1
|
Haghshenas L, Banihashemi S, Malekzadegan Y, Catanzaro R, Moghadam Ahmadi A, Marotta F. Microbiome as an endocrine organ and its relationship with eye diseases: Effective factors and new targeted approaches. World J Gastrointest Pathophysiol 2024; 15:96446. [PMID: 39355345 PMCID: PMC11440246 DOI: 10.4291/wjgp.v15.i5.96446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 09/04/2024] [Accepted: 09/13/2024] [Indexed: 09/20/2024] Open
Abstract
Microbiome is an endocrine organ that refers to both the complicated biological system of microbial species that colonize our bodies and their genomes and surroundings. Recent studies confirm the connection between the microbiome and eye diseases, which are involved in the pathogenesis of eye diseases, including age-related macular disorders, diabetic retinopathy, glaucoma, retinitis pigmentosa, dry eye, and uveitis. The aim of this review is to investigate the microbiome in relation to eye health. First, a brief introduction of the characteristics of the gut microorganisms terms of composition and work, the role of dysbiosis, the gut microbiome and the eye microbiome in the progression of eye illnesses are highlighted, then the relationship among the microbiome and the function of the immune system and eye diseases, the role of inflammation and aging and the immune system, It has been reviewed and finally, the control and treatment goals of microbiome and eye diseases, the role of food factors and supplements, biotherapy and antibiotics in relation to microbiome and eye health have been reviewed.
Collapse
Affiliation(s)
- Leila Haghshenas
- Department of Clinical Bioinformatics, Harvard Medical School, Boston, MA 02115, United States
| | - Sara Banihashemi
- Department of Bioscience, School of Science and Technology, Nottingham Trend University, Nottingham NG1 4FQ, United Kingdom
| | - Yalda Malekzadegan
- Department of Microbiology, Saveh University of Medical Sciences, Saveh 3919676651, Iran
| | - Roberto Catanzaro
- Department of Clinical and Experimental Medicine, University of Catania, Catania 95123, Catania, Italy
| | - Amir Moghadam Ahmadi
- Department of Neuroimmunology, Thomas Jefferson University Hospital, Philadelphia, PA 19107, United States
| | - Francesco Marotta
- Department of Human Nutrition and Food Sciences, Texas Women University, Milano 20154, Italy
| |
Collapse
|
2
|
Zhang W, Gu X, Zhao Q, Wang C, Liu X, Chen Y, Zhao X. Causal effects of gut microbiota on chalazion: a two-sample Mendelian randomization study. Front Med (Lausanne) 2024; 11:1411271. [PMID: 38895185 PMCID: PMC11183106 DOI: 10.3389/fmed.2024.1411271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 05/21/2024] [Indexed: 06/21/2024] Open
Abstract
Purpose To investigate the causal relationship between gut microbiota (GM) and chalazion through Mendelian randomization (MR) analysis. Methods GM-related genome-wide association studies (GWAS) were obtained from the International Consortium MiBioGen. Genetic data for chalazion were sourced from the MRC Integrative Epidemiology Unit (IEU) Open GWAS database. Five MR methods, including inverse variance weighted (IVW), were employed to estimate causal relationships. Cochran's Q test was used to detect heterogeneity, the MR-Egger intercept test and MR-PRESSO regression were utilized to detect horizontal pleiotropy, and the leave-one-out method was employed to validate data stability. Results We identified 1,509 single nucleotide polymorphisms (SNPs) across 119 genera as instrumental variables (IVs) (p < 1 × 10-5). According to the inverse variance weighted (IVW) estimate, the Family XIII AD3011 group (OR = 1.0018, 95% CI 1.0002-1.0035, p = 0.030) and Catenibacterium (OR = 1.0013, 95% CI 1.0002-1.0025, p = 0.022) were potentially associated with increased risk of chalazion. Conversely, Veillonella (OR = 0.9986, 95% CI 0.9974-0.9999, p = 0.036) appeared to provide protection against chalazion. There was no evidence of heterogeneity or pleiotropy. Conclusion This study uncovered the causal relationship between GM and chalazion, pinpointing Catenibacterium and Family XIII AD3011 group as potential risk contributors, while highlighting Veillonella as a protective factor. In-depth investigation into the potential mechanisms of specific bacteria in chalazion was essential for providing novel therapeutic and preventive strategies in the future.
Collapse
Affiliation(s)
- Wenfei Zhang
- Department of Ophthalmology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Key Laboratory of Ocular Fundus Diseases, Chinese Academy of Medical Sciences, Beijing, China
| | - Xingwang Gu
- Department of Ophthalmology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Key Laboratory of Ocular Fundus Diseases, Chinese Academy of Medical Sciences, Beijing, China
| | - Qing Zhao
- Department of Ophthalmology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Key Laboratory of Ocular Fundus Diseases, Chinese Academy of Medical Sciences, Beijing, China
| | - Chuting Wang
- Department of Ophthalmology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Key Laboratory of Ocular Fundus Diseases, Chinese Academy of Medical Sciences, Beijing, China
| | - Xinyu Liu
- Department of Ophthalmology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Key Laboratory of Ocular Fundus Diseases, Chinese Academy of Medical Sciences, Beijing, China
| | - Youxin Chen
- Department of Ophthalmology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Key Laboratory of Ocular Fundus Diseases, Chinese Academy of Medical Sciences, Beijing, China
| | - Xinyu Zhao
- Department of Ophthalmology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Key Laboratory of Ocular Fundus Diseases, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
3
|
Unzueta-Medina JA, González-Chávez SA, Salas-Leiva JS, Silva-Sánchez SE, Pacheco-Tena C. Differential Composition and Structure of the Microbiota from Active and Inactive Stages of HLA-B27-associated Uveitis by Paired Fecal Metagenomes. Ocul Immunol Inflamm 2024:1-9. [PMID: 38709227 DOI: 10.1080/09273948.2024.2346818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 04/19/2024] [Indexed: 05/07/2024]
Abstract
PURPOSE To compare the diversities and abundances of bacterial taxa in the microbiome of patients with HLA B27-positive acute anterior uveitis (AAU) in the active and inactive phases. METHODS An observational descriptive prospective and comparative study was conducted in ten HLA-B27-positive AAU patients (44.6 ± 13.4 years). The microbiome of the stool samples obtained in the active and inactive stages was analyzed by sequencing the V3 region of the 16S rRNA gene. RESULTS The differences in the bacteria profile between active and inactive stages in each individual were confirmed (p < 0.0001). Ten OTUs were found exclusively in the active phase of 90% of the individuals, suggesting a proinflammatory association. Blautia OUT_4 and Faecalibacterium OUT_2 abundances showed a direct relationship between abundance and severity of ocular inflammation. Two OTUs were exclusive of the inactive stage, suggesting an anti-inflammatory role. CONCLUSION The metagenomic profile of the fecal microbiota differs in the acute phase of the AAU compared to when the inflammation subsides, despite being the same individual and a short time-lapse. AAU is a fertile field for studying the connection between subtle rapid changes in microbiota and their systemic consequences.
Collapse
Affiliation(s)
- José Antonio Unzueta-Medina
- Laboratorio PABIOM, Facultad de Medicina y Ciencias Biomédicas, Universidad Autónoma de Chihuahua, Chihuahua, México
| | - Susana Aideé González-Chávez
- Laboratorio PABIOM, Facultad de Medicina y Ciencias Biomédicas, Universidad Autónoma de Chihuahua, Chihuahua, México
| | - Joan Sebastian Salas-Leiva
- Departamento de medio ambiente y energía, CONAHCyT, Centro de Investigación en Materiales Avanzados, Chihuahua, México
| | - Sandra Estela Silva-Sánchez
- Laboratorio PABIOM, Facultad de Medicina y Ciencias Biomédicas, Universidad Autónoma de Chihuahua, Chihuahua, México
| | - César Pacheco-Tena
- Laboratorio PABIOM, Facultad de Medicina y Ciencias Biomédicas, Universidad Autónoma de Chihuahua, Chihuahua, México
| |
Collapse
|
4
|
Furst A, Gill T. Exploring the role of gut microbes in spondyloarthritis: Implications for pathogenesis and therapeutic strategies. Best Pract Res Clin Rheumatol 2024; 38:101961. [PMID: 38851970 DOI: 10.1016/j.berh.2024.101961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/11/2024] [Accepted: 05/30/2024] [Indexed: 06/10/2024]
Abstract
The gut microbiota plays a pivotal role in regulating host immunity, and dysregulation of this interaction is implicated in autoimmune and inflammatory diseases, including spondyloarthritis (SpA). This review explores microbial dysbiosis and altered metabolic function observed in various forms of SpA, such as ankylosing spondylitis (AS), psoriatic arthritis (PsA), acute anterior uveitis (AAU), and SpA-associated gut inflammation. Studies on animal models and clinical samples highlight the association between gut microbial dysbiosis, metabolic perturbations and immune dysregulation in SpA pathogenesis. These studies have received impetus through next-generation sequencing methods, which have enabled the characterization of gut microbial composition and function, and host gene expression. Microbial/metabolomic studies have revealed potential biomarkers and therapeutic targets, such as short-chain fatty acids, and tryptophan metabolites, offering insights into disease mechanisms and treatment approaches. Further studies on microbial function and its modulation of the immune response have uncovered molecular mechanisms underlying various SpA. Understanding the complex interplay between microbial community structure and function holds promise for improved diagnosis and management of SpA and other autoimmune disorders.
Collapse
Affiliation(s)
- Alec Furst
- School of Medicine, Oregon Health and Science University, Portland, OR, 97239, USA
| | - Tejpal Gill
- Division of Arthritis and Rheumatic Diseases, Oregon Health and Science University, Portland, OR, 97239, USA.
| |
Collapse
|
5
|
Wang N, Sun C, Ju Y, Huang L, Liu Y, Gu M, Xu C, Wang M, Wu Y, Zhang D, Xu L, Guo W. Gut microbiota compositional profile in patients with posner-schlossman syndrome. Exp Eye Res 2024; 240:109825. [PMID: 38360087 DOI: 10.1016/j.exer.2024.109825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/27/2024] [Accepted: 02/07/2024] [Indexed: 02/17/2024]
Abstract
The cause of Posner-Schlossman syndrome (PSS) remains unknown and its frequent recurrence may eventually lead to irreversible damage of the optic nerve. The influence of immune factors in the pathophysiology of PSS is gaining more and more interest. Increasing evidence suggests that gut dysbiosis plays vital roles in a variety of neurodegenerative and immune-related diseases. However, alterations of the gut microbiota in PSS patients have not been well defined yet. In this study, 16S rRNA sequencing was used to explore the difference of gut microbiota between PSS patients and healthy controls, and the correlation between the microbiota profile and clinical features was also analyzed. Our data demonstrated a significant increase of Prevotella and Prevotellaceae, and a significant reduction of Bacteroides and Bacteroidaceae in PSS patients, and KEGG analysis showed dysfunction of gut microbiota between PSS patients and healthy controls. Interestingly, further analysis showed that the alteration of gut microbiota was correlated with the PSS attack frequency of PSS. This study demonstrated the gut microbiota compositional profile of PSS patients and speculated the risk microbiota of PSS, which is expected to provide new insights for the diagnosis and treatment of PSS.
Collapse
Affiliation(s)
- Ning Wang
- Department of Ophthalmology, Shanghai 9th People's Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, 200011, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Chengyang Sun
- Department of Ophthalmology, Shanghai 9th People's Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, 200011, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Yahan Ju
- Department of Ophthalmology, Shanghai 9th People's Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, 200011, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Lulu Huang
- Department of Ophthalmology, Shanghai 9th People's Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, 200011, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Yixin Liu
- Department of Ophthalmology, Shanghai 9th People's Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, 200011, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Mengyang Gu
- Department of Ophthalmology, Shanghai 9th People's Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, 200011, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Chenrui Xu
- Department of Ophthalmology, Shanghai 9th People's Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, 200011, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Minghan Wang
- Department of Ophthalmology, Shanghai 9th People's Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, 200011, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Yue Wu
- Department of Ophthalmology, Shanghai 9th People's Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, 200011, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Dandan Zhang
- Department of Ophthalmology, Shanghai 9th People's Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, 200011, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Li Xu
- Department of Ophthalmology, Shanghai 9th People's Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, 200011, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China.
| | - Wenyi Guo
- Department of Ophthalmology, Shanghai 9th People's Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, 200011, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China.
| |
Collapse
|
6
|
Chen Z, Lin S, Xu Y, Lu L, Zou H. Unique composition of ocular surface microbiome in the old patients with dry eye and diabetes mellitus in a community from Shanghai, China. BMC Microbiol 2024; 24:19. [PMID: 38200418 PMCID: PMC10777597 DOI: 10.1186/s12866-023-03176-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 12/26/2023] [Indexed: 01/12/2024] Open
Abstract
BACKGROUND This study investigates the variations in microbiome abundance and diversity on the ocular surfaces of diabetic patients suffering from dry eye within a community setting. The goal is to offer theoretical insights for the community-level prevention and treatment of dry eye in diabetic cohorts. METHODS Dry eye screening was performed in the Shanghai Cohort Study of Diabetic Eye Disease (SCODE) from July 15, 2021, to August 15, 2021, in the Xingjing community; this study included both a population with diabetes and a normal population. The population with diabetes included a dry eye group (DM-DE, n = 40) and a non-dry eye group (DM-NoDE, n = 39). The normal population included a dry eye group (NoDM-DE, n = 40) and a control group (control, n = 39). High-throughput sequencing of the 16 S rRNA V3-V4 region was performed on conjunctival swab from both eyes of each subject, and the composition of microbiome on the ocular surface of each group was analyzed. RESULTS Significant statistical differences were observed in both α and β diversity of the ocular surface microbiome among the diabetic dry eye, diabetic non-dry eye, non-diabetic dry eye, and normal control groups (P < 0.05). CONCLUSIONS The study revealed distinct microecological compositions on the ocular surfaces between the diabetic dry eye group and other studied groups. Firmicutes and Anoxybacillus were unique bacterial phyla and genera in the dry eye with DM group, while Actinobacteria and Corynebacterium were unique bacterial phyla and genera in the normal control group.
Collapse
Affiliation(s)
- Zhangling Chen
- Department of Ophthalmology, Shanghai General Hospital, Nanjing Medical University, No. 100, Haining Road, Hongkou District, Shanghai, 200080, China
- Department of Ophthalmology, Songjiang Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Senlin Lin
- Shanghai Eye Diseases Prevention and Treatment Center/Shanghai, Eye Hospital, Shanghai, China
| | - Yi Xu
- Shanghai Eye Diseases Prevention and Treatment Center/Shanghai, Eye Hospital, Shanghai, China
| | - Lina Lu
- Shanghai Eye Diseases Prevention and Treatment Center/Shanghai, Eye Hospital, Shanghai, China
| | - Haidong Zou
- Department of Ophthalmology, Shanghai General Hospital, Nanjing Medical University, No. 100, Haining Road, Hongkou District, Shanghai, 200080, China.
- Shanghai Eye Diseases Prevention and Treatment Center/Shanghai, Eye Hospital, Shanghai, China.
- Department of Ophthalmology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
- Shanghai Key Laboratory of Fundus Diseases, Shanghai, China.
- National Clinical Research Center for Eye Diseases, Shanghai, China.
- Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China.
| |
Collapse
|
7
|
Janetos TM, Zakaria N, Goldstein DA. The Microbiome and Uveitis: A Narrative Review. THE AMERICAN JOURNAL OF PATHOLOGY 2023; 193:1638-1647. [PMID: 37024044 DOI: 10.1016/j.ajpath.2023.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 03/11/2023] [Accepted: 03/22/2023] [Indexed: 04/07/2023]
Abstract
The human intestinal microbiome is composed of hundreds of species and has recently been recognized as an important source of immune homeostasis. While dysbiosis, an altered microbiome from the normal core microbiome, has been associated with both intestinal and extraintestinal autoimmune disorders, including uveitis, causality has been difficult to establish. There are four proposed mechanisms of how the gut microbiome may influence the development of uveitis: molecular mimicry, imbalance of regulatory and effector T cells, increased intestinal permeability, and loss of intestinal metabolites. This review summarizes current literature on both animal and human studies that establish the link between dysbiosis and the development of uveitis, as well as provides evidence for the above mechanisms. Current studies provide valuable mechanistic insights as well as identify potential therapeutic targets. However, study limitations and the wide variability in the intestinal microbiome among populations and diseases make a specific targeted therapy difficult to establish. Further longitudinal clinical studies are required to identify any potential therapeutic that targets the intestinal microbiome.
Collapse
Affiliation(s)
- Timothy M Janetos
- Department of Ophthalmology, Northwestern University Feinberg School of Medicine, Chicago, Illinois.
| | - Nancy Zakaria
- Department of Ophthalmology, Northwestern University Feinberg School of Medicine, Chicago, Illinois; Department of Ophthalmology, Faculty of Medicine, Alexandria University, Alexandria, Arab Republic of Egypt
| | - Debra A Goldstein
- Department of Ophthalmology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| |
Collapse
|
8
|
Li M, Liu M, Wang X, Wei H, Jin S, Liu X. Comparison of intestinal microbes and metabolites in active VKH versus acute anterior uveitis associated with ankylosing spondylitis. Br J Ophthalmol 2023:bjo-2023-324125. [PMID: 37821210 DOI: 10.1136/bjo-2023-324125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 09/02/2023] [Indexed: 10/13/2023]
Abstract
BACKGROUND It has been reported that the gut microbiome is involved in the pathogenesis of uveitis, but the specific pathogenic microbes and metabolites in different types of uveitis are still unclear. METHODS Microbiome and metabolites were detected using 16S ribosomal DNA and LC‒MS/MS (liquid chromatography tandem mass spectrometry) in 45 individuals, including 16 patients with Vogt Koyanagi Harada (VKH), 11 patients with acute anterior uveitis (AAU) and 18 healthy controls. RESULT The diversity of intestinal microbes among the VKH, AAU and control groups was not significantly different. Thirteen specific microbes and 38 metabolites were detected in the VKH group, and 7 metabolites (vanillin, erythro-isoleucine, pyrimidine, 1-aminocyclopropanecarboxylic acid, beta-tocopherol, (-)-gallocatechin and N1-methyl-4-pyridone-3-carboxamide) significantly changed only in patients with VKH, which mainly acted on nicotinamide and nicotinamide metabolism and biotin metabolism (p<0.05). Compared with the VKH group, the AAU group had milder intestinal changes. Only 11 specific microbes and 29 metabolites changed in the AAU group, while these metabolites were not specific (p<0.05). These metabolites mainly acted on arachidonic acid metabolism. In addition, three microbes and two metabolites had the same changes in the VKH and AAU groups (p<0.05). Multiple correlations were found between gut microbes and metabolites in the VKH and AAU groups. Six microbes (Pediococcus, Pseudomonas, Rhodococcus, Photobacterium, Gardnerella and Lawsonia) and two metabolites (pyrimidine and gallocatechin) as biomarkers could effectively distinguish patients with VKH from patients with AAU and healthy individuals, with AUC (area under the curve) values greater than 82%. Four microbes (Lentilactobacillus, Lachnospiraceae_UCG-010, Cetobacterium, Liquorilactobacillus) could distinguish patients with AAU from patients with VKH and healthy controls with AUC>76%. CONCLUSION Significant differences in intestinal microbes and metabolites suggest their different roles in the pathogenesis of uveitis entities. Changes in the metabolism of certain B vitamins may be involved in the pathogenesis of VKH.
Collapse
Affiliation(s)
- Mengyao Li
- Ophthalmologic Center of the Second Hospital, Jilin University, Changchun, China
| | - Mingzhu Liu
- Ophthalmologic Center of the Second Hospital, Jilin University, Changchun, China
| | - Xia Wang
- Ophthalmologic Center of the Second Hospital, Jilin University, Changchun, China
| | - Haihui Wei
- Ophthalmologic Center of the Second Hospital, Jilin University, Changchun, China
| | - Siyan Jin
- Ophthalmologic Center of the Second Hospital, Jilin University, Changchun, China
| | - Xiaoli Liu
- Ophthalmologic Center of the Second Hospital, Jilin University, Changchun, China
| |
Collapse
|
9
|
Russell MW, Muste JC, Kuo BL, Wu AK, Singh RP. Clinical trials targeting the gut-microbiome to effect ocular health: a systematic review. Eye (Lond) 2023; 37:2877-2885. [PMID: 36918627 PMCID: PMC10516887 DOI: 10.1038/s41433-023-02462-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 11/21/2022] [Accepted: 02/21/2023] [Indexed: 03/16/2023] Open
Abstract
Clinical trials targeting the gut microbiome to mitigate ocular disease are now on the horizon. A review of clinical data thus far is essential to determine future directions in this novel promising field. This review examines recent clinical trials that support the plausibility of a gut-eye axis, and may form the basis of novel clinical interventions. PubMed was queried for English language clinical studies examining the relationships between gut microbiota and ocular pathology. 25 studies were extracted from 828 candidate publications, which suggest that gut imbalance is associated with ocular pathology. Of these, only four interventional studies exist which suggest probiotic supplementation or fecal microbiota transplant can reduce symptoms of chalazion or uveitis. The gut-eye axis appears to hold clinical relevance, but current data is limited in sample size and design. Further investigation via longitudinal clinical trials may be warranted.
Collapse
Affiliation(s)
- Matthew W Russell
- Center for Ophthalmic Bioinformatics, Cole Eye Institute, Cleveland Clinic, Cleveland, OH, USA
- Cleveland Clinic Lerner College of Medicine, Cleveland, OH, USA
| | - Justin C Muste
- Center for Ophthalmic Bioinformatics, Cole Eye Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Blanche L Kuo
- Center for Ophthalmic Bioinformatics, Cole Eye Institute, Cleveland Clinic, Cleveland, OH, USA
- Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Anna K Wu
- Center for Ophthalmic Bioinformatics, Cole Eye Institute, Cleveland Clinic, Cleveland, OH, USA
- Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Rishi P Singh
- Center for Ophthalmic Bioinformatics, Cole Eye Institute, Cleveland Clinic, Cleveland, OH, USA.
| |
Collapse
|
10
|
Julien ME, Shih JB, Correa Lopes B, Vallone LV, Suchodolski JS, Pilla R, Scott EM. Alterations of the bacterial ocular surface microbiome are found in both eyes of horses with unilateral ulcerative keratitis. PLoS One 2023; 18:e0291028. [PMID: 37682941 PMCID: PMC10490969 DOI: 10.1371/journal.pone.0291028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 08/18/2023] [Indexed: 09/10/2023] Open
Abstract
Next generation sequencing (NGS) studies in healthy equine eyes have shown a more diverse ocular surface microbiota compared to culture-based techniques. This study aimed to compare the bacterial ocular surface microbiota in both eyes of horses with unilateral ulcerative keratitis (UK) with controls free of ocular disease. Conjunctival swabs were obtained from both ulcerated eyes and unaffected eyes of 15 client-owned horses with unilateral UK following informed consent, as well as from one eye of 15 healthy horses. Genomic DNA was extracted from the swabs and sequenced on an Illumina platform using primers that target the V4 region of bacterial 16S rRNA. Data were analyzed using Quantitative Insights Into Molecular Ecology (QIIME2). The ocular surface of ulcerated eyes had significantly decreased species richness compared with unaffected fellow eyes (Chao1 q = 0.045, Observed ASVs p = 0.045) with no differences in evenness of species (Shannon q = 0.135). Bacterial community structure was significantly different between either eye of horses with UK and controls (unweighted UniFrac: control vs. unaffected, p = 0.03; control vs. ulcerated, p = 0.003; unaffected vs. ulcerated, p = 0.016). Relative abundance of the gram-positive taxonomic class, Bacilli, was significantly increased in ulcerated eyes compared with controls (q = 0.004). Relative abundance of the taxonomic family Staphylococcaceae was significantly increased in ulcerated and unaffected eyes compared with controls (q = 0.030). The results suggest the occurrence of dysbiosis in infected eyes and reveal alterations in beta diversity and taxa of unaffected fellow eyes. Further investigations are necessary to better understand the role of the microbiome in the pathophysiology of ocular surface disease.
Collapse
Affiliation(s)
- Martha E. Julien
- Department of Small Animal Clinical Sciences, School of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, United States of America
| | - Johnathan B. Shih
- Department of Small Animal Clinical Sciences, School of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, United States of America
| | - Bruna Correa Lopes
- Department of Small Animal Clinical Sciences, School of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, United States of America
| | - Lucien V. Vallone
- Department of Small Animal Clinical Sciences, School of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, United States of America
| | - Jan S. Suchodolski
- Department of Small Animal Clinical Sciences, School of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, United States of America
| | - Rachel Pilla
- Department of Small Animal Clinical Sciences, School of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, United States of America
| | - Erin M. Scott
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| |
Collapse
|
11
|
Campagnoli LIM, Varesi A, Barbieri A, Marchesi N, Pascale A. Targeting the Gut-Eye Axis: An Emerging Strategy to Face Ocular Diseases. Int J Mol Sci 2023; 24:13338. [PMID: 37686143 PMCID: PMC10488056 DOI: 10.3390/ijms241713338] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 08/20/2023] [Accepted: 08/26/2023] [Indexed: 09/10/2023] Open
Abstract
The human microbiota refers to a large variety of microorganisms (bacteria, viruses, and fungi) that live in different human body sites, including the gut, oral cavity, skin, and eyes. In particular, the presence of an ocular surface microbiota with a crucial role in maintaining ocular surface homeostasis by preventing colonization from pathogen species has been recently demonstrated. Moreover, recent studies underline a potential association between gut microbiota (GM) and ocular health. In this respect, some evidence supports the existence of a gut-eye axis involved in the pathogenesis of several ocular diseases, including age-related macular degeneration, uveitis, diabetic retinopathy, dry eye, and glaucoma. Therefore, understanding the link between the GM and these ocular disorders might be useful for the development of new therapeutic approaches, such as probiotics, prebiotics, symbiotics, or faecal microbiota transplantation through which the GM could be modulated, thus allowing better management of these diseases.
Collapse
Affiliation(s)
| | - Angelica Varesi
- Department of Biology and Biotechnology, University of Pavia, 27100 Pavia, Italy;
| | - Annalisa Barbieri
- Department of Drug Sciences, Unit of Pharmacology, University of Pavia, 27100 Pavia, Italy; (A.B.); (N.M.)
| | - Nicoletta Marchesi
- Department of Drug Sciences, Unit of Pharmacology, University of Pavia, 27100 Pavia, Italy; (A.B.); (N.M.)
| | - Alessia Pascale
- Department of Drug Sciences, Unit of Pharmacology, University of Pavia, 27100 Pavia, Italy; (A.B.); (N.M.)
| |
Collapse
|
12
|
Fu X, Tan H, Huang L, Chen W, Ren X, Chen D. Gut microbiota and eye diseases: a bibliometric study and visualization analysis. Front Cell Infect Microbiol 2023; 13:1225859. [PMID: 37621873 PMCID: PMC10445766 DOI: 10.3389/fcimb.2023.1225859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 07/17/2023] [Indexed: 08/26/2023] Open
Abstract
Introduction Recently the role of gut microbial dysbiosis in many ocular disorders, including but not limited to uveitis, age-related macular degeneration (AMD), diabetic retinopathy (DR), dry eye, keratitis and orbitopathy is a hot research topic in the field. Targeting gut microbiota to treat these diseases has become an unstoppable trend. Bibliometric study and visualization analysis have become essential methods for literature analysis in the medical research field. We aim to depict this area's research hotspots and future directions by bibliometric software and methods. Methods We search all the related publications from the Web of Science Core Collection. Then, CiteSpace was applied to analyze and visualize the country distributions, dual-map overlay of journals, keyword bursts, and co-cited references. VOSviewer was employed to identify authors, co-cited authors, journals and co-cited journals and display the keyword co-occurrence networks. Results A total of 284 relevant publications were identified from 2009 to 2023. The number of studies has been small in the first five years and has grown steadily since 2016. These studies were completed by 1,376 authors from 41 countries worldwide, with the United States in the lead. Lin P has published the most papers while Horai R is the most co-cited author. The top journal and co-cited journal are both Investigative Ophthalmology & Visual Science. In the keyword co-occurrence network, except gut microbiota, inflammation becomes the keyword with the highest frequency. Co-citation analyses reveal that gut dysbiosis is involved in common immune- and inflammation-mediated eye diseases, including uveitis, diabetic retinopathy, age-related macular degeneration, dry eye, and Graves' orbitopathy, and the study of microbiomes is no longer limited to the bacterial populations. Therapeutic strategies that target the gut microbiota, such as probiotics, healthy diet patterns, and fecal microbial transplantation, are effective and critical to future research. Conclusions In conclusion, the bibliometric analysis displays the research hotspots and developmental directions of the involvement of gut microbiota in the pathogenesis and treatment of some ocular diseases. It provides an overview of this field's dynamic evolution and structural relationships.
Collapse
Affiliation(s)
- Xiangyu Fu
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
- Research Laboratory of Ophthalmology and Vision Sciences, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Haishan Tan
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
- Research Laboratory of Ophthalmology and Vision Sciences, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Ling Huang
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
- Research Laboratory of Ophthalmology and Vision Sciences, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Wenyue Chen
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
- Research Laboratory of Ophthalmology and Vision Sciences, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Xiang Ren
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
- Research Laboratory of Ophthalmology and Vision Sciences, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Danian Chen
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
- Research Laboratory of Ophthalmology and Vision Sciences, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
13
|
Cheung KCP, Ma J, Loiola RA, Chen X, Jia W. Bile acid-activated receptors in innate and adaptive immunity: targeted drugs and biological agents. Eur J Immunol 2023; 53:e2250299. [PMID: 37172599 DOI: 10.1002/eji.202250299] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 03/10/2023] [Accepted: 05/11/2023] [Indexed: 05/15/2023]
Abstract
Bile acid-activated receptors (BARs) such as a G-protein bile acid receptor 1 and the farnesol X receptor are activated by bile acids (BAs) and have been implicated in the regulation of microbiota-host immunity in the intestine. The mechanistic roles of these receptors in immune signaling suggest that they may also influence the development of metabolic disorders. In this perspective, we provide a summary of recent literature describing the main regulatory pathways and mechanisms of BARs and how they affect both innate and adaptive immune system, cell proliferation, and signaling in the context of inflammatory diseases. We also discuss new approaches for therapy and summarize clinical projects on BAs for the treatment of diseases. In parallel, some drugs that are classically used for other therapeutic purposes and BAR activity have recently been proposed as regulators of immune cells phenotype. Another strategy consists of using specific strains of gut bacteria to regulate BA production in the intestine.
Collapse
Affiliation(s)
- Kenneth C P Cheung
- Hong Kong Phenome Research Center, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Jiao Ma
- Hong Kong Phenome Research Center, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | | | - Xingxuan Chen
- Hong Kong Phenome Research Center, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Wei Jia
- Hong Kong Phenome Research Center, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
- Center for Translational Medicine and Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| |
Collapse
|
14
|
Woodward R, Konda SM, Grewal DS. Autoimmune Inflammatory Eye Disease: Demystifying Clinical Presentations for the Internist. Curr Allergy Asthma Rep 2023; 23:471-479. [PMID: 37436637 DOI: 10.1007/s11882-023-01088-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/27/2023] [Indexed: 07/13/2023]
Abstract
PURPOSE OF REVIEW Provide a framework for recognizing key symptoms and clinical findings in patients with autoimmune inflammatory eye disease. RECENT FINDINGS The most common manifestations of autoimmune inflammatory eye disease are episcleritis, scleritis, uveitis (anterior, intermediate, posterior, and panuveitis), and keratoconjunctivitis sicca. Etiologies can be idiopathic or in association with a systemic autoimmune condition. Referral of patients who may have scleritis is critical for patients presenting with red eyes. Referral of patients who may have uveitis is critical for patients presenting often with floaters and vision complaints. Attention should also be directed to aspects of the history that might suggest a diagnosis of a systemic autoimmune condition, immunosuppression, drug-induced uveitis, or the possibility of a masquerade condition. Infectious etiologies should be ruled out in all cases. Patients with autoimmune inflammatory eye disease may present with ocular or systemic symptoms alone, or in combination. Collaboration with ophthalmologists and other relevant specialists is vital to optimal long-term medical care.
Collapse
Affiliation(s)
- Richmond Woodward
- Department of Ophthalmology, Duke University School of Medicine, 2351 Erwin Road, Durham, NC, 27701, USA
| | - Sri Meghana Konda
- Department of Ophthalmology, Duke University School of Medicine, 2351 Erwin Road, Durham, NC, 27701, USA
| | - Dilraj S Grewal
- Department of Ophthalmology, Duke University School of Medicine, 2351 Erwin Road, Durham, NC, 27701, USA.
| |
Collapse
|
15
|
Parthasarathy R, Santiago F, McCluskey P, Kaakoush NO, Tedla N, Wakefield D. The microbiome in HLA-B27-associated disease: implications for acute anterior uveitis and recommendations for future studies. Trends Microbiol 2023; 31:142-158. [PMID: 36058784 DOI: 10.1016/j.tim.2022.08.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 08/09/2022] [Accepted: 08/09/2022] [Indexed: 01/27/2023]
Abstract
The pathogenesis of human leukocyte antigen (HLA)-B27-associated diseases such as acute anterior uveitis (AAU) and ankylosing spondylitis (AS) remains poorly understood, though Gram-negative bacteria and subclinical bowel inflammation are strongly implicated. Accumulating evidence from animal models and clinical studies supports several hypotheses, including HLA-B27-dependent dysbiosis, altered intestinal permeability, and molecular mimicry. However, the existing literature is hampered by inadequate studies designed to establish causation or uncover the role of viruses and fungi. Moreover, the unique disease model afforded by AAU to study the gut microbiota has been neglected. This review critically evaluates the current literature and prevailing hypotheses on the link between the gut microbiota and HLA-B27-associated disease. We propose a new potential role for HLA-B27-driven altered antibody responses to gut microbiota in disease pathogenesis and outline recommendations for future well-controlled human studies, focusing on AAU.
Collapse
Affiliation(s)
- Rohit Parthasarathy
- School of Medical Sciences, Faculty of Medicine & Health, UNSW, Sydney, Australia
| | - Fernando Santiago
- School of Medical Sciences, Faculty of Medicine & Health, UNSW, Sydney, Australia
| | - Peter McCluskey
- Save Sight Institute, Sydney Eye Hospital, Sydney, Australia; Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| | - Nadeem O Kaakoush
- School of Medical Sciences, Faculty of Medicine & Health, UNSW, Sydney, Australia
| | - Nicodemus Tedla
- School of Medical Sciences, Faculty of Medicine & Health, UNSW, Sydney, Australia
| | - Denis Wakefield
- School of Medical Sciences, Faculty of Medicine & Health, UNSW, Sydney, Australia; Center for Immunology and Immunopathology, South Eastern Area Health Service, Sydney, Australia.
| |
Collapse
|
16
|
Shu Q, Zhao C, Yu J, Liu Y, Hu S, Meng J, Zhang J. Causal analysis of serum polyunsaturated fatty acids with juvenile idiopathic arthritis and ocular comorbidity. Eur J Clin Nutr 2023; 77:75-81. [PMID: 35974138 DOI: 10.1038/s41430-022-01196-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 08/02/2022] [Accepted: 08/03/2022] [Indexed: 02/02/2023]
Abstract
BACKGROUND & OBJECTIVE To investigate the causal effects of plasma Polyunsaturated fatty acids (PUFAs) on the risk of juvenile idiopathic arthritis (JIA) and ocular comorbidity through Mendelian randomization (MR) analysis. METHODS Genetic variants (formerly single nucleotide polymorphisms, SNPs) that are strongly associated with PUFAs levels (P < 5×10-8) were selected as instrumental variables. Summary-level MR was performed with outcome estimates for JIA (n = 31,142) and JIA associated iridocyclitis (n = 94,197). The inverse variance-weighted (IVW) method was employed as the main approach to combine the estimation for each SNP. Two set of models with summary statistics were conducted and multiple sensitivity analyses were applied for testing of pleiotropic bias. RESULTS In model 1, genetically predicted n-6 PUFAs linoleic acid (LA) and arachidonic acid (AA) were associated with lower and higher risk of JIA associated iridocyclitis using IVW (ORLA = 0.940, 95% CI: 0.895-0.988, P = 0.015; ORAA = 1.053, 95% CI: 1.007-1.101, P = 0.024). No such association was observed between each plasma PUFAs and JIA susceptibility (P > 0.05). In further MR analysis, results from model 2 also showed a consistent trend. Besides, multiple sensitivity analyses revealed that there was no obvious evidence for unknown pleiotropy (P > 0.05). CONCLUSIONS Our MR study provides genetic evidence on the possible causality that plasma LA level might protect against JIA associated iridocyclitis, whereas AA was responsible for opposite effect.
Collapse
Affiliation(s)
- Qinxin Shu
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Ophthalmology, Chongqing, China
- Chongqing Eye Institute, Chongqing, China
- Chongqing Branch of National Clinical Research Center for Ocular Diseases, Chongqing, China
| | - Chenyang Zhao
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Ophthalmology, Chongqing, China
- Chongqing Eye Institute, Chongqing, China
- Chongqing Branch of National Clinical Research Center for Ocular Diseases, Chongqing, China
| | - Jing Yu
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, P. R. China
| | - Yusen Liu
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Ophthalmology, Chongqing, China
- Chongqing Eye Institute, Chongqing, China
- Chongqing Branch of National Clinical Research Center for Ocular Diseases, Chongqing, China
| | - Shuqiong Hu
- Wuhan Aier Eye Hospital of Wuhan University, Wuhan, Hubei Province, P. R. China
| | - Jiayu Meng
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Ophthalmology, Chongqing, China
- Chongqing Eye Institute, Chongqing, China
- Chongqing Branch of National Clinical Research Center for Ocular Diseases, Chongqing, China
| | - Jun Zhang
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
- Chongqing Key Laboratory of Ophthalmology, Chongqing, China.
- Chongqing Eye Institute, Chongqing, China.
- Chongqing Branch of National Clinical Research Center for Ocular Diseases, Chongqing, China.
| |
Collapse
|
17
|
Zysset-Burri DC, Morandi S, Herzog EL, Berger LE, Zinkernagel MS. The role of the gut microbiome in eye diseases. Prog Retin Eye Res 2023; 92:101117. [PMID: 36075807 DOI: 10.1016/j.preteyeres.2022.101117] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 08/19/2022] [Accepted: 08/22/2022] [Indexed: 02/01/2023]
Abstract
The gut microbiome is a complex ecosystem of microorganisms and their genetic entities colonizing the gastrointestinal tract. When in balanced composition, the gut microbiome is in symbiotic interaction with its host and maintains intestinal homeostasis. It is involved in essential functions such as nutrient metabolism, inhibition of pathogens and regulation of immune function. Through translocation of microbes and their metabolites along the epithelial barrier, microbial dysbiosis induces systemic inflammation that may lead to tissue destruction and promote the onset of various diseases. Using whole-metagenome shotgun sequencing, several studies have shown that the composition and associated functional capacities of the gut microbiome are associated with age-related macular degeneration, retinal artery occlusion, central serous chorioretinopathy and uveitis. In this review, we provide an overview of the current knowledge about the gut microbiome in eye diseases, with a focus on interactions between the microbiome, specific microbial-derived metabolites and the immune system. We explain how these interactions may be involved in the pathogenesis of age-related macular degeneration, retinal artery occlusion, central serous chorioretinopathy and uveitis and guide the development of new therapeutic approaches by microbiome-altering interventions for these diseases.
Collapse
Affiliation(s)
- Denise C Zysset-Burri
- Department of Ophthalmology, Inselspital, Bern University Hospital, University of Bern, Freiburgstrasse 15, CH-3010, Bern, Switzerland; Department for BioMedical Research, University of Bern, Murtenstrasse 24, CH-3008, Bern, Switzerland.
| | - Sophia Morandi
- Department of Ophthalmology, Inselspital, Bern University Hospital, University of Bern, Freiburgstrasse 15, CH-3010, Bern, Switzerland; Department for BioMedical Research, University of Bern, Murtenstrasse 24, CH-3008, Bern, Switzerland.
| | - Elio L Herzog
- Department of Ophthalmology, Inselspital, Bern University Hospital, University of Bern, Freiburgstrasse 15, CH-3010, Bern, Switzerland; Department for BioMedical Research, University of Bern, Murtenstrasse 24, CH-3008, Bern, Switzerland; Graduate School for Cellular and Biomedical Sciences, University of Bern, Mittelstrasse 43, CH-3012, Bern, Switzerland.
| | - Lieselotte E Berger
- Department of Ophthalmology, Inselspital, Bern University Hospital, University of Bern, Freiburgstrasse 15, CH-3010, Bern, Switzerland; Department for BioMedical Research, University of Bern, Murtenstrasse 24, CH-3008, Bern, Switzerland.
| | - Martin S Zinkernagel
- Department of Ophthalmology, Inselspital, Bern University Hospital, University of Bern, Freiburgstrasse 15, CH-3010, Bern, Switzerland; Department for BioMedical Research, University of Bern, Murtenstrasse 24, CH-3008, Bern, Switzerland.
| |
Collapse
|
18
|
Thakur PS, Aggarwal D, Takkar B, Shivaji S, Das T. Evidence Suggesting the Role of Gut Dysbiosis in Diabetic Retinopathy. Invest Ophthalmol Vis Sci 2022; 63:21. [PMID: 35877085 PMCID: PMC9339698 DOI: 10.1167/iovs.63.8.21] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose Gut dysbiosis has been identified and tested in human trials for its role in diabetes mellitus (DM). The gut-retina axis could be a potential target for retardation of diabetic retinopathy (DR), a known complication of DM. This study reviews the evidence suggesting gut dysbiosis in DR. Methods The published literature in the past 5 years was reviewed using predetermined keywords and articles. The review intended to determine changes in gut microbiome in DR, the hypothesized mechanisms linking to the gut-retina axis, its predictive potential for progression of DR, and the possible therapeutic targets. Results The gut microbiota of people with DM differ from those without it, and the gut microbiota of people with DR differ from those without it. The difference is more significant in the former (DM versus no DM) and less significant in the latter (DM without DR versus DM with DR). Early research has suggested mechanisms of the gut-retina axis, but these are not different from known changes in the gut microbiome of people with DM. The current evidence on the predictive value of the gut microbiome in the occurrence and progression of DR is low. Therapeutic avenues targeting the gut-retina axis include lifestyle changes, pharmacologic inhibitors, probiotics, and fecal microbiota transplantation. Conclusions Investigating the therapeutic utility of the gut ecosystem for DM and its complications like DR is an emerging area of research. The gut-retina axis could be a target for retardation of DR but needs longitudinal regional studies adjusting for dietary habits.
Collapse
Affiliation(s)
- Pratima Singh Thakur
- Anant Bajaj Retina Institute-Srimati Kanuri Santhamma Centre for Vitreoretinal Diseases, L V Prasad Eye Institute, Hyderabad, India
| | - David Aggarwal
- Anant Bajaj Retina Institute-Srimati Kanuri Santhamma Centre for Vitreoretinal Diseases, L V Prasad Eye Institute, Hyderabad, India
| | - Brijesh Takkar
- Anant Bajaj Retina Institute-Srimati Kanuri Santhamma Centre for Vitreoretinal Diseases, L V Prasad Eye Institute, Hyderabad, India.,Indian Health Outcomes, Public Health, and Economics Research (IHOPE) Centre, L V Prasad Eye Institute, Hyderabad, India.,https://orcid.org/0000-0001-5779-7645
| | - Sisinthy Shivaji
- Prof. Brien Holden Eye Research Centre, L V Prasad Eye Institute, Hyderabad, India.,https://orcid.org/0000-0003-0376-4658
| | - Taraprasad Das
- Anant Bajaj Retina Institute-Srimati Kanuri Santhamma Centre for Vitreoretinal Diseases, L V Prasad Eye Institute, Hyderabad, India.,https://orcid.org/0000-0002-1295-4528
| |
Collapse
|
19
|
Kurian DE, V R, Horo S, Chacko AG, Prabhu K, Mahasampath G, Korah S. Predictive value of retinal nerve fibre layer thickness for postoperative visual improvement in patients with pituitary macroadenoma. BMJ Open Ophthalmol 2022; 7:bmjophth-2021-000964. [PMID: 36161840 PMCID: PMC9263901 DOI: 10.1136/bmjophth-2021-000964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 06/11/2022] [Indexed: 11/28/2022] Open
Abstract
Objective To determine the usefulness of retinal nerve fibre layer (RNFL) thickness and a reliable cut-off value that can predict postoperative visual function improvement in patients with pituitary macroadenoma. Methods and Analysis This was a prospective observational study. Preoperative optical coherence tomography of the RNFL was performed in patients with pituitary macroadenoma. Postoperative visual function changes (acuity and visual fields) were identified using predefined criteria. Receiver operating characteristic curves were constructed for RNFL values to define the ideal cut-off value that predicted improvement. Other variables including preoperative visual acuity, mean deviation, visual field index and tumour volume were also analysed. Results Twenty-nine eligible subjects (58 eyes) were recruited. The mean (±SD) age was 43.9 (±12.85) years and 65.5% were male. The mean (±SE) follow-up duration was 20.8 (±6.42) months. RNFL thickness was significantly thinner in eyes with visual dysfunction and optic disc pallor. Better preoperative logarithmic minimum angle of resolution (logMAR) visual acuity, higher RNFL thickness and smaller tumour volume were associated with postoperative visual field improvement on univariate analysis; however, only mean RNFL thickness had significant association on multivariate analysis. None of the preoperative variables showed significant association with improvement in visual acuity. The best cut-off of mean RNFL thickness for visual field improvement was estimated at 81 μm with 73.1% sensitivity and 62.5% specificity. Conclusion Preoperative RNFL thickness can be an objective predictor of visual field outcomes in patients undergoing surgery for pituitary macroadenomas, with moderate sensitivity and specificity. It is, however, not a good predictor of visual acuity outcome.
Collapse
Affiliation(s)
| | - Rajshekhar V
- Department of Neurological Sciences, CMC Vellore, Vellore, Tamil Nadu, India
| | - Saban Horo
- Ophthalmology, CMC Vellore, Vellore, Tamil Nadu, India
| | - Ari G Chacko
- Department of Neurological Sciences, CMC Vellore, Vellore, Tamil Nadu, India
| | - Krishna Prabhu
- Department of Neurological Sciences, CMC Vellore, Vellore, Tamil Nadu, India
| | | | - Sanita Korah
- Ophthalmology, CMC Vellore, Vellore, Tamil Nadu, India
| |
Collapse
|
20
|
Rodríguez-Fernández CA, Iglesias MB, de Domingo B, Conde-Pérez K, Vallejo JA, Rodríguez-Martínez L, González-Barcia M, Llorenç V, Mondelo-Garcia C, Poza M, Fernández-Ferreiro A. Microbiome in Immune-Mediated Uveitis. Int J Mol Sci 2022; 23:ijms23137020. [PMID: 35806031 PMCID: PMC9266430 DOI: 10.3390/ijms23137020] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/21/2022] [Accepted: 06/22/2022] [Indexed: 02/04/2023] Open
Abstract
In the last decades, personalized medicine has been increasing its presence in different fields of medicine, including ophthalmology. A new factor that can help us direct medicine towards the challenge of personalized treatments is the microbiome. The gut microbiome plays an important role in controlling immune response, and dysbiosis has been associated with immune-mediated diseases such as non-infectious uveitis (NIU). In this review, we gather the published evidence, both in the pre-clinical and clinical studies, that support the possible role of intestinal dysbiosis in the pathogenesis of NIU, as well as the modulation of the gut microbiota as a new possible therapeutic target. We describe the different mechanisms that have been proposed to involve dysbiosis in the causality of NIU, as well as the potential pharmacological tools that could be used to modify the microbiome (dietary supplementation, antibiotics, fecal microbiota transplantation, immunomodulators, or biologic drugs) and, consequently, in the control of the NIU. Furthermore, there is increasing scientific evidence suggesting that the treatment with anti-TNF not only restores the composition of the gut microbiota but also that the study of the composition of the gut microbiome will help predict the response of each patient to anti-TNF treatment.
Collapse
Affiliation(s)
| | - Manuel Busto Iglesias
- Pharmacy Department, University Clinical Hospital of Santiago de Compostela (SERGAS), 15706 Santiago de Compostela, Spain; (M.B.I.); (M.G.-B.); (C.M.-G.)
- Pharmacology Group, Health Research Institute of Santiago de Compostela (FIDIS), 15706 Santiago de Compostela, Spain;
| | - Begoña de Domingo
- Ophthalmology Department, University Clinical Hospital of Santiago Compostela (SERGAS), 15706 Santiago de Compostela, Spain;
| | - Kelly Conde-Pérez
- Microbiology Research Group: meiGAbiome, Biomedical Research Institute (INIBIC), Center for Advanced Research (CICA), University of A Coruña (UDC), CIBER of Infectious Diseases (CIBERINF), 15006 A Coruña, Spain; (K.C.-P.); (J.A.V.)
| | - Juan A. Vallejo
- Microbiology Research Group: meiGAbiome, Biomedical Research Institute (INIBIC), Center for Advanced Research (CICA), University of A Coruña (UDC), CIBER of Infectious Diseases (CIBERINF), 15006 A Coruña, Spain; (K.C.-P.); (J.A.V.)
| | - Lorena Rodríguez-Martínez
- Pharmacology Group, Health Research Institute of Santiago de Compostela (FIDIS), 15706 Santiago de Compostela, Spain;
| | - Miguel González-Barcia
- Pharmacy Department, University Clinical Hospital of Santiago de Compostela (SERGAS), 15706 Santiago de Compostela, Spain; (M.B.I.); (M.G.-B.); (C.M.-G.)
- Pharmacology Group, Health Research Institute of Santiago de Compostela (FIDIS), 15706 Santiago de Compostela, Spain;
| | - Victor Llorenç
- Clínic Institute of Ophthalmology (ICOF), Clinic Hospital of Barcelona, 08028 Barcelona, Spain;
- Biomedical Research Institute August Pi i Sunyer (IDIBAPS), Clínic Hospital of Barcelona, 08036 Barcelona, Spain
| | - Cristina Mondelo-Garcia
- Pharmacy Department, University Clinical Hospital of Santiago de Compostela (SERGAS), 15706 Santiago de Compostela, Spain; (M.B.I.); (M.G.-B.); (C.M.-G.)
- Pharmacology Group, Health Research Institute of Santiago de Compostela (FIDIS), 15706 Santiago de Compostela, Spain;
| | - Margarita Poza
- Microbiology Research Group: meiGAbiome, Biomedical Research Institute (INIBIC), Center for Advanced Research (CICA), University of A Coruña (UDC), CIBER of Infectious Diseases (CIBERINF), 15006 A Coruña, Spain; (K.C.-P.); (J.A.V.)
- Correspondence: (M.P.); (A.F.-F.)
| | - Anxo Fernández-Ferreiro
- Pharmacy Department, University Clinical Hospital of Santiago de Compostela (SERGAS), 15706 Santiago de Compostela, Spain; (M.B.I.); (M.G.-B.); (C.M.-G.)
- Pharmacology Group, Health Research Institute of Santiago de Compostela (FIDIS), 15706 Santiago de Compostela, Spain;
- Correspondence: (M.P.); (A.F.-F.)
| |
Collapse
|
21
|
Hou J, Tang Y, Chen Y, Chen D. The Role of the Microbiota in Graves' Disease and Graves' Orbitopathy. Front Cell Infect Microbiol 2022; 11:739707. [PMID: 35004341 PMCID: PMC8727912 DOI: 10.3389/fcimb.2021.739707] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 12/01/2021] [Indexed: 02/05/2023] Open
Abstract
Graves' disease (GD) is a clinical syndrome with an enlarged and overactive thyroid gland, an accelerated heart rate, Graves' orbitopathy (GO), and pretibial myxedema (PTM). GO is the most common extrathyroidal complication of GD. GD/GO has a significant negative impact on the quality of life. GD is the most common systemic autoimmune disorder, mediated by autoantibodies to the thyroid-stimulating hormone receptor (TSHR). It is generally accepted that GD/GO results from complex interactions between genetic and environmental factors that lead to the loss of immune tolerance to thyroid antigens. However, the exact mechanism is still elusive. Systematic investigations into GD/GO animal models and clinical patients have provided important new insight into these disorders during the past 4 years. These studies suggested that gut microbiota may play an essential role in the pathogenesis of GD/GO. Antibiotic vancomycin can reduce disease severity, but fecal material transfer (FMT) from GD/GO patients exaggerates the disease in GD/GO mouse models. There are significant differences in microbiota composition between GD/GO patients and healthy controls. Lactobacillus, Prevotella, and Veillonella often increase in GD patients. The commonly used therapeutic agents for GD/GO can also affect the gut microbiota. Antigenic mimicry and the imbalance of T helper 17 cells (Th17)/regulatory T cells (Tregs) are the primary mechanisms proposed for dysbiosis in GD/GO. Interventions including antibiotics, probiotics, and diet modification that modulate the gut microbiota have been actively investigated in preclinical models and, to some extent, in clinical settings, such as probiotics (Bifidobacterium longum) and selenium supplements. Future studies will reveal molecular pathways linking gut and thyroid functions and how they impact orbital autoimmunity. Microbiota-targeting therapeutics will likely be an essential strategy in managing GD/GO in the coming years.
Collapse
Affiliation(s)
- Jueyu Hou
- The Research Laboratory of Ophthalmology and Vision Sciences, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.,The Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
| | - Yunjing Tang
- The Research Laboratory of Ophthalmology and Vision Sciences, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.,The Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
| | - Yongjiang Chen
- The School of Optometry and Vision Science, University of Waterloo, Waterloo, ON, Canada
| | - Danian Chen
- The Research Laboratory of Ophthalmology and Vision Sciences, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.,The Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
22
|
Brichová M, Svozílková P, Klímová A, Dušek O, Kverka M, Heissigerová J. MICROBIOME AND UVEITIDES. A REVIEW. CESKA A SLOVENSKA OFTALMOLOGIE : CASOPIS CESKE OFTALMOLOGICKE SPOLECNOSTI A SLOVENSKE OFTALMOLOGICKE SPOLECNOSTI 2022; 78:47-52. [PMID: 35105146 DOI: 10.31348/2021/30] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Microorganisms inhabiting all surfaces of mucous membranes and skin and forming a complex ecosystem with the host is called microbiota. The term microbiome is used for the aggregate genome of microbiota. The microbiota plays important role in the mechanisms of number of physiological and pathological processes, especially of the hosts immune system. The origin and course of autoimmune diseases not only of the digestive tract, but also of the distant organs, including the eye, are significantly influenced by intestinal microbiota. The role of microbiota and its changes (dysbiosis) in the etiopathogenesis of uveitis has so far been studied mainly in experimental models. Reduction of severity of non-infectious intraocular inflammation in germ-free mice or in conventional mice treated with broad-spectrum antibiotics was observed in both the induced experimental autoimmune uveitis model (EAU) and the spontaneous R161H model. Studies have confirmed that autoreactive T cell activation occurs in the intestinal wall in the absence of retinal antigen. Recent experiments focused on the effect of probiotic administration on the composition of intestinal microbiota and on the course of autoimmune uveitis. Our study group demonstrated significant prophylactic effect of the administration of the probiotic Escherichia coli Nissle 1917 on the intensity of inflammation in EAU. To date, only a few studies have been published investigating intestinal dysbiosis in patients with uveitis (e.g., in Behcets disease or Vogt-Koyanagi-Harada syndrome). The results of preclinical studies will be presumably used in clinical practice, mainly in the sense of prophylaxis and therapy, such as change in the lifestyle, diet and especially the therapeutic use of probiotics or the transfer of faecal microbiota.
Collapse
|
23
|
Napolitano P, Filippelli M, Davinelli S, Bartollino S, dell’Omo R, Costagliola C. Influence of gut microbiota on eye diseases: an overview. Ann Med 2021; 53:750-761. [PMID: 34042554 PMCID: PMC8168766 DOI: 10.1080/07853890.2021.1925150] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/26/2021] [Accepted: 04/28/2021] [Indexed: 12/16/2022] Open
Abstract
The microbiota is a dynamic ecosystem that plays a major role in the host health. Numerous studies have reported that alterations in the intestinal microbiota (dysbiosis) may contribute to the pathogenesis of various common diseases such as diabetes, neuropsychiatric diseases, and cancer. However, emerging findings also suggest the existence of a gut-eye axis, wherein gut dysbiosis may be a crucial factor influencing the onset and progression of multiple ocular diseases, including uveitis, dry eye, macular degeneration, and glaucoma. Currently, supplementation with pre- and probiotics appears is the most feasible and cost-effective approach to restore the gut microbiota to a eubiotic state and prevent eye pathologies. In this review, we discuss the current knowledge on how gut microbiota may be linked to the pathogenesis of common eye diseases, providing therapeutic perspectives for future translational investigations within this promising research field.
Collapse
Affiliation(s)
- Pasquale Napolitano
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, Campobasso, Italy
| | - Mariaelena Filippelli
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, Campobasso, Italy
| | - Sergio Davinelli
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, Campobasso, Italy
| | - Silvia Bartollino
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, Campobasso, Italy
| | - Roberto dell’Omo
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, Campobasso, Italy
| | - Ciro Costagliola
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, Campobasso, Italy
| |
Collapse
|
24
|
Xue W, Li JJ, Zou Y, Zou B, Wei L. Microbiota and Ocular Diseases. Front Cell Infect Microbiol 2021; 11:759333. [PMID: 34746029 PMCID: PMC8566696 DOI: 10.3389/fcimb.2021.759333] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 10/06/2021] [Indexed: 12/12/2022] Open
Abstract
Recent advances have identified significant associations between the composition and function of the gut microbiota and various disorders in organ systems other than the digestive tract. Utilizing next-generation sequencing and multiomics approaches, the microbial community that possibly impacts ocular disease has been identified. This review provides an overview of the literature on approaches to microbiota analysis and the roles of commensal microbes in ophthalmic diseases, including autoimmune uveitis, age-related macular degeneration, glaucoma, and other ocular disorders. In addition, this review discusses the hypothesis of the "gut-eye axis" and evaluates the therapeutic potential of targeting commensal microbiota to alleviate ocular inflammation.
Collapse
Affiliation(s)
- Wei Xue
- State Key Laboratory of Ophthalmology, Sun Yat-sen University, Guangzhou, China
| | - Jing Jing Li
- State Key Laboratory of Ophthalmology, Sun Yat-sen University, Guangzhou, China
| | - Yanli Zou
- State Key Laboratory of Ophthalmology, Sun Yat-sen University, Guangzhou, China.,Department of Ophthalmology, Affiliated Foshan Hospital, Southern Medical University, Foshan, China
| | - Bin Zou
- State Key Laboratory of Ophthalmology, Sun Yat-sen University, Guangzhou, China
| | - Lai Wei
- State Key Laboratory of Ophthalmology, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
25
|
Ji X, Zhang Z, Lin D, Dai M, Zhao X, Guo X, Du J, Zhou M, Wang Y. A Novel Clinical Five-Risk Factor Panel for Individualized Recurrence Risk Assessment of Patients With Acute Anterior Uveitis. Transl Vis Sci Technol 2021; 10:29. [PMID: 34817576 PMCID: PMC8626851 DOI: 10.1167/tvst.10.13.29] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose Detecting and managing relapses of acute anterior uveitis (AAU) is necessary for improving follow-up planning to minimize recurrences and further complications. However, reliable clinical and laboratory risk factors are lacking, as is a predictive model for use in clinical practice that is capable of identifying patients at high risk for recurrence after remission. Methods We analyzed 38 laboratory parameters and clinical data from a large longitudinal retrospective cohort of 233 patients with AAU. Association of laboratory parameters with recurrence-free survival (RFS) was evaluated using univariate Cox proportional hazards regression. A clinically applicable predictive model was developed using a logistic regression model. Results Of the 38 laboratory parameters studied, we identified 5 parameters (HDL, ankylosing spondylitis, HLA-B27, MO, and LDL) to be associated with RFS. We developed a clinical five-risk factor panel (5RF-panel), which was capable of effectively distinguishing recurrent patients from nonrelapsed patients (area under the curve [AUC] = 0.837), as well as between patients with high and low risks of AAU recurrence (hazard ratio [HR] = 45.874, 95% confidence interval [CI] = 5.232-402.2, P < 0.001). The robust performance of the 5RF-panel was further validated in the testing cohort (AUC = 0.725, and HR = 51.982, 95% CI = 4.438-608.9, P = 0.024). Furthermore, the 5RF-panel demonstrated superior performance in stratifying recurrence risk based on known risk factors. Conclusions We identified and validated a novel clinical 5RF-panel to predict individualized risk of AAU recurrence and improved patient classification for clinical management. Translational Relevance The present study identified and validated a 5RF-panel that is a promising individualized predictive tool to monitor recurrence risk and guide personalized management of patients with AAU.
Collapse
Affiliation(s)
- Xiwen Ji
- School of Ophthalmology & Optometry and Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Zicheng Zhang
- School of Ophthalmology & Optometry and Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Dan Lin
- School of Ophthalmology & Optometry and Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Mali Dai
- School of Ophthalmology & Optometry and Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Xia Zhao
- School of Ophthalmology & Optometry and Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Xingneng Guo
- School of Ophthalmology & Optometry and Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Jie Du
- School of Ophthalmology & Optometry and Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, People's Republic of China.,Beijing Anzhen Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Meng Zhou
- School of Ophthalmology & Optometry and Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Yuqin Wang
- School of Ophthalmology & Optometry and Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, People's Republic of China
| |
Collapse
|
26
|
Zhou Z, Zheng Z, Xiong X, Chen X, Peng J, Yao H, Pu J, Chen Q, Zheng M. Gut Microbiota Composition and Fecal Metabolic Profiling in Patients With Diabetic Retinopathy. Front Cell Dev Biol 2021; 9:732204. [PMID: 34722512 PMCID: PMC8554156 DOI: 10.3389/fcell.2021.732204] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 09/06/2021] [Indexed: 12/24/2022] Open
Abstract
Recent evidence suggests there is a link between metabolic diseases and gut microbiota. To investigate the gut microbiota composition and fecal metabolic phenotype in diabetic retinopathy (DR) patients. DNA was extracted from 50 fecal samples (21 individuals with type 2 diabetes mellitus-associated retinopathy (DR), 14 with type 2 diabetes mellitus but without retinopathy (DM) and 15 sex- and age-matched healthy controls) and then sequenced by high-throughput 16S rDNA analysis. Liquid chromatography mass spectrometry (LC-MS)-based metabolomics was simultaneously performed on the samples. A significant difference in the gut microbiota composition was observed between the DR and healthy groups and between the DR and DM groups. At the genus level, Faecalibacterium, Roseburia, Lachnospira and Romboutsia were enriched in DR patients compared to healthy individuals, while Akkermansia was depleted. Compared to those in the DM patient group, five genera, including Prevotella, were enriched, and Bacillus, Veillonella, and Pantoea were depleted in DR patients. Fecal metabolites in DR patients significantly differed from those in the healthy population and DM patients. The levels of carnosine, succinate, nicotinic acid and niacinamide were significantly lower in DR patients than in healthy controls. Compared to those in DM patients, nine metabolites were enriched, and six were depleted in DR patients. KEGG annotation revealed 17 pathways with differentially abundant metabolites between DR patients and healthy controls, and only two pathways with differentially abundant metabolites were identified between DR and DM patients, namely, the arginine-proline and α-linolenic acid metabolic pathways. In a correlation analysis, armillaramide was found to be negatively associated with Prevotella and Subdoligranulum and positively associated with Bacillus. Traumatic acid was negatively correlated with Bacillus. Our study identified differential gut microbiota compositions and characteristic fecal metabolic phenotypes in DR patients compared with those in the healthy population and DM patients. Additionally, the gut microbiota composition and fecal metabolic phenotype were relevant. We speculated that the gut microbiota in DR patients may cause alterations in fecal metabolites, which may contribute to disease progression, providing a new direction for understanding DR.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Minming Zheng
- The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
27
|
Gut microbiota-mediated secondary bile acids regulate dendritic cells to attenuate autoimmune uveitis through TGR5 signaling. Cell Rep 2021; 36:109726. [PMID: 34551302 DOI: 10.1016/j.celrep.2021.109726] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 08/10/2021] [Accepted: 08/24/2021] [Indexed: 12/12/2022] Open
Abstract
Gut microbiota-mediated secondary bile acids (BAs) play an important role in energy balance and host metabolism via G protein-coupled receptors and/or nuclear receptors. Emerging evidence suggests that BAs are important for maintaining innate immune responses via these receptors. However, the effect of BAs on autoimmune uveitis is still unknown. Here, we demonstrate decreased microbiota-related secondary BA concentration in feces and serum of animals with experimental autoimmune uveitis (EAU). Restoration of the gut BAs pool attenuates severity of EAU in association with inhibition of nuclear factor κB (NF-κB)-related pro-inflammatory cytokines in dendritic cells (DCs). TGR5 deficiency partially reverses the inhibitory effect of deoxycholic acid (DCA) on DCs. TGR5 signaling also inhibits NF-κB activation via the cyclic AMP (cAMP)-protein kinase A (PKA) pathway in DCs. Additionally, both DCA and TGR5 agonists inhibit human monocyte-derived DC activation. Taken together, our results suggest that BA metabolism plays an important role in adaptive immune responses and might be a therapeutic target in autoimmune uveitis.
Collapse
|
28
|
Guo X, Chen Z, Xing Y. Immune-mediated uveitis and lifestyle factors: A review. Ophthalmic Res 2021; 64:687-695. [PMID: 34348329 DOI: 10.1159/000518496] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 06/14/2021] [Indexed: 11/19/2022]
Affiliation(s)
- Xiaoyu Guo
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Wuhan, China,
| | - Zhen Chen
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yiqiao Xing
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
29
|
Napolitano P, Filippelli M, D'andrea L, Carosielli M, dell'Omo R, Costagliola C. Probiotic Supplementation Improved Acute Anterior Uveitis of 3-Year Duration: A Case Report. AMERICAN JOURNAL OF CASE REPORTS 2021; 22:e931321. [PMID: 34272354 PMCID: PMC8295928 DOI: 10.12659/ajcr.931321] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND Uveitis is a clinical condition characterized by acute blurry vision related to an inflammation of the uvea. Gut microbiome dysbiosis can influence the prognosis of uveitis by inducing a loss of intestinal immune homeostasis leading to a lower activation threshold of the immune cells. This promotes a pro-inflammatory response resulting in reactivation of the disease. This is the case report of a 21-year-old woman with a 3-year history of acute anterior uveitis (AAU) of the right eye, who responded favorably to probiotic dietary supplementation. CASE REPORT A 21-year-old woman, previously unknown to our Ophthalmology Unit, presented with ocular pain and redness. Three years ago, she had been diagnosed with monolateral AAU in the right eye. Her medical and family histories were unremarkable. After a complete clinical evaluation, we decided to start a combination treatment protocol with continuous use of probiotics and the use of ocular steroids only during an exacerbation of the condition. To monitor the trend of the disease, she underwent a monthly clinical examination for the following year. During this period, we observed a decrease in ocular inflammation with a gain in the primary outcome (best-corrected visual acuity), and the steroids and atropine were discontinued for the following months. CONCLUSIONS This case report describes a patient with a 3-year history of AAU, who responded well to a combination treatment of dietary probiotic supplementation and steroids, demonstrating that probiotics can reduce recurrences of AAU.
Collapse
Affiliation(s)
- Pasquale Napolitano
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Campobasso, Italy
| | - Mariaelena Filippelli
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Campobasso, Italy
| | - Luca D'andrea
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Campobasso, Italy
| | - Marianna Carosielli
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Campobasso, Italy
| | - Roberto dell'Omo
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Campobasso, Italy
| | - Ciro Costagliola
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Campobasso, Italy
| |
Collapse
|
30
|
Shivaji S. A systematic review of gut microbiome and ocular inflammatory diseases: Are they associated? Indian J Ophthalmol 2021; 69:535-542. [PMID: 33595467 PMCID: PMC7942081 DOI: 10.4103/ijo.ijo_1362_20] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The primary focus of this review was to establish the possible association of dysbiotic changes in the gut bacterial microbiomes with both intestinal and extra-intestinal diseases with emphasis on ocular diseases such as bacterial keratitis, fungal keratitis, uveitis, age-related macular degeneration, and ocular mucosal diseases. For this particular purpose, a systematic search was conducted using PubMed and Google Scholar for publications related to gut microbiome and human health (using the keywords: gut microbiome, ocular disease, dysbiosis, keratitis, uveitis, and AMD). The predictions are that microbiome studies would help to unravel dysbiotic changes in the gut bacterial microbiome at the taxonomic and functional level and thus form the basis to mitigate inflammatory diseases of the eye by using nutritional supplements or fecal microbiota transplantation.
Collapse
Affiliation(s)
- Sisinthy Shivaji
- Scientist Emeritus and Distinguished Scientist, Jhaveri Microbiology Centre, Prof Brien Holden Eye Research Centre, L V Prasad Eye Institute, Hyderabad, Telangana, India
| |
Collapse
|
31
|
A Role for Folate in Microbiome-Linked Control of Autoimmunity. J Immunol Res 2021; 2021:9998200. [PMID: 34104654 PMCID: PMC8159645 DOI: 10.1155/2021/9998200] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 05/04/2021] [Indexed: 02/03/2023] Open
Abstract
The microbiome exerts considerable control over immune homeostasis and influences susceptibility to autoimmune and autoinflammatory disease (AD/AID) such as inflammatory bowel disease (IBD), multiple sclerosis (MS), type 1 diabetes (T1D), psoriasis, and uveitis. In part, this is due to direct effects of the microbiome on gastrointestinal (GI) physiology and nutrient transport, but also to indirect effects on immunoregulatory controls, including induction and stabilization of T regulatory cells (T reg). Secreted bacterial metabolites such as short-chain fatty acids (SCFA) are under intense investigation as mediators of these effects. In contrast, folate (vitamin B9), an essential micronutrient, has attracted less attention, possibly because it exerts global physiological effects which are difficult to differentiate from specific effects on the immune system. Here, we review the role of folate in AD/AID with some emphasis on sight-threatening autoimmune uveitis. Since folate is required for the generation and maintenance of T reg , we propose that one mechanism for microbiome-based control of AD/AID is via folate-dependent induction of GI tract T reg , particularly colonic T reg, via anergic T cells (T an). Hence, folate supplementation has potential prophylactic and/or therapeutic benefit in AID/AD.
Collapse
|
32
|
Lin P, McClintic SM, Nadeem U, Skondra D. A Review of the Role of the Intestinal Microbiota in Age-Related Macular Degeneration. J Clin Med 2021; 10:2072. [PMID: 34065988 PMCID: PMC8151249 DOI: 10.3390/jcm10102072] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 04/29/2021] [Accepted: 05/05/2021] [Indexed: 12/14/2022] Open
Abstract
Blindness from age-related macular degeneration (AMD) is an escalating problem, yet AMD pathogenesis is incompletely understood and treatments are limited. The intestinal microbiota is highly influential in ocular and extraocular diseases with inflammatory components, such as AMD. This article reviews data supporting the role of the intestinal microbiota in AMD pathogenesis. Multiple groups have found an intestinal dysbiosis in advanced AMD. There is growing evidence that environmental factors associated with AMD progression potentially work through the intestinal microbiota. A high-fat diet in apo-E-/- mice exacerbated wet and dry AMD features, presumably through changes in the intestinal microbiome, though other independent mechanisms related to lipid metabolism are also likely at play. AREDS supplementation reversed some adverse intestinal microbial changes in AMD patients. Part of the mechanism of intestinal microbial effects on retinal disease progression is via microbiota-induced microglial activation. The microbiota are at the intersection of genetics and AMD. Higher genetic risk was associated with lower intestinal bacterial diversity in AMD. Microbiota-induced metabolite production and gene expression occur in pathways important in AMD pathogenesis. These studies suggest a crucial link between the intestinal microbiota and AMD pathogenesis, thus providing a novel potential therapeutic target. Thus, the need for large longitudinal studies in patients and germ-free or gnotobiotic animal models has never been more pressing.
Collapse
Affiliation(s)
- Phoebe Lin
- Casey Eye Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | | | - Urooba Nadeem
- Department of Pathology, University of Chicago, Chicago, IL 60637, USA;
| | - Dimitra Skondra
- Department of Ophthalmology, University of Chicago, Chicago, IL 60637, USA;
| |
Collapse
|
33
|
Abstract
Commensal microbial communities have immense effects on their vertebrate hosts, contributing to a number of physiological functions, as well as host fitness. In particular, host immunity is strongly linked to microbiota composition through poorly understood bi-directional links. Gene expression may be a potential mediator of these links between microbial communities and host function. However, few studies have investigated connections between microbiota composition and expression of host immune genes in complex systems. Here, we leverage a large study of laboratory-raised fish from the species Gasterosteus aculeatus (three-spined stickleback) to document correlations between gene expression and microbiome composition. First, we examined correlations between microbiome alpha diversity and gene expression. Our results demonstrate robust positive associations between microbial alpha diversity and expression of host immune genes. Next, we examined correlations between host gene expression and abundance of microbial taxa. We identified 15 microbial families that were highly correlated with host gene expression. These families were all tightly correlated with host expression of immune genes and processes, falling into one of three categories—those positively correlated, negatively correlated, and neutrally related to immune processes. Furthermore, we highlight several important immune processes that are commonly associated with the abundance of these taxa, including both macrophage and B cell functions. Further functional characterization of microbial taxa will help disentangle the mechanisms of the correlations described here. In sum, our study supports prevailing hypotheses of intimate links between host immunity and gut microbiome composition.
Collapse
|
34
|
George AK, Behera J, Homme RP, Tyagi N, Tyagi SC, Singh M. Rebuilding Microbiome for Mitigating Traumatic Brain Injury: Importance of Restructuring the Gut-Microbiome-Brain Axis. Mol Neurobiol 2021; 58:3614-3627. [PMID: 33774742 PMCID: PMC8003896 DOI: 10.1007/s12035-021-02357-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 03/10/2021] [Indexed: 12/20/2022]
Abstract
Traumatic brain injury (TBI) is a damage to the brain from an external force that results in temporary or permanent impairment in brain functions. Unfortunately, not many treatment options are available to TBI patients. Therefore, knowledge of the complex interplay between gut microbiome (GM) and brain health may shed novel insights as it is a rapidly expanding field of research around the world. Recent studies show that GM plays important roles in shaping neurogenerative processes such as blood-brain-barrier (BBB), myelination, neurogenesis, and microglial maturation. In addition, GM is also known to modulate many aspects of neurological behavior and cognition; however, not much is known about the role of GM in brain injuries. Since GM has been shown to improve cellular and molecular functions via mitigating TBI-induced pathologies such as BBB permeability, neuroinflammation, astroglia activation, and mitochondrial dysfunction, herein we discuss how a dysbiotic gut environment, which in fact, contributes to central nervous system (CNS) disorders during brain injury and how to potentially ward off these harmful effects. We further opine that a better understanding of GM-brain (GMB) axis could help assist in designing better treatment and management strategies in future for the patients who are faced with limited options.
Collapse
Affiliation(s)
- Akash K George
- Eye and Vision Science Laboratory, Department of Physiology, University of Louisville School of Medicine, Louisville, Kentucky, 40202, USA.,Department of Physiology, University of Louisville School of Medicine, Louisville, Kentucky, 40202, USA
| | - Jyotirmaya Behera
- Bone Biology Laboratory, Department of Physiology, University of Louisville School of Medicine, Louisville, Kentucky, 40202, USA
| | - Rubens P Homme
- Eye and Vision Science Laboratory, Department of Physiology, University of Louisville School of Medicine, Louisville, Kentucky, 40202, USA.,Department of Physiology, University of Louisville School of Medicine, Louisville, Kentucky, 40202, USA
| | - Neetu Tyagi
- Bone Biology Laboratory, Department of Physiology, University of Louisville School of Medicine, Louisville, Kentucky, 40202, USA
| | - Suresh C Tyagi
- Department of Physiology, University of Louisville School of Medicine, Louisville, Kentucky, 40202, USA
| | - Mahavir Singh
- Eye and Vision Science Laboratory, Department of Physiology, University of Louisville School of Medicine, Louisville, Kentucky, 40202, USA. .,Department of Physiology, University of Louisville School of Medicine, Louisville, Kentucky, 40202, USA.
| |
Collapse
|
35
|
The Fecal Bacterial Microbiota in Horses with Equine Recurrent Uveitis. Animals (Basel) 2021; 11:ani11030745. [PMID: 33803123 PMCID: PMC7998804 DOI: 10.3390/ani11030745] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 02/16/2021] [Accepted: 02/26/2021] [Indexed: 01/17/2023] Open
Abstract
The objective of this study was to describe and compare the fecal bacterial microbiota of horses with equine recurrent uveitis (ERU) and healthy horses using next-generation sequencing techniques. Fecal samples were collected from 15 client-owned horses previously diagnosed with ERU on complete ophthalmic examination. For each fecal sample obtained from a horse with ERU, a sample was collected from an environmentally matched healthy control with no evidence of ocular disease. The Illumina MiSeq sequencer was used for high-throughput sequencing of the V4 region of the 16S rRNA gene. The relative abundance of predominant taxa, and alpha and beta diversity indices were calculated and compared between groups. The phyla Firmicutes, Bacteroidetes, Verrucomicrobia, and Proteobacteria predominated in both ERU and control horses, accounting for greater than 60% of sequences. Based on linear discriminant analysis effect size (LEfSe), no taxa were found to be enriched in either group. No significant differences were observed in alpha and beta diversity indices between groups (p > 0.05 for all tests). Equine recurrent uveitis is not associated with alteration of the gastrointestinal bacterial microbiota when compared with healthy controls.
Collapse
|
36
|
Salvador R, Zhang A, Horai R, Caspi RR. Microbiota as Drivers and as Therapeutic Targets in Ocular and Tissue Specific Autoimmunity. Front Cell Dev Biol 2021; 8:606751. [PMID: 33614621 PMCID: PMC7893107 DOI: 10.3389/fcell.2020.606751] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 12/17/2020] [Indexed: 12/16/2022] Open
Abstract
Autoimmune uveitis is a major cause of blindness in humans. Activation of retina-specific autoreactive T cells by commensal microbiota has been shown to trigger uveitis in mice. Although a culprit microbe and/or its immunogenic antigen remains to be identified, studies from inducible and spontaneous mouse models suggest the potential of microbiota-modulating therapies for treating ocular autoimmune disease. In this review, we summarize recent findings on the contribution of microbiota to T cell-driven, tissue-specific autoimmunity, with an emphasis on autoimmune uveitis, and analyze microbiota-altering interventions, including antibiotics, probiotics, and microbiota-derived metabolites (e.g., short-chain fatty acids), which have been shown to be effective in other autoimmune diseases. We also discuss the need to explore more translational animal models as well as to integrate various datasets (microbiomic, transcriptomic, proteomic, metabolomic, and other cellular measurements) to gain a better understanding of how microbiota can directly or indirectly modulate the immune system and contribute to the onset of disease. It is hoped that deeper understanding of these interactions may lead to more effective treatment interventions.
Collapse
Affiliation(s)
- Ryan Salvador
- Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bethesda, MD, United States
| | - Amy Zhang
- Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bethesda, MD, United States
| | - Reiko Horai
- Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bethesda, MD, United States
| | - Rachel R Caspi
- Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
37
|
Alterations in the gut bacterial microbiome in people with type 2 diabetes mellitus and diabetic retinopathy. Sci Rep 2021; 11:2738. [PMID: 33531650 PMCID: PMC7854632 DOI: 10.1038/s41598-021-82538-0] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 01/21/2021] [Indexed: 02/07/2023] Open
Abstract
Gut bacterial microbiome dysbiosis in type 2 Diabetes Mellitus (T2DM) has been reported, but such an association with Diabetic Retinopathy (DR) is not known. We explored possible link between gut bacterial microbiome dysbiosis and DR. Using fecal samples of healthy controls (HC) and people with T2DM with/without DR, gut bacterial communities were analysed using 16S rRNA gene sequencing and data analysed using QIIME and R software. Dysbiosis in the gut microbiomes, at phyla and genera level, was observed in people with T2DM and DR compared to HC. People with DR exhibited greater discrimination from HC. Microbiomes of people with T2DM and DR were also significantly different. Both DM and DR microbiomes showed a decrease in anti-inflammatory, probiotic and other bacteria that could be pathogenic, compared to HC, and the observed change was more pronounced in people with DR. This is the first report demonstrating dysbiosis in the gut microbiome (alteration in the diversity and abundance at the phyla and genera level) in people with DR compared to HC. Such studies would help in developing novel and targeted therapies to improve treatment of DR.
Collapse
|
38
|
Alterations in the conjunctival surface bacterial microbiome in bacterial keratitis patients. Exp Eye Res 2020; 203:108418. [PMID: 33359511 DOI: 10.1016/j.exer.2020.108418] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 11/17/2020] [Accepted: 12/18/2020] [Indexed: 01/09/2023]
Abstract
Microbial keratitis is an infectious disease of the eye, in which the cornea is inflamed. Under severe conditions, keratitis can lead to significant loss of vision and enucleation of the eye. Ocular trauma is the major risk factor causing keratitis and microorganisms viz., bacteria, fungi, viruses are the causative agents. The current study characterized the conjunctival bacterial microbiomes of healthy individuals and individuals with bacterial keratitis (BK) and assessed whether ocular microbiome dysbiosis is prevalent in BK patients. Ocular bacterial microbiomes were generated from the conjunctival swabs of healthy controls (HC-SW) and conjunctival swabs (BK-SW) and corneal scrapings (BK-CR) of BK patients using V3-V4 amplicon sequencing and data analysed using QIIME and R software. The Alpha diversity indices, diversity and abundance of different phyla and genera, heat map analysis, NMDS plots and inferred functional pathway analysis clearly discriminated the bacterial microbiomes of conjunctival swabs of healthy controls from that of BK patients. Preponderance of negative interactions in the hub genera were observed in BK-CR and BK-SW compared to HC-SW. In addition, a consistent increase in the abundance of pathogenic bacteria, as inferred from published literature, was observed in the conjunctiva of BK patients compared to HC and this may be related to causing or exacerbating ocular surface inflammation. This is the first study demonstrating dysbiosis in the ocular bacterial microbiome of conjunctiva of bacterial keratitis patients compared to the eye of healthy controls. The bacterial microbiome associated with the corneal scrapings of keratitis individuals is also described for the first time.
Collapse
|
39
|
Li JJ, Yi S, Wei L. Ocular Microbiota and Intraocular Inflammation. Front Immunol 2020; 11:609765. [PMID: 33424865 PMCID: PMC7786018 DOI: 10.3389/fimmu.2020.609765] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 11/23/2020] [Indexed: 12/20/2022] Open
Abstract
The term ocular microbiota refers to all types of commensal and pathogenic microorganisms present on or in the eye. The ocular surface is continuously exposed to the environment and harbors various commensals. Commensal microbes have been demonstrated to regulate host metabolism, development of immune system, and host defense against pathogen invasion. An unbalanced microbiota could lead to pathogenic microbial overgrowth and cause local or systemic inflammation. The specific antigens that irritate the deleterious immune responses in various inflammatory eye diseases remain obscure, while recent evidence implies a microbial etiology of these illnesses. The purpose of this review is to provide an overview of the literature on ocular microbiota and the role of commensal microbes in several eye diseases. In addition, this review will also discuss the interaction between microbial pathogens and host factors involved in intraocular inflammation, and evaluate therapeutic potential of targeting ocular microbiota to treat intraocular inflammation.
Collapse
Affiliation(s)
- Jing Jing Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Sanjun Yi
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Lai Wei
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
40
|
Gut mycobiomes are altered in people with type 2 Diabetes Mellitus and Diabetic Retinopathy. PLoS One 2020; 15:e0243077. [PMID: 33259537 PMCID: PMC7707496 DOI: 10.1371/journal.pone.0243077] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 11/14/2020] [Indexed: 01/14/2023] Open
Abstract
Studies have documented dysbiosis in the gut mycobiome in people with Type 2 diabetes mellitus (T2DM). However, it is not known whether dysbiosis in the gut mycobiome of T2DM patients would be reflected in people with diabetic retinopathy (DR) and if so, is the observed mycobiome dysbiosis similar in people with T2DM and DR. Gut mycobiomes were generated from healthy controls (HC), people with T2DM and people with DR through Illumina sequencing of ITS2 region. Data were analysed using QIIME and R software. Dysbiotic changes were observed in people with T2DM and DR compared to HC at the phyla and genera level. Mycobiomes of HC, T2DM and DR could be discriminated by heat map analysis, Beta diversity analysis and LEfSE analysis. Spearman correlation of fungal genera indicated more negative correlation in HC compared to T2DM and DR mycobiomes. This study demonstrates dysbiosis in the gut mycobiomes in people with T2DM and DR compared to HC. These differences were significant both at the phyla and genera level between people with T2DM and DR as well. Such studies on mycobiomes may provide new insights and directions to identification of specific fungi associated with T2DM and DR and help developing novel therapies for Diabetes Mellitus and DR.
Collapse
|
41
|
Moon J, Yoon CH, Choi SH, Kim MK. Can Gut Microbiota Affect Dry Eye Syndrome? Int J Mol Sci 2020; 21:E8443. [PMID: 33182758 PMCID: PMC7697210 DOI: 10.3390/ijms21228443] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/05/2020] [Accepted: 11/06/2020] [Indexed: 02/07/2023] Open
Abstract
Using metagenomics, continuing evidence has elicited how intestinal microbiota trigger distant autoimmunity. Sjögren's syndrome (SS) is an autoimmune disease that affects the ocular surface, with frequently unmet therapeutic needs requiring new interventions for dry eye management. Current studies also suggest the possible relation of autoimmune dry eye with gut microbiota. Herein, we review the current knowledge of how the gut microbiota interact with the immune system in homeostasis as well as its influence on rheumatic and ocular autoimmune diseases, and compare their characteristics with SS. Both rodent and human studies regarding gut microbiota in SS and environmental dry eye are explored, and the effects of prebiotics and probiotics on dry eye are discussed. Recent clinical studies have commonly observed a correlation between gut dysbiosis and clinical manifestations of SS, while environmental dry eye portrays characteristics in between normal and autoimmune. Moreover, a decrease in both the Firmicutes/Bacteroidetes ratio and genus Faecalibacterium have most commonly been observed in SS subjects. The presumable pathways forming the "gut dysbiosis-ocular surface-lacrimal gland axis" are introduced. This review may provide perspectives into the link between the gut microbiome and dry eye, enhance our understanding of the pathogenesis in autoimmune dry eye, and be useful in the development of future interventions.
Collapse
Affiliation(s)
- Jayoon Moon
- Department of Ophthalmology, College of Medicine, Seoul National University, Seoul 03080, Korea; (J.M.); (C.H.Y.)
- Seoul Artificial Eye Center, Laboratory of Ocular Regenerative Medicine and Immunology, Seoul National University Hospital Biomedical Research Institute, Seoul 03082, Korea;
| | - Chang Ho Yoon
- Department of Ophthalmology, College of Medicine, Seoul National University, Seoul 03080, Korea; (J.M.); (C.H.Y.)
- Seoul Artificial Eye Center, Laboratory of Ocular Regenerative Medicine and Immunology, Seoul National University Hospital Biomedical Research Institute, Seoul 03082, Korea;
| | - Se Hyun Choi
- Seoul Artificial Eye Center, Laboratory of Ocular Regenerative Medicine and Immunology, Seoul National University Hospital Biomedical Research Institute, Seoul 03082, Korea;
- Department of Ophthalmology, Hallym University Sacred Heart Hospital, Anyang-si 14068, Korea
| | - Mee Kum Kim
- Department of Ophthalmology, College of Medicine, Seoul National University, Seoul 03080, Korea; (J.M.); (C.H.Y.)
- Seoul Artificial Eye Center, Laboratory of Ocular Regenerative Medicine and Immunology, Seoul National University Hospital Biomedical Research Institute, Seoul 03082, Korea;
| |
Collapse
|
42
|
Huang X, Yi S, Hu J, Du Z, Wang Q, Ye Z, Su G, Kijlstra A, Yang P. Linoleic acid inhibits in vitro function of human and murine dendritic cells, CD4 +T cells and retinal pigment epithelial cells. Graefes Arch Clin Exp Ophthalmol 2020; 259:987-998. [PMID: 33079282 DOI: 10.1007/s00417-020-04972-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 09/29/2020] [Accepted: 10/07/2020] [Indexed: 02/07/2023] Open
Abstract
PURPOSE Increased linoleic acid (LA) was observed in acute anterior uveitis (AAU) patient feces in our previous study. To investigate the immunoregulatory effect of LA, we studied the effect of LA on human and murine dendritic cells (DCs), CD4+T cells, and retinal pigment epithelial (RPE) cells in vitro. METHODS The level of LA in feces from AAU patients and healthy individuals was measured by gas chromatography coupled with a mass spectrometer (GC-MS). The immunoregulatory effect of LA on human and murine DCs, CD4+ T cells, and RPE cells was evaluated by enzyme linked immunosorbent assay (ELISA) and flow cytometry (FCM). The effect of LA on DCs was evaluated by Tandem mass tag (TMT)-based proteomics analysis. RESULTS Increased LA was observed in feces from AAU patients (1018.35 ± 900.01 mg/kg) as compared with healthy individuals (472.55 ± 365.49 mg/kg, p = 0.0136). LA attenuated the antigen-presenting function of human and murine DCs by decreasing the expression of CD40, the secretion of IL-6 and IL-12p70, and the ability to shift naïve T cells towards T helper type 1 (Th1) and Th17 cells. LA also inhibited the secretion of MCP-1 and IL-8 from RPE cells. Proteomics analysis showed differential expression of 28 proteins, including squalene epoxidase (SQLE), farnesyl-diphosphate farnesyltransferase 1 (FDFT1), and cytochrome P450 family 51 subfamily A member 1 (CYP51A1), in LA-treated DCs compared with controls. LA also accelerated the apoptosis of DCs from healthy individuals. CONCLUSION LA inhibited the function of human and murine DCs, CD4+T cells, and RPE cells, regulated the expression of proteins, and promoted the apoptosis of human DCs. These results collectively suggest that LA might decrease the function of immune cells in vitro, and further studies are needed to investigate its role in the pathogenesis of AAU.
Collapse
Affiliation(s)
- Xinyue Huang
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, and Chongqing Eye Institute, Chongqing, People's Republic of China
| | - Shenglan Yi
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, and Chongqing Eye Institute, Chongqing, People's Republic of China
| | - Jianping Hu
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, and Chongqing Eye Institute, Chongqing, People's Republic of China
| | - Ziyu Du
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, and Chongqing Eye Institute, Chongqing, People's Republic of China
| | - Qingfeng Wang
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, and Chongqing Eye Institute, Chongqing, People's Republic of China
| | - Zi Ye
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, and Chongqing Eye Institute, Chongqing, People's Republic of China
| | - Guannan Su
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, and Chongqing Eye Institute, Chongqing, People's Republic of China
| | - Aize Kijlstra
- University Eye Clinic Maastricht, Maastricht, Netherlands
| | - Peizeng Yang
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, and Chongqing Eye Institute, Chongqing, People's Republic of China.
| |
Collapse
|
43
|
Liu B, Yin X, Wei H, Wang Z, Tang H, Qiu Y, Hao Y, Zhang X, Bi H, Guo D. Quantitative proteomic analysis of rat retina with experimental autoimmune uveitis based on tandem mass tag (TMT) peptide labeling coupled with LC-MS/MS. J Chromatogr B Analyt Technol Biomed Life Sci 2020; 1153:122293. [PMID: 32750637 DOI: 10.1016/j.jchromb.2020.122293] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/29/2020] [Accepted: 07/27/2020] [Indexed: 11/25/2022]
Abstract
Uveitis is a recurrent, inflammatory eye disease that occurs in the retina, iris, ciliary body and choroid. Currently, the detailed mechanism is still unclear. Proteomics can offer a powerful set of tools for the direct high-throughput study and a key contribution to the understanding of protein functions. This approach can also allow us to compare the protein profiling of the cells in healthy and diseased states that can be used to identify proteins associated with disease development and progression. In the present study, we first established an autoimmune uveitis (EAU) rat model. On day 12 after immunization, we isolated the rat retinas from both normal and EAU animals to collect total proteins. Using tandem mass tag (TMT) peptide labeling coupled with LC-MS/MS quantitative proteomics technique, we identified the differentially expressed proteins in EAU rat retinas, performed bioinformatics analyses, validated the expression of the COX1, NADH1, C3, and C9 proteins, and determined the adenosine triphosphate (ATP) levels. The results indicated that there were 190 upregulated and 103 downregulated proteins in EAU rat retinas. Bioinformatics analysis revealed the differentially expressed proteins were mainly involved in acute inflammatory response, visual perception and eye photoreceptor cell differentiation that were mainly related to complement and coagulation cascades, phagosome, PI3K-Akt signaling, and metabolic pathways. In conclusion, based on the TMT-based quantitative proteomics technique, the differentially expressed proteins in EAU rat retinas were mainly associated with complement and coagulation cascades and metabolic pathways. Our findings will facilitate the understanding of the pathogenesis of uveitis and will be useful for subsequent studies.
Collapse
Affiliation(s)
- Bin Liu
- Shandong University of Traditional Chinese Medicine, No. 4655#, Daxue Road, Jinan 250355, China; Linyi People's Hospital, No. 27#, Jiefang Road, Linyi 276005, China
| | - Xuewei Yin
- Shandong University of Traditional Chinese Medicine, No. 4655#, Daxue Road, Jinan 250355, China
| | - Huixia Wei
- Shandong University of Traditional Chinese Medicine, No. 4655#, Daxue Road, Jinan 250355, China
| | - Zhe Wang
- Department of Ophthalmology, Zaozhuang Hospital of Traditional Chinese Medicine, Zaozhuang 277000, China
| | - Hongying Tang
- Shandong University of Traditional Chinese Medicine, No. 4655#, Daxue Road, Jinan 250355, China
| | - Yan Qiu
- Shandong University of Traditional Chinese Medicine, No. 4655#, Daxue Road, Jinan 250355, China
| | - Yixian Hao
- Shandong University of Traditional Chinese Medicine, No. 4655#, Daxue Road, Jinan 250355, China
| | - Xiuyan Zhang
- Shandong University of Traditional Chinese Medicine, No. 4655#, Daxue Road, Jinan 250355, China
| | - Hongsheng Bi
- Shandong Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases, No. 48#, Yingxiongshan Road, Jinan 250002, China; Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases in Universities of Shandong, No. 48#, Yingxiongshan Road, Jinan 250002, China; Eye Institute of Shandong University of Traditional Chinese Medicine, No. 48#, Yingxiongshan Road, Jinan 250002, China
| | - Dadong Guo
- Shandong Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases, No. 48#, Yingxiongshan Road, Jinan 250002, China; Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases in Universities of Shandong, No. 48#, Yingxiongshan Road, Jinan 250002, China; Eye Institute of Shandong University of Traditional Chinese Medicine, No. 48#, Yingxiongshan Road, Jinan 250002, China.
| |
Collapse
|
44
|
Rademacher J, Poddubnyy D, Pleyer U. Uveitis in spondyloarthritis. Ther Adv Musculoskelet Dis 2020; 12:1759720X20951733. [PMID: 32963592 PMCID: PMC7488890 DOI: 10.1177/1759720x20951733] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Accepted: 07/30/2020] [Indexed: 12/17/2022] Open
Abstract
Uveitis is the most frequent extra-articular manifestation of axial spondyloarthritis (SpA), occurring in up to one-third of the patients. In the majority of patients, uveitis is acute, anterior and unilateral and presents with photosensitivity, sudden onset of pain and blurred vision. Topical steroids are an effective treatment; however, recurrent or refractory cases may need conventional disease-modifying antirheumatic drugs or biological treatment with monoclonal tumor necrosis factor (TNF) inhibitors, thus also influencing treatment strategy of the underlying SpA. Though the exact pathogenesis of SpA and uveitis remains unknown, both seem to result from the interaction of a specific, mostly shared genetical background (among other HLA-B27 positivity), external influences such as microbiome, bacterial infection or mechanical stress and activation of the immune system resulting in inflammation. Up to 40% of patients presenting with acute anterior uveitis (AAU) have an undiagnosed SpA. Therefore, an effective referral strategy for AAU patients is needed to shorten the diagnostic delay of SpA and enable an early effective treatment. Further, the risk for ophthalmological manifestations increases with the disease duration in SpA; and patients presenting with ocular symptoms should be referred to an ophthalmologist. Thus, a close collaboration between patient, rheumatologist and ophthalmologist is needed to optimally manage ocular inflammation in SpA.
Collapse
Affiliation(s)
- Judith Rademacher
- Department of Gastroenterology, Infectiology and Rheumatology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Hindenburgdamm 30, Berlin, 10117, Germany
| | - Denis Poddubnyy
- Department of Gastroenterology, Infectiology and Rheumatology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Uwe Pleyer
- Department of Ophthalmology, Campus Virchow, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
45
|
Fu X, Chen Y, Chen D. The Role of Gut Microbiome in Autoimmune Uveitis. Ophthalmic Res 2020; 64:168-177. [PMID: 32674100 DOI: 10.1159/000510212] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 07/10/2020] [Indexed: 02/05/2023]
Abstract
The gut microbiome has important physiological functions and plays an indispensable role in the human body. Currently, there are an increasing number of studies revealing the close correlation between dysbiosis of the gut microbiome and a variety of autoimmune diseases, including autoimmune uveitis. This brief review summarizes recent literature regarding the relationship between dysbiosis and the occurrence and development of autoimmune uveitis. Dysbiosis participates in the pathogenesis of autoimmune uveitis largely by 4 mechanisms: antigenic mimicry, disturbance of intestinal immune homeostasis, destruction of the intestinal barrier, and reduction of beneficial anti-inflammatory metabolites. Further elucidation of these mechanisms will facilitate the treatment of the gut-microbiome-relevant autoimmune diseases by potential therapeutic strategies, such as antibiotics, probiotics, diet modifications, and fecal microbial transplantation.
Collapse
Affiliation(s)
- Xiangyu Fu
- The Research Laboratory of Ophthalmology and Vision Sciences, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.,The Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
| | - Yongjiang Chen
- The School of Optometry and Vision Science, University of Waterloo, Waterloo, Ontario, Canada
| | - Danian Chen
- The Research Laboratory of Ophthalmology and Vision Sciences, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China, .,The Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China,
| |
Collapse
|
46
|
Arunasri K, Mahesh M, Sai Prashanthi G, Jayasudha R, Kalyana Chakravarthy S, Tyagi M, Pappuru RR, Shivaji S. Comparison of the Vitreous Fluid Bacterial Microbiomes between Individuals with Post Fever Retinitis and Healthy Controls. Microorganisms 2020; 8:E751. [PMID: 32429503 PMCID: PMC7285296 DOI: 10.3390/microorganisms8050751] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 04/23/2020] [Accepted: 05/04/2020] [Indexed: 12/21/2022] Open
Abstract
Ocular microbiome research has gained momentum in the recent past and has provided new insights into health and disease conditions. However, studies on sight threatening intraocular inflammatory diseases have remained untouched. In the present study, we attempted to identify the bacterial microbiome associated with post fever retinitis using a metagenomic sequencing approach. For this purpose, bacterial ocular microbiomes were generated from vitreous samples collected from control individuals (VC, n = 19) and individuals with post fever retinitis (PFR, n = 9), and analysed. The results revealed 18 discriminative genera in the microbiomes of the two cohorts out of which 16 genera were enriched in VC and the remaining two in PFR group. These discriminative genera were inferred to have antimicrobial, anti-inflammatory, and probiotic function. Only two pathogenic bacteria were differentially abundant in 20% of the PFR samples. PCoA and heatmap analysis showed that the vitreous microbiomes of VC and PFR formed two distinct clusters indicating dysbiosis in the vitreous bacterial microbiomes. Functional assignments and network analysis also revealed that the vitreous bacterial microbiomes in the control group exhibited more evenness in the bacterial diversity and several bacteria had antimicrobial function compared to the PFR group.
Collapse
Affiliation(s)
- Kotakonda Arunasri
- Jhaveri Microbiology Centre, Prof Brien Holden Eye Research Centre, L V Prasad Eye Institute, L V Prasad Marg, Banjara Hills, Hyderabad 500034, India; (K.A.); (M.M.); (G.S.P.); (R.J.); (S.K.C.)
| | - Malleswarapu Mahesh
- Jhaveri Microbiology Centre, Prof Brien Holden Eye Research Centre, L V Prasad Eye Institute, L V Prasad Marg, Banjara Hills, Hyderabad 500034, India; (K.A.); (M.M.); (G.S.P.); (R.J.); (S.K.C.)
| | - Gumpili Sai Prashanthi
- Jhaveri Microbiology Centre, Prof Brien Holden Eye Research Centre, L V Prasad Eye Institute, L V Prasad Marg, Banjara Hills, Hyderabad 500034, India; (K.A.); (M.M.); (G.S.P.); (R.J.); (S.K.C.)
| | - Rajagopalaboopathi Jayasudha
- Jhaveri Microbiology Centre, Prof Brien Holden Eye Research Centre, L V Prasad Eye Institute, L V Prasad Marg, Banjara Hills, Hyderabad 500034, India; (K.A.); (M.M.); (G.S.P.); (R.J.); (S.K.C.)
| | - Sama Kalyana Chakravarthy
- Jhaveri Microbiology Centre, Prof Brien Holden Eye Research Centre, L V Prasad Eye Institute, L V Prasad Marg, Banjara Hills, Hyderabad 500034, India; (K.A.); (M.M.); (G.S.P.); (R.J.); (S.K.C.)
| | - Mudit Tyagi
- Smt. Kanuri Santhamma Centre for Vitreo Retinal Diseases, L V Prasad Eye Institute, L V Prasad Marg, Banjara Hills, Hyderabad 500034, India; (M.T.); (R.R.P.)
| | - Rajeev R. Pappuru
- Smt. Kanuri Santhamma Centre for Vitreo Retinal Diseases, L V Prasad Eye Institute, L V Prasad Marg, Banjara Hills, Hyderabad 500034, India; (M.T.); (R.R.P.)
| | - Sisinthy Shivaji
- Jhaveri Microbiology Centre, Prof Brien Holden Eye Research Centre, L V Prasad Eye Institute, L V Prasad Marg, Banjara Hills, Hyderabad 500034, India; (K.A.); (M.M.); (G.S.P.); (R.J.); (S.K.C.)
| |
Collapse
|
47
|
Zhong Z, Su G, Kijlstra A, Yang P. Activation of the interleukin-23/interleukin-17 signalling pathway in autoinflammatory and autoimmune uveitis. Prog Retin Eye Res 2020; 80:100866. [PMID: 32422390 DOI: 10.1016/j.preteyeres.2020.100866] [Citation(s) in RCA: 111] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 04/30/2020] [Accepted: 05/04/2020] [Indexed: 02/07/2023]
Abstract
Uveitis is a group of diseases characterized by intraocular inflammation, of which some are driven by autoinflammatory or autoimmune responses, such as Vogt-Koyanagi-Harada disease, Behçet's disease, uveitis associated with spondyloarthritis, ocular sarcoidosis, sympathetic ophthalmia and birdshot chorioretinopathy. These entities have various clinical forms, but genetic and biomarker data suggest that they share a common molecular basis, activation of the Interleukin (IL)-23/IL-17 pathway. Multiple factors including genetic predisposition, various cytokine imbalances, infectious agents and gut alterations are found to trigger an aberrant response of this pathway. The enhanced activity of the IL-23/IL-17 pathway is committed to the expansion and pathogenicity of Th17 cells. Evidence from animal models demonstrates that the development of pathogenic Th17 cells is responsible for the induction of experimental autoimmune uveitis. Further findings indicate that retinal pigment epithelium (RPE) cells may be a target of IL-17. IL-17 triggers downstream inflammatory cascades and causes dysfunction of RPE cells, which may affect retinal barrier function and thereby promote intraocular inflammation. Currently, several emerging drugs blocking the IL-23/IL-17 pathway have been assessed for the treatment of uveitis in pilot studies. The purpose of this is to summarize updated biological knowledge and preliminary clinical data, providing the rationale for further development and evaluation of novel drugs targeting the IL-23/IL-17 pathway in autoinflammatory and autoimmune uveitis. Future studies may focus on translational medicine targeting the IL-23/IL-17 pathway for the improvement of diagnosis and treatment of uveitis. In conclusion, activation of the IL-23/IL-17 pathway is a critical biological event and can be an important target for the treatment of autoinflammatory and autoimmune uveitis.
Collapse
Affiliation(s)
- Zhenyu Zhong
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology and Chongqing Eye Institute, Chongqing, China
| | - Guannan Su
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology and Chongqing Eye Institute, Chongqing, China
| | - Aize Kijlstra
- University Eye Clinic Maastricht, Maastricht, the Netherlands
| | - Peizeng Yang
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology and Chongqing Eye Institute, Chongqing, China.
| |
Collapse
|
48
|
Huang X, Yi S, Hu J, Du Z, Wang Q, Ye Z, Cao Q, Su G, Yuan G, Zhou C, Wang Y, Kijlstra A, Yang P. Analysis of the role of palmitoleic acid in acute anterior uveitis. Int Immunopharmacol 2020; 84:106552. [PMID: 32422526 DOI: 10.1016/j.intimp.2020.106552] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 04/09/2020] [Accepted: 04/27/2020] [Indexed: 12/19/2022]
Abstract
PURPOSE To study the role of palmitoleic acid (PA) in the pathogenesis of acute anterior uveitis (AAU). METHODS PA levels in feces from AAU patients were measured by gas chromatography coupled with a mass spectrometer (GC-MS) and compared with samples obtained from healthy individuals. Enzyme linked immunosorbent assay (ELISA) and flow cytometry (FCM) were used to assess the effect of PA on dendritic cells (DCs) and CD4+T cells obtained from mice, AAU patients and healthy individuals. C57BL/6 mice were fed with PA or vehicle and experimental autoimmune uveitis (EAU) was induced with a human retinal IRBP651-670 peptide. Disease severity of EAU was evaluated by clinical manifestation and histology. Differentiation of splenic Type 1 helper T cells (Th1) and Th17 cells was evaluated by FCM. Tandem mass tag (TMT)-based proteomics analysis was used to identify differentially expressed proteins following incubation of DCs with PA. RESULTS The fecal concentration of PA was increased in AAU patients as compared with healthy individuals. In vitro, PA promoted apoptosis of DCs and inhibited the secretion of TNF-α from mouse bone-marrow-derived dendritic cells (BMDCs) as well as in DCs from AAU patients and healthy individuals. It only decreased DCs surface marker expression and IL-12p70 secretion in BMDCs and healthy individuals DCs but not in AAU patient DCs. PA-treated BMDCs inhibited Th cell differentiation from mouse naïve CD4+T cells and IL-17 and IFN-γ secretion in co-culture supernatants. PA also inhibited the differentiation of Th cells and secretion of IFN-γ and IL-17 in CD4+T cells from mice, AAU patients and healthy individuals. In vivo, PA-treated EAU mice showed milder clinical and histopathological intraocular manifestations as compared with the control group. PA feeding inhibited differentiation of splenic Th17 cells, whereas Th1 cells were not affected. Up to 30 upregulated and 77 downregulated proteins were identified when comparing PA-treated DCs with controls. CONCLUSION An increased expression of fecal PA was observed in AAU patients. PA was shown to have immunoregulatory effects on DCs and CD4+T cells and attenuated disease severity in EAU mice.
Collapse
Affiliation(s)
- Xinyue Huang
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, and Chongqing Eye Institute, Chongqing, PR China
| | - Shenglan Yi
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, and Chongqing Eye Institute, Chongqing, PR China
| | - Jianping Hu
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, and Chongqing Eye Institute, Chongqing, PR China
| | - Ziyu Du
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, and Chongqing Eye Institute, Chongqing, PR China
| | - Qingfeng Wang
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, and Chongqing Eye Institute, Chongqing, PR China
| | - Zi Ye
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, and Chongqing Eye Institute, Chongqing, PR China
| | - Qingfeng Cao
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, and Chongqing Eye Institute, Chongqing, PR China
| | - Guannan Su
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, and Chongqing Eye Institute, Chongqing, PR China
| | - Gangxiang Yuan
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, and Chongqing Eye Institute, Chongqing, PR China
| | - Chunjiang Zhou
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, and Chongqing Eye Institute, Chongqing, PR China
| | - Yao Wang
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, and Chongqing Eye Institute, Chongqing, PR China
| | - Aize Kijlstra
- University Eye Clinic Maastricht, Maastricht, the Netherlands
| | - Peizeng Yang
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, and Chongqing Eye Institute, Chongqing, PR China.
| |
Collapse
|
49
|
Abstract
Uveitis is a heterogeneous collection of inflammatory diseases of the intraocular uveal tissues and adjacent structures, and they collectively are a significant cause of visual morbidity. In recent years, investigating the contribution of the gut microbiota to autoimmunity, including the development of uveitis, has gained interest. Decreased disease severity has been observed in both the induced experimental autoimmune model of uveitis and the spontaneous RI61H model of uveitis in mice treated with oral broad-spectrum antibiotics and raised in germ-free conditions, implicating a role for the gut microbiota in the development of disease in these models. Also, in support of these findings are the differences in the composition of the microbiota that have been reported in uveitis patients. Proposed mechanisms accounting for the microbiota triggering uveitis include antigenic mimicry and dysbiosis leading to dysregulation of the immune system. An improved understanding of these mechanisms will facilitate potential therapeutic approaches including alteration of the microbiota with probiotic treatment and fecal microbiota transplants.
Collapse
Affiliation(s)
- Shilpa Kodati
- National Eye Institute, National Institutes of Health, USA
| | - H Nida Sen
- National Eye Institute, National Institutes of Health, USA.
| |
Collapse
|
50
|
Nayyar A, Gindina S, Barron A, Hu Y, Danias J. Do epigenetic changes caused by commensal microbiota contribute to development of ocular disease? A review of evidence. Hum Genomics 2020; 14:11. [PMID: 32169120 PMCID: PMC7071564 DOI: 10.1186/s40246-020-00257-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Accepted: 02/06/2020] [Indexed: 02/07/2023] Open
Abstract
There is evidence that genetic polymorphisms and environmentally induced epigenetic changes play an important role in modifying disease risk. The commensal microbiota has the ability to affect the cellular environment throughout the body without requiring direct contact; for example, through the generation of a pro-inflammatory state. In this review, we discuss evidence that dysbiosis in intestinal, pharyngeal, oral, and ocular microbiome can lead to epigenetic reprogramming and inflammation making the host more susceptible to ocular disease such as autoimmune uveitis, age-related macular degeneration, and open angle glaucoma. Several mechanisms of action have been proposed to explain how changes to commensal microbiota contribute to these diseases. This is an evolving field that has potentially significant implications in the management of these conditions especially from a public health perspective.
Collapse
Affiliation(s)
- Ashima Nayyar
- Department of Cell Biology, State University of New York (SUNY) Downstate Medical Center, Brooklyn, NY, USA
| | - Sofya Gindina
- Department of Cell Biology, State University of New York (SUNY) Downstate Medical Center, Brooklyn, NY, USA
| | - Arturo Barron
- Department of Cell Biology, State University of New York (SUNY) Downstate Medical Center, Brooklyn, NY, USA
| | - Yan Hu
- Department of Cell Biology, State University of New York (SUNY) Downstate Medical Center, Brooklyn, NY, USA
| | - John Danias
- Department of Cell Biology, State University of New York (SUNY) Downstate Medical Center, Brooklyn, NY, USA.
- Department of Ophthalmology, State University of New York (SUNY) Downstate Medical Center, Brooklyn, NY, USA.
| |
Collapse
|