1
|
Kumar H, Guymer RH, Hodgson LA, Hadoux X, Jannaud M, van Wijngaarden P, Luu CD, Wu Z. Reticular Pseudodrusen: Impact of Their Presence and Extent on Local Rod Function in Age-Related Macular Degeneration. OPHTHALMOLOGY SCIENCE 2024; 4:100551. [PMID: 39161750 PMCID: PMC11331943 DOI: 10.1016/j.xops.2024.100551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/29/2024] [Accepted: 04/30/2024] [Indexed: 08/21/2024]
Abstract
Purpose To understand the spatial relationship between local rod-mediated visual function and reticular pseudodrusen (RPD) in eyes with large drusen. Design Retrospective cross-sectional study. Participants One eye with large drusen (>125 μm) each from 91 individuals with intermediate age-related macular degeneration, with and without RPD. Methods All participants underwent dark adaptation testing using a dark-adapted chromatic perimeter, where visual sensitivities were measured over 30 minutes of dark adaptation after photobleach. The rod intercept time (RIT; a measure of dynamic rod function) and pointwise sensitivity difference (PWSD; a relative measure of rod- compared with cone-mediated function) was determined at multiple retinal locations, and their association with the overall (central 20° × 20° region) and local (2° diameter region centered on the location tested) extent of RPD and drusen (quantified using multimodal imaging) was examined. Main Outcome Measures Association between overall and local extent of RPD and drusen with RIT and PWSD at each retinal location tested. Results In a multivariable analysis, delayed RIT was associated with an increasing overall (P < 0.001), but not local (P = 0.884), extent of RPD. In contrast, the increasing local (P < 0.001), but not overall (P = 0.475), extent of drusen was associated with delayed RIT. Furthermore, only an increasing overall extent of RPD (P < 0.001) was associated with reduced PWSD (or worse rod compared with cone function), but not the local extent of RPD and drusen, or overall extent of drusen (P ≥ 0.344). Conclusions Local rod-mediated function was associated with the overall, rather than local, extent of RPD in eyes with large drusen, suggesting that there may be widespread pathologic changes in eyes with RPD that account for this. Financial Disclosures Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.
Collapse
Affiliation(s)
- Himeesh Kumar
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, Australia
- Department of Surgery (Ophthalmology), The University of Melbourne, Melbourne, Australia
| | - Robyn H. Guymer
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, Australia
- Department of Surgery (Ophthalmology), The University of Melbourne, Melbourne, Australia
| | - Lauren A.B. Hodgson
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, Australia
| | - Xavier Hadoux
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, Australia
- Department of Surgery (Ophthalmology), The University of Melbourne, Melbourne, Australia
| | - Maxime Jannaud
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, Australia
| | - Peter van Wijngaarden
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, Australia
- Department of Surgery (Ophthalmology), The University of Melbourne, Melbourne, Australia
| | - Chi D. Luu
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, Australia
- Department of Surgery (Ophthalmology), The University of Melbourne, Melbourne, Australia
| | - Zhichao Wu
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, Australia
- Department of Surgery (Ophthalmology), The University of Melbourne, Melbourne, Australia
| |
Collapse
|
2
|
Goerdt L, Amjad M, Swain TA, McGwin G, Clark ME, Owsley C, Sloan KR, Curcio CA, Kar D. Extent and Topography of Subretinal Drusenoid Deposits Associate With Rod-Mediated Vision in Aging and AMD: ALSTAR2 Baseline. Invest Ophthalmol Vis Sci 2024; 65:25. [PMID: 39163034 PMCID: PMC11343004 DOI: 10.1167/iovs.65.10.25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 07/25/2024] [Indexed: 08/21/2024] Open
Abstract
Purpose In AMD, rod-mediated dark adaptation (RMDA) at 5° eccentricity is slower in eyes with subretinal drusenoid deposits (SDDs) than in eyes without. Here we quantified SDD burden using supervised deep learning for comparison to vision and photoreceptor topography. Methods In persons ≥60 years from the Alabama Study on Early Age-Related Macular Degeneration 2, normal, early AMD, and intermediate AMD eyes were classified by the AREDS nine-step system. A convolutional neural network was trained on 55°-wide near-infrared reflectance images for SDD segmentation. Trained graders annotated ground truth (SDD yes/no). Predicted and true datasets agreed (Dice coefficient, 0.92). Inference was manually proofread using optical coherence tomography. The mean SDD area (mm2) was compared among diagnostic groups (linear regression) and to vision (age-adjusted Spearman correlations). Fundus autofluorescence images were used to mask large vessels in SDD maps. Results In 428 eyes of 428 persons (normal, 218; early AMD, 120; intermediate AMD, 90), the mean SDD area differed by AMD severity (P < 0.0001): 0.16 ± 0.87 (normal), 2.48 ± 11.23 (early AMD), 11.97 ± 13.33 (intermediate AMD). Greater SDD area was associated with worse RMDA (r = 0.27; P < 0.0001), mesopic (r = -0.13; P = 0.02) and scotopic sensitivity (r = -0.17; P < 0.001). SDD topography peaked at 5° superior, extended beyond the Early Treatment of Diabetic Retinopathy Study grid and optic nerve, then decreased. Conclusions SDD area is associated with degraded rod-mediated vision. RMDA 5° (superior retina) probes where SDD is maximal, closer to the foveal center than the rod peak at 3 to 6 mm (10.4°-20.8°) superior and the further eccentric peak of rod:cone ratio. Topographic data imply that factors in addition to rod density influence SDD formation.
Collapse
Affiliation(s)
- Lukas Goerdt
- Department of Ophthalmology and Visual Sciences, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
- Department of Ophthalmology, University of Bonn, Bonn, Germany
| | - Mohymina Amjad
- Department of Ophthalmology and Visual Sciences, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Thomas A. Swain
- Department of Ophthalmology and Visual Sciences, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Gerald McGwin
- Department of Ophthalmology and Visual Sciences, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
- Department of Epidemiology, School of Public Health, University of Alabama at Birmingham, Alabama, United States
| | - Mark E. Clark
- Department of Ophthalmology and Visual Sciences, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Cynthia Owsley
- Department of Ophthalmology and Visual Sciences, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Kenneth R. Sloan
- Department of Ophthalmology and Visual Sciences, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Christine A. Curcio
- Department of Ophthalmology and Visual Sciences, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Deepayan Kar
- Department of Ophthalmology and Visual Sciences, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| |
Collapse
|
3
|
Won J, Takahashi H, Ploner SB, Karbole W, Abu-Qamar O, Yaghy A, Marmalidou A, Kaiser S, Hwang Y, Lin J, Witkin A, Desai S, Baumal CR, Maier A, Curcio CA, Waheed NK, Fujimoto JG. Topographic Measurement of the Subretinal Pigment Epithelium Space in Normal Aging and Age-Related Macular Degeneration Using High-Resolution OCT. Invest Ophthalmol Vis Sci 2024; 65:18. [PMID: 39120913 PMCID: PMC11318361 DOI: 10.1167/iovs.65.10.18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 07/17/2024] [Indexed: 08/10/2024] Open
Abstract
Purpose A micrometer scale hyporeflective band within the retinal pigment epithelium basal lamina - Bruch's membrane complex (RPE-BL-BrM) was topographically measured in aging and age-related macular degeneration (AMD). Methods In a prospective cross-sectional study, 90 normal eyes from 76 subjects (range = 23-90 years) and 53 dry AMD eyes from 47 subjects (range = 62-91 years) were enrolled. Isotropic volume raster scans over 6 mm × 6 mm (500 × 500 A-scans) were acquired using a high-resolution (2.7 µm axial resolution) spectral-domain optical coherence tomography (SD-OCT) prototype instrument. Six consecutive optical coherence tomography (OCT) volumes were computationally motion-corrected and fused to improve feature visibility. A boundary regression neural network was developed to measure hyporeflective band thickness. Topographic dependence was evaluated over a 6-mm-diameter Early Treatment Diabetic Retinopathy Study (ETDRS) grid. Results The hyporeflective band thickness map (median of 4.3 µm and 7.8 µm in normal and AMD eyes, respectively) is thicker below and radially symmetric around the fovea. In normal eyes, age-associated differences occur within 0.7 to 2.3 mm from the foveal center (P < 0.05). In AMD eyes, the hyporeflective band is hypothesized to be basal laminar deposits (BLamDs) and is thicker within the 3-mm ETDRS circle (P < 0.0002) compared with normal eyes. The inner ring is the most sensitive location to detect age versus AMD-associated changes within the RPE-BL-BrM. AMD eyes with subretinal drusenoid deposits (SDDs) have a significantly thicker hyporeflective band (P < 0.001) than those without SDDs. Conclusions The hyporeflective band is a quantifiable biomarker which differentiates AMD from aging. Longitudinal studies are warranted. The hyporeflective band may be a useful biomarker for risk stratification and disease progression.
Collapse
Affiliation(s)
- Jungeun Won
- Department of Electrical Engineering and Computer Science, and Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States
| | - Hiroyuki Takahashi
- Department of Electrical Engineering and Computer Science, and Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States
- New England Eye Center, School of Medicine, Tufts University, Boston, Massachusetts, United States
| | - Stefan B. Ploner
- Department of Computer Science, Pattern Recognition Lab, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Wenke Karbole
- Department of Computer Science, Pattern Recognition Lab, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Omar Abu-Qamar
- New England Eye Center, School of Medicine, Tufts University, Boston, Massachusetts, United States
| | - Antonio Yaghy
- New England Eye Center, School of Medicine, Tufts University, Boston, Massachusetts, United States
| | - Anna Marmalidou
- New England Eye Center, School of Medicine, Tufts University, Boston, Massachusetts, United States
| | - Stephanie Kaiser
- New England Eye Center, School of Medicine, Tufts University, Boston, Massachusetts, United States
| | - Yunchan Hwang
- Department of Electrical Engineering and Computer Science, and Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States
| | - Junhong Lin
- Department of Electrical Engineering and Computer Science, and Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States
| | - Andre Witkin
- New England Eye Center, School of Medicine, Tufts University, Boston, Massachusetts, United States
| | - Shilpa Desai
- New England Eye Center, School of Medicine, Tufts University, Boston, Massachusetts, United States
| | - Caroline R. Baumal
- New England Eye Center, School of Medicine, Tufts University, Boston, Massachusetts, United States
| | - Andreas Maier
- Department of Computer Science, Pattern Recognition Lab, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Christine A. Curcio
- Department of Ophthalmology and Visual Sciences, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Nadia K. Waheed
- New England Eye Center, School of Medicine, Tufts University, Boston, Massachusetts, United States
| | - James G. Fujimoto
- Department of Electrical Engineering and Computer Science, and Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States
| |
Collapse
|
4
|
Owsley C, Swain TA, McGwin G, Bernard MM, Clark ME, Curcio CA. Repeatability of Rod-Mediated Dark Adaptation Testing in Normal Aging and Early and Intermediate Age-Related Macular Degeneration. Curr Eye Res 2024; 49:725-730. [PMID: 38439539 PMCID: PMC11199118 DOI: 10.1080/02713683.2024.2326077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 02/26/2024] [Indexed: 03/06/2024]
Abstract
PURPOSE The vulnerability of rod photoreceptors in aging and early and intermediate age-related macular degeneration (AMD) has been well documented. Rod-mediated dark adaptation (RMDA) is a measure of the recovery of light sensitivity in rod photoreceptors following a bright light. Delays in RMDA during early and intermediate AMD have been widely reported. For RMDA's promise as an outcome for trials targeted at early and intermediate AMD to be realized, excellent test-retest reliability, its repeatability, must be established. METHODS Test-retest performance in a commonly used RMDA test based on the rod intercept time metric (RIT) was evaluated in participants with early and intermediate AMD and with normal retinal aging with testing approximately 2 weeks apart. The test target was placed at 5° eccentricity superior to the foveal center, an area with maximal rod loss in aging and AMD. Disease severity was identified by a trained and masked grader of fundus photographs using both the AREDS 9-step and Beckman classification systems. Bland-Altman plots and intra-class correlation coefficients (ICC) evaluated repeatability. RESULTS The analysis sample consisted of 37 older adults (mean age 76 years, standard deviation 5), with approximately one-third of the sample in each of three groups - normal aging, early AMD, and intermediate AMD. For the total sample, the ICC was 0.98. For individual AMD groups for both AREDS 9-step and Beckman classifications, the ICCs were also very high ranging from 0.82 to 0.99. CONCLUSION We demonstrated that RMDA testing using the RIT metric has excellent repeatability when target location is at 5° in studying older adults from normal aging to intermediate AMD, suggesting the reliable use of this functional measure in trials.
Collapse
Affiliation(s)
- Cynthia Owsley
- Department of Ophthalmology & Visual Sciences, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Thomas A. Swain
- Department of Ophthalmology & Visual Sciences, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
- Department of Epidemiology, School of Public Health, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Gerald McGwin
- Department of Ophthalmology & Visual Sciences, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
- Department of Epidemiology, School of Public Health, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Mary Margaret Bernard
- Department of Ophthalmology & Visual Sciences, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Mark E. Clark
- Department of Ophthalmology & Visual Sciences, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Christine A. Curcio
- Department of Ophthalmology & Visual Sciences, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
5
|
Duic C, Mukherjee S, Pfau K, Thavikulwat A, Domalpally A, Keenan TDL, Chew E, Cukras C. Local and Global Associations of Reticular Pseudodrusen in Age-Related Macular Degeneration. Ophthalmol Retina 2024; 8:646-656. [PMID: 38278174 DOI: 10.1016/j.oret.2024.01.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 01/03/2024] [Accepted: 01/18/2024] [Indexed: 01/28/2024]
Abstract
PURPOSE To investigate the spatial distribution of reticular pseudodrusen (RPD) in eyes with age-related macular degeneration (AMD) and their correlation with functional measures, retinal thickness, and changes over time. DESIGN Longitudinal, cohort study. PARTICIPANTS Thirty-five participants with RPD and spectrum of AMD severity (including no AMD). METHODS Multimodal imaging was graded by a reading center, including evaluation of color fundus imaging to assess AMD severity scores. Reticular pseudodrusen presence on OCT volumes was confirmed on en face imaging and the RPD extent was contoured on infrared images. One study eye per participant underwent rod-mediated dark adaptation, measuring rod intercept time (RIT) at 5° and, if needed, 12° superior to the fovea. MAIN OUTCOME MEASURES The primary outcome was RIT and OCT thickness measures which were correlated with RPD area. RESULTS A total of 51 eyes had ≥ 1 visit with RPD detected (mean follow-up, 2.19 ± 2.04 years; range, 0-5 years), totaling 169 eye-based visits with RPD. Of the 51 eyes with RPD, 5 (9.8%) developed geographic atrophy and 17 (33.3%) progressed to neovascular AMD. Larger RPD areas were detected more frequently in AMD severity scores 6-7. Reticular pseudodrusen area within an eye generally increased over time. The lesion distribution showed a predilection for the superior retina, especially the outer superior subfield of the ETDRS grid, with the central subfield having least involvement. Reticular pseudodrusen area was inversely correlated with central subfield thickness and positively correlated with RIT at 5° (P = 0.001; r2 = 0.01) and 12° (P = 0.004; r2 = 0.01). Rod-mediated dark adaptation at 5° reached the test ceiling in > 85% of visits, irrespective of RPD lesion presence/absence at the test location. Retinal thickness decreased monotonically, with the central subfield demonstrating the greatest percentage change over 5 years (Δ = -5.47%). CONCLUSIONS In AMD, RPD involve predominantly the superior retina but can involve all ETDRS subfields and evolve over time. Eyes with RPD exhibit structural and functional impairments that can be measured beyond the boundaries of the RPD lesions, suggesting changes associated with RPD are associated with both local changes and a more widespread process. FINANCIAL DISCLOSURES Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.
Collapse
Affiliation(s)
- Cameron Duic
- Division of Epidemiology and Clinical Applications, National Eye Institute, National Institutes of Health, Bethesda, Maryland
| | - Souvick Mukherjee
- Division of Epidemiology and Clinical Applications, National Eye Institute, National Institutes of Health, Bethesda, Maryland
| | - Kristina Pfau
- Department of Ophthalmology, University Hospital Bonn, Bonn, Germany; Department of Ophthalmology, University Hospital Basel, Basel, Switzerland
| | - Alisa Thavikulwat
- Division of Epidemiology and Clinical Applications, National Eye Institute, National Institutes of Health, Bethesda, Maryland
| | - Amitha Domalpally
- Department of Ophthalmology, University of Wisconsin, Madison, Wisconsin
| | - Tiarnan D L Keenan
- Division of Epidemiology and Clinical Applications, National Eye Institute, National Institutes of Health, Bethesda, Maryland
| | - Emily Chew
- Division of Epidemiology and Clinical Applications, National Eye Institute, National Institutes of Health, Bethesda, Maryland
| | - Catherine Cukras
- Division of Epidemiology and Clinical Applications, National Eye Institute, National Institutes of Health, Bethesda, Maryland.
| |
Collapse
|
6
|
Kar D, Amjad M, Corradetti G, Swain TA, Clark ME, McGwin G, Sloan KR, Owsley C, Sadda SR, Curcio CA. Choriocapillaris Impairment, Visual Function, and Distance to Fovea in Aging and Age-Related Macular Degeneration: ALSTAR2 Baseline. Invest Ophthalmol Vis Sci 2024; 65:40. [PMID: 39042400 PMCID: PMC11268449 DOI: 10.1167/iovs.65.8.40] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 06/27/2024] [Indexed: 07/24/2024] Open
Abstract
Purpose In aging and early-intermediate age-related macular degeneration (AMD), rod-mediated dark adaptation (RMDA) slows more at 5° superior than at 12°. Using optical coherence tomography angiography (OCTA), we asked whether choriocapillaris flow deficits are related to distance from the fovea. Methods Persons ≥60 years stratified for AMD via the Age-Related Eye Disease Study's nine-step system underwent RMDA testing. Two adjacent 4.4° × 4.4° choriocapillaris OCTA slabs were centered on the fovea and 12° superior. Flow signal deficits (FD%) in concentric arcs (outer radii in mm, 0.5, 1.5, 2.2, 4.0, and 5.0 superior) were correlated with rod intercept time (RIT) and best-corrected visual acuity (BCVA). Results In 366 eyes (170 normal, 111 early AMD, 85 intermediate AMD), FD% was significantly worse with greater AMD severity in all regions (overall P < 0.05) and poorest under the fovea (P < 0.0001). In pairwise comparisons, FD% worsened with greater AMD severity (P < 0.05) at distances <2.2 mm. At greater distances, eyes with intermediate, but not early AMD differed from normal eyes. Foveal FD% was more strongly associated with longer RIT at 5° (r = 0.52) than RIT at 12° (r = 0.39) and BCVA (r = 0.21; all P < 0.0001). Choroidal thickness was weakly associated with longer RIT at 5° and 12° (r = 0.10-0.20, P < 0.05) and not associated with AMD severity. Conclusions Reduced transport across the choriocapillaris-Bruch's membrane-retinal pigment epithelium complex, which contributes to drusen formation under the macula lutea (and fovea), may also reduce retinoid resupply to rods encircling the high-risk area. FD% has potential as a functionally validated imaging biomarker for AMD emergence.
Collapse
Affiliation(s)
- Deepayan Kar
- Department of Ophthalmology & Visual Sciences, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Mohymina Amjad
- Department of Ophthalmology & Visual Sciences, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Giulia Corradetti
- Doheny Eye Institute, Los Angeles, California, United States
- Department of Ophthalmology, David Geffen School of Medicine at University of California, Los Angeles, California, United States
| | - Thomas A. Swain
- Department of Ophthalmology & Visual Sciences, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
- Department of Epidemiology, School of Public Health, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Mark E. Clark
- Department of Ophthalmology & Visual Sciences, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Gerald McGwin
- Department of Ophthalmology & Visual Sciences, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
- Department of Epidemiology, School of Public Health, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Kenneth R. Sloan
- Department of Ophthalmology & Visual Sciences, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Cynthia Owsley
- Department of Ophthalmology & Visual Sciences, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - SriniVas R. Sadda
- Doheny Eye Institute, Los Angeles, California, United States
- Department of Ophthalmology, David Geffen School of Medicine at University of California, Los Angeles, California, United States
| | - Christine A. Curcio
- Department of Ophthalmology & Visual Sciences, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| |
Collapse
|
7
|
Voichanski S, Bousquet E, Abraham N, Santina A, Mafi M, Fossataro C, Sadda S, Sarraf D. En Face Optical Coherence Tomography Illustrates the Trizonal Distribution of Drusen and Subretinal Drusenoid Deposits in the Macula. Am J Ophthalmol 2024; 261:187-198. [PMID: 38218515 DOI: 10.1016/j.ajo.2023.12.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 12/15/2023] [Accepted: 12/21/2023] [Indexed: 01/15/2024]
Abstract
PURPOSE To analyze the topographic distribution of macular drusen and subretinal drusenoid deposits (SDDs) using single-capture en face spectral domain optical coherence tomography (SD-OCT) imaging. DESIGN Retrospective case series. METHODS Analysis of 33 eyes of 20 patients with evidence of SDDs. Structural en face OCT images were reconstructed using a 40-µm-thick slab positioned from 48 to 88 µm above the Bruch membrane. The Early Treatment of Diabetic Retinopathy Study (ETDRS) grid and a rod/cone density map were overlaid on the en face OCT images, and the distribution of different subtypes of SDDs and macular drusen were assessed. RESULTS A total of 31 eyes (94%) showed a trizonal distribution pattern of drusen and SDDs. Whereas small to large drusen tended to aggregate in the central circle, dot SDDs predominated in the inner ring and the inner portion of the outer ring of the ETDRS grid and ribbon SDDs localized to the outer ring and outside the ETDRS grid. Of note, drusen colocalized to the region of greatest cone density, whereas ribbon SDDs colocalized to the area of greatest rod density. The dot SDDs mapped to the intermediate region with mixed rod and cone representation. CONCLUSION Dot and ribbon subtypes of SDDs and macular drusen show a characteristic trizonal distribution. The locations of these lesions colocalize according to the different densities of the cones and rods in the retina and may reflect varying pathophysiological activities of these photoreceptor subtypes.
Collapse
Affiliation(s)
- Shilo Voichanski
- Retinal Disorders and Ophthalmic Genetics Division, Stein Eye Institute, University of California Los Angeles, David Geffen School of Medicine at UCLA (S.V., E.B., N.A., A.S., M.M., C.F., D.S.), Los Angeles, California, USA; Vitreoretinal Division, Ophthalmology Department, Shaare Zedek Medical Center (S.V.), Jerusalem, Israel
| | - Elodie Bousquet
- Retinal Disorders and Ophthalmic Genetics Division, Stein Eye Institute, University of California Los Angeles, David Geffen School of Medicine at UCLA (S.V., E.B., N.A., A.S., M.M., C.F., D.S.), Los Angeles, California, USA; University of Paris Cité; Department of Ophthalmology, Lariboisière Hospital, Assistance Publique-Hôpitaux de Paris (E.B.), Paris, France
| | - Neda Abraham
- Retinal Disorders and Ophthalmic Genetics Division, Stein Eye Institute, University of California Los Angeles, David Geffen School of Medicine at UCLA (S.V., E.B., N.A., A.S., M.M., C.F., D.S.), Los Angeles, California, USA
| | - Ahmad Santina
- Retinal Disorders and Ophthalmic Genetics Division, Stein Eye Institute, University of California Los Angeles, David Geffen School of Medicine at UCLA (S.V., E.B., N.A., A.S., M.M., C.F., D.S.), Los Angeles, California, USA
| | - Mostafa Mafi
- Retinal Disorders and Ophthalmic Genetics Division, Stein Eye Institute, University of California Los Angeles, David Geffen School of Medicine at UCLA (S.V., E.B., N.A., A.S., M.M., C.F., D.S.), Los Angeles, California, USA
| | - Claudia Fossataro
- Retinal Disorders and Ophthalmic Genetics Division, Stein Eye Institute, University of California Los Angeles, David Geffen School of Medicine at UCLA (S.V., E.B., N.A., A.S., M.M., C.F., D.S.), Los Angeles, California, USA; Ophthalmology Unit, Catholic University of the Sacred Heart (C.F.), Rome, Italy; Ophthalmology Unit, Fondazione Policlinico Universitario Agostino Gemelli, IRCCS (C.F.), Rome, Italy
| | - SriniVas Sadda
- Doheny Eye Institute, Department of Ophthalmology, University of California Los Angeles (S.S.), Los Angeles, California, USA
| | - David Sarraf
- Retinal Disorders and Ophthalmic Genetics Division, Stein Eye Institute, University of California Los Angeles, David Geffen School of Medicine at UCLA (S.V., E.B., N.A., A.S., M.M., C.F., D.S.), Los Angeles, California, USA; Greater Los Angeles VA Healthcare Center (D.S.), Los Angeles, California, USA.
| |
Collapse
|
8
|
Emamverdi M, Vatanatham C, Fasih-Ahmad S, Wang Z, Mishra Z, Jain A, Ganegoda A, Clark ME, Habibi A, Ashrafkhorasani M, Owsley C, Curcio CA, Hu ZJ, Sadda SR. Probing Deposit-Driven Age-Related Macular Degeneration Via Thicknesses of Outer Retinal Bands and Choroid: ALSTAR2 Baseline. Invest Ophthalmol Vis Sci 2024; 65:17. [PMID: 38717424 PMCID: PMC11090139 DOI: 10.1167/iovs.65.5.17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 04/08/2024] [Indexed: 05/14/2024] Open
Abstract
Purpose We aimed to identify structural differences in normal eyes, early age-related macular degeneration (AMD), and intermediate AMD eyes using optical coherence tomography (OCT) in a well-characterized, large cross-sectional cohort. Methods Subjects ≥ 60 years with healthy normal eyes, as well as early or intermediate AMD were enrolled in the Alabama Study on Age-related Macular Degeneration 2 (ALSTAR2; NCT04112667). Using Spectralis HRA + OCT2, we obtained macular volumes for each participant. An auto-segmentation software was used to segment six layers and sublayers: photoreceptor inner and outer segments, subretinal drusenoid deposits (SDDs), retinal pigment epithelium + basal lamina (RPE + BL), drusen, and choroid. After manually refining the segmentations of all B-scans, mean thicknesses in whole, central, inner and outer rings of the ETDRS grid were calculated and compared among groups. Results This study involved 502 patients, 252 were healthy, 147 had early AMD, and 103 had intermediate AMD eyes (per Age-Related Eye Disease Study [AREDS] 9-step). Intermediate AMD eyes exhibited thicker SDD and drusen, thinner photoreceptor inner segments, and RPE compared to healthy and early AMD eyes. They also had thicker photoreceptor outer segments than early AMD eyes. Early AMD eyes had thinner photoreceptor outer segments than normal eyes but a thicker choroid than intermediate AMD eyes. Using the Beckman scale, 42% of the eyes initially classified as early AMD shifted to intermediate AMD, making thickness differences for photoreceptor outer segments and choroid insignificant. Conclusions With AMD stages, the most consistent structural differences involve appearance of drusen and SDD, followed by RPE + BL thickness, and then thickness of photoreceptor inner and outer segments. Structural changes in the transition from aging to intermediate AMD include alterations in the outer retinal bands, including the appearance of deposits on either side of the RPE.
Collapse
Affiliation(s)
- Mehdi Emamverdi
- Doheny Eye Institute, Pasadena, California, United States
- Doheny Eye Institute, Department of Ophthalmology, David Geffen School of Medicine, University of California, Los Angeles, California, United States
| | | | | | - Ziyuan Wang
- Doheny Eye Institute, Pasadena, California, United States
| | - Zubin Mishra
- Doheny Eye Institute, Pasadena, California, United States
| | - Anjal Jain
- Doheny Eye Institute, Pasadena, California, United States
| | | | - Mark E. Clark
- Department of Ophthalmology and Visual Sciences, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Abbas Habibi
- Doheny Eye Institute, Pasadena, California, United States
- Doheny Eye Institute, Department of Ophthalmology, David Geffen School of Medicine, University of California, Los Angeles, California, United States
| | - Maryam Ashrafkhorasani
- Doheny Eye Institute, Pasadena, California, United States
- Doheny Eye Institute, Department of Ophthalmology, David Geffen School of Medicine, University of California, Los Angeles, California, United States
| | - Cynthia Owsley
- Department of Ophthalmology and Visual Sciences, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Christine A. Curcio
- Department of Ophthalmology and Visual Sciences, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Zhihong J. Hu
- Doheny Eye Institute, Pasadena, California, United States
| | - SriniVas R. Sadda
- Doheny Eye Institute, Pasadena, California, United States
- Doheny Eye Institute, Department of Ophthalmology, David Geffen School of Medicine, University of California, Los Angeles, California, United States
| |
Collapse
|
9
|
Curcio CA, Kar D, Owsley C, Sloan KR, Ach T. Age-Related Macular Degeneration, a Mathematically Tractable Disease. Invest Ophthalmol Vis Sci 2024; 65:4. [PMID: 38466281 PMCID: PMC10916886 DOI: 10.1167/iovs.65.3.4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 02/19/2024] [Indexed: 03/12/2024] Open
Abstract
A progression sequence for age-related macular degeneration onset may be determinable with consensus neuroanatomical nomenclature augmented by drusen biology and eye-tracked clinical imaging. This narrative review proposes to supplement the Early Treatment of Diabetic Retinopathy Study (sETDRS) grid with a ring to capture high rod densities. Published photoreceptor and retinal pigment epithelium (RPE) densities in flat mounted aged-normal donor eyes were recomputed for sETDRS rings including near-periphery rich in rods and cumulatively for circular fovea-centered regions. Literature was reviewed for tissue-level studies of aging outer retina, population-level epidemiology studies regionally assessing risk, vision studies regionally assessing rod-mediated dark adaptation (RMDA), and impact of atrophy on photopic visual acuity. The 3 mm-diameter xanthophyll-rich macula lutea is rod-dominant and loses rods in aging whereas cone and RPE numbers are relatively stable. Across layers, the largest aging effects are accumulation of lipids prominent in drusen, loss of choriocapillary coverage of Bruch's membrane, and loss of rods. Epidemiology shows maximal risk for drusen-related progression in the central subfield with only one third of this risk level in the inner ring. RMDA studies report greatest slowing at the perimeter of this high-risk area. Vision declines precipitously when the cone-rich central subfield is invaded by geographic atrophy. Lifelong sustenance of foveal cone vision within the macula lutea leads to vulnerability in late adulthood that especially impacts rods at its perimeter. Adherence to an sETDRS grid and outer retinal cell populations within it will help dissect mechanisms, prioritize research, and assist in selecting patients for emerging treatments.
Collapse
Affiliation(s)
- Christine A. Curcio
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, Alabama, United States
| | - Deepayan Kar
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, Alabama, United States
| | - Cynthia Owsley
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, Alabama, United States
| | - Kenneth R. Sloan
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, Alabama, United States
| | - Thomas Ach
- Department of Ophthalmology, University Hospital Bonn, Bonn, Germany
| |
Collapse
|
10
|
Zhao Q, Lai K. Role of immune inflammation regulated by macrophage in the pathogenesis of age-related macular degeneration. Exp Eye Res 2024; 239:109770. [PMID: 38145794 DOI: 10.1016/j.exer.2023.109770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 12/05/2023] [Accepted: 12/20/2023] [Indexed: 12/27/2023]
Abstract
Age-related macular degeneration (AMD) can lead to irreversible impairment of visual function, and the number of patients with AMD has been increasing globally. The immunoinflammatory theory is an important pathogenic mechanism of AMD, with macrophages serving as the primary inflammatory infiltrating cells in AMD lesions. Its powerful immunoinflammatory regulatory function has attracted considerable attention. Herein, we provide an overview of the involvement of macrophage-regulated immunoinflammation in different stages of AMD. Additionally, we summarize novel therapeutic approaches for AMD, focusing on targeting macrophages, such as macrophage/microglia modulators, reduction of macrophage aggregation in the subretinal space, modulation of macrophage effector function, macrophage phenotypic alterations, and novel biomimetic nanocomposites development based on macrophage-associated functional properties. We aimed to provide a basis and reference for the further exploration of AMD pathogenesis, developmental influences, and new therapeutic approaches.
Collapse
Affiliation(s)
- Qin Zhao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, No.7 Jinsui Road, Guangzhou, 510060, China
| | - Kunbei Lai
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, No.7 Jinsui Road, Guangzhou, 510060, China.
| |
Collapse
|
11
|
Pundlik S, Shivshanker P, Nigalye A, Luo G, Husain D. Evaluation of a mobile app for dark adaptation measurement in individuals with age-related macular degeneration. Sci Rep 2023; 13:22191. [PMID: 38092820 PMCID: PMC10719237 DOI: 10.1038/s41598-023-48898-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 11/30/2023] [Indexed: 12/17/2023] Open
Abstract
We present clinical evaluation of a mobile app for dark adaptation (DA) measurement in age-related macular degeneration (AMD) patients and in older adults (age > 50 years) without AMD or other retinal disorders (NV). The outcome measures were the area under dark adaptation curve (AUDAC) and the time for visual sensitivity to recover by 3 log units (TR). Larger AUDAC and TR values indicated worse DA response. The association of AUDAC with AMD was analyzed using linear regression, while time-to-event analysis was used for TR. 32 AMD patients (mean ± SD; age:72 ± 6.3 years, VA:0.09 ± 0.08 logMAR) and 25 NV subjects (mean ± sd; age:65 ± 8.7 years, VA:0.049 ± 0.07 logMAR) were measured with the app. Controlling for age, VA, and cataract severity, the AMD presence was significantly associated with higher AUDAC (β = 0.41, 95% CI 0.18-0.64, p = 0.001) and with slower sensitivity recovery (β = 0.32, 95% CI 0.15-0.69, p = 0.004). DA measurements with the app were highly correlated with those obtained with AdaptDx-an established clinical device (n = 18, ρ = 0.87, p < 0.001). AMD classification accuracy using the app was 72%, which was comparable to the 71% accuracy of AdaptDx. Our findings indicate that the mobile app provided reliable and clinically meaningful DA measurements that were strongly correlated with the current standard of care in AMD.
Collapse
Affiliation(s)
- Shrinivas Pundlik
- Schepens Eye Research Institute of Mass Eye and Ear, 20 Staniford Street, Boston, MA, 02114, USA.
- Department of Ophthalmology, Harvard Medical School, Boston, USA.
| | - Prerana Shivshanker
- Schepens Eye Research Institute of Mass Eye and Ear, 20 Staniford Street, Boston, MA, 02114, USA
- Department of Ophthalmology, Harvard Medical School, Boston, USA
| | - Archana Nigalye
- Retina Service, Massachusetts Eye and Ear Infirmary, Boston, USA
- Department of Ophthalmology, Harvard Medical School, Boston, USA
| | - Gang Luo
- Schepens Eye Research Institute of Mass Eye and Ear, 20 Staniford Street, Boston, MA, 02114, USA
- Department of Ophthalmology, Harvard Medical School, Boston, USA
| | - Deeba Husain
- Retina Service, Massachusetts Eye and Ear Infirmary, Boston, USA
- Department of Ophthalmology, Harvard Medical School, Boston, USA
| |
Collapse
|
12
|
Wu Z, Schmitz-Valckenberg S, Blodi BA, Holz FG, Jaffe GJ, Liakopoulos S, Sadda SR, Bonse M, Brown T, Choong J, Clifton B, Corradetti G, Corvi F, Dieu AC, Dooling V, Pak JW, Saßmannshausen M, Skalak C, Thiele S, Guymer RH. Reticular Pseudodrusen: Interreader Agreement of Evaluation on OCT Imaging in Age-Related Macular Degeneration. OPHTHALMOLOGY SCIENCE 2023; 3:100325. [PMID: 37292179 PMCID: PMC10244688 DOI: 10.1016/j.xops.2023.100325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 04/12/2023] [Accepted: 04/13/2023] [Indexed: 06/10/2023]
Abstract
Purpose To determine the interreader agreement for reticular pseudodrusen (RPD) assessment on combined infrared reflectance (IR) and OCT imaging in the early stages of age-related macular degeneration across a range of different criteria to define their presence. Design Interreader agreement study. Participants Twelve readers from 6 reading centers. Methods All readers evaluated 100 eyes from individuals with bilateral large drusen for the following: (1) the presence of RPD across a range of different criteria and (2) the number of Stage 2 or 3 RPD lesions (from 0 to ≥ 5 lesions) on an entire OCT volume scan and on a selected OCT B-scan. Supportive information was available from the corresponding IR image. Main Outcome Measures Interreader agreement, as assessed by Gwet's first-order agreement coefficient (AC1). Results When evaluating an entire OCT volume scan, there was substantial interreader agreement for the presence of any RPD, any or ≥ 5 Stage 2 or 3 lesions, and ≥ 5 definite lesions on en face IR images corresponding to Stage 2 or 3 lesions (AC1 = 0.60-0.72). On selected OCT B-scans, there was also moderate-to-substantial agreement for the presence of any RPD, any or ≥ 5 Stage 2 or 3 lesions (AC1 = 0.58-0.65) and increasing levels of agreement with increasing RPD stage (AC1 = 0.08, 0.56, 0.78, and 0.99 for the presence of any Stage 1, 2, 3, and 4 lesions, respectively). There was substantial agreement regarding the number of Stage 2 or 3 lesions on an entire OCT volume scan (AC1 = 0.68), but only fair agreement for this evaluation on selected B-scans (AC1 = 0.30). Conclusions There was generally substantial or near-substantial-but not near-perfect-agreement for assessing the presence of RPD on entire OCT volume scans or selected B-scans across a range of differing RPD criteria. These findings underscore how interreader variability would likely contribute to the variability of findings related to the clinical associations of RPD. The low levels of agreement for assessing RPD number on OCT B-scans underscore the likely challenges of quantifying RPD extent with manual grading. Financial Disclosures Proprietary or commercial disclosure may be found after the references.
Collapse
Affiliation(s)
- Zhichao Wu
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, Australia
- Ophthalmology, Department of Surgery, The University of Melbourne, Melbourne, Australia
| | - Steffen Schmitz-Valckenberg
- Department of Ophthalmology and GRADE Reading Center, University of Bonn, Bonn, Germany
- Utah Retinal Reading Center (UREAD) John A. Moran Eye Center, University of Utah, Salt Lake City, Utah
| | - Barbara A. Blodi
- Department of Ophthalmology and Visual Sciences, Wisconsin Reading Center (WRC), University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Frank G. Holz
- Department of Ophthalmology and GRADE Reading Center, University of Bonn, Bonn, Germany
| | - Glenn J. Jaffe
- Department of Ophthalmology, Duke University, Durham, North Carolina
| | - Sandra Liakopoulos
- Cologne Image Reading Center and Laboratory (CIRCL) and Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
- Department of Ophthalmology, Goethe-University Frankfurt, Germany
| | - Srinivas R. Sadda
- Doheny Imaging Reading Center (DIRC) and Doheny Eye Institute, David Geffen School of Medicine, University of California, Los Angeles, California
| | - Mari Bonse
- Cologne Image Reading Center and Laboratory (CIRCL) and Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Tyler Brown
- Utah Retinal Reading Center (UREAD) John A. Moran Eye Center, University of Utah, Salt Lake City, Utah
| | - John Choong
- Department of Ophthalmology, Duke University, Durham, North Carolina
| | - Bailey Clifton
- Utah Retinal Reading Center (UREAD) John A. Moran Eye Center, University of Utah, Salt Lake City, Utah
| | - Giulia Corradetti
- Doheny Imaging Reading Center (DIRC) and Doheny Eye Institute, David Geffen School of Medicine, University of California, Los Angeles, California
| | - Federico Corvi
- Doheny Imaging Reading Center (DIRC) and Doheny Eye Institute, David Geffen School of Medicine, University of California, Los Angeles, California
| | - Andrew C. Dieu
- Department of Ophthalmology and Visual Sciences, Wisconsin Reading Center (WRC), University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Vivienne Dooling
- Cologne Image Reading Center and Laboratory (CIRCL) and Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Jeong W. Pak
- Department of Ophthalmology and Visual Sciences, Wisconsin Reading Center (WRC), University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | | | - Cindy Skalak
- Department of Ophthalmology, Duke University, Durham, North Carolina
| | - Sarah Thiele
- Department of Ophthalmology and GRADE Reading Center, University of Bonn, Bonn, Germany
| | - Robyn H. Guymer
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, Australia
- Ophthalmology, Department of Surgery, The University of Melbourne, Melbourne, Australia
| |
Collapse
|
13
|
Oertli JM, Pfau K, Scholl HPN, Jeffrey BG, Pfau M. Establishing Fully-Automated Fundus-Controlled Dark Adaptometry: A Validation and Retest-Reliability Study. Transl Vis Sci Technol 2023; 12:18. [PMID: 38112496 PMCID: PMC10732091 DOI: 10.1167/tvst.12.12.18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 11/14/2023] [Indexed: 12/21/2023] Open
Abstract
Purpose The purpose of this study was to establish and validate a novel fundus-controlled dark-adaptometry method. Methods We developed a custom dark-adaptometry software for the S-MAIA device using the open-perimetry-interface. In the validation-substudy, participants underwent dark-adaptometry testing with a comparator device (MonCvONE, 59% rhodopsin bleach, cyan and red stimuli centered at 2 degrees, 4 degrees, and 6 degrees eccentricity). Following a brief break (approximately 5 minutes), the participants were bleached again and underwent dark-adaptometry testing with the S-MAIA device (same loci). In the retest reliability-substudy, participants were tested twice with the S-MAIA device (same loci as above). Nonlinear curve fitting was applied to extract dark-adaptation curve parameters. Validity and repeatability were summarized in terms of the mean bias and 95% limits of agreement (LoAs). Results In the validation-substudy (N = 20 participants, median age interquartile range [IQR] 31.5 years [IQR = 25.8, 62.0]), measures of rod-mediated dark-adaptation showed little to no between method differences for the cone-rod-break-time (bias 95% confidence interval [95% CI] of +0.1 minutes [95% CI = -0.6 to 0.8]), rod-intercept-time (-0.23 minutes [95% CI = -1.38 to 0.93]), and S2 slope (-0.01 LogUnits/minutes [95% CI = -0.02 to -0.01]). In the retest reliability-substudy (N = 10 participants, 32.0 years [95% CI = 27.0, 57.5]), the corresponding LoAs were (cone-rod-break-time) -3.94 to 2.78 minutes, (rod-intercept-time) -4.55 to 3.11 minutes, and (S2 slope [rate-limited component of rod recovery]) -0.03 to 0.03 LogUnits/minutes. The LoAs for the steady-state cone and rod thresholds were -0.28 to 0.33 LogUnits and -0.34 to 0.28 LogUnits. Conclusions The devised fundus-controlled dark-adaptometry method yields valid and reliable results. Translational Relevance Fundus-controlled dark-adaptometry solves the critical need for localized testing of the visual cycle and retinoid transfer in eyes with unstable fixation.
Collapse
Affiliation(s)
- Jeannine M. Oertli
- Department of Ophthalmology, University Hospital Basel, Basel, Switzerland
| | - Kristina Pfau
- Department of Ophthalmology, University Hospital Basel, Basel, Switzerland
| | - Hendrik P. N. Scholl
- Department of Ophthalmology, University Hospital Basel, Basel, Switzerland
- Institute of Molecular and Clinical Ophthalmology Basel, Basel, Switzerland
| | - Brett G. Jeffrey
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Maximilian Pfau
- Department of Ophthalmology, University Hospital Basel, Basel, Switzerland
- Institute of Molecular and Clinical Ophthalmology Basel, Basel, Switzerland
| |
Collapse
|
14
|
Pfau K, Jeffrey BG, Cukras CA. LOW-DOSE SUPPLEMENTATION WITH RETINOL IMPROVES RETINAL FUNCTION IN EYES WITH AGE-RELATED MACULAR DEGENERATION BUT WITHOUT RETICULAR PSEUDODRUSEN. Retina 2023; 43:1462-1471. [PMID: 37315571 DOI: 10.1097/iae.0000000000003840] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
PURPOSE The aim of this study was to determine the functional impact of oral vitamin A supplementation in patients with intermediate age-related macular degeneration with and without reticular pseudodrusen (RPD) demonstrating dysfunction in dark adaptation. METHODS Five patients with intermediate age-related macular degeneration and without RPD (AMD group; mean ± SD age 78.0 ± 4.7 years) and seven with RPD (RPD group; age 74.1 ± 11.2 years) were supplemented with 16,000 IU of vitamin A palmitate for 8 weeks. Assessment at baseline, 4, 8, and 12 weeks included scotopic thresholds, dark adaptation, best-corrected and low luminance visual acuities, and the low-luminance quality of life questionnaire. RESULTS In the linear mixed model, rod intercept time improved significantly in the AMD group (mean [95% CI] change -1.1 minutes [-1.8; -0.5] after 4 weeks ( P < 0.001) and -2.2 min [-2.9 to -1.6] after 8 weeks of vitamin A supplementation ( P < 0.001). The dark adaptation cone plateau also significantly improved (i.e., more sensitive cone threshold) at 4 and 8 weeks ( P = 0.026 and P = 0.001). No other parameters improved in the AMD group, and there was no significant improvement in any parameter in the RPD group despite significantly elevated serum vitamin A levels measurable in both groups after supplementation ( P = 0.024 and P = 0.013). CONCLUSION Supplementation with 16,000 IU vitamin A, a lower dose than used in previous studies, partially overcomes the pathophysiologic functional changes in AMD eyes. The lack of improvement in the RPD group may indicate structural impediments to increasing vitamin A availability in these patients and/or may reflect the higher variability observed in the functional parameters for this group.
Collapse
Affiliation(s)
- Kristina Pfau
- Division of Epidemiology and Clinical Applications, National Eye Institute, Bethesda, Maryland; and
| | - Brett G Jeffrey
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, Bethesda, Maryland
| | - Catherine A Cukras
- Division of Epidemiology and Clinical Applications, National Eye Institute, Bethesda, Maryland; and
| |
Collapse
|
15
|
Kar D, Corradetti G, Swain TA, Clark ME, McGwin G, Owsley C, Sadda SR, Curcio CA. Choriocapillaris Impairment Is Associated With Delayed Rod-Mediated Dark Adaptation in Age-Related Macular Degeneration. Invest Ophthalmol Vis Sci 2023; 64:41. [PMID: 37768273 PMCID: PMC10540875 DOI: 10.1167/iovs.64.12.41] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
Purpose Progress toward treatment and prevention of age-related macular degeneration (AMD) requires imaging end points that relate to vision. We investigated choriocapillaris flow signal deficits (FD%) and visual function in eyes of individuals aged ≥60 years, with and without AMD. Methods One eye of each participant in the baseline visit of the Alabama Study on Early Age-Related Macular Degeneration 2 (ALSTAR2; NCT04112667) was studied. AMD presence and severity was determined using the Age-Related Eye Disease Study (AREDS) grading system. FD% was quantified using macular spectral domain optical coherence tomography angiography (OCTA) scans. Vision tests included rod-mediated dark adaptation (RMDA), best-corrected visual acuity, and contrast sensitivity (photopic and mesopic), and microperimetric light sensitivity (scotopic, mesopic, and photopic). Presence of subretinal drusenoid deposits (SDD) was determined using multimodal imaging. Results In 410 study eyes of 410 participants (mean [SD] age = 71.7 years [5.9]), FD% was higher in early AMD (mean [SD] = 54.0% [5.5], N = 122) and intermediate AMD (59.8% [7.4], N = 92), compared to normal (52.1% [5.3], N = 196) eyes. Among visual functions evaluated, RMDA showed the strongest association with FD% (r = 0.35, P < 0.0001), followed by contrast sensitivity (r = -0.22, P < 0.0001). Eyes with SDD had worse FD% (58.3% [7.4], N = 87), compared to eyes without SDD (53.4% [6.0], N = 323, P = < 0.0001). Conclusions Choriocapillaris FD% were associated with AMD severity and with impaired vision, especially RMDA. Reduced metabolic transport and exchange across the choriocapillaris-Bruch's membrane retinal pigment epithelium (RPE) complex, a causal factor for high-risk soft drusen formation, also may impair photoreceptor sustenance from the circulation. This includes retinoid resupply, essential to dynamic rod function.
Collapse
Affiliation(s)
- Deepayan Kar
- Department of Ophthalmology and Visual Sciences, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Giulia Corradetti
- Doheny Eye Institute, Los Angeles, California, United States
- Department of Ophthalmology, David Geffen School of Medicine at University of California, Los Angeles, California, United States
| | - Thomas A. Swain
- Department of Ophthalmology and Visual Sciences, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
- Department of Epidemiology, School of Public Health, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Mark E. Clark
- Department of Ophthalmology and Visual Sciences, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Gerald McGwin
- Department of Ophthalmology and Visual Sciences, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
- Department of Epidemiology, School of Public Health, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Cynthia Owsley
- Department of Ophthalmology and Visual Sciences, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - SriniVas R. Sadda
- Doheny Eye Institute, Los Angeles, California, United States
- Department of Ophthalmology, David Geffen School of Medicine at University of California, Los Angeles, California, United States
| | - Christine A. Curcio
- Department of Ophthalmology and Visual Sciences, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| |
Collapse
|
16
|
Owsley C, Swain TA, McGwin G, Clark ME, Kar D, Curcio CA. Biologically Guided Optimization of Test Target Location for Rod-mediated Dark Adaptation in Age-related Macular Degeneration: Alabama Study on Early Age-related Macular Degeneration 2 Baseline. OPHTHALMOLOGY SCIENCE 2023; 3:100274. [PMID: 36875335 PMCID: PMC9978854 DOI: 10.1016/j.xops.2023.100274] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 01/24/2023]
Abstract
Purpose We evaluate the impact of test target location in assessing rod-mediated dark adaptation (RMDA) along the transition from normal aging to intermediate age-related macular degeneration (AMD). We consider whether RMDA slows because the test locations are near mechanisms leading to or resulting from high-risk extracellular deposits. Soft drusen cluster under the fovea and extend to the inner ring of the ETDRS grid where rods are sparse. Subretinal drusenoid deposits (SDDs) appear first in the outer superior subfield of the ETDRS grid where rod photoreceptors are maximal and spread toward the fovea without covering it. Design Cross-sectional. Participants Adults ≥ 60 years with normal older maculas, early AMD, or intermediate AMD as defined by the Age-Related Eye Disease Study (AREDS) 9-step and Beckman grading systems. Methods In 1 eye per participant, RMDA was assessed at 5° and at 12° in the superior retina. Subretinal drusenoid deposit presence was identified with multi-modal imaging. Main Outcome Measures Rod intercept time (RIT) as a measure of RMDA rate at 5° and 12°. Results In 438 eyes of 438 persons, RIT was significantly longer (i.e., RMDA is slower) at 5° than at 12° for each AMD severity group. Differences among groups were bigger at 5° than at 12°. At 5°, SDD presence was associated with longer RIT as compared to SDD absence at early and intermediate AMD but not in normal eyes. At 12°, SDD presence was associated with longer RIT in intermediate AMD only, and not in normal or early AMD eyes. Findings were similar in eyes stratified by AREDS 9-step and Beckman systems. Conclusions We probed RMDA in relation to current models of deposit-driven AMD progression organized around photoreceptor topography. In eyes with SDD, slowed RMDA occurs at 5° where these deposits typically do not appear until later in AMD. Even in eyes lacking detectable SDD, RMDA at 5° is slower than at 12°. The effect at 5° may be attributed to mechanisms associated with the accumulation of soft drusen and precursors under the macula lutea throughout adulthood. These data will facilitate the design of efficient clinical trials for interventions that aim to delay AMD progression.
Collapse
Affiliation(s)
- Cynthia Owsley
- Department of Ophthalmology & Visual Sciences, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Thomas A. Swain
- Department of Ophthalmology & Visual Sciences, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
- Department of Epidemiology, School of Public Health, University of Alabama at Birmingham, Birmingham, Alabama
| | - Gerald McGwin
- Department of Ophthalmology & Visual Sciences, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
- Department of Epidemiology, School of Public Health, University of Alabama at Birmingham, Birmingham, Alabama
| | - Mark E. Clark
- Department of Ophthalmology & Visual Sciences, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Deepayan Kar
- Department of Ophthalmology & Visual Sciences, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Christine A. Curcio
- Department of Ophthalmology & Visual Sciences, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
17
|
Wang X, Sadda SR, Ip MS, Sarraf D, Zhang Y. In Vivo Longitudinal Measurement of Cone Photoreceptor Density in Intermediate Age-Related Macular Degeneration. Am J Ophthalmol 2023; 248:60-75. [PMID: 36436549 PMCID: PMC10038851 DOI: 10.1016/j.ajo.2022.11.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 11/14/2022] [Accepted: 11/16/2022] [Indexed: 11/27/2022]
Abstract
PURPOSE To evaluate cone photoreceptor density in clinically unremarkable retinal regions in patients with age-related macular degeneration (AMD) using adaptive optics scanning laser ophthalmoscopy (AOSLO). DESIGN Prospective case series with normal comparison group. METHODS Ten eyes of 7 patients with intermediate AMD were studied, including 4 with predominantly subretinal drusenoid deposits (SDD) and 3 without SDD. Macular regions with a clinical absence of AMD-associated lesions were identified by cone packing structure on AOSLO and optical coherence tomography. Cone density was measured in 1174 clinically unremarkable regions within the central subfield (CSF), the inner (IR), and outer rings (OR) of the Early Treatment Diabetic Retinopathy Study grid over 39.6 ± 3.3 months and compared with age-matched normal values obtained in 17 participants. RESULTS Cone density decreased at 98.3% of the examined locations over time in the eyes with AMD. In the CSF, IR, and OR, cones declined by -255 ± 135, -133 ± 45, and -59 ± 24 cones/degree2/year, respectively, in eyes with SDD, and by -212 ± 89, -83 ± 37, and -27 ± 18 cones/degree2/year, respectively, in eyes without SDD. The percentage of retinal loci with cone density lower than normal (Z score < -2) increased over the follow-up: from 42% at the baseline to 80% at the last visit in eyes with SDD and from 31% to 70% in eyes without SDD. CONCLUSIONS AOSLO revealed cone photoreceptor loss in regions that appear otherwise unremarkable clinically. These findings may help explain the loss of mesopic sensitivity reported in these areas in eyes with intermediate AMD.
Collapse
Affiliation(s)
- Xiaolin Wang
- From the Doheny Eye Institute (X.W., S.R.S., M.I., Y.Z.), Pasadena, California
| | - SriniVas R Sadda
- From the Doheny Eye Institute (X.W., S.R.S., M.I., Y.Z.), Pasadena, California; Department of Ophthalmology, University of California-Los Angeles (S.R.S., M.I., D.S., Y.Z.), Los Angeles, California
| | - Michael S Ip
- From the Doheny Eye Institute (X.W., S.R.S., M.I., Y.Z.), Pasadena, California; Department of Ophthalmology, University of California-Los Angeles (S.R.S., M.I., D.S., Y.Z.), Los Angeles, California
| | - David Sarraf
- Department of Ophthalmology, University of California-Los Angeles (S.R.S., M.I., D.S., Y.Z.), Los Angeles, California; Stein Eye Institute (David Sarraf), Los Angeles, California, USA
| | - Yuhua Zhang
- From the Doheny Eye Institute (X.W., S.R.S., M.I., Y.Z.), Pasadena, California; Department of Ophthalmology, University of California-Los Angeles (S.R.S., M.I., D.S., Y.Z.), Los Angeles, California.
| |
Collapse
|
18
|
Jolly JK, Nanda A, Buckley TMW, Pfau M, Bridge H, MacLaren RE. Assessment of Scotopic Function in Rod-Cone Inherited Retinal Degeneration With the Scotopic Macular Integrity Assessment. Transl Vis Sci Technol 2023; 12:10. [PMID: 36749581 PMCID: PMC9919682 DOI: 10.1167/tvst.12.2.10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Purpose The scotopic macular integrity assessment (S-MAIA) can perform scotopic assessment to detect localized changes to scotopic rod and cone function. This study is an exploratory investigation of the feasibility of using the S-MAIA in a rod-cone dystrophy population to identify the pattern of loss in scotopic photoreceptor function. Methods Twenty patients diagnosed with a rod-cone dystrophy underwent visual acuity testing, full-field stimulus threshold assessment, and multiple S-MAIA tests after dark adaptation periods of 20 minutes and 45 minutes performed separately. Only right eyes were tested. Three tests were performed following a learning test. A Bland-Altman analysis was used to assess repeatability and agreement between tests after the two time periods. Spatial interpolation maps were created from the group plots to display the pattern of rod and cone loss. Results Learning effects took place between testing sessions 1 and 2 but not 2 and 3. Limits of agreement were larger in the patient eyes than control eyes, but within previously reported values. Using longer adaptation time of 45 minutes did not offer a significant advantage over 20 minutes. Patterns for the cyan and red sensitivities were different, indicating different patterns of loss for rods and cones. Conclusions A dark adaptation time of 20 minutes before testing is sufficient for thresholding. The S-MAIA is suitable for use in patients with a logarithm of the minimum angle of resolution vision of at least 0.7 and provides a viable outcome measure for patients with rod-cone dystrophies and preserved central vision. The spatial information about scotopic function from the S-MAIA provides information about disease processes and progression. Translational Relevance There is a need for scotopic measures for use in clinical trials. Scotopic microperimetry works well in patients with early disease, allowing the extension of recruitment criteria for novel therapies of rod-cone dystrophies.
Collapse
Affiliation(s)
- Jasleen K. Jolly
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK,Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK,Oxford Centre for Functional MRI of the Brain (FMRIB), Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK,Vision and Eye Research Institute, Anglia Ruskin University, Cambridge, UK
| | - Anika Nanda
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK,Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Thomas M. W. Buckley
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Maximilian Pfau
- Department of Ophthalmology, University of Bonn, Bonn, Germany,Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Holly Bridge
- Oxford Centre for Functional MRI of the Brain (FMRIB), Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK
| | - Robert E. MacLaren
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK,Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| |
Collapse
|
19
|
Hess K, de Silva T, Grisso P, Wiley H, Thavikulwat AT, Keenan TDL, Chew EY, Cukras CA. Evaluation of Cone- and Rod-Mediated Parameters in Dark Adaptation Testing as Outcome Measures in Age-Related Macular Degeneration. Ophthalmol Retina 2022; 6:1173-1184. [PMID: 35643387 DOI: 10.1016/j.oret.2022.05.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 05/17/2022] [Accepted: 05/19/2022] [Indexed: 06/15/2023]
Abstract
PURPOSE To investigate the suitability of 6 rod- or cone-mediated dark adaptation (DA) parameters as outcome measures for clinical trials in age-related macular degeneration (AMD), including their retest reliability, association with age and disease severity, and measurable longitudinal change over time. DESIGN Prospective, longitudinal study (Clinicaltrials.gov: NCT01352975). PARTICIPANTS A total of 191 patients with AMD and older participants followed longitudinally over 5 years. METHODS Dark adaptation testing was performed using the AdaptDx dark adaptometer with a maximum test time of 40 minutes. A 2-part exponential-linear curve was fitted to obtain values for cone decay, cone plateau, time to rod-cone break, rod intercept time (RIT), rod adaptation rate (S2), and area under the curve. Intersession retest reliability was assessed in tests performed within 2 weeks using the Bland-Altman analysis. The relationship of DA parameters with age, AMD severity, and reticular pseudodrusen (RPD) presence was evaluated using linear mixed models. MAIN OUTCOME MEASURES Retest reliability, association with disease severity, and longitudinal change of 6 DA parameters. RESULTS A total of 1329 DA curves were analyzed. Rod intercept time was the parameter that showed the greatest reliability (intraclass correlation coefficient of 0.88) and greatest association with age, AMD severity, and RPD (marginal R2 of 0.38), followed by the rod-mediated parameters area under the curve and rod-cone break. Cone plateau appeared constant at lower RIT values but increased with progressive rod dysfunction (RIT > 22.8 minutes) with a slope of 0.07 log units per 10 minutes RIT prolongation. Therefore, it might provide additional information in the advanced stages of AMD. CONCLUSIONS Age-related macular degeneration severity and RPD presence are each associated with large differences in multiple DA curve parameters. In addition, substantial differences in some parameters occur with age, even accounting for AMD severity and RPD status. This supports the 2-hit hypothesis of age and disease status on DA (and perhaps AMD pathophysiology itself). Of the DA parameters, RIT has the highest retest reliability, closest correlation with AMD severity and RPD, and largest longitudinal changes. This underscores the suitability of RIT as an outcome measure in clinical trials. The cone plateau increases only in advanced stages of kinetic rod dysfunction, indicating rod dysfunction preceding cone dysfunction and degeneration in the temporal sequence of pathology in AMD.
Collapse
Affiliation(s)
- Kristina Hess
- Unit on Clinical Investigation of Retinal Disease, National Eye Institute, National Institutes of Health, Bethesda, Maryland; Department of Ophthalmology, University Hospital Bonn, Bonn, Germany
| | - Tharindu de Silva
- Unit on Clinical Investigation of Retinal Disease, National Eye Institute, National Institutes of Health, Bethesda, Maryland
| | - Peyton Grisso
- Unit on Clinical Investigation of Retinal Disease, National Eye Institute, National Institutes of Health, Bethesda, Maryland
| | - Henry Wiley
- Division of Epidemiology and Clinical Applications, National Eye Institute, National Institutes of Health, Bethesda, Maryland
| | - Alisa T Thavikulwat
- Division of Epidemiology and Clinical Applications, National Eye Institute, National Institutes of Health, Bethesda, Maryland
| | - Tiarnan D L Keenan
- Division of Epidemiology and Clinical Applications, National Eye Institute, National Institutes of Health, Bethesda, Maryland
| | - Emily Y Chew
- Division of Epidemiology and Clinical Applications, National Eye Institute, National Institutes of Health, Bethesda, Maryland
| | - Catherine A Cukras
- Unit on Clinical Investigation of Retinal Disease, National Eye Institute, National Institutes of Health, Bethesda, Maryland.
| |
Collapse
|
20
|
De Silva T, Hess K, Grisso P, Thavikulwat AT, Wiley H, Keenan TDL, Chew EY, Jeffrey BG, Cukras CA. Deep Learning-Based Modeling of the Dark Adaptation Curve for Robust Parameter Estimation. Transl Vis Sci Technol 2022; 11:40. [PMID: 36315120 PMCID: PMC9631495 DOI: 10.1167/tvst.11.10.40] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Purpose This study investigates deep-learning (DL) sequence modeling techniques to reliably fit dark adaptation (DA) curves and estimate their key parameters in patients with age-related macular degeneration (AMD) to improve robustness and curve predictions. Methods A long-short-term memory autoencoder was used as the DL method to model the DA curve. The performance was compared against the classical nonlinear regression method using goodness-of-fit and repeatability metrics. Experiments were performed to predict the latter portion of the curve using data from early measurements. The prediction accuracy was quantified as the rod intercept time (RIT) prediction error between predicted and actual curves. Results The two models had comparable goodness-of-fit measures, with root mean squared error (RMSE; SD) = 0.11 (0.04) log-units (LU) for the classical model and RMSE = 0.13 (0.06) LU for the DL model. Repeatability of the curve fits evaluated after introduction of random perturbations, and after performing repeated testing, demonstrated superiority of the DL method, especially among parameters related to cone decay. The DL method exhibited superior ability to predict the curve and RIT using points prior to -2 LU, with 3.1 ± 3.1 minutes RIT prediction error, compared to 19.1 ± 18.6 minutes RIT error for the classical method. Conclusions The parameters obtained from the DL method demonstrated superior robustness as well as predictability of the curve. These could provide important advances in using multiple DA curve parameters to characterize AMD severity. Translational Relevance Dark adaptation is an important functional measure in studies of AMD and curve modeling using DL methods can lead to improved clinical trial end points.
Collapse
Affiliation(s)
- Tharindu De Silva
- Unit on Clinical Investigation of Retinal Disease, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Kristina Hess
- Unit on Clinical Investigation of Retinal Disease, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Peyton Grisso
- Unit on Clinical Investigation of Retinal Disease, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Alisa T. Thavikulwat
- Division of Epidemiology & Clinical Applications, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Henry Wiley
- Division of Epidemiology & Clinical Applications, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Tiarnan D. L. Keenan
- Division of Epidemiology & Clinical Applications, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Emily Y. Chew
- Division of Epidemiology & Clinical Applications, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Brett G. Jeffrey
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Catherine A. Cukras
- Unit on Clinical Investigation of Retinal Disease, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
21
|
Pundlik S, Nigalye A, Laíns I, Mendez KM, Katz R, Kim J, Kim IK, Miller JB, Vavvas D, Miller JW, Luo G, Husain D. Area under the dark adaptation curve as a reliable alternate measure of dark adaptation response. Br J Ophthalmol 2022; 106:1450-1456. [PMID: 33888461 PMCID: PMC9815962 DOI: 10.1136/bjophthalmol-2021-318806] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 03/28/2021] [Accepted: 04/13/2021] [Indexed: 01/11/2023]
Abstract
PURPOSE Quantification of dark adaptation (DA) response using the conventional rod intercept time (RIT) requires very long testing time and may not be measurable in the presence of impairments due to diseases such as age-related macular degeneration (AMD). The goal of this study was to investigate the advantages of using area under the DA curve (AUDAC) as an alternative to the conventional parameters to quantify DA response. METHODS Data on 136 eyes (AMD: 98, normal controls: 38) from an ongoing longitudinal study on AMD were used. DA was measured using the AdaptDx 20 min protocol. AUDAC was computed from the raw DA characteristic curve at different time points, including 6.5 min and 20 min (default). The presence of AMD in the given eye was predicted using a logistic regression model within the leave-one-out cross-validation framework, with DA response as the predictor while adjusting for age and gender. The DA response variable was either the AUDAC values computed at 6.5 min (AUDAC6.5) or at 20 min (AUDAC20) cut-off, or the conventional RIT. RESULTS AUDAC6.5 was strongly correlated with AUDAC20 (β=86, p<0.001, R2=0.87). The accuracy of predicting the presence of AMD using AUDAC20 was 76%, compared with 79% when using RIT, the current gold standard. In addition, when limiting AUDAC calculation to 6.5 min cut-off, the predictive accuracy of AUDAC6.5 was 80%. CONCLUSIONS AUDAC can be a valuable measure to quantify the overall DA response and can potentially facilitate shorter testing duration while maintaining diagnostic accuracy.
Collapse
Affiliation(s)
- Shrinivas Pundlik
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Boston, Massachusetts, USA
- Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, USA
| | - Archana Nigalye
- Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, USA
- Retina Service, Massachusetts Eye & Ear Infirmary, Boston, Massachusetts, USA
| | - Inês Laíns
- Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, USA
- Retina Service, Massachusetts Eye & Ear Infirmary, Boston, Massachusetts, USA
| | - Kevin M Mendez
- Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, USA
- Retina Service, Massachusetts Eye & Ear Infirmary, Boston, Massachusetts, USA
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Raviv Katz
- Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, USA
- Retina Service, Massachusetts Eye & Ear Infirmary, Boston, Massachusetts, USA
| | - Janice Kim
- Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, USA
- Retina Service, Massachusetts Eye & Ear Infirmary, Boston, Massachusetts, USA
| | - Ivana K Kim
- Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, USA
- Retina Service, Massachusetts Eye & Ear Infirmary, Boston, Massachusetts, USA
| | - John B Miller
- Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, USA
- Retina Service, Massachusetts Eye & Ear Infirmary, Boston, Massachusetts, USA
| | - Demetrios Vavvas
- Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, USA
- Retina Service, Massachusetts Eye & Ear Infirmary, Boston, Massachusetts, USA
| | - Joan W Miller
- Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, USA
- Retina Service, Massachusetts Eye & Ear Infirmary, Boston, Massachusetts, USA
| | - Gang Luo
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Boston, Massachusetts, USA
- Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, USA
| | - Deeba Husain
- Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, USA
- Retina Service, Massachusetts Eye & Ear Infirmary, Boston, Massachusetts, USA
| |
Collapse
|
22
|
Kumar H, Guymer RH, Hodgson LAB, Hadoux X, Wu Z. Exploring Reticular Pseudodrusen Extent and Impact on Mesopic Visual Sensitivity in Intermediate Age-Related Macular Degeneration. Invest Ophthalmol Vis Sci 2022; 63:14. [PMID: 35704305 PMCID: PMC9206392 DOI: 10.1167/iovs.63.6.14] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Purpose To explore the impact of the extent of reticular pseudodrusen (RPD) on mesopic visual sensitivity in individuals with intermediate age-related macular degeneration (AMD). Methods In total, 570 eyes from 285 participants with bilateral large drusen underwent microperimetry testing to assess the visual sensitivity of the central 3.6-mm region and multimodal imaging to determine the extent of RPD in the central 20° × 20° region (at the eye level). Mean visual sensitivity within five sectors in the central 3.6-mm region sampled on microperimetry and the extent of RPD in these sectors were derived. Linear mixed models were used to examine the association between the extent of RPD on overall mean visual sensitivity and sector-based mean sensitivity. Results An increasing extent of RPD at the eye level and within sectors was associated with a significant reduction in overall and sector-based mean sensitivity, respectively (P < 0.001 for both). However, when both RPD parameters were considered together in a multivariable model, only an increasing extent of RPD at the eye level (P < 0.001) and not within each sector (P = 0.178) was independently associated with reduced sector-based mean sensitivity. Conclusions Mesopic visual sensitivity is generally reduced in eyes with large drusen and coexistent RPD compared to eyes without RPD, with greater reductions with an increasing extent of RPD. However, reduced sector-based visual sensitivities are explained by the overall extent of RPD present, rather than their extent within the sector itself. These findings suggest that there are generalized pathogenic changes in eyes with RPD accounting for the observed mesopic visual dysfunction.
Collapse
Affiliation(s)
- Himeesh Kumar
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, Australia.,Ophthalmology, Department of Surgery, The University of Melbourne, Melbourne, Australia
| | - Robyn H Guymer
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, Australia.,Ophthalmology, Department of Surgery, The University of Melbourne, Melbourne, Australia
| | - Lauren A B Hodgson
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, Australia
| | - Xavier Hadoux
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, Australia.,Ophthalmology, Department of Surgery, The University of Melbourne, Melbourne, Australia
| | - Zhichao Wu
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, Australia.,Ophthalmology, Department of Surgery, The University of Melbourne, Melbourne, Australia
| |
Collapse
|
23
|
Jeffrey BG, Flynn OJ, Huryn LA, Pfau M, Cukras CA. Scotopic Contour Deformation Detection Reveals Early Rod Dysfunction in Age-Related Macular Degeneration With and Without Reticular Pseudodrusen. Invest Ophthalmol Vis Sci 2022; 63:23. [PMID: 35749129 PMCID: PMC9234356 DOI: 10.1167/iovs.63.6.23] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose The purpose of this study was to investigate scotopic contour deformation detection (sCDD), and its structural determinants, in participants with intermediate age-related macular degeneration (iAMD) with or without reticular pseudodrusen (RPD). Methods Forty-one participants (aged 58–89 years), including 9 with iAMD and RPD, 16 with iAMD only, and 16 controls, underwent functional testing. The sCDD was evaluated with radial frequency arcs presented at 4 loci: ±4 degrees and 8 degrees vertical eccentricity. Scotopic thresholds and dark adaptation (DA) were measured at the same loci. Retinal layers of spectral domain optical coherence tomography (SD-OCT) volume scans were segmented. To establish the concurrent validity of the functional test, we evaluated the fraction of variability in sCDD thresholds explained by SD-OCT data. Results The iAMD group had significantly worse sCDD thresholds compared with controls (8 degrees inferior retina: P = 0.004 and the 4 degrees loci: P < 0.02 for both). Elevated sCDD thresholds were observed in iAMD and RPD eyes at loci with normal scotopic thresholds; the opposite was rarely encountered. Elevated sCDD thresholds were also observed in iAMD eyes with normal DA. Elevated sCDD thresholds were associated with increased age and presence of late AMD in the fellow eye. The optimal machine learning model predicted 16% of variability (cross-validated R2) in sCDD thresholds at 8 degrees. Discussion A novel scotopic contour deformation task can provide unique information about rod dysfunction in participants with iAMD and RPD not observed with structural and other functional assessments. Rod dysfunction observed with scotopic contour deformation testing was associated with factors linked to risk of AMD progression.
Collapse
Affiliation(s)
- Brett G Jeffrey
- National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Oliver J Flynn
- National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Laryssa A Huryn
- National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Maximilian Pfau
- National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States.,University of Bonn, Bonn, Germany
| | - Catherine A Cukras
- National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| |
Collapse
|
24
|
Nigalye AK, Hess K, Pundlik SJ, Jeffrey BG, Cukras CA, Husain D. Dark Adaptation and Its Role in Age-Related Macular Degeneration. J Clin Med 2022; 11:jcm11051358. [PMID: 35268448 PMCID: PMC8911214 DOI: 10.3390/jcm11051358] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/18/2022] [Accepted: 02/26/2022] [Indexed: 01/04/2023] Open
Abstract
Dark adaptation (DA) refers to the slow recovery of visual sensitivity in darkness following exposure to intense or prolonged illumination, which bleaches a significant amount of the rhodopsin. This natural process also offers an opportunity to understand cellular function in the outer retina and evaluate for presence of disease. How our eyes adapt to darkness can be a key indicator of retinal health, which can be altered in the presence of certain diseases, such as age-related macular degeneration (AMD). A specific focus on clinical aspects of DA measurement and its significance to furthering our understanding of AMD has revealed essential findings underlying the pathobiology of the disease. The process of dark adaptation involves phototransduction taking place mainly between the photoreceptor outer segments and the retinal pigment epithelial (RPE) layer. DA occurs over a large range of luminance and is modulated by both cone and rod photoreceptors. In the photopic ranges, rods are saturated and cone cells adapt to the high luminance levels. However, under scotopic ranges, cones are unable to respond to the dim luminance and rods modulate the responses to lower levels of light as they can respond to even a single photon. Since the cone visual cycle is also based on the Muller cells, measuring the impairment in rod-based dark adaptation is thought to be particularly relevant to diseases such as AMD, which involves both photoreceptors and RPE. Dark adaptation parameters are metrics derived from curve-fitting dark adaptation sensitivities over time and can represent specific cellular function. Parameters such as the cone-rod break (CRB) and rod intercept time (RIT) are particularly sensitive to changes in the outer retina. There is some structural and functional continuum between normal aging and the AMD pathology. Many studies have shown an increase of the rod intercept time (RIT), i.e., delays in rod-mediated DA in AMD patients with increasing disease severity determined by increased drusen grade, pigment changes and the presence of subretinal drusenoid deposits (SDD) and association with certain morphological features in the peripheral retina. Specifications of spatial testing location, repeatability of the testing, ease and availability of the testing device in clinical settings, and test duration in elderly population are also important. We provide a detailed overview in light of all these factors.
Collapse
Affiliation(s)
- Archana K. Nigalye
- Retina Service, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, 243 Charles St., Boston, MA 02114, USA;
| | - Kristina Hess
- National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA; (K.H.); (B.G.J.)
| | - Shrinivas J. Pundlik
- Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School Department of Ophthalmology, Boston, MA 02114, USA;
| | - Brett G. Jeffrey
- National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA; (K.H.); (B.G.J.)
| | - Catherine A. Cukras
- National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA; (K.H.); (B.G.J.)
- Correspondence: (C.A.C.); (D.H.); Tel.: +1-(301)435-5061 (C.A.C.); +1-617-573-4371 (D.H.); Fax: +1-617-573-3698 (D.H.)
| | - Deeba Husain
- Retina Service, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, 243 Charles St., Boston, MA 02114, USA;
- Correspondence: (C.A.C.); (D.H.); Tel.: +1-(301)435-5061 (C.A.C.); +1-617-573-4371 (D.H.); Fax: +1-617-573-3698 (D.H.)
| |
Collapse
|
25
|
Raming K, Gliem M, Charbel Issa P, Birtel J, Herrmann P, Holz FG, Pfau M, Hess K. Visual Dysfunction and Structural Correlates in Sorsby Fundus Dystrophy. Am J Ophthalmol 2022; 234:274-284. [PMID: 34352251 DOI: 10.1016/j.ajo.2021.07.032] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 11/19/2022]
Abstract
PURPOSE To elucidate morphological determinants of rod and cone dysfunction in Sorsby fundus dystrophy (SFD), and to systematically compare visual function tests for interventional trials. DESIGN Prospective cross-sectional study. METHODS Patients with SFD (n = 16) and controls (n = 20) underwent visual function testing (best-corrected visual acuity [BCVA] and low luminance visual acuity [LLVA], contrast sensitivity, mesopic and dark-adapted (DA) fundus-controlled perimetry [FCP], rod-mediated dark adaptation [RMDA]), and multimodal imaging. Vision-related quality of life was evaluated. FCP and RMDA thresholds were analyzed using mixed models and structure-function correlation using machine learning (ML). Longitudinal data of 1 patient with high-dose vitamin A supplementation were available. RESULTS Although photopic BCVA was normative in SFD, LLVA was impaired (0.30 LogMAR [0.20; 0.45] vs 0.20 LogMAR [0.03; 0.28], P < .05). Scotopic visual function exhibited a delayed rod-intercept time (21 minutes [12.15; 21] vs 4.05 minutes [3.22; 5.36], P < .001), and marked DA cyan mean sensitivity loss (-11.80 dB [-3.47; -19.85]), paralleled by a reduced vision-related quality of life. ML-based structure-function correlation allowed prediction of mesopic, DA cyan, and red sensitivity with high accuracy (cross-validated mean absolute error: 4.36, 7.77, and 5.31 dB, respectively), whereas RMDA could be slowed even in the absence of fundus alterations on multimodal imaging. After high-dose vitamin A supplementation, RMDA and DA thresholds improved markedly. CONCLUSIONS Patients with SFD exhibit severely impaired scotopic visual function even in the absence of funduscopic alterations on multimodal imaging. In contrast to BCVA, scotopic visual function tests are suitable to quantify dysfunction in the early stages. Improvement of scotopic dysfunction after (off-label) high-dose vitamin A intake, as observed in one patient in our study, is compatible with the hypothesized local deficiency of vitamin A secondary to Bruch's membrane alterations.
Collapse
Affiliation(s)
- Kristin Raming
- From the Department of Ophthalmology (K.R., J.B., P.H., F.G.H., M.P., K.H.), University of Bonn, Bonn, Germany; Center for Rare Diseases (K.R., P.H., F.G.H., K.H.), University of Bonn, Bonn, Germany
| | - Martin Gliem
- Boehringer Ingelheim GmbH (M.G.), Ingelheim am Rhein, Germany
| | - Peter Charbel Issa
- Oxford Eye Hospital (P.C.I., J.B.,), Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom; Nuffield Laboratory of Ophthalmology (P.C.I., J.B.), Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Johannes Birtel
- From the Department of Ophthalmology (K.R., J.B., P.H., F.G.H., M.P., K.H.), University of Bonn, Bonn, Germany; Oxford Eye Hospital (P.C.I., J.B.,), Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom; Nuffield Laboratory of Ophthalmology (P.C.I., J.B.), Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Philipp Herrmann
- From the Department of Ophthalmology (K.R., J.B., P.H., F.G.H., M.P., K.H.), University of Bonn, Bonn, Germany; Center for Rare Diseases (K.R., P.H., F.G.H., K.H.), University of Bonn, Bonn, Germany
| | - Frank G Holz
- From the Department of Ophthalmology (K.R., J.B., P.H., F.G.H., M.P., K.H.), University of Bonn, Bonn, Germany; Center for Rare Diseases (K.R., P.H., F.G.H., K.H.), University of Bonn, Bonn, Germany
| | - Maximilian Pfau
- From the Department of Ophthalmology (K.R., J.B., P.H., F.G.H., M.P., K.H.), University of Bonn, Bonn, Germany; Ophthalmic Genetics and Visual Function Branch (M.P.), National Eye Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Kristina Hess
- From the Department of Ophthalmology (K.R., J.B., P.H., F.G.H., M.P., K.H.), University of Bonn, Bonn, Germany; Center for Rare Diseases (K.R., P.H., F.G.H., K.H.), University of Bonn, Bonn, Germany; Division of Epidemiology and Clinical Applications (K.H.), National Eye Institute, National Institutes of Health, Bethesda, Maryland, USA.
| |
Collapse
|
26
|
Zhang Y, Sadda SR, Sarraf D, Swain TA, Clark ME, Sloan KR, Warriner WE, Owsley C, Curcio CA. Spatial Dissociation of Subretinal Drusenoid Deposits and Impaired Scotopic and Mesopic Sensitivity in AMD. Invest Ophthalmol Vis Sci 2022; 63:32. [PMID: 35212721 PMCID: PMC8883144 DOI: 10.1167/iovs.63.2.32] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Purpose Subretinal drusenoid deposits (SDD) first appear in the rod-rich perifovea and can extend to the cone-rich fovea. To refine the spatial relationship of visual dysfunction with SDD burden, we determined the topography of mesopic and scotopic light sensitivity in participants with non-neovascular AMD with and without SDD. Methods Thirty-three subjects were classified into three groups: normal (n = 9), AMD-Drusen (with drusen and without SDD; n = 12), and AMD-SDD (predominantly SDD; n = 12). Mesopic and scotopic microperimetry were performed using 68 targets within the Early Treatment Diabetic Retinopathy Study grid, including points at 1.7° from the foveal center (rod:cone ratio, 0.35). Age-adjusted linear regression was used to compare mesopic and scotopic light sensitivities across groups. Results Across the entire Early Treatment Diabetic Retinopathy Study grid and within individual subfields, the three groups differed significantly for mesopic and scotopic light sensitivities (all P < 0.05). The AMD-SDD group exhibited significantly decreased mesopic and scotopic sensitivity versus both the normal and the AMD-Drusen groups (all P < 0.05), while AMD-Drusen and normal eyes did not significantly differ (all P > 0.05). The lowest relative sensitivities were recorded for scotopic light levels, especially in the central subfield, in the AMD-SDD group. Conclusions SDD-associated decrements in rod-mediated vision can be detected close to the foveola, and these deficits are proportionately worse than functional loss in the rod-rich perifovea. This finding suggests that factors other than the previously hypothesized direct cytotoxicity to photoreceptors and local transport barrier limitations may negatively impact vision. Larger prospective studies are required to confirm these observations.
Collapse
Affiliation(s)
- Yuhua Zhang
- Doheny Eye Institute, Los Angeles, California, United States.,Department of Ophthalmology, University of California - Los Angeles, Los Angeles, California, United States
| | - SriniVas R Sadda
- Doheny Eye Institute, Los Angeles, California, United States.,Department of Ophthalmology, University of California - Los Angeles, Los Angeles, California, United States
| | - David Sarraf
- Department of Ophthalmology, University of California - Los Angeles, Los Angeles, California, United States.,Jules Stein Eye Institute, Los Angeles, California, United States
| | - Thomas A Swain
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Mark E Clark
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Kenneth R Sloan
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - William E Warriner
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, Birmingham, Alabama, United States.,Research Computing, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Cynthia Owsley
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Christine A Curcio
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, Birmingham, Alabama, United States
| |
Collapse
|
27
|
Grewal MK, Chandra S, Gurudas S, Rasheed R, Sen P, Menon D, Bird A, Jeffery G, Sivaprasad S. Functional clinical endpoints and their correlations in eyes with AMD with and without subretinal drusenoid deposits-a pilot study. Eye (Lond) 2022; 36:398-406. [PMID: 33750892 PMCID: PMC8807627 DOI: 10.1038/s41433-021-01488-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 02/09/2021] [Accepted: 02/22/2021] [Indexed: 02/03/2023] Open
Abstract
PURPOSE To evaluate functional clinical endpoints and their structural correlations in AMD, with a focus on subretinal drusenoid deposits (SDD). METHODS This prospective study enroled 50 participants (11 controls, 17 intermediate AMD (iAMD) with no SDD, 11 iAMD with SDD and 11 non-foveal atrophic AMD). Participants underwent best-corrected visual acuity (BCVA), low luminance visual acuity (LLVA), low luminance questionnaire (LLQ), scotopic thresholds, rod-intercept time (RIT), photopic flicker electroretinograms and multimodal imaging. Functional and structural relationships were assessed. RESULTS Compared with healthy participants, BCVA, LLVA, scotopic thresholds were depressed, and RIT prolonged in iAMD patients with SDD (p = 0.028, p = 0.045, p = 0.014 and p < 0.0001 respectively). Patients with SDD also had reduced scotopic function and delayed RIT compared to iAMD without SDD (p = 0.005 and p < 0.0001). Eyes with SDD and non-foveal atrophy did not differ functionally. Nor did healthy subjects compared with iAMD without SDD. Functional parameters were significantly associated with scotopic thresholds (r = 0.39-0.64). BCVA, LLVA and scotopic thresholds correlated well with ONL volume, ONL thickness and choroidal thickness (r = 0.34-0.61). CONCLUSION Eyes with SDD are surrogate markers of photoreceptor abnormalities comparable with non-central atrophy and should be sub-analysed in clinical trials evaluating potential prophylactic agents to decrease the progression of AMD and may even require different therapeutic interventions.
Collapse
Affiliation(s)
- Manjot Kaur Grewal
- grid.83440.3b0000000121901201Institute of Ophthalmology, University College London, London, UK ,grid.439257.e0000 0000 8726 5837NIHR Moorfields Biomedical Research Centre, Moorfields Eye Hospital, London, UK
| | - Shruti Chandra
- grid.83440.3b0000000121901201Institute of Ophthalmology, University College London, London, UK ,grid.439257.e0000 0000 8726 5837NIHR Moorfields Biomedical Research Centre, Moorfields Eye Hospital, London, UK
| | - Sarega Gurudas
- grid.83440.3b0000000121901201Institute of Ophthalmology, University College London, London, UK
| | - Rajna Rasheed
- grid.439257.e0000 0000 8726 5837NIHR Moorfields Biomedical Research Centre, Moorfields Eye Hospital, London, UK
| | - Piyali Sen
- grid.439257.e0000 0000 8726 5837NIHR Moorfields Biomedical Research Centre, Moorfields Eye Hospital, London, UK
| | - Deepthy Menon
- grid.439257.e0000 0000 8726 5837NIHR Moorfields Biomedical Research Centre, Moorfields Eye Hospital, London, UK
| | - Alan Bird
- grid.83440.3b0000000121901201Institute of Ophthalmology, University College London, London, UK
| | - Glen Jeffery
- grid.83440.3b0000000121901201Institute of Ophthalmology, University College London, London, UK
| | - Sobha Sivaprasad
- grid.83440.3b0000000121901201Institute of Ophthalmology, University College London, London, UK ,grid.439257.e0000 0000 8726 5837NIHR Moorfields Biomedical Research Centre, Moorfields Eye Hospital, London, UK
| |
Collapse
|
28
|
Wu Z, Fletcher EL, Kumar H, Greferath U, Guymer RH. Reticular pseudodrusen: A critical phenotype in age-related macular degeneration. Prog Retin Eye Res 2021; 88:101017. [PMID: 34752916 DOI: 10.1016/j.preteyeres.2021.101017] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 10/07/2021] [Accepted: 10/29/2021] [Indexed: 12/18/2022]
Abstract
Reticular pseudodrusen (RPD), or subretinal drusenoid deposits (SDD), refer to distinct lesions that occur in the subretinal space. Over the past three decades, their presence in association with age-related macular degeneration (AMD) has become increasingly recognized, especially as RPD have become more easily distinguished with newer clinical imaging modalities. There is also an increasing appreciation that RPD appear to be a critical AMD phenotype, where understanding their pathogenesis will provide further insights into the processes driving vision loss in AMD. However, key barriers to understanding the current evidence related to the independent impact of RPD include the heterogeneity in defining their presence, and failure to account for the confounding impact of the concurrent presence and severity of AMD pathology. This review thus critically discusses the current evidence on the prevalence and clinical significance of RPD and proposes a clinical imaging definition of RPD that will help move the field forward in gathering further key knowledge about this critical phenotype. It also proposes a putative mechanism for RPD formation and how they may drive progression to vision loss in AMD, through examining current evidence and presenting novel findings from preclinical and clinical studies.
Collapse
Affiliation(s)
- Zhichao Wu
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, Australia; Ophthalmology, Department of Surgery, The University of Melbourne, Melbourne, Australia
| | - Erica L Fletcher
- Department of Anatomy and Physiology, The University of Melbourne, Melbourne, VIC, Australia
| | - Himeesh Kumar
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, Australia; Ophthalmology, Department of Surgery, The University of Melbourne, Melbourne, Australia
| | - Ursula Greferath
- Department of Anatomy and Physiology, The University of Melbourne, Melbourne, VIC, Australia
| | - Robyn H Guymer
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, Australia; Ophthalmology, Department of Surgery, The University of Melbourne, Melbourne, Australia.
| |
Collapse
|
29
|
Scotopic thresholds on dark-adapted chromatic perimetry in healthy aging and age-related macular degeneration. Sci Rep 2021; 11:10349. [PMID: 33990634 PMCID: PMC8121851 DOI: 10.1038/s41598-021-89677-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 04/14/2021] [Indexed: 11/09/2022] Open
Abstract
To evaluate the effect of aging, intra- and intersession repeatability and regional scotopic sensitivities in healthy and age-related macular degeneration (AMD) eyes. Intra- and intersession agreement and effect of age was measured in healthy individuals. The mean sensitivity (MS) and pointwise retinal sensitivities (PWS) within the central 24° with 505 nm (cyan) and 625 nm (red) stimuli were evaluated in 50 individuals (11 healthy and 39 AMD eyes). The overall intra- and intersession had excellent reliability (intraclass correlation coefficient, ICC > 0.90) and tests were highly correlated (Spearman rs = 0.75-0.86). Eyes with subretinal drusenoid deposit (SDD) had reduced PWS centrally, particularly at inferior and nasal retinal locations compared with controls and intermediate AMD (iAMD) without SDD. There was no difference in MS or PWS at any retinal location between iAMD without SDD and healthy individuals nor between iAMD with SDD and non-foveal atrophic AMD groups. Eyes with SDD have reduced rod function compared to iAMD without SDD and healthy eyes, but similar to eyes with non-foveal atrophy. Our results highlight rod dysfunction is not directly correlated with drusen load and SDD location.
Collapse
|
30
|
SUBRETINAL DRUSENOID DEPOSIT IN AGE-RELATED MACULAR DEGENERATION: Histologic Insights Into Initiation, Progression to Atrophy, and Imaging. Retina 2021; 40:618-631. [PMID: 31599795 DOI: 10.1097/iae.0000000000002657] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE To clarify the role of subretinal drusenoid deposits (SDD; pseudodrusen) in the progression of age-related macular degeneration through high-resolution histology. METHODS In 33 eyes of 32 donors (early age-related macular degeneration, n = 15; geographic atrophy, n = 9; neovascular age-related macular degeneration, n = 7; unremarkable, n = 2), and 2 eyes of 2 donors with in vivo multimodal imaging including optical coherence tomography, examples of SDD contacting photoreceptors were assessed. RESULTS Subretinal drusenoid deposits were granular extracellular deposits at the apical retinal pigment epithelium (RPE); the smallest were 4-µm wide. Outer segment (OS) fragments and RPE organelles appeared in some larger deposits. A continuum of photoreceptor degeneration included OS disruption, intrusion into inner segments, and disturbance of neurosensory retina. In a transition to outer retinal atrophy, SDD appeared to shrink, OS disappeared, inner segment shortened, and the outer nuclear layer thinned and became gliotic. Stage 1 SDD on optical coherence tomography correlated with displaced OS. Confluent and disintegrating Stage 2 to 3 SDD on optical coherence tomography and dot pseudodrusen by color fundus photography correlated with confluent deposits and ectopic RPE. CONCLUSION Subretinal drusenoid deposits may start at the RPE as granular, extracellular deposits. Photoreceptor OS, RPE organelles, and cell bodies may appear in some advanced deposits. A progression to atrophy associated with deposit diminution was confirmed. Findings support a biogenesis hypothesis of outer retinal lipid cycling.
Collapse
|
31
|
Nigalye A, Pundlik S, Kim J, Luo G, Husain D. Delayed dark adaptation in central serous chorioretinopathy. Am J Ophthalmol Case Rep 2021; 22:101098. [PMID: 33997469 PMCID: PMC8094908 DOI: 10.1016/j.ajoc.2021.101098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 02/12/2021] [Accepted: 04/12/2021] [Indexed: 11/28/2022] Open
Abstract
Purpose To evaluate the effect of central serous chorioretinopathy (CSCR) on retinal function using dark adaptation in a human subject, and to follow it through resolution of the disease. Patients Single patient, 50 years old male patient, with acute CSCR in one eye and resolved old CSCR in the other eye. Observations Observational study in patient with CSCR followed through resolution of the subretinal fluid (52 days). Dark adaptation was assessed using the AdaptDx® (Maculogix Inc.) measured by Rod Intercept time (RIT) in minutes. A normal retinal locus of the same eye on the opposite side of the fovea was used as control. Retinal separation (microns) was measured using Spectralis Optical Coherence Tomography (Spectralis®, HRA + OCT, Heidelberg engineering). Change in time to dark adapt, were correlated with retinal separation measured in microns, during the course of CSCR. The Rod Intercept time was delayed in the area of detached retina compared to the normal region (control) on presentation with retinal separation (RS) of 104 μm. The Rod Intercept time returned to normal as the retinal separation from retinal pigment epithelium decreased and eventually resolved. Conclusions This case shows that delay in dark adaptation is proportional to the amount of separation of neurosensory retina from retinal pigment epithelium in CSCR, this may offer a potential of using DA to characterize visual function in CSCR. The association of dark adaptation response with the state of retinal pigment epithelial function and its ability to predict the recurrence of CSCR needs further evaluation.
Collapse
Affiliation(s)
- Archana Nigalye
- Retina Service, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, 243 Charles Street, Boston, MA, 02114, USA
| | - Shrinivas Pundlik
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, 20 Staniford Street, Boston, MA, 02114, USA
| | - Janice Kim
- Retina Service, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, 243 Charles Street, Boston, MA, 02114, USA
| | - Gang Luo
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, 20 Staniford Street, Boston, MA, 02114, USA
| | - Deeba Husain
- Retina Service, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, 243 Charles Street, Boston, MA, 02114, USA
| |
Collapse
|
32
|
Higgins BE, Taylor DJ, Binns AM, Crabb DP. Are Current Methods of Measuring Dark Adaptation Effective in Detecting the Onset and Progression of Age-Related Macular Degeneration? A Systematic Literature Review. Ophthalmol Ther 2021; 10:21-38. [PMID: 33565038 PMCID: PMC7887145 DOI: 10.1007/s40123-020-00323-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 12/09/2020] [Indexed: 12/11/2022] Open
Abstract
INTRODUCTION Dark adaptation (DA) has been proposed as a possible functional biomarker for age-related macular degeneration (AMD). In this systematic review we aim to evaluate current methodology used to assess DA in people with AMD, the evidence of precision in detecting the onset and progression of AMD, and the relationship between DA and other functional and structural measures. METHODS MEDLINE, EMBASE, CINAHL, AMED, PsycINFO, PsycARTICLES were searched for studies published between January 2006 and January 2020 that assessed DA in people with AMD. Details of eligible studies including study design, characteristics of study population and outcomes were recorded. All included studies underwent quality appraisal using approved critical appraisal tools. This systematic review follows PRISMA guidelines (PROSPERO registration number: CRD42019129486). RESULTS Forty-eight studies were eligible for inclusion, reporting a variety of instruments and protocols to assess different DA parameters. Twenty of these studies used the AdaptDx (MacuLogix, Hummelstown, PA, USA) instrument and assessed rod-intercept time (RIT). Most of these reported that RIT was delayed in people with AMD and this delay worsened with AMD severity. Four studies, involving 533 participants, reported estimates of diagnostic performance of AdaptDx to separate people with AMD from visually healthy controls. DA has been compared to other measures of visual function, patient-reported outcome measures (PROMs) and structural measures. Ten studies specifically considered evidence that the presence of certain structural abnormalities was associated with impaired DA in AMD. CONCLUSIONS This systematic review indicates overwhelming evidence of reasonable quality for an association between impaired DA and AMD. Data on the repeatability and reproducibility of DA measurement are sparse. There is evidence that structural abnormalities such as reticular drusen are associated with prolongation of DA time. Fewer studies have explored an association between DA and other measures of visual function or PROMs. We found no studies that had compared DA with performance-based measures.
Collapse
Affiliation(s)
- Bethany E Higgins
- Optometry and Visual Sciences, School of Health Sciences, City, University of London, London, UK
| | - Deanna J Taylor
- Optometry and Visual Sciences, School of Health Sciences, City, University of London, London, UK
| | - Alison M Binns
- Optometry and Visual Sciences, School of Health Sciences, City, University of London, London, UK
| | - David P Crabb
- Optometry and Visual Sciences, School of Health Sciences, City, University of London, London, UK.
| |
Collapse
|
33
|
Sassmannshausen M, Pfau M, Thiele S, Fimmers R, Steinberg JS, Fleckenstein M, Holz FG, Schmitz-Valckenberg S. Longitudinal Analysis of Structural and Functional Changes in Presence of Reticular Pseudodrusen Associated With Age-Related Macular Degeneration. Invest Ophthalmol Vis Sci 2021; 61:19. [PMID: 32780863 PMCID: PMC7441376 DOI: 10.1167/iovs.61.10.19] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Purpose To examine longitudinal changes of retinal thickness and retinal sensitivity in patients with intermediate age-related macular degeneration (iAMD) and predominantly reticular pseudodrusen (RPD). Methods At baseline 30 eyes of 25 iAMD patients underwent optical coherence tomography imaging, mesopic and scotopic fundus-controlled perimetry (FCP) with follow-up examinations at month 12 (20 eyes), 24 (12 eyes), and 36 (11 eyes). Thicknesses of different retinal layers and results of FCP testing (n = 56 stimuli) were spatially and longitudinally analyzed using linear mixed-effects models. Results At baseline, the thickness of the partial outer retinal layer (pORL, 70.21 vs. 77.47 µm) and both mesopic (16.60 vs. 18.72 dB) and scotopic (12.14 vs. 18.67 dB) retinal sensitivity were decreased in areas with RPD compared with unremarkable areas (P < 0.001). Over three years, mean change of pORL was −0.66 normative standard deviation (SD; i.e., z-score, P < 0.001) for regions with existing RPD, −0.40 SD (P < 0.001) for regions with new occurring RPD, and −0.17 SD (P = 0.041) in unremarkable regions. Decrease of scotopic and mesopic sensitivity over three years was more pronounced in areas with existing (−3.51 and −7.76 dB) and new occurring RPD (−2.06 and −5.97 dB). Structure-function analysis revealed that 1 SD decrease of pORL thickness was associated with a sensitivity reduction of 3.47 dB in scotopic and 0.79 dB in mesopic testing. Conclusions This study demonstrates progressive outer retinal degeneration and impairment of photoreceptor function in eyes with iAMD and RPD over three years. Preservation of outer retinal thickness and reduction of RPD formation may constitute meaningful surrogate endpoints in interventional trials on eyes with AMD and RPD aiming to slow outer retinal degeneration.
Collapse
Affiliation(s)
- Marlene Sassmannshausen
- Department of Ophthalmology, University of Bonn, Bonn, Germany.,GRADE Reading Center, Bonn, Germany
| | - Maximilian Pfau
- Department of Ophthalmology, University of Bonn, Bonn, Germany.,GRADE Reading Center, Bonn, Germany.,Department of Biomedical Data Science, Stanford University, Stanford, California, United States
| | - Sarah Thiele
- Department of Ophthalmology, University of Bonn, Bonn, Germany.,GRADE Reading Center, Bonn, Germany
| | - Rolf Fimmers
- Institute for Medical Biometry, Informatics and Epidemiology, University of Bonn, Medical Faculty, Bonn, Germany
| | | | - Monika Fleckenstein
- Department of Ophthalmology, University of Bonn, Bonn, Germany.,John A. Moran Eye Center, University of Utah, Salt Lake City, Utah, United States
| | - Frank G Holz
- Department of Ophthalmology, University of Bonn, Bonn, Germany.,GRADE Reading Center, Bonn, Germany
| | - Steffen Schmitz-Valckenberg
- Department of Ophthalmology, University of Bonn, Bonn, Germany.,GRADE Reading Center, Bonn, Germany.,John A. Moran Eye Center, University of Utah, Salt Lake City, Utah, United States
| |
Collapse
|
34
|
Minnella AM, Piccardi M, Placidi G, García-Layana A, Delcourt C, Valentini P, Falsini B. Macular Function in Early and Intermediate Age-related Macular Degeneration: Correlation with the Simplified Thea Risk Assessment Scale (STARS). Transl Vis Sci Technol 2020; 9:28. [PMID: 33062391 PMCID: PMC7533726 DOI: 10.1167/tvst.9.10.28] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 06/07/2020] [Indexed: 11/24/2022] Open
Abstract
Purpose Early detection of retinal dysfunction in age-related macular degeneration (AMD) may be important for both prevention and treatment. The aim of this study was to evaluate in early and intermediate AMD the correlation of macular function, assessed by the focal electroretinogram (fERG), with the Simplified Thea Risk Assessment Scale (STARS), a simple 13-item self-administered questionnaire. Methods We recorded a fERG (18°, 41 Hz) in 84 patients with AMD (40 male and 44 female, age 55–87 years, visual acuity 20/40–20/20), who had undergone a 5-year clinical ophthalmic and general follow-up. Sixty-six patients had early and 17 patients intermediate AMD. Fifty healthy subjects, in a comparable age range, served as controls. The fERG amplitude (in microVolts) was the main outcome variable. STARS was calculated for each patient. Results Compared with controls, fERG amplitudes were significantly reduced, on average, in both early and intermediate patients with AMD (P < 0.01). In both groups, fERG amplitudes tended to decrease with age and to increase with visual acuity and were negatively correlated with STARS (early r = –0.6, P < 0.01; intermediate, r = –0.50, P < 0.05). fERG losses were greatest in patients with a STARS score of greater than 20. Conclusions In early and intermediate AMD, STARS robustly predicted central retinal function, as assessed by fERG, supporting the combined use of both parameters to estimate the clinical risk of visual function loss. Translational Relevance The STARS may predict macular function in AMD and could be used in the daily clinical practice to estimate the risk of visual function loss in early disease stages.
Collapse
Affiliation(s)
- Angelo Maria Minnella
- Ophthalmology, Università Cattolica del Sacro Cuore, Rome, Italy.,Fondazione Policlinico Universitario A. Gemelli- IRCCS, Rome, Italy
| | - Marco Piccardi
- Ophthalmology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Giorgio Placidi
- Ophthalmology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Alfredo García-Layana
- Ophthalmology Department, Clínica Universidad de Navarra, University of Navarra, Pamplona, Spain
| | - Cecile Delcourt
- University of Bordeaux, Inserm, Bordeaux Population Health Research Center, UMR 1219, Team LEHA, Bordeaux, France
| | | | - Benedetto Falsini
- Ophthalmology, Università Cattolica del Sacro Cuore, Rome, Italy.,Fondazione Policlinico Universitario A. Gemelli- IRCCS, Rome, Italy
| |
Collapse
|
35
|
Exploratory Study on Visual Acuity and Patient-Perceived Visual Function in Patients with Subretinal Drusenoid Deposits. J Clin Med 2020; 9:jcm9092832. [PMID: 32882940 PMCID: PMC7564166 DOI: 10.3390/jcm9092832] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 08/16/2020] [Accepted: 08/31/2020] [Indexed: 11/16/2022] Open
Abstract
Purpose: To investigate the value of visual acuity and patient-perceived visual function test when subretinal drusenoid deposits (SDD) are incorporated into the classification of age-related macular degeneration (AMD). A total of 50 participants were recruited into the study in these groups: healthy ageing (n = 11), intermediate AMD (iAMD) with no SDD (n = 17), iAMD with SDD (n = 11) and non-foveal atrophic AMD (n = 11) confirmed by two retinal imaging modalities. Best-corrected visual acuity (BCVA) and low luminance visual acuity (LLVA) were measured and low luminance deficit (LLD) was calculated. Participants were also interviewed with the low luminance questionnaire (LLQ). Linear regression was used to assess function–function relations. Compared with healthy participants, BCVA and LLVA scores were significantly reduced in the atrophic AMD group (p < 0.0001 and p = 0.00016, respectively) and in patients with SDD (p = 0.028 and p = 0.045, respectively). Participants with atrophy also had reduced BCVA (p = 0.001) and LLVA (p = 0.009) compared with the iAMD no SDD group. However, there were no differences in visual function tests between healthy aging and iAMD without SDD and between iAMD with SDD and atrophic AMD groups. The LLD score did not differ between groups. BCVA and LLVA correlated well. The LLQ did not correlate with visual function tests. This study shows that LLD is not a marker of disease severity as assessed clinically. Although LLQ is a good marker for disease severity using the current AMD classification, it does not differentiate between eyes with and without SDD. Eyes with non-macular geographic atrophy and SDD had lower function than eyes with no SDD and healthy controls.
Collapse
|
36
|
Pfau M, von der Emde L, Dysli C, Möller PT, Thiele S, Lindner M, Schmid M, Rubin DL, Fleckenstein M, Holz FG, Schmitz-Valckenberg S. Determinants of Cone and Rod Functions in Geographic Atrophy: AI-Based Structure-Function Correlation. Am J Ophthalmol 2020; 217:162-173. [PMID: 32289293 DOI: 10.1016/j.ajo.2020.04.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 04/01/2020] [Accepted: 04/03/2020] [Indexed: 11/18/2022]
Abstract
PURPOSE To investigate the association between retinal microstructure and cone and rod function in geographic atrophy (GA) secondary to age-related macular degeneration (AMD) by using artificial intelligence (AI) algorithms. DESIGN Prospective, observational case series. METHODS A total of 41 eyes of 41 patients (75.8 ± 8.4 years old; 22 females) from a tertiary referral hospital were included. Mesopic, dark-adapted (DA) cyan and red sensitivities were assessed by using fundus-controlled perimetry ("microperimetry"); and retinal microstructure was assessed by using spectral-domain optical-coherence-tomography (SD-OCT), fundus autofluorescence (FAF), and near-infrared-reflectance (IR) imaging. Layer thicknesses and intensities and FAF and IR intensities were extracted for each test point. The cross-validated mean absolute error (MAE) was evaluated for random forest-based predictions of retinal sensitivity with and without patient-specific training data and percentage of increased mean-squared error (%IncMSE) as measurement of feature importance. RESULTS Retinal sensitivity was predicted with a MAE of 4.64 dB for mesopic, 4.89 dB for DA cyan, and 4.40 dB for DA red testing in the absence of patient-specific data. Partial addition of patient-specific sensitivity data to the training sets decreased the MAE to 2.89 dB, 2.86 dB, and 2.77 dB. For all 3 types of testing, the outer nuclear layer thickness constituted the most important predictive feature (35.0, 42.22, and 53.74 %IncMSE). Spatially resolved mapping of "inferred sensitivity" revealed regions with differential degrees of mesopic and DA cyan sensitivity loss outside of the GA lesions. CONCLUSIONS "Inferred sensitivity" accurately reflected retinal function in patients with GA. Mapping of "inferred sensitivity" could facilitate monitoring of disease progression and serve as "quasi functional" surrogate outcome in clinical trials, especially in consideration of retinal regions beyond areas of GA.
Collapse
Affiliation(s)
- Maximilian Pfau
- Department of Ophthalmology, University of Bonn, Bonn, Germany; GRADE Reading Center, Bonn, Germany; Department of Biomedical Data Science, Stanford University, Stanford, California, USA
| | | | - Chantal Dysli
- Department of Ophthalmology, University of Bonn, Bonn, Germany; Departments of Ophthalmology and Clinical Research, Inselspital, Bern University Hospital and University of Bern, Bern, Switzerland
| | - Philipp T Möller
- Department of Ophthalmology, University of Bonn, Bonn, Germany; GRADE Reading Center, Bonn, Germany
| | - Sarah Thiele
- Department of Ophthalmology, University of Bonn, Bonn, Germany; GRADE Reading Center, Bonn, Germany
| | - Moritz Lindner
- Department of Ophthalmology, University of Bonn, Bonn, Germany; Nuffield Laboratory of Ophthalmology, Sleep and Circadian Neuroscience Institute, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom; Department of Neurophysiology, Institute of Physiology and Pathophysiology, Philipps University, Marburg, Germany
| | - Matthias Schmid
- Institute for Medical Biometry, Informatics and Epidemiology, Faculty of Medicine, University of Bonn, Bonn, Germany
| | - Daniel L Rubin
- Department of Biomedical Data Science, Stanford University, Stanford, California, USA
| | - Monika Fleckenstein
- Department of Ophthalmology, University of Bonn, Bonn, Germany; GRADE Reading Center, Bonn, Germany; John A. Moran Eye Center, University of Utah, Salt Lake City, Utah, USA
| | - Frank G Holz
- Department of Ophthalmology, University of Bonn, Bonn, Germany; GRADE Reading Center, Bonn, Germany
| | - Steffen Schmitz-Valckenberg
- Department of Ophthalmology, University of Bonn, Bonn, Germany; GRADE Reading Center, Bonn, Germany; John A. Moran Eye Center, University of Utah, Salt Lake City, Utah, USA.
| |
Collapse
|
37
|
Uddin D, Jeffrey BG, Flynn O, Wong W, Wiley H, Keenan T, Chew E, Cukras C. Repeatability of Scotopic Sensitivity and Dark Adaptation Using a Medmont Dark-Adapted Chromatic Perimeter in Age-related Macular Degeneration. Transl Vis Sci Technol 2020; 9:31. [PMID: 32832236 PMCID: PMC7414623 DOI: 10.1167/tvst.9.7.31] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 04/04/2020] [Indexed: 12/27/2022] Open
Abstract
Purpose Functional studies of rods in age-related macular degeneration using the Medmont Dark-Adapted Chromatic Perimeter (DACP) have demonstrated impairments in scotopic sensitivities and dark adaptation (DA). We investigated the intersession repeatability of scotopic sensitivity and DA parameters including the rod intercept time recorded from the Medmont DACP. Methods Scotopic thresholds (14 test points) and DA using a 30% photobleach (eight test points) were measured on two separate days from participants 50 years of age or older with a range of age-related macular degeneration severity at loci superior and inferior to the fovea. Repeatability coefficients were calculated for prebleach scotopic sensitivity, and for DA parameters including rod intercept time. Results Twelve participants (mean age, 79.7 ± 8.1 years) repeated Medmont DACP testing within 50 days. Repeatability coefficients for prebleach scotopic sensitivity to long wavelength (red, 625 nm) and short wavelength (cyan, 505 nm) were 5.9 dB and 7.2 dB, respectively. The DA curve-derived repeatability coefficients for cone threshold was 3.9 dB, final threshold 5.3 dB, with an R value of 0.075 decades/min, rod intercept time 7.6 minutes, and RITslope 0.54 min/degree. Conclusions This study establishes repeatability coefficients for scotopic thresholds and multiple DA parameters obtained with the Medmont DACP in patients with age-related macular degeneration. These repeatability coefficients will serve as the basis for determining clinically meaningful change in rod function in future clinical trials. Translational Relevance Measures of repeatability parameters of scotopic thresholds and DA are essential to the accurate interpretation of results in future studies and trials using these measures.
Collapse
Affiliation(s)
- Durin Uddin
- National Eye Institute, NIH, Bethesda, Maryland, USA
| | | | - Oliver Flynn
- National Eye Institute, NIH, Bethesda, Maryland, USA
| | - Wai Wong
- National Eye Institute, NIH, Bethesda, Maryland, USA
| | - Henry Wiley
- National Eye Institute, NIH, Bethesda, Maryland, USA
| | | | - Emily Chew
- National Eye Institute, NIH, Bethesda, Maryland, USA
| | | |
Collapse
|
38
|
Curcio CA, McGwin G, Sadda SR, Hu Z, Clark ME, Sloan KR, Swain T, Crosson JN, Owsley C. Functionally validated imaging endpoints in the Alabama study on early age-related macular degeneration 2 (ALSTAR2): design and methods. BMC Ophthalmol 2020; 20:196. [PMID: 32429847 PMCID: PMC7236516 DOI: 10.1186/s12886-020-01467-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 05/08/2020] [Indexed: 12/29/2022] Open
Abstract
Background Age-related macular degeneration (AMD), a leading cause of irreversible vision impairment in the United States and globally, is a disease of the photoreceptor support system involving the retinal pigment epithelium (RPE), Bruch’s membrane, and the choriocapillaris in the setting of characteristic extracellular deposits between outer retinal cells and their blood supply. Research has clearly documented the selective vulnerability of rod photoreceptors and rod-mediated (scotopic) vision in early AMD, including delayed rod-mediated dark adaptation (RMDA) and impaired rod-mediated light and pattern sensitivity. The unifying hypothesis of the Alabama Study on Early Macular Degeneration (ALSTAR2) is that early AMD is a disease of micronutrient deficiency and vascular insufficiency, due to detectable structural changes in the retinoid re-supply route from the choriocapillaris to the photoreceptors. Functionally this is manifest as delayed rod-mediated dark adaptation and eventually as rod-mediated visual dysfunction in general. Methods A cohort of 480 older adults either in normal macular health or with early AMD will be enrolled and followed for 3 years to examine cross-sectional and longitudinal associations between structural and functional characteristics of AMD. Using spectral domain optical coherence tomography, the association between (1) subretinal drusenoid deposits and drusen, (2) RPE cell bodies, and (3) the choriocapillaris’ vascular density and rod- and cone-mediated vision will be examined. An accurate map and timeline of structure-function relationships in aging and early AMD gained from ALSTAR2, especially the critical transition from aging to disease, will identify major characteristics relevant to future treatments and preventative measures. Discussion A major barrier to developing treatments and prevention strategies for early AMD is a limited understanding of the temporal interrelationships among structural and functional characteristics while transitioning from aging to early AMD. ALSTAR2 will enable the development of functionally valid, structural biomarkers for early AMD, suitable for use in forthcoming clinical trials as endpoint/outcome measures. The comprehensive dataset will also allow hypothesis-testing for mechanisms that underlie the transition from aging to AMD, one of which is a newly developed Center-Surround model of cone resilience and rod vulnerability. Trial registration ClinicalTrials.gov Identifier NCT04112667, October 7, 2019.
Collapse
Affiliation(s)
- Christine A Curcio
- Department of Ophthalmology and Visual Sciences, Department of Ophthalmology and Visual Sciences, School of Medicine, University of Alabama at Birmingham, 1720 University Blvd., Suite 609, Birmingham, AL, 35294-0009, USA
| | - Gerald McGwin
- Department of Ophthalmology and Visual Sciences, Department of Ophthalmology and Visual Sciences, School of Medicine, University of Alabama at Birmingham, 1720 University Blvd., Suite 609, Birmingham, AL, 35294-0009, USA.,Department of Epidemiology, School of Public Health, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Srinivas R Sadda
- Doheny Eye Institute, P.O. Box 86228, Los Angeles, CA, 90033, USA
| | - Zhihong Hu
- Doheny Eye Institute, P.O. Box 86228, Los Angeles, CA, 90033, USA
| | - Mark E Clark
- Department of Ophthalmology and Visual Sciences, Department of Ophthalmology and Visual Sciences, School of Medicine, University of Alabama at Birmingham, 1720 University Blvd., Suite 609, Birmingham, AL, 35294-0009, USA
| | - Kenneth R Sloan
- Department of Ophthalmology and Visual Sciences, Department of Ophthalmology and Visual Sciences, School of Medicine, University of Alabama at Birmingham, 1720 University Blvd., Suite 609, Birmingham, AL, 35294-0009, USA.,Department of Computer Science, College of Arts and Sciences, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Thomas Swain
- Department of Ophthalmology and Visual Sciences, Department of Ophthalmology and Visual Sciences, School of Medicine, University of Alabama at Birmingham, 1720 University Blvd., Suite 609, Birmingham, AL, 35294-0009, USA
| | - Jason N Crosson
- Department of Ophthalmology and Visual Sciences, Department of Ophthalmology and Visual Sciences, School of Medicine, University of Alabama at Birmingham, 1720 University Blvd., Suite 609, Birmingham, AL, 35294-0009, USA.,Retina Consultants of Alabama, Birmingham, AL, 35233, USA
| | - Cynthia Owsley
- Department of Ophthalmology and Visual Sciences, Department of Ophthalmology and Visual Sciences, School of Medicine, University of Alabama at Birmingham, 1720 University Blvd., Suite 609, Birmingham, AL, 35294-0009, USA.
| |
Collapse
|
39
|
A Pilot Study Evaluating the Effects of 670 nm Photobiomodulation in Healthy Ageing and Age-Related Macular Degeneration. J Clin Med 2020; 9:jcm9041001. [PMID: 32252424 PMCID: PMC7231137 DOI: 10.3390/jcm9041001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 03/25/2020] [Accepted: 03/31/2020] [Indexed: 12/28/2022] Open
Abstract
Limited evidence suggests that the application of 670 nm of red light alters the course of aged decline. A previous report on 18 patients showed regression of drusen and improvement in visual functions in patients with intermediate age-related macular degeneration (AMD) by 12 months. We evaluated the functional and structural effects of applying 670 nm light to 31 patients with intermediate AMD and 11 people aged 55 years or above with normal retina. The study eyes were treated daily in the morning with a 670 nm hand-held light source housed in a torch-like tube that emitted energy equivalent to 40 mW/cm2 or 4.8J/ cm2 for 2 min at the viewing aperture. Visual function in terms of best-corrected visual acuity, low luminance visual acuity, scotopic thresholds and rod-intercept time were compared between baseline and 1, 3, 6 and 12 months. Structural changes on optical coherence tomography OCT and colour photographs were also assessed. Five withdrew consent voluntarily due to the intensity of the study visit assessments and two developed neovascular AMD and were excluded from further treatment and the analysis. In normal ageing, there was an improvement in scotopic thresholds in the group with no AMD by 1.77dB (p = 0.03) and no other parameters showed any clinically significant change. In eyes with intermediate AMD, there was no significant improvement in any functional or structural changes at any time point up to 12 months although the compliance was good. This pilot study shows that photobiomodulation with 670 nm has no effect in patients who have already progressed to intermediate AMD.
Collapse
|
40
|
Predictive genetics for AMD: Hype and hopes for genetics-based strategies for treatment and prevention. Exp Eye Res 2019; 191:107894. [PMID: 31862397 DOI: 10.1016/j.exer.2019.107894] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 10/14/2019] [Accepted: 12/04/2019] [Indexed: 01/18/2023]
Abstract
Age-related macular degeneration (AMD) is a complex disease with multiple genetic and environmental risk factors. In the age of molecular genetics, many investigators have established a link between genes and development or progression of the disease. This later evolved to determine whether phenotypic features of AMD have distinct genetic profiles. Molecular genetics have subsequently been introduced as factors in risk assessment models, increasing the predictive value of these tools. Models seek to predict either development or progression of disease, and different AMD-related genes aid our understanding of these respective features. Several investigators have attempted to link molecular genetics with treatment response, but results and their clinical significance vary. Ocular and systemic biomarkers may interact with established genes, promising future routes of ongoing clinical assessment. Our understanding of AMD molecular genetics is not yet sufficient to recommend routine testing, despite its utility in the research setting. Clinicians must be wary of misusing population-based risk models from genetic and biomarker associations, as they are not necessarily relevant for individual counseling. This review addresses the known uses of predictive genetics, and suggests future directions.
Collapse
|
41
|
Tan RS, Guymer RH, Aung KZ, Caruso E, Luu CD. Longitudinal Assessment of Rod Function in Intermediate Age-Related Macular Degeneration With and Without Reticular Pseudodrusen. Invest Ophthalmol Vis Sci 2019; 60:1511-1518. [PMID: 30994862 DOI: 10.1167/iovs.18-26385] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose To evaluate rod function longitudinally in intermediate age-related macular degeneration subjects with reticular pseudodrusen (RPD) and without RPD (AMD). Methods Retinal sensitivities (505 and 625 nm) during dark adaptation, at 14 locations within the central 12° macula were obtained after photobleaching at baseline and 12-month visits. Pointwise sensitivity differences between both stimuli were used to assess static rod function, while rod intercept time (RIT) and rod recovery rate (RRR) were used to evaluate dynamic function. Changes in function over time were compared between groups. Results A total of 23 controls, 12 AMD, and 13 RPD cases were followed-up. At baseline, the RPD group had significantly worst static and dynamic rod function compared to AMD and control groups. Static function in AMD was similar to controls. Static and dynamic function across the central 12° was consistent in controls; however, it was most impaired at 4° compared to 12° eccentricity in disease groups. Over 12 months, no AMD cases progressed clinically and static function in AMD improved (P ≤ 0.04), but remained unchanged in control and RPD groups (P ≥ 0.17). The RRR for control and RPD groups remained stable, while the AMD group deteriorated, but only at 12° (P = 0.02). The RIT was stable in AMD (P = 0.75) and RPD (P = 0.71) groups but improved in the control group (P = 0.002). Conclusions A decrease in RRR was detected over 12 months at 12° eccentricity in the AMD group. Evaluating changes in rod function requires testing at multiple locations including the peripheral macula.
Collapse
Affiliation(s)
- Rose S Tan
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, Australia.,Ophthalmology, Department of Surgery, The University of Melbourne, Melbourne, Australia.,Department of Ophthalmology, Trisakti University, Jakarta, Indonesia
| | - Robyn H Guymer
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, Australia.,Ophthalmology, Department of Surgery, The University of Melbourne, Melbourne, Australia
| | - Khin-Zaw Aung
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, Australia
| | - Emily Caruso
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, Australia
| | - Chi D Luu
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, Australia.,Ophthalmology, Department of Surgery, The University of Melbourne, Melbourne, Australia
| |
Collapse
|
42
|
Tan R, Guymer RH, Luu CD. Subretinal Drusenoid Deposits and the Loss of Rod Function in Intermediate Age-Related Macular Degeneration. Invest Ophthalmol Vis Sci 2019; 59:4154-4161. [PMID: 30105370 DOI: 10.1167/iovs.18-23970] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose To compare static rod function obtained with and without photobleach in control and intermediate age-related macular degeneration (iAMD) participants with and without subretinal drusenoid deposits (SDD). Methods In this cross-sectional study, retinal sensitivities within the central 24° retina were obtained twice using a dark-adapted chromatic perimeter, both with 505- and 625-nm stimuli. Tests were performed after 30 minutes of dark-adaptation either with or without a preceding photobleach. Multimodal imaging was performed to grade AMD and SDD status, and other retinal changes considered being risk factors for progression to late AMD. The sensitivity difference between both stimuli was used to assess rod function. The average point wise sensitivity difference (PWSD) was compared among the study groups. Results Twenty-nine control subjects and 20 iAMD without SDD and 17 iAMD with SDD cases were recruited. The average PWSD of the SDD group was significantly reduced (more with photobleach) compared with that of the control (P < 0.001) and no-SDD groups (P < 0.001), but only within the central 8°. The average PWSD of the non-SDD group was also reduced compared with the control group but only for measurements with photobleach (P = 0.020). There was no difference in average PWSD between the presence and absence of hyperreflective foci and/or nascent geographic atrophy in iAMD eyes without SDD (P = 0.60) or with SDD (P = 0.12). Conclusions iAMD eyes with SDD are associated with worse static rod function compared with eyes without SDD. The greatest abnormality in rods is observed within the central 8° and when tested with a preceding photobleach.
Collapse
Affiliation(s)
- Rose Tan
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, Victoria, Australia.,Department of Surgery (Ophthalmology), The University of Melbourne, East Melbourne, Victoria, Australia.,Department of Ophthalmology, Trisakti University, Jakarta, Indonesia
| | - Robyn H Guymer
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, Victoria, Australia.,Department of Surgery (Ophthalmology), The University of Melbourne, East Melbourne, Victoria, Australia
| | - Chi D Luu
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, Victoria, Australia.,Department of Surgery (Ophthalmology), The University of Melbourne, East Melbourne, Victoria, Australia
| |
Collapse
|
43
|
Abstract
Radial frequency (RF) patterns are valuable tools for investigations of contour integration and shape discrimination. Under photopic conditions, healthy observers can detect deformations from circularity in RF patterns as small as 3 seconds of arc. Such fine discrimination may be facilitated by cortical curvature detectors or global shape-detecting mechanisms that favor a closed contour. Rods make up 95% of photoreceptors in the retina, but we know very little about how spatial information is processed by rod-mediated pathways. We measured scotopic radial deformation discrimination using both full and partly occluded RF pattern stimuli. We found radial deformation thresholds of around 2–3 minutes of arc for stimuli with a wide range of radii and RFs. When parts of the stimulus were occluded, scotopic thresholds improved up to the point that three or four cycles of modulation were visible; no further improvement occurred with the addition of more visible cycles. When only one to three cycles were visible, an increase in curvature per cycle became important, allowing observers to detect smaller deformations from circularity. Our results indicate that the scotopic radial deformation thresholds for the stimuli tested are not dependent on global circularity cues but are instead mediated by local curvature cues.
Collapse
Affiliation(s)
- Oliver J Flynn
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Brett G Jeffrey
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|