1
|
Beryozkin A, Byrne LC. In Vivo Imaging of Rodent Retina in Retinal Disease. Methods Mol Biol 2025; 2848:151-167. [PMID: 39240522 DOI: 10.1007/978-1-0716-4087-6_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
High-quality imaging of the retina is crucial to the diagnosis and monitoring of disease, as well as for evaluating the success of therapeutics in human patients and in preclinical animal models. Here, we describe the basic principles and methods for in vivo retinal imaging in rodents, including fundus imaging, fluorescein angiography, optical coherence tomography, fundus autofluorescence, and infrared imaging. After providing a concise overview of each method and detailing the retinal diseases and conditions that can be visualized through them, we will proceed to discuss the advantages and disadvantages of each approach. These protocols will facilitate the acquisition of optimal images for subsequent quantification and analysis. Additionally, a brief explanation will be given regarding the potential results and the clinical significance of the detected abnormalities.
Collapse
Affiliation(s)
- Avigail Beryozkin
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Leah C Byrne
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
2
|
Chien Y, Wu Y, Chen C, Yang Y, Ching L, Wang B, Chang W, Chiang I, Su P, Chen S, Lin W, Wang I, Lin T, Chen S, Chiou S. Identifying Multiomic Signatures of X-Linked Retinoschisis-Derived Retinal Organoids and Mice Harboring Patient-Specific Mutation Using Spatiotemporal Single-Cell Transcriptomics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2405818. [PMID: 39503290 PMCID: PMC11714187 DOI: 10.1002/advs.202405818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 09/26/2024] [Indexed: 11/08/2024]
Abstract
X-linked retinoschisis (XLRS) is an inherited retinal disorder with severe retinoschisis and visual impairments. Multiomics approaches integrate single-cell RNA-sequencing (scRNA-seq) and spatiotemporal transcriptomics (ST) offering potential for dissecting transcriptional networks and revealing cell-cell interactions involved in biomolecular pathomechanisms. Herein, a multimodal approach is demonstrated combining high-throughput scRNA-seq and ST to elucidate XLRS-specific transcriptomic signatures in two XLRS-like models with retinal splitting phenotypes, including genetically engineered (Rs1emR209C) mice and patient-derived retinal organoids harboring the same patient-specific p.R209C mutation. Through multiomics transcriptomic analysis, the endoplasmic reticulum (ER) stress/eukryotic initiation factor 2 (eIF2) signaling, mTOR pathway, and the regulation of eIF4 and p70S6K pathways are identified as chronically enriched and highly conserved disease pathways between two XLRS-like models. Western blots and proteomics analysis validate the occurrence of unfolded protein responses, chronic eIF2α signaling activation, and chronic ER stress-induced apoptosis. Furthermore, therapeutic targeting of the chronic ER stress/eIF2α pathway activation synergistically enhances the efficacy of AAV-mediated RS1 gene delivery, ultimately improving bipolar cell integrity, postsynaptic transmission, disorganized retinal architecture, and electrophysiological responses. Collectively, the complex transcriptomic signatures obtained from Rs1emR209C mice and patient-derived retinal organoids using the multiomics approach provide opportunities to unravel potential therapeutic targets for incurable retinal diseases, such as XLRS.
Collapse
Affiliation(s)
- Yueh Chien
- Department of Medical ResearchTaipei Veterans General HospitalTaipei11217Taiwan
- Institute of PharmacologyCollege of MedicineNational Yang Ming Chiao Tung UniversityTaipei11221Taiwan
| | - You‐Ren Wu
- Department of Medical ResearchTaipei Veterans General HospitalTaipei11217Taiwan
- Institute of PharmacologyCollege of MedicineNational Yang Ming Chiao Tung UniversityTaipei11221Taiwan
| | - Chih‐Ying Chen
- Department of Medical ResearchTaipei Veterans General HospitalTaipei11217Taiwan
- Institute of PharmacologyCollege of MedicineNational Yang Ming Chiao Tung UniversityTaipei11221Taiwan
| | - Yi‐Ping Yang
- Department of Medical ResearchTaipei Veterans General HospitalTaipei11217Taiwan
- Institute of Food Safety and Health Risk AssessmentNational Yang Ming Chiao Tung UniversityTaipei11221Taiwan
| | - Lo‐Jei Ching
- Department of Medical ResearchTaipei Veterans General HospitalTaipei11217Taiwan
- Institute of Clinical MedicineSchool of MedicineNational Yang Ming Chiao Tung UniversityTaipei11221Taiwan
| | - Bo‐Xuan Wang
- Department of Medical ResearchTaipei Veterans General HospitalTaipei11217Taiwan
- Institute of PharmacologyCollege of MedicineNational Yang Ming Chiao Tung UniversityTaipei11221Taiwan
| | - Wei‐Chao Chang
- Center for Molecular MedicineChina Medical University HospitalTaichung40447Taiwan
| | - I‐Hsun Chiang
- Department of Medical ResearchTaipei Veterans General HospitalTaipei11217Taiwan
| | - Pong Su
- Department of Medical ResearchTaipei Veterans General HospitalTaipei11217Taiwan
| | - Shih‐Yu Chen
- Institute of Biomedical SciencesAcademia SinicaTaipei11529Taiwan
- Genome and Systems Biology Degree ProgramAcademia Sinica and National Taiwan UniversityTaipei10617Taiwan
| | - Wen‐Chang Lin
- Institute of Biomedical SciencesAcademia SinicaTaipei11529Taiwan
- Institute of Biomedical InformaticsNational Yang Ming Chiao Tung UniversityTaipei11221Taiwan
| | - I‐Chieh Wang
- Department of Medical ResearchTaipei Veterans General HospitalTaipei11217Taiwan
- Institute of PharmacologyCollege of MedicineNational Yang Ming Chiao Tung UniversityTaipei11221Taiwan
| | - Tai‐Chi Lin
- Department of Medical ResearchTaipei Veterans General HospitalTaipei11217Taiwan
- School of MedicineCollege of MedicineNational Yang Ming Chiao Tung UniversityTaipei11221Taiwan
- Department of OphthalmologyTaipei Veterans General HospitalTaipei112201Taiwan
| | - Shih‐Jen Chen
- School of MedicineCollege of MedicineNational Yang Ming Chiao Tung UniversityTaipei11221Taiwan
- Department of OphthalmologyTaipei Veterans General HospitalTaipei112201Taiwan
| | - Shih‐Hwa Chiou
- Department of Medical ResearchTaipei Veterans General HospitalTaipei11217Taiwan
- Institute of PharmacologyCollege of MedicineNational Yang Ming Chiao Tung UniversityTaipei11221Taiwan
- Department of OphthalmologyTaipei Veterans General HospitalTaipei112201Taiwan
- Genomics Research CenterAcademia SinicaTaipei11529Taiwan
| |
Collapse
|
3
|
Han JW, Chang HS, Park SC, Yang JY, Kim YJ, Kim JH, Park HS, Jeong H, Lee J, Yoon CK, Yu HG, Woo SJ, Lyu J, Park TK. Early Developmental Characteristics and Features of a Three-Dimensional Retinal Organoid Model of X-Linked Juvenile Retinoschisis. Int J Mol Sci 2024; 25:8203. [PMID: 39125773 PMCID: PMC11311801 DOI: 10.3390/ijms25158203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/24/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
X-linked juvenile retinoschisis (XLRS) is a hereditary retinal degeneration affecting young males caused by mutations in the retinoschisin (RS1) gene. We generated human induced pluripotent stem cells (hiPSCs) from XLRS patients and established three-dimensional retinal organoids (ROs) for disease investigation. This disease model recapitulates the characteristics of XLRS, exhibiting defects in RS1 protein production and photoreceptor cell development. XLRS ROs also revealed dysregulation of Na/K-ATPase due to RS1 deficiency and increased ERK signaling pathway activity. Transcriptomic analyses of XLRS ROs showed decreased expression of retinal cells, particularly photoreceptor cells. Furthermore, relevant recovery of the XLRS phenotype was observed when co-cultured with control ROs derived from healthy subject during the early stages of differentiation. In conclusion, our in vitro XLRS RO model presents a valuable tool for elucidating the pathophysiological mechanisms underlying XLRS, offering insights into disease progression. Additionally, this model serves as a robust platform for the development and optimization of targeted therapeutic strategies, potentially improving treatment outcomes for patients with XLRS.
Collapse
Affiliation(s)
- Jung Woo Han
- Department of Ophthalmology, Soonchunhyang University Bucheon Hospital, Soonchunhyang University College of Medicine, 170, Jomaru-ro, Bucheon 14584, Republic of Korea; (J.W.H.); (S.C.P.); (J.H.K.); (H.S.P.)
- Department of Ophthalmology, Soonchunhyang University College of Medicine, Cheonan 31151, Republic of Korea
| | - Hun Soo Chang
- Department of Microbiology, Soonchunhyang University College of Medicine, Cheonan 31151, Republic of Korea;
- Department of Interdisciplinary Program in Biomedical Science, Soonchunhyang Graduate School, Soonchunhyang University Bucheon Hospital, Bucheon 14584, Republic of Korea;
| | - Sung Chul Park
- Department of Ophthalmology, Soonchunhyang University Bucheon Hospital, Soonchunhyang University College of Medicine, 170, Jomaru-ro, Bucheon 14584, Republic of Korea; (J.W.H.); (S.C.P.); (J.H.K.); (H.S.P.)
| | - Jin Young Yang
- Laboratory of Molecular Therapy for Retinal Degeneration, Soonchunhyang University Bucheon Hospital, Soonchunhyang University College of Medicine, Bucheon 14584, Republic of Korea;
| | - Ye Ji Kim
- Department of Interdisciplinary Program in Biomedical Science, Soonchunhyang Graduate School, Soonchunhyang University Bucheon Hospital, Bucheon 14584, Republic of Korea;
| | - Jin Ha Kim
- Department of Ophthalmology, Soonchunhyang University Bucheon Hospital, Soonchunhyang University College of Medicine, 170, Jomaru-ro, Bucheon 14584, Republic of Korea; (J.W.H.); (S.C.P.); (J.H.K.); (H.S.P.)
- Department of Ophthalmology, Soonchunhyang University College of Medicine, Cheonan 31151, Republic of Korea
| | - Hyo Song Park
- Department of Ophthalmology, Soonchunhyang University Bucheon Hospital, Soonchunhyang University College of Medicine, 170, Jomaru-ro, Bucheon 14584, Republic of Korea; (J.W.H.); (S.C.P.); (J.H.K.); (H.S.P.)
- Department of Ophthalmology, Soonchunhyang University College of Medicine, Cheonan 31151, Republic of Korea
| | - Han Jeong
- Institute of Vision Research, Department of Ophthalmology, Severance Eye Hospital, Yonsei University College of Medicine, Seoul 03722, Republic of Korea;
- Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Junwon Lee
- Institute of Vision Research, Department of Ophthalmology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06273, Republic of Korea;
| | - Chang Ki Yoon
- Department of Ophthalmology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul 03080, Republic of Korea;
| | - Hyung Gon Yu
- Retina Center, The Sky Eye Institute, Seoul 06536, Republic of Korea;
| | - Se Joon Woo
- Department of Ophthalmology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam 13620, Republic of Korea;
| | - Jungmook Lyu
- Department of Medical Science, Konyang University, Daejun 32992, Republic of Korea;
| | - Tae Kwann Park
- Department of Ophthalmology, Soonchunhyang University Bucheon Hospital, Soonchunhyang University College of Medicine, 170, Jomaru-ro, Bucheon 14584, Republic of Korea; (J.W.H.); (S.C.P.); (J.H.K.); (H.S.P.)
- Department of Ophthalmology, Soonchunhyang University College of Medicine, Cheonan 31151, Republic of Korea
- Department of Interdisciplinary Program in Biomedical Science, Soonchunhyang Graduate School, Soonchunhyang University Bucheon Hospital, Bucheon 14584, Republic of Korea;
- Laboratory of Molecular Therapy for Retinal Degeneration, Soonchunhyang University Bucheon Hospital, Soonchunhyang University College of Medicine, Bucheon 14584, Republic of Korea;
| |
Collapse
|
4
|
Hassan S, Hsu Y, Thompson JM, Kalmanek E, VandeLune JA, Stanley S, Drack AV. The dose-response relationship of subretinal gene therapy with rAAV2tYF-CB-h RS1 in a mouse model of X-linked retinoschisis. Front Med (Lausanne) 2024; 11:1304819. [PMID: 38414621 PMCID: PMC10898246 DOI: 10.3389/fmed.2024.1304819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 01/16/2024] [Indexed: 02/29/2024] Open
Abstract
Purpose X-linked retinoschisis (XLRS), due to loss-of-function mutations in the retinoschisin (RS1) gene, is characterized by a modest to severe decrease in visual acuity. Clinical trials for XLRS utilizing intravitreal (IVT) gene therapy showed ocular inflammation. We conducted a subretinal dose-response preclinical study using rAAV2tYF-CB-hRS1 utilizing the Rs1 knockout (Rs1-KO) mouse to investigate short- and long-term retinal rescue after subretinal gene delivery. Methods Rs1-KO mice were subretinally injected with 2 μL of rAAV2tYF-CB-hRS1 vector with 8E9 viral genomes (vg)/eye, 8E8 vg/eye, 8E7 vg/eye, or sham injection, and compared to untreated eyes. Reconstitution of human RS1 protein was detected using western blotting. Analysis of retinal function by electroretinography (ERG) and structural analysis by optical coherence tomography (OCT) were performed at 1, 2, 3, 5, 7, and 12 months post injection (MPI). Immunohistochemistry (IHC) was performed to evaluate cone rescue on the cellular level. Functional vision was evaluated using a visually guided swim assay (VGSA). Results Western blotting analysis showed human RS1 protein expression in a dose-dependent manner. Quantification of western blotting showed that the RS1 protein expression in mice treated with the 8E8 vg dose was near the wild-type (WT) expression levels. ERG demonstrated dose-dependent effects: At 1 MPI the 8E8 vg dose treated eyes had higher light-adapted (LA) ERG amplitudes in 3.0 flash and 5 Hz flicker compared to untreated (p < 0.0001) and sham-treated eyes (p < 0.0001) which persisted until the 12 MPI endpoint, consistent with improved cone function. ERG b-wave amplitudes were higher in response to dark-adapted (DA) 0.01 dim flash and 3.0 standard combined response (SCR) compared to sham-treated (p < 0.01) and untreated eyes (p < 0.001) which persisted until 3 MPI, suggesting short-term improvement of the rod photoreceptors. All injections, including sham-treated, resulted in a cyst severity score of 1 (no cavities), with significant reductions compared to untreated eyes up to 3 MPI (p < 0.05). The high and low dose groups showed inconsistent ERG improvements, despite reduced cyst severity, emphasizing the dose-dependent nature of gene augmentation's efficacy and the tenuous connection between cyst reduction and ERG improvement. IHC data showed a significant cone rescue in eyes treated with the 8E8 vg dose compared to sham-treated and untreated eyes. VGSA showed better functional vision in 8E8 vg dose treated mice. Eyes treated with the highest dose showed occasional localized degeneration in the outer nuclear layer. Conclusion Our data suggest that a dose of 8E8 vg/eye subretinally improves retinal function and structure in the Rs1-KO mouse. It improves cone function, rod function, and reduces cyst severity. Sham treatment resolves schisis cysts, but 8E8 vg/eye is needed for optimal retinal electrical function rescue. These findings offer a promising path for clinical translation to human trials.
Collapse
Affiliation(s)
- Salma Hassan
- Department of Ophthalmology and Visual Sciences, Institute for Vision Research, and Carver College of Medicine, University of Iowa, Iowa City, IA, United States
- Biomedical Science-Cell and Developmental Biology Graduate Program, Department of Anatomy and Cell Biology, University of Iowa, Iowa City, IA, United States
| | - Ying Hsu
- Department of Ophthalmology and Visual Sciences, Institute for Vision Research, and Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Jacob M Thompson
- Department of Ophthalmology and Visual Sciences, Institute for Vision Research, and Carver College of Medicine, University of Iowa, Iowa City, IA, United States
- Department of Epidemiology, College of Public Health, University of Iowa, Iowa City, IA, United States
| | - Emily Kalmanek
- Department of Ophthalmology and Visual Sciences, Institute for Vision Research, and Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Joel A VandeLune
- Department of Ophthalmology and Visual Sciences, Institute for Vision Research, and Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Sarah Stanley
- Department of Ophthalmology and Visual Sciences, Institute for Vision Research, and Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Arlene V Drack
- Department of Ophthalmology and Visual Sciences, Institute for Vision Research, and Carver College of Medicine, University of Iowa, Iowa City, IA, United States
- Biomedical Science-Cell and Developmental Biology Graduate Program, Department of Anatomy and Cell Biology, University of Iowa, Iowa City, IA, United States
- Department of Pediatrics, University of Iowa, Iowa City, IA, United States
| |
Collapse
|
5
|
van der Veen I, Heredero Berzal A, Koster C, ten Asbroek ALMA, Bergen AA, Boon CJF. The Road towards Gene Therapy for X-Linked Juvenile Retinoschisis: A Systematic Review of Preclinical Gene Therapy in Cell-Based and Rodent Models of XLRS. Int J Mol Sci 2024; 25:1267. [PMID: 38279267 PMCID: PMC10816913 DOI: 10.3390/ijms25021267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/12/2024] [Accepted: 01/17/2024] [Indexed: 01/28/2024] Open
Abstract
X-linked juvenile retinoschisis (XLRS) is an early-onset progressive inherited retinopathy affecting males. It is characterized by abnormalities in the macula, with formation of cystoid retinal cavities, frequently accompanied by splitting of the retinal layers, impaired synaptic transmission of visual signals, and associated loss of visual acuity. XLRS is caused by loss-of-function mutations in the retinoschisin gene located on the X chromosome (RS1, MIM 30083). While proof-of-concept studies for gene augmentation therapy have been promising in in vitro and rodent models, clinical trials in XLRS patients have not been successful thus far. We performed a systematic literature investigation using search strings related to XLRS and gene therapy in in vivo and in vitro models. Three rounds of screening (title/abstract, full text and qualitative) were performed by two independent reviewers until consensus was reached. Characteristics related to study design and intervention were extracted from all studies. Results were divided into studies using (1) viral and (2) non-viral therapies. All in vivo rodent studies that used viral vectors were assessed for quality and risk of bias using the SYRCLE's risk-of-bias tool. Studies using alternative and non-viral delivery techniques, either in vivo or in vitro, were extracted and reviewed qualitatively, given the diverse and dispersed nature of the information. For in-depth analysis of in vivo studies using viral vectors, outcome data for optical coherence tomography (OCT), immunohistopathology and electroretinography (ERG) were extracted. Meta-analyses were performed on the effect of recombinant adeno-associated viral vector (AAV)-mediated gene augmentation therapies on a- and b-wave amplitude as well as the ratio between b- and a-wave amplitudes (b/a-ratio) extracted from ERG data. Subgroup analyses and meta-regression were performed for model, dose, age at injection, follow-up time point and delivery method. Between-study heterogeneity was assessed with a Chi-square test of homogeneity (I2). We identified 25 studies that target RS1 and met our search string. A total of 19 of these studies reported rodent viral methods in vivo. Six of the 25 studies used non-viral or alternative delivery methods, either in vitro or in vivo. Of these, five studies described non-viral methods and one study described an alternative delivery method. The 19 aforementioned in vivo studies were assessed for risk of bias and quality assessments and showed inconsistency in reporting. This resulted in an unclear risk of bias in most included studies. All 19 studies used AAVs to deliver intact human or murine RS1 in rodent models for XLRS. Meta-analyses of a-wave amplitude, b-wave amplitude, and b/a-ratio showed that, overall, AAV-mediated gene augmentation therapy significantly ameliorated the disease phenotype on these parameters. Subgroup analyses and meta-regression showed significant correlations between b-wave amplitude effect size and dose, although between-study heterogeneity was high. This systematic review reiterates the high potential for gene therapy in XLRS, while highlighting the importance of careful preclinical study design and reporting. The establishment of a systematic approach in these studies is essential to effectively translate this knowledge into novel and improved treatment alternatives.
Collapse
Affiliation(s)
- Isa van der Veen
- Department of Ophthalmology, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (I.v.d.V.); (A.H.B.); (C.K.); (A.A.B.)
- Department of Human Genetics, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands;
| | - Andrea Heredero Berzal
- Department of Ophthalmology, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (I.v.d.V.); (A.H.B.); (C.K.); (A.A.B.)
- Department of Human Genetics, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands;
| | - Céline Koster
- Department of Ophthalmology, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (I.v.d.V.); (A.H.B.); (C.K.); (A.A.B.)
- Department of Human Genetics, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands;
| | - Anneloor L. M. A. ten Asbroek
- Department of Human Genetics, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands;
| | - Arthur A. Bergen
- Department of Ophthalmology, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (I.v.d.V.); (A.H.B.); (C.K.); (A.A.B.)
- Department of Human Genetics, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands;
| | - Camiel J. F. Boon
- Department of Ophthalmology, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (I.v.d.V.); (A.H.B.); (C.K.); (A.A.B.)
- Department of Ophthalmology, Leiden University Medical Center, Leiden University, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| |
Collapse
|
6
|
Riaz S, Sethna S, Duncan T, Naeem MA, Redmond TM, Riazuddin S, Riazuddin S, Carvalho LS, Ahmed ZM. Dual AAV-based PCDH15 gene therapy achieves sustained rescue of visual function in a mouse model of Usher syndrome 1F. Mol Ther 2023; 31:3490-3501. [PMID: 37864333 PMCID: PMC10727994 DOI: 10.1016/j.ymthe.2023.10.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/20/2023] [Accepted: 10/18/2023] [Indexed: 10/22/2023] Open
Abstract
Mutations in the PCDH15 gene, encoding protocadherin-15, are among the leading causes of Usher syndrome type 1 (USH1F), and account for up to 12% USH1 cases worldwide. A founder truncating variant of PCDH15 has a ∼2% carrier frequency in Ashkenazi Jews accounting for nearly 60% of their USH1 cases. Although cochlear implants can restore hearing perception in USH1 patients, presently there are no effective treatments for the vision loss due to retinitis pigmentosa. We established a founder allele-specific Pcdh15 knockin mouse model as a platform to ascertain therapeutic strategies. Using a dual-vector approach to circumvent the size limitation of adeno-associated virus, we observed robust expression of exogenous PCDH15 in the retinae of Pcdh15KI mice, sustained recovery of electroretinogram amplitudes and key retinoid oxime, substantially improved light-dependent translocation of phototransduction proteins, and enhanced levels of retinal pigment epithelium-derived enzymes. Thus, our data raise hope and pave the way for future gene therapy trials in USH1F subjects.
Collapse
Affiliation(s)
- Sehar Riaz
- Department of Otorhinolaryngology - Head & Neck Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA; National Centre of Excellence in Molecular Biology, University of the Punjab, Lahore 54500, Pakistan
| | - Saumil Sethna
- Department of Otorhinolaryngology - Head & Neck Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Todd Duncan
- Laboratory of Retinal Cell and Molecular Biology, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Muhammad A Naeem
- National Centre of Excellence in Molecular Biology, University of the Punjab, Lahore 54500, Pakistan
| | - T Michael Redmond
- Laboratory of Retinal Cell and Molecular Biology, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sheikh Riazuddin
- Jinnah Burn and Reconstructive Surgery Centre, Allama Iqbal Medical Research, University of Health Sciences, Lahore 54500, Pakistan
| | - Saima Riazuddin
- Department of Otorhinolaryngology - Head & Neck Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Department of Molecular Biology and Biochemistry, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Livia S Carvalho
- Centre for Ophthalmology and Visual Science, The University of Western Australia, Crawley, WA 6009, Australia; Retinal Genomics and Therapy Group, Lions Eye Institute Ltd, Nedlands, WA 6009, Australia
| | - Zubair M Ahmed
- Department of Otorhinolaryngology - Head & Neck Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Department of Molecular Biology and Biochemistry, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Department of Ophthalmology and Visual Sciences, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| |
Collapse
|
7
|
Tao Z, Bu S, Liang L, Yang Y, She K, Lu F. Visual Acuity-Related Outer Retinal Structural Parameters on Swept Source Optical Coherence Tomography and Angiography in XLRS Patients and Carriers. Transl Vis Sci Technol 2023; 12:7. [PMID: 38054929 PMCID: PMC10702782 DOI: 10.1167/tvst.12.12.7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 09/22/2023] [Indexed: 12/07/2023] Open
Abstract
Purpose To assess the quantitative differences in vessel density and retinal thickness of X-linked retinoschisis (XLRS) patients and RS1 mutation carriers, and the correlation with best-corrected visual acuity (BCVA) with swept source optical coherence tomography (SS-OCT) and OCT angiography (OCTA). Methods We analyzed the correlation between the BCVA of XLRS patients and the SS-OCT and OCTA findings including the detailed structural characteristics of XLRS patients. Results Besides the schitic changes in various retinal layers, the structural disturbance of outer retina was universally found. In 29 eyes included in the quantitative analysis, XLRS patients showed lower vessel density of the superficial capillary plexus, deep capillary plexus and lower thickness of the outer nuclear layer. BCVA was correlated with the thickness of the outer plexiform layer and outer nuclear layer and the thickness from the outer limiting membrane to the retinal pigment epithelium. Carriers showed higher thickness of outer plexiform layer and smaller foveal avascular zone area. Conclusions SS-OCT and OCTA could identify the pathological alterations of the individual retinal layers and capillaries, which could pinpoint the exact location of the damages related to visual impairment. In the carriers, the subtle alterations that can be detected with SS-OCT, despite their normal visual acuity, may be caused by the lyonization. Translational Relevance Swept source optical coherence tomography can be used as an efficient technique to expose the retinal damage related to visual impairment for prognosis and follow-up.
Collapse
Affiliation(s)
- Zhiyan Tao
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Shaochong Bu
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Licong Liang
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Yiliu Yang
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Kaiqin She
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Fang Lu
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| |
Collapse
|
8
|
Mautone L, Atiskova Y, Druchkiv V, Spitzer MS, Dulz S. Diurnal functional and anatomical changes in X-linked retinoschisis. Graefes Arch Clin Exp Ophthalmol 2023; 261:3307-3313. [PMID: 37294434 PMCID: PMC10587233 DOI: 10.1007/s00417-023-06106-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 04/27/2023] [Accepted: 05/06/2023] [Indexed: 06/10/2023] Open
Abstract
BACKGROUND To investigate the changes in macular cystic schisis (MCS) and sensitivity during the day in X-linked retinoschisis (XLRS) patients. METHODS Treatment-naïve patients with genetically verified XLRS underwent best-correlated visual acuity (BCVA) testing with ETDRS charts, spectral domain optical coherence tomography, and microperimetry (MP) twice a day, at 9 a.m. and 4 p.m., to measure changes in central retinal thickness (CRT), macular volume (MV), average threshold (AT), and fixation stability parameters (P1 and P2). RESULTS At baseline, the BCVA of the 14 eyes of 8 patients amounted 0.73 (± 0.23) LogMAR. Between timepoints, the BCVA increased in 3.21 letters (p = .021), the AV improved in 1.84 dB (p = .03, 9.73%), the CRT decreased in 24.43 µm (p = .007, - 4.05%), and the MV dropped in 0.27 µm3 (p = .016, - 2.68%). P1 and P2 did not variate. The collapse of the MCS led to the reduction of macula thickness. CRT at baseline correlated with the decrease of CRT (Spearman's ρ: - 0.83 [p = .001]). Age and change of BCVA, CRT, and AV did not correlate among one another. Eyes with disrupted ellipsoid zone showed a more prominent change in CRT (p = .050). Photoreceptor outer segment length and integrity of the external limiting membrane and cone outer segment tips were not associated with BCVA, AT, or CRT variation. CONCLUSION Eyes of treatment-naïve XLRS patients show diurnal macular thickness and function changes. Eyes with pronounced macular thickness show a greater reduction of the MCS. These results should be taken into consideration in upcoming clinical trials in XLRS. TRIAL REGISTRATION NUMBER Institutional Review Board of the Hamburg Medical Chamber (Ethik-Kommission der Ärztekammer Hamburg): 2020-10,328.
Collapse
Affiliation(s)
- Luca Mautone
- Department of Ophthalmology, University Medical Center Hamburg-Eppendorf, Martinist. 52, 20246, Hamburg, Germany.
| | - Yevgeniya Atiskova
- Department of Ophthalmology, University Medical Center Hamburg-Eppendorf, Martinist. 52, 20246, Hamburg, Germany
| | - Vasyl Druchkiv
- Department of Ophthalmology, University Medical Center Hamburg-Eppendorf, Martinist. 52, 20246, Hamburg, Germany
| | - Martin Stephan Spitzer
- Department of Ophthalmology, University Medical Center Hamburg-Eppendorf, Martinist. 52, 20246, Hamburg, Germany
| | - Simon Dulz
- Department of Ophthalmology, University Medical Center Hamburg-Eppendorf, Martinist. 52, 20246, Hamburg, Germany
| |
Collapse
|
9
|
Heymann JB, Vijayasarathy C, Fariss RN, Sieving PA. Advances in understanding the molecular structure of retinoschisin while questions remain of biological function. Prog Retin Eye Res 2023; 95:101147. [PMID: 36402656 PMCID: PMC10185713 DOI: 10.1016/j.preteyeres.2022.101147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 10/28/2022] [Accepted: 11/08/2022] [Indexed: 11/18/2022]
Abstract
Retinoschisin (RS1) is a secreted protein that is essential for maintaining integrity of the retina. Numerous mutations in RS1 cause X-linked retinoschisis (XLRS), a progressive degeneration of the retina that leads to vision loss in young males. A key manifestation of XLRS is the formation of cavities (cysts) in the retina and separation of the layers (schisis), disrupting synaptic transmission. There are currently no approved treatments for patients with XLRS. Strategies using adeno-associated viral (AAV) vectors to deliver functional copies of RS1 as a form of gene augmentation therapy, are under clinical evaluation. To improve therapeutic strategies for treating XLRS, it is critical to better understand the secretion of RS1 and its molecular function. Immunofluorescence and immunoelectron microscopy show that RS1 is located on the surfaces of the photoreceptor inner segments and bipolar cells. Sequence homology indicates a discoidin domain fold, similar to many other proteins with demonstrated adhesion functions. Recent structural studies revealed the tertiary structure of RS1 as two back-to-back octameric rings, each cross-linked by disulfides. The observation of higher order structures in vitro suggests the formation of an adhesive matrix spanning the distance between cells (∼100 nm). Several studies indicated that RS1 readily binds to other proteins such as the sodium-potassium ATPase (NaK-ATPase) and extracellular matrix proteins. Alternatively, RS1 may influence fluid regulation via interaction with membrane proteins such as the NaK-ATPase, largely inferred from the use of carbonic anhydrase inhibitors to shrink the typical intra-retinal cysts in XLRS. We discuss these models in light of RS1 structure and address the difficulty in understanding the function of RS1.
Collapse
Affiliation(s)
- J Bernard Heymann
- National Cryo-EM Program, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD, 21701, USA.
| | - Camasamudram Vijayasarathy
- Section on Translational Research for Retinal and Macular Degeneration, NIDCD, NIH, Bethesda, MD, 20892, USA
| | - Robert N Fariss
- Biological Imaging Core Facility, NEI, NIH, Bethesda, MD, 20892, USA
| | - Paul A Sieving
- Center for Ocular Regenerative Therapy, Ophthalmology, U C Davis Health, Sacramento, CA, 95817, USA
| |
Collapse
|
10
|
Zhou T, Yang Z, Ni B, Zhou H, Xu H, Lin X, Li Y, Liu C, Ju R, Ge J, He C, Liu X. IL-4 induces reparative phenotype of RPE cells and protects against retinal neurodegeneration via Nrf2 activation. Cell Death Dis 2022; 13:1056. [PMID: 36539414 PMCID: PMC9768119 DOI: 10.1038/s41419-022-05433-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 11/09/2022] [Accepted: 11/11/2022] [Indexed: 12/24/2022]
Abstract
Retinal degeneration is a kind of neurodegeneration characterized by progressive neuronal death and dysfunction of retinal pigment epithelium (RPE) cells, leading to permanent visual impairment. It still lacks effective therapeutic options and new drugs are highly warranted. In this study, we found the expression of IL-4, a critical regulator of immunity, was reduced in both patients and mouse models. Importantly, exogenous intravitreal IL-4 application could exert a novel neuroprotective effect, characterized by well-preserved RPE layer and neuroretinal structure, as well as amplified wave-amplitudes in ERG. The RNA-seq analysis revealed that IL-4 treatment suppressed the essential oxidative and pro-inflammatory pathways in the degenerative retina. Particularly, IL-4 upregulated the IL-4Rα on RPE cells and induced a reparative phenotype via the activation of Nrf2 both in vitro and in vivo. Furthermore, the Nrf2-/- mice displayed no recovery in response to IL-4 application, highlighting a significant role of Nrf2 in IL-4-mediated protection. Our data provides evidence that IL-4 protects against retinal neurodegeneration by its antioxidant and anti-inflammatory property through IL-4Rα upregulation and Nrf2 activation in RPE cells. The IL-4/IL-4Rα-Nrf2 axis maybe the potential targets for the development of novel therapies for neurodegenerative diseases.
Collapse
Affiliation(s)
- Tian Zhou
- grid.12981.330000 0001 2360 039XState Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, 510060 Guangzhou, China
| | - Ziqi Yang
- grid.12981.330000 0001 2360 039XState Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, 510060 Guangzhou, China
| | - Biyan Ni
- grid.12981.330000 0001 2360 039XState Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, 510060 Guangzhou, China
| | - Hong Zhou
- grid.12981.330000 0001 2360 039XState Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, 510060 Guangzhou, China
| | - Huiyi Xu
- grid.12981.330000 0001 2360 039XState Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, 510060 Guangzhou, China
| | - Xiaojing Lin
- grid.12981.330000 0001 2360 039XState Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, 510060 Guangzhou, China
| | - Yingmin Li
- grid.12981.330000 0001 2360 039XState Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, 510060 Guangzhou, China
| | - Chunqiao Liu
- grid.12981.330000 0001 2360 039XState Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, 510060 Guangzhou, China
| | - Rong Ju
- grid.12981.330000 0001 2360 039XState Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, 510060 Guangzhou, China
| | - Jian Ge
- grid.12981.330000 0001 2360 039XState Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, 510060 Guangzhou, China
| | - Chang He
- grid.12981.330000 0001 2360 039XState Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, 510060 Guangzhou, China
| | - Xialin Liu
- grid.12981.330000 0001 2360 039XState Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, 510060 Guangzhou, China
| |
Collapse
|
11
|
Scruggs BA, Bhattarai S, Helms M, Cherascu I, Salesevic A, Stalter E, Laird J, Baker SA, Drack AV. AAV2/4-RS1 gene therapy in the retinoschisin knockout mouse model of X-linked retinoschisis. PLoS One 2022; 17:e0276298. [PMID: 36477475 PMCID: PMC9728878 DOI: 10.1371/journal.pone.0276298] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 10/04/2022] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVE To evaluate efficacy of a novel adeno-associated virus (AAV) vector, AAV2/4-RS1, for retinal rescue in the retinoschisin knockout (Rs1-KO) mouse model of X-linked retinoschisis (XLRS). Brinzolamide (Azopt®), a carbonic anhydrase inhibitor, was tested for its ability to potentiate the effects of AAV2/4-RS1. METHODS AAV2/4-RS1 with a cytomegalovirus (CMV) promoter (2x1012 viral genomes/mL) was delivered to Rs1-KO mice via intravitreal (N = 5; 1μL) or subretinal (N = 21; 2μL) injections at postnatal day 60-90. Eleven mice treated with subretinal therapy also received topical Azopt® twice a day. Serial full field electroretinography (ERG) was performed starting at day 50-60 post-injection. Mice were evaluated using a visually guided swim assay (VGSA) in light and dark conditions. The experimental groups were compared to untreated Rs1-KO (N = 11), wild-type (N = 12), and Rs1-KO mice receiving only Azopt® (N = 5). Immunofluorescence staining was performed to assess RS1 protein expression following treatment. RESULTS The ERG b/a ratio was significantly higher in the subretinal plus Azopt® (p<0.0001), subretinal without Azopt® (p = 0.0002), and intravitreal (p = 0.01) treated eyes compared to untreated eyes. There was a highly significant subretinal treatment effect on ERG amplitudes collectively at 7-9 months post-injection (p = 0.0003). Cones showed more effect than rods. The subretinal group showed improved time to platform in the dark VGSA compared to untreated mice (p<0.0001). RS1 protein expression was detected in the outer retina in subretinal treated mice and in the inner retina in intravitreal treated mice. CONCLUSIONS AAV2/4-RS1 shows promise for improving retinal phenotype in the Rs1-KO mouse model. Subretinal delivery was superior to intravitreal. Topical brinzolamide did not improve efficacy. AAV2/4-RS1 may be considered as a potential treatment for XLRS patients.
Collapse
Affiliation(s)
- Brittni A. Scruggs
- University of Iowa Institute for Vision Research and the Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, Iowa, United States of America
| | - Sajag Bhattarai
- University of Iowa Institute for Vision Research and the Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, Iowa, United States of America
| | - Megan Helms
- University of Iowa Institute for Vision Research and the Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, Iowa, United States of America
| | - Ioana Cherascu
- University of Iowa Institute for Vision Research and the Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, Iowa, United States of America
| | - Adisa Salesevic
- University of Iowa Institute for Vision Research and the Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, Iowa, United States of America
| | - Elliot Stalter
- University of Iowa Institute for Vision Research and the Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, Iowa, United States of America
- Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Joseph Laird
- Department of Biochemistry, University of Iowa, Iowa City, Iowa, United States of America
| | - Sheila A. Baker
- University of Iowa Institute for Vision Research and the Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, Iowa, United States of America
- Department of Biochemistry, University of Iowa, Iowa City, Iowa, United States of America
- Interdisciplinary Graduate Program in Genetics, University of Iowa, Iowa City, Iowa, United States of America
| | - Arlene V. Drack
- University of Iowa Institute for Vision Research and the Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, Iowa, United States of America
- Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
- Interdisciplinary Graduate Program in Genetics, University of Iowa, Iowa City, Iowa, United States of America
- Department of Pediatrics, University of Iowa, Iowa City, Iowa, United States of America
| |
Collapse
|
12
|
Ye EA, Zeng Y, Thomas S, Sun N, Smit-McBride Z, Sieving PA. XLRS Rat with Rs1 -/Y Exon-1-Del Shows Failure of Early Postnatal Outer Retina Development. Genes (Basel) 2022; 13:1995. [PMID: 36360232 PMCID: PMC9690472 DOI: 10.3390/genes13111995] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/24/2022] [Accepted: 10/26/2022] [Indexed: 05/19/2024] Open
Abstract
We generated a Long Evans transgenic rat with targeted deletion of the whole Rs1 exon-1 and evaluated the pathological retinal phenotype of this Rs1-/Y rat model of X-linked retinoschisis (XLRS). The Rs1-/Y rat exhibited very early onset and rapidly progressive photoreceptor degeneration. The outer limiting membrane (OLM) was disrupted and discontinuous by post-natal day (P15) and allowed photoreceptor nuclei to dislocate from the outer nuclear layers (ONL) into the sub-retinal side of the OLM. Dark-adapted electroretinogram (ERG) a-wave and b-wave amplitudes were considerably reduced to only 20-25% of WT by P17. Microglia and Müller glial showed cell marker activation by P7. Intravitreal application of AAV8-RS1 at P5-6 induced RS1 expression by P15 and rescued the inner nuclear layer (INL) and outer plexiform layer (OPL) cavity formation otherwise present at P15, and the outer-retinal structure was less disrupted. This Rs1-/Y exon-1-del rat model displays substantially faster rod cell loss compared to the exon-1-del Rs1-KO mouse. Most unexpected was the rapid appearance of schisis cavities between P7 and P15, and then cavities rapidly disappeared by P21/P30. The rat model provides clues on the molecular and cellular mechanisms underlying XLRS pathology in this model and points to a substantial and early changes to normal retinal development.
Collapse
Affiliation(s)
- Eun-Ah Ye
- Department of Human Anatomy and Cell Biology, University of California Davis, Davis, CA 95616, USA
| | - Yong Zeng
- National Eye Institute, National Institute of Health, Bethesda, MD 20892, USA
| | - Serafina Thomas
- Department of Human Anatomy and Cell Biology, University of California Davis, Davis, CA 95616, USA
| | - Ning Sun
- Department of Human Anatomy and Cell Biology, University of California Davis, Davis, CA 95616, USA
| | - Zeljka Smit-McBride
- Department of Ophthalmology, University of California Davis, Davis, CA 95616, USA
| | - Paul A. Sieving
- Department of Ophthalmology, University of California Davis, Davis, CA 95616, USA
| |
Collapse
|
13
|
Vijayasarathy C, Zeng Y, Marangoni D, Dong L, Pan ZH, Simpson EM, Fariss RN, Sieving PA. Targeted Expression of Retinoschisin by Retinal Bipolar Cells in XLRS Promotes Resolution of Retinoschisis Cysts Sans RS1 From Photoreceptors. Invest Ophthalmol Vis Sci 2022; 63:8. [PMID: 36227606 PMCID: PMC9583743 DOI: 10.1167/iovs.63.11.8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 09/18/2022] [Indexed: 01/14/2023] Open
Abstract
Purpose Loss of retinoschisin (RS1) function underlies X-linked retinoschisis (XLRS) pathology. In the retina, both photoreceptor inner segments and bipolar cells express RS1. However, the loss of RS1 function causes schisis primarily in the inner retina. To understand these cell type-specific phenotypes, we decoupled RS1 effects in bipolar cells from that in photoreceptors. Methods Bipolar cell transgene RS1 expression was achieved using two inner retina-specific promoters: (1) a minimal promoter engineered from glutamate receptor, metabotropic glutamate receptor 6 gene (mini-mGluR6/ Grm6) and (2) MiniPromoter (Ple155). Adeno-associated virus vectors encoding RS1 gene under either the mini-mGluR6 or Ple-155 promoter were delivered to the XLRS mouse retina through intravitreal or subretinal injection on postnatal day 14. Retinal structure and function were assessed 5 weeks later: immunohistochemistry for morphological characterization, optical coherence tomography and electroretinography (ERG) for structural and functional evaluation. Results Immunohistochemical analysis of RS1expression showed that expression with the MiniPromoter (Ple155) was heavily enriched in bipolar cells. Despite variations in vector penetrance and gene transfer efficiency across the injected retinas, those retinal areas with robust bipolar cell RS1 expression showed tightly packed bipolar cells with fewer cavities and marked improvement in inner retinal structure and synaptic function as judged by optical coherence tomography and electroretinography, respectively. Conclusions These results demonstrate that RS1 gene expression primarily in bipolar cells of the XLRS mouse retina, independent of photoreceptor expression, can ameliorate retinoschisis structural pathology and provide further evidence of RS1 role in cell adhesion.
Collapse
Affiliation(s)
- Camasamudram Vijayasarathy
- Section for Translational Research in Retinal and Macular Degeneration, National Institutes of Health, Bethesda, Maryland, United States
| | - Yong Zeng
- Section for Translational Research in Retinal and Macular Degeneration, National Institutes of Health, Bethesda, Maryland, United States
| | - Dario Marangoni
- Section for Translational Research in Retinal and Macular Degeneration, National Institutes of Health, Bethesda, Maryland, United States
| | - Lijin Dong
- Genetic Engineering Facility, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Zhuo-Hua Pan
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, Michigan, United States
| | - Elizabeth M. Simpson
- Centre for Molecular Medicine and Therapeutics at BC Children's Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - Robert N. Fariss
- Biological Imaging Core, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Paul A. Sieving
- Section for Translational Research in Retinal and Macular Degeneration, National Institutes of Health, Bethesda, Maryland, United States
- Center for Ocular Regenerative Therapy, Department of Ophthalmology, University of California Davis, United States
| |
Collapse
|
14
|
Sethna S, Zein WM, Riaz S, Giese AP, Schultz JM, Duncan T, Hufnagel RB, Brewer CC, Griffith AJ, Redmond TM, Riazuddin S, Friedman TB, Ahmed ZM. Proposed therapy, developed in a Pcdh15-deficient mouse, for progressive loss of vision in human Usher syndrome. eLife 2021; 10:67361. [PMID: 34751129 PMCID: PMC8577840 DOI: 10.7554/elife.67361] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 10/20/2021] [Indexed: 12/15/2022] Open
Abstract
Usher syndrome type I (USH1) is characterized by deafness, vestibular areflexia, and progressive retinal degeneration. The protein-truncating p.Arg245* founder variant of PCDH15 (USH1F) has an ~2% carrier frequency amongst Ashkenazi Jews accounts for ~60% of their USH1 cases. Here, longitudinal phenotyping in 13 USH1F individuals revealed progressive retinal degeneration, leading to severe vision loss with macular atrophy by the sixth decade. Half of the affected individuals were legally blind by their mid-50s. The mouse Pcdh15R250X variant is equivalent to human p.Arg245*. Homozygous Pcdh15R250X mice also have visual deficits and aberrant light-dependent translocation of the phototransduction cascade proteins, arrestin, and transducin. Retinal pigment epithelium (RPE)-specific retinoid cycle proteins, RPE65 and CRALBP, were also reduced in Pcdh15R250X mice, indicating a dual role for protocadherin-15 in photoreceptors and RPE. Exogenous 9-cis retinal improved ERG amplitudes in Pcdh15R250X mice, suggesting a basis for a clinical trial of FDA-approved retinoids to preserve vision in USH1F patients.
Collapse
Affiliation(s)
- Saumil Sethna
- Department of Otorhinolaryngology - Head & Neck Surgery, University of Maryland School of Medicine, Baltimore, United States
| | - Wadih M Zein
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, United States
| | - Sehar Riaz
- Department of Otorhinolaryngology - Head & Neck Surgery, University of Maryland School of Medicine, Baltimore, United States.,National Center of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Arnaud Pj Giese
- Department of Otorhinolaryngology - Head & Neck Surgery, University of Maryland School of Medicine, Baltimore, United States
| | - Julie M Schultz
- Laboratory of Molecular Genetics, National Institute of Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, United States
| | - Todd Duncan
- Laboratory of Retinal Cell and Molecular Biology, National Eye Institute, National Institutes of Health, Bethesda, United States
| | - Robert B Hufnagel
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, United States
| | - Carmen C Brewer
- Otolaryngology Branch, National Institute of Deafness and Other Communication Disorders, Bethesda, United States
| | - Andrew J Griffith
- Otolaryngology Branch, National Institute of Deafness and Other Communication Disorders, Bethesda, United States
| | - T Michael Redmond
- Laboratory of Retinal Cell and Molecular Biology, National Eye Institute, National Institutes of Health, Bethesda, United States
| | - Saima Riazuddin
- Department of Otorhinolaryngology - Head & Neck Surgery, University of Maryland School of Medicine, Baltimore, United States
| | - Thomas B Friedman
- Laboratory of Molecular Genetics, National Institute of Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, United States
| | - Zubair M Ahmed
- Department of Otorhinolaryngology - Head & Neck Surgery, University of Maryland School of Medicine, Baltimore, United States.,Departments of Ophthalmology and Visual Sciences, University of Maryland School of Medicine, Baltimore, United States.,Departments of Molecular Biology and Biochemistry, University of Maryland School of Medicine, Baltimore, United States
| |
Collapse
|
15
|
|
16
|
Zeng Y, Qian H, Campos MM, Li Y, Vijayasarathy C, Sieving PA. Rs1h -/y exon 3-del rat model of X-linked retinoschisis with early onset and rapid phenotype is rescued by RS1 supplementation. Gene Ther 2021; 29:431-440. [PMID: 34548657 PMCID: PMC8938309 DOI: 10.1038/s41434-021-00290-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 08/03/2021] [Accepted: 08/18/2021] [Indexed: 12/27/2022]
Abstract
Animal models of X-linked juvenile retinoschisis (XLRS) are valuable tools for understanding basic biochemical function of retinoschisin (RS1) protein and to investigate outcomes of preclinical efficacy and toxicity studies. In order to work with an eye larger than mouse, we generated and characterized an Rs1h−/y knockout rat model created by removing exon 3. This rat model expresses no normal RS1 protein. The model shares features of an early onset and more severe phenotype of human XLRS. The morphologic pathology includes schisis cavities at postnatal day 15 (p15), photoreceptors that are misplaced into the subretinal space and OPL, and a reduction of photoreceptor cell numbers by p21. By 6 mo age only 1–3 rows of photoreceptors nuclei remain, and the inner/outer segment layers and the OPL shows major changes. Electroretinogram recordings show functional loss with considerable reduction of both the a-wave and b-wave by p28, indicating early age loss and dysfunction of photoreceptors. The ratio of b-/a-wave amplitudes indicates impaired synaptic transmission to bipolar cells in addition. Supplementing the Rs1h−/y exon3-del retina with normal human RS1 protein using AAV8-RS1 delivery improved the retinal structure. This Rs1h−/y rat model provides a further tool to explore underlying mechanisms of XLRS pathology and to evaluate therapeutic intervention for the XLRS condition.
Collapse
Affiliation(s)
- Yong Zeng
- National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Haohua Qian
- National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | | | - Yichao Li
- National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | | | - Paul A Sieving
- National Eye Institute, National Institutes of Health, Bethesda, MD, USA. .,Department of Ophthalmology, University of California Davis, Sacramento, CA, USA. .,Center for Ocular Regenerative Therapy, Department of Ophthalmology and Vision Science, University of California Davis, Sacramento, CA, USA.
| |
Collapse
|
17
|
Vijaysarathy C, Babu Sardar Pasha SP, Sieving PA. Of men and mice: Human X-linked retinoschisis and fidelity in mouse modeling. Prog Retin Eye Res 2021; 87:100999. [PMID: 34390869 DOI: 10.1016/j.preteyeres.2021.100999] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 08/02/2021] [Accepted: 08/06/2021] [Indexed: 02/07/2023]
Abstract
X-linked Retinoschisis (XLRS) is an early-onset transretinal dystrophy, often with a prominent macular component, that affects males and generally spares heterozygous females because of X-linked recessive inheritance. It results from loss-of-function RS1 gene mutations on the X-chromosome. XLRS causes bilateral reduced acuities from young age, and on clinical exam and by ocular coherence tomography (OCT) the neurosensory retina shows foveo-macular cystic schisis cavities in the outer plexiform (OPL) and inner nuclear layers (INL). XLRS manifests between infancy and school-age with variable phenotypic presentation and without reliable genotype-phenotype correlations. INL disorganization disrupts synaptic signal transmission from photoreceptors to ON-bipolar cells, and this reduces the electroretinogram (ERG) bipolar b-wave disproportionately to photoreceptor a-wave changes. RS1 gene expression is localized mainly to photoreceptors and INL bipolar neurons, and RS1 protein is thought to play a critical cell adhesion role during normal retinal development and later for maintenance of retinal structure. Several independent XLRS mouse models with mutant RS1 were created that recapitulate features of human XLRS disease, with OPL-INL schisis cavities, early onset and variable phenotype across mutant models, and reduced ERG b-wave to a-wave amplitude ratio. The faithful phenotype of the XLRS mouse has assisted in delineating the disease pathophysiology. Delivery to XLRS mouse retina of an AAV8-RS1 construct under control of the RS1 promoter restores the retinal structure and synaptic function (with increase of b-wave amplitude). It also ameliorates the schisis-induced inflammatory microglia phenotype toward a state of immune quiescence. The results imply that XLRS gene therapy could yield therapeutic benefit to preserve morphological and functional retina particularly when intervention is conducted at earlier ages before retinal degeneration becomes irreversible. A phase I/IIa single-center, open-label, three-dose-escalation clinical trial reported a suitable safety and tolerability profile of intravitreally administered AAV8-RS1 gene replacement therapy for XLRS participants. Dose-related ocular inflammation occurred after dosing, but this resolved with topical and oral corticosteroids. Systemic antibodies against AAV8 increased in dose-dependent fashion, but no antibodies were observed against the RS1 protein. Retinal cavities closed transiently in one participant. Technological innovations in methods of gene delivery and strategies to further reduce immune responses are expected to enhance the therapeutic efficacy of the vector and ultimate success of a gene therapy approach.
Collapse
Affiliation(s)
| | | | - Paul A Sieving
- National Eye Institute, National Institutes of Health, Bethesda, Maryland, 20892, USA; Department of Ophthalmology, University of California Davis, 95817, USA.
| |
Collapse
|
18
|
Vijayasarathy C, Zeng Y, Brooks MJ, Fariss RN, Sieving PA. Genetic Rescue of X-Linked Retinoschisis Mouse ( Rs1-/y) Retina Induces Quiescence of the Retinal Microglial Inflammatory State Following AAV8- RS1 Gene Transfer and Identifies Gene Networks Underlying Retinal Recovery. Hum Gene Ther 2020; 32:667-681. [PMID: 33019822 PMCID: PMC8312029 DOI: 10.1089/hum.2020.213] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
To understand RS1 gene interaction networks in the X-linked retinoschisis (XLRS) mouse retina (Rs1-/y), we analyzed the transcriptome by RNA sequencing before and after in vivo expression of exogenous retinoschisin (RS1) gene delivered by AAV8. RS1 is a secreted cell adhesion protein that is critical for maintaining structural lamination and synaptic integrity of the neural retina. RS1 loss-of-function mutations cause XLRS disease in young boys and men, with splitting ("schisis") of retinal layers and synaptic dysfunction that cause progressive vision loss with age. Analysis of differential gene expression profiles and pathway enrichment analysis of Rs1-KO (Rs1-/y) retina identified cell surface receptor signaling and positive regulation of cell adhesion as potential RS1 gene interaction networks. Most importantly, it also showed massive dysregulation of immune response genes at early age, with characteristics of a microglia-driven proinflammatory state. Delivery of AAV8-RS1 primed the Rs1-KO retina toward structural and functional recovery. The disease transcriptome transitioned toward a recovery phase with upregulation of genes implicated in wound healing, anatomical structure (camera type eye) development, metabolic pathways, and collagen IV networks that provide mechanical stability to basement membrane. AAV8-RS1 expression also attenuated the microglia gene signatures to low levels toward immune quiescence. This study is among the first to identify RS1 gene interaction networks that underlie retinal structural and functional recovery after RS1 gene therapy. Significantly, it also shows that providing wild-type RS1 gene function caused the retina immune status to transition from a degenerative inflammatory phenotype toward immune quiescence, even though the transgene is not directly linked to microglia function. This study indicates that inhibition of microglial proinflammatory responses is an integral part of therapeutic rescue in XLRS gene therapy, and gene therapy might realize its full potential if delivered before microglia activation and photoreceptor cell death. Clinical Trials. gov Identifier NTC 02317887.
Collapse
Affiliation(s)
| | - Yong Zeng
- Section for Translational Research in Retinal and Macular Degeneration
| | | | - Robert N Fariss
- Biological Imaging Core, National Eye Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Paul A Sieving
- Department of Ophthalmology, Center for Ocular Regenerative Therapy, School of Medicine, University of California at Davis, Sacramento, CA, USA
| |
Collapse
|
19
|
Sher I, Moverman D, Ketter-Katz H, Moisseiev E, Rotenstreich Y. In vivo retinal imaging in translational regenerative research. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:1096. [PMID: 33145315 PMCID: PMC7575995 DOI: 10.21037/atm-20-4355] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Regenerative translational studies must include a longitudinal assessment of the changes in retinal structure and function that occur as part of the natural history of the disease and those that result from the studied intervention. Traditionally, retinal structural changes have been evaluated by histological analysis which necessitates sacrificing the animals. In this review, we describe key imaging approaches such as fundus imaging, optical coherence tomography (OCT), OCT-angiography, adaptive optics (AO), and confocal scanning laser ophthalmoscopy (cSLO) that enable noninvasive, non-contact, and fast in vivo imaging of the posterior segment. These imaging technologies substantially reduce the number of animals needed and enable progression analysis and longitudinal follow-up in individual animals for accurate assessment of disease natural history, effects of interventions and acute changes. We also describe the benefits and limitations of each technology, as well as outline possible future directions that can be taken in translational retinal imaging studies.
Collapse
Affiliation(s)
- Ifat Sher
- Goldschleger Eye Institute, Sheba Medical Center, Tel-Hashomer, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Daniel Moverman
- Goldschleger Eye Institute, Sheba Medical Center, Tel-Hashomer, Israel
| | - Hadas Ketter-Katz
- Goldschleger Eye Institute, Sheba Medical Center, Tel-Hashomer, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Elad Moisseiev
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Department of Ophthalmology, Meir Medical Center, Kfar Saba, Israel
| | - Ygal Rotenstreich
- Goldschleger Eye Institute, Sheba Medical Center, Tel-Hashomer, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
20
|
Zeng Y, Boyd R, Bartoe J, Wiley HE, Marangoni D, Wei LL, Sieving PA. "Para-retinal" Vector Administration into the Deep Vitreous Enhances Retinal Transgene Expression. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2020; 18:422-427. [PMID: 32695844 PMCID: PMC7363691 DOI: 10.1016/j.omtm.2020.06.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 06/18/2020] [Indexed: 01/22/2023]
Abstract
Intravitreal administration for human adeno-associated vector (AAV) delivery is easier and less traumatic to ocular tissues than subretinal injection, but it gives limited retinal transduction. AAV vectors are large (about 4,000 kDa) compared with most intraocular drugs, such as ranibizumab (48 kDa), and the large size impedes diffusion to reach the retina from the usual injection site in the anterior/mid-vitreous. Intuitively, a preferred placement for the vector would be deep in the vitreous near the retina, which we term “para-retinal” delivery. We explored the consequences of para-retinal intravitreal delivery in the rabbit eye and in non-human primate (NHP) eye. 1 h after para-retinal administration in the rabbit eye, the vector concentration near the retina remained four times greater than in the anterior vitreous, indicating limited vector diffusion through the gelatinous vitreous matrix. In NHP, para-retinal placement showed greater transduction in the fovea than vector applied in the mid-vitreous. More efficient retinal delivery translates to using lower vector doses, with reduced risk of ocular inflammatory exposure. These results indicate that para-retinal delivery yields more effective vector concentration near the retina, thereby increasing the potential for better retinal transduction in human clinical application.
Collapse
Affiliation(s)
- Yong Zeng
- National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Ryan Boyd
- Charles River Laboratories, Matawan, MI, USA
| | | | - Henry E Wiley
- National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Dario Marangoni
- National Eye Institute, National Institutes of Health, Bethesda, MD, USA.,Department of Ophthalmology, University of Pennsylvania, Philadelphia, PA, USA
| | - Lisa L Wei
- National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Paul A Sieving
- National Eye Institute, National Institutes of Health, Bethesda, MD, USA.,Center for Ocular Regenerative Therapy; Department of Ophthalmology, University of California at Davis, Sacramento, CA, USA
| |
Collapse
|
21
|
Cuenca N, Ortuño-Lizarán I, Sánchez-Sáez X, Kutsyr O, Albertos-Arranz H, Fernández-Sánchez L, Martínez-Gil N, Noailles A, López-Garrido JA, López-Gálvez M, Lax P, Maneu V, Pinilla I. Interpretation of OCT and OCTA images from a histological approach: Clinical and experimental implications. Prog Retin Eye Res 2020; 77:100828. [PMID: 31911236 DOI: 10.1016/j.preteyeres.2019.100828] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 12/16/2019] [Accepted: 12/30/2019] [Indexed: 12/17/2022]
Abstract
Optical coherence tomography (OCT) and OCT angiography (OCTA) have been a technological breakthrough in the diagnosis, treatment, and follow-up of many retinal diseases, thanks to its resolution and its ability to inform of the retinal state in seconds, which gives relevant information about retinal degeneration. In this review, we present an immunohistochemical description of the human and mice retina and we correlate it with the OCT bands in health and pathological conditions. Here, we propose an interpretation of the four outer hyperreflective OCT bands with a correspondence to retinal histology: the first and innermost band as the external limiting membrane (ELM), the second band as the cone ellipsoid zone (EZ), the third band as the outer segment tips phagocytosed by the pigment epithelium (PhaZ), and the fourth band as the mitochondria in the basal portion of the RPE (RPEmitZ). The integrity of these bands would reflect the health of photoreceptors and retinal pigment epithelium. Moreover, we describe how the vascular plexuses vary in different regions of the healthy human and mice retina, using OCTA and immunohistochemistry. In humans, four, three, two or one plexuses can be observed depending on the distance from the fovea. Also, specific structures such as vascular loops in the intermediate capillary plexus, or spider-like structures of interconnected capillaries in the deep capillary plexus are found. In mice, three vascular plexuses occupy the whole retina, except in the most peripheral retina where only two plexuses are found. These morphological issues should be considered when assessing a pathology, as some retinal diseases are associated with structural changes in blood vessels. Therefore, the analysis of OCT bands and OCTA vascular plexuses may be complementary for the diagnosis and prognosis of retinal degenerative processes, useful to assess therapeutic approaches, and it is usually correlated to visual acuity.
Collapse
Affiliation(s)
- Nicolás Cuenca
- Department of Physiology, Genetics and Microbiology, University of Alicante, Spain; Institute Ramón Margalef, University of Alicante, Alicante, Spain.
| | | | - Xavier Sánchez-Sáez
- Department of Physiology, Genetics and Microbiology, University of Alicante, Spain
| | - Oksana Kutsyr
- Department of Physiology, Genetics and Microbiology, University of Alicante, Spain
| | | | | | - Natalia Martínez-Gil
- Department of Physiology, Genetics and Microbiology, University of Alicante, Spain
| | - Agustina Noailles
- Department of Physiology, Genetics and Microbiology, University of Alicante, Spain
| | | | | | - Pedro Lax
- Department of Physiology, Genetics and Microbiology, University of Alicante, Spain
| | - Victoria Maneu
- Department of Optics, Pharmacology and Anatomy, University of Alicante, Spain
| | - Isabel Pinilla
- Department of Ophthalmology, Lozano Blesa, University Hospital, Zaragoza, Spain
| |
Collapse
|
22
|
Yang TC, Chang CY, Yarmishyn AA, Mao YS, Yang YP, Wang ML, Hsu CC, Yang HY, Hwang DK, Chen SJ, Tsai ML, Lai YH, Tzeng Y, Chang CC, Chiou SH. Carboxylated nanodiamond-mediated CRISPR-Cas9 delivery of human retinoschisis mutation into human iPSCs and mouse retina. Acta Biomater 2020; 101:484-494. [PMID: 31672582 DOI: 10.1016/j.actbio.2019.10.037] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 10/14/2019] [Accepted: 10/24/2019] [Indexed: 01/08/2023]
Abstract
Nanodiamonds (NDs) are considered to be relatively safe carbon nanomaterials used for the transmission of DNA, proteins and drugs. The feasibility of utilizing the NDs to deliver CRISPR-Cas9 system for gene editing has not been clearly studied. Therefore, in this study, we aimed to use NDs as the carriers of CRISPR-Cas9 components designed to introduce the mutation in RS1 gene associated with X-linked retinoschisis (XLRS). ND particles with a diameter of 3 nm were functionalized by carboxylation of the surface and covalently conjugated with fluorescent mCherry protein. Two linear DNA constructs were attached to the conjugated mCherry: one encoded Cas9 endonuclease and GFP reporter, another encoded sgRNA and contained insert of HDR template designed to introduce RS1 c.625C>T mutation. Such nanoparticles were successfully delivered and internalized by human iPSCs and mouse retinas, the efficiency of internalization was significantly improved by mixing with BSA. The delivery of ND particles led to introduction of RS1 c.625C>T mutation in both human iPSCs and mouse retinas. Rs1 gene editing in mouse retinas resulted in several pathological features typical for XLRS, such as aberrant photoreceptor structure. To conclude, our ND-based CRISPR-Cas9 delivery system can be utilized as a tool for creating in vitro and in vivo disease models of XLRS. STATEMENT OF SIGNIFICANCE: X-linked retinoschisis (XLRS) is a prevalent hereditary retinal disease, which is caused by mutations in RS1 gene, whose product is important for structural organization of the retina. The recent development of genome editing techniques such as CRISPR-Cas9 significantly improved the prospects for better understanding the pathology and development of treatment for this disease. Firstly, gene editing can allow development of appropriate in vitro and in vivo disease models; secondly, CRISPR-Cas9 can be applied for gene therapy by removing the disease-causative mutation in vivo. The major prerequisite for these approaches is to develop safe and efficient CRISPR-Cas9 delivery system. In this study, we tested specifically modified nanodiamonds for such a delivery system. We were able to introduce Rs1 mutation into the mouse retina and, importantly, observed several XLRS-specific effects.
Collapse
|
23
|
Joe MK, Li W, Hiriyanna S, Yu W, Shah SA, Abu-Asab M, Qian H, Wu Z. A Common Outer Retinal Change in Retinal Degeneration by Optical Coherence Tomography Can Be Used to Assess Outcomes of Gene Therapy. Hum Gene Ther 2019; 30:1520-1530. [PMID: 31672061 DOI: 10.1089/hum.2019.162] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Identifying early disease hallmarks in animal models with slow disease progression may expedite disease detection and assessment of treatment outcomes. Using optical coherence tomography, a widely applied noninvasive method for monitoring retinal structure changes, we analyzed retinal optical sections from six mouse lines with retinal degeneration caused by mutations in different disease-causing genes. While images from wild-type mice revealed four well-separated hyper-reflective bands in the outer retina (designated as outer retina reflective bands, ORRBs) at all ages, the second band (ORRB2) and the third band (ORRB3) were merged in retinas of five mutant mouse lines at early ages, suggesting the pathological nature of this alteration. This ORRB change appeared to be degenerating photoreceptor related, and occurred before obvious morphological changes that can be identified on both hematoxylin and eosin-stained sections and electron microscopic sections. Importantly, the merging of ORRB2 and ORRB3 was reversed by treatment with adeno-associated viral vector-mediated gene replacement therapies, and this restoration occurred much earlier than measurable functional or structural improvement. Our data suggest that the ORRB change could be a common hallmark of early retinal degeneration and its restoration could be used for rapid and noninvasive assessment of therapeutic effects following gene therapy or other treatment interventions.
Collapse
Affiliation(s)
- Myung Kuk Joe
- Ocular Gene Therapy Core, National Eye Institute, National Institutes of Health, Bethesda, Maryland
| | - Wenbo Li
- Ocular Gene Therapy Core, National Eye Institute, National Institutes of Health, Bethesda, Maryland
| | - Suja Hiriyanna
- Ocular Gene Therapy Core, National Eye Institute, National Institutes of Health, Bethesda, Maryland
| | - Wenhan Yu
- Ocular Gene Therapy Core, National Eye Institute, National Institutes of Health, Bethesda, Maryland
| | - Shreya A Shah
- Ocular Gene Therapy Core, National Eye Institute, National Institutes of Health, Bethesda, Maryland
| | - Mones Abu-Asab
- Histopathology Core, National Eye Institute, National Institutes of Health, Bethesda, Maryland
| | - Haohua Qian
- Visual Function Core, National Eye Institute, National Institutes of Health, Bethesda, Maryland
| | - Zhijian Wu
- Ocular Gene Therapy Core, National Eye Institute, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
24
|
Wide-Field Swept-Source OCT and Angiography in X-Linked Retinoschisis. ACTA ACUST UNITED AC 2019; 3:178-185. [DOI: 10.1016/j.oret.2018.09.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 08/28/2018] [Accepted: 09/10/2018] [Indexed: 11/17/2022]
|
25
|
Takahashi VKL, Takiuti JT, Jauregui R, Tsang SH. Gene therapy in inherited retinal degenerative diseases, a review. Ophthalmic Genet 2018; 39:560-568. [PMID: 30040511 DOI: 10.1080/13816810.2018.1495745] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Hereditary diseases of the retina represent a group of diseases with several heterogeneous mutations that have the common end result of progressive photoreceptor death leading to blindness. Retinal degenerations encompass multifactorial diseases such as age-related macular degeneration, Leber congenital amaurosis, Stargardt disease, and retinitis pigmentosa. Although there is currently no cure for degenerative retinal diseases, ophthalmology has been at the forefront of the development of gene therapy, which offers hope for the treatment of these conditions. This article will explore an overview of the clinical trials of gene supplementation therapy for retinal diseases that are underway or planned for the near future.
Collapse
Affiliation(s)
- Vitor K L Takahashi
- a Department of Ophthalmology , Columbia University , New York , NY , USA.,b Departments of Ophthalmology, Pathology & Cell Biology,Columbia Stem Cell Initiative, Institute of Human Nutrition , Jonas Children's Vision Care and Bernard & Shirlee Brown Glaucoma Laboratory, Columbia University , New York , NY , USA.,c Department of Ophthalmology , Federal University of São Paulo , São Paulo , Brazil
| | - Júlia T Takiuti
- a Department of Ophthalmology , Columbia University , New York , NY , USA.,b Departments of Ophthalmology, Pathology & Cell Biology,Columbia Stem Cell Initiative, Institute of Human Nutrition , Jonas Children's Vision Care and Bernard & Shirlee Brown Glaucoma Laboratory, Columbia University , New York , NY , USA.,d Division of Ophthalmology , University of São Paulo Medical School , São Paulo , Brazil
| | - Ruben Jauregui
- a Department of Ophthalmology , Columbia University , New York , NY , USA.,b Departments of Ophthalmology, Pathology & Cell Biology,Columbia Stem Cell Initiative, Institute of Human Nutrition , Jonas Children's Vision Care and Bernard & Shirlee Brown Glaucoma Laboratory, Columbia University , New York , NY , USA.,e Weill Cornell Medical College , New York , NY , USA
| | - Stephen H Tsang
- a Department of Ophthalmology , Columbia University , New York , NY , USA.,b Departments of Ophthalmology, Pathology & Cell Biology,Columbia Stem Cell Initiative, Institute of Human Nutrition , Jonas Children's Vision Care and Bernard & Shirlee Brown Glaucoma Laboratory, Columbia University , New York , NY , USA.,f Department of Pathology & Cell Biology, Stem Cell Initiative (CSCI), Institute of Human Nutrition, College of Physicians and Surgeons , Columbia University , New York , NY , USA
| |
Collapse
|
26
|
Bakall B, Klein KA, Hariprasad SM. Emerging Gene Therapy Treatments for Inherited Retinal Diseases. Ophthalmic Surg Lasers Imaging Retina 2018; 49:472-478. [DOI: 10.3928/23258160-20180628-02] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
27
|
Jauregui R, Cho GY, Takahashi VKL, Takiuti JT, Bassuk AG, Mahajan VB, Tsang SH. Caring for Hereditary Childhood Retinal Blindness. Asia Pac J Ophthalmol (Phila) 2018; 7:183-191. [PMID: 29536675 DOI: 10.22608/apo.201851] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Inherited retinal diseases (IRDs) are a major cause of incurable familial blindness in the Western world. In the pediatric population, IRDs are a major contributor to the 19 million children worldwide with visual impairment. Unfortunately, the road to the correct diagnosis is often complicated in the pediatric population, as typical diagnostic tools such as fundus examination, electrodiagnostic studies, and other imaging modalities may be difficult to perform in the pediatric patient. In this review, we describe the most significant IRDs with onset during the pediatric years (ie, before the age of 18). We describe the pathogenesis, clinical presentation, and potential treatment of these diseases. In addition, we advocate the use of a pedigree (family medical history), electroretinography, and genetic testing as the 3 most crucial tools for the correct diagnosis of IRDs in the pediatric population.
Collapse
Affiliation(s)
- Ruben Jauregui
- Department of Ophthalmology, Columbia University, New York, NY
- Jonas Children's Vision Care and Bernard & Shirlee Brown Glaucoma Laboratory, Department of Ophthalmology, Columbia University Medical Center, New York, NY
- Weill Cornell Medical College, New York, NY
| | - Galaxy Y Cho
- Department of Ophthalmology, Columbia University, New York, NY
- Jonas Children's Vision Care and Bernard & Shirlee Brown Glaucoma Laboratory, Department of Ophthalmology, Columbia University Medical Center, New York, NY
- Frank H. Netter MD School of Medicine, Quinnipiac University, North Haven, CT
| | - Vitor K L Takahashi
- Department of Ophthalmology, Columbia University, New York, NY
- Jonas Children's Vision Care and Bernard & Shirlee Brown Glaucoma Laboratory, Department of Ophthalmology, Columbia University Medical Center, New York, NY
- Department of Ophthalmology, Federal University of São Paulo, São Paulo, Brazil
| | - Julia T Takiuti
- Department of Ophthalmology, Columbia University, New York, NY
- Jonas Children's Vision Care and Bernard & Shirlee Brown Glaucoma Laboratory, Department of Ophthalmology, Columbia University Medical Center, New York, NY
- Division of Ophthalmology, University of São Paulo Medical School, São Paulo, Brazil
| | | | - Vinit B Mahajan
- Byers Eye Institute, Omics Laboratory, Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA
- Palo Alto Veterans Administration, Palo Alto, CA
| | - Stephen H Tsang
- Department of Ophthalmology, Columbia University, New York, NY
- Department of Pathology & Cell Biology, Stem Cell Initiative (CSCI), Institute of Human Nutrition, College of Physicians and Surgeons, Columbia University, New York, NY
| |
Collapse
|
28
|
Ito M, Ohno K. Protein-anchoring therapy to target extracellular matrix proteins to their physiological destinations. Matrix Biol 2018; 68-69:628-636. [PMID: 29475025 DOI: 10.1016/j.matbio.2018.02.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 02/15/2018] [Accepted: 02/16/2018] [Indexed: 12/21/2022]
Abstract
Endplate acetylcholinesterase (AChE) deficiency is a form of congenital myasthenic syndrome (CMS) caused by mutations in COLQ, which encodes collagen Q (ColQ). ColQ is an extracellular matrix (ECM) protein that anchors AChE to the synaptic basal lamina. Biglycan, encoded by BGN, is another ECM protein that binds to the dystrophin-associated protein complex (DAPC) on skeletal muscle, which links the actin cytoskeleton and ECM proteins to stabilize the sarcolemma during repeated muscle contractions. Upregulation of biglycan stabilizes the DPAC. Gene therapy can potentially ameliorate any disease that can be recapitulated in cultured cells. However, the difficulty of tissue-specific and developmental stage-specific regulated expression of transgenes, as well as the difficulty of introducing a transgene into all cells in a specific tissue, prevents us from successfully applying gene therapy to many human diseases. In contrast to intracellular proteins, an ECM protein is anchored to the target tissue via its specific binding affinity for protein(s) expressed on the cell surface within the target tissue. Exploiting this unique feature of ECM proteins, we developed protein-anchoring therapy in which a transgene product expressed even in remote tissues can be delivered and anchored to a target tissue using specific binding signals. We demonstrate the application of protein-anchoring therapy to two disease models. First, intravenous administration of adeno-associated virus (AAV) serotype 8-COLQ to Colq-deficient mice, resulting in specific anchoring of ectopically expressed ColQ-AChE at the NMJ, markedly improved motor functions, synaptic transmission, and the ultrastructure of the neuromuscular junction (NMJ). In the second example, Mdx mice, a model for Duchenne muscular dystrophy, were intravenously injected with AAV8-BGN. The treatment ameliorated motor deficits, mitigated muscle histopathologies, decreased plasma creatine kinase activities, and upregulated expression of utrophin and DAPC component proteins. We propose that protein-anchoring therapy could be applied to hereditary/acquired defects in ECM and secreted proteins, as well as therapeutic overexpression of such factors.
Collapse
Affiliation(s)
- Mikako Ito
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Japan.
| | - Kinji Ohno
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Japan
| |
Collapse
|
29
|
Chen D, Xu T, Tu M, Xu J, Zhou C, Cheng L, Yang R, Yang T, Zheng W, He X, Deng R, Ge X, Li J, Song Z, Zhao J, Gu F. Recapitulating X-Linked Juvenile Retinoschisis in Mouse Model by Knock-In Patient-Specific Novel Mutation. Front Mol Neurosci 2018; 10:453. [PMID: 29379415 PMCID: PMC5770790 DOI: 10.3389/fnmol.2017.00453] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 12/22/2017] [Indexed: 12/27/2022] Open
Abstract
X-linked juvenile retinoschisis (XLRS) is a retinal disease caused by mutations in the gene encoding retinoschisin (RS1), which leads to a significant proportion of visual impairment and blindness. To develop personalized genome editing based gene therapy, knock-in animal disease models that have the exact mutation identified in the patients is extremely crucial, and that the way which genome editing in knock-in animals could be easily transferred to the patients. Here we recruited a family diagnosed with XLRS and identified the causative mutation (RS1, p.Y65X), then a knock-in mouse model harboring this disease-causative mutation was generated via TALEN (transcription activator-like effector nucleases). We found that the b-wave amplitude of the ERG of the RS1-KI mice was significantly decreased. Moreover, we observed that the structure of retina in RS1-KI mice has become disordered, including the disarray of inner nuclear layer and outer nuclear layer, chaos of outer plexiform layer, decreased inner segments of photoreceptor and the loss of outer segments. The novel knock-in mice (RS1-KI) harboring patient-specific mutation will be valuable for development of treatment via genome editing mediated gene correction.
Collapse
Affiliation(s)
- Ding Chen
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, China.,Ministry of Health and Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, Wenzhou, China
| | - Tao Xu
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, China.,Ministry of Health and Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, Wenzhou, China
| | - Mengjun Tu
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, China.,Ministry of Health and Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, Wenzhou, China
| | - Jinlin Xu
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, China.,Ministry of Health and Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, Wenzhou, China
| | - Chenchen Zhou
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, China.,Ministry of Health and Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, Wenzhou, China
| | - Lulu Cheng
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, China.,Ministry of Health and Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, Wenzhou, China
| | - Ruqing Yang
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Tanchu Yang
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Weiwei Zheng
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, China.,Ministry of Health and Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, Wenzhou, China
| | - Xiubin He
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, China.,Ministry of Health and Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, Wenzhou, China
| | - Ruzhi Deng
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, China.,Ministry of Health and Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, Wenzhou, China
| | - Xianglian Ge
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, China.,Ministry of Health and Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, Wenzhou, China
| | - Jin Li
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, China.,Ministry of Health and Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, Wenzhou, China
| | - Zongming Song
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, China.,Ministry of Health and Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, Wenzhou, China.,Department of Ophthalmology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Junzhao Zhao
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Feng Gu
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, China.,Ministry of Health and Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, Wenzhou, China
| |
Collapse
|
30
|
Piermarocchi S, Miotto S, Colavito D, Del Giudice E, Leon A, Maritan V, Piermarocchi R, Tormene AP. Long-term rearrangement of retinal structures in a novel mutation of X-linked retinoschisis. Biomed Rep 2017; 7:241-246. [PMID: 28811895 DOI: 10.3892/br.2017.954] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 06/06/2017] [Indexed: 11/05/2022] Open
Abstract
The aim of the present study was to report a novel mutation in the retinoschisin 1 (RS1) gene in a Caucasian family affected by X-linked juvenile retinoschisis (XLRS) and to describe the long-term modification of retinal structure. Two brothers with an early onset maculopathy were diagnosed with XLRS. Fundus photography, fluorescein angiography, spectral domain optical coherence tomography and electroretinogram analyses were performed. Their sister was also examined. All subjects were screened for mutations in the RS1 gene. XLRS patients demonstrated a marked reduction of best-corrected visual acuity. SD-OCT scans reported a cystic degeneration primarily involving the inner nuclear layer, though some cysts were detected in the outer plexiform layer and in the ganglion cell layer. During the ten-year follow-up, a progressive retinal thickening and coalescence of the cysts was observed. Genetic testing revealed a novel mutation (p.Ile212Asn) in the RS1 gene in both XLRS patients, whereas their sister was not a genetic carrier. Several mutations of the RS1 gene were recognized to be responsible for XLRS. Although the correspondence between genotype and phenotype is still under debate, is reasonable that siblings affected by XLRS could share other genetic and/or epigenetic factors capable to influence clinical course of the disease.
Collapse
Affiliation(s)
| | - Stefania Miotto
- Ophthalmic Department, Unità Locale Socio-Sanitaria 6 Euganea, Camposampiero, I-35012 Padua, Italy
| | - Davide Colavito
- Research and Innovation (R&I Genetics) Srl, I-35127 Padua, Italy
| | - Elda Del Giudice
- Research and Innovation (R&I Genetics) Srl, I-35127 Padua, Italy
| | - Alberta Leon
- Research and Innovation (R&I Genetics) Srl, I-35127 Padua, Italy
| | - Veronica Maritan
- Ophthalmic Department, ULSS 6 Euganea, Monselice, I-35043 Padua, Italy
| | | | | |
Collapse
|
31
|
Marangoni D, Yong Z, Kjellström S, Vijayasarathy C, A Sieving P, Bush RA. Rearing Light Intensity Affects Inner Retinal Pathology in a Mouse Model of X-Linked Retinoschisis but Does Not Alter Gene Therapy Outcome. Invest Ophthalmol Vis Sci 2017; 58:1656-1664. [PMID: 28297725 PMCID: PMC5361586 DOI: 10.1167/iovs.16-21016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Purpose To test the effects of rearing light intensity on retinal function and morphology in the retinoschisis knockout (Rs1-KO) mouse model of X-linked retinoschisis, and whether it affects functional outcome of RS1 gene replacement. Methods Seventy-six Rs1-KO mice were reared in either cyclic low light (LL, 20 lux) or moderate light (ML, 300 lux) and analyzed at 1 and 4 months. Retinal function was assessed by electroretinogram and cavity size by optical coherence tomography. Expression of inward-rectifier K+ channel (Kir4.1), water channel aquaporin-4 (AQP4), and glial fibrillary acidic protein (GFAP) were analyzed by Western blotting. In a separate study, Rs1-KO mice reared in LL (n = 29) or ML (n = 27) received a unilateral intravitreal injection of scAAV8-hRs-IRBP at 21 days, and functional outcome was evaluated at 4 months by electroretinogram. Results At 1 month, no functional or structural differences were found between LL- or ML-reared Rs1-KO mice. At 4 months, ML-reared Rs1-KO mice showed significant reduction of b-wave amplitude and b-/a-wave ratio with no changes in a-wave, and a significant increase in cavity size, compared to LL-reared animals. Moderate light rearing increased Kir4.1 expression in Rs1-KO mice by 4 months, but not AQP4 and GFAP levels. Administration of scAAV8-hRS1-IRBP to Rs1-KO mice showed similar improvement of inner retinal ERG function independent of LL or ML rearing. Conclusions Rearing light conditions affect the development of retinal cavities and post-photoreceptor function in Rs1-KO mice. However, the effect of rearing light intensity does not interact with the efficacy of RS1 gene replacement in Rs1-KO mice.
Collapse
Affiliation(s)
- Dario Marangoni
- Section on Translational Research for Retinal and Macular Degeneration, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, Maryland, United States
| | - Zeng Yong
- Section on Translational Research for Retinal and Macular Degeneration, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, Maryland, United States
| | - Sten Kjellström
- Section on Translational Research for Retinal and Macular Degeneration, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, Maryland, United States
| | - Camasamudram Vijayasarathy
- Section on Translational Research for Retinal and Macular Degeneration, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, Maryland, United States
| | - Paul A Sieving
- Section on Translational Research for Retinal and Macular Degeneration, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, Maryland, United States 2National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Ronald A Bush
- Section on Translational Research for Retinal and Macular Degeneration, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, Maryland, United States
| |
Collapse
|
32
|
Correction of Monogenic and Common Retinal Disorders with Gene Therapy. Genes (Basel) 2017; 8:genes8020053. [PMID: 28134823 PMCID: PMC5333042 DOI: 10.3390/genes8020053] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 01/19/2017] [Indexed: 11/16/2022] Open
Abstract
The past decade has seen major advances in gene-based therapies, many of which show promise for translation to human disease. At the forefront of research in this field is ocular disease, as the eye lends itself to gene-based interventions due to its accessibility, relatively immune-privileged status, and ability to be non-invasively monitored. A landmark study in 2001 demonstrating successful gene therapy in a large-animal model for Leber congenital amaurosis set the stage for translation of these strategies from the bench to the bedside. Multiple clinical trials have since initiated for various retinal diseases, and further improvements in gene therapy techniques have engendered optimism for alleviating inherited blinding disorders. This article provides an overview of gene-based strategies for retinal disease, current clinical trials that engage these strategies, and the latest techniques in genome engineering, which could serve as the next frontline of therapeutic interventions.
Collapse
|