved among the different complexes while the α position in αβγ trimer is occupied by either δ or another β. The δ subunit induces structural rearrangements in the γ subunit, which may contribute to the differences in channel activity between αβγ and δβγ channels. These structural changes provide molecular insights into how ENaC subunit composition modulates channel function.
Collapse
Affiliation(s)
- Alexandra Houser
- Neuroscience Graduate Program, Oregon Health & Science University, Portland, OR 97239, USA
| | - Isabelle Baconguis
- Vollum Institute, Oregon Health & Science University, Portland, OR 97239, USA.
| |
Collapse
|
2
|
Xu P, Zou W, Yin W, Chen G, Gao G, Zhong X. Ion channels research in hPSC-RPE cells: bridging benchwork to clinical applications. J Transl Med 2024; 22:1073. [PMID: 39604931 PMCID: PMC11600670 DOI: 10.1186/s12967-024-05769-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 10/15/2024] [Indexed: 11/29/2024] Open
Abstract
Ion channels in retinal pigment epithelial (RPE) cells are crucial for retinal health and vision functions. Defects in such channels are intricately associated with the development of various retinopathies that cause blindness. Human pluripotent stem cells (hPSC)-derived RPE cells, including those from human-induced pluripotent stem cells (hiPSC) and human embryonic stem cells (hESC), have been used as in vitro models for investigating pathogenic mechanisms and screening potential therapeutic strategies for retinopathies. Therefore, the cellular status of hPSC-RPE cells, including maturity and physiologic functions, have been widely explored. Particularly, research on ion channels in hPSC-RPE cells can lead to the development of more stable models upon which robust investigations and clinical safety assessments can be performed. Moreover, the use of patient-specific hiPSC-RPE cells has significantly accelerated the clinical translation of gene therapy for retinal channelopathies, such as bestrophinopathies. This review consolidates current research on ion channels in hPSC-RPE cells, specifically Kir7.1, Bestrophin-1, CLC-2, and CaV1.3, providing a foundation for future research.
Collapse
Affiliation(s)
- Ping Xu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-sen University, Guangzhou, 510060, China
| | - Weisheng Zou
- Sun Yat-sen University Zhongshan School of Medicine, Guangzhou, 510080, China
| | - Wenjing Yin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-sen University, Guangzhou, 510060, China
| | - Guifu Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-sen University, Guangzhou, 510060, China
| | - Guanjie Gao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-sen University, Guangzhou, 510060, China
| | - Xiufeng Zhong
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-sen University, Guangzhou, 510060, China.
| |
Collapse
|
3
|
Yarishkin O, Lakk M, Rudzitis CN, Searle JE, Kirdajova D, Križaj D. Resting trabecular meshwork cells experience constitutive cation influx. Vision Res 2024; 224:108487. [PMID: 39303640 PMCID: PMC11552692 DOI: 10.1016/j.visres.2024.108487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/05/2024] [Accepted: 09/06/2024] [Indexed: 09/22/2024]
Abstract
A quintessential sentinel of cell health, the membrane potential in nonexcitable cells integrates biochemical and biomechanical inputs, determines the driving force for ionic currents activated by input signals and plays critical functions in cellular differentiation, signaling, and pathology. The identity and properties of ion channels that subserve the resting potential in trabecular meshwork (TM) cells is poorly understood, which impairs our understanding of intraocular pressure regulation in healthy and diseased eyes. Here, we identified a powerful cationic conductance that subserves the TM resting potential. It disappears following Na+ removal or substitution with choline or NMDG+, is insensitive to TTX, verapamil, phenamil methanesulfonate, amiloride and GsMTx4, is substituted by Li+ and Cs+, and inhibited by Gd3+ and Ruthenium Red. Constitutive cation influx is thus not mediated by voltage-operated Na+, Ca2+, epithelial Na+ (ENaC) channels, Piezo channels or Na+/H+ exchange but may involve TRP-like channels. Transcriptional analysis detected expression of many TRP genes, with the transcriptome pool dominated by TRPC1 followed by expression of TRPV1, TRPC3, TRPV4 and TRPC5. Pyr3 and Pico1,4,5 did not affect the standing current whereas SKF96365 promoted rather than suppressed, Na+ influx. SEA-0400 induced a modest hyperpolarization, indicating residual contribution from Na+/Ca2+ exchange. The resting membrane potential in human TM cells is thus maintained by a constitutive monovalent cation leak current with properties not unlike those of TRP channels. This conductance is likely to influence conventional outflow by setting the homeostatic steady-state and by regulating the magnitude of pressure-induced currents in normotensive and hypertensive eyes.
Collapse
Affiliation(s)
- Oleg Yarishkin
- Department of Ophthalmology and Visual Sciences, Salt Lake City, UT 84132, USA
| | - Monika Lakk
- Department of Ophthalmology and Visual Sciences, Salt Lake City, UT 84132, USA
| | | | - Jordan E Searle
- Department of Ophthalmology and Visual Sciences, Salt Lake City, UT 84132, USA
| | - Denisa Kirdajova
- Department of Ophthalmology and Visual Sciences, Salt Lake City, UT 84132, USA
| | - David Križaj
- Department of Ophthalmology and Visual Sciences, Salt Lake City, UT 84132, USA; Department of Bioengineering, University of Utah, Salt Lake City, UT 84132, USA; Department of Neurobiology, University of Utah School of Medicine, Salt Lake City, UT 84132, USA.
| |
Collapse
|
4
|
Yarishkin O, Lakk M, Rudzitis CN, Kirdajova D, Krizaj D. Resting human trabecular meshwork cells experience tonic cation influx. RESEARCH SQUARE 2024:rs.3.rs-4980372. [PMID: 39257996 PMCID: PMC11384028 DOI: 10.21203/rs.3.rs-4980372/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
The trabecular meshwork (TM) regulates intraocular pressure (IOP) by converting biochemical and biomechanical stimuli into intracellular signals. Recent electrophysiological studies demonstrated that this process is mediated by pressure sensing ion channels in the TM plasma membrane while the molecular and functional properties of channels that underpin ionic homeostasis in resting cells remain largely unknown. Here, we demonstrate that the TM resting potential is subserved by a powerful cationic conductance that disappears following Na+ removal and substitution with choline or NMDG+. Its insensitivity to TTX, verapamil, phenamil methanesulfonate and amiloride indicates it does not involve voltage-operated Na+, Ca2+ and epithelial Na+ (ENaC) channels or Na+/H+ exchange while a modest hyperpolarization induced by SEA-0440 indicates residual contribution from reversed Na+/Ca2+ exchange. Tonic cationic influx was inhibited by Gd3+ and Ruthenium Red but not GsMTx4, indicating involvement of TRP-like but not Piezo channels. Transcriptional analysis detected expression of most TRP genes, with the canonical transcriptome pool dominated by TRPC1 followed by the expression ofTRPV1, TRPC3 and TRPC5. TRPC3 antagonist Pyr3 and TRPC1,4,5 antagonist Pico1,4,5 did not affect the standing current, whereas the TRPC blocker SKF96365 promoted rather than suppressed, Na+ influx. TM cells thus maintain the resting membrane potential, control Na+ homeostasis, and balance K+ efflux through a novel constitutive monovalent cation leak current with properties not unlike those of TRP channels. Yet to be identified at the molecular level, this novel channel sets the homeostatic steady-state and controls the magnitude of pressure-induced transmembrane signals.
Collapse
|
5
|
Houser A, Baconguis I. Structural Insights into Subunit-Dependent Functional Regulation in Epithelial Sodium Channels. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.28.595834. [PMID: 38853903 PMCID: PMC11160588 DOI: 10.1101/2024.05.28.595834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Epithelial sodium channels (ENaC) play a crucial role in Na + reabsorption in mammals. To date, four subunits have been identified-α, β, γ, and δ-believed to form different heteromeric complexes. Currently, only the structure of the αβγ complex is known. To understand how these channels form with varying subunit compositions and define the contribution of each subunit to distinct properties, we co-expressed human δ, β, and γ. Using single-particle cryo-electron microscopy, we observed three distinct ENaC complexes. The structures unveil a pattern in which β and γ positions are conserved among the different complexes while the α position in αβγ trimer is occupied by either δ or another β. The presence of δ induces structural rearrangements in the γ subunit explaining the differences in channel activity observed between αβγ and δβγ channels. These structures define the mechanism by which ENaC subunit composition tunes ENaC function.
Collapse
|
6
|
Pang JJ. The Variety of Mechanosensitive Ion Channels in Retinal Neurons. Int J Mol Sci 2024; 25:4877. [PMID: 38732096 PMCID: PMC11084373 DOI: 10.3390/ijms25094877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/16/2024] [Accepted: 04/20/2024] [Indexed: 05/13/2024] Open
Abstract
Alterations in intraocular and external pressure critically involve the pathogenesis of glaucoma, traumatic retinal injury (TRI), and other retinal disorders, and retinal neurons have been reported to express multiple mechanical-sensitive channels (MSCs) in recent decades. However, the role of MSCs in visual functions and pressure-related retinal conditions has been unclear. This review will focus on the variety and functional significance of the MSCs permeable to K+, Na+, and Ca2+, primarily including the big potassium channel (BK); the two-pore domain potassium channels TRAAK and TREK; Piezo; the epithelial sodium channel (ENaC); and the transient receptor potential channels vanilloid TRPV1, TRPV2, and TRPV4 in retinal photoreceptors, bipolar cells, horizontal cells, amacrine cells, and ganglion cells. Most MSCs do not directly mediate visual signals in vertebrate retinas. On the other hand, some studies have shown that MSCs can open in physiological conditions and regulate the activities of retinal neurons. While these data reasonably predict the crossing of visual and mechanical signals, how retinal light pathways deal with endogenous and exogenous mechanical stimulation is uncertain.
Collapse
Affiliation(s)
- Ji-Jie Pang
- Department of Ophthalmology, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
7
|
Kashlan OB, Wang XP, Sheng S, Kleyman TR. Epithelial Na + Channels Function as Extracellular Sensors. Compr Physiol 2024; 14:1-41. [PMID: 39109974 PMCID: PMC11309579 DOI: 10.1002/cphy.c230015] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
The epithelial Na + channel (ENaC) resides on the apical surfaces of specific epithelia in vertebrates and plays a critical role in extracellular fluid homeostasis. Evidence that ENaC senses the external environment emerged well before the molecular identity of the channel was reported three decades ago. This article discusses progress toward elucidating the mechanisms through which specific external factors regulate ENaC function, highlighting insights gained from structural studies of ENaC and related family members. It also reviews our understanding of the role of ENaC regulation by the extracellular environment in physiology and disease. After familiarizing the reader with the channel's physiological roles and structure, we describe the central role protein allostery plays in ENaC's sensitivity to the external environment. We then discuss each of the extracellular factors that directly regulate the channel: proteases, cations and anions, shear stress, and other regulators specific to particular extracellular compartments. For each regulator, we discuss the initial observations that led to discovery, studies investigating molecular mechanism, and the physiological and pathophysiological implications of regulation. © 2024 American Physiological Society. Compr Physiol 14:5407-5447, 2024.
Collapse
Affiliation(s)
- Ossama B. Kashlan
- Department of Medicine, Renal-Electrolyte Division,
University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Computational and Systems Biology, University
of Pittsburgh, Pittsburgh, Pennsylvania
| | - Xue-Ping Wang
- Department of Medicine, Renal-Electrolyte Division,
University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Shaohu Sheng
- Department of Medicine, Renal-Electrolyte Division,
University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Thomas R. Kleyman
- Department of Medicine, Renal-Electrolyte Division,
University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Cell Biology, University of Pittsburgh,
Pittsburgh, Pennsylvania
- Department of Pharmacology and Chemical Biology, University
of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
8
|
Lysikova DV, Vasileva VY, Chubinskiy-Nadezhdin VI, Morachevskaya EA, Sudarikova AV. Capsazepine activates amiloride-insensitive ENaC-like channels in human leukemia cells. Biochem Biophys Res Commun 2023; 687:149187. [PMID: 37944472 DOI: 10.1016/j.bbrc.2023.149187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/27/2023] [Accepted: 10/30/2023] [Indexed: 11/12/2023]
Abstract
Sodium influx carried out by ion channels is one of the main regulators of water-salt and volume balance in cells of blood origin. Previously, we described amiloride-insensitive ENaC-like channels in human myeloid leukemia K562 cells; the intracellular regulatory mechanisms of the channels are associated with actin cytoskeleton dynamics. Recently, an extracellular mechanism of ENaC-like channels activation in K562 cells by the action of serine protease trypsin has been revealed. The other extracellular pathways that modulate ENaC (epithelial Na+ channel) activity and sodium permeability in transformed blood cells are not yet fully investigated. Here, we study the action of capsazepine (CPZ), as δ-ENaC activator, on single channel activity in K562 cells in whole-cell patch clamp experiments. Addition of CPZ (2 μM) to the extracellular solution caused an activation of sodium channels with typical features; unitary conductance was 15.1 ± 0.8 pS. Amiloride derivative benzamil (50 μM) did not inhibit their activity. Unitary currents and conductance of CPZ-activated channels were higher in Na+-containing extracellular solution than in Li+, that is one of the main fingerprints of δ-ENaC. The results of RT-PCR analysis and immunofluorescence staining also confirmed the expression of δ-hENaC (as well as α-, β-, γ-ENaC) at the mRNA and protein level. These findings allow us to speculate that CPZ activates amiloride-insensitive ENaC-like channels that contain δ-ENaC in К562 cells. Our data reveal a novel extracellular mechanism for ENaC-like activation in human leukemia cells.
Collapse
Affiliation(s)
- Daria V Lysikova
- Institute of Cytology, Russian Academy of Sciences, 194064 Tikhoretsky Ave. 4, St. Petersburg, Russia
| | - Valeria Y Vasileva
- Institute of Cytology, Russian Academy of Sciences, 194064 Tikhoretsky Ave. 4, St. Petersburg, Russia
| | | | - Elena A Morachevskaya
- Institute of Cytology, Russian Academy of Sciences, 194064 Tikhoretsky Ave. 4, St. Petersburg, Russia
| | - Anastasia V Sudarikova
- Institute of Cytology, Russian Academy of Sciences, 194064 Tikhoretsky Ave. 4, St. Petersburg, Russia.
| |
Collapse
|
9
|
Lemmens-Gruber R, Tzotzos S. The Epithelial Sodium Channel-An Underestimated Drug Target. Int J Mol Sci 2023; 24:ijms24097775. [PMID: 37175488 PMCID: PMC10178586 DOI: 10.3390/ijms24097775] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/14/2023] [Accepted: 04/15/2023] [Indexed: 05/15/2023] Open
Abstract
Epithelial sodium channels (ENaC) are part of a complex network of interacting biochemical pathways and as such are involved in several disease states. Dependent on site and type of mutation, gain- or loss-of-function generated symptoms occur which span from asymptomatic to life-threatening disorders such as Liddle syndrome, cystic fibrosis or generalized pseudohypoaldosteronism type 1. Variants of ENaC which are implicated in disease assist further understanding of their molecular mechanisms in order to create models for specific pharmacological targeting. Identification and characterization of ENaC modifiers not only furthers our basic understanding of how these regulatory processes interact, but also enables discovery of new therapeutic targets for the disease conditions caused by ENaC dysfunction. Numerous test compounds have revealed encouraging results in vitro and in animal models but less in clinical settings. The EMA- and FDA-designated orphan drug solnatide is currently being tested in phase 2 clinical trials in the setting of acute respiratory distress syndrome, and the NOX1/ NOX4 inhibitor setanaxib is undergoing clinical phase 2 and 3 trials for therapy of primary biliary cholangitis, liver stiffness, and carcinoma. The established ENaC blocker amiloride is mainly used as an add-on drug in the therapy of resistant hypertension and is being studied in ongoing clinical phase 3 and 4 trials for special applications. This review focuses on discussing some recent developments in the search for novel therapeutic agents.
Collapse
Affiliation(s)
- Rosa Lemmens-Gruber
- Department of Pharmaceutical Sciences, Division of Pharmacology and Toxicology, University of Vienna, A-1090 Vienna, Austria
| | | |
Collapse
|
10
|
Ahmad T, Ertuglu LA, Masenga SK, Kleyman TR, Kirabo A. The epithelial sodium channel in inflammation and blood pressure modulation. Front Cardiovasc Med 2023; 10:1130148. [PMID: 37123470 PMCID: PMC10132033 DOI: 10.3389/fcvm.2023.1130148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 03/24/2023] [Indexed: 05/02/2023] Open
Abstract
A major regulator of blood pressure and volume homeostasis in the kidney is the epithelial sodium channel (ENaC). ENaC is composed of alpha(α)/beta(β)/gamma(γ) or delta(δ)/beta(β)/gamma(γ) subunits. The δ subunit is functional in the guinea pig, but not in routinely used experimental rodent models including rat or mouse, and thus remains the least understood of the four subunits. While the δ subunit is poorly expressed in the human kidney, we recently found that its gene variants are associated with blood pressure and kidney function. The δ subunit is expressed in the human vasculature where it may influence vascular function. Moreover, we recently found that the δ subunit is also expressed human antigen presenting cells (APCs). Our studies indicate that extracellular Na+ enters APCs via ENaC leading to inflammation and salt-induced hypertension. In this review, we highlight recent findings on the role of extra-renal ENaC in inflammation, vascular dysfunction, and blood pressure modulation. Targeting extra-renal ENaC may provide new drug therapies for salt-induced hypertension.
Collapse
Affiliation(s)
- Taseer Ahmad
- Department of Pharmacology, College of Pharmacy, University of Sargodha, Sargodha, Pakistan
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Lale A. Ertuglu
- Division of Nephrology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Sepiso K. Masenga
- Department of Physiological Sciences, School of Medicine and Health Sciences, Mulungushi University, Livingstone, Zambia
| | - Thomas R. Kleyman
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Annet Kirabo
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| |
Collapse
|
11
|
Reutersberg B, Pelisek J, Ouda A, de Rougemont O, Rössler F, Zimmermann A. Baroreceptors in the Aortic Arch and Their Potential Role in Aortic Dissection and Aneurysms. J Clin Med 2022; 11:1161. [PMID: 35268252 PMCID: PMC8911340 DOI: 10.3390/jcm11051161] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/10/2022] [Accepted: 02/19/2022] [Indexed: 11/16/2022] Open
Abstract
The arterial baroreflex is a key autonomic regulator of blood pressure whose dysfunction has been related to several cardiovascular diseases. Changes in blood pressure are sensed by specific mechanosensory proteins, called baroreceptors, particularly located in the outer layer of the carotid sinus and the inner curvature of the aortic arch. The signal is propagated along the afferent nerves to the central nervous system and serves as negative feedback of the heart rate. Despite extensive research, the precise molecular nature of baroreceptors remains elusive. Current knowledge assumes that baroreceptors are ion channels at the nerve endings within the outer layer of the arteries. However, the evidence is based mainly on animal experiments, and the specific types of mechanosensitive receptors responsible for the signal transduction are still unknown. Only a few studies have investigated mechanosensory transmission in the aortic arch. In addition, although aortic dissection, and particularly type A involving the aortic arch, is one of the most life-threatening cardiovascular disorders, there is no knowledge about the impact of aortic dissection on baroreceptor function. In this review, we aim not to highlight the regulation of the heart rate but what mechanical stimuli and what possible ion channels transfer the corresponding signal within the aortic arch, summarizing and updating the current knowledge about baroreceptors, specifically in the aortic arch, and the impact of aortic pathologies on their function.
Collapse
Affiliation(s)
- Benedikt Reutersberg
- Department of Vascular Surgery, University Hospital Zurich, 8091 Zurich, Switzerland; (J.P.); (A.Z.)
| | - Jaroslav Pelisek
- Department of Vascular Surgery, University Hospital Zurich, 8091 Zurich, Switzerland; (J.P.); (A.Z.)
| | - Ahmed Ouda
- Department of Cardiac Surgery, University Hospital Zurich, 8091 Zurich, Switzerland;
| | - Olivier de Rougemont
- Department of Surgery and Transplantation, University Hospital Zurich, 8091 Zurich, Switzerland; (O.d.R.); (F.R.)
| | - Fabian Rössler
- Department of Surgery and Transplantation, University Hospital Zurich, 8091 Zurich, Switzerland; (O.d.R.); (F.R.)
| | - Alexander Zimmermann
- Department of Vascular Surgery, University Hospital Zurich, 8091 Zurich, Switzerland; (J.P.); (A.Z.)
| |
Collapse
|
12
|
Pathogenic Effects of Mineralocorticoid Pathway Activation in Retinal Pigment Epithelium. Int J Mol Sci 2021; 22:ijms22179618. [PMID: 34502527 PMCID: PMC8431771 DOI: 10.3390/ijms22179618] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/25/2021] [Accepted: 08/30/2021] [Indexed: 12/17/2022] Open
Abstract
Glucocorticoids are amongst the most used drugs to treat retinal diseases of various origins. Yet, the transcriptional regulations induced by glucocorticoid receptor (GR) and mineralocorticoid receptor (MR) activation in retinal pigment epithelium cells (RPE) that form the outer blood-retina barrier are unknown. Levels of endogenous corticoids, ligands for MR and GR, were measured in human ocular media. Human RPE cells derived from induced pluripotent stem cells (iRPE) were used to analyze the pan-transcriptional regulations induced by aldosterone-an MR-specific agonist, or cortisol or cortisol + RU486-a GR antagonist. The retinal phenotype of transgenic mice that overexpress the human MR (P1.hMR) was analyzed. In the human eye, the main ligand for GR and MR is cortisol. The iRPE cells express functional GR and MR. The subset of genes regulated by aldosterone and by cortisol + RU-486, and not by cortisol alone, mimics an imbalance toward MR activation. They are involved in extracellular matrix remodeling (CNN1, MGP, AMTN), epithelial-mesenchymal transition, RPE cell proliferation and migration (ITGB3, PLAUR and FOSL1) and immune balance (TNFSF18 and PTX3). The P1.hMR mice showed choroidal vasodilation, focal alteration of the RPE/choroid interface and migration of RPE cells together with RPE barrier function alteration, similar to human retinal diseases within the pachychoroid spectrum. RPE is a corticosteroid-sensitive epithelium. MR pathway activation in the RPE regulates genes involved in barrier function, extracellular matrix, neural regulation and epithelial differentiation, which could contribute to retinal pathology.
Collapse
|
13
|
Abstract
The Epithelial Na+ Channel, ENaC, comprised of 3 subunits (αβγ, or sometimes δβγENaC), plays a critical role in regulating salt and fluid homeostasis in the body. It regulates fluid reabsorption into the blood stream from the kidney to control blood volume and pressure, fluid absorption in the lung to control alveolar fluid clearance at birth and maintenance of normal airway surface liquid throughout life, and fluid absorption in the distal colon and other epithelial tissues. Moreover, recent studies have also revealed a role for sodium movement via ENaC in nonepithelial cells/tissues, such as endothelial cells in blood vessels and neurons. Over the past 25 years, major advances have been made in our understanding of ENaC structure, function, regulation, and role in human disease. These include the recently solved three-dimensional structure of ENaC, ENaC function in various tissues, and mutations in ENaC that cause a hereditary form of hypertension (Liddle syndrome), salt-wasting hypotension (PHA1), or polymorphism in ENaC that contributes to other diseases (such as cystic fibrosis). Moreover, great strides have been made in deciphering the regulation of ENaC by hormones (e.g., the mineralocorticoid aldosterone, glucocorticoids, vasopressin), ions (e.g., Na+ ), proteins (e.g., the ubiquitin-protein ligase NEDD4-2, the kinases SGK1, AKT, AMPK, WNKs & mTORC2, and proteases), and posttranslational modifications [e.g., (de)ubiquitylation, glycosylation, phosphorylation, acetylation, palmitoylation]. Characterization of ENaC structure, function, regulation, and role in human disease, including using animal models, are described in this article, with a special emphasis on recent advances in the field. © 2021 American Physiological Society. Compr Physiol 11:1-29, 2021.
Collapse
Affiliation(s)
- Daniela Rotin
- The Hospital for Sick Children, and The University of Toronto, Toronto, Canada
| | - Olivier Staub
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
14
|
Paudel P, McDonald FJ, Fronius M. The δ subunit of epithelial sodium channel in humans-a potential player in vascular physiology. Am J Physiol Heart Circ Physiol 2020; 320:H487-H493. [PMID: 33275523 DOI: 10.1152/ajpheart.00800.2020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Vascular epithelial sodium channels (ENaCs) made up of canonical α, β, and γ subunits have attracted more attention recently owing to their physiological role in vascular health and disease. A fourth subunit, δ-ENaC, is expressed in various mammalian species, except mice and rats, which are common animal models for cardiovascular research. Accordingly, δ-ENaC is the least understood subunit. However, the recent discovery of δ subunit in human vascular cells indicates that this subunit may play a significant role in normal/pathological vascular physiology in humans. Channels containing the δ subunit have different biophysical and pharmacological properties compared with channels containing the α subunit, with the potential to alter the vascular function of ENaC in health and disease. Hence, it is important to investigate the expression and function of δ-ENaC in the vasculature to identify whether δ-ENaC is a potential new drug target for the treatment of cardiovascular disease. In this review, we will focus on the existing knowledge of δ-ENaC and implications for vascular physiology and pathophysiology in humans.
Collapse
Affiliation(s)
- Puja Paudel
- Department of Physiology, University of Otago, Dunedin, New Zealand.,HeartOtago, University of Otago, Dunedin, New Zealand
| | - Fiona J McDonald
- Department of Physiology, University of Otago, Dunedin, New Zealand
| | - Martin Fronius
- Department of Physiology, University of Otago, Dunedin, New Zealand.,HeartOtago, University of Otago, Dunedin, New Zealand
| |
Collapse
|
15
|
Mechanical Strain-Mediated Tenogenic Differentiation of Mesenchymal Stromal Cells Is Regulated through Epithelial Sodium Channels. Stem Cells Int 2020; 2020:5385960. [PMID: 32908542 PMCID: PMC7450316 DOI: 10.1155/2020/5385960] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 06/18/2020] [Accepted: 07/11/2020] [Indexed: 11/17/2022] Open
Abstract
It has been suggested that mechanical strain may elicit cell differentiation in adult somatic cells through activation of epithelial sodium channels (ENaC). However, such phenomenon has not been previously demonstrated in mesenchymal stromal cells (MSCs). The present study was thus conducted to investigate the role of ENaC in human bone marrow-derived MSCs (hMSCs) tenogenic differentiation during uniaxial tensile loading. Passaged-2 hMSCs were seeded onto silicone chambers coated with collagen I and subjected to stretching at 1 Hz frequency and 8% strain for 6, 24, 48, and 72 hours. Analyses at these time points included cell morphology and alignment observation, immunocytochemistry and immunofluorescence staining (collagen I, collagen III, fibronectin, and N-cadherin), and gene expression (ENaC subunits, and tenogenic markers). Unstrained cells at similar time points served as the control group. To demonstrate the involvement of ENaC in the differentiation process, an ENaC blocker (benzamil) was used and the results were compared to the noninhibited hMSCs. ENaC subunits' (α, β, γ, and δ) expression was observed in hMSCs, although only α subunit was significantly increased during stretching. An increase in tenogenic genes' (collagen1, collagen3, decorin, tenascin-c, scleraxis, and tenomodulin) and proteins' (collagen I, collagen III, fibronectin, and N-cadherin) expression suggests that hMSCs underwent tenogenic differentiation when subjected to uniaxial loading. Inhibition of ENaC function resulted in decreased expression of these markers, thereby suggesting that ENaC plays a vital role in tenogenic differentiation of hMSCs during mechanical loading.
Collapse
|
16
|
Abstract
PURPOSE OF REVIEW The main goal of this article is to discuss the role of the epithelial sodium channel (ENaC) in extracellular fluid and blood pressure regulation. RECENT FINDINGS Besides its role in sodium handling in the kidney, recent studies have found that ENaC expressed in other cells including immune cells can influence blood pressure via extra-renal mechanisms. Dendritic cells (DCs) are activated and contribute to salt-sensitive hypertension in an ENaC-dependent manner. We discuss recent studies on how ENaC is regulated in both the kidney and other sites including the vascular smooth muscles, endothelial cells, and immune cells. We also discuss how this extra-renal ENaC can play a role in salt-sensitive hypertension and its promise as a novel therapeutic target. The role of ENaC in blood pressure regulation in the kidney has been well studied. Recent human gene sequencing efforts have identified thousands of variants among the genes encoding ENaC, and research efforts to determine if these variants and their expression in extra-renal tissue play a role in hypertension will advance our understanding of the pathogenesis of ENaC-mediated cardiovascular disease and lead to novel therapeutic targets.
Collapse
Affiliation(s)
- Ashley L Pitzer
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, 2215 Garland Avenue, P415C Medical Research Building IV, Nashville, TN, 37232, USA
| | - Justin P Van Beusecum
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, 2215 Garland Avenue, P415C Medical Research Building IV, Nashville, TN, 37232, USA
| | - Thomas R Kleyman
- Departments of Medicine, Cell Biology, Pharmacology, and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Annet Kirabo
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, 2215 Garland Avenue, P415C Medical Research Building IV, Nashville, TN, 37232, USA. .,Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
17
|
A Theoretical Approach for the Electrochemical Characterization of Ciliary Epithelium. Life (Basel) 2020; 10:life10020008. [PMID: 31979304 PMCID: PMC7175328 DOI: 10.3390/life10020008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 01/19/2020] [Accepted: 01/19/2020] [Indexed: 02/07/2023] Open
Abstract
The ciliary epithelium (CE) is the primary site of aqueous humor (AH) production, which results from the combined action of ultrafiltration and ionic secretion. Modulation of ionic secretion is a fundamental target for drug therapy in glaucoma, and therefore it is important to identify the main factors contributing to it. As several ion transporters have been hypothesized as relevant players in CE physiology, we propose a theoretical approach to complement experimental methods in characterizing their role in the electrochemical and fluid-dynamical conditions of CE. As a first step, we compare two model configurations that differ by (i) types of transporters included for ion exchange across the epithelial membrane, and by (i) presence or absence of the intracellular production of carbonic acid mediated by the carbonic anhydrase enzyme. The proposed model configurations do not include neurohumoral mechanisms such as P2Y receptor-dependent, cAMP, or calcium-dependent pathways, which occur in the ciliary epithelium bilayer and influence the activity of ion transporters, pumps, and channels present in the cell membrane. Results suggest that one of the two configurations predicts sodium and potassium intracellular concentrations and transmembrane potential much more accurately than the other. Because of its quantitative prediction power, the proposed theoretical approach may help relate phenomena at the cellular scale, that cannot be accessed clinically, with phenomena occurring at the scale of the whole eye, for which clinical assessment is feasible.
Collapse
|
18
|
Zhao R, Ali G, Chang J, Komatsu S, Tsukasaki Y, Nie HG, Chang Y, Zhang M, Liu Y, Jain K, Jung BG, Samten B, Jiang D, Liang J, Ikebe M, Matthay MA, Ji HL. Proliferative regulation of alveolar epithelial type 2 progenitor cells by human Scnn1d gene. Am J Cancer Res 2019; 9:8155-8170. [PMID: 31754387 PMCID: PMC6857051 DOI: 10.7150/thno.37023] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 09/16/2019] [Indexed: 01/03/2023] Open
Abstract
Lung epithelial sodium channel (ENaC) encoded by Scnn1 genes is essential for maintaining transepithelial salt and fluid homeostasis in the airway and the lung. Compared to α, β, and γ subunits, the role of respiratory δ-ENaC has not been studied in vivo due to the lack of animal models. Methods: We characterized full-length human δ802-ENaC expressed in both Xenopus oocytes and humanized transgenic mice. AT2 proliferation and differentiation in 3D organoids were analysed with FACS and a confocal microscope. Both two-electrode voltage clamp and Ussing chamber systems were applied to digitize δ802-ENaC channel activity. Immunoblotting was utilized to analyse δ802-ENaC protein. Transcripts of individual ENaC subunits in human lung tissues were quantitated with qPCR. Results: The results indicate that δ802-ENaC functions as an amiloride-inhibitable Na+ channel. Inhibitory peptide α-13 distinguishes δ802- from α-type ENaC channels. Modified proteolysis of γ-ENaC by plasmin and aprotinin did not alter the inhibition of amiloride and α-13 peptide. Expression of δ802-ENaC at the apical membrane of respiratory epithelium was detected with biophysical features similar to those of heterologously expressed channels in oocytes. δ802-ENaC regulated alveologenesis through facilitating the proliferation of alveolar type 2 epithelial cells. Conclusion: The humanized mouse line conditionally expressing human δ802-ENaC is a novel model for studying the expression and function of this protein in vivo .
Collapse
|
19
|
Tu H, Zhang D, Li YL. Cellular and Molecular Mechanisms Underlying Arterial Baroreceptor Remodeling in Cardiovascular Diseases and Diabetes. Neurosci Bull 2018; 35:98-112. [PMID: 30146675 DOI: 10.1007/s12264-018-0274-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 05/31/2018] [Indexed: 01/23/2023] Open
Abstract
Clinical trials and animal experimental studies have demonstrated an association of arterial baroreflex impairment with the prognosis and mortality of cardiovascular diseases and diabetes. As a primary part of the arterial baroreflex arc, the pressure sensitivity of arterial baroreceptors is blunted and involved in arterial baroreflex dysfunction in cardiovascular diseases and diabetes. Changes in the arterial vascular walls, mechanosensitive ion channels, and voltage-gated ion channels contribute to the attenuation of arterial baroreceptor sensitivity. Some endogenous substances (such as angiotensin II and superoxide anion) can modulate these morphological and functional alterations through intracellular signaling pathways in impaired arterial baroreceptors. Arterial baroreceptors can be considered as a potential therapeutic target to improve the prognosis of patients with cardiovascular diseases and diabetes.
Collapse
Affiliation(s)
- Huiyin Tu
- Department of Emergency Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Dongze Zhang
- Department of Emergency Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Yu-Long Li
- Department of Emergency Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
| |
Collapse
|
20
|
Ji P, Chen L, Gong J, Yuan Y, Li M, Zhao Y, Zhang H. Co-expression of vasoactive intestinal peptide and protein gene product 9.5 surrounding the lumen of human Schlemm's canal. Exp Eye Res 2018; 170:1-7. [PMID: 29432726 DOI: 10.1016/j.exer.2018.02.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 02/08/2018] [Accepted: 02/08/2018] [Indexed: 01/20/2023]
Abstract
Previous studies of aqueous humor outflow have focused primarily on resistance at the trabecular meshwork (TM), and little is known about the function of Schlemm's canal (SC). Here, we aimed to investigate whether SC is innervated by the peripheral nervous system. Ten eye specimens from eight donors were processed for histological analysis. CD31 was used to identify SC, after which we used protein gene product (PGP) 9.5 as a marker to detect nerve fibers around SC. We then characterized the nerves by double staining for PGP9.5 and sympathetic nerve markers, such as tyrosine hydroxylase (TH) and dopamine beta-hydroxylase (DβH), or the parasympathetic marker vasoactive intestinal peptide (VIP), as well as sensory nerve marker calcitonin gene-related peptide (CGRP) and vesicular glutamate transporter 2 (VGLUT2). Immunohistochemistry and immunofluorescence were also performed to detect the expression of γ-epithelial Na+ channel (γ-ENaC) in SC. We found that different markers were expressed in the anterior chamber angle, with the luminal surface of SC were only positive stained for PGP9.5, VIP, and γ-ENaC. CGRP and VGLUT2 were expressed in TM and scleral spur (SS), whereas TH and DβH were absent in both TM and SC. Furthermore, PGP9.5 was co-expressed with VIP and γ-ENaC in the region surrounding the SC as well as in SS. Our findings indicate that the peripheral nerves anatomically spread in the tissues around the SC and the local nerve fibers may be parasympathetic or sensory rather than sympathetic.
Collapse
Affiliation(s)
- Pingting Ji
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, PR China
| | - Liwen Chen
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, PR China
| | - Jieling Gong
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, PR China
| | - Yuxiang Yuan
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, PR China
| | - Mu Li
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, PR China
| | - Yin Zhao
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, PR China.
| | - Hong Zhang
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, PR China.
| |
Collapse
|
21
|
Willam A, Aufy M, Tzotzos S, Evanzin H, Chytracek S, Geppert S, Fischer B, Fischer H, Pietschmann H, Czikora I, Lucas R, Lemmens-Gruber R, Shabbir W. Restoration of Epithelial Sodium Channel Function by Synthetic Peptides in Pseudohypoaldosteronism Type 1B Mutants. Front Pharmacol 2017; 8:85. [PMID: 28286482 PMCID: PMC5323398 DOI: 10.3389/fphar.2017.00085] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 02/09/2017] [Indexed: 12/20/2022] Open
Abstract
The synthetically produced cyclic peptides solnatide (a.k.a. TIP or AP301) and its congener AP318, whose molecular structures mimic the lectin-like domain of human tumor necrosis factor (TNF), have been shown to activate the epithelial sodium channel (ENaC) in various cell- and animal-based studies. Loss-of-ENaC-function leads to a rare, life-threatening, salt-wasting syndrome, pseudohypoaldosteronism type 1B (PHA1B), which presents with failure to thrive, dehydration, low blood pressure, anorexia and vomiting; hyperkalemia, hyponatremia and metabolic acidosis suggest hypoaldosteronism, but plasma aldosterone and renin activity are high. The aim of the present study was to investigate whether the ENaC-activating effect of solnatide and AP318 could rescue loss-of-function phenotype of ENaC carrying mutations at conserved amino acid positions observed to cause PHA1B. The macroscopic Na+ current of all investigated mutants was decreased compared to wild type ENaC when measured in whole-cell patch clamp experiments, and a great variation in the membrane abundance of different mutant ENaCs was observed with Western blotting experiments. However, whatever mechanism leads to loss-of-function of the studied ENaC mutations, the synthetic peptides solnatide and AP318 could restore ENaC function up to or even higher than current levels of wild type ENaC. As therapy of PHA1B is only symptomatic so far, the peptides solnatide and AP318, which directly target ENaC, are promising candidates for the treatment of the channelopathy-caused disease PHA1B.
Collapse
Affiliation(s)
- Anita Willam
- Department of Pharmacology and Toxicology, University of Vienna Vienna, Austria
| | - Mohammed Aufy
- Department of Pharmacology and Toxicology, University of Vienna Vienna, Austria
| | | | - Heinrich Evanzin
- Department of Pharmacology and Toxicology, University of Vienna Vienna, Austria
| | - Sabine Chytracek
- Department of Pharmacology and Toxicology, University of Vienna Vienna, Austria
| | - Sabrina Geppert
- Department of Pharmacology and Toxicology, University of Vienna Vienna, Austria
| | | | | | | | - Istvan Czikora
- Vascular Biology Center, Medical College of Georgia, Augusta University Augusta, GA, USA
| | - Rudolf Lucas
- Vascular Biology Center, Medical College of Georgia, Augusta University Augusta, GA, USA
| | - Rosa Lemmens-Gruber
- Department of Pharmacology and Toxicology, University of Vienna Vienna, Austria
| | - Waheed Shabbir
- Department of Pharmacology and Toxicology, University of ViennaVienna, Austria; APEPTICO GmbHVienna, Austria
| |
Collapse
|
22
|
Principles of Ocular Pharmacology. Handb Exp Pharmacol 2016. [PMID: 27730396 PMCID: PMC7122473 DOI: 10.1007/164_2016_25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
Recently, in a poll by Research America, a significant number of individuals placed losing their eyesight as having the greatest impact on their lives more so than other conditions, such as limb loss or memory loss. When they were also asked to rank which is the worst disease that could happen to them, blindness was ranked first by African-Americans and second by Caucasians, Hispanics, and Asians. Therefore, understanding the mechanisms of disease progression in the eye is extremely important if we want to make a difference in people’s lives. In addition, developing treatment programs for these various diseases that could affect our eyesight is also critical. One of the most effective treatments we have is in the development of specific drugs that can be used to target various components of the mechanisms that lead to ocular disease. Understanding basic principles of the pharmacology of the eye is important if one seeks to develop effective treatments. As our population ages, the incidence of devastating eye diseases increases. It has been estimated that more than 65 million people suffer from glaucoma worldwide (Quigley and Broman. Br J Ophthalmol 90:262–267, 2006). Add to this the debilitating eye diseases of age-related macular degeneration, diabetic retinopathy, and cataract, the number of people effected exceeds 100 million. This chapter focuses on ocular pharmacology with specific emphasis on basic principles and outlining where in the various ocular sites are drug targets currently in use with effective drugs but also on future drug targets.
Collapse
|
23
|
Warcoin E, Clouzeau C, Brignole-Baudouin F, Baudouin C. Hyperosmolarité : effets intracellulaires et implication dans la sécheresse oculaire. J Fr Ophtalmol 2016; 39:641-51. [DOI: 10.1016/j.jfo.2016.07.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 07/27/2016] [Accepted: 07/27/2016] [Indexed: 11/26/2022]
|
24
|
Boscardin E, Alijevic O, Hummler E, Frateschi S, Kellenberger S. The function and regulation of acid-sensing ion channels (ASICs) and the epithelial Na(+) channel (ENaC): IUPHAR Review 19. Br J Pharmacol 2016; 173:2671-701. [PMID: 27278329 DOI: 10.1111/bph.13533] [Citation(s) in RCA: 113] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 05/19/2016] [Accepted: 06/02/2016] [Indexed: 12/30/2022] Open
Abstract
Acid-sensing ion channels (ASICs) and the epithelial Na(+) channel (ENaC) are both members of the ENaC/degenerin family of amiloride-sensitive Na(+) channels. ASICs act as proton sensors in the nervous system where they contribute, besides other roles, to fear behaviour, learning and pain sensation. ENaC mediates Na(+) reabsorption across epithelia of the distal kidney and colon and of the airways. ENaC is a clinically used drug target in the context of hypertension and cystic fibrosis, while ASIC is an interesting potential target. Following a brief introduction, here we will review selected aspects of ASIC and ENaC function. We discuss the origin and nature of pH changes in the brain and the involvement of ASICs in synaptic signalling. We expose how in the peripheral nervous system, ASICs cover together with other ion channels a wide pH range as proton sensors. We introduce the mechanisms of aldosterone-dependent ENaC regulation and the evidence for an aldosterone-independent control of ENaC activity, such as regulation by dietary K(+) . We then provide an overview of the regulation of ENaC by proteases, a topic of increasing interest over the past few years. In spite of the profound differences in the physiological and pathological roles of ASICs and ENaC, these channels share many basic functional and structural properties. It is likely that further research will identify physiological contexts in which ASICs and ENaC have similar or overlapping roles.
Collapse
Affiliation(s)
- Emilie Boscardin
- Department of Pharmacology and Toxicology, University of Lausanne, Lausanne, Switzerland
| | - Omar Alijevic
- Department of Pharmacology and Toxicology, University of Lausanne, Lausanne, Switzerland
| | - Edith Hummler
- Department of Pharmacology and Toxicology, University of Lausanne, Lausanne, Switzerland
| | | | | |
Collapse
|
25
|
Li YL, Zhang D, Tu H, Muelleman RL. Altered ENaC is Associated With Aortic Baroreceptor Dysfunction in Chronic Heart Failure. Am J Hypertens 2016; 29:582-9. [PMID: 26297031 DOI: 10.1093/ajh/hpv141] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 07/28/2015] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Abnormal baroreceptor function contributes to attenuated arterial baroreflex sensitivity in chronic heart failure (CHF). As a mechanosensor in mammalian nonepithelium, the epithelial sodium channel (ENaC) is an amiloride-sensitive and voltage-independent ion channel. The ENaC is thought to be a component of baroreceptor mechanosensitive ion channels in aortic baroreceptor cell bodies and nerve terminals. In this study, therefore, we measured the expression and activation of the ENaC in nodose neuronal cell bodies and aortic baroreceptor nerve terminals in sham and CHF rats. METHODS AND RESULTS CHF was induced by surgical ligation of left coronary artery. The development of CHF was confirmed by hemodynamic and morphological characteristics. The aortic baroreceptor sensitivity was blunted in anesthetized CHF rats, compared with that in sham rats. The data from immunostaining and western blot analysis showed that the protein of β- and γ-ENaC subunits was expressed in nodose neuronal cell bodies and aortic baroreceptor nerve terminals, whereas the protein of α-ENaC subunit was undetectable. CHF reduced protein expression of β- and γ-ENaC subunits in nodose neuronal cell bodies and aortic baroreceptor nerve terminals. Additionally, the data recorded by the whole cell patch-clamp technique demonstrated that ENaC currents in aortic baroreceptor neurons were lower in CHF rats than that in sham rats. CONCLUSION These results suggest that reduced protein expression of the ENaC decreases the ENaC activation, which could be involved in attenuation of the aortic baroreceptor sensitivity in the CHF state. Baroreceptors should be a potential therapeutic target for reducing mortality in CHF.
Collapse
Affiliation(s)
- Yu-Long Li
- Department of Emergency Medicine, University of Nebraska Medical Center, Omaha, Nebraska, USA; Department of Cellular and integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska, USA.
| | - Dongze Zhang
- Department of Emergency Medicine, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Huiyin Tu
- Department of Emergency Medicine, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Robert L Muelleman
- Department of Emergency Medicine, University of Nebraska Medical Center, Omaha, Nebraska, USA
| |
Collapse
|
26
|
Hanukoglu I, Hanukoglu A. Epithelial sodium channel (ENaC) family: Phylogeny, structure-function, tissue distribution, and associated inherited diseases. Gene 2016; 579:95-132. [PMID: 26772908 PMCID: PMC4756657 DOI: 10.1016/j.gene.2015.12.061] [Citation(s) in RCA: 267] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 12/20/2015] [Accepted: 12/22/2015] [Indexed: 01/24/2023]
Abstract
The epithelial sodium channel (ENaC) is composed of three homologous subunits and allows the flow of Na(+) ions across high resistance epithelia, maintaining body salt and water homeostasis. ENaC dependent reabsorption of Na(+) in the kidney tubules regulates extracellular fluid (ECF) volume and blood pressure by modulating osmolarity. In multi-ciliated cells, ENaC is located in cilia and plays an essential role in the regulation of epithelial surface liquid volume necessary for cilial transport of mucus and gametes in the respiratory and reproductive tracts respectively. The subunits that form ENaC (named as alpha, beta, gamma and delta, encoded by genes SCNN1A, SCNN1B, SCNN1G, and SCNN1D) are members of the ENaC/Degenerin superfamily. The earliest appearance of ENaC orthologs is in the genomes of the most ancient vertebrate taxon, Cyclostomata (jawless vertebrates) including lampreys, followed by earliest representatives of Gnathostomata (jawed vertebrates) including cartilaginous sharks. Among Euteleostomi (bony vertebrates), Actinopterygii (ray finned-fishes) branch has lost ENaC genes. Yet, most animals in the Sarcopterygii (lobe-finned fish) branch including Tetrapoda, amphibians and amniotes (lizards, crocodiles, birds, and mammals), have four ENaC paralogs. We compared the sequences of ENaC orthologs from 20 species and established criteria for the identification of ENaC orthologs and paralogs, and their distinction from other members of the ENaC/Degenerin superfamily, especially ASIC family. Differences between ENaCs and ASICs are summarized in view of their physiological functions and tissue distributions. Structural motifs that are conserved throughout vertebrate ENaCs are highlighted. We also present a comparative overview of the genotype-phenotype relationships in inherited diseases associated with ENaC mutations, including multisystem pseudohypoaldosteronism (PHA1B), Liddle syndrome, cystic fibrosis-like disease and essential hypertension.
Collapse
Affiliation(s)
- Israel Hanukoglu
- Laboratory of Cell Biology, Faculty of Natural Sciences, Ariel University, Ariel, Israel.
| | - Aaron Hanukoglu
- Division of Pediatric Endocrinology, E. Wolfson Medical Center, Holon, Israel; Sackler School of Medicine, Tel-Aviv University, Tel Aviv, Israel
| |
Collapse
|
27
|
Glycosylation-dependent activation of epithelial sodium channel by solnatide. Biochem Pharmacol 2015; 98:740-53. [DOI: 10.1016/j.bcp.2015.08.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 08/03/2015] [Indexed: 12/29/2022]
|
28
|
Kellenberger S, Schild L. International Union of Basic and Clinical Pharmacology. XCI. Structure, Function, and Pharmacology of Acid-Sensing Ion Channels and the Epithelial Na+ Channel. Pharmacol Rev 2014; 67:1-35. [DOI: 10.1124/pr.114.009225] [Citation(s) in RCA: 193] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
29
|
Haerteis S, Krappitz A, Krappitz M, Murphy JE, Bertog M, Krueger B, Nacken R, Chung H, Hollenberg MD, Knecht W, Bunnett NW, Korbmacher C. Proteolytic activation of the human epithelial sodium channel by trypsin IV and trypsin I involves distinct cleavage sites. J Biol Chem 2014; 289:19067-78. [PMID: 24841206 DOI: 10.1074/jbc.m113.538470] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Proteolytic activation is a unique feature of the epithelial sodium channel (ENaC). However, the underlying molecular mechanisms and the physiologically relevant proteases remain to be identified. The serine protease trypsin I can activate ENaC in vitro but is unlikely to be the physiologically relevant activating protease in ENaC-expressing tissues in vivo. Herein, we investigated whether human trypsin IV, a form of trypsin that is co-expressed in several extrapancreatic epithelial cells with ENaC, can activate human ENaC. In Xenopus laevis oocytes, we monitored proteolytic activation of ENaC currents and the appearance of γENaC cleavage products at the cell surface. We demonstrated that trypsin IV and trypsin I can stimulate ENaC heterologously expressed in oocytes. ENaC cleavage and activation by trypsin IV but not by trypsin I required a critical cleavage site (Lys-189) in the extracellular domain of the γ-subunit. In contrast, channel activation by trypsin I was prevented by mutating three putative cleavage sites (Lys-168, Lys-170, and Arg-172) in addition to mutating previously described prostasin (RKRK(178)), plasmin (Lys-189), and neutrophil elastase (Val-182 and Val-193) sites. Moreover, we found that trypsin IV is expressed in human renal epithelial cells and can increase ENaC-mediated sodium transport in cultured human airway epithelial cells. Thus, trypsin IV may regulate ENaC function in epithelial tissues. Our results show, for the first time, that trypsin IV can stimulate ENaC and that trypsin IV and trypsin I activate ENaC by cleavage at distinct sites. The presence of distinct cleavage sites may be important for ENaC regulation by tissue-specific proteases.
Collapse
Affiliation(s)
- Silke Haerteis
- From the Institut für Zelluläre und Molekulare Physiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Waldstrasse 6, 91054 Erlangen, Germany
| | - Annabel Krappitz
- From the Institut für Zelluläre und Molekulare Physiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Waldstrasse 6, 91054 Erlangen, Germany
| | - Matteus Krappitz
- From the Institut für Zelluläre und Molekulare Physiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Waldstrasse 6, 91054 Erlangen, Germany
| | - Jane E Murphy
- the UCSF Center for the Neurobiology of Digestive Diseases, Department of Surgery, University of California, San Francisco, California
| | - Marko Bertog
- From the Institut für Zelluläre und Molekulare Physiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Waldstrasse 6, 91054 Erlangen, Germany
| | - Bettina Krueger
- From the Institut für Zelluläre und Molekulare Physiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Waldstrasse 6, 91054 Erlangen, Germany
| | - Regina Nacken
- From the Institut für Zelluläre und Molekulare Physiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Waldstrasse 6, 91054 Erlangen, Germany
| | - Hyunjae Chung
- the Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Morley D Hollenberg
- the Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Wolfgang Knecht
- Bioscience, CVGI iMed, AstraZeneca Research and Development, 43181 Mölndal, Sweden
| | - Nigel W Bunnett
- the Monash Institute of Pharmaceutical Sciences, 381 Royal Parade, Parkville, Victoria 3052, Australia, and the Department of Pharmacology, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Christoph Korbmacher
- From the Institut für Zelluläre und Molekulare Physiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Waldstrasse 6, 91054 Erlangen, Germany,
| |
Collapse
|
30
|
Kusche-Vihrog K, Jeggle P, Oberleithner H. The role of ENaC in vascular endothelium. Pflugers Arch 2013; 466:851-9. [PMID: 24046153 DOI: 10.1007/s00424-013-1356-3] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Revised: 09/09/2013] [Accepted: 09/09/2013] [Indexed: 12/31/2022]
Abstract
Once upon a time, the expression of the epithelial sodium channel (ENaC) was mainly assigned to the kidneys, colon and sweat glands where it was considered to be the main determinant of sodium homeostasis. Recent, though indirect, evidence for the possible existence of ENaC in a non-epithelial tissue was derived from the observation that the vascular endothelium is a target for aldosterone. Inhibitory actions of the intracellular aldosterone receptors by spironolactone and, more directly, by ENaC blockers such as amiloride supported this view. Shortly after, direct data on the expression of ENaC in vascular endothelium could be demonstrated. There, endothelial ENaC (EnNaC) could be defined as a major regulator of cellular mechanics which is a critical parameter in differentiating between vascular function and dysfunction. Foremost, the mechanical stiffness of the endothelial cell cortex, a layer 50-200 nm beneath the plasma membrane, has been shown to play a crucial role as it controls the production of the endothelium-derived vasodilator nitric oxide (NO) which directly affects the tone of the vascular smooth muscle cells. In contrast to soft endothelial cells, stiff endothelial cells release reduced amounts of NO, the hallmark of endothelial dysfunction. Thus, the combination of endothelial stiffness and myogenic tone might increase the peripheral vascular resistance. An elevation of arterial blood pressure is supposed to be the consequence of such functional changes. In this review, EnNaC is discussed as an aldosterone-regulated plasma membrane protein of the vascular endothelium that could significantly contribute to maintaining of an appropriate arterial blood pressure but, if overexpressed, could participate in the pathogenesis of arterial hypertension.
Collapse
Affiliation(s)
- Kristina Kusche-Vihrog
- Institute of Physiology II, University of Münster, Robert-Koch-Str. 27b, 48149, Münster, Germany,
| | | | | |
Collapse
|
31
|
Goel R, Murthy KR, Srikanth SM, Pinto SM, Bhattacharjee M, Kelkar DS, Madugundu AK, Dey G, Mohan SS, Krishna V, Prasad TK, Chakravarti S, Harsha HC, Pandey A. Characterizing the normal proteome of human ciliary body. Clin Proteomics 2013; 10:9. [PMID: 23914977 PMCID: PMC3750387 DOI: 10.1186/1559-0275-10-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 07/16/2013] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The ciliary body is the circumferential muscular tissue located just behind the iris in the anterior chamber of the eye. It plays a pivotal role in the production of aqueous humor, maintenance of the lens zonules and accommodation by changing the shape of the crystalline lens. The ciliary body is the major target of drugs against glaucoma as its inhibition leads to a drop in intraocular pressure. A molecular study of the ciliary body could provide a better understanding about the pathophysiological processes that occur in glaucoma. Thus far, no large-scale proteomic investigation has been reported for the human ciliary body. RESULTS In this study, we have carried out an in-depth LC-MS/MS-based proteomic analysis of normal human ciliary body and have identified 2,815 proteins. We identified a number of proteins that were previously not described in the ciliary body including importin 5 (IPO5), atlastin-2 (ATL2), B-cell receptor associated protein 29 (BCAP29), basigin (BSG), calpain-1 (CAPN1), copine 6 (CPNE6), fibulin 1 (FBLN1) and galectin 1 (LGALS1). We compared the plasma proteome with the ciliary body proteome and found that the large majority of proteins in the ciliary body were also detectable in the plasma while 896 proteins were unique to the ciliary body. We also classified proteins using pathway enrichment analysis and found most of proteins associated with ubiquitin pathway, EIF2 signaling, glycolysis and gluconeogenesis. CONCLUSIONS More than 95% of the identified proteins have not been previously described in the ciliary body proteome. This is the largest catalogue of proteins reported thus far in the ciliary body that should provide new insights into our understanding of the factors involved in maintaining the secretion of aqueous humor. The identification of these proteins will aid in understanding various eye diseases of the anterior segment such as glaucoma and presbyopia.
Collapse
Affiliation(s)
- Renu Goel
- Institute of Bioinformatics, International Technology Park, Bangalore 560 066, India.,Department of Biotechnology, Kuvempu University, Shankaraghatta, Shimoga 577 451, Karnataka, India
| | - Krishna R Murthy
- Institute of Bioinformatics, International Technology Park, Bangalore 560 066, India.,Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam 690 525, Kerala, India.,Vittala International Institute Of Ophthalmology, Bangalore 560 085, Karnataka, India
| | - Srinivas M Srikanth
- Institute of Bioinformatics, International Technology Park, Bangalore 560 066, India.,Centre of Excellence in Bioinformatics, Bioinformatics Centre, School of Life Sciences, Pondicherry University, Puducherry 605 014, India
| | - Sneha M Pinto
- Institute of Bioinformatics, International Technology Park, Bangalore 560 066, India.,Manipal University, Madhav Nagar, Manipal 576104, Karnataka, India
| | - Mitali Bhattacharjee
- Institute of Bioinformatics, International Technology Park, Bangalore 560 066, India.,Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam 690 525, Kerala, India
| | - Dhanashree S Kelkar
- Institute of Bioinformatics, International Technology Park, Bangalore 560 066, India.,Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam 690 525, Kerala, India
| | - Anil K Madugundu
- Institute of Bioinformatics, International Technology Park, Bangalore 560 066, India
| | - Gourav Dey
- Institute of Bioinformatics, International Technology Park, Bangalore 560 066, India
| | - Sujatha S Mohan
- Institute of Bioinformatics, International Technology Park, Bangalore 560 066, India.,Department of Biotechnology, Kuvempu University, Shankaraghatta, Shimoga 577 451, Karnataka, India.,Research Unit for Immunoinformatics, RIKEN Research Center for Allergy and Immunology, RIKEN Yokohama Institute, Kanagawa 230 0045, Japan
| | - Venkatarangaiah Krishna
- Department of Biotechnology, Kuvempu University, Shankaraghatta, Shimoga 577 451, Karnataka, India
| | - Ts Keshava Prasad
- Institute of Bioinformatics, International Technology Park, Bangalore 560 066, India.,Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam 690 525, Kerala, India.,Manipal University, Madhav Nagar, Manipal 576104, Karnataka, India
| | - Shukti Chakravarti
- Johns Hopkins University School of Medicine, Baltimore 21205, MD, USA.,Department of Cell Biology, Johns Hopkins School of Medicine, Baltimore, MD, USA.,Department of Ophthalmology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - H C Harsha
- Institute of Bioinformatics, International Technology Park, Bangalore 560 066, India
| | - Akhilesh Pandey
- Johns Hopkins University School of Medicine, Baltimore 21205, MD, USA.,McKusick-Nathans Institute of Genetic Medicine, Departments of Biological Chemistry, Oncology and Pathology, Johns Hopkins University School of Medicine, Baltimore 21205, MD, USA
| |
Collapse
|
32
|
Ji HL, Zhao RZ, Chen ZX, Shetty S, Idell S, Matalon S. δ ENaC: a novel divergent amiloride-inhibitable sodium channel. Am J Physiol Lung Cell Mol Physiol 2012; 303:L1013-26. [PMID: 22983350 DOI: 10.1152/ajplung.00206.2012] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The fourth subunit of the epithelial sodium channel, termed delta subunit (δ ENaC), was cloned in human and monkey. Increasing evidence shows that this unique subunit and its splice variants exhibit biophysical and pharmacological properties that are divergent from those of α ENaC channels. The widespread distribution of epithelial sodium channels in both epithelial and nonepithelial tissues implies a range of physiological functions. The altered expression of SCNN1D is associated with numerous pathological conditions. Genetic studies link SCNN1D deficiency with rare genetic diseases with developmental and functional disorders in the brain, heart, and respiratory systems. Here, we review the progress of research on δ ENaC in genomics, biophysics, proteomics, physiology, pharmacology, and clinical medicine.
Collapse
Affiliation(s)
- Hong-Long Ji
- Department of Cellular and Molecular Biology, University of Texas Health Science Center at Tyler, Tyler, Texas, USA.
| | | | | | | | | | | |
Collapse
|