1
|
Erjavec E, Angée C, Hadjadj D, Passet B, David P, Kostic C, Dodé E, Zanlonghi X, Cagnard N, Nedelec B, Crippa SV, Bole-Feysot C, Zarhrate M, Creuzet S, Castille J, Vilotte JL, Calvas P, Plaisancié J, Chassaing N, Kaplan J, Rozet JM, Taie LF. Congenital microcoria deletion in mouse links Sox21 dysregulation to disease and suggests a role for TGFB2 in glaucoma and myopia. Am J Hum Genet 2024; 111:2265-2282. [PMID: 39293448 PMCID: PMC11480854 DOI: 10.1016/j.ajhg.2024.08.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 08/23/2024] [Accepted: 08/23/2024] [Indexed: 09/20/2024] Open
Abstract
Congenital microcoria (MCOR) is a rare hereditary developmental defect of the iris dilator muscle frequently associated with high axial myopia and high intraocular pressure (IOP) glaucoma. The condition is caused by submicroscopic rearrangements of chromosome 13q32.1. However, the mechanisms underlying the failure of iris development and the origin of associated features remain elusive. Here, we present a 3D architecture model of the 13q32.1 region, demonstrating that MCOR-related deletions consistently disrupt the boundary between two topologically associating domains (TADs). Deleting the critical MCOR-causing region in mice reveals ectopic Sox21 expression precisely aligning with Dct, each located in one of the two neighbor TADs. This observation is consistent with the TADs' boundary alteration and adoption of Dct regulatory elements by the Sox21 promoter. Additionally, we identify Tgfb2 as a target gene of SOX21 and show TGFΒ2 accumulation in the aqueous humor of an MCOR-affected subject. Accumulation of TGFB2 is recognized for its role in glaucoma and potential impact on axial myopia. Our results highlight the importance of SOX21-TGFB2 signaling in iris development and control of eye growth and IOP. Insights from MCOR studies may provide therapeutic avenues for this condition but also for glaucoma and high myopia conditions, affecting millions of people.
Collapse
Affiliation(s)
- Elisa Erjavec
- Laboratory of Genetics in Ophthalmology (LGO), INSERM UMR1163, Institute of Genetic Diseases, Imagine and Université Paris Cité, Paris, France
| | - Clémentine Angée
- Laboratory of Genetics in Ophthalmology (LGO), INSERM UMR1163, Institute of Genetic Diseases, Imagine and Université Paris Cité, Paris, France
| | - Djihad Hadjadj
- Institut Cochin, Inserm U1016, CNRS UMR8104, UFR de Pharmacie de Paris, Université Paris Cité, CARPEM, Paris, France
| | - Bruno Passet
- University of Paris-Saclay, INRAE, AgroParisTech, UMR1313 GABI, Jouy-en-Josas, France
| | - Pierre David
- Transgenesis Platform, Laboratoire d'Expérimentation Animale et Transgenèse (LEAT), Imagine Institute, Structure Fédérative de Recherche Necker INSERM US24/CNRS UMS3633, Paris, France
| | - Corinne Kostic
- Group for Retinal Disorder Research, Department of Ophthalmology, University of Lausanne, Jules-Gonin Eye Hospital, Fondation Asile des Aveugles, Lausanne, Switzerland
| | - Emmanuel Dodé
- Institut Ophtalmologique de L'Ouest-Clinique Jules VERNE, Nantes, France
| | - Xavier Zanlonghi
- Institut Ophtalmologique de L'Ouest-Clinique Jules VERNE, Nantes, France
| | - Nicolas Cagnard
- Université Paris Cité, Bioinformatics Core Facility, Imagine Institute, INSERM UMR 1163, Paris, France
| | - Brigitte Nedelec
- Laboratory of Genetics in Ophthalmology (LGO), INSERM UMR1163, Institute of Genetic Diseases, Imagine and Université Paris Cité, Paris, France
| | - Sylvain V Crippa
- Group for Retinal Disorder Research, Department of Ophthalmology, University of Lausanne, Jules-Gonin Eye Hospital, Fondation Asile des Aveugles, Lausanne, Switzerland
| | - Christine Bole-Feysot
- Université Paris Cité, Genomics Platform, Imagine Institute, INSERM UMR 1163, INSERM US24/CNRS UAR3633, Paris, France
| | - Mohammed Zarhrate
- Université Paris Cité, Genomics Platform, Imagine Institute, INSERM UMR 1163, INSERM US24/CNRS UAR3633, Paris, France
| | - Sophie Creuzet
- Paris-Saclay Institute of Neuroscience, NeuroPSI, CNRS, Paris-Saclay University, Campus CEA Saclay, Bât 151, 151 Route de la Rotonde, 91400 Saclay, France
| | - Johan Castille
- University of Paris-Saclay, INRAE, AgroParisTech, UMR1313 GABI, Jouy-en-Josas, France
| | - Jean-Luc Vilotte
- University of Paris-Saclay, INRAE, AgroParisTech, UMR1313 GABI, Jouy-en-Josas, France
| | - Patrick Calvas
- Centre de Référence pour les Affections Rares en Génétique Ophtalmologique (CARGO), CHU Toulouse, Toulouse, France
| | - Julie Plaisancié
- Centre de Référence pour les Affections Rares en Génétique Ophtalmologique (CARGO), CHU Toulouse, Toulouse, France
| | - Nicolas Chassaing
- Centre de Référence pour les Affections Rares en Génétique Ophtalmologique (CARGO), CHU Toulouse, Toulouse, France
| | - Josseline Kaplan
- Laboratory of Genetics in Ophthalmology (LGO), INSERM UMR1163, Institute of Genetic Diseases, Imagine and Université Paris Cité, Paris, France
| | - Jean-Michel Rozet
- Laboratory of Genetics in Ophthalmology (LGO), INSERM UMR1163, Institute of Genetic Diseases, Imagine and Université Paris Cité, Paris, France.
| | - Lucas Fares Taie
- Laboratory of Genetics in Ophthalmology (LGO), INSERM UMR1163, Institute of Genetic Diseases, Imagine and Université Paris Cité, Paris, France.
| |
Collapse
|
2
|
Geiduschek EK, Bricco EK, McDowell CM. DAMPs Drive Fibroinflammatory Changes in the Glaucomatous ONH. Invest Ophthalmol Vis Sci 2024; 65:13. [PMID: 39382882 PMCID: PMC11469284 DOI: 10.1167/iovs.65.12.13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 09/16/2024] [Indexed: 10/10/2024] Open
Abstract
Purpose The optic nerve head (ONH) is well known to be the initial site of glaucomatous damage; however, the molecular mechanisms initiating this pathology are not fully understood. To further understand the initiating factors in glaucomatous damage we utilized a novel mouse model of glaucoma, B6.EDA+/+ mice, which constitutively express fibronectin containing the extra domain A (FN+EDA). FN+EDA is a known damage-associated molecular pattern (DAMP) that activates Toll-like receptor 4 and elicits a fibro-inflammatory response. Methods Eyes from B6.EDA+/+ and C57BL/6J mice were evaluated for retinal ganglion cell (RGC) death, retinal nerve fiber layer (RNFL) thickness, and optic nerve (ON) damage at 12 months and 22 months of age. ONH sections were isolated using laser capture microdissection for subsequent RNA-sequencing and Gene Set Enrichment Analysis (GSEA). GSEA results were confirmed using immunohistochemical (IHC) staining. Results B6.EDA+/+ mice exhibit significantly higher intraocular pressure, loss of RGCs, thinning of the RNFL, and progressive levels of ON damage at 12 months and 22 months of age compared to C57BL/6J controls. Protein expression of DAMPs FN+EDA and biglycan was significantly increased in B6.EDA+/+ mice compared to C57BL/6J controls. GSEA analysis identified significantly up- and downregulated gene groupings at both 12 months and 22 months of age, and IHC staining at 12 and 18 months of age demonstrated significant increases of IFNα, IFNβ, and pSTAT1 expression in B6.EDA+/+ mice compared to C57BL/6J controls. Conclusions Our study characterizes glaucomatous changes to the retina, ON, and ONH over the course of 2 years and identifies novel molecular pathways associated with these pathophysiological changes. These data illustrate the effects of FN+EDA on the fibro-inflammatory response in the aging ONH in a novel mouse model of glaucoma.
Collapse
Affiliation(s)
| | - Emma K. Bricco
- University of Wisconsin–Madison, Madison, Wisconsin, United States
| | | |
Collapse
|
3
|
Langer F, Binter M, Hu X, Hufendiek K, Meister R, Tode J, Framme C, Fuchs H. In vitro comparison of human and murine trabecular meshwork cells: implications for glaucoma research. Sci Rep 2024; 14:22002. [PMID: 39313534 PMCID: PMC11420201 DOI: 10.1038/s41598-024-73057-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 09/12/2024] [Indexed: 09/25/2024] Open
Abstract
The trabecular meshwork (TM) is crucial for regulating intraocular pressure (IOP), and its dysfunction significantly contributes to glaucoma, a leading cause of vision loss and blindness worldwide. Although rodents are commonly used as animal models in glaucoma research, the applicability of these findings to humans is limited due to the insufficient understanding of murine TM. This study aimed to compare primary human TM (hTM) and murine TM (mTM) cells in vitro to enhance the robustness and translatability of murine glaucoma models. In this in vitro study, we compared primary hTM and mTM cells under simulated physiological and pathological conditions by exposing both cell types to the glucocorticoid dexamethasone (DEX) and Transforming Growth Factor β (TGFB2), both of which are critical in the pathogenesis of several ophthalmological diseases, including glaucoma. Phagocytic properties were assessed using microbeads. Cells were analyzed through immunocytochemistry (ICC) and Western blot (WB) to evaluate the expression of extracellular matrix (ECM) components, such as Fibronectin 1 (FN1) and Collagen IV (COL IV). Filamentous-Actin (F-Act) staining was used to analyze cross-linked actin network (CLAN) formation. Additionally, we evaluated cytoskeletal components, including Vimentin (VIM), Myocilin (MYOC), and Actin-alpha-2 (ACTA2). Our results demonstrated significant similarities between human and murine TM cells in basic morphology, phagocytic properties, and ECM and cytoskeletal component expression under both homeostatic and pathological conditions in vitro. Both human and murine TM cells exhibited epithelial-to-mesenchymal transition (EMT) after exposure to DEX or TGFB2, with comparable CLAN formation observed in both species. However, there were significant differences in FN1 and MYOC induction between human and murine TM cells. Additionally, MYOC expression in hTM cells depended on fibronectin coating. Our study suggests that murine glaucoma models are potentially translatable to human TM. The observed similarities in ECM and cytoskeletal component expression and the comparable EMT response and CLAN formation support the utility of murine models in glaucoma research. The differences in FN1 and MYOC expression between hTM and mTM warrant further investigation due to their potential impact on TM properties. Overall, this study provides valuable insights into the species-specific characteristics of TM and highlights opportunities to refine murine models for better relevance to human glaucoma.
Collapse
Affiliation(s)
- Fridolin Langer
- University Eye Hospital, Hannover Medical School, 30625, Hannover, Germany
| | - Maximilian Binter
- University Eye Hospital, Hannover Medical School, 30625, Hannover, Germany
| | - Xiaonan Hu
- University Eye Hospital, Hannover Medical School, 30625, Hannover, Germany
| | - Karsten Hufendiek
- University Eye Hospital, Hannover Medical School, 30625, Hannover, Germany
| | - Roland Meister
- University Eye Hospital, Hannover Medical School, 30625, Hannover, Germany
| | - Jan Tode
- University Eye Hospital, Hannover Medical School, 30625, Hannover, Germany
| | - Carsten Framme
- University Eye Hospital, Hannover Medical School, 30625, Hannover, Germany
| | - Heiko Fuchs
- University Eye Hospital, Hannover Medical School, 30625, Hannover, Germany.
| |
Collapse
|
4
|
Adhikari B, Barakoti P, Pantcheva MB, Krebs MD. 3D printed gelatin methacryloyl hydrogels for perfusion culture of human trabecular meshwork cells and glaucoma studies. Biotechnol Bioeng 2024. [PMID: 39291858 DOI: 10.1002/bit.28849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 09/03/2024] [Accepted: 09/05/2024] [Indexed: 09/19/2024]
Abstract
Glaucoma, a progressive eye disease leading to irreversible blindness, currently affects over 70 million people globally. Elevated intraocular pressure (IOP) is implicated in its development. IOP is carefully regulated by the trabecular meshwork (TM). However, studying TM behavior has been limited to traditional tissue culture studies or costly ex vivo cultures of animal and donor eyes. Developing novel functional TM models could enhance cell/tissue behavior understanding and aid therapeutic development for glaucoma. In this study, we 3D printed a simplified and reproducible model of the human TM (hTM) and studied hTM cell behavior under static and dynamic cultures. Gelatin Methacryloyl bioinks proved suitable for printing with viable and proliferative hTM cells expressing crucial marker genes in response to glucocorticoid induction. This, to our knowledge, is the first functional 3D printed hTM model and aims to facilitate TM research. Moreover, this easily reproducible model could also be applicable in the study of numerous other cell types throughout the body.
Collapse
Affiliation(s)
- Bikram Adhikari
- Colorado School of Mines, Quantitative Biosciences and Engineering, Golden, Colorado, USA
| | - Prasanga Barakoti
- Colorado School of Mines, Quantitative Biosciences and Engineering, Golden, Colorado, USA
| | - Mina B Pantcheva
- Ophthalmology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Melissa D Krebs
- Colorado School of Mines, Quantitative Biosciences and Engineering, Golden, Colorado, USA
- Colorado School of Mines, Chemical and Biological Engineering, Golden, Colorado, USA
| |
Collapse
|
5
|
Sugali CK, Rayana NP, Dai J, Harvey DH, Dhamodaran K, Mao W. GSK3β Inhibitors Inhibit TGFβ Signaling in the Human Trabecular Meshwork. Invest Ophthalmol Vis Sci 2024; 65:3. [PMID: 39087933 PMCID: PMC11305430 DOI: 10.1167/iovs.65.10.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 07/15/2024] [Indexed: 08/02/2024] Open
Abstract
Purpose Primary open-angle glaucoma (POAG) is a leading cause of blindness, and its primary risk factor is elevated intraocular pressure (IOP) due to pathologic changes in the trabecular meshwork (TM). We previously showed that there is a cross-inhibition between TGFβ and Wnt signaling pathways in the TM. In this study, we determined if activation of the Wnt signaling pathway using small-molecule Wnt activators can inhibit TGFβ2-induced TM changes and ocular hypertension (OHT). Methods Primary human TM (pHTM) cells and transduced SBE-GTM3 cells were treated with or without Wnt and/or TGFβ signaling activators and used for luciferase assays; for the extraction of whole-cell lysate, conditioned medium, cytosolic proteins, and nuclear proteins for Western immunoblotting (WB); or for immunofluorescent staining. Human donor eyes were perfusion cultured to study the effect of Wnt activators on IOP. Results We found that the small-molecule Wnt activators (GSK3β inhibitors) (BIO, SB216763, and CHIR99021) activated canonical Wnt signaling in pHTM cells without toxicity at tested concentrations. This activation inhibited TGFβ signaling as well as TGFβ2-induced extracellular matrix deposition and formation of cross-linked actin networks in pHTM cells or SBE-GTM3 cells. We also observed nuclear translocation of both Smad4 and β-catenin in pHTM cells, which suggested that the cross-inhibition between the TGFβ and Wnt signaling pathways may occur in the nucleus. Using our ex vivo model, we found that CHIR99021 inhibited TGFβ2-induced OHT in perfusion-cultured human eyes. Conclusions Our results showed that small-molecule Wnt activators have the potential for treating TGFβ signaling-induced OHT in patients with POAG.
Collapse
Affiliation(s)
- Chenna Kesavulu Sugali
- Eugene & Marilyn Glick Eye Institute, Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, Indiana, United States
| | - Naga Pradeep Rayana
- Eugene & Marilyn Glick Eye Institute, Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, Indiana, United States
| | - Jiannong Dai
- Eugene & Marilyn Glick Eye Institute, Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, Indiana, United States
| | - Devon H. Harvey
- Eugene & Marilyn Glick Eye Institute, Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, Indiana, United States
| | - Kamesh Dhamodaran
- Eugene & Marilyn Glick Eye Institute, Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, Indiana, United States
| | - Weiming Mao
- Eugene & Marilyn Glick Eye Institute, Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, Indiana, United States
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, United States
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, Indiana, United States
- STARK Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, Indiana, United States
| |
Collapse
|
6
|
Zhu X, Zeng B, Wu C, Chen Z, Yu M, Yang Y. Inhibition of TGF-β2-Induced Trabecular Meshwork Fibrosis by Pirfenidone. Transl Vis Sci Technol 2023; 12:21. [PMID: 37975842 PMCID: PMC10664722 DOI: 10.1167/tvst.12.11.21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 09/25/2023] [Indexed: 11/19/2023] Open
Abstract
Purpose Trabecular meshwork (TM) fibrosis is a crucial pathophysiological process in the development of primary open-angle glaucoma. Pirfenidone (PFD) is a new, broad-spectrum antifibrotic agent approved for the treatment of idiopathic pulmonary fibrosis. This study investigated the inhibitory effect of PFD on TM fibrosis and evaluated its efficacy in lowering intraocular pressure (IOP). Methods Human TM cells were isolated, cultured, and characterized. Cell Counting Kit-8 was used to evaluate the proliferation and toxicity of different concentrations of PFD on normal or fibrotic TM cells. TM cells were treated with transforming growth factor beta-2 (TGF-β2) in the absence or presence of PFD. Western blotting and immunofluorescence analyses were used to analyze changes in the TM cell cytoskeleton and extracellular matrix (ECM) proteins, including alpha-smooth muscle actin (α-SMA), F-actin, collagen IV (COL IV), and fibronectin (FN). An ocular hypertension (OHT) mouse model was induced with Ad-TGF-β2C226/228S and then treated with PFD or latanoprost (LT) eye drops to confirm the efficacy of PFD in lowering IOP. Results PFD inhibited the proliferation of fibrotic TM cells in a dose-dependent manner and inhibited TGF-β2-induced overexpression of α-SMA, COL IV, and FN in TM cells. PFD stabilized F-actin. In vivo, PFD eye drops reduced the IOP of the OHT models and showed no significant difference compared with LT eye drops. Conclusions PFD inhibited TGF-β2-induced TM cell fibrosis by rearranging the disordered cytoskeleton and decreasing ECM deposition, thereby enhancing the aqueous outflow from the TM outflow pathway and lowering IOP, which provides a potential new approach to treating glaucoma. Translational Relevance Our work with pirfenidone provides a new approach to treat glaucoma.
Collapse
Affiliation(s)
- Xiaofeng Zhu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmology Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Bei Zeng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmology Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Caiqing Wu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmology Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Zidong Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmology Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Minbin Yu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmology Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Yangfan Yang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmology Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| |
Collapse
|
7
|
Zhang R, Tao Y, Huang J. The Application of MicroRNAs in Glaucoma Research: A Bibliometric and Visualized Analysis. Int J Mol Sci 2023; 24:15377. [PMID: 37895056 PMCID: PMC10607922 DOI: 10.3390/ijms242015377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/16/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
Glaucoma is similar to a neurodegenerative disorder and leads to global irreversible loss of vision. Despite extensive research, the pathophysiological mechanisms of glaucoma remain unclear, and no complete cure has yet been identified for glaucoma. Recent studies have shown that microRNAs can serve as diagnostic biomarkers or therapeutic targets for glaucoma; however, there are few bibliometric studies that focus on using microRNAs in glaucoma research. Here, we have adopted a bibliometric analysis in the field of microRNAs in glaucoma research to manifest the current tendencies and research hotspots and to present a visual map of the past and emerging tendencies in this field. In this study, we retrieved publications in the Web of Science database that centered on this field between 2007 and 2022. Next, we used VOSviewer, CiteSpace, Scimago Graphica, and Microsoft Excel to present visual representations of a co-occurrence analysis, co-citation analysis, tendencies, hotspots, and the contributions of authors, institutions, journals, and countries/regions. The United States was the main contributor. Investigative Ophthalmology and Visual Science has published the most articles in this field. Over the past 15 years, there has been exponential growth in the number of publications and citations in this field across various countries, organizations, and authors. Thus, this study illustrates the current trends, hotspots, and emerging frontiers and provides new insight and guidance for searching for new diagnostic biomarkers and clinical trials for glaucoma in the future. Furthermore, international collaborations can also be used to broaden and deepen the field of microRNAs in glaucoma research.
Collapse
Affiliation(s)
| | | | - Jufang Huang
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha 410013, China; (R.Z.); (Y.T.)
| |
Collapse
|
8
|
Yam GHF, Pi S, Du Y, Mehta JS. Posterior corneoscleral limbus: Architecture, stem cells, and clinical implications. Prog Retin Eye Res 2023; 96:101192. [PMID: 37392960 DOI: 10.1016/j.preteyeres.2023.101192] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/22/2023] [Accepted: 06/23/2023] [Indexed: 07/03/2023]
Abstract
The limbus is a transition from the cornea to conjunctiva and sclera. In human eyes, this thin strip has a rich variation of tissue structures and composition, typifying a change from scleral irregularity and opacity to corneal regularity and transparency; a variation from richly vascularized conjunctiva and sclera to avascular cornea; the neural passage and drainage of aqueous humor. The limbal stroma is enriched with circular fibres running parallel to the corneal circumference, giving its unique role in absorbing small pressure changes to maintain corneal curvature and refractivity. It contains specific niches housing different types of stem cells for the corneal epithelium, stromal keratocytes, corneal endothelium, and trabecular meshwork. This truly reflects the important roles of the limbus in ocular physiology, and the limbal functionality is crucial for corneal health and the entire visual system. Since the anterior limbus containing epithelial structures and limbal epithelial stem cells has been extensively reviewed, this article is focused on the posterior limbus. We have discussed the structural organization and cellular components of the region beneath the limbal epithelium, the characteristics of stem cell types: namely corneal stromal stem cells, endothelial progenitors and trabecular meshwork stem cells, and recent advances leading to the emergence of potential cell therapy options to replenish their respective mature cell types and to correct defects causing corneal abnormalities. We have reviewed different clinical disorders associated with defects of the posterior limbus and summarized the available preclinical and clinical evidence about the developing topic of cell-based therapy for corneal disorders.
Collapse
Affiliation(s)
- Gary Hin-Fai Yam
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, USA; Tissue Engineering and Cell Therapy Group, Singapore Eye Research Institute, Singapore; McGowan Institute for Regenerative Medicine, Pittsburgh, PA, USA.
| | - Shaohua Pi
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yiqin Du
- Department of Ophthalmology, University of South Florida, Tampa, FL, USA
| | - Jodhbir S Mehta
- Tissue Engineering and Cell Therapy Group, Singapore Eye Research Institute, Singapore; Department of Cornea and External Eye Disease, Singapore National Eye Centre, Singapore; Ophthalmology and Visual Sciences Academic Clinical Program, Duke-National University of Singapore (NUS) Medical School, Singapore.
| |
Collapse
|
9
|
Geiduschek EK, McDowell CM. The Fibro-Inflammatory Response in the Glaucomatous Optic Nerve Head. Int J Mol Sci 2023; 24:13240. [PMID: 37686046 PMCID: PMC10487997 DOI: 10.3390/ijms241713240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/24/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
Glaucoma is a progressive disease and the leading cause of irreversible blindness. The limited therapeutics available are only able to manage the common risk factor of glaucoma, elevated intraocular pressure (IOP), indicating a great need for understanding the cellular mechanisms behind optic nerve head (ONH) damage during disease progression. Here we review the known inflammatory and fibrotic changes occurring in the ONH. In addition, we describe a novel mechanism of toll-like receptor 4 (TLR4) and transforming growth factor beta-2 (TGFβ2) signaling crosstalk in the cells of the ONH that contribute to glaucomatous damage. Understanding molecular signaling within and between the cells of the ONH can help identify new drug targets and therapeutics.
Collapse
Affiliation(s)
| | - Colleen M. McDowell
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI 53705, USA
| |
Collapse
|
10
|
Yoo H, Singh A, Li H, Strat AN, Bagué T, Ganapathy PS, Herberg S. Simvastatin Attenuates Glucocorticoid-Induced Human Trabecular Meshwork Cell Dysfunction via YAP/TAZ Inactivation. Curr Eye Res 2023; 48:736-749. [PMID: 37083467 PMCID: PMC10524554 DOI: 10.1080/02713683.2023.2206067] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 03/22/2023] [Accepted: 04/18/2023] [Indexed: 04/22/2023]
Abstract
PURPOSE Impairment of the trabecular meshwork (TM) is the principal cause of increased outflow resistance in the glaucomatous eye. Yes-associated protein (YAP) and transcriptional coactivator with PDZ binding motif (TAZ) are emerging as potential mediators of TM cell/tissue dysfunction. Furthermore, YAP/TAZ activity was recently found to be controlled by the mevalonate pathway in non-ocular cells. Clinically used statins block the mevalonate cascade and were shown to improve TM cell pathobiology; yet, the link to YAP/TAZ signaling was not investigated. In this study, we hypothesized that simvastatin attenuates glucocorticoid-induced human TM (HTM) cell dysfunction via YAP/TAZ inactivation. METHODS Primary HTM cells were seeded atop or encapsulated within bioengineered extracellular matrix (ECM) hydrogels. Dexamethasone was used to induce a pathologic phenotype in HTM cells in the absence or presence of simvastatin. Changes in YAP/TAZ activity, actin cytoskeletal organization, phospho-myosin light chain levels, hydrogel contraction/stiffness, and fibronectin deposition were assessed. RESULTS Simvastatin potently blocked pathologic YAP/TAZ nuclear localization/activity, actin stress fiber formation, and myosin light chain phosphorylation in HTM cells. Importantly, simvastatin co-treatment significantly attenuated dexamethasone-induced ECM contraction/stiffening and fibronectin mRNA and protein levels. Sequential treatment was similarly effective but did not match clinically-used Rho kinase inhibition. CONCLUSIONS YAP/TAZ inactivation with simvastatin attenuates HTM cell pathobiology in a tissue-mimetic ECM microenvironment. Our data may help explain the association of statin use with a reduced risk of developing glaucoma via indirect YAP/TAZ inhibition as a proposed regulatory mechanism.
Collapse
Affiliation(s)
- Hannah Yoo
- Department of Ophthalmology and Visual Sciences, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Ayushi Singh
- Department of Ophthalmology and Visual Sciences, SUNY Upstate Medical University, Syracuse, NY 13210, USA
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
- BioInspired Institute, Syracuse University, Syracuse, NY 13244, USA
| | - Haiyan Li
- Department of Ophthalmology and Visual Sciences, SUNY Upstate Medical University, Syracuse, NY 13210, USA
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
- BioInspired Institute, Syracuse University, Syracuse, NY 13244, USA
| | - Ana N. Strat
- Department of Ophthalmology and Visual Sciences, SUNY Upstate Medical University, Syracuse, NY 13210, USA
- BioInspired Institute, Syracuse University, Syracuse, NY 13244, USA
- Department of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Tyler Bagué
- Department of Ophthalmology and Visual Sciences, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Preethi S. Ganapathy
- Department of Ophthalmology and Visual Sciences, SUNY Upstate Medical University, Syracuse, NY 13210, USA
- BioInspired Institute, Syracuse University, Syracuse, NY 13244, USA
- Department of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Samuel Herberg
- Department of Ophthalmology and Visual Sciences, SUNY Upstate Medical University, Syracuse, NY 13210, USA
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
- BioInspired Institute, Syracuse University, Syracuse, NY 13244, USA
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, NY 13244, USA
| |
Collapse
|
11
|
Oikawa K, Torne O, Sun D, Moon AKB, Kiland JA, Trane RM, McLellan GJ. Aqueous Humor TGF-β2 and Its Association With Intraocular Pressure in a Naturally Occurring Large Animal Model of Glaucoma. Invest Ophthalmol Vis Sci 2023; 64:18. [PMID: 37459065 PMCID: PMC10362923 DOI: 10.1167/iovs.64.10.18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 06/27/2023] [Indexed: 07/20/2023] Open
Abstract
Purpose Transforming growth factor (TGF)-β2 has been widely implicated in human glaucoma pathology. The purpose of this study was to determine the source of TGF-β2 in aqueous humor (AH) and its relationship with intraocular pressure (IOP) in an inherited large animal model of glaucoma. Methods Sixty-six glaucomatous cats homozygous for LTBP2 mutation, and 42 normal cats were studied. IOP was measured weekly by rebound tonometry. AH was collected by anterior chamber paracentesis from each eye under general anesthesia, and serum samples collected from venous blood concurrently. Concentrations of total, active and latent TGF-β2 in AH and serum samples were measured by quantitative sandwich immunoassay. For comparisons between groups, unpaired t-test or Mann Whitney test were used, with P < 0.05 considered significant. The relationships between TGF-β2 concentrations and IOP values were examined by Pearson's correlation coefficient and generalized estimating equation. Results IOP and AH TGF-β2 concentrations were significantly higher in glaucomatous than in normal cats. AH TGF-β2 showed a significant, robust positive correlation with IOP in glaucomatous cats (r = 0.83, R2 = 0.70, P < 0.0001). Serum TGF-β2 did not correlate with AH TGF-β2 and was not significantly different between groups. TGF-β2 mRNA and protein expression were significantly increased in local ocular tissues in glaucomatous cats. Conclusions Enhanced, local ocular production of TGF-β2 with a robust positive association with IOP was identified in this spontaneous feline glaucoma model, providing a foundation for preclinical testing of novel therapeutics to limit disease-associated AH TGF-β2 elevation and signaling in glaucoma.
Collapse
Affiliation(s)
- Kazuya Oikawa
- Surgical Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States
- Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States
- McPherson Eye Research Institute, Madison, Wisconsin, United States
| | - Odalys Torne
- Surgical Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States
- Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States
- McPherson Eye Research Institute, Madison, Wisconsin, United States
| | - David Sun
- Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States
| | - Alaina K. B. Moon
- Surgical Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States
| | - Julie A. Kiland
- Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States
| | - Ralph Møller Trane
- Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States
| | - Gillian J. McLellan
- Surgical Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States
- Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States
- McPherson Eye Research Institute, Madison, Wisconsin, United States
| |
Collapse
|
12
|
Adulla A, Patel U, Ashok A, Katiyar P, Kaulakis M, Kritikos AE, Pillai S, Lee H, Lindner E, Rhee DJ, Singh N. α-Synuclein modulates fibronectin expression in the trabecular meshwork independent of TGFβ2. Exp Eye Res 2023; 226:109351. [PMID: 36539052 PMCID: PMC10384565 DOI: 10.1016/j.exer.2022.109351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 12/06/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
α-Synuclein (α-Syn) is implicated in Parkinson's disease (PD), a neuromotor disorder with prominent visual symptoms. The underlying cause of motor dysfunction has been studied extensively, and is attributed to the death of dopaminergic neurons mediated in part by intracellular aggregation of α-Syn. The cause of visual symptoms, however, is less clear. Neuroretinal degeneration due to the presence of aggregated α-Syn has been reported, but the evidence is controversial. Other symptoms including those arising from primary open angle glaucoma (POAG) are believed to be the side-effects of medications prescribed for PD. Here, we explored the alternative hypothesis that dysfunction of α-Syn in the anterior eye alters the interaction between the actin cytoskeleton of trabecular meshwork (TM) cells with the extracellular matrix (ECM), impairing their ability to respond to physiological changes in intraocular pressure (IOP). A similar dysfunction in neurons is responsible for impaired neuritogenesis, a characteristic feature of PD. Using cadaveric human and bovine TM tissue and primary human TM cells as models, we report two main observations: 1) α-Syn is expressed in human and bovine TM cells, and significant amounts of monomeric and oligomeric α-Syn are present in the AH, and 2) primary human TM cells and human and bovine TM tissue endocytose extracellular recombinant monomeric and oligomeric α-Syn via the prion protein (PrPC), and upregulate fibronectin (FN) and α-smooth muscle actin (α-SMA), fibrogenic proteins implicated in POAG. Transforming growth factor β2 (TGFβ2), a fibrogenic cytokine implicated in ∼50% cases of POAG, is also increased, and so is RhoA-associated coiled-coil-containing protein kinase 1 (ROCK-1). However, silencing of α-Syn in primary human TM cells reduces FN, α-SMA, and ROCK-1 in the absence or presence of over-expressed active TGFβ2, suggesting modulation of FN and ROCK-1 independent of, or upstream of TGFβ2. These observations suggest that extracellular α-Syn modulates ECM proteins in the TM independently or via PrPC by activating the RhoA-ROCK pathway. These observations reveal a novel function of α-Syn in the anterior eye, and offer new therapeutic options.
Collapse
Affiliation(s)
- Anika Adulla
- Departments of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Urvi Patel
- Departments of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Ajay Ashok
- Departments of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Priya Katiyar
- Departments of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Mare Kaulakis
- Departments of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Alexander E Kritikos
- Departments of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Sachin Pillai
- Departments of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - HyunPin Lee
- Departments of Ophthalmology, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Ewald Lindner
- Department of Ophthalmology, Medical University of Graz, Auenbruggerplatz 4, 8036, Graz, Austria
| | - Douglas J Rhee
- Departments of Ophthalmology, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Neena Singh
- Departments of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA.
| |
Collapse
|
13
|
Fu H, Siggs OM, Knight LS, Staffieri SE, Ruddle JB, Birsner AE, Collantes ER, Craig JE, Wiggs JL, D’Amato RJ. Thrombospondin 1 missense alleles induce extracellular matrix protein aggregation and TM dysfunction in congenital glaucoma. J Clin Invest 2022; 132:e156967. [PMID: 36453543 PMCID: PMC9711877 DOI: 10.1172/jci156967] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 10/11/2022] [Indexed: 12/03/2022] Open
Abstract
Glaucoma is a highly heritable disease that is a leading cause of blindness worldwide. Here, we identified heterozygous thrombospondin 1 (THBS1) missense alleles altering p.Arg1034, a highly evolutionarily conserved amino acid, in 3 unrelated and ethnically diverse families affected by congenital glaucoma, a severe form of glaucoma affecting children. Thbs1R1034C-mutant mice had elevated intraocular pressure (IOP), reduced ocular fluid outflow, and retinal ganglion cell loss. Histology revealed an abundant, abnormal extracellular accumulation of THBS1 with abnormal morphology of juxtacanalicular trabecular meshwork (TM), an ocular tissue critical for aqueous fluid outflow. Functional characterization showed that the THBS1 missense alleles found in affected individuals destabilized the THBS1 C-terminus, causing protein misfolding and extracellular aggregation. Analysis using a range of amino acid substitutions at position R1034 showed that the extent of aggregation was correlated with the change in protein-folding free energy caused by variations in amino acid structure. Extracellular matrix (ECM) proteins, especially fibronectin, which bind to THBS1, also accumulated within THBS1 deposits. These results show that missense variants altering THBS1 p.Arg1034 can cause elevated IOP through a mechanism involving impaired TM fluid outflow in association with accumulation of aggregated THBS1 in the ECM of juxtacanalicular meshwork with altered morphology.
Collapse
Affiliation(s)
- Haojie Fu
- Vascular Biology Program, Department of Surgery, Boston Children’s Hospital, Boston, Massachusetts, USA
- Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, USA
| | - Owen M. Siggs
- Department of Ophthalmology, Flinders University, Adelaide, South Australia, Australia
- Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
| | - Lachlan S.W. Knight
- Department of Ophthalmology, Flinders University, Adelaide, South Australia, Australia
| | - Sandra E. Staffieri
- Centre for Eye Research Australia (CERA), Royal Victorian Eye and Ear Hospital, East Melbourne, Victoria, Australia
- Department of Ophthalmology, University of Melbourne, Department of Surgery, Parkville, Victoria, Australia
- Department of Ophthalmology, Royal Children’s Hospital, Parkville, Victoria, Australia
| | - Jonathan B. Ruddle
- Department of Ophthalmology, Royal Children’s Hospital, Parkville, Victoria, Australia
| | - Amy E. Birsner
- Vascular Biology Program, Department of Surgery, Boston Children’s Hospital, Boston, Massachusetts, USA
| | | | - Jamie E. Craig
- Department of Ophthalmology, Flinders University, Adelaide, South Australia, Australia
| | - Janey L. Wiggs
- Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, USA
- Department of Ophthalmology, Massachusetts Eye and Ear, Boston, Massachusetts, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Boston, Massachusetts, USA
| | - Robert J. D’Amato
- Vascular Biology Program, Department of Surgery, Boston Children’s Hospital, Boston, Massachusetts, USA
- Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
14
|
Shirbhate U, Bajaj P, Pandher J, Durge K. Fibronectin and Its Applications in Dentistry and Periodontics: A Cell Behaviour Conditioner. Cureus 2022; 14:e30702. [DOI: 10.7759/cureus.30702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 10/26/2022] [Indexed: 11/05/2022] Open
|
15
|
Li H, Henty-Ridilla JL, Bernstein AM, Ganapathy PS, Herberg S. TGFβ2 Regulates Human Trabecular Meshwork Cell Contractility via ERK and ROCK Pathways with Distinct Signaling Crosstalk Dependent on the Culture Substrate. Curr Eye Res 2022; 47:1165-1178. [PMID: 35481448 PMCID: PMC9782738 DOI: 10.1080/02713683.2022.2071943] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
PURPOSE Transforming growth factor-beta 2 (TGFβ2) is a major contributor to the pathologic changes occurring in human trabecular meshwork (HTM) cells in primary open-angle glaucoma (POAG). TGFβ2 activates extracellular-signal-regulated kinase (ERK) and Rho-associated kinase (ROCK) signaling pathways, both affecting HTM cell behavior. However, exactly how these signaling pathways converge to regulate HTM cell contractility is unclear. Here, we investigated the molecular mechanism underlying TGFβ2-induced pathologic HTM cell contractility, and the crosstalk between ERK and ROCK signaling pathways with different culture substrates. METHODS Hydrogels were engineered by mixing collagen type I, elastin-like polypeptide, and hyaluronic acid, each containing photoactive functional groups, followed by UV crosslinking. Primary HTM cells were seeded atop pre-formed hydrogels for comparisons with glass, or encapsulated within the hydrogels. Changes in actin cytoskeleton, extracellular matrix (ECM) production, phospho-myosin light chain (p-MLC) levels, and hydrogel contraction were assessed. RESULTS HTM cell morphology and filamentous (F)-actin organization were affected by the underlying culture substrates. TGFβ2 increased HTM cell contractility via ERK and ROCK signaling pathways by differentially regulating F-actin, α-smooth muscle actin (αSMA), fibronectin (FN), and p-MLC in HTM cells. ERK inhibition, even as short as 4 h, further increased TGFβ2-induced p-MLC in HTM cells on hydrogels, but not on glass. This translated into hypercontractility of HTM cell-laden hydrogels. ROCK inhibition had precisely the opposite effects and potently relaxed the TGFβ2-induced hydrogels. CONCLUSIONS Our data suggest that ERK signaling negatively regulates ROCK-mediated HTM cell contractility. These findings emphasize the critical importance of using tissue-mimetic ECM substrates for investigating HTM cell physiology and glaucomatous pathophysiology in vitro.
Collapse
Affiliation(s)
- Haiyan Li
- Department of Ophthalmology and Visual Sciences, SUNY Upstate Medical University, Syracuse, NY 13210, USA,Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA,BioInspired Institute, Syracuse University, Syracuse, NY 13244, USA
| | - Jessica L. Henty-Ridilla
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA,Department of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, NY 13210, USA,BioInspired Institute, Syracuse University, Syracuse, NY 13244, USA
| | - Audrey M. Bernstein
- Department of Ophthalmology and Visual Sciences, SUNY Upstate Medical University, Syracuse, NY 13210, USA,Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA,Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA,BioInspired Institute, Syracuse University, Syracuse, NY 13244, USA,Syracuse VA Medical Center, New York VA Health Care, Syracuse, NY 13210, USA
| | - Preethi S. Ganapathy
- Department of Ophthalmology and Visual Sciences, SUNY Upstate Medical University, Syracuse, NY 13210, USA,Department of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, NY 13210, USA,BioInspired Institute, Syracuse University, Syracuse, NY 13244, USA
| | - Samuel Herberg
- Department of Ophthalmology and Visual Sciences, SUNY Upstate Medical University, Syracuse, NY 13210, USA,Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA,Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA,BioInspired Institute, Syracuse University, Syracuse, NY 13244, USA,Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, NY 13244, USA,To whom correspondence should be addressed: Samuel Herberg, PhD, Assistant Professor; Department of Ophthalmology and Visual Sciences, SUNY Upstate Medical University, 505 Irving Avenue, Neuroscience Research Building Room 4609, Syracuse, NY 13210, USA,
| |
Collapse
|
16
|
Mzyk P, Hernandez H, Le T, Ramirez JR, McDowell CM. Toll-Like Receptor 4 Signaling in the Trabecular Meshwork. Front Cell Dev Biol 2022; 10:936115. [PMID: 35912101 PMCID: PMC9335276 DOI: 10.3389/fcell.2022.936115] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 06/21/2022] [Indexed: 12/04/2022] Open
Abstract
Primary open-angle glaucoma is one of the leading causes of blindness worldwide. With limited therapeutics targeting the pathogenesis at the trabecular meshwork (TM), there is a great need for identifying potential new targets. Recent evidence has implicated Toll-like receptor 4 (TLR4) and it is signaling pathway in augmenting the effects of transforming growth factor beta-2 (TGFβ2) and downstream extracellular matrix production. In this review, we examine the role of TLR4 signaling in the trabecular meshwork and the interplay between endogenous activators of TLR4 (damage-associated molecular patterns (DAMPs)), extracellular matrix (ECM), and the effect on intraocular pressure.
Collapse
Affiliation(s)
- Philip Mzyk
- University of Wisconsin-Madison, Madison, WI, United States
| | | | - Thanh Le
- University of Houston-Victoria, Victoria, TX, United States
| | | | | |
Collapse
|
17
|
Patil SV, Kasetti RB, Millar JC, Zode GS. A Novel Mouse Model of TGFβ2-Induced Ocular Hypertension Using Lentiviral Gene Delivery. Int J Mol Sci 2022; 23:6883. [PMID: 35805889 PMCID: PMC9266301 DOI: 10.3390/ijms23136883] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 06/13/2022] [Accepted: 06/17/2022] [Indexed: 01/27/2023] Open
Abstract
Glaucoma is a multifactorial disease leading to irreversible blindness. Primary open-angle glaucoma (POAG) is the most common form and is associated with the elevation of intraocular pressure (IOP). Reduced aqueous humor (AH) outflow due to trabecular meshwork (TM) dysfunction is responsible for IOP elevation in POAG. Extracellular matrix (ECM) accumulation, actin cytoskeletal reorganization, and stiffening of the TM are associated with increased outflow resistance. Transforming growth factor (TGF) β2, a profibrotic cytokine, is known to play an important role in the development of ocular hypertension (OHT) in POAG. An appropriate mouse model is critical in understanding the underlying molecular mechanism of TGFβ2-induced OHT. To achieve this, TM can be targeted with recombinant viral vectors to express a gene of interest. Lentiviruses (LV) are known for their tropism towards TM with stable transgene expression and low immunogenicity. We, therefore, developed a novel mouse model of IOP elevation using LV gene transfer of active human TGFβ2 in the TM. We developed an LV vector-encoding active hTGFβ2C226,228S under the control of a cytomegalovirus (CMV) promoter. Adult C57BL/6J mice were injected intravitreally with LV expressing null or hTGFβ2C226,228S. We observed a significant increase in IOP 3 weeks post-injection compared to control eyes with an average delta change of 3.3 mmHg. IOP stayed elevated up to 7 weeks post-injection, which correlated with a significant drop in the AH outflow facility (40.36%). Increased expression of active TGFβ2 was observed in both AH and anterior segment samples of injected mice. The morphological assessment of the mouse TM region via hematoxylin and eosin (H&E) staining and direct ophthalmoscopy examination revealed no visible signs of inflammation or other ocular abnormalities in the injected eyes. Furthermore, transduction of primary human TM cells with LV_hTGFβ2C226,228S exhibited alterations in actin cytoskeleton structures, including the formation of F-actin stress fibers and crossed-linked actin networks (CLANs), which are signature arrangements of actin cytoskeleton observed in the stiffer fibrotic-like TM. Our study demonstrated a mouse model of sustained IOP elevation via lentiviral gene delivery of active hTGFβ2C226,228S that induces TM dysfunction and outflow resistance.
Collapse
Affiliation(s)
| | | | | | - Gulab S. Zode
- Department of Pharmacology and Neuroscience, North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX 76107, USA; (S.V.P.); (R.B.K.); (J.C.M.)
| |
Collapse
|
18
|
Callaghan B, Lester K, Lane B, Fan X, Goljanek-Whysall K, Simpson DA, Sheridan C, Willoughby CE. Genome-wide transcriptome profiling of human trabecular meshwork cells treated with TGF-β2. Sci Rep 2022; 12:9564. [PMID: 35689009 PMCID: PMC9187693 DOI: 10.1038/s41598-022-13573-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 05/13/2022] [Indexed: 12/30/2022] Open
Abstract
Glaucoma is a complex neurodegenerative disease resulting in progressive optic neuropathy and is a leading cause of irreversible blindness worldwide. Primary open angle glaucoma (POAG) is the predominant form affecting 65.5 million people globally. Despite the prevalence of POAG and the identification of over 120 glaucoma related genetic loci, the underlaying molecular mechanisms are still poorly understood. The transforming growth factor beta (TGF-β) signalling pathway is implicated in the molecular pathology of POAG. To gain a better understanding of the role TGF-β2 plays in the glaucomatous changes to the molecular pathology in the trabecular meshwork, we employed RNA-Seq to delineate the TGF-β2 induced changes in the transcriptome of normal primary human trabecular meshwork cells (HTM). We identified a significant number of differentially expressed genes and associated pathways that contribute to the pathogenesis of POAG. The differentially expressed genes were predominantly enriched in ECM regulation, TGF-β signalling, proliferation/apoptosis, inflammation/wound healing, MAPK signalling, oxidative stress and RHO signalling. Canonical pathway analysis confirmed the enrichment of RhoA signalling, inflammatory-related processes, ECM and cytoskeletal organisation in HTM cells in response to TGF-β2. We also identified novel genes and pathways that were affected after TGF-β2 treatment in the HTM, suggesting additional pathways are activated, including Nrf2, PI3K-Akt, MAPK and HIPPO signalling pathways. The identification and characterisation of TGF-β2 dependent differentially expressed genes and pathways in HTM cells is essential to understand the patho-physiology of glaucoma and to develop new therapeutic agents.
Collapse
Affiliation(s)
- Breedge Callaghan
- Genomic Medicine Group, Biomedical Sciences Research Institute, Ulster University, Coleraine, BT52 1SA, Northern Ireland, UK
| | - Karen Lester
- Genomic Medicine Group, Biomedical Sciences Research Institute, Ulster University, Coleraine, BT52 1SA, Northern Ireland, UK.,Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, L7 8TX, UK
| | - Brian Lane
- Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, L7 8TX, UK.,Translational Radiobiology Group, Division of Cancer Sciences, University of Manchester, Manchester Academic Health Science Centre, Christie NHS Foundation Trust Hospital, Manchester, M20 4BX, UK
| | - Xiaochen Fan
- Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, L7 8TX, UK
| | - Katarzyna Goljanek-Whysall
- Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, L7 8TX, UK.,School of Medicine, Physiology, National University of Ireland Galway, Galway, H91 W5P7, Ireland
| | - David A Simpson
- The Wellcome - Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University, Belfast, UK
| | - Carl Sheridan
- Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, L7 8TX, UK
| | - Colin E Willoughby
- Genomic Medicine Group, Biomedical Sciences Research Institute, Ulster University, Coleraine, BT52 1SA, Northern Ireland, UK. .,Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, L7 8TX, UK.
| |
Collapse
|
19
|
Mavlyutov TA, Myrah JJ, Chauhan AK, Liu Y, McDowell CM. Fibronectin extra domain A (FN-EDA) causes glaucomatous trabecular meshwork, retina, and optic nerve damage in mice. Cell Biosci 2022; 12:72. [PMID: 35619185 PMCID: PMC9137085 DOI: 10.1186/s13578-022-00800-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 04/27/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Elevated intraocular pressure (IOP) is a major risk factor for the development and progression of primary open angle glaucoma and is due to trabecular meshwork (TM) damage. Here, we investigate the role of an endogenous Toll-like receptor 4 (TLR4) ligand, FN-EDA, in the development of glaucoma utilizing a transgenic mouse strain (B6.EDA+/+) that constitutively expresses only FN containing the EDA isoform. METHODS Eyes from C57BL6/J (wild-type), B6.EDA+/+ (constitutively active EDA), B6.EDA-/- (EDA null) mice were processed for electron microscopy and consecutive images of the entire length of the TM and Schlemm's canal (SC) from anterior to posterior were collected and montaged into a single image. ECM accumulation, basement membrane length, and size and number of giant vacuoles were quantified by ImageJ analysis. Tlr4 and Iba1 expression in the TM and ONH cells was conducted using RNAscope in situ hybridization and immunohistochemistry protocols. IOP was measured using a rebound tonometer, ON damage assessed by PPD stain, and RGC loss quantified in RBPMS labeled retina flat mounts. RESULTS Ultrastructure analyses show the TM of B6.EDA+/+ mice have significantly increased accumulation of ECM between TM beams with few empty spaces compared to C57BL/6 J mice (p < 0.05). SC basement membrane is thicker and more continuous in B6.EDA+/+ mice compared to C57BL/6 J. No significant structural differences are detected in the TM of EDA null mice. Tlr4 and Iba1 expression is increased in the TM of B6.EDA+/+ mice compared to C57BL/6 J eyes (p < 0.05). IOP is significantly higher in B6.EDA+/+ mice compared to C57BL/6 J eyes (p < 0.001), and significant ON damage (p < 0.001) and RGC loss (p < 0.05) detected at 1 year of age. Tlr4 mRNA is expressed in mouse ONH cells, and is present in ganglion cell axons, microglia, and astrocytes. There is a significant increase in the area occupied by Iba-1 positive microglia cells in the ONH of B6.EDA+/+ mice compared to C57BL/6 J control eyes (p < 0.01). CONCLUSIONS B6.EDA+/+ mice have increased ECM accumulation in the TM, elevated IOP, enhanced proinflammatory changes in the ONH, loss of RGCs, and ONH damage. These data suggest B6.EDA+/+ mice recapitulate many aspects of glaucomatous damage.
Collapse
Affiliation(s)
- Timur A. Mavlyutov
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI USA
| | - Justin J. Myrah
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI USA
| | - Anil K. Chauhan
- Department of Internal Medicine, Division of Hematology/Oncology, University of Iowa, Iowa City, IA USA
| | - Yang Liu
- Department of Pharmacology and Neuroscience, North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX USA
| | - Colleen M. McDowell
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI USA
| |
Collapse
|
20
|
Faralli JA, Filla MS, Peters DM. Integrin Crosstalk and Its Effect on the Biological Functions of the Trabecular Meshwork/Schlemm’s Canal. Front Cell Dev Biol 2022; 10:886702. [PMID: 35573686 PMCID: PMC9099149 DOI: 10.3389/fcell.2022.886702] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/05/2022] [Indexed: 11/20/2022] Open
Abstract
Integrins are a family of heterodimeric receptors composed of an α- and β-subunit that mediate cell-adhesion to a number of extracellular matrix (ECM) proteins in the Trabecular Meshwork/Schlemm’s canal (TM/SC) of the eye. Upon binding an ECM ligand, integrins transmit signals that activate a number of signaling pathways responsible for regulating actin-mediated processes (i.e phagocytosis, cell contractility, and fibronectin fibrillogenesis) that play an important role in regulating intraocular pressure (IOP) and may be involved in glaucoma. An important function of integrin-mediated signaling events is that the activity of one integrin can affect the activity of other integrins in the same cell. This creates a crosstalk that allows TM/SC cells to respond to changes in the ECM presumably induced by the mechanical forces on the TM/SC, aging and disease. In this review, we discuss how integrin crosstalk influences the function of the human TM/SC pathway. In particular, we will discuss how different crosstalk pathways mediated by either the αvβ3 or α4β1 integrins can play opposing roles in the TM when active and therefore act as on/off switches to modulate the cytoskeleton-mediated processes that regulate the outflow of aqueous humor through the TM/SC.
Collapse
Affiliation(s)
- Jennifer A. Faralli
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Mark S. Filla
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Donna M. Peters
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
- Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
- *Correspondence: Donna M. Peters,
| |
Collapse
|
21
|
Caban M, Owczarek K, Lewandowska U. The Role of Metalloproteinases and Their Tissue Inhibitors on Ocular Diseases: Focusing on Potential Mechanisms. Int J Mol Sci 2022; 23:ijms23084256. [PMID: 35457074 PMCID: PMC9026850 DOI: 10.3390/ijms23084256] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/04/2022] [Accepted: 04/09/2022] [Indexed: 02/01/2023] Open
Abstract
Eye diseases are associated with visual impairment, reduced quality of life, and may even lead to vision loss. The efficacy of available treatment of eye diseases is not satisfactory. The unique environment of the eye related to anatomical and physiological barriers and constraints limits the bioavailability of existing agents. In turn, complex ethiopathogenesis of ocular disorders that used drugs generally are non-disease specific and do not act causally. Therefore, there is a need for the development of a new therapeutic and preventive approach. It seems that matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs) have a significant role in the development and progression of eye diseases and could be used in the therapy of these disorders as pharmacological targets. MMPs and TIMPs play an important role in the angiogenesis, epithelial-mesenchymal transition, cell invasion, and migration, which occur in ocular diseases. In this review, we aim to describe the participation of MMPs and TIMPs in the eye diseases, such as age-related macular degeneration, cataract, diabetic retinopathy, dry eye syndrome, glaucoma, and ocular cancers, posterior capsule opacification focusing on potential mechanisms.
Collapse
|
22
|
Sugali CK, Rayana NP, Dai J, Peng M, Mao W. Age and sex affect TGFβ2-induced ocular hypertension in C57BL/6J mice. Exp Eye Res 2022; 219:109055. [DOI: 10.1016/j.exer.2022.109055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 03/21/2022] [Accepted: 03/22/2022] [Indexed: 11/24/2022]
|
23
|
miR-486-5p Restrains Extracellular Matrix Production and Oxidative Damage in Human Trabecular Meshwork Cells by Targeting TGF-β/SMAD2 Pathway. J Ophthalmol 2022; 2022:3584192. [PMID: 35251709 PMCID: PMC8890899 DOI: 10.1155/2022/3584192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 01/26/2022] [Indexed: 11/17/2022] Open
Abstract
Background Glaucoma is characterized by elevated intraocular pressure caused by aqueous outflow dysfunction. Trabecular meshwork plays a key role in controlling intraocular pressure by modulating aqueous outflow. This study investigated the protective effects of miR-486-5p in H2O2-stimulated human trabecular meshwork cells (TMCs). Methods TMCs were disposed with 300 μM H2O2 to establish oxidative damage models in vitro. miR-486-5p mimics and its controls were transfected into TMCs, and cell apoptosis and extracellular matrix production (ECM) genes were measured by flow cytometry, western blotting, and immunofluorescence staining. Activities of superoxide dismutase (SOD) and malondialdehyde (MDA) were also assayed. Online tools and luciferase reporter assays were used to uncover the relationship between miR-486-5p and the TGF-β/SMAD2 pathway. Results We found that H2O2-induced oxidative damage in TMCs and miR-486-5p was downregulated in H2O2-stimulated TMCs. Overexpression of miR-486-5p mitigated H2O2-induced oxidative damage by inhibiting apoptosis, reducing cleaved caspase-3/9 expression, reducing MDA levels, and increasing SOD levels as well as downregulating ECM genes. SMAD2 was demonstrated to be targeted by miR-486-5p, and miR-486-5p inhibited TGF-β/SMAD2 signaling in H2O2-stimulated TMCs. Additionally, SMAD2 was upregulated by H2O2, and SMAD2 upregulation abrogated the protective effects of miR-486-5p against H2O2-induced injury. Conclusion miR-486-5p restrains H2O2-induced oxidative damage in TMCs by targeting the TGF-β/SMAD2 pathway.
Collapse
|
24
|
Keller KE, Peters DM. Pathogenesis of glaucoma: Extracellular matrix dysfunction in the trabecular meshwork-A review. Clin Exp Ophthalmol 2022; 50:163-182. [PMID: 35037377 DOI: 10.1111/ceo.14027] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 11/19/2021] [Accepted: 11/26/2021] [Indexed: 12/11/2022]
Abstract
The trabecular meshwork regulates aqueous humour outflow from the anterior chamber of the eye. It does this by establishing a tunable outflow resistance, defined by the interplay between cells and their extracellular matrix (ECM) milieu, and the molecular interactions between ECM proteins. During normal tissue homeostasis, the ECM is remodelled and trabecular cell behaviour is modified, permitting increased aqueous fluid outflow to maintain intraocular pressure (IOP) within a relatively narrow physiological pressure. Dysfunction in the normal homeostatic process leads to increased outflow resistance and elevated IOP, which is a primary risk factor for glaucoma. This review delineates some of the changes in the ECM that lead to gross as well as some more subtle changes in the structure and function of the ECM, and their impact on trabecular cell behaviour. These changes are discussed in the context of outflow resistance and glaucoma.
Collapse
Affiliation(s)
- Kate E Keller
- Casey Eye Institute, Oregon Health &Science University, Portland, Oregon, USA
| | - Donna M Peters
- Department of Pathology & Laboratory Medicine, University of Wisconsin School of Medicine & Public Health, Madison, Wisconsin, USA
| |
Collapse
|
25
|
Hidalgo-Alvarez V, Dhowre HS, Kingston OA, Sheridan CM, Levis HJ. Biofabrication of Artificial Stem Cell Niches in the Anterior Ocular Segment. Bioengineering (Basel) 2021; 8:135. [PMID: 34677208 PMCID: PMC8533470 DOI: 10.3390/bioengineering8100135] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/27/2021] [Accepted: 09/27/2021] [Indexed: 11/16/2022] Open
Abstract
The anterior segment of the eye is a complex set of structures that collectively act to maintain the integrity of the globe and direct light towards the posteriorly located retina. The eye is exposed to numerous physical and environmental insults such as infection, UV radiation, physical or chemical injuries. Loss of transparency to the cornea or lens (cataract) and dysfunctional regulation of intra ocular pressure (glaucoma) are leading causes of worldwide blindness. Whilst traditional therapeutic approaches can improve vision, their effect often fails to control the multiple pathological events that lead to long-term vision loss. Regenerative medicine approaches in the eye have already had success with ocular stem cell therapy and ex vivo production of cornea and conjunctival tissue for transplant recovering patients' vision. However, advancements are required to increase the efficacy of these as well as develop other ocular cell therapies. One of the most important challenges that determines the success of regenerative approaches is the preservation of the stem cell properties during expansion culture in vitro. To achieve this, the environment must provide the physical, chemical and biological factors that ensure the maintenance of their undifferentiated state, as well as their proliferative capacity. This is likely to be accomplished by replicating the natural stem cell niche in vitro. Due to the complex nature of the cell microenvironment, the creation of such artificial niches requires the use of bioengineering techniques which can replicate the physico-chemical properties and the dynamic cell-extracellular matrix interactions that maintain the stem cell phenotype. This review discusses the progress made in the replication of stem cell niches from the anterior ocular segment by using bioengineering approaches and their therapeutic implications.
Collapse
Affiliation(s)
- Veronica Hidalgo-Alvarez
- Institute of Biological Chemistry, Biophysics and Bioengineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, UK
| | - Hala S. Dhowre
- Department of Eye and Vision Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool L7 8TX, UK; (H.S.D.); (O.A.K.)
| | - Olivia A. Kingston
- Department of Eye and Vision Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool L7 8TX, UK; (H.S.D.); (O.A.K.)
| | - Carl M. Sheridan
- Department of Eye and Vision Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool L7 8TX, UK; (H.S.D.); (O.A.K.)
| | - Hannah J. Levis
- Department of Eye and Vision Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool L7 8TX, UK; (H.S.D.); (O.A.K.)
| |
Collapse
|
26
|
Liao KC, Chuo V, Fagg WS, Modahl CM, Widen S, Garcia-Blanco MA. The RNA binding protein Quaking represses splicing of the Fibronectin EDA exon and downregulates the interferon response. Nucleic Acids Res 2021; 49:10034-10045. [PMID: 34428287 PMCID: PMC8464043 DOI: 10.1093/nar/gkab732] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 08/06/2021] [Accepted: 08/17/2021] [Indexed: 01/03/2023] Open
Abstract
Quaking (QKI) controls RNA metabolism in many biological processes including innate immunity, where its roles remain incompletely understood. To illuminate these roles, we performed genome scale transcriptome profiling in QKI knockout cells with or without poly(I:C) transfection, a double-stranded RNA analog that mimics viral infection. Analysis of RNA-sequencing data shows that QKI knockout upregulates genes induced by interferons, suggesting that QKI is an immune suppressor. Furthermore, differential splicing analysis shows that QKI primarily controls cassette exons, and among these events, we noted that QKI silences splicing of the extra domain A (EDA) exon in fibronectin (FN1) transcripts. QKI knockout results in elevated production and secretion of FN1-EDA protein, which is a known activator of interferons. Consistent with an upregulation of the interferon response in QKI knockout cells, our results show reduced production of dengue virus-2 and Japanese encephalitis virus in these cells. In conclusion, we demonstrate that QKI downregulates the interferon system and attenuates the antiviral state.
Collapse
Affiliation(s)
- Kuo-Chieh Liao
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Vanessa Chuo
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore
| | - W Samuel Fagg
- Transplant Division, Department of Surgery, University of Texas Medical Branch, Galveston, TX 77555, USA.,Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Cassandra M Modahl
- Department of Biological Sciences, National University of Singapore, Singapore 119077, Singapore
| | - Steven Widen
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Mariano A Garcia-Blanco
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore.,Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA.,Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX 77555, USA.,Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX 77555, USA
| |
Collapse
|
27
|
Rayana NP, Sugali CK, Dai J, Peng M, Liu S, Zhang Y, Wan J, Mao W. Using CRISPR Interference as a Therapeutic Approach to Treat TGFβ2-Induced Ocular Hypertension and Glaucoma. Invest Ophthalmol Vis Sci 2021; 62:7. [PMID: 34499703 PMCID: PMC8434756 DOI: 10.1167/iovs.62.12.7] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 08/19/2021] [Indexed: 12/26/2022] Open
Abstract
Purpose Primary open angle glaucoma (POAG) is a leading cause of blindness worldwide with elevated intraocular pressure (IOP) as the most important risk factor. POAG IOP elevation is due to pathological changes in the trabecular meshwork (TM). Elevated TGFβ2 contributes to these changes and increases IOP. We have shown that histone hyperacetylation is associated with TGFβ2 elevation in the TM. In this study, we determined if clustered regularly interspaced short palindromic repeats (CRISPR) interference could specifically deacetylate histones and decrease TGFβ2 in the TM. Methods We tested the efficiency of different promoters in driving KRAB-dCAS9 expression in human TM cells. We also screened and determined the optimal sgRNA sequence in the inhibition of TGFβ2. Chromatin immunoprecipitation-qPCR was used to determine the binding of KRAB-dCAS9. An adenovirus-mediated TGFβ2-induced ocular hypertension (OHT) mouse model was used to determine the effect of the CRISPR interference system in vivo. Results We found that the CRISPR interference system inhibited TGFβ2 expression in human TM cells, and properly designed sgRNA targeted the promoter of the TGFβ2 gene. Using sgRNA targeting the CMV promoter of the Ad5-CMV-TGFβ2 viral vector, we found that lentivirus-mediated KRAB-dCAS9 and sgRNA expression was able to inhibit Ad5-CMV-TGFβ2-induced OHT in C57BL/6J female and male mice eyes. This inhibition of OHT was associated with decreased levels of TGFβ2 and extracellular matrix proteins in the mouse eye. Conclusions Our results indicate that CRISPR interference is a useful tool for gene inhibition and may be a therapeutic approach to treat TGFβ2-induced OHT.
Collapse
Affiliation(s)
- Naga Pradeep Rayana
- Eugene & Marilyn Glick Eye Institute, Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, Indiana, United States
| | - Chenna Kesavulu Sugali
- Eugene & Marilyn Glick Eye Institute, Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, Indiana, United States
| | - Jiannong Dai
- Eugene & Marilyn Glick Eye Institute, Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, Indiana, United States
| | - Michael Peng
- Eugene & Marilyn Glick Eye Institute, Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, Indiana, United States
| | - Shaohui Liu
- Eugene & Marilyn Glick Eye Institute, Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, Indiana, United States
| | - Yucheng Zhang
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana, United States
| | - Jun Wan
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana, United States
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, Indiana, United States
- Department of BioHealth Informatics, Indiana University School of Informatics and Computing, Indiana University—Purdue University Indianapolis, Indianapolis, Indiana, United States
| | - Weiming Mao
- Eugene & Marilyn Glick Eye Institute, Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, Indiana, United States
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, United States
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, Indiana, United States
| |
Collapse
|
28
|
Hurley DJ, Irnaten M, O’Brien C. Metformin and Glaucoma-Review of Anti-Fibrotic Processes and Bioenergetics. Cells 2021; 10:cells10082131. [PMID: 34440899 PMCID: PMC8394782 DOI: 10.3390/cells10082131] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/13/2021] [Accepted: 08/16/2021] [Indexed: 02/06/2023] Open
Abstract
Glaucoma is the leading cause of irreversible blindness globally. With an aging population, disease incidence will rise with an enormous societal and economic burden. The treatment strategy revolves around targeting intraocular pressure, the principle modifiable risk factor, to slow progression of disease. However, there is a clear unmet clinical need to find a novel therapeutic approach that targets and halts the retinal ganglion cell (RGC) degeneration that occurs with fibrosis. RGCs are highly sensitive to metabolic fluctuations as a result of multiple stressors and thus their viability depends on healthy mitochondrial functioning. Metformin, known for its use in type 2 diabetes, has come to the forefront of medical research in multiple organ systems. Its use was recently associated with a 25% reduced risk of glaucoma in a large population study. Here, we discuss its application to glaucoma therapy, highlighting its effect on fibrotic signalling pathways, mitochondrial bioenergetics and NAD oxidation.
Collapse
Affiliation(s)
- Daire J. Hurley
- Department of Ophthalmology, Mater Misericordiae University Hospital, Eccles Street, D07 R2WY Dublin, Ireland; (M.I.); (C.O.)
- School of Medicine, University College Dublin, Belfield, D04 V1W8 Dublin, Ireland
- Correspondence:
| | - Mustapha Irnaten
- Department of Ophthalmology, Mater Misericordiae University Hospital, Eccles Street, D07 R2WY Dublin, Ireland; (M.I.); (C.O.)
| | - Colm O’Brien
- Department of Ophthalmology, Mater Misericordiae University Hospital, Eccles Street, D07 R2WY Dublin, Ireland; (M.I.); (C.O.)
- School of Medicine, University College Dublin, Belfield, D04 V1W8 Dublin, Ireland
| |
Collapse
|
29
|
Liu D, Deng Q, Lei X, Lu W, Zhao Q, Shen Y. Overexpression of BMP4 protects retinal ganglion cells in a mouse model of experimental glaucoma. Exp Eye Res 2021; 210:108728. [PMID: 34390734 DOI: 10.1016/j.exer.2021.108728] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 08/02/2021] [Accepted: 08/10/2021] [Indexed: 01/10/2023]
Abstract
PURPOSE Activation of bone morphogenetic protein (BMP) 4 signaling promotes the survival of retinal ganglion cell (RGC) after acute injury. Chordin-like 1 (CHRDL1) is an endogenous BMP antagonist. In this study, we researched whether CHRDL1 was involved in BMP4 signaling and regulation of RGC degeneration in a mouse model of glaucoma. METHODS Magnetic microbeads were intracameral injected to induce experimental glaucoma in a mouse model. A recombinant adeno-associated virus (rAAV) system was designed for overexpression of BMP4 or CHRDL1 in mouse retina. Immunohistochemistry and hematoxylin-eosin (HE) stains were performed to identify changes in retinal morphology. Electroretinogram (ERG) recordings were used to assess changes in visual function. RESULTS The mRNA expression levels of Bmp4 and its downstream BMPRIa, small mothers against decapentaplegic 1 (Smad1), were significantly upregulated in retinas with glaucoma. RGC survival was significantly enhanced in the beads + AAV-BMP4 group and significantly reduced in the beads + AAV-CHRDL1 group, compared with the beads + AAV-EGFP group. Similar results were observed in retinal explant culture in vitro. Consistent with these findings, the photopic negative response (PhNR)responses in ERG, which indicate RGC function, were restored in mice overexpressing BMP4, whereas a-wave and b-wave responses were not. Activation of CHRLD1 inhibited Smad1/5/8 phosphorylation and exacerbated RGC damage. The expression of Glial fibrillary acidic protein (GFAP) was decreased significantly in beads + AAV-BMP4 group. CONCLUSIONS BMP4 promoted RGC survival and visual function in an experimental glaucoma model. Activation of CHRDL1 exaggerated RGC degeneration by inhibiting the BMP4/Smad1/5/8 pathway. The mechanism of BMP4/Smad1/5/8 pathway may be related to the inhibition of glial cell activation. Our studies suggested that BMP4 and CHRLD1 might serve as therapeutic targets in glaucoma.
Collapse
Affiliation(s)
- Dongmei Liu
- Eye Institute, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, 430060, Hubei, China
| | - Qinqin Deng
- Eye Institute, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, 430060, Hubei, China
| | - Xinlan Lei
- Eye Institute, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, 430060, Hubei, China
| | - Wei Lu
- Eye Institute, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, 430060, Hubei, China
| | - Qingqing Zhao
- Eye Institute, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, 430060, Hubei, China
| | - Yin Shen
- Eye Institute, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, 430060, Hubei, China; Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, 430071, Hubei, China.
| |
Collapse
|
30
|
Igarashi N, Honjo M, Yamagishi R, Kurano M, Yatomi Y, Igarashi K, Kaburaki T, Aihara M. Crosstalk between transforming growth factor β-2 and Autotaxin in trabecular meshwork and different subtypes of glaucoma. J Biomed Sci 2021; 28:47. [PMID: 34140021 PMCID: PMC8212476 DOI: 10.1186/s12929-021-00745-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 06/11/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Elevated transforming growth factor (TGF)-β2 in aqueous humor (AH) has been suggested to contribute to trabecular meshwork (TM) fibrosis and intraocular pressure (IOP) regulation in primary open-angle glaucoma (POAG), but TGF-β2 is downregulated in secondary open-angle glaucoma (SOAG). Because autotaxin (ATX) is upregulated in SOAG, we investigated the relationships and trans-signaling interactions of these mediators. METHODS The level of ATX in AH was determined using a two-site immunoenzymetric assay, and TGF-β levels were measured using the Bio-Plex Pro TGF-β Assay. RNA scope was used to assess the expression of ATX and TGF-β2 in human's eye specimen. And in vitro studies were performed using hTM cells to explore if trans-signaling of TGF-β2 regulates ATX expressions. RESULTS TGF-β2/ATX ratio was significantly high in AH of control or POAG compared with SOAG, and negatively correlated with IOP. RNA scope revelated positive expressions of both TGF-β2 and ATX in ciliary body (CB) and TM in control, but ATX expressions was significantly enhanced in SOAG. In hTM cells, ATX expressions were regulated by TGF-β2 with concentration-dependent manner. In counter, ATX also induced TGF-β1, TGF-β2 and TGFBI upregulations and activation of the Smad-sensitive promoter, as well as upregulation of fibrotic markers, and these upregulation was significantly suppressed by both TGF-β and ATX inhibition. CONCLUSIONS Trans-signaling of TGF-β2 regulates ATX expressions and thereby induced upregulations of TGF-βs or fibrosis of hTM. TGF-β2 trans-signaling potently regulate ATX transcription and signaling in hTM cells, which may reflect different profile of these mediators in glaucoma subtypes. Trial Registration This prospective observational study was approved by the Institutional Review Board of the University of Tokyo and was registered with the University Hospital Medical Information Network Clinical Trials Registry of Japan (ID: UMIN000027137). All study procedures conformed to the Declaration of Helsinki. Written informed consent was obtained from each patient.
Collapse
Affiliation(s)
- Nozomi Igarashi
- Department of Ophthalmology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Megumi Honjo
- Department of Ophthalmology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
| | - Reiko Yamagishi
- Department of Ophthalmology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Makoto Kurano
- Department of Clinical Laboratory Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo Bunkyo-ku, Tokyo, 113-8655, Japan.,CREST, Japan Science and Technology Corporation (JST), Saitama, Japan
| | - Yutaka Yatomi
- Department of Clinical Laboratory Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo Bunkyo-ku, Tokyo, 113-8655, Japan.,CREST, Japan Science and Technology Corporation (JST), Saitama, Japan.,Department of Clinical Laboratory, The University of Tokyo Hospital, Tokyo, Japan
| | - Koji Igarashi
- Bioscience Division, Reagent Development Department, AIA Research Group, TOSOH Corporation, Kanagawa, Japan
| | - Toshikatsu Kaburaki
- Department of Ophthalmology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,Department of Ophthalmology, Jichi Medical University Saitama Medical Center, Saitama, Japan
| | - Makoto Aihara
- Department of Ophthalmology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
31
|
Yemanyi F, Baidouri H, Burns AR, Raghunathan V. Dexamethasone and Glucocorticoid-Induced Matrix Temporally Modulate Key Integrins, Caveolins, Contractility, and Stiffness in Human Trabecular Meshwork Cells. Invest Ophthalmol Vis Sci 2021; 61:16. [PMID: 33170205 PMCID: PMC7686803 DOI: 10.1167/iovs.61.13.16] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Purpose To determine the temporal effects of dexamethasone (DEX) and glucocorticoid-induced matrix (GIM) on integrins/integrin adhesomes, caveolins, cytoskeletal-related proteins, and stiffness in human trabecular meshwork (hTM) cells. Methods Primary hTM cells were plated on plastic dishes (TCP), treated with vehicle (Veh) or 100 nM DEX in 1% serum media for 1, 3, 5, and 7 day(s). Concurrently, hTM cells were also plated on vehicle control matrices (VehMs) and GIMs for similar time points; VehMs and GIMs had been generated from chronic cultures of Veh-/DEX-stimulated hTM cells and characterized biochemically. Subsets of cells prior to plating on TCP or VehMs / GIMs served as baseline. Protein expression of mechanoreceptors, cytoskeletal-related proteins, and elastic moduli of hTM cells were determined. Results Compared with Veh, DEX temporally overexpressed αV, β3, and β5 integrins from day 3 to day 7, and integrin linked kinase at day 7, in hTM cells. However, DEX decreased β1 integrin at day 1 and day 7, while increasing Cavin1 at day 7, in a time-independent manner. Further, DEX temporally upregulated α-smooth muscle actin(α-SMA) and RhoA at day 7 and day 5, respectively; while temporally downregulating Cdc42 at day 3 and day 7 in hTM cells. Conversely, GIM showed increased immunostaining of fibronectin extra-domain A and B isoforms. Compared with VehM, GIM temporally increased αV integrin, Cavin1, and RhoA from day 3 to day 7, at day 3 and day 7, and at day 5, respectively, in hTM cells. Further, GIM overexpressed α-SMA at day 3 and day 7, and stiffened hTM cells from day 1 to day 7, in a time-independent fashion. Conclusions Our data highlight crucial mechanoreceptors, integrin adhesomes, and actin-related proteins that may temporally sustain fibrotic phenotypes precipitated by DEX and/or GIM in hTM cells.
Collapse
Affiliation(s)
- Felix Yemanyi
- Department of Basic Sciences, University of Houston College of Optometry, Houston, Texas, United States
| | - Hasna Baidouri
- Department of Basic Sciences, University of Houston College of Optometry, Houston, Texas, United States
| | - Alan R Burns
- Department of Basic Sciences, University of Houston College of Optometry, Houston, Texas, United States
| | - VijayKrishna Raghunathan
- Department of Basic Sciences, University of Houston College of Optometry, Houston, Texas, United States.,Department of Biomedical Engineering, Cullen College of Engineering, University of Houston, Houston, Texas, United States
| |
Collapse
|
32
|
Yemanyi F, Raghunathan V. Lysophosphatidic Acid and IL-6 Trans-signaling Interact via YAP/TAZ and STAT3 Signaling Pathways in Human Trabecular Meshwork Cells. Invest Ophthalmol Vis Sci 2021; 61:29. [PMID: 33216119 PMCID: PMC7683860 DOI: 10.1167/iovs.61.13.29] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Purpose Lysophosphatidic acid (LPA) and soluble interleukin-6 receptor (sIL6R) are elevated in primary open angle glaucoma (POAG). LPA and IL6 modulate in response to biomechanical stimuli and converge on similar fibrotic phenotypes. Thus, we determined whether LPA and IL6 trans-signaling (IL6/sIL6R) interact via Yes-associated protein (YAP)/Transcriptional coactivator with a PDZ-binding motif (TAZ) or Signal transducer and activator of transcription 3 (STAT3) pathways in human trabecular meshwork (hTM) cells. Methods Confluent primary hTM cells were serum starved for 24 hours, and treated with vehicle, LPA (20 µM), IL6 (100 ng/mL)/sIL6R (200 ng/mL), or both (LPA + IL6/sIL6R) for 24 hours, with or without a YAP inhibitor (verteporfin; 2 µM) or STAT3 inhibitor (2 µM). Expression of key receptors and ligands, signaling mediators, actomyosin machinery, cell contractility, and extracellular matrix (ECM) targets of both signaling pathways was determined by immunocytochemistry, RT-qPCR, and Western blotting. Results LPA and IL6 trans-signaling coupling overexpressed/activated receptors and ligands, glycoprotein-130, IL6, and autotaxin; signaling mediators, YAP, TAZ, Pan-TEAD, and phosphorylated STAT3 (pSTAT3); actomyosin and contractile machinery components, myosin light chain 2 (MLC2), phosphorylated MLC2, rho-associated protein kinase 1, filamentous actin, and α-smooth muscle actin; and fibrotic ECM proteins, collagen I and IV, fibronectin, laminin, cysteine-rich angiogenic inducer 61, and connective tissue growth factor in hTM cells; mostly beyond LPA or IL6 trans-signaling alone. Verteporfin inhibited YAP, TAZ, and pSTAT3, with concomitant abrogation of aforementioned fibrotic targets; the STAT3 inhibitor was only partially effective. Conclusions These data suggest synergistic crosstalk between LPA and IL6 trans-signaling, mediated by YAP, TAZ, and pSTAT3. By completely inhibiting these mediators, verteporfin may be more efficacious in ameliorating LPA and/or IL6 trans-signaling–induced ocular hypertensive phenotypes in hTM cells.
Collapse
Affiliation(s)
- Felix Yemanyi
- College of Optometry, University of Houston, Houston, Texas, United States
| | | |
Collapse
|
33
|
Liu H, Xiu Y, Zhang Q, Xu Y, Wan Q, Tao L. Silencing microRNA‑29b‑3p expression protects human trabecular meshwork cells against oxidative injury via upregulation of RNF138 to activate the ERK pathway. Int J Mol Med 2021; 47:101. [PMID: 33907817 PMCID: PMC8054636 DOI: 10.3892/ijmm.2021.4934] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 02/26/2021] [Indexed: 12/25/2022] Open
Abstract
In recent years, the potential involvement of numerous microRNAs (miRNAs) in glaucoma has been widely reported. However, the role of microRNA-29b-3p (miR-29b-3p) in the pathogenesis of glaucoma remains unknown. This study aimed to explore the biological role and regulatory mechanism of miR-29b-3p in the oxidative injury of human trabecular meshwork (HTM) cells induced by H2O2 stimulation. By establishing a glaucoma rat model, the effects of miR-29-3p in glaucoma were detected in vivo. Our findings demonstrated that miR-29b-3p was upregulated in a glaucoma model and antagomiR-29b-3p alleviated the symptoms of glaucoma. In vitro assays revealed that miR-29b-3p expression was significantly upregulated in HTM cells with H2O2 stimulation. Knockdown of miR-29b-3p alleviated H2O2-induced oxidative injury in HTM cells by promoting cell viability, and inhibiting cell apoptosis, reactive oxygen species generation and extracellular matrix production. Subsequently, it was found that E3 ubiquitin-protein ligase RNF138 (RNF138) was a downstream target of miR-29b-3p. RNF138 expression was downregulated in HTM cells with H2O2 stimulation. RNF138 knockdown significantly rescued the protective effect of miR-29b-3p inhibitor on HTM cells under oxidative injury. Additionally, miR-29b-3p silencing activated the ERK pathway via upregulating RNF138. Collectively, silencing of miR-29b-3p protected HTM cells against oxidative injury by upregulation of RNF138 to activate the ERK pathway.
Collapse
Affiliation(s)
- Heting Liu
- Department of Ophthalmology, The Second Hospital of Anhui Medical University, Hefei, Anhui 230601, P.R. China
| | - Yanghui Xiu
- Eye Institute and Xiamen Eye Center, Affiliated Xiamen University, Xiamen, Fujian 361000, P.R. China
| | - Qing Zhang
- Department of Ophthalmology, The Second Hospital of Anhui Medical University, Hefei, Anhui 230601, P.R. China
| | - Yuxin Xu
- Department of Ophthalmology, The Second Hospital of Anhui Medical University, Hefei, Anhui 230601, P.R. China
| | - Qianqian Wan
- Department of Ophthalmology, The Second Hospital of Anhui Medical University, Hefei, Anhui 230601, P.R. China
| | - Liming Tao
- Department of Ophthalmology, The Second Hospital of Anhui Medical University, Hefei, Anhui 230601, P.R. China
| |
Collapse
|
34
|
Patel PD, Chen YL, Kasetti RB, Maddineni P, Mayhew W, Millar JC, Ellis DZ, Sonkusare SK, Zode GS. Impaired TRPV4-eNOS signaling in trabecular meshwork elevates intraocular pressure in glaucoma. Proc Natl Acad Sci U S A 2021; 118:e2022461118. [PMID: 33853948 PMCID: PMC8072326 DOI: 10.1073/pnas.2022461118] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Primary Open Angle Glaucoma (POAG) is the most common form of glaucoma that leads to irreversible vision loss. Dysfunction of trabecular meshwork (TM) tissue, a major regulator of aqueous humor (AH) outflow resistance, is associated with intraocular pressure (IOP) elevation in POAG. However, the underlying pathological mechanisms of TM dysfunction in POAG remain elusive. In this regard, transient receptor potential vanilloid 4 (TRPV4) cation channels are known to be important Ca2+ entry pathways in multiple cell types. Here, we provide direct evidence supporting Ca2+ entry through TRPV4 channels in human TM cells and show that TRPV4 channels in TM cells can be activated by increased fluid flow/shear stress. TM-specific TRPV4 channel knockout in mice elevated IOP, supporting a crucial role for TRPV4 channels in IOP regulation. Pharmacological activation of TRPV4 channels in mouse eyes also improved AH outflow facility and lowered IOP. Importantly, TRPV4 channels activated endothelial nitric oxide synthase (eNOS) in TM cells, and loss of eNOS abrogated TRPV4-induced lowering of IOP. Remarkably, TRPV4-eNOS signaling was significantly more pronounced in TM cells compared to Schlemm's canal cells. Furthermore, glaucomatous human TM cells show impaired activity of TRPV4 channels and disrupted TRPV4-eNOS signaling. Flow/shear stress activation of TRPV4 channels and subsequent NO release were also impaired in glaucomatous primary human TM cells. Together, our studies demonstrate a central role for TRPV4-eNOS signaling in IOP regulation. Our results also provide evidence that impaired TRPV4 channel activity in TM cells contributes to TM dysfunction and elevated IOP in glaucoma.
Collapse
Affiliation(s)
- Pinkal D Patel
- Department of Pharmacology and Neuroscience, North Texas Eye Research Institute, University of North Texas Health Science Center at Fort Worth, Fort Worth, TX 76107
| | - Yen-Lin Chen
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA 22908
| | - Ramesh B Kasetti
- Department of Pharmacology and Neuroscience, North Texas Eye Research Institute, University of North Texas Health Science Center at Fort Worth, Fort Worth, TX 76107
| | - Prabhavathi Maddineni
- Department of Pharmacology and Neuroscience, North Texas Eye Research Institute, University of North Texas Health Science Center at Fort Worth, Fort Worth, TX 76107
| | - William Mayhew
- Department of Pharmacology and Neuroscience, North Texas Eye Research Institute, University of North Texas Health Science Center at Fort Worth, Fort Worth, TX 76107
| | - J Cameron Millar
- Department of Pharmacology and Neuroscience, North Texas Eye Research Institute, University of North Texas Health Science Center at Fort Worth, Fort Worth, TX 76107
| | - Dorette Z Ellis
- Department of Pharmaceutical Sciences, North Texas Eye Research Institute, University of North Texas Health Science Center at Fort Worth, Fort Worth, TX 76107
| | - Swapnil K Sonkusare
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA 22908;
- Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA 22908
| | - Gulab S Zode
- Department of Pharmacology and Neuroscience, North Texas Eye Research Institute, University of North Texas Health Science Center at Fort Worth, Fort Worth, TX 76107;
| |
Collapse
|
35
|
The Canonical Wnt Signaling Pathway Inhibits the Glucocorticoid Receptor Signaling Pathway in the Trabecular Meshwork. THE AMERICAN JOURNAL OF PATHOLOGY 2021; 191:1020-1035. [PMID: 33705750 DOI: 10.1016/j.ajpath.2021.02.018] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 02/02/2021] [Accepted: 02/22/2021] [Indexed: 01/18/2023]
Abstract
Glucocorticoid-induced glaucoma is a secondary open-angle glaucoma. About 40% of the general population may develop elevated intraocular pressure on prolonged glucocorticoid treatment secondary to damages in the trabecular meshwork (TM), a tissue that regulates intraocular pressure. Therefore, identifying the key molecules responsible for glucocorticoid-induced ocular hypertension is crucial. In this study, Dickkopf-related protein 1 (Dkk1), a canonical Wnt signaling inhibitor, was found to be elevated in the aqueous humor and TM of glaucoma patients. At the signaling level, Dkk1 enhanced glucocorticoid receptor (GR) signaling, whereas Dkk1 knockdown or Wnt signaling activators decreased GR signaling in human TM cells as indicated by luciferase assays. Similarly, activation of the GR signaling inhibited Wnt signaling. At the protein level, glucocorticoid-induced extracellular matrix was inhibited by Wnt activation using Wnt activators or Dkk1 knockdown in primary human TM cells. In contrast, inhibition of canonical Wnt signaling by β-catenin knockdown increased glucocorticoid-induced extracellular matrix proteins. At the physiological level, adenovirus-mediated Wnt3a expression decreased glucocorticoid-induced ocular hypertension in mouse eyes. In summary, Wnt and GR signaling inhibit each other in the TM, and canonical Wnt signaling activators may prevent the adverse effect of glucocorticoids in the eye.
Collapse
|
36
|
Rong R, Wang M, You M, Li H, Xia X, Ji D. Pathogenesis and prospects for therapeutic clinical application of noncoding RNAs in glaucoma: Systematic perspectives. J Cell Physiol 2021; 236:7097-7116. [PMID: 33634475 PMCID: PMC8451868 DOI: 10.1002/jcp.30347] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 01/24/2021] [Accepted: 02/16/2021] [Indexed: 12/18/2022]
Abstract
Noncoding ribonucleic acids (ncRNAs) are an increasingly studied class of RNA molecules with extensive biological activities, including important roles in human development, health, and disease. Glaucoma is a neurodegenerative disease of the retina, and one of the leading causes of blindness worldwide. However, the specific roles of ncRNAs in the development and progression of glaucoma are unclear, and related reports are fragmented. An in‐depth understanding of ncRNAs participating in the pathogenesis and progression of glaucoma would be helpful for opening up new avenues to facilitate the early diagnosis and clinical treatment. Therefore, in this review, we aimed to discuss the current research progress, the potentialfuture clinical applications and the research limitations of three critical classes of ncRNAs in glaucoma, namely microRNAs, long noncoding RNAs, and circular RNAs.
Collapse
Affiliation(s)
- Rong Rong
- Eye Center of Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Ophthalmology, Changsha, Hunan, China
| | - Mengxiao Wang
- Eye Center of Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Ophthalmology, Changsha, Hunan, China
| | - Mengling You
- Eye Center of Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Ophthalmology, Changsha, Hunan, China
| | - Haibo Li
- Eye Center of Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Ophthalmology, Changsha, Hunan, China
| | - Xiaobo Xia
- Eye Center of Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Ophthalmology, Changsha, Hunan, China
| | - Dan Ji
- Eye Center of Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Ophthalmology, Changsha, Hunan, China
| |
Collapse
|
37
|
Yemanyi F, Vranka J, Raghunathan VK. Crosslinked Extracellular Matrix Stiffens Human Trabecular Meshwork Cells Via Dysregulating β-catenin and YAP/TAZ Signaling Pathways. Invest Ophthalmol Vis Sci 2021; 61:41. [PMID: 32832971 PMCID: PMC7452853 DOI: 10.1167/iovs.61.10.41] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Purpose The purpose of this study was to determine whether genipin-induced crosslinked cell-derived matrix (XCDM) precipitates fibrotic phenotypes in human trabecular meshwork (hTM) cells by dysregulating β-catenin and Yes-associated protein (YAP)/ transcriptional coactivator with PDZ-binding motif (TAZ) signaling pathways. Methods Cell-derived matrices were treated with control or genipin for 5 hours to obtain respective uncrosslinked (CDM) and XCDMs and characterized. hTM cells were seeded on these matrices with/without Wnt pathway modulators in serum-free media for 24 hours. Elastic modulus, gene, and protein (whole cell and subcellular fractions) expressions of signaling mediators and targets of Wnt/β-catenin and YAP/TAZ pathways were determined. Results At the highest genipin concentration (10% XCDM), XCDM had increased immunostaining of N-ε(γ-glutamyl)-lysine crosslinks, appeared morphologically fused, and was stiffer (5.3-fold, P < 0.001). On 10% XCDM, hTM cells were 7.8-fold (P < 0.001) stiffer, total β-catenin was unchanged, pβ-catenin was elevated, and pGSK3β was suppressed. Although 10% XCDM had no effect on cytoplasmic β-catenin levels, it reduced nuclear β-catenin, cadherin 11, and key Wnt target genes/proteins. The 10% XCDM increased total TAZ, decreased pTAZ, and increased cytoplasmic TAZ levels in hTM cells. The 10% XCDM increased total YAP, reduced nuclear YAP levels, and critical YAP/TAZ target genes/proteins. Wnt activation rescued hTM cells from 10% XCDM-induced stiffening associated with increased nuclear β-catenin. Conclusions Increased cytoplasmic TAZ may inhibit β-catenin from its nuclear shuttling or regulating cadherin 11 important for aqueous homeostasis. Elevated cytoplasmic TAZ may inhibit YAP's probable homeostatic function in the nucleus. Together, TAZ's cytoplasmic localization may be an important downstream event of how increased TM extracellular matrix (ECM) crosslinking may cause increased stiffness and ocular hypertension in vivo. However, Wnt pathway activation may ameliorate ocular hypertensive phenotypes induced by crosslinked ECM.
Collapse
Affiliation(s)
- Felix Yemanyi
- Department of Basic Sciences, College of Optometry, University of Houston, Houston, TX, United States
| | - Janice Vranka
- Casey Eye Institute, Oregon Health and Science University, Portland, OR, United States
| | - Vijay Krishna Raghunathan
- Department of Basic Sciences, College of Optometry, University of Houston, Houston, TX, United States.,Department of Biomedical Engineering, Cullen College of Engineering, University of Houston, Houston, TX, United States
| |
Collapse
|
38
|
Yemanyi F, Vranka J, Raghunathan VK. Glucocorticoid-induced cell-derived matrix modulates transforming growth factor β2 signaling in human trabecular meshwork cells. Sci Rep 2020; 10:15641. [PMID: 32973273 PMCID: PMC7518434 DOI: 10.1038/s41598-020-72779-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 07/28/2020] [Indexed: 01/11/2023] Open
Abstract
Aberrant remodeling of trabecular meshwork (TM) extracellular matrix (ECM) may induce ocular hypertensive phenotypes in human TM (hTM) cells to cause ocular hypertension, via a yet unknown mechanism. Here, we show that, in the absence of exogenous transforming growth factor-beta2 (TGFβ2), compared with control matrices (VehMs), glucocorticoid-induced cell-derived matrices (GIMs) trigger non-Smad TGFβ2 signaling in hTM cells, correlated with overexpression/activity of structural ECM genes (fibronectin, collagen IV, collagen VI, myocilin), matricellular genes (connective tissue growth factor [CTGF], secreted protein, acidic and rich in cysteine), crosslinking genes/enzymes (lysyl oxidase, lysyl oxidase-like 2–4, tissue transglutaminase-2), and ECM turnover genes/enzymes (matrix metalloproteinases-MMP2,14 and their inhibitors-TIMP2). However, in the presence of exogenous TGFβ2, VehMs and GIMs activate Smad and non-Smad TGFβ2 signaling in hTM cells, associated with overexpression of α-smooth muscle actin (α-SMA), and differential upregulation of aforementioned ECM genes/proteins with new ones emerging (collagen-I, thrombospondin-I, plasminogen activator inhibitor, MMP1, 9, ADAMTS4, TIMP1); with GIM-TGFβ2-induced changes being mostly more pronounced. This suggests dual glaucomatous insults potentiate profibrotic signaling/phenotypes. Lastly, we demonstrate type I TGFβ receptor kinase inhibition abrogates VehM-/GIM- and/or TGFβ2-induced upregulation of α-SMA and CTGF. Collectively, pathological TM microenvironments are sufficient to elicit adverse cellular responses that may be ameliorated by targeting TGFβ2 pathway.
Collapse
Affiliation(s)
- Felix Yemanyi
- Department of Basic Sciences, College of Optometry, University of Houston, Houston, TX, USA
| | - Janice Vranka
- Casey Eye Institute, Oregon Health and Science University, Portland, OR, USA
| | - Vijay Krishna Raghunathan
- Department of Basic Sciences, College of Optometry, University of Houston, Houston, TX, USA. .,Department of Biomedical Engineering, Cullen College of Engineering, University of Houston, Houston, TX, USA.
| |
Collapse
|
39
|
Faralli JA, Filla MS, McDowell CM, Peters DM. Disruption of fibronectin fibrillogenesis affects intraocular pressure (IOP) in BALB/cJ mice. PLoS One 2020; 15:e0237932. [PMID: 32822410 PMCID: PMC7444551 DOI: 10.1371/journal.pone.0237932] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 08/05/2020] [Indexed: 12/31/2022] Open
Abstract
Increased deposition of fibronectin fibrils containing EDA+fibronectin by TGFβ2 is thought to be involved in the reduction of aqueous humor outflow across the trabecular meshwork (TM) of the eye and the elevation in intraocular pressure (IOP) observed in primary open angle glaucoma (POAG). Using a fibronectin-binding peptide called FUD that can disrupt fibronectin fibrillogenesis, we examined if disrupting fibronectin fibrillogenesis would affect IOP in the TGFβ2 BALB/cJ mouse model of ocular hypertension. BALB/cJ mice that had been intravitreally injected with an adenovirus (Ad5) expressing a bioactive TGFβ2226/228 showed a significant increase in IOP after 2 weeks. When 1μM FUD was injected intracamerally into mice 2 weeks post Ad5-TGFβ2 injection, FUD significantly reduced IOP after 2 days. Neither mutated FUD (mFUD) nor PBS had any effect on IOP. Four days after FUD was injected, IOP returned to pre-FUD injection levels. In the absence of TGFβ2, intracameral injection of FUD had no effect on IOP. Western blotting of mouse anterior segments expressing TGFβ2 showed that FUD decreased fibronectin levels 2 days after intracameral injection (p<0.05) but not 7 days compared to eyes injected with PBS. mFUD injection had no significant effect on fibronectin levels at any time point. Immunofluorescence microscopy studies in human TM (HTM) cells showed that treatment with 2ng/ml TGFβ2 increased the amount of EDA+ and EDB+ fibronectin incorporated into fibrils and 2μM FUD decreased both EDA+ and EDB+ fibronectin in fibrils. An on-cell western assay validated this and showed that FUD caused a 67% reduction in deoxycholate insoluble fibronectin fibrils in the presence of TGFβ2. FUD also caused a 43% reduction in fibronectin fibrillogenesis in the absence of TGFβ2 while mFUD had no effect. These studies suggest that targeting the assembly of fibronectin fibrillogenesis may represent a way to control IOP.
Collapse
Affiliation(s)
- Jennifer A. Faralli
- Department of Pathology and Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Mark S. Filla
- Department of Pathology and Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Colleen M. McDowell
- Department of Ophthalmology and Visual Sciences, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Donna M. Peters
- Department of Pathology and Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, United States of America
- Department of Ophthalmology and Visual Sciences, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
40
|
Osmond MJ, Krebs MD, Pantcheva MB. Human trabecular meshwork cell behavior is influenced by collagen scaffold pore architecture and glycosaminoglycan composition. Biotechnol Bioeng 2020; 117:3150-3159. [PMID: 32589791 DOI: 10.1002/bit.27477] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 05/13/2020] [Accepted: 06/24/2020] [Indexed: 02/06/2023]
Abstract
Glaucoma is a degenerative eye disease in which damage to the optic nerve leads to a characteristic loss of vision. The primary risk factor for glaucoma is an increased intraocular pressure that is caused by an imbalance of aqueous humor generation and subsequent drainage through the trabecular meshwork (TM) drainage system. The small size, donor tissue limitations, and high complexity of the TM make it difficult to research the relationship between the TM cells and their immediate environment. Thus, a biomaterial-based approach may be more appropriate for research manipulations and in vitro drug development platforms. In this work, human TM (hTM) cells were cultured on various collagen scaffolds containing different glycosaminoglycans (GAGs) and different pore architectures to better understand how hTM cells respond to changes in their extracellular environment. Cellular response was measured by quantifying cellular proliferation and expression of an important extracellular matrix protein, fibronectin. The pore architecture of the scaffolds was altered using freeze-casting technique to make both large and small pores that were aligned or with a non-aligned random structure. The composition of the scaffolds was altered with the addition of chondroitin sulfate and/or hyaluronic acid. It was found that the hTM cells grown on large pore scaffolds proliferate more than those grown on small pores. There was an increase in the fibronectin expression with the incorporation of GAGs, and its morphology was changed by the underlying pore architecture. This work will help provide an insight into the behavior of hTM cells when introducing changes in their microenvironment.
Collapse
Affiliation(s)
- Matthew J Osmond
- Department of Chemical & Biological Engineering, Colorado School of Mines, Golden, Colorado
| | - Melissa D Krebs
- Department of Chemical & Biological Engineering, Colorado School of Mines, Golden, Colorado
| | - Mina B Pantcheva
- Department of Ophthalmology, University of Colorado School of Medicine, Aurora, Colorado
| |
Collapse
|
41
|
Patel PD, Kasetti RB, Sonkusare SK, Zode GS. Technical brief: Direct, real-time electrochemical measurement of nitric oxide in ex vivo cultured human corneoscleral segments. Mol Vis 2020; 26:434-444. [PMID: 32565671 PMCID: PMC7300198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 06/08/2020] [Indexed: 11/30/2022] Open
Abstract
Chronic elevation of intraocular pressure (IOP) is a major risk factor associated with primary open angle glaucoma (POAG), a common form of progressive optic neuropathy that can lead to debilitating loss of vision. Recent studies have identified the role of nitric oxide (NO) in the regulation of IOP, and as a result, several therapeutic ventures are currently targeting enhancement of NO signaling in the eye. Although a low level of NO is important for ocular physiology, excess exogenous NO can be detrimental. Therefore, the ability to directly measure NO in real time is essential for determining the role of NO signaling in glaucomatous pathophysiology. Historically, NO activity in human tissues has been determined by indirect methods that measure levels of NO metabolites (nitrate/nitrite) or downstream components of the NO signaling pathway (cGMP). In this proof-of-concept work, we assess the feasibility of direct, real-time measurement of NO in ex vivo cultured human corneoscleral segments using electrochemistry. A NO-selective electrode (ISO-NOPF200) paired to a free radical analyzer (TBR1025) was placed on the trabecular meshwork (TM) rim for real-time measurement of NO released from cells. Exogenous NO produced within cells was measured after treatment of corneoscleral segments with esterase-dependent NO-donor O2-acetoxymethylated diazeniumdiolate (DETA-NONOate/AM; 20 μM) and latanoprostene bunod (5-20 μM). A fluorescent NO-binding dye DAF-FM (4-Amino-5-methylamino- 2',7'-difluorofluorescein diacetate) was used for validation. A linear relationship was observed between the electric currents measured by the NO-sensing electrode and the NO standard concentrations, establishing a robust calibration curve. Treatment of ex vivo cultured human donor corneoscleral segments with DETA-NONOate/AM and latanoprostene bunod led to a significant increase in NO production compared with vehicle-treated controls, as detected electrochemically. Furthermore, the DAF-FM fluorescence intensity was higher in outflow pathway tissues of corneoscleral segments treated with DETA-NONOate/AM and latanoprostene bunod compared with vehicle-treated controls. In conclusion, these results demonstrate that NO-sensing electrodes can be used to directly measure NO levels in real time from the tissues of the outflow pathway.
Collapse
Affiliation(s)
- Pinkal D. Patel
- Department of Pharmacology and Neuroscience, North Texas Eye Research Institute, University of North Texas Health Science Center at Fort Worth, TX
| | - Ramesh B. Kasetti
- Department of Pharmacology and Neuroscience, North Texas Eye Research Institute, University of North Texas Health Science Center at Fort Worth, TX
| | - Swapnil K. Sonkusare
- Molecular Physiology and Biological Physics, University of Virginia - School of Medicine, Charlottesville, VA
| | - Gulab S. Zode
- Department of Pharmacology and Neuroscience, North Texas Eye Research Institute, University of North Texas Health Science Center at Fort Worth, TX
| |
Collapse
|
42
|
van Zyl T, Yan W, McAdams A, Peng YR, Shekhar K, Regev A, Juric D, Sanes JR. Cell atlas of aqueous humor outflow pathways in eyes of humans and four model species provides insight into glaucoma pathogenesis. Proc Natl Acad Sci U S A 2020; 117:10339-10349. [PMID: 32341164 PMCID: PMC7229661 DOI: 10.1073/pnas.2001250117] [Citation(s) in RCA: 119] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Increased intraocular pressure (IOP) represents a major risk factor for glaucoma, a prevalent eye disease characterized by death of retinal ganglion cells; lowering IOP is the only proven treatment strategy to delay disease progression. The main determinant of IOP is the equilibrium between production and drainage of aqueous humor, with compromised drainage generally viewed as the primary contributor to dangerous IOP elevations. Drainage occurs through two pathways in the anterior segment of the eye called conventional and uveoscleral. To gain insights into the cell types that comprise these pathways, we used high-throughput single-cell RNA sequencing (scRNAseq). From ∼24,000 single-cell transcriptomes, we identified 19 cell types with molecular markers for each and used histological methods to localize each type. We then performed similar analyses on four organisms used for experimental studies of IOP dynamics and glaucoma: cynomolgus macaque (Macaca fascicularis), rhesus macaque (Macaca mulatta), pig (Sus scrofa), and mouse (Mus musculus). Many human cell types had counterparts in these models, but differences in cell types and gene expression were evident. Finally, we identified the cell types that express genes implicated in glaucoma in all five species. Together, our results provide foundations for investigating the pathogenesis of glaucoma and for using model systems to assess mechanisms and potential interventions.
Collapse
Affiliation(s)
- Tavé van Zyl
- Department of Ophthalmology, Harvard Medical School and Massachusetts Eye and Ear, Boston, MA 02114;
- Center for Brain Science, Harvard University, Cambridge, MA 02138
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138
| | - Wenjun Yan
- Center for Brain Science, Harvard University, Cambridge, MA 02138
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138
| | - Alexi McAdams
- Department of Ophthalmology, Harvard Medical School and Massachusetts Eye and Ear, Boston, MA 02114
- Center for Brain Science, Harvard University, Cambridge, MA 02138
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138
| | - Yi-Rong Peng
- Center for Brain Science, Harvard University, Cambridge, MA 02138
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138
| | - Karthik Shekhar
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02142
- Koch Institute of Integrative Cancer Research, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142
| | - Aviv Regev
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02142
- Koch Institute of Integrative Cancer Research, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142
- Klarman Cell Observatory, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142
| | - Dejan Juric
- Department of Medicine, Harvard Medical School and Massachusetts General Hospital Cancer Center, Boston, MA 02114
| | - Joshua R Sanes
- Center for Brain Science, Harvard University, Cambridge, MA 02138;
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138
| |
Collapse
|
43
|
Pang IH, Clark AF. Inducible rodent models of glaucoma. Prog Retin Eye Res 2020; 75:100799. [PMID: 31557521 PMCID: PMC7085984 DOI: 10.1016/j.preteyeres.2019.100799] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 09/16/2019] [Accepted: 09/18/2019] [Indexed: 11/23/2022]
Abstract
Glaucoma is one of the leading causes of vision impairment worldwide. In order to further understand the molecular pathobiology of this disease and to develop better therapies, clinically relevant animal models are necessary. In recent years, both the rat and mouse have become popular models in glaucoma research. Key reasons are: many important biological similarities shared among rodent eyes and the human eye; development of improved methods to induce glaucoma and to evaluate glaucomatous damage; availability of genetic tools in the mouse; as well as the relatively low cost of rodent studies. Commonly studied rat and mouse glaucoma models include intraocular pressure (IOP)-dependent and pressure-independent models. The pressure-dependent models address the most important risk factor of elevated IOP, whereas the pressure-independent models assess "normal tension" glaucoma and other "non-IOP" related factors associated with glaucomatous damage. The current article provides descriptions of these models, their characterizations, specific techniques to induce glaucoma, mechanisms of injury, advantages, and limitations.
Collapse
Affiliation(s)
- Iok-Hou Pang
- North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, Texas, USA; Department of Pharmaceutical Sciences, University of North Texas Health Science Center, Fort Worth, Texas, USA
| | - Abbot F Clark
- North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, Texas, USA; Department of Pharmacology & Neuroscience, University of North Texas Health Science Center, Fort Worth, Texas, USA.
| |
Collapse
|
44
|
Filla MS, Faralli JA, Desikan H, Peotter JL, Wannow AC, Peters DM. Activation of αvβ3 Integrin Alters Fibronectin Fibril Formation in Human Trabecular Meshwork Cells in a ROCK-Independent Manner. Invest Ophthalmol Vis Sci 2020; 60:3897-3913. [PMID: 31529121 PMCID: PMC6750892 DOI: 10.1167/iovs.19-27171] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Purpose Fibronectin fibrillogenesis is an integrin-mediated process that may contribute to the pathogenesis of primary open-angle glaucoma (POAG). Here, we examined the effects of αvβ3 integrins on fibrillogenesis in immortalized TM-1 cells and human trabecular meshwork (HTM) cells. Methods TM-1 cells overexpressing wild-type β3 (WTβ3) or constitutively active β3 (CAβ3) integrin subunits were generated. Control cells were transduced with an empty vector (EV). Deoxycholic acid (DOC) extraction of monolayers, immunofluorescence microscopy, and On-cell western analyses were used to determine levels of fibronectin fibrillogenesis and fibronectin fibril composition (EDA+ and EDB+ fibronectins) and conformation. αvβ3 and α5β1 Integrin levels were determined using fluorescence-activated cell sorting (FACS). Cilengitide and an adenovirus vector expressing WTβ3 or CAβ3 integrin subunits were used to examine the role of αvβ3 integrin in HTM cells. The role of the canonical α5β1 integrin–mediated pathway in fibrillogenesis was determined using the fibronectin-binding peptide FUD, the β1 integrin function-blocking antibody 13, and the Rho kinase (ROCK) inhibitor Y27632. Results Activation of αvβ3 integrin enhanced the assembly of fibronectin into DOC-insoluble fibrils in both TM-1 and HTM cells. The formation of fibronectin fibrils was dependent on α5β1 integrin and could be inhibited by FUD. However, fibrillogenesis was unaffected by Y27632. Fibrils assembled by CAβ3 cells also contained high levels of EDA+ and EDB+ fibronectin and fibronectin that was stretched. Conclusions αvβ3 Integrin signaling altered the deposition and structure of fibronectin fibrils using a β1 integrin/ROCK-independent mechanism. Thus, αvβ3 integrins could play a significant role in altering the function of fibronectin matrices in POAG.
Collapse
Affiliation(s)
- Mark S Filla
- Departments of Pathology & Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States
| | - Jennifer A Faralli
- Departments of Pathology & Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States
| | - Harini Desikan
- Departments of Pathology & Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States
| | - Jennifer L Peotter
- Departments of Pathology & Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States
| | - Abigail C Wannow
- Departments of Pathology & Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States
| | - Donna M Peters
- Departments of Pathology & Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States.,Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States
| |
Collapse
|
45
|
Sharma TP, Curry S, McDowell CM. Effects of Toll-Like Receptor 4 Inhibition on Transforming Growth Factor-β2 Signaling in the Human Trabecular Meshwork. J Ocul Pharmacol Ther 2019; 36:170-178. [PMID: 31834824 DOI: 10.1089/jop.2019.0076] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Purpose: Transforming growth factor-β2 (TGFβ2) and Toll-like receptor 4 (TLR4) crosstalk have been implicated in extracellular matrix regulation in the trabecular meshwork (TM) and ocular hypertension in mice. We investigated TLR4 expression in normal and glaucomatous human trabecular meshwork (HTM) sections and utilized a human perfusion organ culture model to determine TGFβ2-TLR4 signaling crosstalk in glaucoma. Methods: Expression of TLR4 was determined in TM of normal and glaucomatous human eyes. Anterior segments of paired human eyes were perfused at a constant flow rate (2.5 μL/min) for 4 days to acquire stable baseline intraocular pressures (IOPs). We treated paired eyes with two different treatment paradigms: (1) TGFβ2 in one eye and vehicle control in the paired eye, (2) TGFβ2 in one eye and TGFβ2 + TLR4 inhibitor TAK-242 in the paired eye. Perfusate and TM tissue were collected and analyzed for fibronectin (FN) and collagen IV (COLIV) expression. Results: We observed increased TLR4 expression in glaucomatous HTM sections compared to normal (age-matched) (P < 0.05). Significant elevation of IOP was detected in 47% of TGFβ2-treated anterior segments (P < 0.01) compared to control, and in TGFβ2 treated compared with co-treatment with TGFβ2 + TLR4 inhibitor (P < 0.0001). An increase in FN and COLIV expression was observed after TGFβ2 treatment, and inhibition of TLR4 signaling decreased TGFβ2-induced FN and COLIV expression in perfusate (P < 0.05). Conclusions: These studies identify TGFβ2-TLR4 crosstalk as a novel pathway in glaucoma. They provide a potential new target to lower IOP and explore glaucoma pathogenesis.
Collapse
Affiliation(s)
- Tasneem P Sharma
- Department of Pharmacology and Neuroscience, North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, Texas
| | - Stacy Curry
- Department of Pharmacology and Neuroscience, North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, Texas
| | - Colleen M McDowell
- Department of Ophthalmology and Visual Sciences, McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, Wisconsin
| |
Collapse
|
46
|
Faralli JA, Filla MS, Peters DM. Role of Fibronectin in Primary Open Angle Glaucoma. Cells 2019; 8:E1518. [PMID: 31779192 PMCID: PMC6953041 DOI: 10.3390/cells8121518] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 11/22/2019] [Accepted: 11/24/2019] [Indexed: 01/08/2023] Open
Abstract
Primary open angle glaucoma (POAG) is the most common form of glaucoma and the 2nd most common cause of irreversible vision loss in the United States. Nearly 67 million people have the disease worldwide including >3 million in the United States. A major risk factor for POAG is an elevation in intraocular pressure (IOP). The increase in IOP is believed to be caused by an increase in the deposition of extracellular matrix proteins, in particular fibronectin, in a region of the eye known as the trabecular meshwork (TM). How fibronectin contributes to the increase in IOP is not well understood. The increased density of fibronectin fibrils is thought to increase IOP by altering the compliance of the trabecular meshwork. Recent studies, however, also suggest that the composition and organization of fibronectin fibrils would affect IOP by changing the cell-matrix signaling events that control the functional properties of the cells in the trabecular meshwork. In this article, we will discuss how changes in the properties of fibronectin and fibronectin fibrils could contribute to the regulation of IOP.
Collapse
Affiliation(s)
- Jennifer A. Faralli
- Departments of Pathology & Laboratory Medicine, University of Wisconsin, Madison, WI 53706, USA; (J.A.F.); (M.S.F.)
| | - Mark S. Filla
- Departments of Pathology & Laboratory Medicine, University of Wisconsin, Madison, WI 53706, USA; (J.A.F.); (M.S.F.)
| | - Donna M. Peters
- Departments of Pathology & Laboratory Medicine, University of Wisconsin, Madison, WI 53706, USA; (J.A.F.); (M.S.F.)
- Ophthalmology & Visual Sciences, University of Wisconsin, Madison, WI 53706, USA
| |
Collapse
|
47
|
Fan Y, Guo L, Wei J, Chen J, Sun H, Guo T. Effects of Salidroside on Trabecular Meshwork Cell Extracellular Matrix Expression and Mouse Intraocular Pressure. Invest Ophthalmol Vis Sci 2019; 60:2072-2082. [PMID: 31091314 DOI: 10.1167/iovs.19-26585] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose Excessive accumulation of extracellular matrix (ECM) in the trabecular meshwork (TM) reduces aqueous humor outflow, which likely contributes to elevation of IOP in primary open-angle glaucoma (POAG). Salidroside, a phenolic glycoside isolated from Rhodiola rosea is reported to prevent profibrotic responses by inhibiting Smad signaling pathway activated by TGF-β in liver, lung, and kidney tissues. We tested if salidroside can (1) inhibit TGF-β2-induced ECM expression in cultured human TM cells, and (2) lower TGF-β2-induced ocular hypertension in the mouse. Methods Cultured human TM cells stimulated with 5 ng/mL TGF-β2 for 48 hours were treated with salidroside for 24 hours. The expressions of fibronectin (FN), collagen type IV (COL-IV), and laminin (LN) were evaluated by quantitative PCR, Western blot, and immunocytochemistry. BALB/cJ mice were injected intravitreally with an adenoviral vector encoding a bioactive mutant of TGF-β2 (Ad.hTGF-β2226/228) in one eye to induce ocular hypertension, with the uninjected contralateral or Ad.Empty-injected eyes serving as controls. Mice were treated with a daily intraperitoneal injection of 40 mg/kg salidroside. Conscious mouse IOP values were measured using a TonoLab rebound tonometer. Results In cultured human TM cells, treatment with TGF-β2 increased expressions of FN, COL-IV, and LN, as assessed by quantitative PCR, Western blotting, and immunocytochemistry, all of which were significantly and completely ameliorated by 30 μM salidroside. Daily intraperitoneal injections of salidroside (40 mg/kg), starting either at day 0 (same day as Ad.hTGF-β2226/228 injection) or at day 14, significantly lowered TGF-β2-induced ocular hypertension in the mouse. In contrast, salidroside did not affect IOP of control eyes. Conclusions These results demonstrated that salidroside is capable of minimizing TGF-β2-induced ECM expression in cultured human TM cells. It also reduced TGF-β2-induced ocular hypertension in the mouse. These findings indicate that this phenolic glycoside may be useful as a novel treatment for POAG.
Collapse
Affiliation(s)
- Yuchen Fan
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China.,Bengbu Medicine College, Bengbu, Anhui, China
| | - Li Guo
- Department of Ophthalmology, Luan Affiliated Hospital of Anhui Medicine University, Luan, Anhui, China
| | - Jiahong Wei
- Bengbu Medicine College, Bengbu, Anhui, China
| | - Junzhao Chen
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Hao Sun
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Tao Guo
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| |
Collapse
|
48
|
Kennedy SM, Sheridan C, Kearns VR, Bilir EK, Fan X, Grierson I, Choudhary A. Thrombospondin-2 is up-regulated by TGFβ2 and increases fibronectin expression in human trabecular meshwork cells. Exp Eye Res 2019; 189:107820. [PMID: 31589839 DOI: 10.1016/j.exer.2019.107820] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 09/18/2019] [Accepted: 09/27/2019] [Indexed: 11/25/2022]
Abstract
Elevated intraocular pressure (IOP) is a major risk factor for the development of primary open-angle glaucoma (POAG). This is from an increased aqueous humour (AH) outflow resistance through the trabecular meshwork (TM). The pathogenic mechanisms leading to the increase in TM outflow resistance are poorly understood but are thought to be from a dysregulation of the TM extracellular matrix (ECM) environment. ECM modification and turnover are crucial in regulating the resistance to aqueous outflow. ECM turnover is influenced by a complex interplay of growth factors such as transforming growth factors (TGFβ) family and matrix metalloproteinases (MMPs). Elevated TGFβ2 levels result in an increase in ECM deposition such as fibronectin leading to increased resistance. Fibronectin is a major component of TM ECM and plays a key role in its maintenance. Thrombospondins (TSP)-1 and -2 are important regulators of the ECM environment. TSP-1 has been implicated in the pathogenesis of POAG through activation of TGFβ2 within the TM. TSP-2 does not contain the catalytic domain to activate latent TGFβ, but is able to mediate the activities of MMP 2 and 9, thereby influencing ECM turnover. TSP-2 knock out mice show lower IOP levels compared to their wild type counterparts, suggesting the involvement of TSP-2 in the pathogenesis of POAG but its role in the pathogenesis of POAG remains unclear. The purpose of this study was to investigate the role of TSP-2 in trabecular meshwork ECM regulation and hence the pathogenesis of POAG. TSP-1 and TSP-2 expressions in immortalised glaucomatous TM cells (GTM3) and primary human non-glaucomatous (NTM) and glaucomatous cells (GTM) were determined by immunocytochemistry, immuno-blot analysis and qPCR following treatment with TGFβ2 and Dexamethasone. The level of ECM protein fibronectin was determined in TM cells using immuno-blot analysis following treatment with TSP-1 or -2. TM cells secrete TSP-1 and -2 under basal conditions at the protein level and TSP-2 mRNA and protein levels were increased in response to TGFβ2 three days post treatment. Exogenous treatment with TSP-2 up-regulated the expression of fibronectin protein in GTM3 cells, primary NTM and GTM cells. TSP-1 did not affect fibronectin protein levels in GTM3 cells. This suggests that the role of TSP-2 might be distinct from that of TSP-1 in the regulation of the TM cell ECM environment. TSP-2 may be involved in the pathogenesis of POAG and contribute to increased IOP levels by increasing the deposition of fibronectin within the ECM in response to TGFβ2.
Collapse
Affiliation(s)
- Stephnie Michelle Kennedy
- Department of Eye and Vision Science, Institute of Ageing and Chronic Disease, University of Liverpool, William Henry Duncan Building, 6 west Derby Street, Liverpool, L69 8TX, UK.
| | - Carl Sheridan
- Department of Eye and Vision Science, Institute of Ageing and Chronic Disease, University of Liverpool, William Henry Duncan Building, 6 west Derby Street, Liverpool, L69 8TX, UK.
| | - Victoria Rosalind Kearns
- Department of Eye and Vision Science, Institute of Ageing and Chronic Disease, University of Liverpool, William Henry Duncan Building, 6 west Derby Street, Liverpool, L69 8TX, UK.
| | - Emine Kubra Bilir
- Department of Eye and Vision Science, Institute of Ageing and Chronic Disease, University of Liverpool, William Henry Duncan Building, 6 west Derby Street, Liverpool, L69 8TX, UK.
| | - Xiaochen Fan
- Department of Eye and Vision Science, Institute of Ageing and Chronic Disease, University of Liverpool, William Henry Duncan Building, 6 west Derby Street, Liverpool, L69 8TX, UK.
| | - Ian Grierson
- Department of Eye and Vision Science, Institute of Ageing and Chronic Disease, University of Liverpool, William Henry Duncan Building, 6 west Derby Street, Liverpool, L69 8TX, UK.
| | - Anshoo Choudhary
- Department of Eye and Vision Science, Institute of Ageing and Chronic Disease, University of Liverpool, William Henry Duncan Building, 6 west Derby Street, Liverpool, L69 8TX, UK; St Paul's Eye Unit, Royal Liverpool University Hospital, Liverpool, L7 8XP, UK.
| |
Collapse
|
49
|
Shen W, Huang B, He Y, Shi L, Yang J. Long non‐coding RNA RP11‐820 promotes extracellular matrix production via regulating miR‐3178/MYOD1 in human trabecular meshwork cells. FEBS J 2019; 287:978-990. [PMID: 31495061 DOI: 10.1111/febs.15058] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 05/09/2019] [Accepted: 09/03/2019] [Indexed: 01/01/2023]
Affiliation(s)
- Wencui Shen
- Tianjin Eye Hospital & Eye Institute Tianjin Key Lab of Ophthalmology and Visual Science NanKai University Tianjin China
| | - Bingqing Huang
- Department of Pathology Institute of Hematology and Blood Diseases Hospital Chinese Academy of Medical Sciences and Peking Union Medical College Tianjin China
| | - Ye He
- Tianjin Medical University Eye Hospital China
| | - Liukun Shi
- Tianjin Eye Hospital & Eye Institute Tianjin Key Lab of Ophthalmology and Visual Science NanKai University Tianjin China
| | - Jin Yang
- Tianjin Eye Hospital & Eye Institute Tianjin Key Lab of Ophthalmology and Visual Science NanKai University Tianjin China
| |
Collapse
|
50
|
Yin R, Chen X. Regulatory effect of miR-144-3p on the function of human trabecular meshwork cells and fibronectin-1. Exp Ther Med 2019; 18:647-653. [PMID: 31258702 PMCID: PMC6566054 DOI: 10.3892/etm.2019.7584] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 04/23/2019] [Indexed: 12/23/2022] Open
Abstract
Role of microRNA (miR)-144-3p in regulating the function of human trabecular meshwork cells (HTMCs) and fibronectin-1 (FN-1) was investigated. HTM cell lines were divided into five groups, of which four groups established oxidative stress HTMC models and one served as a control group. The four model groups were transfected with miR-144-3p independent sequence, inhibitory sequence, over-expression sequence, and the blank group received no transfection. In addition, 40 primary open angle glaucoma patients treated in Xuzhou No. 1 People's Hospital were included in the observation group, and 40 healthy individuals were enrolled as a normal group. RT-qPCR was used for the detection of miR-144-3p expression in serum and cells of patients and healthy people in each group, western blot analysis for FN-1 expression in cells, CCK-8 kit for cell proliferation, and Transwell for cell invasion. The expression of serum miR-144-3p in the observation group was significantly lower than that in the normal group (P<0.05). The cell optical density value in the over-expression group was significantly higher than that in the other groups (P<0.05), and in the inhibition group was significantly lower than that in the other groups (P<0.05). The number of cell-penetration in the over-expression group was significantly higher than that in the other groups (P<0.05). The expression of FN-1 protein in the over-expression group was significantly lower than that in the other four groups (P<0.05), and the expression in the inhibition group was significantly higher than that in the other four groups (P<0.05). The over-expression of miR-144-3p promotes proliferation and invasion of HTMCs by inhibiting the expression of FN-1 in inoxidative stress HTMCs, and is a potential target for glaucoma treatment.
Collapse
Affiliation(s)
- Ruoxi Yin
- Postgraduate School, Xuzhou Medical University, Xuzhou Eye Hospital, Xuzhou, Jiangsu 221000, P.R. China
| | - Xiaoya Chen
- Department of Ophthalmology, Xuzhou No. 1 People's Hospital, Xuzhou Municipal Hospital Affiliated to Xuzhou Medical University, Xuzhou Eye Hospital, Xuzhou, Jiangsu 221000, P.R. China
| |
Collapse
|