1
|
Li M, Xu Q, Fan Q, Li H, Zhang Y, Jiang F, Qu Y. Small molecule SIRT1 activators counteract oxidative stress-induced inflammasome activation and nucleolar stress in retinal degeneration. Int Immunopharmacol 2024; 142:113167. [PMID: 39303543 DOI: 10.1016/j.intimp.2024.113167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/11/2024] [Accepted: 09/11/2024] [Indexed: 09/22/2024]
Abstract
BACKGROUND The nicotinamide adenosine dinucleotide-dependent deacetylase Sirtuin 1 (SIRT1) has been identified as a protective factor that inhibits the activation of nucleotide-binding and oligomerization domain-, leucine-rich repeat-, and pyrin domain-containing protein 3 (NLRP3) inflammasome. However, whether pharmacological SIRT1 activators can protect retinal pigment epithelial (RPE) cells against oxidative and inflammatory injuries related to age-related macular degeneration remains to be explored. METHODS Two small molecule specific SIRT1 activators (SRT2104 and CAY10602) were tested, with resveratrol being used as a positive control. Mouse models with sodium iodate-induced retinal degeneration were constructed. ARPE-19 cells in culture were used for in vitro experiments. The effects of SIRT1 activators on H2O2-induced ARPE-19 cell injury were determined by reactive oxygen species quantification, western blotting, flow cytometry and immunofluorescence staining. In vivo, the severity of retinal damage was assessed using flash electroretinography and histopathological analysis. RESULTS In vitro, SRT2104, CAY10602 and resveratrol significantly attenuated H2O2-induced cell death, nucleolar stress response, and reactive oxygen species accumulation. In H2O2-stimulated cells, SIRT1 activators reduced the level of NLRP3, inhibited the activation of caspase-1, and decreased the production of interleukin (IL)-1β and IL-18. The inhibitory effects of SIRT1 activators on caspase-1 activation and IL-1β production were blunted by SIRT1 gene silencing. In vivo, treatment with SRT2104 or CAY10602 in mice with sodium iodate-induced retinal degeneration markedly improved the retinal functions and reduced the loss of RPE cells. CONCLUSION Our study suggests that small molecule SIRT1 activators are effective for protection of RPE cells against oxidative stress-induced NLRP3 inflammasome activation, highlighting potential applications in the treatment of macular degeneration associated RPE dysfunctions.
Collapse
Affiliation(s)
- Mengyao Li
- Department of Geriatrics, Qilu Hospital of Shandong University, Jinan, Shandong Province, China; Jinan Clinical Research Center for Geriatric Medicine (202132001), Jinan, Shandong Province, China
| | - Qian Xu
- Department of Geriatrics, Qilu Hospital of Shandong University, Jinan, Shandong Province, China; Jinan Clinical Research Center for Geriatric Medicine (202132001), Jinan, Shandong Province, China
| | - Qian Fan
- Department of Geriatrics, Qilu Hospital of Shandong University, Jinan, Shandong Province, China; Jinan Clinical Research Center for Geriatric Medicine (202132001), Jinan, Shandong Province, China
| | - Haiming Li
- Department of Geriatrics, Qilu Hospital of Shandong University, Jinan, Shandong Province, China; Jinan Clinical Research Center for Geriatric Medicine (202132001), Jinan, Shandong Province, China
| | - Yu Zhang
- Department of Geriatrics, Qilu Hospital of Shandong University, Jinan, Shandong Province, China; Jinan Clinical Research Center for Geriatric Medicine (202132001), Jinan, Shandong Province, China
| | - Fan Jiang
- Department of Geriatrics, Qilu Hospital of Shandong University, Jinan, Shandong Province, China; Jinan Clinical Research Center for Geriatric Medicine (202132001), Jinan, Shandong Province, China.
| | - Yi Qu
- Department of Geriatrics, Qilu Hospital of Shandong University, Jinan, Shandong Province, China; Jinan Clinical Research Center for Geriatric Medicine (202132001), Jinan, Shandong Province, China.
| |
Collapse
|
2
|
Cuevas-Rios G, Assale TA, Wissfeld J, Bungartz A, Hofmann J, Langmann T, Neumann H. Decreased sialylation elicits complement-related microglia response and bipolar cell loss in the mouse retina. Glia 2024; 72:2295-2312. [PMID: 39228105 DOI: 10.1002/glia.24613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 08/16/2024] [Accepted: 08/20/2024] [Indexed: 09/05/2024]
Abstract
Sialylation plays an important role in self-recognition, as well as keeping the complement and innate immune systems in check. It is unclear whether the reduced sialylation seen during aging and in mice heterozygous for the null mutant of UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase (Gne+/-), an essential enzyme for sialic acid biosynthesis, contributes to retinal inflammation and degeneration. We found a reduction of polysialic acid and trisialic acid expression in several retinal layers in Gne+/- mice at 9 months of age compared to Gne+/+ wildtype (WT) mice, which was associated with a higher microglial expression of the lysosomal marker CD68. Furthermore, the total number of rod bipolar cells was reduced in 12 months old Gne+/- mice in comparison to WT mice, demonstrating loss of these retinal interneurons. Transcriptome analysis showed up-regulation of complement, inflammation, and apoptosis-related pathways in the retinas of Gne+/- mice. Particularly, increased gene transcript levels of the complement factors C3 and C4 and the pro-inflammatory cytokine Il-1β were observed by semi-quantitative real-time polymerase chain reaction (sqRT-PCR) in 9 months old Gne+/- mice compared to WT mice. The increased expression of CD68, loss of rod bipolar cells, and increased gene transcription of complement factor C4, were all prevented after crossing Gne+/- mice with complement factor C3-deficient animals. In conclusion, our data show that retinal hyposialylation in 9 and 12 months old Gne+/- mice was associated with complement-related inflammation and lysosomal microglia response, as well as rod bipolar cells loss, which was absent after genetic deletion of complement factor C3.
Collapse
Affiliation(s)
- German Cuevas-Rios
- Institute of Reconstructive Neurobiology, Medical Faculty & University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Tawfik Abou Assale
- Institute of Reconstructive Neurobiology, Medical Faculty & University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Jannis Wissfeld
- Institute of Reconstructive Neurobiology, Medical Faculty & University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Annemarie Bungartz
- Institute of Reconstructive Neurobiology, Medical Faculty & University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Julia Hofmann
- Experimental Immunology of the Eye, Department of Ophthalmology, University Hospital Cologne, Cologne, Germany
| | - Thomas Langmann
- Experimental Immunology of the Eye, Department of Ophthalmology, University Hospital Cologne, Cologne, Germany
| | - Harald Neumann
- Institute of Reconstructive Neurobiology, Medical Faculty & University Hospital Bonn, University of Bonn, Bonn, Germany
| |
Collapse
|
3
|
Xiang HL, Yuan Q, Zeng JY, Xu ZY, Zhang HZ, Huang J, Song AN, Xiong J, Zhang C. MDM2 accelerated renal senescence via ubiquitination and degradation of HDAC1. Acta Pharmacol Sin 2024; 45:2328-2338. [PMID: 38760541 PMCID: PMC11489730 DOI: 10.1038/s41401-024-01294-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 04/16/2024] [Indexed: 05/19/2024] Open
Abstract
Senescence, an intricate and inevitable biological process, characterized by the gradual loss of homeostasis and declining organ functions. The pathological features of cellular senescence, including cell cycle arrest, metabolic disruptions, and the emergence of senescence-associated secretory phenotypes (SASP), collectively contribute to the intricate and multifaceted nature of senescence. Beyond its classical interaction with p53, murine double minute gene 2 (MDM2), traditionally known as an E3 ubiquitin ligase involved in protein degradation, plays a pivotal role in cellular processes governing senescence. Histone deacetylase (HDAC), a class of histone deacetylases mainly expressed in the nucleus, has emerged as a critical contributor to renal tissues senescence. In this study we investigated the interplay between MDM2 and HDAC1 in renal senescence. We established a natural aging model in mice over a 2-year period that was verified by SA-β-GAL staining and increased expression of senescence-associated markers such as p21, p16, and TNF-α in the kidneys. Furthermore, we showed that the expression of MDM2 was markedly increased, while HDAC1 expression underwent downregulation during renal senescence. This phenomenon was confirmed in H2O2-stimulated HK2 cells in vitro. Knockout of renal tubular MDM2 alleviated renal senescence in aged mice and in H2O2-stimulated HK2 cells. Moreover, we demonstrated that MDM2 promoted renal senescence by orchestrating the ubiquitination and subsequent degradation of HDAC1. These mechanisms synergistically accelerate the aging process in renal tissues, highlighting the intricate interplay between MDM2 and HDAC1, underpinning the age-related organ function decline.
Collapse
Affiliation(s)
- Hui-Ling Xiang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, China
| | - Qian Yuan
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, China
| | - Jie-Yu Zeng
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, China
| | - Zi-Yu Xu
- Department of Nephrology, Henan Provincial People's Hospital, Zhengzhou University, Zhengzhou, 450000, China
| | - Hui-Zi Zhang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, China
| | - Jing Huang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, China
| | - An-Ni Song
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, China
| | - Jing Xiong
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, China
| | - Chun Zhang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, China.
| |
Collapse
|
4
|
Lu Z, Morales MG, Liu S, Ramkumar HL. The Endogenous Expression of BMI1 in Adult Human Eyes. Cells 2024; 13:1672. [PMID: 39404434 PMCID: PMC11475477 DOI: 10.3390/cells13191672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/19/2024] [Accepted: 10/08/2024] [Indexed: 10/19/2024] Open
Abstract
BMI1, also known as B lymphoma Mo-MLV insertion region 1, is a protein in the Polycomb group that is implicated in various cellular processes, including stem cell self-renewal and the regulation of cellular senescence. BMI1 plays a role in the regulation of retinal progenitor cells and the renewal of adult neuronal cells. However, the presence, location, and quantification of BMI1 in the adult human eye have never previously been reported. In this study, we collected 45 frozen globes from eye banks, and ocular tissues were dissected. Protein was quantified by utilizing a custom electrochemiluminescence (ECL) assay developed to quantify the BMI1 protein. BMI1 was found in all ocular tissues at the following levels: the retina (1483.6 ± 191.7 pg/mL) and the RPE (296.4 ± 78.1 pg/mL). BMI1 expression was noted ubiquitously in the GCL (ganglion cell layer), the INL (inner nuclear layer), the ONL (outer nuclear layer), and the RPE (retinal pigment epithelium) via immunofluorescence, with higher levels in the inner than in the outer retinal layers and the RPE. These data confirm that BMI1 is expressed in the human retina. Further studies will illuminate the role that BMI1 plays in ocular cells. BMI1 levels are lower in aged retinas, possibly reflecting changes in retinal somatic and stem cell maintenance and disease susceptibility.
Collapse
|
5
|
Tsou SC, Chuang CJ, Hsu CL, Chen TC, Yeh JH, Wang M, Wang I, Chang YY, Lin HW. The Novel Application of EUK-134 in Retinal Degeneration: Preventing Mitochondrial Oxidative Stress-Triggered Retinal Pigment Epithelial Cell Apoptosis by Suppressing MAPK/p53 Signaling Pathway. ENVIRONMENTAL TOXICOLOGY 2024. [PMID: 39268877 DOI: 10.1002/tox.24416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/07/2024] [Accepted: 07/23/2024] [Indexed: 09/15/2024]
Abstract
Age-related macular degeneration (AMD), a leading cause of blindness, is characterized by mitochondrial dysfunction of retinal pigment epithelium (RPE) cells. EUK-134 is a mimetic of SOD2 and catalase, widely used for its antioxidant properties in models of light-induced damage or oxidative stress. However, its effects on the retina are not yet clear. Here, we investigated the capability of EUK-134 in averting AMD using sodium iodate (NaIO3)-induced Balb/c mouse and ARPE-19 cells (adult RPE cell line). In vivo, EUK-134 effectively antagonized NaIO3-induced retinal deformation and prevented outer and inner nuclear layer thinning. In addition, it was found that the EUK-134-treated group significantly down-regulated the expression of cleaved caspase-3 compared with the group treated with NaIO3 alone. Our results found that EUK-134 notably improved cell viability by preventing mitochondrial ROS accumulation-induced membrane potential depolarization-mediated apoptosis in NaIO3-inducted ARPE-19 cells. Furthermore, we found that EUK-134 could inhibit p-ERK, p-p38, p-JNK, p-p53, Bax, cleaved caspase-9, cleaved caspase-3, and cleaved PARP by increasing Bcl-2 protein expression. Additionally, we employed MAPK pathway inhibitors by SB203580 (a p38 inhibitor), U0126 (an ERK inhibitor), and SP600125 (a JNK inhibitor) to corroborate the aforementioned observation. The results support that EUK-134 may effectively prevent mitochondrial oxidative stress-mediated retinal apoptosis in NaIO3-induced retinopathy.
Collapse
Affiliation(s)
- Shang-Chun Tsou
- Department of Nutrition, Chung Shan Medical University, Taichung, Taiwan
| | - Chen-Ju Chuang
- Emergency Department, St. Martin De Porres Hospital, Chiayi, Taiwan
| | - Chin-Lin Hsu
- Department of Nutrition, Chung Shan Medical University, Taichung, Taiwan
| | - Tzu-Chun Chen
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Jui-Hsuan Yeh
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Meilin Wang
- Department of Microbiology and Immunology, School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Inga Wang
- Rehabilitation Sciences & Technology, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, USA
| | - Yuan-Yen Chang
- Department of Microbiology and Immunology, School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Clinical Laboratory, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Hui-Wen Lin
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Optometry, Asia University, Taichung, Taiwan
| |
Collapse
|
6
|
Esposito E, Pozza E, Contado C, Pula W, Bortolini O, Ragno D, Toldo S, Casciano F, Bondi A, Zauli E, Secchiero P, Zauli G, Melloni E. Microfluidic Fabricated Liposomes for Nutlin-3a Ocular Delivery as Potential Candidate for Proliferative Vitreoretinal Diseases Treatment. Int J Nanomedicine 2024; 19:3513-3536. [PMID: 38623081 PMCID: PMC11018138 DOI: 10.2147/ijn.s452134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 03/09/2024] [Indexed: 04/17/2024] Open
Abstract
Purpose Proliferative vitreoretinal diseases (PVDs) represent a heterogeneous group of pathologies characterized by the presence of retinal proliferative membranes, in whose development retinal pigment epithelium (RPE) is deeply involved. As the only effective treatment for PVDs at present is surgery, we aimed to investigate the potential therapeutic activity of Nutlin-3a, a small non-genotoxic inhibitor of the MDM2/p53 interaction, on ARPE-19 cell line and on human RPE primary cells, as in vitro models of RPE and, more importantly, to formulate and evaluate Nutlin-3a loaded liposomes designed for ophthalmic administration. Methods Liposomes were produced using an innovative approach by a microfluidic device under selection of different conditions. Liposome size distribution was evaluated by photon correlation spectroscopy and centrifugal field flow fractionation, while the liposome structure was studied by transmission electron microscopy and Fourier-transform infrared spectroscopy. The Nutlin-3a entrapment capacity was evaluated by ultrafiltration and HPLC. Nutlin-3a biological effectiveness as a solution or loaded in liposomes was evaluated by viability, proliferation, apoptosis and migration assays and by morphological analysis. Results The microfluidic formulative study enabled the selection of liposomes composed of phosphatidylcholine (PC) 5.4 or 8.2 mg/mL and 10% ethanol, characterized by roundish vesicular structures with 150-250 nm mean diameters. Particularly, liposomes based on the lower PC concentration were characterized by higher stability. Nutlin-3a was effectively encapsulated in liposomes and was able to induce a significant reduction of viability and migration in RPE cell models. Conclusion Our results lay the basis for a possible use of liposomes for the ocular delivery of Nutlin-3a.
Collapse
Affiliation(s)
- Elisabetta Esposito
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Ferrara, I-44121, Italy
| | - Elena Pozza
- Department of Translational Medicine, University of Ferrara, Ferrara, I-44121, Italy
| | - Catia Contado
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Ferrara, I-44121, Italy
| | - Walter Pula
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Ferrara, I-44121, Italy
| | - Olga Bortolini
- Department of Environmental Sciences and Prevention, University of Ferrara, Ferrara, I-44121, Italy
| | - Daniele Ragno
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Ferrara, I-44121, Italy
| | - Sofia Toldo
- Department of Environmental Sciences and Prevention, University of Ferrara, Ferrara, I-44121, Italy
| | - Fabio Casciano
- Department of Translational Medicine and LTTA Centre, University of Ferrara, Ferrara, I-44121, Italy
| | - Agnese Bondi
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Ferrara, I-44121, Italy
| | - Enrico Zauli
- Department of Translational Medicine, University of Ferrara, Ferrara, I-44121, Italy
| | - Paola Secchiero
- Department of Translational Medicine and LTTA Centre, University of Ferrara, Ferrara, I-44121, Italy
| | - Giorgio Zauli
- Department of Environmental Sciences and Prevention, University of Ferrara, Ferrara, I-44121, Italy
| | - Elisabetta Melloni
- Department of Translational Medicine and LTTA Centre, University of Ferrara, Ferrara, I-44121, Italy
| |
Collapse
|
7
|
Velmurugan S, Pauline R, Chandrashekar G, Kulanthaivel L, Subbaraj GK. Understanding the Impact of the Sirtuin 1 (SIRT1) Gene on Age-related Macular Degeneration: A Comprehensive Study. Niger Postgrad Med J 2024; 31:93-101. [PMID: 38826012 DOI: 10.4103/npmj.npmj_9_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 04/02/2024] [Indexed: 06/04/2024]
Abstract
Age-related macular degeneration (AMD) is a prevalent and incurable condition affecting the central retina and posing a significant risk to vision, particularly in individuals over the age of 60. As the global population ages, the prevalence of AMD is expected to rise, leading to substantial socioeconomic impacts and increased healthcare costs. The disease manifests primarily in two forms, neovascular and non-neovascular, with genetic, environmental and lifestyle factors playing a pivotal role in disease susceptibility and progression. This review article involved conducting an extensive search across various databases, including Google Scholar, PubMed, Web of Science, ScienceDirect, Scopus and EMBASE, to compile relevant case-control studies and literature reviews from online published articles extracted using search terms related to the work. SIRT1, a key member of the sirtuin family, influences cellular processes such as ageing, metabolism, DNA repair and stress response. Its dysregulation is linked to retinal ageing and ocular conditions like AMD. This review discusses the role of SIRT1 in AMD pathology, its association with genetic variants and its potential as a biomarker, paving the way for targeted interventions and personalised treatment strategies. In addition, it highlights the findings of case-control studies investigating the relationship between SIRT1 gene polymorphisms and AMD risk. These studies collectively revealed a significant association between certain SIRT1 gene variants and AMD risk. Further studies with larger sample sizes are required to validate these findings. As the prevalence of AMD grows, understanding the role of SIRT1 and other biomarkers becomes increasingly vital for improving diagnosis, treatment and, ultimately, patient outcomes.
Collapse
Affiliation(s)
- Saranya Velmurugan
- Medical Genetics Division, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, Tamil Nadu, India
| | - Rashmi Pauline
- Medical Genetics Division, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, Tamil Nadu, India
| | | | - Langeswaran Kulanthaivel
- Department of Biomedical Sciences, Alagappa University, Science Campus, Karaikudi, Tamil Nadu, India
| | - Gowtham Kumar Subbaraj
- Medical Genetics Division, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, Tamil Nadu, India
| |
Collapse
|
8
|
Fietz A, Corsi F, Hurst J, Schnichels S. Blue Light Damage and p53: Unravelling the Role of p53 in Oxidative-Stress-Induced Retinal Apoptosis. Antioxidants (Basel) 2023; 12:2072. [PMID: 38136192 PMCID: PMC10740515 DOI: 10.3390/antiox12122072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/15/2023] [Accepted: 11/28/2023] [Indexed: 12/24/2023] Open
Abstract
In the digital age, the widespread presence of electronic devices has exposed humans to an exceptional amount of blue light (BL) emitted from screens, LEDs, and other sources. Studies have shown that prolonged exposure to BL could have harmful effects on the visual system and circadian rhythm regulation. BL is known to induce oxidative stress, leading to DNA damage. Emerging research indicates that BL may also induce cell death pathways that involve the tumor-suppressor protein p53. Activated p53 acts as a transcription factor to regulate the expression of genes involved in cell cycle arrest, DNA repair, and apoptosis. This study aimed to explore the implication of p53 in BL-caused retinal damage, shedding light on the potential mechanisms of oxidative-stress-induced retinal diseases. BL-exposed porcine retinal cultures demonstrated increased p53- and caspase-mediated apoptosis, depending on exposure duration. Direct inhibition of p53 via pifithrin α resulted in the prevention of retinal cell death. These findings raise concerns about the long-term consequences of the current daily BL exposure and its potential involvement in various pathological conditions, including oxidative-stress-based retinal diseases like age-related macular degeneration. In addition, this study paves the way for the development of novel therapeutic approaches for oxidative-stress-based retinal diseases.
Collapse
Affiliation(s)
- Agnes Fietz
- Center for Ophthalmology Tübingen, University Eye Hospital Tübingen, 72076 Tübingen, Germany; (A.F.); (F.C.); (S.S.)
| | - Francesca Corsi
- Center for Ophthalmology Tübingen, University Eye Hospital Tübingen, 72076 Tübingen, Germany; (A.F.); (F.C.); (S.S.)
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy
| | - José Hurst
- Center for Ophthalmology Tübingen, University Eye Hospital Tübingen, 72076 Tübingen, Germany; (A.F.); (F.C.); (S.S.)
| | - Sven Schnichels
- Center for Ophthalmology Tübingen, University Eye Hospital Tübingen, 72076 Tübingen, Germany; (A.F.); (F.C.); (S.S.)
| |
Collapse
|
9
|
Bhattacharya S, Yin J, Huo W, Chaum E. Loss of Prom1 impairs autophagy and promotes epithelial-mesenchymal transition in mouse retinal pigment epithelial cells. J Cell Physiol 2023; 238:2373-2389. [PMID: 37610047 DOI: 10.1002/jcp.31094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 07/15/2023] [Accepted: 07/20/2023] [Indexed: 08/24/2023]
Abstract
Mutations in the Prominin-1 (Prom1) gene disrupt photoreceptor disk morphogenesis, leading to macular dystrophies. We have shown that human retinal pigment epithelial (RPE) homeostasis is under the control of Prom1-dependent autophagy, demonstrating that Prom1 plays different roles in the photoreceptors and RPE. It is unclear if retinal and macular degeneration caused by the loss of Prom1 function is a cell-autonomous feature of the RPE or a generalized disease of photoreceptor degeneration. In this study, we investigated whether Prom1 is required for mouse RPE (mRPE) autophagy and phagocytosis, which are cellular processes essential for photoreceptor survival. We found that Prom1-KO decreases autophagy flux, activates mTORC1, and concomitantly decreases transcription factor EB (TFEB) and Cathepsin-D activities in mRPE cells. In addition, Prom1-KO reduces the clearance of bovine photoreceptor outer segments in mRPE cells due to increased mTORC1 and reduced TFEB activities. Dysfunction of Prom1-dependent autophagy correlates with both a decrease in ZO-1 and E-cadherin and a concomitant increase in Vimentin, SNAI1, and ZEB1 levels, consistent with induction of epithelial-mesenchymal transition (EMT) in Prom1-KO mRPE cells. Our results demonstrate that Prom1-mTORC1-TFEB signaling is a central driver of cell-autonomous mRPE homeostasis. We show that Prom1-KO in mRPE leads to RPE defects similar to that seen in atrophic age-related macular degeneration and opens new avenues of investigation targeting Prom1 in retinal degenerative diseases.
Collapse
Affiliation(s)
- Sujoy Bhattacharya
- Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Jinggang Yin
- Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Weihong Huo
- Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Edward Chaum
- Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
10
|
Zhou X, Zhang J, Ding Y, Huang H, Li Y, Chen W. Predicting late-stage age-related macular degeneration by integrating marginally weak SNPs in GWA studies. Front Genet 2023; 14:1075824. [PMID: 37065470 PMCID: PMC10101437 DOI: 10.3389/fgene.2023.1075824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 03/17/2023] [Indexed: 04/18/2023] Open
Abstract
Introduction: Age-related macular degeneration (AMD) is a progressive neurodegenerative disease and the leading cause of blindness in developed countries. Current genome-wide association studies (GWAS) for late-stage age-related macular degeneration are mainly single-marker-based approaches, which investigate one Single-Nucleotide Polymorphism (SNP) at a time and postpone the integration of inter-marker Linkage-disequilibrium (LD) information in the downstream fine mappings. Recent studies showed that directly incorporating inter-marker connection/correlation into variants detection can help discover novel marginally weak single-nucleotide polymorphisms, which are often missed in conventional genome-wide association studies, and can also help improve disease prediction accuracy. Methods: Single-marker analysis is performed first to detect marginally strong single-nucleotide polymorphisms. Then the whole-genome linkage-disequilibrium spectrum is explored and used to search for high-linkage-disequilibrium connected single-nucleotide polymorphism clusters for each strong single-nucleotide polymorphism detected. Marginally weak single-nucleotide polymorphisms are selected via a joint linear discriminant model with the detected single-nucleotide polymorphism clusters. Prediction is made based on the selected strong and weak single-nucleotide polymorphisms. Results: Several previously identified late-stage age-related macular degeneration susceptibility genes, for example, BTBD16, C3, CFH, CFHR3, HTARA1, are confirmed. Novel genes DENND1B, PLK5, ARHGAP45, and BAG6 are discovered as marginally weak signals. Overall prediction accuracy of 76.8% and 73.2% was achieved with and without the inclusion of the identified marginally weak signals, respectively. Conclusion: Marginally weak single-nucleotide polymorphisms, detected from integrating inter-marker linkage-disequilibrium information, may have strong predictive effects on age-related macular degeneration. Detecting and integrating such marginally weak signals can help with a better understanding of the underlying disease-development mechanisms for age-related macular degeneration and more accurate prognostics.
Collapse
Affiliation(s)
- Xueping Zhou
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA, United States
| | - Jipeng Zhang
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA, United States
| | - Ying Ding
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA, United States
| | - Heng Huang
- Department of Electrical and Computer Engineering, University of Pittsburgh, Pittsburgh, PA, United States
| | - Yanming Li
- Department of Biostatistics and Data Science, University of Kansas Medical Center, Kansas, KS, United States
| | - Wei Chen
- Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
11
|
Choi YA, Jeong A, Woo CH, Cha SC, Park DY, Sagong M. Aqueous microRNA profiling in age-related macular degeneration and polypoidal choroidal vasculopathy by next-generation sequencing. Sci Rep 2023; 13:1274. [PMID: 36690666 PMCID: PMC9870898 DOI: 10.1038/s41598-023-28385-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 01/18/2023] [Indexed: 01/24/2023] Open
Abstract
Although many studies demonstrated the differences of clinical features, natural course, and response to treatment between typical age-related macular degeneration (AMD) and polypoidal choroidal vasculopathy (PCV), differential microRNAs (miRNAs) expression in the aqueous humor (AH) between them has not been reported yet. We investigated the roles of miRNAs in the AH of patients with typical AMD and PCV using next-generation sequencing (NGS) and quantitative PCR (qPCR). Target genes and predicted pathways of miRNAs were investigated via pathway enrichment analysis using the Kyoto Encyclopedia of Genes and Genomes database. A total of 161 miRNAs from eyes with typical AMD and 185 miRNAs from eyes with PCV were differentially expressed. 33 miRNAs were commonly upregulated, and 77 miRNAs were commonly downregulated in both typical AMD and PCV groups. Among them, hsa-miR-140-5p, hsa-miR-374c-3p, and hsa-miR-200a-5p were differentially expressed and were predicted to regulate proteoglycans in cancer, p53 signaling pathway, Hippo signaling pathway, and adherens junction. The differential expression profiles and target gene regulation networks of AH miRNAs may contribute to the development of different pathological phenotypes in typical AMD and PCV. The results of this study provide novel insights into the pathogenesis, associated prognostic biomarkers, and therapeutic targets in AMD and PCV.
Collapse
Affiliation(s)
- Yeong A Choi
- Department of Ophthalmology, Yeungnam University College of Medicine, #170 Hyunchungro, Nam-Gu, Daegu, 42415, South Korea
- Yeungnam Eye Center, Yeungnam University Hospital, Daegu, South Korea
| | - Areum Jeong
- Department of Ophthalmology, Yeungnam University College of Medicine, #170 Hyunchungro, Nam-Gu, Daegu, 42415, South Korea
- Yeungnam Eye Center, Yeungnam University Hospital, Daegu, South Korea
| | - Chang-Hoon Woo
- Department of Pharmacology, Yeungnam University College of Medicine, Daegu, South Korea
| | - Soon Cheol Cha
- Department of Ophthalmology, Yeungnam University College of Medicine, #170 Hyunchungro, Nam-Gu, Daegu, 42415, South Korea
- Yeungnam Eye Center, Yeungnam University Hospital, Daegu, South Korea
| | - Do Young Park
- Department of Ophthalmology, Yeungnam University College of Medicine, #170 Hyunchungro, Nam-Gu, Daegu, 42415, South Korea
- Yeungnam Eye Center, Yeungnam University Hospital, Daegu, South Korea
| | - Min Sagong
- Department of Ophthalmology, Yeungnam University College of Medicine, #170 Hyunchungro, Nam-Gu, Daegu, 42415, South Korea.
- Yeungnam Eye Center, Yeungnam University Hospital, Daegu, South Korea.
| |
Collapse
|
12
|
Wolfrum P, Fietz A, Schnichels S, Hurst J. The function of p53 and its role in Alzheimer's and Parkinson's disease compared to age-related macular degeneration. Front Neurosci 2022; 16:1029473. [PMID: 36620455 PMCID: PMC9811148 DOI: 10.3389/fnins.2022.1029473] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022] Open
Abstract
The protein p53 is the main human tumor suppressor. Since its discovery, extensive research has been conducted, which led to the general assumption that the purview of p53 is also essential for additional functions, apart from the prevention of carcinogenesis. In response to cellular stress and DNA damages, p53 constitutes the key point for the induction of various regulatory processes, determining whether the cell induces cell cycle arrest and DNA repair mechanisms or otherwise cell death. As an implication, aberrations from its normal functioning can lead to pathogeneses. To this day, neurodegenerative diseases are considered difficult to treat, which arises from the fact that in general the underlying pathological mechanisms are not well understood. Current research on brain and retina-related neurodegenerative disorders suggests that p53 plays an essential role in the progression of these conditions as well. In this review, we therefore compare the role and similarities of the tumor suppressor protein p53 in the pathogenesis of Alzheimer's (AD) and Parkinson's disease (PD), two of the most prevalent neurological diseases, to the age-related macular degeneration (AMD) which is among the most common forms of retinal degeneration.
Collapse
|
13
|
Bhattacharya S, Yin J, Huo W, Chaum E. Modeling of mitochondrial bioenergetics and autophagy impairment in MELAS-mutant iPSC-derived retinal pigment epithelial cells. Stem Cell Res Ther 2022; 13:260. [PMID: 35715869 PMCID: PMC9205099 DOI: 10.1186/s13287-022-02937-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 04/30/2022] [Indexed: 11/13/2022] Open
Abstract
Background Mitochondrial dysfunction and mitochondrial DNA (mtDNA) damage in the retinal pigment epithelium (RPE) have been implicated in the pathogenesis of age-related macular degeneration (AMD). However, a deeper understanding is required to determine the contribution of mitochondrial dysfunction and impaired mitochondrial autophagy (mitophagy) to RPE damage and AMD pathobiology. In this study, we model the impact of a prototypical systemic mitochondrial defect, mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes (MELAS), in RPE health and homeostasis as an in vitro model for impaired mitochondrial bioenergetics. Methods We used induced pluripotent stem cells (iPSCs) derived from skin biopsies of MELAS patients (m.3243A > G tRNA leu mutation) with different levels of mtDNA heteroplasmy and differentiated them into RPE cells. Mitochondrial depletion of ARPE-19 cells (p0 cells) was also performed using 50 ng/mL ethidium bromide (EtBr) and 50 mg/ml uridine. Cell fusion of the human platelets with the p0 cells performed using polyethylene glycol (PEG)/suspension essential medium (SMEM) mixture to generate platelet/RPE “cybrids.” Confocal microscopy, FLowSight Imaging cytometry, and Seahorse XF Mito Stress test were used to analyze mitochondrial function. Western Blotting was used to analyze expression of autophagy and mitophagy proteins. Results We found that MELAS iPSC-derived RPE cells exhibited key characteristics of native RPE. We observed heteroplasmy-dependent impairment of mitochondrial bioenergetics and reliance on glycolysis for generating energy in the MELAS iPSC-derived RPE. The degree of heteroplasmy was directly associated with increased activation of signal transducer and activator of transcription 3 (STAT3), reduced adenosine monophosphate-activated protein kinase α (AMPKα) activation, and decreased autophagic activity. In addition, impaired autophagy was associated with aberrant lysosomal function, and failure of mitochondrial recycling. The mitochondria-depleted p0 cells replicated the effects on autophagy impairment and aberrant STAT3/AMPKα signaling and showed reduced mitochondrial respiration, demonstrating phenotypic similarities between p0 and MELAS iPSC-derived RPE cells. Conclusions Our studies demonstrate that the MELAS iPSC-derived disease models are powerful tools for dissecting the molecular mechanisms by which mitochondrial DNA alterations influence RPE function in aging and macular degeneration, and for testing novel therapeutics in patients harboring the MELAS genotype. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-02937-6.
Collapse
Affiliation(s)
- Sujoy Bhattacharya
- Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, 2311 Pierce Avenue, Nashville, TN, 37232, USA
| | - Jinggang Yin
- Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, 2311 Pierce Avenue, Nashville, TN, 37232, USA
| | - Weihong Huo
- Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, 2311 Pierce Avenue, Nashville, TN, 37232, USA
| | - Edward Chaum
- Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, 2311 Pierce Avenue, Nashville, TN, 37232, USA.
| |
Collapse
|
14
|
Kaikaryte K, Gedvilaite G, Vilkeviciute A, Kriauciuniene L, Mockute R, Cebatoriene D, Zemaitiene R, Balciuniene VJ, Liutkeviciene R. SIRT1: Genetic Variants and Serum Levels in Age-Related Macular Degeneration. Life (Basel) 2022; 12:life12050753. [PMID: 35629418 PMCID: PMC9148058 DOI: 10.3390/life12050753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 04/30/2022] [Accepted: 05/17/2022] [Indexed: 11/16/2022] Open
Abstract
Background: The aim of this paper was to determine the frequency of SIRT1 rs3818292, rs3758391, rs7895833 single nucleotide polymorphism genotypes and SIRT1 serum levels associated with age-related macular degeneration (AMD) in the Lithuanian population. Methods: Genotyping of SIRT1 rs3818292, rs3758391 and rs7895833 was performed using RT-PCR. SIRT1 serum level was determined using the ELISA method. Results: We found that rs3818292 and rs7895833 were associated with an increased risk of developing exudative AMD. Additional sex-differentiated analysis revealed only rs7895833 was associated with an increased risk of developing exudative AMD in women after strict Bonferroni correction. The analysis also revealed that individuals carrying rs3818292, rs3758391 and rs7895833 haplotype G-T-G are associated with increased odds of exudative AMD. Still, the rare haplotypes were associated with the decreased odds of exudative AMD. After performing an analysis of serum SIRT1 levels and SIRT1 genetic variant, we found that carriers of the SIRT1 rs3818292 minor allele G had higher serum SIRT1 levels than the AA genotype. In addition, individuals carrying at least one SIRT1 rs3758391 T allele also had elevated serum SIRT1 levels compared with individuals with the wild-type CC genotype. Conclusions: Our study showed that the SIRT1 polymorphisms rs3818292 and rs7895833 and rs3818292-rs3758391-rs7895833 haplotype G-T-G could be associated with the development of exudative AMD. Also, two SNPs (rs3818292 and rs3758391) are associated with elevated SIRT1 levels.
Collapse
Affiliation(s)
- Kriste Kaikaryte
- Laboratory of Ophthalmology, Neuroscience Institute, Medical Academy, Lithuanian University of Health Sciences, Eiveniu 2, LT-50161 Kaunas, Lithuania; (G.G.); (A.V.); (L.K.); (R.L.)
- Correspondence: ; Tel.: +370-6857-5999
| | - Greta Gedvilaite
- Laboratory of Ophthalmology, Neuroscience Institute, Medical Academy, Lithuanian University of Health Sciences, Eiveniu 2, LT-50161 Kaunas, Lithuania; (G.G.); (A.V.); (L.K.); (R.L.)
| | - Alvita Vilkeviciute
- Laboratory of Ophthalmology, Neuroscience Institute, Medical Academy, Lithuanian University of Health Sciences, Eiveniu 2, LT-50161 Kaunas, Lithuania; (G.G.); (A.V.); (L.K.); (R.L.)
| | - Loresa Kriauciuniene
- Laboratory of Ophthalmology, Neuroscience Institute, Medical Academy, Lithuanian University of Health Sciences, Eiveniu 2, LT-50161 Kaunas, Lithuania; (G.G.); (A.V.); (L.K.); (R.L.)
- Department of Ophthalmology, Medical Academy, Lithuanian University of Health Sciences, Eiveniu 2 Str., LT-50161 Kaunas, Lithuania; (R.M.); (D.C.); (R.Z.); (V.J.B.)
| | - Ruta Mockute
- Department of Ophthalmology, Medical Academy, Lithuanian University of Health Sciences, Eiveniu 2 Str., LT-50161 Kaunas, Lithuania; (R.M.); (D.C.); (R.Z.); (V.J.B.)
| | - Dzastina Cebatoriene
- Department of Ophthalmology, Medical Academy, Lithuanian University of Health Sciences, Eiveniu 2 Str., LT-50161 Kaunas, Lithuania; (R.M.); (D.C.); (R.Z.); (V.J.B.)
| | - Reda Zemaitiene
- Department of Ophthalmology, Medical Academy, Lithuanian University of Health Sciences, Eiveniu 2 Str., LT-50161 Kaunas, Lithuania; (R.M.); (D.C.); (R.Z.); (V.J.B.)
| | - Vilma Jurate Balciuniene
- Department of Ophthalmology, Medical Academy, Lithuanian University of Health Sciences, Eiveniu 2 Str., LT-50161 Kaunas, Lithuania; (R.M.); (D.C.); (R.Z.); (V.J.B.)
| | - Rasa Liutkeviciene
- Laboratory of Ophthalmology, Neuroscience Institute, Medical Academy, Lithuanian University of Health Sciences, Eiveniu 2, LT-50161 Kaunas, Lithuania; (G.G.); (A.V.); (L.K.); (R.L.)
- Department of Ophthalmology, Medical Academy, Lithuanian University of Health Sciences, Eiveniu 2 Str., LT-50161 Kaunas, Lithuania; (R.M.); (D.C.); (R.Z.); (V.J.B.)
| |
Collapse
|
15
|
The roles of mouse double minute 2 (MDM2) oncoprotein in ocular diseases: A review. Exp Eye Res 2022; 217:108910. [PMID: 34998788 DOI: 10.1016/j.exer.2021.108910] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 12/03/2021] [Accepted: 12/21/2021] [Indexed: 12/19/2022]
Abstract
Mouse double minute 2 (MDM2), an E3 ubiquitin ligase and the primary negative regulator of the tumor suppressor p53, cooperates with its structural homolog MDM4/MDMX to control intracellular p53 level. In turn, overexpression of p53 upregulates and forms an autoregulatory feedback loop with MDM2. The MDM2-p53 axis plays a pivotal role in modulating cell cycle control and apoptosis. MDM2 itself is regulated by the PI3K-AKT and RB-E2F-ARF pathways. While amplification of the MDM2 gene or overexpression of MDM2 (due to MDM2 SNP T309G, for instance) is associated with various malignancies, numerous studies have shown that MDM2/p53 alterations may also play a part in the pathogenetic process of certain ocular disorders (Fig. 1). These include cancers (retinoblastoma, uveal melanoma), fibrocellular proliferative diseases (proliferative vitreoretinopathy, pterygium), neovascular diseases, degenerative diseases (cataract, primary open-angle glaucoma, age-related macular degeneration) and infectious/inflammatory diseases (trachoma, uveitis). In addition, MDM2 is implicated in retinogenesis and regeneration after optic nerve injury. Anti-MDM2 therapy has shown potential as a novel approach to treating these diseases. Despite major safety concerns, there are high expectations for the clinical value of reformative MDM2 inhibitors. This review summarizes important findings about the role of MDM2 in ocular pathologies and provides an overview of recent advances in treating these diseases with anti-MDM2 therapies.
Collapse
|
16
|
Wang Z, Su D, Sun Z, Liu S, Sun L, Li Q, Guan L, Liu Y, Ma X, Hu S. MDM2 phosphorylation mediates H 2O 2-induced lens epithelial cells apoptosis and age-related cataract. Biochem Biophys Res Commun 2020; 528:112-119. [PMID: 32471716 DOI: 10.1016/j.bbrc.2020.05.060] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 05/09/2020] [Indexed: 12/14/2022]
Abstract
Lens epithelial cells (LECs) apoptosis induced by oxidative stress is a major factor in age-related-cataract (ARC) pathogenesis, but there are still many blind nodes in this progress. This study aimed to investigate the effects of MDM2 phosphorylation in ARC and H2O2-induced lens epithelial cells apoptosis. Our results confirmed that the levels of p-MDM2 (Ser166) and p-MDM2 (Ser186) in the anterior lens capsules of human cataracts were reduced compared to that in normal capsules. Similarly, in naturally aging cataract mice, the level of MDM2 phosphorylation also decreased. Oxidative stress-induced apoptosis model was constructed by cultivating HLE-B3 cells with 200 μM H2O2. It was confirmed that MDM2 could regulate lens epithelial cell apoptosis, and MDM2 inhibitors could partly inhibited AKT's role in suppressing apoptosis induced by H2O2. Besides, we examed the decreased level of p-AKT(Ser473) in apoptosis of lens epithelial cells and ARC. Our study revealed that MDM2 phosphorylation mediated H2O2-induced lens epithelial cells apoptosis and ARC, which could provide new ideas for the clinical treatment of ARC.
Collapse
Affiliation(s)
- Zhongying Wang
- Mudanjiang Medical College, Mudanjiang, 157011, Heilongjiang, China
| | - Dongmei Su
- Department of Genetics, National Research Institute for Family Planning, Health Department, Beijing, 100081, China; Graduate School, Peking Union Medical College, Beijing, 100081, China
| | - Zhaoyi Sun
- Hongqi Hospital of Mudanjiang Medical College, Mudanjiang, 157011, Heilongjiang, China
| | - Shanhe Liu
- Mudanjiang Medical College, Mudanjiang, 157011, Heilongjiang, China
| | - Lei Sun
- Hongqi Hospital of Mudanjiang Medical College, Mudanjiang, 157011, Heilongjiang, China
| | - Qian Li
- Department of Genetics, National Research Institute for Family Planning, Health Department, Beijing, 100081, China
| | - Lina Guan
- Department of Genetics, National Research Institute for Family Planning, Health Department, Beijing, 100081, China
| | - Yong Liu
- Medical Research Center of Mudanjiang Medical College, Mudanjiang, 157011, Heilongjiang, China
| | - Xu Ma
- Department of Genetics, National Research Institute for Family Planning, Health Department, Beijing, 100081, China; Graduate School, Peking Union Medical College, Beijing, 100081, China.
| | - Shanshan Hu
- Hongqi Hospital of Mudanjiang Medical College, Mudanjiang, 157011, Heilongjiang, China.
| |
Collapse
|
17
|
Linetsky M, Guo J, Udeigwe E, Ma D, Chamberlain AS, Yu AO, Solovyova K, Edgar E, Salomon RG. 4-Hydroxy-7-oxo-5-heptenoic acid (HOHA) lactone induces apoptosis in retinal pigment epithelial cells. Free Radic Biol Med 2020; 152:280-294. [PMID: 32222470 PMCID: PMC7276294 DOI: 10.1016/j.freeradbiomed.2020.03.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 03/23/2020] [Accepted: 03/23/2020] [Indexed: 02/06/2023]
Abstract
Retinal pigment epithelial (RPE) cell dysfunction and death play vital roles in age-related macular degeneration (AMD) pathogenesis. Previously we showed that oxidative cleavage of docosahexenoate (DHA) phospholipids generates an α,β-unsaturated aldehyde, 4-hydroxy-7-oxohept-4-enoic acid (HOHA) lactone, that forms ω-carboxyethylpyrrole (CEP) derivatives through adduction to proteins and ethanolamine phospholipids. CEP derivatives and autoantibodies accumulate in the retinas and blood plasma of individuals with AMD and are a biomarker of AMD. They promote the choroidal neovascularization of "wet AMD". Immunization of mice with CEP-modified mouse serum albumin induces "dry AMD"-like lesions in their retinas as well as interferon-gamma and interleukin-17 production by CEP-specific T cells that promote inflammatory M1 polarization of macrophages. The present study confirms that oxidative stress or inflammatory stimulus produces CEP in both the primary human ARPE-19 cell line and hRPE cells. Exposure of these cells to HOHA lactone fosters production of reactive oxygen species. Thus, HOHA lactone participates in a vicious cycle, promoting intracellular oxidative stress leading to oxidative cleavage of DHA to produce more HOHA lactone. We now show that HOHA lactone is cytotoxic, inducing apoptotic cell death through activation of the intrinsic pathway. This suggests that therapeutic interventions targeting HOHA lactone-induced apoptosis may prevent the loss of RPE cells during the early phase of AMD. We also discovered that ARPE-19 cells are more susceptible than hRPE cells to HOHA lactone cytotoxicity. This is consistent with the view that, compared to normal RPE cells, ARPE-19 cells exhibit a diseased RPE phenotype that also includes elevated expression of the mesenchymal indicator vimentin, elevated integrin a5 promotor strength and deficient secretion of the anti-VEGF molecule pigment-epithelium-derived factor fostering weaker tight junctions.
Collapse
Affiliation(s)
- Mikhail Linetsky
- Department of Chemistry, Case Western Reserve University, Cleveland, OH, 44106, USA; Department of Ophthalmology and Visual Sciences, Case Western Reserve University, USA
| | - Junhong Guo
- Department of Chemistry, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Emeka Udeigwe
- Department of Chemistry, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Duoming Ma
- Department of Chemistry, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Amanda S Chamberlain
- Department of Biochemistry, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Annabelle O Yu
- Department of Biology, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Kseniya Solovyova
- Department of Chemistry, Cleveland State University, Cleveland, OH, 44115, USA
| | - Elise Edgar
- Department of Chemistry, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Robert G Salomon
- Department of Chemistry, Case Western Reserve University, Cleveland, OH, 44106, USA; Department of Ophthalmology and Visual Sciences, Case Western Reserve University, USA.
| |
Collapse
|
18
|
Mehrzadi S, Hemati K, Reiter RJ, Hosseinzadeh A. Mitochondrial dysfunction in age-related macular degeneration: melatonin as a potential treatment. Expert Opin Ther Targets 2020; 24:359-378. [PMID: 32116056 DOI: 10.1080/14728222.2020.1737015] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Introduction: Age-related Macular Degeneration (AMD), a retinal neurodegenerative disease is the most common cause of blindness among the elderly in developed countries. The impairment of mitochondrial biogenesis has been reported in human retinal pigment epithelium (RPE) cells affected by AMD. Oxidative/nitrosative stress plays an important role in AMD development. The mitochondrial respiratory system is considered a major site of reactive oxygen species (ROS) generation. During aging, insufficient free radical scavenger systems, impairment of DNA repair mechanisms and reduction of mitochondrial degradation and turnover contribute to the massive accumulation of ROS disrupting mitochondrial function. Impaired mitochondrial function leads to the decline in the autophagic capacity and induction of inflammation and apoptosis in human RPE cells affected by AMD.Areas covered: This article evaluates the ameliorative effect of melatonin on AMD and examines AMD pathogenesis with an emphasis on mitochondrial dysfunction. It also considers the potential effects of melatonin on mitochondrial function.Expert opinion: The effect of melatonin on mitochondrial function results in the reduction of oxidative stress, inflammation and apoptosis in the retina; these findings demonstrate that melatonin has the potential to prevent and treat AMD.
Collapse
Affiliation(s)
- Saeed Mehrzadi
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Karim Hemati
- Department of Anesthesiology, Iran University of Medical Sciences, Tehran, Iran
| | - Russel J Reiter
- Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio, TX, USA
| | - Azam Hosseinzadeh
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
19
|
Gemenetzi M, Lotery AJ. Epigenetics in age-related macular degeneration: new discoveries and future perspectives. Cell Mol Life Sci 2020; 77:807-818. [PMID: 31897542 PMCID: PMC7058675 DOI: 10.1007/s00018-019-03421-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 12/04/2019] [Accepted: 12/10/2019] [Indexed: 12/13/2022]
Abstract
The study of epigenetics has explained some of the 'missing heritability' of age-related macular degeneration (AMD). The epigenome also provides a substantial contribution to the organisation of the functional retina. There is emerging evidence of specific epigenetic mechanisms associated with AMD. This 'AMD epigenome' may offer the chance to develop novel AMD treatments.
Collapse
Affiliation(s)
- M Gemenetzi
- NIHR Biomedical Research Centre At Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, 162 City Road, London, EC1V 2PD, UK
| | - A J Lotery
- Clinical and Experimental Sciences, Faculty of Medicine, University Hospital Southampton, University of Southampton, South Lab and Path Block, Mailpoint 806, Level D, Southampton, SO16 6YD, UK.
| |
Collapse
|
20
|
Mammadzada P, Corredoira PM, André H. The role of hypoxia-inducible factors in neovascular age-related macular degeneration: a gene therapy perspective. Cell Mol Life Sci 2020; 77:819-833. [PMID: 31893312 PMCID: PMC7058677 DOI: 10.1007/s00018-019-03422-9] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 12/04/2019] [Accepted: 12/10/2019] [Indexed: 12/19/2022]
Abstract
Understanding the mechanisms that underlie age-related macular degeneration (AMD) has led to the identification of key molecules. Hypoxia-inducible transcription factors (HIFs) have been associated with choroidal neovascularization and the progression of AMD into the neovascular clinical phenotype (nAMD). HIFs regulate the expression of multiple growth factors and cytokines involved in angiogenesis and inflammation, hallmarks of nAMD. This knowledge has propelled the development of a new group of therapeutic strategies focused on gene therapy. The present review provides an update on current gene therapies in ocular angiogenesis, particularly nAMD, from both basic and clinical perspectives.
Collapse
Affiliation(s)
- Parviz Mammadzada
- Division of Eye and Vision, Department of Clinical Neuroscience, Karolinska Institutet, St. Erik Eye Hospital, Stockholm, Sweden
| | - Pablo M Corredoira
- Division of Eye and Vision, Department of Clinical Neuroscience, Karolinska Institutet, St. Erik Eye Hospital, Stockholm, Sweden
| | - Helder André
- Division of Eye and Vision, Department of Clinical Neuroscience, Karolinska Institutet, St. Erik Eye Hospital, Stockholm, Sweden.
| |
Collapse
|
21
|
Tekin K, Tekin MI. Oxidative stress and diabetic retinopathy. Pathology 2020. [DOI: 10.1016/b978-0-12-815972-9.00003-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
22
|
Kumari N, Karmakar A, Ganesan SK. Targeting epigenetic modifications as a potential therapeutic option for diabetic retinopathy. J Cell Physiol 2019; 235:1933-1947. [PMID: 31531859 DOI: 10.1002/jcp.29180] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 08/26/2019] [Indexed: 12/20/2022]
Abstract
Diabetic retinopathy (DR) is the leading cause of visual impairment in adults of working age (20-65 years) in developed countries. The metabolic memory phenomena (persistent effect of a glycemic insult even after retrieved) associated with it has increased the risk of developing the complication even after the termination of the glycemic insult. Hence, the need for finding early diagnosis and treatment options has been of great concern. Epigenetic modifications which generally occur during the beginning stages of the disease are responsible for the metabolic memory effect. Therefore, the therapy based on the reversal of the associated epigenetic mechanism can bring new insight in the area of early diagnosis and treatment mechanism. This review discusses the diabetic retinopathy, its pathogenesis, current treatment options, need of finding novel treatment options, and different epigenetic alterations associated with DR. However, the main focus is emphasized on various epigenetic modifications particularly DNA methylation which are responsible for the initiation and progression of diabetic retinopathy and the use of different epigenetic inhibitors as a novel therapeutic option for DR.
Collapse
Affiliation(s)
- Nidhi Kumari
- Laboratory of Translational Genetics, Structural Biology & Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Aditi Karmakar
- Laboratory of Translational Genetics, Structural Biology & Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Senthil Kumar Ganesan
- Laboratory of Translational Genetics, Structural Biology & Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
23
|
Abstract
PURPOSE To investigate whether age-related macular degeneration (AMD) has an influence on the prevalence and anatomical characteristics of lamellar macular holes (LMHs). METHODS Clinical records and spectral-domain optical coherence tomography images of 756 eyes of 423 consecutive patients diagnosed with AMD were reviewed and analyzed. Spectral-domain optical coherence tomography was used to identify degenerative or tractional LMH subtypes and assess their morphology. The clinical and optical coherence tomography findings of AMD eyes with LMH were compared with those of a control group of eyes with LMH without AMD from a previously published report. RESULTS Lamellar macular holes were identified in 25 eyes of 23 patients (3.3%; 25 of 756). Seventeen of 25 eyes (68%) presented with degenerative LMH and underlying late neovascular AMD. Mean best-corrected visual acuity was worse in eyes with AMD and LMH eyes than in those with AMD and no LMH (20/230 vs. 20/98; P = 0.02). The mean outer diameter was greater in the group with degenerative LMH with concomitant AMD than in the control group of degenerative LMH without AMD (1,323.9 ± 999.1 µm vs. 905.9 ± 356.8 µm, respectively; P = 0.01). CONCLUSION The incidence of degenerative LMH increased in advanced forms of AMD, whereas the presence of tractional LMH subtype may be unrelated to AMD evolution.
Collapse
|
24
|
Inhibition of Noncanonical Murine Double Minute 2 Homolog Abrogates Ocular Inflammation through NF-κB Suppression. THE AMERICAN JOURNAL OF PATHOLOGY 2018; 188:2087-2096. [PMID: 30126549 DOI: 10.1016/j.ajpath.2018.05.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 05/10/2018] [Accepted: 05/17/2018] [Indexed: 11/22/2022]
Abstract
Uveitis is estimated to account for 10% of all cases of blindness in the United States, including 30,000 new cases of legal blindness each year. Intraocular and oral corticosteroids are the effective mainstay treatment, but they carry the risk of serious long-term ocular and systemic morbidity. New noncorticosteroid therapies with a favorable side effect profile are necessary for the treatment of chronic uveitis, given the paucity of existing treatment choices. We have previously demonstrated that Nutlin-3, a small-molecule inhibitor of murine double minute 2 (MDM2) homolog, suppresses pathologic retinal angiogenesis through a p53-dependent mechanism, but the noncanonical p53-independent functions have not been adequately elucidated. Herein, we demonstrate an unanticipated function of MDM2 inhibition, where Nutlin-3 potently abrogates lipopolysaccharide-induced ocular inflammation. Furthermore, we identified a mechanism by which transcription and translation of NF-κB is mediated by MDM2, independent of p53, in ocular inflammation. Small-molecule MDM2 inhibition is a novel noncorticosteroid strategy for inhibiting ocular inflammation, which may potentially benefit patients with chronic uveitis.
Collapse
|
25
|
Corso-Díaz X, Jaeger C, Chaitankar V, Swaroop A. Epigenetic control of gene regulation during development and disease: A view from the retina. Prog Retin Eye Res 2018; 65:1-27. [PMID: 29544768 PMCID: PMC6054546 DOI: 10.1016/j.preteyeres.2018.03.002] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 02/01/2018] [Accepted: 03/08/2018] [Indexed: 12/20/2022]
Abstract
Complex biological processes, such as organogenesis and homeostasis, are stringently regulated by genetic programs that are fine-tuned by epigenetic factors to establish cell fates and/or to respond to the microenvironment. Gene regulatory networks that guide cell differentiation and function are modulated and stabilized by modifications to DNA, RNA and proteins. In this review, we focus on two key epigenetic changes - DNA methylation and histone modifications - and discuss their contribution to retinal development, aging and disease, especially in the context of age-related macular degeneration (AMD) and diabetic retinopathy. We highlight less-studied roles of DNA methylation and provide the RNA expression profiles of epigenetic enzymes in human and mouse retina in comparison to other tissues. We also review computational tools and emergent technologies to profile, analyze and integrate epigenetic information. We suggest implementation of editing tools and single-cell technologies to trace and perturb the epigenome for delineating its role in transcriptional regulation. Finally, we present our thoughts on exciting avenues for exploring epigenome in retinal metabolism, disease modeling, and regeneration.
Collapse
Affiliation(s)
- Ximena Corso-Díaz
- Neurobiology-Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Catherine Jaeger
- Neurobiology-Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Vijender Chaitankar
- Neurobiology-Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Anand Swaroop
- Neurobiology-Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
26
|
Li Y, Zou X, Gao J, Cao K, Feng Z, Liu J. APR3 modulates oxidative stress and mitochondrial function in ARPE-19 cells. FASEB J 2018; 32:fj201800001RR. [PMID: 29792731 DOI: 10.1096/fj.201800001rr] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Impairment of retinal pigment epithelial (RPE) cells is considered a key contributor to the development of age-related macular degeneration. Apoptosis-related protein 3 (APR3) was recently discovered after treatment with all- trans retinoic acid, a pivotal molecule in RPE cells. However, the function of APR3 remains poorly understood. In the present study, we found that APR3 could interact with nuclear factor (erythroid-derived 2)-like 2, which is a regulator of phase II enzymes, and that knockdown of APR3 promoted nuclear factor (erythroid-derived 2)-like 2 nuclear translocation and activated expression of phase II enzymes, which was accompanied by improved redox status and mitochondrial activity. Overexpression of APR3 revealed its mitochondrial localization and induced a robust production of reactive oxygen species that was accompanied by impaired mitochondrial oxygen consumption, complex activity, and lower ATP content, resulting in significant changes in mitochondrial structure, which may contribute to cell apoptosis. High doses of all- trans retinoic acid treatment were found to significantly induce APR3 expression, increase reactive oxygen species levels, and decrease ATP content, which were abolished by knockdown of APR3. These results indicate that APR3 plays a vital role in regulating redox status and mitochondrial activity and thus suggest APR3 might be a potential novel target for study of treatment of age-related macular degeneration.-Li, Y., Zou, X., Gao, J., Cao, K., Feng, Z., Liu, J. APR3 modulates oxidative stress and mitochondrial function in ARPE-19 cells.
Collapse
Affiliation(s)
- Yuan Li
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China; and
| | - Xuan Zou
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Jing Gao
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China; and
| | - Ke Cao
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China; and
| | - Zhihui Feng
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China; and
| | - Jiankang Liu
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China; and
| |
Collapse
|
27
|
Zhou M, Luo J, Zhang H. Role of Sirtuin 1 in the pathogenesis of ocular disease (Review). Int J Mol Med 2018; 42:13-20. [PMID: 29693113 DOI: 10.3892/ijmm.2018.3623] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 03/29/2018] [Indexed: 11/06/2022] Open
Abstract
Sirtuin (SIRT)1, a member of the SIRT family, is a highly conserved NAD+‑dependent histone deacetylase, which has a regulatory role in numerous physiological and pathological processes by removing acetyl groups from various proteins. SIRT1 controls the activity of numerous transcription factors and cofactors, which impacts the downstream gene expression, and eventually alleviates oxidative stress and associated damage. Numerous studies have revealed that dysfunction of SIRT1 is linked with ocular diseases, including cataract, age‑associated macular degeneration, diabetic retinopathy and glaucoma, while ectopic upregulation of SIRT1 protects against various ocular diseases. In the present review, the significant role of SIRT1 and the potential therapeutic value of modulating SIRT1 expression in ocular development and eye diseases is summarized.
Collapse
Affiliation(s)
- Mengwen Zhou
- Department of Ophthalmology, Hunan Clinical Research Center of Ophthalmic Disease, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Jing Luo
- Department of Ophthalmology, Hunan Clinical Research Center of Ophthalmic Disease, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Huiming Zhang
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| |
Collapse
|
28
|
Karbasforooshan H, Karimi G. The role of SIRT1 in diabetic retinopathy. Biomed Pharmacother 2018; 97:190-194. [DOI: 10.1016/j.biopha.2017.10.075] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 10/14/2017] [Accepted: 10/16/2017] [Indexed: 11/29/2022] Open
|
29
|
Relevance of the p53-MDM2 axis to aging. Cell Death Differ 2017; 25:169-179. [PMID: 29192902 DOI: 10.1038/cdd.2017.187] [Citation(s) in RCA: 140] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 09/19/2017] [Accepted: 09/21/2017] [Indexed: 12/13/2022] Open
Abstract
In response to varying stress signals, the p53 tumor suppressor is able to promote repair, survival, or elimination of damaged cells - processes that have great relevance to organismal aging. Although the link between p53 and cancer is well established, the contribution of p53 to the aging process is less clear. Delineating how p53 regulates distinct aging hallmarks such as cellular senescence, genomic instability, mitochondrial dysfunction, and altered metabolic pathways will be critical. Mouse models have further revealed the centrality and complexity of the p53 network in aging processes. While naturally aged mice have linked longevity with declining p53 function, some accelerated aging mice present with chronic p53 activation, whose phenotypes can be rescued upon p53 deficiency. Further, direct modulation of the p53-MDM2 axis has correlated elevated p53 activity with either early aging or with delayed-onset aging. We speculate that p53-mediated aging phenotypes in these mice must have (1) stably active p53 due to MDM2 dysregulation or chronic stress or (2) shifted p53 outcomes. Pinpointing which p53 stressors, modifications, and outcomes drive aging processes will provide further insights into our understanding of the human aging process and could have implications for both cancer and aging therapeutics.
Collapse
|
30
|
Overexpression of Sirtuin2 prevents high glucose-induced vascular endothelial cell injury by regulating the p53 and NF-κB signaling pathways. Biotechnol Lett 2017; 40:271-278. [PMID: 29189925 DOI: 10.1007/s10529-017-2487-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 11/23/2017] [Indexed: 10/25/2022]
Abstract
OBJECTIVES To investigate the potential role and underlying mechanism of Sirtuin2 (SIRT2) in regulating high glucose (HG)-induced vascular endothelial cell injury by using human umbilical vein endothelial cells (HUVECs). RESULTS SIRT2 mRNA and protein expression levels were decreased in HG-treated HUVECs. SIRT2 overexpression increased viability, decreased apoptosis and reduced levels of reactive oxygen species in HG-treated HUVECs. SIRT2 overexpression decreased TNF-α expression (146.5 ± 22.8 pg TNF-α ml-1) relative to that in the empty vector group (263.5 ± 18.5 pg TNF-α ml-1) and decreased MCP-1 expression (63.8 ± 9.85 pg MCP-1 ml-1) relative to that in the empty vector group (105.8 ± 8.5 pg MCP-1 ml-1). SIRT2 overexpression decreased the acetylation of p53 by 33% and decreased the acetylation of NF-κB p65 by 58% in HG-treated HUVECs. CONCLUSION SIRT2 prevents HG-induced vascular endothelial cell injury through suppressing the p53 and NF-κB signaling pathways.
Collapse
|
31
|
Ferrington DA, Ebeling MC, Kapphahn RJ, Terluk MR, Fisher CR, Polanco JR, Roehrich H, Leary MM, Geng Z, Dutton JR, Montezuma SR. Altered bioenergetics and enhanced resistance to oxidative stress in human retinal pigment epithelial cells from donors with age-related macular degeneration. Redox Biol 2017; 13:255-265. [PMID: 28600982 PMCID: PMC5466586 DOI: 10.1016/j.redox.2017.05.015] [Citation(s) in RCA: 121] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Accepted: 05/23/2017] [Indexed: 01/03/2023] Open
Abstract
Age-related macular degeneration (AMD) is the leading cause of blindness among older adults. It has been suggested that mitochondrial defects in the retinal pigment epithelium (RPE) underlies AMD pathology. To test this idea, we developed primary cultures of RPE to ask whether RPE from donors with AMD differ in their metabolic profile compared with healthy age-matched donors. Analysis of gene expression, protein content, and RPE function showed that these cultured cells replicated many of the cardinal features of RPE in vivo. Using the Seahorse Extracellular Flux Analyzer to measure bioenergetics, we observed RPE from donors with AMD exhibited reduced mitochondrial and glycolytic function compared with healthy donors. RPE from AMD donors were also more resistant to oxidative inactivation of these two energy-producing pathways and were less susceptible to oxidation-induced cell death compared with cells from healthy donors. Investigation of the potential mechanism responsible for differences in bioenergetics and resistance to oxidative stress showed RPE from AMD donors had increased PGC1α protein as well as differential expression of multiple genes in response to an oxidative challenge. Based on our data, we propose that cultured RPE from donors phenotyped for the presence or absence of AMD provides an excellent model system for studying "AMD in a dish". Our results are consistent with the ideas that (i) a bioenergetics crisis in the RPE contributes to AMD pathology, and (ii) the diseased environment in vivo causes changes in the cellular profile that are retained in vitro.
Collapse
Affiliation(s)
- Deborah A Ferrington
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, MN 55455, USA; Graduate Program in Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Mara C Ebeling
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Rebecca J Kapphahn
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Marcia R Terluk
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Cody R Fisher
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, MN 55455, USA; Graduate Program in Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Jorge R Polanco
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Heidi Roehrich
- Histology Core for Vision Research, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Michaela M Leary
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Zhaohui Geng
- Stem Cell Institute and Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455, USA.
| | - James R Dutton
- Stem Cell Institute and Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Sandra R Montezuma
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
32
|
Bhattacharya S, Yin J, Winborn CS, Zhang Q, Yue J, Chaum E. Prominin-1 Is a Novel Regulator of Autophagy in the Human Retinal Pigment Epithelium. Invest Ophthalmol Vis Sci 2017; 58:2366-2387. [PMID: 28437526 PMCID: PMC5403116 DOI: 10.1167/iovs.16-21162] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Purpose Prominin-1 (Prom1) is a transmembrane glycoprotein, which is expressed in stem cell lineages, and has recently been implicated in cancer stem cell survival. Mutations in the Prom1 gene have been shown to disrupt photoreceptor disk morphogenesis and cause an autosomal dominant form of Stargardt-like macular dystrophy (STGD4). Despite the apparent structural role of Prom1 in photoreceptors, its role in other cells of the retina is unknown. The purpose of this study is to investigate the role of Prom1 in the highly metabolically active cells of the retinal pigment epithelium (RPE). Methods Lentiviral siRNA and the genome editing CRISPR/Cas9 system were used to knockout Prom1 in primary RPE and ARPE-19 cells, respectively. Western blotting, confocal microscopy, and flow sight imaging cytometry assays were used to quantify autophagy flux. Immunoprecipitation was used to detect Prom1 interacting proteins. Results Our studies demonstrate that Prom1 is primarily a cytosolic protein in the RPE. Stress signals and physiological aging robustly increase autophagy with concomitant upregulation of Prom1 expression. Knockout of Prom1 increased mTORC1 and mTORC2 signaling, decreased autophagosome trafficking to the lysosome, increased p62 accumulation, and inhibited autophagic puncta induced by activators of autophagy. Conversely, ectopic overexpression of Prom1 inhibited mTORC1 and mTORC2 activities, and potentiated autophagy flux. Through interactions with p62 and HDAC6, Prom1 regulates autophagosome maturation and trafficking, suggesting a new cytoplasmic role of Prom1 in RPE function. Conclusions Our results demonstrate that Prom1 plays a key role in the regulation of autophagy via upstream suppression of mTOR signaling and also acting as a component of a macromolecular scaffold involving p62 and HDAC6.
Collapse
Affiliation(s)
- Sujoy Bhattacharya
- Department of Ophthalmology, University of Tennessee Health Science Center, Memphis, Tennessee, United States
| | - Jinggang Yin
- Department of Ophthalmology, University of Tennessee Health Science Center, Memphis, Tennessee, United States
| | - Christina S Winborn
- Department of Ophthalmology, University of Tennessee Health Science Center, Memphis, Tennessee, United States
| | - Qiuhua Zhang
- Department of Ophthalmology, University of Tennessee Health Science Center, Memphis, Tennessee, United States
| | - Junming Yue
- Department of Pathology, University of Tennessee Health Science Center, Memphis, Tennessee, United States
| | - Edward Chaum
- Department of Ophthalmology, University of Tennessee Health Science Center, Memphis, Tennessee, United States 3Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, Tennessee, United States
| |
Collapse
|
33
|
Hyttinen JMT, Błasiak J, Niittykoski M, Kinnunen K, Kauppinen A, Salminen A, Kaarniranta K. DNA damage response and autophagy in the degeneration of retinal pigment epithelial cells-Implications for age-related macular degeneration (AMD). Ageing Res Rev 2017; 36:64-77. [PMID: 28351686 DOI: 10.1016/j.arr.2017.03.006] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 03/23/2017] [Accepted: 03/23/2017] [Indexed: 12/14/2022]
Abstract
In this review we will discuss the links between autophagy, a mechanism involved in the maintenance of cellular homeostasis and controlling cellular waste management, and the DNA damage response (DDR), comprising various mechanisms preserving the integrity and stability of the genome. A reduced autophagy capacity in retinal pigment epithelium has been shown to be connected in the pathogenesis of age-related macular degeneration (AMD), an eye disease. This degenerative disease is a major and increasing cause of vision loss in the elderly in developed countries, primarily due to the profound accumulation of intra- and extracellular waste: lipofuscin and drusen. An abundance of reactive oxygen species is produced in the retina since this tissue has a high oxygen demand and contains mitochondria-rich cells. The retina is exposed to light and it also houses many photoactive molecules. These factors are clearly reflected in both the autophagy and DNA damage rates, and in both nuclear and mitochondrial genomes. It remains to be revealed whether DNA damage and DDR capacity have a more direct role in the development of AMD.
Collapse
Affiliation(s)
- Juha M T Hyttinen
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland.
| | - Janusz Błasiak
- Department of Molecular Genetics, University of Łódź, Pomorska 141/143, 90-236, Łódź, Poland
| | - Minna Niittykoski
- Institute of Biotechnology, Developmental Biology Program, University of Helsinki, P.O. Box 56, FI-00014, Finland
| | - Kati Kinnunen
- Department of Ophthalmology, Kuopio University Hospital, P.O. Box 100, FI-70029, Finland
| | - Anu Kauppinen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
| | - Antero Salminen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
| | - Kai Kaarniranta
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland; Department of Ophthalmology, Kuopio University Hospital, P.O. Box 100, FI-70029, Finland
| |
Collapse
|
34
|
Li C, Miao X, Li F, Wang S, Liu Q, Wang Y, Sun J. Oxidative Stress-Related Mechanisms and Antioxidant Therapy in Diabetic Retinopathy. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:9702820. [PMID: 28265339 PMCID: PMC5317113 DOI: 10.1155/2017/9702820] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 11/27/2016] [Accepted: 12/27/2016] [Indexed: 02/07/2023]
Abstract
Diabetic retinopathy (DR) is one of the most common microvascular complications of diabetes and is the leading cause of blindness in young adults. Oxidative stress has been implicated as a critical cause of DR. Metabolic abnormalities induced by high-glucose levels are involved in the development of DR and appear to be influenced by oxidative stress. The imbalance between reactive oxygen species (ROS) production and the antioxidant defense system activates several oxidative stress-related mechanisms that promote the pathogenesis of DR. The damage caused by oxidative stress persists for a considerable time, even after the blood glucose concentration has returned to a normal level. Animal experiments have proved that the use of antioxidants is a beneficial therapeutic strategy for the treatment of DR, but more data are required from clinical trials. The aims of this review are to highlight the improvements to our understanding of the oxidative stress-related mechanisms underlying the development of DR and provide a summary of the main antioxidant therapy strategies used to treat the disease.
Collapse
Affiliation(s)
- Cheng Li
- The First Hospital of Jilin University, Changchun 130021, China
| | - Xiao Miao
- The Second Hospital of Jilin University, Changchun 130041, China
| | - Fengsheng Li
- General Hospital of the PLA Rocket Force, Beijing 100088, China
| | - Shudong Wang
- The First Hospital of Jilin University, Changchun 130021, China
| | - Quan Liu
- The First Hospital of Jilin University, Changchun 130021, China
| | - Yonggang Wang
- The First Hospital of Jilin University, Changchun 130021, China
| | - Jian Sun
- The First Hospital of Jilin University, Changchun 130021, China
| |
Collapse
|
35
|
Wu X, Cao N, Fenech M, Wang X. Role of Sirtuins in Maintenance of Genomic Stability: Relevance to Cancer and Healthy Aging. DNA Cell Biol 2016; 35:542-575. [DOI: 10.1089/dna.2016.3280] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Affiliation(s)
- Xiayu Wu
- School of Life Sciences, The Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University, Kunming, Yunnan, China
| | - Neng Cao
- School of Life Sciences, The Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University, Kunming, Yunnan, China
| | - Michael Fenech
- Genome Health and Personalized Nutrition, Commonwealth Scientific and Industrial Research Organization Food and Nutrition, Adelaide, South Australia, Australia
| | - Xu Wang
- School of Life Sciences, The Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University, Kunming, Yunnan, China
| |
Collapse
|
36
|
Woo HJ, Yu C, Kumar K, Gold B, Reifman J. Genotype distribution-based inference of collective effects in genome-wide association studies: insights to age-related macular degeneration disease mechanism. BMC Genomics 2016; 17:695. [PMID: 27576376 PMCID: PMC5006276 DOI: 10.1186/s12864-016-2871-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 07/01/2016] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Genome-wide association studies provide important insights to the genetic component of disease risks. However, an existing challenge is how to incorporate collective effects of interactions beyond the level of independent single nucleotide polymorphism (SNP) tests. While methods considering each SNP pair separately have provided insights, a large portion of expected heritability may reside in higher-order interaction effects. RESULTS We describe an inference approach (discrete discriminant analysis; DDA) designed to probe collective interactions while treating both genotypes and phenotypes as random variables. The genotype distributions in case and control groups are modeled separately based on empirical allele frequency and covariance data, whose differences yield disease risk parameters. We compared pairwise tests and collective inference methods, the latter based both on DDA and logistic regression. Analyses using simulated data demonstrated that significantly higher sensitivity and specificity can be achieved with collective inference in comparison to pairwise tests, and with DDA in comparison to logistic regression. Using age-related macular degeneration (AMD) data, we demonstrated two possible applications of DDA. In the first application, a genome-wide SNP set is reduced into a small number (∼100) of variants via filtering and SNP pairs with significant interactions are identified. We found that interactions between SNPs with highest AMD association were epigenetically active in the liver, adipocytes, and mesenchymal stem cells. In the other application, multiple groups of SNPs were formed from the genome-wide data and their relative strengths of association were compared using cross-validation. This analysis allowed us to discover novel collections of loci for which interactions between SNPs play significant roles in their disease association. In particular, we considered pathway-based groups of SNPs containing up to ∼10, 000 variants in each group. In addition to pathways related to complement activation, our collective inference pointed to pathway groups involved in phospholipid synthesis, oxidative stress, and apoptosis, consistent with the AMD pathogenesis mechanism where the dysfunction of retinal pigment epithelium cells plays central roles. CONCLUSIONS The simultaneous inference of collective interaction effects within a set of SNPs has the potential to reveal novel aspects of disease association.
Collapse
Affiliation(s)
- Hyung Jun Woo
- Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Materiel Command, Fort Detrick, Maryland, USA
| | - Chenggang Yu
- Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Materiel Command, Fort Detrick, Maryland, USA
| | - Kamal Kumar
- Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Materiel Command, Fort Detrick, Maryland, USA
| | - Bert Gold
- Laboratory of Genomic Diversity, National Cancer Institute, Frederick, Maryland, USA
| | - Jaques Reifman
- Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Materiel Command, Fort Detrick, Maryland, USA.
| |
Collapse
|
37
|
The glucagon like peptide 1 analogue, exendin-4, attenuates oxidative stress-induced retinal cell death in early diabetic rats through promoting Sirt1 and Sirt3 expression. Exp Eye Res 2016; 151:203-11. [PMID: 27212443 DOI: 10.1016/j.exer.2016.05.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 03/05/2016] [Accepted: 05/04/2016] [Indexed: 12/25/2022]
Abstract
This study was aimed to further investigate the possible mechanisms by which the glucagon like peptide 1 analogue, exendin-4 (EX4), protects rat retinal cells at the early stage of diabetes. EX4 was injected intravitreally into normal and early-stage streptozotocin-diabetic rats. Cell death, reactive oxygen species (ROS), and electroretinogram (ERG) were measured. Sirtuin (Sirt) mRNA and protein were analyzed. In retinas of diabetic rats 1 month after diabetes onset, cell death and ROS level increased significantly, and the b-wave amplitudes and OPs were significantly reduced. Four days after intravitreal EX4 treatment, retinal cell death and ROS level in retinas reduced significantly, and visual function was recovered. In the retinas of early-stage diabetic rats, the expressions of Sirt1 and Sirt3 were also found to be significantly decreased, and both were back to normal levels after intravitreal injection of EX4. In R28 cells, hydrogen peroxide (H2O2) treatment increased ROS and cell death and decreased Sirt1 and Sirt3. With the addition of EX4 into the culture system, the expressions of Sirt1 and Sirt3 were increased, and the H2O2-induced ROS and cell death were significantly reduced. These results confirm a mechanism for EX4 to protect retinal cells from diabetic damage and oxidative injury. EX4 reduces retinal cell death and ROS generation by upregulating Sirt1 and Sirt3 expressions in the retina of early-stage diabetic rats as well as in H2O2-treated R28 cells.
Collapse
|
38
|
Meléndez García R, Arredondo Zamarripa D, Arnold E, Ruiz-Herrera X, Noguez Imm R, Baeza Cruz G, Adán N, Binart N, Riesgo-Escovar J, Goffin V, Ordaz B, Peña-Ortega F, Martínez-Torres A, Clapp C, Thebault S. Prolactin protects retinal pigment epithelium by inhibiting sirtuin 2-dependent cell death. EBioMedicine 2016; 7:35-49. [PMID: 27322457 PMCID: PMC4909382 DOI: 10.1016/j.ebiom.2016.03.048] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 03/23/2016] [Accepted: 03/31/2016] [Indexed: 12/16/2022] Open
Abstract
The identification of pathways necessary for retinal pigment epithelium (RPE) function is fundamental to uncover therapies for blindness. Prolactin (PRL) receptors are expressed in the retina, but nothing is known about the role of PRL in RPE. Using the adult RPE 19 (ARPE-19) human cell line and mouse RPE, we identified the presence of PRL receptors and demonstrated that PRL is necessary for RPE cell survival via anti-apoptotic and antioxidant actions. PRL promotes the antioxidant capacity of ARPE-19 cells by reducing glutathione. It also blocks the hydrogen peroxide-induced increase in deacetylase sirtuin 2 (SIRT2) expression, which inhibits the TRPM2-mediated intracellular Ca(2+) rise associated with reduced survival under oxidant conditions. RPE from PRL receptor-null (prlr(-/-)) mice showed increased levels of oxidative stress, Sirt2 expression and apoptosis, effects that were exacerbated in animals with advancing age. These observations identify PRL as a regulator of RPE homeostasis.
Collapse
Affiliation(s)
- Rodrigo Meléndez García
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Campus UNAM-Juriquilla, 76230 Querétaro, Mexico
| | - David Arredondo Zamarripa
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Campus UNAM-Juriquilla, 76230 Querétaro, Mexico
| | - Edith Arnold
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Campus UNAM-Juriquilla, 76230 Querétaro, Mexico
| | - Xarubet Ruiz-Herrera
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Campus UNAM-Juriquilla, 76230 Querétaro, Mexico
| | - Ramsés Noguez Imm
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Campus UNAM-Juriquilla, 76230 Querétaro, Mexico
| | - German Baeza Cruz
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Campus UNAM-Juriquilla, 76230 Querétaro, Mexico
| | - Norma Adán
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Campus UNAM-Juriquilla, 76230 Querétaro, Mexico
| | - Nadine Binart
- Institut National de la Santé et de la Recherche Médicale, U1185, Université Paris-Sud, Faculté de Médecine Paris-Sud, Le Kremlin-Bicêtre 94270, France
| | - Juan Riesgo-Escovar
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Campus UNAM-Juriquilla, 76230 Querétaro, Mexico
| | - Vincent Goffin
- Institut National de la Santé et de la Recherche Médicale, U1151, Institut Necker Enfants Malades, Université Paris-Descartes, Faculté de Médecine, Sorbonne Paris Cité, 75014, France
| | - Benito Ordaz
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Campus UNAM-Juriquilla, 76230 Querétaro, Mexico
| | - Fernando Peña-Ortega
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Campus UNAM-Juriquilla, 76230 Querétaro, Mexico
| | - Ataúlfo Martínez-Torres
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Campus UNAM-Juriquilla, 76230 Querétaro, Mexico
| | - Carmen Clapp
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Campus UNAM-Juriquilla, 76230 Querétaro, Mexico
| | - Stéphanie Thebault
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Campus UNAM-Juriquilla, 76230 Querétaro, Mexico.
| |
Collapse
|
39
|
Hytti M, Piippo N, Korhonen E, Honkakoski P, Kaarniranta K, Kauppinen A. Fisetin and luteolin protect human retinal pigment epithelial cells from oxidative stress-induced cell death and regulate inflammation. Sci Rep 2015; 5:17645. [PMID: 26619957 PMCID: PMC4664957 DOI: 10.1038/srep17645] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 11/03/2015] [Indexed: 01/09/2023] Open
Abstract
Degeneration of retinal pigment epithelial (RPE) cells is a clinical hallmark of age-related macular degeneration (AMD), the leading cause of blindness among aged people in the Western world. Both inflammation and oxidative stress are known to play vital roles in the development of this disease. Here, we assess the ability of fisetin and luteolin, to protect ARPE-19 cells from oxidative stress-induced cell death and to decrease intracellular inflammation. We also compare the growth and reactivity of human ARPE-19 cells in serum-free and serum-containing conditions. The absence of serum in the culture medium did not prevent ARPE-19 cells from reaching full confluency but caused an increased sensitivity to oxidative stress-induced cell death. Both fisetin and luteolin protected ARPE-19 cells from oxidative stress-induced cell death. They also significantly decreased the release of pro-inflammatory cytokines into the culture medium. The decrease in inflammation was associated with reduced activation of MAPKs and CREB, but was not linked to NF- κB or SIRT1. The ability of fisetin and luteolin to protect and repair stressed RPE cells even after the oxidative insult make them attractive in the search for treatments for AMD.
Collapse
Affiliation(s)
- Maria Hytti
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O.B. 1627, FI-70211, Kuopio, Finland.,Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, P.O.B. 1627, FI-70211 Kuopio, Finland
| | - Niina Piippo
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O.B. 1627, FI-70211, Kuopio, Finland.,Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, P.O.B. 1627, FI-70211 Kuopio, Finland
| | - Eveliina Korhonen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O.B. 1627, FI-70211, Kuopio, Finland.,Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, P.O.B. 1627, FI-70211 Kuopio, Finland
| | - Paavo Honkakoski
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O.B. 1627, FI-70211, Kuopio, Finland
| | - Kai Kaarniranta
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, P.O.B. 1627, FI-70211 Kuopio, Finland.,Department of Ophthalmology, Kuopio University Hospital, P.O.B. 100, FI-70029 KYS, Finland
| | - Anu Kauppinen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O.B. 1627, FI-70211, Kuopio, Finland.,Department of Ophthalmology, Kuopio University Hospital, P.O.B. 100, FI-70029 KYS, Finland
| |
Collapse
|
40
|
Chen Z, Zhai Y, Zhang W, Teng Y, Yao K. Single Nucleotide Polymorphisms of the Sirtuin 1 (SIRT1) Gene are Associated With age-Related Macular Degeneration in Chinese Han Individuals: A Case-Control Pilot Study. Medicine (Baltimore) 2015; 94:e2238. [PMID: 26656366 PMCID: PMC5008511 DOI: 10.1097/md.0000000000002238] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
To investigate whether 3 variants in sirtuin 1 (SIRT1) gene contributed differently in patients with age-related macular degeneration (AMD) in a Chinese Han population.We conducted a case-control study in a group of Chinese patients with AMD (n = 253) and contrasted the results against a control group (n = 292). Three single nucleotide polymorphisms (SNPs) of SIRT1 gene including rs12778366, rs3740051, and rs4746720 were genotyped using improved multiplex ligase detection reaction. The association between targeted SNPs and AMD was then analyzed by codominant, dominant, recessive, and allelic models.The genotyping data of rs12778366, rs3740051, and rs4746720 revealed significant deviations from Hardy-Weinberg equilibrium tests in the AMD group but not in the control group.We detected significantly differences of rs12778366 allele distribution between 2 groups in recessive and codominant model (P < 0.05). Homozygous carriers of the risk allele C displayed a higher chance of developing AMD (P = 0.036, odds ratio = 3.227; 95% confidence interval: 1.015-10.265).Our study, for the first time, raises the possibility that genetic variations of SIRT1 could be implicated in the pathophysiology of AMD in the Chinese Han population.
Collapse
Affiliation(s)
- Zhiqing Chen
- From the Eye Center, Second Affiliated Hospital of Medical College, Zhejiang University, Hangzhou, Zhejiang, China (ZC, YZ, YT, KY); Key Laboratory of Ophthalmology of Zhejiang Province, Hangzhou, China (ZC, YZ, YT, KY); and Department of Pathology, Zhejiang University School of Medicine, Hangzhou, China (WZ)
| | | | | | | | | |
Collapse
|
41
|
Zeng Y, Yang K. Sirtuin 1 participates in the process of age-related retinal degeneration. Biochem Biophys Res Commun 2015; 468:167-72. [PMID: 26522222 DOI: 10.1016/j.bbrc.2015.10.139] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2015] [Accepted: 10/26/2015] [Indexed: 02/08/2023]
Abstract
BACKGROUND The process of aging involves retinal cell damage that leads to visual dysfunction. Sirtuin (Sirt) 1 can prevent oxidative stress, DNA damage, and apoptosis. In the present study, we measured the expression of Sirt1 as a functional regulator in the retina during the aging process. METHODS The visual function and Sirt1 expression in young (1 month) and old (19 months) Sprague-Dawley (SD) rats. Electroretinogram (ERG) and real-time polymerase chain reaction (PCR) or Western blotting were performed. Resveratrol, an activator of Sirt1, was orally administered to SD rats at a dose of 5 mg/kg/day for 19 months. The expression of Sirt1, brain-derived neurotrophic factor (BDNF), and tropomyosin receptor kinase B (TrkB) was evaluated in the retinas of mice that did and did not receive resveratrol treatment. Apoptosis was detected by the terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) assay. RESULTS With decreasing b-wave amplitude, the expression level of Sirt1 was significantly reduced in aged retinas compared to that in young retinas. After 19 months of treatment with resveratrol, the Sirt1 expression level and b-wave amplitude increased. In old rats treated with resveratrol, the expression levels of BDNF and TrkB were up-regulated. Compared to young retinas, the aged retinas exhibited higher apoptosis, but resveratrol delayed this process. CONCLUSIONS Our data demonstrated a reduction of Sirt1 expression during the aging process of the retina, but enhancing Sirt1 expression reversed the degeneration of the retina. These results suggested that increasing Sirt1 expression may protect retinal neurons and visual function via regulating neurotrophin and its receptor.
Collapse
Affiliation(s)
- Ying Zeng
- Department of Ophthalmology of the Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China; Laboratory of Clinical Visual Sciences of Tongji Eye Institute, Tongji University School of Medicine, Shanghai, China; Department of Regenerative Medicine, Tongji University School of Medicine, Shanghai, China.
| | - Ke Yang
- Institute of Cardiovascular Disease, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
42
|
PRMT1 and PRMT4 Regulate Oxidative Stress-Induced Retinal Pigment Epithelial Cell Damage in SIRT1-Dependent and SIRT1-Independent Manners. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2015:617919. [PMID: 26583059 PMCID: PMC4637092 DOI: 10.1155/2015/617919] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Accepted: 06/03/2015] [Indexed: 02/07/2023]
Abstract
Oxidative stress-induced retinal pigment epithelial (RPE) cell damage is involved in the progression of diabetic retinopathy. Arginine methylation catalyzed by protein arginine methyltransferases (PRMTs) has emerged as an important histone modification involved in diverse diseases. Sirtuin (SIRT1) is a protein deacetylase implicated in the onset of metabolic diseases. Therefore, we examined the roles of type I PRMTs and their relationship with SIRT1 in human RPE cells under H2O2-induced oxidative stress. H2O2 treatment increased PRMT1 and PRMT4 expression but decreased SIRT1 expression. Similar to H2O2 treatment, PRMT1 or PRMT4 overexpression increased RPE cell damage. Moreover, the H2O2-induced RPE cell damage was attenuated by PRMT1 or PRMT4 knockdown and SIRT1 overexpression. In this study, we revealed that SIRT1 expression was regulated by PRMT1 but not by PRMT4. Finally, we found that PRMT1 and PRMT4 expression is increased in the RPE layer of streptozotocin-treated rats. Taken together, we demonstrated that oxidative stress induces apoptosis both via PRMT1 in a SIRT1-dependent manner and via PRMT4 in a SIRT1-independent manner. The inhibition of the expression of type I PRMTs, especially PRMT1 and PRMT4, and increased SIRT1 could be therapeutic approaches for diabetic retinopathy.
Collapse
|
43
|
Ren Y, Du C, Yan L, Wei J, Wu H, Shi Y, Duan H. CTGF siRNA ameliorates tubular cell apoptosis and tubulointerstitial fibrosis in obstructed mouse kidneys in a Sirt1-independent manner. DRUG DESIGN DEVELOPMENT AND THERAPY 2015; 9:4155-71. [PMID: 26257513 PMCID: PMC4527372 DOI: 10.2147/dddt.s86748] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Transforming growth factor-β1 (TGF-β1) plays an important role in the pathogenesis and progression of chronic kidney disease. Connective tissue growth factor (CTGF) is a critical fibrogenic mediator of TGF-β1. Mammalian sirtuin 1 (Sirt1) is reported to attenuate renal fibrosis by inhibiting the TGF-β1 pathway. This study was designed to detect whether the delivery of CTGF siRNA in vivo directly ameliorates renal fibrosis. Furthermore, the relationship with Sirt1 underlying the protective effect of CTGF siRNA on interstitial fibrosis and apoptosis was explored. Here, we report that the expressions of CTGF and TGF-β1 were increased while Sirt1 expression and activity were both dramatically decreased in mouse kidneys with unilateral ureteral obstruction. Recombinant human TGF-β1 treatment in HK-2 cells increased CTGF levels and remarkably decreased Sirt1 levels and was accompanied by apoptosis and release of fibrosis-related factors. Recombinant human CTGF stimulation also directly induced apoptosis and fibrosis. The CTGF siRNA plasmid ameliorated tubular cell apoptosis and tubulointerstitial fibrosis, but did not affect Sirt1 expression and activity both in vivo and in vitro. Furthermore, overexpression of Sirt1 abolished TGF-β1-induced cell apoptosis and fibrosis, while Sirt1 overexpression suppressed CTGF expression via stimulation by TGF-β1. This study provides evidence that treatment strategies involving the delivery of siRNA targeting potentially therapeutic transgenes may be efficacious. Our results suggest that the decrease in Sirt1 is associated with the upregulated expression of CTGF in renal fibrosis, and may aid in the design of new therapies for the prevention of renal fibrosis.
Collapse
Affiliation(s)
- Yunzhuo Ren
- Department of Pathology, Hebei Medical University, Shijiazhuang, Hebei, People's Republic of China
| | - Chunyang Du
- Department of Pathology, Hebei Medical University, Shijiazhuang, Hebei, People's Republic of China
| | - Li Yan
- Department of Pathology, Hebei Medical University, Shijiazhuang, Hebei, People's Republic of China
| | - Jingying Wei
- Department of Pathology, Hebei Medical University, Shijiazhuang, Hebei, People's Republic of China
| | - Haijiang Wu
- Department of Pathology, Hebei Medical University, Shijiazhuang, Hebei, People's Republic of China
| | - Yonghong Shi
- Department of Pathology, Hebei Medical University, Shijiazhuang, Hebei, People's Republic of China
| | - Huijun Duan
- Department of Pathology, Hebei Medical University, Shijiazhuang, Hebei, People's Republic of China
| |
Collapse
|
44
|
Chaum E, Winborn CS, Bhattacharya S. Genomic regulation of senescence and innate immunity signaling in the retinal pigment epithelium. Mamm Genome 2015; 26:210-21. [PMID: 25963977 DOI: 10.1007/s00335-015-9568-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 05/02/2015] [Indexed: 01/04/2023]
Abstract
The tumor suppressor p53 is a major regulator of genes important for cell cycle arrest, senescence, apoptosis, and innate immunity, and has recently been implicated in retinal aging. In this study we sought to identify the genetic networks that regulate p53 function in the retina using quantitative trait locus (QTL) analysis. First we examined age-associated changes in the activation and expression levels of p53; known p53 target proteins and markers of innate immune system activation in primary retinal pigment epithelial (RPE) cells that were harvested from young and aged human donors. We observed increased expression of p53, activated caspase-1, CDKN1A, CDKN2A (p16INK4a), TLR4, and IFNα in aged primary RPE cell lines. We used the Hamilton Eye Institute (HEI) retinal dataset ( www.genenetwork.org ) to identify genomic loci that modulate expression of genes in the p53 pathway in recombinant inbred BXD mouse strains using a QTL systems biology-based approach. We identified a significant trans-QTL on chromosome 1 (region 172-177 Mb) that regulates the expression of Cdkn1a. Many of the genes in this QTL locus are involved in innate immune responses, including Fc receptors, interferon-inducible family genes, and formin 2. Importantly, we found an age-related increase in FCGR3A and FMN2 and a decrease in IFI16 levels in RPE cultures. There is a complex multigenic innate immunity locus that controls expression of genes in the p53 pathway in the RPE, which may play an important role in modulating age-related changes in the retina.
Collapse
Affiliation(s)
- Edward Chaum
- Department of Ophthalmology, University of Tennessee Health Science Center, Memphis, TN, 38163, USA,
| | | | | |
Collapse
|
45
|
Raúl BG, Antonio FLL, Arturo BGL, Miguel C, Rebeca GM, Alejandro ÁR, Alejandra CR, Margarita DF, Clara OC. Hyperglycemia promotes p53-Mdm2 interaction but reduces p53 ubiquitination in RINm5F cells. Mol Cell Biochem 2015; 405:257-64. [DOI: 10.1007/s11010-015-2416-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 04/18/2015] [Indexed: 12/31/2022]
|
46
|
Kang L, Zhao W, Zhang G, Wu J, Guan H. Acetylated 8-oxoguanine DNA glycosylase 1 and its relationship with p300 and SIRT1 in lens epithelium cells from age-related cataract. Exp Eye Res 2015; 135:102-8. [PMID: 25660075 DOI: 10.1016/j.exer.2015.02.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 02/03/2015] [Accepted: 02/04/2015] [Indexed: 12/20/2022]
Abstract
The human 8-oxoguanine-DNA glycosylase 1 (OGG1) is the major DNA glycosylase responsible for repair of 7,8-dihydro-8-oxoguanine (8-oxoG) and ring-opened fapyguanine, critical mutagenic DNA lesions that are induced by reactive oxygen species. OGG1 acetylation has been demonstrated playing an important role in response to DNA damage. Here, we investigated the relationship between acetylated OGG1 (Ac-OGG1) and ARC, and clarified the effect of p300 and SIRT1 on the 8-oxoG excision ability of OGG1 in ARC development. Our results showed that anterior lens capsules from ARC group had higher proportion of 8-oxoG positive LECs than those from control group. OGG1 mRNA and protein levels significantly increased in ARC group compared with control group, while the protein levels of Ac-OGG1 were lower in ARC group. We investigated the factors involved in OGG1 acetylation and found that p300 and SIRT1 are the major acetyltransferases for OGG1 acetylation. We also identified acetylation of K338/K341 lysine residues in OGG1 has an important role on the repair activity of OGG1 to oxidative damage after H2O2 exposure in human lens epithelial cells (HLE-B3). Taken together, these data demonstrate that OGG1 acetylation regulates its function in response to DNA damage and could be one of the mechanisms of ARC.
Collapse
Affiliation(s)
- Lihua Kang
- Eye Institute, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Weijie Zhao
- Eye Institute, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China; Department of Ophthalmology, First People's Hospital of Changshu City, Affiliated Hospital of Soochow University, Changshu, Jiangsu Province, China
| | - Guowei Zhang
- Eye Institute, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Jian Wu
- Eye Institute, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Huaijin Guan
- Eye Institute, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China.
| |
Collapse
|
47
|
Hytti M, Piippo N, Salminen A, Honkakoski P, Kaarniranta K, Kauppinen A. Quercetin alleviates 4-hydroxynonenal-induced cytotoxicity and inflammation in ARPE-19 cells. Exp Eye Res 2015; 132:208-15. [PMID: 25662315 DOI: 10.1016/j.exer.2015.02.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Revised: 01/09/2015] [Accepted: 02/03/2015] [Indexed: 02/01/2023]
Abstract
Retinal pigment epithelium (RPE) plays the principal role in age-related macular degeneration (AMD), a progressive eye disease with no cure and limited therapeutical options. In the pathogenesis of AMD, degeneration of RPE cells by multiple factors including increased oxidative stress and chronic inflammation precedes the irreversible loss of photoreceptors and central vision. Here, we report that the plant-derived polyphenol, quercetin, increases viability and decreases inflammation in stressed human ARPE-19 cells after exposure to the lipid peroxidation end product 4-hydroxynonenal (HNE). Several previous studies have been conducted using the direct oxidant H2O2 but we preferred HNE since natural characteristics predispose RPE cells to the type of oxidative damage evoked by lipid peroxidation. Quercetin improved cell membrane integrity and mitochondrial function as assessed in LDH and MTT tests. Decreased production of proinflammatory mediators IL-6, IL-8, and MCP-1 were indicated at the RNA level by qPCR and at the protein level by the ELISA technique. In addition, we probed the signaling behind the effects and observed that p38 and ERK MAPK pathways, and CREB signaling are regulated by quercetin in ARPE-19 cells. In conclusion, our present data suggests that HNE is highly toxic to serum-starved ARPE-19 cells but quercetin is able to reverse these adverse effects even when administered after an oxidative insult.
Collapse
Affiliation(s)
- Maria Hytti
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, P.O.B. 1627, FI-70211 Kuopio, Finland.
| | - Niina Piippo
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, P.O.B. 1627, FI-70211 Kuopio, Finland.
| | - Antero Salminen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, P.O.B. 1627, FI-70211 Kuopio, Finland; Department of Neurology, Kuopio University Hospital, P.O.B. 100, FI-70029 KYS, Finland.
| | - Paavo Honkakoski
- School of Pharmacy, Faculty of Health Science, University of Eastern Finland, P.O.B. 1627, FI-70211, Finland.
| | - Kai Kaarniranta
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, P.O.B. 1627, FI-70211 Kuopio, Finland; Department of Ophthalmology, Kuopio University Hospital, P.O.B. 100, FI-70029 KYS, Finland.
| | - Anu Kauppinen
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, P.O.B. 1627, FI-70211 Kuopio, Finland; Department of Ophthalmology, Kuopio University Hospital, P.O.B. 100, FI-70029 KYS, Finland.
| |
Collapse
|
48
|
Kon Graversen V, Chavala SH. MDM2 inhibitors in the search for an optimized neovascular age-related macular degeneration treatment. EXPERT REVIEW OF OPHTHALMOLOGY 2014. [DOI: 10.1586/17469899.2014.952225] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
49
|
Kim DI, Park MJ, Lim SK, Choi JH, Kim JC, Han HJ, Kundu TK, Park JI, Yoon KC, Park SW, Park JS, Heo YR, Park SH. High-glucose-induced CARM1 expression regulates apoptosis of human retinal pigment epithelial cells via histone 3 arginine 17 dimethylation: Role in diabetic retinopathy. Arch Biochem Biophys 2014; 560:36-43. [DOI: 10.1016/j.abb.2014.07.021] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 07/14/2014] [Accepted: 07/17/2014] [Indexed: 01/21/2023]
|
50
|
Epigenetic modifications as potential therapeutic targets in age-related macular degeneration and diabetic retinopathy. Drug Discov Today 2014; 19:1387-93. [DOI: 10.1016/j.drudis.2014.03.026] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 03/12/2014] [Accepted: 03/31/2014] [Indexed: 12/14/2022]
|